/src/ntp-dev/ntpd/refclock_datum.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | ** refclock_datum - clock driver for the Datum Programmable Time Server |
3 | | ** |
4 | | ** Important note: This driver assumes that you have termios. If you have |
5 | | ** a system that does not have termios, you will have to modify this driver. |
6 | | ** |
7 | | ** Sorry, I have only tested this driver on SUN and HP platforms. |
8 | | */ |
9 | | |
10 | | #ifdef HAVE_CONFIG_H |
11 | | # include <config.h> |
12 | | #endif |
13 | | |
14 | | #include "ntp_types.h" |
15 | | |
16 | | #if defined(REFCLOCK) && defined(CLOCK_DATUM) |
17 | | |
18 | | /* |
19 | | ** Include Files |
20 | | */ |
21 | | |
22 | | #include "ntpd.h" |
23 | | #include "ntp_io.h" |
24 | | #include "ntp_tty.h" |
25 | | #include "ntp_refclock.h" |
26 | | #include "timevalops.h" |
27 | | #include "ntp_stdlib.h" |
28 | | |
29 | | #include <stdio.h> |
30 | | #include <ctype.h> |
31 | | |
32 | | #if defined(STREAM) |
33 | | #include <stropts.h> |
34 | | #endif /* STREAM */ |
35 | | |
36 | | #include "ntp_stdlib.h" |
37 | | |
38 | | /* |
39 | | ** This driver supports the Datum Programmable Time System (PTS) clock. |
40 | | ** The clock works in very straight forward manner. When it receives a |
41 | | ** time code request (e.g., the ascii string "//k/mn"), it responds with |
42 | | ** a seven byte BCD time code. This clock only responds with a |
43 | | ** time code after it first receives the "//k/mn" message. It does not |
44 | | ** periodically send time codes back at some rate once it is started. |
45 | | ** the returned time code can be broken down into the following fields. |
46 | | ** |
47 | | ** _______________________________ |
48 | | ** Bit Index | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |
49 | | ** =============================== |
50 | | ** byte 0: | - - - - | H D | |
51 | | ** =============================== |
52 | | ** byte 1: | T D | U D | |
53 | | ** =============================== |
54 | | ** byte 2: | - - | T H | U H | |
55 | | ** =============================== |
56 | | ** byte 3: | - | T M | U M | |
57 | | ** =============================== |
58 | | ** byte 4: | - | T S | U S | |
59 | | ** =============================== |
60 | | ** byte 5: | t S | h S | |
61 | | ** =============================== |
62 | | ** byte 6: | m S | - - - - | |
63 | | ** =============================== |
64 | | ** |
65 | | ** In the table above: |
66 | | ** |
67 | | ** "-" means don't care |
68 | | ** "H D", "T D", and "U D" means Hundreds, Tens, and Units of Days |
69 | | ** "T H", and "UH" means Tens and Units of Hours |
70 | | ** "T M", and "U M" means Tens and Units of Minutes |
71 | | ** "T S", and "U S" means Tens and Units of Seconds |
72 | | ** "t S", "h S", and "m S" means tenths, hundredths, and thousandths |
73 | | ** of seconds |
74 | | ** |
75 | | ** The Datum PTS communicates throught the RS232 port on your machine. |
76 | | ** Right now, it assumes that you have termios. This driver has been tested |
77 | | ** on SUN and HP workstations. The Datum PTS supports various IRIG and |
78 | | ** NASA input codes. This driver assumes that the name of the device is |
79 | | ** /dev/datum. You will need to make a soft link to your RS232 device or |
80 | | ** create a new driver to use this refclock. |
81 | | */ |
82 | | |
83 | | /* |
84 | | ** Datum PTS defines |
85 | | */ |
86 | | |
87 | | /* |
88 | | ** Note that if GMT is defined, then the Datum PTS must use Greenwich |
89 | | ** time. Otherwise, this driver allows the Datum PTS to use the current |
90 | | ** wall clock for its time. It determines the time zone offset by minimizing |
91 | | ** the error after trying several time zone offsets. If the Datum PTS |
92 | | ** time is Greenwich time and GMT is not defined, everything should still |
93 | | ** work since the time zone will be found to be 0. What this really means |
94 | | ** is that your system time (at least to start with) must be within the |
95 | | ** correct time by less than +- 30 minutes. The default is for GMT to not |
96 | | ** defined. If you really want to force GMT without the funny +- 30 minute |
97 | | ** stuff then you must define (uncomment) GMT below. |
98 | | */ |
99 | | |
100 | | /* |
101 | | #define GMT |
102 | | #define DEBUG_DATUM_PTC |
103 | | #define LOG_TIME_ERRORS |
104 | | */ |
105 | | |
106 | | |
107 | | #define PRECISION (-10) /* precision assumed 1/1024 ms */ |
108 | | #define REFID "DATM" /* reference id */ |
109 | | #define DATUM_DISPERSION 0 /* fixed dispersion = 0 ms */ |
110 | 0 | #define DATUM_MAX_ERROR 0.100 /* limits on sigma squared */ |
111 | 0 | #define DATUM_DEV "/dev/datum" /* device name */ |
112 | | |
113 | 0 | #define DATUM_MAX_ERROR2 (DATUM_MAX_ERROR*DATUM_MAX_ERROR) |
114 | | |
115 | | /* |
116 | | ** The Datum PTS structure |
117 | | */ |
118 | | |
119 | | /* |
120 | | ** I don't use a fixed array of MAXUNITS like everyone else just because |
121 | | ** I don't like to program that way. Sorry if this bothers anyone. I assume |
122 | | ** that you can use any id for your unit and I will search for it in a |
123 | | ** dynamic array of units until I find it. I was worried that users might |
124 | | ** enter a bad id in their configuration file (larger than MAXUNITS) and |
125 | | ** besides, it is just cleaner not to have to assume that you have a fixed |
126 | | ** number of anything in a program. |
127 | | */ |
128 | | |
129 | | struct datum_pts_unit { |
130 | | struct peer *peer; /* peer used by ntp */ |
131 | | int PTS_fd; /* file descriptor for PTS */ |
132 | | u_int unit; /* id for unit */ |
133 | | u_long timestarted; /* time started */ |
134 | | l_fp lastrec; /* time tag for the receive time (system) */ |
135 | | l_fp lastref; /* reference time (Datum time) */ |
136 | | u_long yearstart; /* the year that this clock started */ |
137 | | int coderecv; /* number of time codes received */ |
138 | | int day; /* day */ |
139 | | int hour; /* hour */ |
140 | | int minute; /* minutes */ |
141 | | int second; /* seconds */ |
142 | | int msec; /* miliseconds */ |
143 | | int usec; /* miliseconds */ |
144 | | u_char leap; /* funny leap character code */ |
145 | | char retbuf[8]; /* returned time from the datum pts */ |
146 | | char nbytes; /* number of bytes received from datum pts */ |
147 | | double sigma2; /* average squared error (roughly) */ |
148 | | int tzoff; /* time zone offest from GMT */ |
149 | | }; |
150 | | |
151 | | /* |
152 | | ** PTS static constant variables for internal use |
153 | | */ |
154 | | |
155 | | static char TIME_REQUEST[6]; /* request message sent to datum for time */ |
156 | | static int nunits; /* number of active units */ |
157 | | |
158 | | /* |
159 | | ** Callback function prototypes that ntpd needs to know about. |
160 | | */ |
161 | | |
162 | | static int datum_pts_start (int, struct peer *); |
163 | | static void datum_pts_shutdown (int, struct peer *); |
164 | | static void datum_pts_poll (int, struct peer *); |
165 | | static void datum_pts_control (int, const struct refclockstat *, |
166 | | struct refclockstat *, struct peer *); |
167 | | static void datum_pts_init (void); |
168 | | static void datum_pts_buginfo (int, struct refclockbug *, struct peer *); |
169 | | |
170 | | /* |
171 | | ** This is the call back function structure that ntpd actually uses for |
172 | | ** this refclock. |
173 | | */ |
174 | | |
175 | | struct refclock refclock_datum = { |
176 | | datum_pts_start, /* start up a new Datum refclock */ |
177 | | datum_pts_shutdown, /* shutdown a Datum refclock */ |
178 | | datum_pts_poll, /* sends out the time request */ |
179 | | datum_pts_control, /* not used */ |
180 | | datum_pts_init, /* initialization (called first) */ |
181 | | datum_pts_buginfo, /* not used */ |
182 | | NOFLAGS /* we are not setting any special flags */ |
183 | | }; |
184 | | |
185 | | /* |
186 | | ** The datum_pts_receive callback function is handled differently from the |
187 | | ** rest. It is passed to the ntpd io data structure. Basically, every |
188 | | ** 64 seconds, the datum_pts_poll() routine is called. It sends out the time |
189 | | ** request message to the Datum Programmable Time System. Then, ntpd |
190 | | ** waits on a select() call to receive data back. The datum_pts_receive() |
191 | | ** function is called as data comes back. We expect a seven byte time |
192 | | ** code to be returned but the datum_pts_receive() function may only get |
193 | | ** a few bytes passed to it at a time. In other words, this routine may |
194 | | ** get called by the io stuff in ntpd a few times before we get all seven |
195 | | ** bytes. Once the last byte is received, we process it and then pass the |
196 | | ** new time measurement to ntpd for updating the system time. For now, |
197 | | ** there is no 3 state filtering done on the time measurements. The |
198 | | ** jitter may be a little high but at least for its current use, it is not |
199 | | ** a problem. We have tried to keep things as simple as possible. This |
200 | | ** clock should not jitter more than 1 or 2 mseconds at the most once |
201 | | ** things settle down. It is important to get the right drift calibrated |
202 | | ** in the ntpd.drift file as well as getting the right tick set up right |
203 | | ** using tickadj for SUNs. Tickadj is not used for the HP but you need to |
204 | | ** remember to bring up the adjtime daemon because HP does not support |
205 | | ** the adjtime() call. |
206 | | */ |
207 | | |
208 | | static void datum_pts_receive (struct recvbuf *); |
209 | | |
210 | | /*......................................................................*/ |
211 | | /* datum_pts_start - start up the datum PTS. This means open the */ |
212 | | /* RS232 device and set up the data structure for my unit. */ |
213 | | /*......................................................................*/ |
214 | | |
215 | | static int |
216 | | datum_pts_start( |
217 | | int unit, |
218 | | struct peer *peer |
219 | | ) |
220 | 0 | { |
221 | 0 | struct refclockproc *pp; |
222 | 0 | struct datum_pts_unit *datum_pts; |
223 | 0 | int fd; |
224 | 0 | #ifdef HAVE_TERMIOS |
225 | 0 | int rc; |
226 | 0 | struct termios arg; |
227 | 0 | #endif |
228 | |
|
229 | | #ifdef DEBUG_DATUM_PTC |
230 | | if (debug) |
231 | | printf("Starting Datum PTS unit %d\n", unit); |
232 | | #endif |
233 | | |
234 | | /* |
235 | | ** Open the Datum PTS device |
236 | | */ |
237 | 0 | fd = open(DATUM_DEV, O_RDWR); |
238 | |
|
239 | 0 | if (fd < 0) { |
240 | 0 | msyslog(LOG_ERR, "Datum_PTS: open(\"%s\", O_RDWR) failed: %m", DATUM_DEV); |
241 | 0 | return 0; |
242 | 0 | } |
243 | | |
244 | | /* |
245 | | ** Create the memory for the new unit |
246 | | */ |
247 | 0 | datum_pts = emalloc_zero(sizeof(*datum_pts)); |
248 | 0 | datum_pts->unit = unit; /* set my unit id */ |
249 | 0 | datum_pts->yearstart = 0; /* initialize the yearstart to 0 */ |
250 | 0 | datum_pts->sigma2 = 0.0; /* initialize the sigma2 to 0 */ |
251 | |
|
252 | 0 | datum_pts->PTS_fd = fd; |
253 | |
|
254 | 0 | if (-1 == fcntl(datum_pts->PTS_fd, F_SETFL, 0)) /* clear the descriptor flags */ |
255 | 0 | msyslog(LOG_ERR, "MSF_ARCRON(%d): fcntl(F_SETFL, 0): %m.", |
256 | 0 | unit); |
257 | |
|
258 | | #ifdef DEBUG_DATUM_PTC |
259 | | if (debug) |
260 | | printf("Opening RS232 port with file descriptor %d\n", |
261 | | datum_pts->PTS_fd); |
262 | | #endif |
263 | | |
264 | | /* |
265 | | ** Set up the RS232 terminal device information. Note that we assume that |
266 | | ** we have termios. This code has only been tested on SUNs and HPs. If your |
267 | | ** machine does not have termios this driver cannot be initialized. You can change this |
268 | | ** if you want by editing this source. Please give the changes back to the |
269 | | ** ntp folks so that it can become part of their regular distribution. |
270 | | */ |
271 | |
|
272 | 0 | memset(&arg, 0, sizeof(arg)); |
273 | |
|
274 | 0 | arg.c_iflag = IGNBRK; |
275 | 0 | arg.c_oflag = 0; |
276 | 0 | arg.c_cflag = B9600 | CS8 | CREAD | PARENB | CLOCAL; |
277 | 0 | arg.c_lflag = 0; |
278 | 0 | arg.c_cc[VMIN] = 0; /* start timeout timer right away (not used) */ |
279 | 0 | arg.c_cc[VTIME] = 30; /* 3 second timout on reads (not used) */ |
280 | |
|
281 | 0 | rc = tcsetattr(datum_pts->PTS_fd, TCSANOW, &arg); |
282 | 0 | if (rc < 0) { |
283 | 0 | msyslog(LOG_ERR, "Datum_PTS: tcsetattr(\"%s\") failed: %m", DATUM_DEV); |
284 | 0 | close(datum_pts->PTS_fd); |
285 | 0 | free(datum_pts); |
286 | 0 | return 0; |
287 | 0 | } |
288 | | |
289 | | /* |
290 | | ** Initialize the ntpd IO structure |
291 | | */ |
292 | | |
293 | 0 | datum_pts->peer = peer; |
294 | 0 | pp = peer->procptr; |
295 | 0 | pp->io.clock_recv = datum_pts_receive; |
296 | 0 | pp->io.srcclock = peer; |
297 | 0 | pp->io.datalen = 0; |
298 | 0 | pp->io.fd = datum_pts->PTS_fd; |
299 | |
|
300 | 0 | if (!io_addclock(&pp->io)) { |
301 | 0 | pp->io.fd = -1; |
302 | | #ifdef DEBUG_DATUM_PTC |
303 | | if (debug) |
304 | | printf("Problem adding clock\n"); |
305 | | #endif |
306 | |
|
307 | 0 | msyslog(LOG_ERR, "Datum_PTS: Problem adding clock"); |
308 | 0 | close(datum_pts->PTS_fd); |
309 | 0 | free(datum_pts); |
310 | |
|
311 | 0 | return 0; |
312 | 0 | } |
313 | 0 | peer->procptr->unitptr = datum_pts; |
314 | | |
315 | | /* |
316 | | ** Now add one to the number of units and return a successful code |
317 | | */ |
318 | |
|
319 | 0 | nunits++; |
320 | 0 | return 1; |
321 | |
|
322 | 0 | } |
323 | | |
324 | | |
325 | | /*......................................................................*/ |
326 | | /* datum_pts_shutdown - this routine shuts doen the device and */ |
327 | | /* removes the memory for the unit. */ |
328 | | /*......................................................................*/ |
329 | | |
330 | | static void |
331 | | datum_pts_shutdown( |
332 | | int unit, |
333 | | struct peer *peer |
334 | | ) |
335 | 0 | { |
336 | 0 | struct refclockproc *pp; |
337 | 0 | struct datum_pts_unit *datum_pts; |
338 | |
|
339 | | #ifdef DEBUG_DATUM_PTC |
340 | | if (debug) |
341 | | printf("Shutdown Datum PTS\n"); |
342 | | #endif |
343 | |
|
344 | 0 | msyslog(LOG_ERR, "Datum_PTS: Shutdown Datum PTS"); |
345 | | |
346 | | /* |
347 | | ** We found the unit so close the file descriptor and free up the memory used |
348 | | ** by the structure. |
349 | | */ |
350 | 0 | pp = peer->procptr; |
351 | 0 | datum_pts = pp->unitptr; |
352 | 0 | if (NULL != datum_pts) { |
353 | 0 | io_closeclock(&pp->io); |
354 | 0 | free(datum_pts); |
355 | 0 | } |
356 | 0 | } |
357 | | |
358 | | |
359 | | /*......................................................................*/ |
360 | | /* datum_pts_poll - this routine sends out the time request to the */ |
361 | | /* Datum PTS device. The time will be passed back in the */ |
362 | | /* datum_pts_receive() routine. */ |
363 | | /*......................................................................*/ |
364 | | |
365 | | static void |
366 | | datum_pts_poll( |
367 | | int unit, |
368 | | struct peer *peer |
369 | | ) |
370 | 0 | { |
371 | 0 | int error_code; |
372 | 0 | struct datum_pts_unit *datum_pts; |
373 | |
|
374 | 0 | datum_pts = peer->procptr->unitptr; |
375 | |
|
376 | | #ifdef DEBUG_DATUM_PTC |
377 | | if (debug) |
378 | | printf("Poll Datum PTS\n"); |
379 | | #endif |
380 | | |
381 | | /* |
382 | | ** Find the right unit and send out a time request once it is found. |
383 | | */ |
384 | 0 | error_code = write(datum_pts->PTS_fd, TIME_REQUEST, 6); |
385 | 0 | if (error_code != 6) |
386 | 0 | perror("TIME_REQUEST"); |
387 | 0 | datum_pts->nbytes = 0; |
388 | 0 | } |
389 | | |
390 | | |
391 | | /*......................................................................*/ |
392 | | /* datum_pts_control - not used */ |
393 | | /*......................................................................*/ |
394 | | |
395 | | static void |
396 | | datum_pts_control( |
397 | | int unit, |
398 | | const struct refclockstat *in, |
399 | | struct refclockstat *out, |
400 | | struct peer *peer |
401 | | ) |
402 | 0 | { |
403 | |
|
404 | | #ifdef DEBUG_DATUM_PTC |
405 | | if (debug) |
406 | | printf("Control Datum PTS\n"); |
407 | | #endif |
408 | |
|
409 | 0 | } |
410 | | |
411 | | |
412 | | /*......................................................................*/ |
413 | | /* datum_pts_init - initializes things for all possible Datum */ |
414 | | /* time code generators that might be used. In practice, this is */ |
415 | | /* only called once at the beginning before anything else is */ |
416 | | /* called. */ |
417 | | /*......................................................................*/ |
418 | | |
419 | | static void |
420 | | datum_pts_init(void) |
421 | 0 | { |
422 | | |
423 | | /* */ |
424 | | /*...... open up the log file if we are debugging ......................*/ |
425 | | /* */ |
426 | | |
427 | | /* |
428 | | ** Open up the log file if we are debugging. For now, send data out to the |
429 | | ** screen (stdout). |
430 | | */ |
431 | |
|
432 | | #ifdef DEBUG_DATUM_PTC |
433 | | if (debug) |
434 | | printf("Init Datum PTS\n"); |
435 | | #endif |
436 | | |
437 | | /* |
438 | | ** Initialize the time request command string. This is the only message |
439 | | ** that we ever have to send to the Datum PTS (although others are defined). |
440 | | */ |
441 | |
|
442 | 0 | memcpy(TIME_REQUEST, "//k/mn",6); |
443 | | |
444 | | /* |
445 | | ** Initialize the number of units to 0 and set the dynamic array of units to |
446 | | ** NULL since there are no units defined yet. |
447 | | */ |
448 | |
|
449 | 0 | nunits = 0; |
450 | |
|
451 | 0 | } |
452 | | |
453 | | |
454 | | /*......................................................................*/ |
455 | | /* datum_pts_buginfo - not used */ |
456 | | /*......................................................................*/ |
457 | | |
458 | | static void |
459 | | datum_pts_buginfo( |
460 | | int unit, |
461 | | register struct refclockbug *bug, |
462 | | register struct peer *peer |
463 | | ) |
464 | 0 | { |
465 | |
|
466 | | #ifdef DEBUG_DATUM_PTC |
467 | | if (debug) |
468 | | printf("Buginfo Datum PTS\n"); |
469 | | #endif |
470 | |
|
471 | 0 | } |
472 | | |
473 | | |
474 | | /*......................................................................*/ |
475 | | /* datum_pts_receive - receive the time buffer that was read in */ |
476 | | /* by the ntpd io handling routines. When 7 bytes have been */ |
477 | | /* received (it may take several tries before all 7 bytes are */ |
478 | | /* received), then the time code must be unpacked and sent to */ |
479 | | /* the ntpd clock_receive() routine which causes the systems */ |
480 | | /* clock to be updated (several layers down). */ |
481 | | /*......................................................................*/ |
482 | | |
483 | | static void |
484 | | datum_pts_receive( |
485 | | struct recvbuf *rbufp |
486 | | ) |
487 | 0 | { |
488 | 0 | int i; |
489 | 0 | size_t nb; |
490 | 0 | l_fp tstmp; |
491 | 0 | struct peer *p; |
492 | 0 | struct datum_pts_unit *datum_pts; |
493 | 0 | char *dpt; |
494 | 0 | int dpend; |
495 | 0 | int tzoff; |
496 | 0 | int timerr; |
497 | 0 | double ftimerr, abserr; |
498 | | #ifdef DEBUG_DATUM_PTC |
499 | | double dispersion; |
500 | | #endif |
501 | 0 | int goodtime; |
502 | | /*double doffset;*/ |
503 | | |
504 | | /* |
505 | | ** Get the time code (maybe partial) message out of the rbufp buffer. |
506 | | */ |
507 | |
|
508 | 0 | p = rbufp->recv_peer; |
509 | 0 | datum_pts = p->procptr->unitptr; |
510 | 0 | dpt = (char *)&rbufp->recv_space; |
511 | 0 | dpend = rbufp->recv_length; |
512 | |
|
513 | | #ifdef DEBUG_DATUM_PTC |
514 | | if (debug) |
515 | | printf("Receive Datum PTS: %d bytes\n", dpend); |
516 | | #endif |
517 | | |
518 | | /* */ |
519 | | /*...... save the ntp system time when the first byte is received ......*/ |
520 | | /* */ |
521 | | |
522 | | /* |
523 | | ** Save the ntp system time when the first byte is received. Note that |
524 | | ** because it may take several calls to this routine before all seven |
525 | | ** bytes of our return message are finally received by the io handlers in |
526 | | ** ntpd, we really do want to use the time tag when the first byte is |
527 | | ** received to reduce the jitter. |
528 | | */ |
529 | |
|
530 | 0 | nb = datum_pts->nbytes; |
531 | 0 | if (nb == 0) { |
532 | 0 | datum_pts->lastrec = rbufp->recv_time; |
533 | 0 | } |
534 | | |
535 | | /* |
536 | | ** Increment our count to the number of bytes received so far. Return if we |
537 | | ** haven't gotten all seven bytes yet. |
538 | | ** [Sec 3388] make sure we do not overrun the buffer. |
539 | | ** TODO: what to do with excessive bytes, if we ever get them? |
540 | | */ |
541 | 0 | for (i=0; (i < dpend) && (nb < sizeof(datum_pts->retbuf)); i++, nb++) { |
542 | 0 | datum_pts->retbuf[nb] = dpt[i]; |
543 | 0 | } |
544 | 0 | datum_pts->nbytes = nb; |
545 | | |
546 | 0 | if (nb < 7) { |
547 | 0 | return; |
548 | 0 | } |
549 | | |
550 | | /* |
551 | | ** Convert the seven bytes received in our time buffer to day, hour, minute, |
552 | | ** second, and msecond values. The usec value is not used for anything |
553 | | ** currently. It is just the fractional part of the time stored in units |
554 | | ** of microseconds. |
555 | | */ |
556 | | |
557 | 0 | datum_pts->day = 100*(datum_pts->retbuf[0] & 0x0f) + |
558 | 0 | 10*((datum_pts->retbuf[1] & 0xf0)>>4) + |
559 | 0 | (datum_pts->retbuf[1] & 0x0f); |
560 | |
|
561 | 0 | datum_pts->hour = 10*((datum_pts->retbuf[2] & 0x30)>>4) + |
562 | 0 | (datum_pts->retbuf[2] & 0x0f); |
563 | |
|
564 | 0 | datum_pts->minute = 10*((datum_pts->retbuf[3] & 0x70)>>4) + |
565 | 0 | (datum_pts->retbuf[3] & 0x0f); |
566 | |
|
567 | 0 | datum_pts->second = 10*((datum_pts->retbuf[4] & 0x70)>>4) + |
568 | 0 | (datum_pts->retbuf[4] & 0x0f); |
569 | |
|
570 | 0 | datum_pts->msec = 100*((datum_pts->retbuf[5] & 0xf0) >> 4) + |
571 | 0 | 10*(datum_pts->retbuf[5] & 0x0f) + |
572 | 0 | ((datum_pts->retbuf[6] & 0xf0)>>4); |
573 | |
|
574 | 0 | datum_pts->usec = 1000*datum_pts->msec; |
575 | |
|
576 | | #ifdef DEBUG_DATUM_PTC |
577 | | if (debug) |
578 | | printf("day %d, hour %d, minute %d, second %d, msec %d\n", |
579 | | datum_pts->day, |
580 | | datum_pts->hour, |
581 | | datum_pts->minute, |
582 | | datum_pts->second, |
583 | | datum_pts->msec); |
584 | | #endif |
585 | | |
586 | | /* |
587 | | ** Get the GMT time zone offset. Note that GMT should be zero if the Datum |
588 | | ** reference time is using GMT as its time base. Otherwise we have to |
589 | | ** determine the offset if the Datum PTS is using time of day as its time |
590 | | ** base. |
591 | | */ |
592 | |
|
593 | 0 | goodtime = 0; /* We are not sure about the time and offset yet */ |
594 | |
|
595 | 0 | #ifdef GMT |
596 | | |
597 | | /* |
598 | | ** This is the case where the Datum PTS is using GMT so there is no time |
599 | | ** zone offset. |
600 | | */ |
601 | |
|
602 | 0 | tzoff = 0; /* set time zone offset to 0 */ |
603 | |
|
604 | | #else |
605 | | |
606 | | /* |
607 | | ** This is the case where the Datum PTS is using regular time of day for its |
608 | | ** time so we must compute the time zone offset. The way we do it is kind of |
609 | | ** funny but it works. We loop through different time zones (0 to 24) and |
610 | | ** pick the one that gives the smallest error (+- one half hour). The time |
611 | | ** zone offset is stored in the datum_pts structure for future use. Normally, |
612 | | ** the clocktime() routine is only called once (unless the time zone offset |
613 | | ** changes due to daylight savings) since the goodtime flag is set when a |
614 | | ** good time is found (with a good offset). Note that even if the Datum |
615 | | ** PTS is using GMT, this mechanism will still work since it should come up |
616 | | ** with a value for tzoff = 0 (assuming that your system clock is within |
617 | | ** a half hour of the Datum time (even with time zone differences). |
618 | | */ |
619 | | |
620 | | for (tzoff=0; tzoff<24; tzoff++) { |
621 | | if (clocktime( datum_pts->day, |
622 | | datum_pts->hour, |
623 | | datum_pts->minute, |
624 | | datum_pts->second, |
625 | | (tzoff + datum_pts->tzoff) % 24, |
626 | | datum_pts->lastrec.l_ui, |
627 | | &datum_pts->yearstart, |
628 | | &datum_pts->lastref.l_ui) ) { |
629 | | |
630 | | datum_pts->lastref.l_uf = 0; |
631 | | error = datum_pts->lastref.l_ui - datum_pts->lastrec.l_ui; |
632 | | |
633 | | #ifdef DEBUG_DATUM_PTC |
634 | | printf("Time Zone (clocktime method) = %d, error = %d\n", tzoff, error); |
635 | | #endif |
636 | | |
637 | | if ((error < 1799) && (error > -1799)) { |
638 | | tzoff = (tzoff + datum_pts->tzoff) % 24; |
639 | | datum_pts->tzoff = tzoff; |
640 | | goodtime = 1; |
641 | | |
642 | | #ifdef DEBUG_DATUM_PTC |
643 | | printf("Time Zone found (clocktime method) = %d\n",tzoff); |
644 | | #endif |
645 | | |
646 | | break; |
647 | | } |
648 | | |
649 | | } |
650 | | } |
651 | | |
652 | | #endif |
653 | | |
654 | | /* |
655 | | ** Make sure that we have a good time from the Datum PTS. Clocktime() also |
656 | | ** sets yearstart and lastref.l_ui. We will have to set astref.l_uf (i.e., |
657 | | ** the fraction of a second) stuff later. |
658 | | */ |
659 | |
|
660 | 0 | if (!goodtime) { |
661 | |
|
662 | 0 | if (!clocktime( datum_pts->day, |
663 | 0 | datum_pts->hour, |
664 | 0 | datum_pts->minute, |
665 | 0 | datum_pts->second, |
666 | 0 | tzoff, |
667 | 0 | datum_pts->lastrec.l_ui, |
668 | 0 | &datum_pts->yearstart, |
669 | 0 | &datum_pts->lastref.l_ui) ) { |
670 | |
|
671 | | #ifdef DEBUG_DATUM_PTC |
672 | | if (debug) |
673 | | { |
674 | | printf("Error: bad clocktime\n"); |
675 | | printf("GMT %d, lastrec %d, yearstart %d, lastref %d\n", |
676 | | tzoff, |
677 | | datum_pts->lastrec.l_ui, |
678 | | datum_pts->yearstart, |
679 | | datum_pts->lastref.l_ui); |
680 | | } |
681 | | #endif |
682 | |
|
683 | 0 | msyslog(LOG_ERR, "Datum_PTS: Bad clocktime"); |
684 | |
|
685 | 0 | return; |
686 | |
|
687 | 0 | }else{ |
688 | |
|
689 | | #ifdef DEBUG_DATUM_PTC |
690 | | if (debug) |
691 | | printf("Good clocktime\n"); |
692 | | #endif |
693 | |
|
694 | 0 | } |
695 | |
|
696 | 0 | } |
697 | | |
698 | | /* |
699 | | ** We have datum_pts->lastref.l_ui set (which is the integer part of the |
700 | | ** time. Now set the microseconds field. |
701 | | */ |
702 | | |
703 | 0 | TVUTOTSF(datum_pts->usec, datum_pts->lastref.l_uf); |
704 | | |
705 | | /* |
706 | | ** Compute the time correction as the difference between the reference |
707 | | ** time (i.e., the Datum time) minus the receive time (system time). |
708 | | */ |
709 | |
|
710 | 0 | tstmp = datum_pts->lastref; /* tstmp is the datum ntp time */ |
711 | 0 | L_SUB(&tstmp, &datum_pts->lastrec); /* tstmp is now the correction */ |
712 | 0 | datum_pts->coderecv++; /* increment a counter */ |
713 | |
|
714 | | #ifdef DEBUG_DATUM_PTC |
715 | | dispersion = DATUM_DISPERSION; /* set the dispersion to 0 */ |
716 | | ftimerr = dispersion; |
717 | | ftimerr /= (1024.0 * 64.0); |
718 | | if (debug) |
719 | | printf("dispersion = %d, %f\n", dispersion, ftimerr); |
720 | | #endif |
721 | | |
722 | | /* |
723 | | ** Pass the new time to ntpd through the refclock_receive function. Note |
724 | | ** that we are not trying to make any corrections due to the time it takes |
725 | | ** for the Datum PTS to send the message back. I am (erroneously) assuming |
726 | | ** that the time for the Datum PTS to send the time back to us is negligable. |
727 | | ** I suspect that this time delay may be as much as 15 ms or so (but probably |
728 | | ** less). For our needs at JPL, this kind of error is ok so it is not |
729 | | ** necessary to use fudge factors in the ntp.conf file. Maybe later we will. |
730 | | */ |
731 | | /*LFPTOD(&tstmp, doffset);*/ |
732 | 0 | datum_pts->lastref = datum_pts->lastrec; |
733 | 0 | refclock_receive(datum_pts->peer); |
734 | | |
735 | | /* |
736 | | ** Compute sigma squared (not used currently). Maybe later, this could be |
737 | | ** used for the dispersion estimate. The problem is that ntpd does not link |
738 | | ** in the math library so sqrt() is not available. Anyway, this is useful |
739 | | ** for debugging. Maybe later I will just use absolute values for the time |
740 | | ** error to come up with my dispersion estimate. Anyway, for now my dispersion |
741 | | ** is set to 0. |
742 | | */ |
743 | |
|
744 | 0 | timerr = tstmp.l_ui<<20; |
745 | 0 | timerr |= (tstmp.l_uf>>12) & 0x000fffff; |
746 | 0 | ftimerr = timerr; |
747 | 0 | ftimerr /= 1024*1024; |
748 | 0 | abserr = ftimerr; |
749 | 0 | if (ftimerr < 0.0) abserr = -ftimerr; |
750 | |
|
751 | 0 | if (datum_pts->sigma2 == 0.0) { |
752 | 0 | if (abserr < DATUM_MAX_ERROR) { |
753 | 0 | datum_pts->sigma2 = abserr*abserr; |
754 | 0 | }else{ |
755 | 0 | datum_pts->sigma2 = DATUM_MAX_ERROR2; |
756 | 0 | } |
757 | 0 | }else{ |
758 | 0 | if (abserr < DATUM_MAX_ERROR) { |
759 | 0 | datum_pts->sigma2 = 0.95*datum_pts->sigma2 + 0.05*abserr*abserr; |
760 | 0 | }else{ |
761 | 0 | datum_pts->sigma2 = 0.95*datum_pts->sigma2 + 0.05*DATUM_MAX_ERROR2; |
762 | 0 | } |
763 | 0 | } |
764 | |
|
765 | | #ifdef DEBUG_DATUM_PTC |
766 | | if (debug) |
767 | | printf("Time error = %f seconds\n", ftimerr); |
768 | | #endif |
769 | |
|
770 | | #if defined(DEBUG_DATUM_PTC) || defined(LOG_TIME_ERRORS) |
771 | | if (debug) |
772 | | printf("PTS: day %d, hour %d, minute %d, second %d, msec %d, Time Error %f\n", |
773 | | datum_pts->day, |
774 | | datum_pts->hour, |
775 | | datum_pts->minute, |
776 | | datum_pts->second, |
777 | | datum_pts->msec, |
778 | | ftimerr); |
779 | | #endif |
780 | |
|
781 | 0 | } |
782 | | #else |
783 | | NONEMPTY_TRANSLATION_UNIT |
784 | | #endif /* REFCLOCK */ |