/src/ntp-dev/ntpd/refclock_gpsdjson.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * refclock_gpsdjson.c - clock driver as GPSD JSON client |
3 | | * Juergen Perlinger (perlinger@ntp.org) |
4 | | * Feb 11, 2014 for the NTP project. |
5 | | * The contents of 'html/copyright.html' apply. |
6 | | * |
7 | | * Heavily inspired by refclock_nmea.c |
8 | | * |
9 | | * Special thanks to Gary Miller and Hal Murray for their comments and |
10 | | * ideas. |
11 | | * |
12 | | * Note: This will currently NOT work with Windows due to some |
13 | | * limitations: |
14 | | * |
15 | | * - There is no GPSD for Windows. (There is an unofficial port to |
16 | | * cygwin, but Windows is not officially supported.) |
17 | | * |
18 | | * - To work properly, this driver needs PPS and TPV/TOFF sentences |
19 | | * from GPSD. I don't see how the cygwin port should deal with the |
20 | | * PPS signal. |
21 | | * |
22 | | * - The device name matching must be done in a different way for |
23 | | * Windows. (Can be done with COMxx matching, as done for NMEA.) |
24 | | * |
25 | | * Apart from those minor hickups, once GPSD has been fully ported to |
26 | | * Windows, there's no reason why this should not work there ;-) If this |
27 | | * is ever to happen at all is a different question. |
28 | | * |
29 | | * --------------------------------------------------------------------- |
30 | | * |
31 | | * This driver works slightly different from most others, as the PPS |
32 | | * information (if available) is also coming from GPSD via the data |
33 | | * connection. This makes using both the PPS data and the serial data |
34 | | * easier, but OTOH it's not possible to use the ATOM driver to feed a |
35 | | * raw PPS stream to the core of NTPD. |
36 | | * |
37 | | * To go around this, the driver can use a secondary clock unit |
38 | | * (units>=128) that operate in tandem with the primary clock unit |
39 | | * (unit%128). The primary clock unit does all the IO stuff and data |
40 | | * decoding; if a a secondary unit is attached to a primary unit, this |
41 | | * secondary unit is feed with the PPS samples only and can act as a PPS |
42 | | * source to the clock selection. |
43 | | * |
44 | | * The drawback is that the primary unit must be present for the |
45 | | * secondary unit to work. |
46 | | * |
47 | | * This design is a compromise to reduce the IO load for both NTPD and |
48 | | * GPSD; it also ensures that data is transmitted and evaluated only |
49 | | * once on the side of NTPD. |
50 | | * |
51 | | * --------------------------------------------------------------------- |
52 | | * |
53 | | * trouble shooting hints: |
54 | | * |
55 | | * Enable and check the clock stats. Check if there are bad replies; |
56 | | * there should be none. If there are actually bad replies, then the |
57 | | * driver cannot parse all JSON records from GPSD, and some record |
58 | | * types are vital for the operation of the driver. This indicates a |
59 | | * problem on the protocol level. |
60 | | * |
61 | | * When started on the command line with a debug level >= 2, the |
62 | | * driver dumps the raw received data and the parser input to |
63 | | * stdout. Since the debug level is global, NTPD starts to create a |
64 | | * *lot* of output. It makes sense to pipe it through '(f)grep |
65 | | * GPSD_JSON' before writing the result to disk. |
66 | | * |
67 | | * A bit less intrusive is using netcat or telnet to connect to GPSD |
68 | | * and snoop what NTPD would get. If you try this, you have to send a |
69 | | * WATCH command to GPSD: |
70 | | * |
71 | | * ?WATCH={"device":"/dev/gps0","enable":true,"json":true,"pps":true};<CRLF> |
72 | | * |
73 | | * should show you what GPSD has to say to NTPD. Replace "/dev/gps0" |
74 | | * with the device link used by GPSD, if necessary. |
75 | | */ |
76 | | |
77 | | |
78 | | #ifdef HAVE_CONFIG_H |
79 | | #include <config.h> |
80 | | #endif |
81 | | |
82 | | #include "ntp_types.h" |
83 | | |
84 | | #if defined(REFCLOCK) && defined(CLOCK_GPSDJSON) && !defined(SYS_WINNT) |
85 | | |
86 | | /* ===================================================================== |
87 | | * Get the little JSMN library directly into our guts. Use the 'parent |
88 | | * link' feature for maximum speed. |
89 | | */ |
90 | | #define JSMN_PARENT_LINKS |
91 | | #include "../libjsmn/jsmn.c" |
92 | | |
93 | | /* ===================================================================== |
94 | | * JSON parsing stuff |
95 | | */ |
96 | | |
97 | 0 | #define JSMN_MAXTOK 350 |
98 | 0 | #define INVALID_TOKEN (-1) |
99 | | |
100 | | typedef struct json_ctx { |
101 | | char * buf; |
102 | | int ntok; |
103 | | jsmntok_t tok[JSMN_MAXTOK]; |
104 | | } json_ctx; |
105 | | |
106 | | typedef int tok_ref; |
107 | | |
108 | | /* Not all targets have 'long long', and not all of them have 'strtoll'. |
109 | | * Sigh. We roll our own integer number parser. |
110 | | */ |
111 | | #ifdef HAVE_LONG_LONG |
112 | | typedef signed long long int json_int; |
113 | | typedef unsigned long long int json_uint; |
114 | 0 | #define JSON_INT_MAX LLONG_MAX |
115 | 0 | #define JSON_INT_MIN LLONG_MIN |
116 | | #else |
117 | | typedef signed long int json_int; |
118 | | typedef unsigned long int json_uint; |
119 | | #define JSON_INT_MAX LONG_MAX |
120 | | #define JSON_INT_MIN LONG_MIN |
121 | | #endif |
122 | | |
123 | | /* ===================================================================== |
124 | | * header stuff we need |
125 | | */ |
126 | | |
127 | | #include <netdb.h> |
128 | | #include <unistd.h> |
129 | | #include <fcntl.h> |
130 | | #include <string.h> |
131 | | #include <ctype.h> |
132 | | #include <math.h> |
133 | | |
134 | | #include <sys/types.h> |
135 | | #include <sys/socket.h> |
136 | | #include <sys/stat.h> |
137 | | #include <netinet/tcp.h> |
138 | | |
139 | | #if defined(HAVE_SYS_POLL_H) |
140 | | # include <sys/poll.h> |
141 | | #elif defined(HAVE_SYS_SELECT_H) |
142 | | # include <sys/select.h> |
143 | | #else |
144 | | # error need poll() or select() |
145 | | #endif |
146 | | |
147 | | #include "ntpd.h" |
148 | | #include "ntp_io.h" |
149 | | #include "ntp_unixtime.h" |
150 | | #include "ntp_refclock.h" |
151 | | #include "ntp_stdlib.h" |
152 | | #include "ntp_calendar.h" |
153 | | #include "timespecops.h" |
154 | | |
155 | | /* get operation modes from mode word. |
156 | | |
157 | | * + SERIAL (default) evaluates only serial time information ('STI') as |
158 | | * provided by TPV and TOFF records. TPV evaluation suffers from a |
159 | | * bigger jitter than TOFF, sine it does not contain the receive time |
160 | | * from GPSD and therefore the receive time of NTPD must be |
161 | | * substituted for it. The network latency makes this a second rate |
162 | | * guess. |
163 | | * |
164 | | * If TOFF records are detected in the data stream, the timing |
165 | | * information is gleaned from this record -- it contains the local |
166 | | * receive time stamp from GPSD and therefore eliminates the |
167 | | * transmission latency between GPSD and NTPD. The timing information |
168 | | * from TPV is ignored once a TOFF is detected or expected. |
169 | | * |
170 | | * TPV is still used to check the fix status, so the driver can stop |
171 | | * feeding samples when GPSD says that the time information is |
172 | | * effectively unreliable. |
173 | | * |
174 | | * + STRICT means only feed clock samples when a valid STI/PPS pair is |
175 | | * available. Combines the reference time from STI with the pulse time |
176 | | * from PPS. Masks the serial data jitter as long PPS is available, |
177 | | * but can rapidly deteriorate once PPS drops out. |
178 | | * |
179 | | * + AUTO tries to use STI/PPS pairs if available for some time, and if |
180 | | * this fails for too long switches back to STI only until the PPS |
181 | | * signal becomes available again. See the HTML docs for this driver |
182 | | * about the gotchas and why this is not the default. |
183 | | */ |
184 | 0 | #define MODE_OP_MASK 0x03 |
185 | 0 | #define MODE_OP_STI 0 |
186 | 0 | #define MODE_OP_STRICT 1 |
187 | 0 | #define MODE_OP_AUTO 2 |
188 | 0 | #define MODE_OP_MAXVAL 2 |
189 | 0 | #define MODE_OP_MODE(x) ((x) & MODE_OP_MASK) |
190 | | |
191 | 0 | #define PRECISION (-9) /* precision assumed (about 2 ms) */ |
192 | 0 | #define PPS_PRECISION (-20) /* precision assumed (about 1 us) */ |
193 | 0 | #define REFID "GPSD" /* reference id */ |
194 | 0 | #define DESCRIPTION "GPSD JSON client clock" /* who we are */ |
195 | | |
196 | | #define MAX_PDU_LEN 1600 |
197 | 0 | #define TICKOVER_LOW 10 |
198 | | #define TICKOVER_HIGH 120 |
199 | 0 | #define LOGTHROTTLE 3600 |
200 | | |
201 | | /* Primary channel PPS avilability dance: |
202 | | * Every good PPS sample gets us a credit of PPS_INCCOUNT points, every |
203 | | * bad/missing PPS sample costs us a debit of PPS_DECCOUNT points. When |
204 | | * the account reaches the upper limit we change to a mode where only |
205 | | * PPS-augmented samples are fed to the core; when the account drops to |
206 | | * zero we switch to a mode where TPV-only timestamps are fed to the |
207 | | * core. |
208 | | * This reduces the chance of rapid alternation between raw and |
209 | | * PPS-augmented time stamps. |
210 | | */ |
211 | 0 | #define PPS_MAXCOUNT 60 /* upper limit of account */ |
212 | | #define PPS_INCCOUNT 3 /* credit for good samples */ |
213 | | #define PPS_DECCOUNT 1 /* debit for bad samples */ |
214 | | |
215 | | /* The secondary (PPS) channel uses a different strategy to avoid old |
216 | | * PPS samples in the median filter. |
217 | | */ |
218 | 0 | #define PPS2_MAXCOUNT 10 |
219 | | |
220 | | #ifndef BOOL |
221 | 0 | # define BOOL int |
222 | | #endif |
223 | | #ifndef TRUE |
224 | | # define TRUE 1 |
225 | | #endif |
226 | | #ifndef FALSE |
227 | | # define FALSE 0 |
228 | | #endif |
229 | | |
230 | | #define PROTO_VERSION(hi,lo) \ |
231 | 0 | ((((uint32_t)(hi) << 16) & 0xFFFF0000u) | \ |
232 | 0 | ((uint32_t)(lo) & 0x0FFFFu)) |
233 | | |
234 | | /* some local typedefs: The NTPD formatting style cries for short type |
235 | | * names, and we provide them locally. Note:the suffix '_t' is reserved |
236 | | * for the standard; I use a capital T instead. |
237 | | */ |
238 | | typedef struct peer peerT; |
239 | | typedef struct refclockproc clockprocT; |
240 | | typedef struct addrinfo addrinfoT; |
241 | | |
242 | | /* ===================================================================== |
243 | | * We use the same device name scheme as does the NMEA driver; since |
244 | | * GPSD supports the same links, we can select devices by a fixed name. |
245 | | */ |
246 | | static const char * s_dev_stem = "/dev/gps"; |
247 | | |
248 | | /* ===================================================================== |
249 | | * forward declarations for transfer vector and the vector itself |
250 | | */ |
251 | | |
252 | | static void gpsd_init (void); |
253 | | static int gpsd_start (int, peerT *); |
254 | | static void gpsd_shutdown (int, peerT *); |
255 | | static void gpsd_receive (struct recvbuf *); |
256 | | static void gpsd_poll (int, peerT *); |
257 | | static void gpsd_control (int, const struct refclockstat *, |
258 | | struct refclockstat *, peerT *); |
259 | | static void gpsd_timer (int, peerT *); |
260 | | |
261 | | static int myasprintf(char**, char const*, ...) NTP_PRINTF(2, 3); |
262 | | |
263 | | static void enter_opmode(peerT *peer, int mode); |
264 | | static void leave_opmode(peerT *peer, int mode); |
265 | | |
266 | | struct refclock refclock_gpsdjson = { |
267 | | gpsd_start, /* start up driver */ |
268 | | gpsd_shutdown, /* shut down driver */ |
269 | | gpsd_poll, /* transmit poll message */ |
270 | | gpsd_control, /* fudge control */ |
271 | | gpsd_init, /* initialize driver */ |
272 | | noentry, /* buginfo */ |
273 | | gpsd_timer /* called once per second */ |
274 | | }; |
275 | | |
276 | | /* ===================================================================== |
277 | | * our local clock unit and data |
278 | | */ |
279 | | struct gpsd_unit; |
280 | | typedef struct gpsd_unit gpsd_unitT; |
281 | | |
282 | | struct gpsd_unit { |
283 | | /* links for sharing between master/slave units */ |
284 | | gpsd_unitT *next_unit; |
285 | | size_t refcount; |
286 | | |
287 | | /* data for the secondary PPS channel */ |
288 | | peerT *pps_peer; |
289 | | |
290 | | /* unit and operation modes */ |
291 | | int unit; |
292 | | int mode; |
293 | | char *logname; /* cached name for log/print */ |
294 | | char * device; /* device name of unit */ |
295 | | |
296 | | /* current line protocol version */ |
297 | | uint32_t proto_version; |
298 | | |
299 | | /* PPS time stamps primary + secondary channel */ |
300 | | l_fp pps_local; /* when we received the PPS message */ |
301 | | l_fp pps_stamp; /* related reference time */ |
302 | | l_fp pps_recvt; /* when GPSD detected the pulse */ |
303 | | l_fp pps_stamp2;/* related reference time (secondary) */ |
304 | | l_fp pps_recvt2;/* when GPSD detected the pulse (secondary)*/ |
305 | | int ppscount; /* PPS counter (primary unit) */ |
306 | | int ppscount2; /* PPS counter (secondary unit) */ |
307 | | |
308 | | /* TPV or TOFF serial time information */ |
309 | | l_fp sti_local; /* when we received the TPV/TOFF message */ |
310 | | l_fp sti_stamp; /* effective GPS time stamp */ |
311 | | l_fp sti_recvt; /* when GPSD got the fix */ |
312 | | |
313 | | /* precision estimates */ |
314 | | int16_t sti_prec; /* serial precision based on EPT */ |
315 | | int16_t pps_prec; /* PPS precision from GPSD or above */ |
316 | | |
317 | | /* fudge values for correction, mirrored as 'l_fp' */ |
318 | | l_fp pps_fudge; /* PPS fudge primary channel */ |
319 | | l_fp pps_fudge2; /* PPS fudge secondary channel */ |
320 | | l_fp sti_fudge; /* TPV/TOFF serial data fudge */ |
321 | | |
322 | | /* Flags to indicate available data */ |
323 | | int fl_nosync: 1; /* GPSD signals bad quality */ |
324 | | int fl_sti : 1; /* valid TPV/TOFF seen (have time) */ |
325 | | int fl_pps : 1; /* valid pulse seen */ |
326 | | int fl_pps2 : 1; /* valid pulse seen for PPS channel */ |
327 | | int fl_rawsti: 1; /* permit raw TPV/TOFF time stamps */ |
328 | | int fl_vers : 1; /* have protocol version */ |
329 | | int fl_watch : 1; /* watch reply seen */ |
330 | | /* protocol flags */ |
331 | | int pf_nsec : 1; /* have nanosec PPS info */ |
332 | | int pf_toff : 1; /* have TOFF record for timing */ |
333 | | |
334 | | /* admin stuff for sockets and device selection */ |
335 | | int fdt; /* current connecting socket */ |
336 | | addrinfoT * addr; /* next address to try */ |
337 | | u_int tickover; /* timeout countdown */ |
338 | | u_int tickpres; /* timeout preset */ |
339 | | |
340 | | /* tallies for the various events */ |
341 | | u_int tc_recv; /* received known records */ |
342 | | u_int tc_breply; /* bad replies / parsing errors */ |
343 | | u_int tc_nosync; /* TPV / sample cycles w/o fix */ |
344 | | u_int tc_sti_recv;/* received serial time info records */ |
345 | | u_int tc_sti_used;/* used --^-- */ |
346 | | u_int tc_pps_recv;/* received PPS timing info records */ |
347 | | u_int tc_pps_used;/* used --^-- */ |
348 | | |
349 | | /* log bloat throttle */ |
350 | | u_int logthrottle;/* seconds to next log slot */ |
351 | | |
352 | | /* The parse context for the current record */ |
353 | | json_ctx json_parse; |
354 | | |
355 | | /* record assemby buffer and saved length */ |
356 | | int buflen; |
357 | | char buffer[MAX_PDU_LEN]; |
358 | | }; |
359 | | |
360 | | /* ===================================================================== |
361 | | * static local helpers forward decls |
362 | | */ |
363 | | static void gpsd_init_socket(peerT * const peer); |
364 | | static void gpsd_test_socket(peerT * const peer); |
365 | | static void gpsd_stop_socket(peerT * const peer); |
366 | | |
367 | | static void gpsd_parse(peerT * const peer, |
368 | | const l_fp * const rtime); |
369 | | static BOOL convert_ascii_time(l_fp * fp, const char * gps_time); |
370 | | static void save_ltc(clockprocT * const pp, const char * const tc); |
371 | | static int syslogok(clockprocT * const pp, gpsd_unitT * const up); |
372 | | static void log_data(peerT *peer, const char *what, |
373 | | const char *buf, size_t len); |
374 | | static int16_t clamped_precision(int rawprec); |
375 | | |
376 | | /* ===================================================================== |
377 | | * local / static stuff |
378 | | */ |
379 | | |
380 | | static const char * const s_req_version = |
381 | | "?VERSION;\r\n"; |
382 | | |
383 | | /* We keep a static list of network addresses for 'localhost:gpsd' or a |
384 | | * fallback alias of it, and we try to connect to them in round-robin |
385 | | * fashion. The service lookup is done during the driver init |
386 | | * function to minmise the impact of 'getaddrinfo()'. |
387 | | * |
388 | | * Alas, the init function is called even if there are no clocks |
389 | | * configured for this driver. So it makes sense to defer the logging of |
390 | | * any errors or other notifications until the first clock unit is |
391 | | * started -- otherwise there might be syslog entries from a driver that |
392 | | * is not used at all. |
393 | | */ |
394 | | static addrinfoT *s_gpsd_addr; |
395 | | static gpsd_unitT *s_clock_units; |
396 | | |
397 | | /* list of service/socket names we want to resolve against */ |
398 | | static const char * const s_svctab[][2] = { |
399 | | { "localhost", "gpsd" }, |
400 | | { "localhost", "2947" }, |
401 | | { "127.0.0.1", "2947" }, |
402 | | { NULL, NULL } |
403 | | }; |
404 | | |
405 | | /* list of address resolution errors and index of service entry that |
406 | | * finally worked. |
407 | | */ |
408 | | static int s_svcerr[sizeof(s_svctab)/sizeof(s_svctab[0])]; |
409 | | static int s_svcidx; |
410 | | |
411 | | /* ===================================================================== |
412 | | * log throttling |
413 | | */ |
414 | | static int/*BOOL*/ |
415 | | syslogok( |
416 | | clockprocT * const pp, |
417 | | gpsd_unitT * const up) |
418 | 0 | { |
419 | 0 | int res = (0 != (pp->sloppyclockflag & CLK_FLAG3)) |
420 | 0 | || (0 == up->logthrottle ) |
421 | 0 | || (LOGTHROTTLE == up->logthrottle ); |
422 | 0 | if (res) |
423 | 0 | up->logthrottle = LOGTHROTTLE; |
424 | 0 | return res; |
425 | 0 | } |
426 | | |
427 | | /* ===================================================================== |
428 | | * the clock functions |
429 | | */ |
430 | | |
431 | | /* --------------------------------------------------------------------- |
432 | | * Init: This currently just gets the socket address for the GPS daemon |
433 | | */ |
434 | | static void |
435 | | gpsd_init(void) |
436 | 0 | { |
437 | 0 | addrinfoT hints; |
438 | 0 | int rc, idx; |
439 | |
|
440 | 0 | memset(s_svcerr, 0, sizeof(s_svcerr)); |
441 | 0 | memset(&hints, 0, sizeof(hints)); |
442 | 0 | hints.ai_family = AF_UNSPEC; |
443 | 0 | hints.ai_protocol = IPPROTO_TCP; |
444 | 0 | hints.ai_socktype = SOCK_STREAM; |
445 | |
|
446 | 0 | for (idx = 0; s_svctab[idx][0] && !s_gpsd_addr; idx++) { |
447 | 0 | rc = getaddrinfo(s_svctab[idx][0], s_svctab[idx][1], |
448 | 0 | &hints, &s_gpsd_addr); |
449 | 0 | s_svcerr[idx] = rc; |
450 | 0 | if (0 == rc) |
451 | 0 | break; |
452 | 0 | s_gpsd_addr = NULL; |
453 | 0 | } |
454 | 0 | s_svcidx = idx; |
455 | 0 | } |
456 | | |
457 | | /* --------------------------------------------------------------------- |
458 | | * Init Check: flush pending log messages and check if we can proceed |
459 | | */ |
460 | | static int/*BOOL*/ |
461 | | gpsd_init_check(void) |
462 | 0 | { |
463 | 0 | int idx; |
464 | | |
465 | | /* Check if there is something to log */ |
466 | 0 | if (s_svcidx == 0) |
467 | 0 | return (s_gpsd_addr != NULL); |
468 | | |
469 | | /* spool out the resolver errors */ |
470 | 0 | for (idx = 0; idx < s_svcidx; ++idx) { |
471 | 0 | msyslog(LOG_WARNING, |
472 | 0 | "GPSD_JSON: failed to resolve '%s:%s', rc=%d (%s)", |
473 | 0 | s_svctab[idx][0], s_svctab[idx][1], |
474 | 0 | s_svcerr[idx], gai_strerror(s_svcerr[idx])); |
475 | 0 | } |
476 | | |
477 | | /* check if it was fatal, or if we can proceed */ |
478 | 0 | if (s_gpsd_addr == NULL) |
479 | 0 | msyslog(LOG_ERR, "%s", |
480 | 0 | "GPSD_JSON: failed to get socket address, giving up."); |
481 | 0 | else if (idx != 0) |
482 | 0 | msyslog(LOG_WARNING, |
483 | 0 | "GPSD_JSON: using '%s:%s' instead of '%s:%s'", |
484 | 0 | s_svctab[idx][0], s_svctab[idx][1], |
485 | 0 | s_svctab[0][0], s_svctab[0][1]); |
486 | | |
487 | | /* make sure this gets logged only once and tell if we can |
488 | | * proceed or not |
489 | | */ |
490 | 0 | s_svcidx = 0; |
491 | 0 | return (s_gpsd_addr != NULL); |
492 | 0 | } |
493 | | |
494 | | /* --------------------------------------------------------------------- |
495 | | * Start: allocate a unit pointer and set up the runtime data |
496 | | */ |
497 | | static int |
498 | | gpsd_start( |
499 | | int unit, |
500 | | peerT * peer) |
501 | 0 | { |
502 | 0 | clockprocT * const pp = peer->procptr; |
503 | 0 | gpsd_unitT * up; |
504 | 0 | gpsd_unitT ** uscan = &s_clock_units; |
505 | |
|
506 | 0 | struct stat sb; |
507 | | |
508 | | /* check if we can proceed at all or if init failed */ |
509 | 0 | if ( ! gpsd_init_check()) |
510 | 0 | return FALSE; |
511 | | |
512 | | /* search for matching unit */ |
513 | 0 | while ((up = *uscan) != NULL && up->unit != (unit & 0x7F)) |
514 | 0 | uscan = &up->next_unit; |
515 | 0 | if (up == NULL) { |
516 | | /* alloc unit, add to list and increment use count ASAP. */ |
517 | 0 | up = emalloc_zero(sizeof(*up)); |
518 | 0 | *uscan = up; |
519 | 0 | ++up->refcount; |
520 | | |
521 | | /* initialize the unit structure */ |
522 | 0 | up->logname = estrdup(refnumtoa(&peer->srcadr)); |
523 | 0 | up->unit = unit & 0x7F; |
524 | 0 | up->fdt = -1; |
525 | 0 | up->addr = s_gpsd_addr; |
526 | 0 | up->tickpres = TICKOVER_LOW; |
527 | | |
528 | | /* Create the device name and check for a Character |
529 | | * Device. It's assumed that GPSD was started with the |
530 | | * same link, so the names match. (If this is not |
531 | | * practicable, we will have to read the symlink, if |
532 | | * any, so we can get the true device file.) |
533 | | */ |
534 | 0 | if (-1 == myasprintf(&up->device, "%s%u", |
535 | 0 | s_dev_stem, up->unit)) { |
536 | 0 | msyslog(LOG_ERR, "%s: clock device name too long", |
537 | 0 | up->logname); |
538 | 0 | goto dev_fail; |
539 | 0 | } |
540 | 0 | if (-1 == stat(up->device, &sb) || !S_ISCHR(sb.st_mode)) { |
541 | 0 | msyslog(LOG_ERR, "%s: '%s' is not a character device", |
542 | 0 | up->logname, up->device); |
543 | 0 | goto dev_fail; |
544 | 0 | } |
545 | 0 | } else { |
546 | | /* All set up, just increment use count. */ |
547 | 0 | ++up->refcount; |
548 | 0 | } |
549 | | |
550 | | /* setup refclock processing */ |
551 | 0 | pp->unitptr = (caddr_t)up; |
552 | 0 | pp->io.fd = -1; |
553 | 0 | pp->io.clock_recv = gpsd_receive; |
554 | 0 | pp->io.srcclock = peer; |
555 | 0 | pp->io.datalen = 0; |
556 | 0 | pp->a_lastcode[0] = '\0'; |
557 | 0 | pp->lencode = 0; |
558 | 0 | pp->clockdesc = DESCRIPTION; |
559 | 0 | memcpy(&pp->refid, REFID, 4); |
560 | | |
561 | | /* Initialize miscellaneous variables */ |
562 | 0 | if (unit >= 128) |
563 | 0 | peer->precision = PPS_PRECISION; |
564 | 0 | else |
565 | 0 | peer->precision = PRECISION; |
566 | | |
567 | | /* If the daemon name lookup failed, just give up now. */ |
568 | 0 | if (NULL == up->addr) { |
569 | 0 | msyslog(LOG_ERR, "%s: no GPSD socket address, giving up", |
570 | 0 | up->logname); |
571 | 0 | goto dev_fail; |
572 | 0 | } |
573 | | |
574 | 0 | LOGIF(CLOCKINFO, |
575 | 0 | (LOG_NOTICE, "%s: startup, device is '%s'", |
576 | 0 | refnumtoa(&peer->srcadr), up->device)); |
577 | 0 | up->mode = MODE_OP_MODE(peer->ttl); |
578 | 0 | if (up->mode > MODE_OP_MAXVAL) |
579 | 0 | up->mode = 0; |
580 | 0 | if (unit >= 128) |
581 | 0 | up->pps_peer = peer; |
582 | 0 | else |
583 | 0 | enter_opmode(peer, up->mode); |
584 | 0 | return TRUE; |
585 | | |
586 | 0 | dev_fail: |
587 | | /* On failure, remove all UNIT ressources and declare defeat. */ |
588 | |
|
589 | 0 | INSIST (up); |
590 | 0 | if (!--up->refcount) { |
591 | 0 | *uscan = up->next_unit; |
592 | 0 | free(up->device); |
593 | 0 | free(up); |
594 | 0 | } |
595 | |
|
596 | 0 | pp->unitptr = (caddr_t)NULL; |
597 | 0 | return FALSE; |
598 | 0 | } |
599 | | |
600 | | /* ------------------------------------------------------------------ */ |
601 | | |
602 | | static void |
603 | | gpsd_shutdown( |
604 | | int unit, |
605 | | peerT * peer) |
606 | 0 | { |
607 | 0 | clockprocT * const pp = peer->procptr; |
608 | 0 | gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr; |
609 | 0 | gpsd_unitT ** uscan = &s_clock_units; |
610 | |
|
611 | 0 | UNUSED_ARG(unit); |
612 | | |
613 | | /* The unit pointer might have been removed already. */ |
614 | 0 | if (up == NULL) |
615 | 0 | return; |
616 | | |
617 | | /* now check if we must close IO resources */ |
618 | 0 | if (peer != up->pps_peer) { |
619 | 0 | if (-1 != pp->io.fd) { |
620 | 0 | DPRINTF(1, ("%s: closing clock, fd=%d\n", |
621 | 0 | up->logname, pp->io.fd)); |
622 | 0 | io_closeclock(&pp->io); |
623 | 0 | pp->io.fd = -1; |
624 | 0 | } |
625 | 0 | if (up->fdt != -1) |
626 | 0 | close(up->fdt); |
627 | 0 | } |
628 | | /* decrement use count and eventually remove this unit. */ |
629 | 0 | if (!--up->refcount) { |
630 | | /* unlink this unit */ |
631 | 0 | while (*uscan != NULL) |
632 | 0 | if (*uscan == up) |
633 | 0 | *uscan = up->next_unit; |
634 | 0 | else |
635 | 0 | uscan = &(*uscan)->next_unit; |
636 | 0 | free(up->logname); |
637 | 0 | free(up->device); |
638 | 0 | free(up); |
639 | 0 | } |
640 | 0 | pp->unitptr = (caddr_t)NULL; |
641 | 0 | LOGIF(CLOCKINFO, |
642 | 0 | (LOG_NOTICE, "%s: shutdown", refnumtoa(&peer->srcadr))); |
643 | 0 | } |
644 | | |
645 | | /* ------------------------------------------------------------------ */ |
646 | | |
647 | | static void |
648 | | gpsd_receive( |
649 | | struct recvbuf * rbufp) |
650 | 0 | { |
651 | | /* declare & init control structure ptrs */ |
652 | 0 | peerT * const peer = rbufp->recv_peer; |
653 | 0 | clockprocT * const pp = peer->procptr; |
654 | 0 | gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr; |
655 | |
|
656 | 0 | const char *psrc, *esrc; |
657 | 0 | char *pdst, *edst, ch; |
658 | | |
659 | | /* log the data stream, if this is enabled */ |
660 | 0 | log_data(peer, "recv", (const char*)rbufp->recv_buffer, |
661 | 0 | (size_t)rbufp->recv_length); |
662 | | |
663 | | |
664 | | /* Since we're getting a raw stream data, we must assemble lines |
665 | | * in our receive buffer. We can't use neither 'refclock_gtraw' |
666 | | * not 'refclock_gtlin' here... We process chars until we reach |
667 | | * an EoL (that is, line feed) but we truncate the message if it |
668 | | * does not fit the buffer. GPSD might truncate messages, too, |
669 | | * so dealing with truncated buffers is necessary anyway. |
670 | | */ |
671 | 0 | psrc = (const char*)rbufp->recv_buffer; |
672 | 0 | esrc = psrc + rbufp->recv_length; |
673 | |
|
674 | 0 | pdst = up->buffer + up->buflen; |
675 | 0 | edst = pdst + sizeof(up->buffer) - 1; /* for trailing NUL */ |
676 | |
|
677 | 0 | while (psrc != esrc) { |
678 | 0 | ch = *psrc++; |
679 | 0 | if (ch == '\n') { |
680 | | /* trim trailing whitespace & terminate buffer */ |
681 | 0 | while (pdst != up->buffer && pdst[-1] <= ' ') |
682 | 0 | --pdst; |
683 | 0 | *pdst = '\0'; |
684 | | /* process data and reset buffer */ |
685 | 0 | up->buflen = pdst - up->buffer; |
686 | 0 | gpsd_parse(peer, &rbufp->recv_time); |
687 | 0 | pdst = up->buffer; |
688 | 0 | } else if (pdst != edst) { |
689 | | /* add next char, ignoring leading whitespace */ |
690 | 0 | if (ch > ' ' || pdst != up->buffer) |
691 | 0 | *pdst++ = ch; |
692 | 0 | } |
693 | 0 | } |
694 | 0 | up->buflen = pdst - up->buffer; |
695 | 0 | up->tickover = TICKOVER_LOW; |
696 | 0 | } |
697 | | |
698 | | /* ------------------------------------------------------------------ */ |
699 | | |
700 | | static void |
701 | | poll_primary( |
702 | | peerT * const peer , |
703 | | clockprocT * const pp , |
704 | | gpsd_unitT * const up ) |
705 | 0 | { |
706 | 0 | if (pp->coderecv != pp->codeproc) { |
707 | | /* all is well */ |
708 | 0 | pp->lastref = pp->lastrec; |
709 | 0 | refclock_report(peer, CEVNT_NOMINAL); |
710 | 0 | refclock_receive(peer); |
711 | 0 | } else { |
712 | | /* Not working properly, admit to it. If we have no |
713 | | * connection to GPSD, declare the clock as faulty. If |
714 | | * there were bad replies, this is handled as the major |
715 | | * cause, and everything else is just a timeout. |
716 | | */ |
717 | 0 | peer->precision = PRECISION; |
718 | 0 | if (-1 == pp->io.fd) |
719 | 0 | refclock_report(peer, CEVNT_FAULT); |
720 | 0 | else if (0 != up->tc_breply) |
721 | 0 | refclock_report(peer, CEVNT_BADREPLY); |
722 | 0 | else |
723 | 0 | refclock_report(peer, CEVNT_TIMEOUT); |
724 | 0 | } |
725 | |
|
726 | 0 | if (pp->sloppyclockflag & CLK_FLAG4) |
727 | 0 | mprintf_clock_stats( |
728 | 0 | &peer->srcadr,"%u %u %u %u %u %u %u", |
729 | 0 | up->tc_recv, |
730 | 0 | up->tc_breply, up->tc_nosync, |
731 | 0 | up->tc_sti_recv, up->tc_sti_used, |
732 | 0 | up->tc_pps_recv, up->tc_pps_used); |
733 | | |
734 | | /* clear tallies for next round */ |
735 | 0 | up->tc_breply = 0; |
736 | 0 | up->tc_recv = 0; |
737 | 0 | up->tc_nosync = 0; |
738 | 0 | up->tc_sti_recv = 0; |
739 | 0 | up->tc_sti_used = 0; |
740 | 0 | up->tc_pps_recv = 0; |
741 | 0 | up->tc_pps_used = 0; |
742 | 0 | } |
743 | | |
744 | | static void |
745 | | poll_secondary( |
746 | | peerT * const peer , |
747 | | clockprocT * const pp , |
748 | | gpsd_unitT * const up ) |
749 | 0 | { |
750 | 0 | if (pp->coderecv != pp->codeproc) { |
751 | | /* all is well */ |
752 | 0 | pp->lastref = pp->lastrec; |
753 | 0 | refclock_report(peer, CEVNT_NOMINAL); |
754 | 0 | refclock_receive(peer); |
755 | 0 | } else { |
756 | 0 | peer->precision = PPS_PRECISION; |
757 | 0 | peer->flags &= ~FLAG_PPS; |
758 | 0 | refclock_report(peer, CEVNT_TIMEOUT); |
759 | 0 | } |
760 | 0 | } |
761 | | |
762 | | static void |
763 | | gpsd_poll( |
764 | | int unit, |
765 | | peerT * peer) |
766 | 0 | { |
767 | 0 | clockprocT * const pp = peer->procptr; |
768 | 0 | gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr; |
769 | |
|
770 | 0 | ++pp->polls; |
771 | 0 | if (peer == up->pps_peer) |
772 | 0 | poll_secondary(peer, pp, up); |
773 | 0 | else |
774 | 0 | poll_primary(peer, pp, up); |
775 | 0 | } |
776 | | |
777 | | /* ------------------------------------------------------------------ */ |
778 | | |
779 | | static void |
780 | | gpsd_control( |
781 | | int unit, |
782 | | const struct refclockstat * in_st, |
783 | | struct refclockstat * out_st, |
784 | | peerT * peer ) |
785 | 0 | { |
786 | 0 | clockprocT * const pp = peer->procptr; |
787 | 0 | gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr; |
788 | |
|
789 | 0 | if (peer == up->pps_peer) { |
790 | 0 | DTOLFP(pp->fudgetime1, &up->pps_fudge2); |
791 | 0 | if ( ! (pp->sloppyclockflag & CLK_FLAG1)) |
792 | 0 | peer->flags &= ~FLAG_PPS; |
793 | 0 | } else { |
794 | | /* save preprocessed fudge times */ |
795 | 0 | DTOLFP(pp->fudgetime1, &up->pps_fudge); |
796 | 0 | DTOLFP(pp->fudgetime2, &up->sti_fudge); |
797 | |
|
798 | 0 | if (MODE_OP_MODE(up->mode ^ peer->ttl)) { |
799 | 0 | leave_opmode(peer, up->mode); |
800 | 0 | up->mode = MODE_OP_MODE(peer->ttl); |
801 | 0 | enter_opmode(peer, up->mode); |
802 | 0 | } |
803 | 0 | } |
804 | 0 | } |
805 | | |
806 | | /* ------------------------------------------------------------------ */ |
807 | | |
808 | | static void |
809 | | timer_primary( |
810 | | peerT * const peer , |
811 | | clockprocT * const pp , |
812 | | gpsd_unitT * const up ) |
813 | 0 | { |
814 | 0 | int rc; |
815 | | |
816 | | /* This is used for timeout handling. Nothing that needs |
817 | | * sub-second precison happens here, so receive/connect/retry |
818 | | * timeouts are simply handled by a count down, and then we |
819 | | * decide what to do by the socket values. |
820 | | * |
821 | | * Note that the timer stays at zero here, unless some of the |
822 | | * functions set it to another value. |
823 | | */ |
824 | 0 | if (up->logthrottle) |
825 | 0 | --up->logthrottle; |
826 | 0 | if (up->tickover) |
827 | 0 | --up->tickover; |
828 | 0 | switch (up->tickover) { |
829 | 0 | case 4: |
830 | | /* If we are connected to GPSD, try to get a live signal |
831 | | * by querying the version. Otherwise just check the |
832 | | * socket to become ready. |
833 | | */ |
834 | 0 | if (-1 != pp->io.fd) { |
835 | 0 | size_t rlen = strlen(s_req_version); |
836 | 0 | DPRINTF(2, ("%s: timer livecheck: '%s'\n", |
837 | 0 | up->logname, s_req_version)); |
838 | 0 | log_data(peer, "send", s_req_version, rlen); |
839 | 0 | rc = write(pp->io.fd, s_req_version, rlen); |
840 | 0 | (void)rc; |
841 | 0 | } else if (-1 != up->fdt) { |
842 | 0 | gpsd_test_socket(peer); |
843 | 0 | } |
844 | 0 | break; |
845 | | |
846 | 0 | case 0: |
847 | 0 | if (-1 != pp->io.fd) |
848 | 0 | gpsd_stop_socket(peer); |
849 | 0 | else if (-1 != up->fdt) |
850 | 0 | gpsd_test_socket(peer); |
851 | 0 | else if (NULL != s_gpsd_addr) |
852 | 0 | gpsd_init_socket(peer); |
853 | 0 | break; |
854 | | |
855 | 0 | default: |
856 | 0 | if (-1 == pp->io.fd && -1 != up->fdt) |
857 | 0 | gpsd_test_socket(peer); |
858 | 0 | } |
859 | 0 | } |
860 | | |
861 | | static void |
862 | | timer_secondary( |
863 | | peerT * const peer , |
864 | | clockprocT * const pp , |
865 | | gpsd_unitT * const up ) |
866 | 0 | { |
867 | | /* Reduce the count by one. Flush sample buffer and clear PPS |
868 | | * flag when this happens. |
869 | | */ |
870 | 0 | up->ppscount2 = max(0, (up->ppscount2 - 1)); |
871 | 0 | if (0 == up->ppscount2) { |
872 | 0 | if (pp->coderecv != pp->codeproc) { |
873 | 0 | refclock_report(peer, CEVNT_TIMEOUT); |
874 | 0 | pp->coderecv = pp->codeproc; |
875 | 0 | } |
876 | 0 | peer->flags &= ~FLAG_PPS; |
877 | 0 | } |
878 | 0 | } |
879 | | |
880 | | static void |
881 | | gpsd_timer( |
882 | | int unit, |
883 | | peerT * peer) |
884 | 0 | { |
885 | 0 | clockprocT * const pp = peer->procptr; |
886 | 0 | gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr; |
887 | |
|
888 | 0 | if (peer == up->pps_peer) |
889 | 0 | timer_secondary(peer, pp, up); |
890 | 0 | else |
891 | 0 | timer_primary(peer, pp, up); |
892 | 0 | } |
893 | | |
894 | | /* ===================================================================== |
895 | | * handle opmode switches |
896 | | */ |
897 | | |
898 | | static void |
899 | | enter_opmode( |
900 | | peerT *peer, |
901 | | int mode) |
902 | 0 | { |
903 | 0 | clockprocT * const pp = peer->procptr; |
904 | 0 | gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr; |
905 | |
|
906 | 0 | DPRINTF(1, ("%s: enter operation mode %d\n", |
907 | 0 | up->logname, MODE_OP_MODE(mode))); |
908 | |
|
909 | 0 | if (MODE_OP_MODE(mode) == MODE_OP_AUTO) { |
910 | 0 | up->fl_rawsti = 0; |
911 | 0 | up->ppscount = PPS_MAXCOUNT / 2; |
912 | 0 | } |
913 | 0 | up->fl_pps = 0; |
914 | 0 | up->fl_sti = 0; |
915 | 0 | } |
916 | | |
917 | | /* ------------------------------------------------------------------ */ |
918 | | |
919 | | static void |
920 | | leave_opmode( |
921 | | peerT *peer, |
922 | | int mode) |
923 | 0 | { |
924 | 0 | clockprocT * const pp = peer->procptr; |
925 | 0 | gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr; |
926 | |
|
927 | 0 | DPRINTF(1, ("%s: leaving operation mode %d\n", |
928 | 0 | up->logname, MODE_OP_MODE(mode))); |
929 | |
|
930 | 0 | if (MODE_OP_MODE(mode) == MODE_OP_AUTO) { |
931 | 0 | up->fl_rawsti = 0; |
932 | 0 | up->ppscount = 0; |
933 | 0 | } |
934 | 0 | up->fl_pps = 0; |
935 | 0 | up->fl_sti = 0; |
936 | 0 | } |
937 | | |
938 | | /* ===================================================================== |
939 | | * operation mode specific evaluation |
940 | | */ |
941 | | |
942 | | static void |
943 | | add_clock_sample( |
944 | | peerT * const peer , |
945 | | clockprocT * const pp , |
946 | | l_fp stamp, |
947 | | l_fp recvt) |
948 | 0 | { |
949 | 0 | pp->lastref = stamp; |
950 | 0 | if (pp->coderecv == pp->codeproc) |
951 | 0 | refclock_report(peer, CEVNT_NOMINAL); |
952 | 0 | refclock_process_offset(pp, stamp, recvt, pp->fudgetime1); |
953 | 0 | } |
954 | | |
955 | | /* ------------------------------------------------------------------ */ |
956 | | |
957 | | static void |
958 | | eval_strict( |
959 | | peerT * const peer , |
960 | | clockprocT * const pp , |
961 | | gpsd_unitT * const up ) |
962 | 0 | { |
963 | 0 | if (up->fl_sti && up->fl_pps) { |
964 | | /* use TPV reference time + PPS receive time */ |
965 | 0 | add_clock_sample(peer, pp, up->sti_stamp, up->pps_recvt); |
966 | 0 | peer->precision = up->pps_prec; |
967 | | /* both packets consumed now... */ |
968 | 0 | up->fl_pps = 0; |
969 | 0 | up->fl_sti = 0; |
970 | 0 | ++up->tc_sti_used; |
971 | 0 | } |
972 | 0 | } |
973 | | |
974 | | /* ------------------------------------------------------------------ */ |
975 | | /* PPS processing for the secondary channel. GPSD provides us with full |
976 | | * timing information, so there's no danger of PLL-locking to the wrong |
977 | | * second. The belts and suspenders needed for the raw ATOM clock are |
978 | | * unnecessary here. |
979 | | */ |
980 | | static void |
981 | | eval_pps_secondary( |
982 | | peerT * const peer , |
983 | | clockprocT * const pp , |
984 | | gpsd_unitT * const up ) |
985 | 0 | { |
986 | 0 | if (up->fl_pps2) { |
987 | | /* feed data */ |
988 | 0 | add_clock_sample(peer, pp, up->pps_stamp2, up->pps_recvt2); |
989 | 0 | peer->precision = up->pps_prec; |
990 | | /* PPS peer flag logic */ |
991 | 0 | up->ppscount2 = min(PPS2_MAXCOUNT, (up->ppscount2 + 2)); |
992 | 0 | if ((PPS2_MAXCOUNT == up->ppscount2) && |
993 | 0 | (pp->sloppyclockflag & CLK_FLAG1) ) |
994 | 0 | peer->flags |= FLAG_PPS; |
995 | | /* mark time stamp as burned... */ |
996 | 0 | up->fl_pps2 = 0; |
997 | 0 | ++up->tc_pps_used; |
998 | 0 | } |
999 | 0 | } |
1000 | | |
1001 | | /* ------------------------------------------------------------------ */ |
1002 | | |
1003 | | static void |
1004 | | eval_serial( |
1005 | | peerT * const peer , |
1006 | | clockprocT * const pp , |
1007 | | gpsd_unitT * const up ) |
1008 | 0 | { |
1009 | 0 | if (up->fl_sti) { |
1010 | 0 | add_clock_sample(peer, pp, up->sti_stamp, up->sti_recvt); |
1011 | 0 | peer->precision = up->sti_prec; |
1012 | | /* mark time stamp as burned... */ |
1013 | 0 | up->fl_sti = 0; |
1014 | 0 | ++up->tc_sti_used; |
1015 | 0 | } |
1016 | 0 | } |
1017 | | |
1018 | | /* ------------------------------------------------------------------ */ |
1019 | | static void |
1020 | | eval_auto( |
1021 | | peerT * const peer , |
1022 | | clockprocT * const pp , |
1023 | | gpsd_unitT * const up ) |
1024 | 0 | { |
1025 | | /* If there's no TPV available, stop working here... */ |
1026 | 0 | if (!up->fl_sti) |
1027 | 0 | return; |
1028 | | |
1029 | | /* check how to handle STI+PPS: Can PPS be used to augment STI |
1030 | | * (or vice versae), do we drop the sample because there is a |
1031 | | * temporary missing PPS signal, or do we feed on STI time |
1032 | | * stamps alone? |
1033 | | * |
1034 | | * Do a counter/threshold dance to decide how to proceed. |
1035 | | */ |
1036 | 0 | if (up->fl_pps) { |
1037 | 0 | up->ppscount = min(PPS_MAXCOUNT, |
1038 | 0 | (up->ppscount + PPS_INCCOUNT)); |
1039 | 0 | if ((PPS_MAXCOUNT == up->ppscount) && up->fl_rawsti) { |
1040 | 0 | up->fl_rawsti = 0; |
1041 | 0 | msyslog(LOG_INFO, |
1042 | 0 | "%s: expect valid PPS from now", |
1043 | 0 | up->logname); |
1044 | 0 | } |
1045 | 0 | } else { |
1046 | 0 | up->ppscount = max(0, (up->ppscount - PPS_DECCOUNT)); |
1047 | 0 | if ((0 == up->ppscount) && !up->fl_rawsti) { |
1048 | 0 | up->fl_rawsti = -1; |
1049 | 0 | msyslog(LOG_WARNING, |
1050 | 0 | "%s: use TPV alone from now", |
1051 | 0 | up->logname); |
1052 | 0 | } |
1053 | 0 | } |
1054 | | |
1055 | | /* now eventually feed the sample */ |
1056 | 0 | if (up->fl_rawsti) |
1057 | 0 | eval_serial(peer, pp, up); |
1058 | 0 | else |
1059 | 0 | eval_strict(peer, pp, up); |
1060 | 0 | } |
1061 | | |
1062 | | /* ===================================================================== |
1063 | | * JSON parsing stuff |
1064 | | */ |
1065 | | |
1066 | | /* ------------------------------------------------------------------ */ |
1067 | | /* Parse a decimal integer with a possible sign. Works like 'strtoll()' |
1068 | | * or 'strtol()', but with a fixed base of 10 and without eating away |
1069 | | * leading whitespace. For the error codes, the handling of the end |
1070 | | * pointer and the return values see 'strtol()'. |
1071 | | */ |
1072 | | static json_int |
1073 | | strtojint( |
1074 | | const char *cp, char **ep) |
1075 | 0 | { |
1076 | 0 | json_uint accu, limit_lo, limit_hi; |
1077 | 0 | int flags; /* bit 0: overflow; bit 1: sign */ |
1078 | 0 | const char * hold; |
1079 | | |
1080 | | /* pointer union to circumvent a tricky/sticky const issue */ |
1081 | 0 | union { const char * c; char * v; } vep; |
1082 | | |
1083 | | /* store initial value of 'cp' -- see 'strtol()' */ |
1084 | 0 | vep.c = cp; |
1085 | | |
1086 | | /* Eat away an optional sign and set the limits accordingly: The |
1087 | | * high limit is the maximum absolute value that can be returned, |
1088 | | * and the low limit is the biggest value that does not cause an |
1089 | | * overflow when multiplied with 10. Avoid negation overflows. |
1090 | | */ |
1091 | 0 | if (*cp == '-') { |
1092 | 0 | cp += 1; |
1093 | 0 | flags = 2; |
1094 | 0 | limit_hi = (json_uint)-(JSON_INT_MIN + 1) + 1; |
1095 | 0 | } else { |
1096 | 0 | cp += (*cp == '+'); |
1097 | 0 | flags = 0; |
1098 | 0 | limit_hi = (json_uint)JSON_INT_MAX; |
1099 | 0 | } |
1100 | 0 | limit_lo = limit_hi / 10; |
1101 | | |
1102 | | /* Now try to convert a sequence of digits. */ |
1103 | 0 | hold = cp; |
1104 | 0 | accu = 0; |
1105 | 0 | while (isdigit(*(const u_char*)cp)) { |
1106 | 0 | flags |= (accu > limit_lo); |
1107 | 0 | accu = accu * 10 + (*(const u_char*)cp++ - '0'); |
1108 | 0 | flags |= (accu > limit_hi); |
1109 | 0 | } |
1110 | | /* Check for empty conversion (no digits seen). */ |
1111 | 0 | if (hold != cp) |
1112 | 0 | vep.c = cp; |
1113 | 0 | else |
1114 | 0 | errno = EINVAL; /* accu is still zero */ |
1115 | | /* Check for range overflow */ |
1116 | 0 | if (flags & 1) { |
1117 | 0 | errno = ERANGE; |
1118 | 0 | accu = limit_hi; |
1119 | 0 | } |
1120 | | /* If possible, store back the end-of-conversion pointer */ |
1121 | 0 | if (ep) |
1122 | 0 | *ep = vep.v; |
1123 | | /* If negative, return the negated result if the accu is not |
1124 | | * zero. Avoid negation overflows. |
1125 | | */ |
1126 | 0 | if ((flags & 2) && accu) |
1127 | 0 | return -(json_int)(accu - 1) - 1; |
1128 | 0 | else |
1129 | 0 | return (json_int)accu; |
1130 | 0 | } |
1131 | | |
1132 | | /* ------------------------------------------------------------------ */ |
1133 | | |
1134 | | static tok_ref |
1135 | | json_token_skip( |
1136 | | const json_ctx * ctx, |
1137 | | tok_ref tid) |
1138 | 0 | { |
1139 | 0 | if (tid >= 0 && tid < ctx->ntok) { |
1140 | 0 | int len = ctx->tok[tid].size; |
1141 | | /* For arrays and objects, the size is the number of |
1142 | | * ITEMS in the compound. Thats the number of objects in |
1143 | | * the array, and the number of key/value pairs for |
1144 | | * objects. In theory, the key must be a string, and we |
1145 | | * could simply skip one token before skipping the |
1146 | | * value, which can be anything. We're a bit paranoid |
1147 | | * and lazy at the same time: We simply double the |
1148 | | * number of tokens to skip and fall through into the |
1149 | | * array processing when encountering an object. |
1150 | | */ |
1151 | 0 | switch (ctx->tok[tid].type) { |
1152 | 0 | case JSMN_OBJECT: |
1153 | 0 | len *= 2; |
1154 | | /* FALLTHROUGH */ |
1155 | 0 | case JSMN_ARRAY: |
1156 | 0 | for (++tid; len; --len) |
1157 | 0 | tid = json_token_skip(ctx, tid); |
1158 | 0 | break; |
1159 | | |
1160 | 0 | default: |
1161 | 0 | ++tid; |
1162 | 0 | break; |
1163 | 0 | } |
1164 | | /* The next condition should never be true, but paranoia |
1165 | | * prevails... |
1166 | | */ |
1167 | 0 | if (tid < 0 || tid > ctx->ntok) |
1168 | 0 | tid = ctx->ntok; |
1169 | 0 | } |
1170 | 0 | return tid; |
1171 | 0 | } |
1172 | | |
1173 | | /* ------------------------------------------------------------------ */ |
1174 | | |
1175 | | static int |
1176 | | json_object_lookup( |
1177 | | const json_ctx * ctx , |
1178 | | tok_ref tid , |
1179 | | const char * key , |
1180 | | int what) |
1181 | 0 | { |
1182 | 0 | int len; |
1183 | |
|
1184 | 0 | if (tid < 0 || tid >= ctx->ntok || |
1185 | 0 | ctx->tok[tid].type != JSMN_OBJECT) |
1186 | 0 | return INVALID_TOKEN; |
1187 | | |
1188 | 0 | len = ctx->tok[tid].size; |
1189 | 0 | for (++tid; len && tid+1 < ctx->ntok; --len) { |
1190 | 0 | if (ctx->tok[tid].type != JSMN_STRING) { /* Blooper! */ |
1191 | 0 | tid = json_token_skip(ctx, tid); /* skip key */ |
1192 | 0 | tid = json_token_skip(ctx, tid); /* skip val */ |
1193 | 0 | } else if (strcmp(key, ctx->buf + ctx->tok[tid].start)) { |
1194 | 0 | tid = json_token_skip(ctx, tid+1); /* skip key+val */ |
1195 | 0 | } else if (what < 0 || (u_int)what == ctx->tok[tid+1].type) { |
1196 | 0 | return tid + 1; |
1197 | 0 | } else { |
1198 | 0 | break; |
1199 | 0 | } |
1200 | | /* if skipping ahead returned an error, bail out here. */ |
1201 | 0 | if (tid < 0) |
1202 | 0 | break; |
1203 | 0 | } |
1204 | 0 | return INVALID_TOKEN; |
1205 | 0 | } |
1206 | | |
1207 | | /* ------------------------------------------------------------------ */ |
1208 | | |
1209 | | static const char* |
1210 | | json_object_lookup_primitive( |
1211 | | const json_ctx * ctx, |
1212 | | tok_ref tid, |
1213 | | const char * key) |
1214 | 0 | { |
1215 | 0 | tid = json_object_lookup(ctx, tid, key, JSMN_PRIMITIVE); |
1216 | 0 | if (INVALID_TOKEN != tid) |
1217 | 0 | return ctx->buf + ctx->tok[tid].start; |
1218 | 0 | else |
1219 | 0 | return NULL; |
1220 | 0 | } |
1221 | | /* ------------------------------------------------------------------ */ |
1222 | | /* look up a boolean value. This essentially returns a tribool: |
1223 | | * 0->false, 1->true, (-1)->error/undefined |
1224 | | */ |
1225 | | static int |
1226 | | json_object_lookup_bool( |
1227 | | const json_ctx * ctx, |
1228 | | tok_ref tid, |
1229 | | const char * key) |
1230 | 0 | { |
1231 | 0 | const char *cp; |
1232 | 0 | cp = json_object_lookup_primitive(ctx, tid, key); |
1233 | 0 | switch ( cp ? *cp : '\0') { |
1234 | 0 | case 't': return 1; |
1235 | 0 | case 'f': return 0; |
1236 | 0 | default : return -1; |
1237 | 0 | } |
1238 | 0 | } |
1239 | | |
1240 | | /* ------------------------------------------------------------------ */ |
1241 | | |
1242 | | static const char* |
1243 | | json_object_lookup_string( |
1244 | | const json_ctx * ctx, |
1245 | | tok_ref tid, |
1246 | | const char * key) |
1247 | 0 | { |
1248 | 0 | tid = json_object_lookup(ctx, tid, key, JSMN_STRING); |
1249 | 0 | if (INVALID_TOKEN != tid) |
1250 | 0 | return ctx->buf + ctx->tok[tid].start; |
1251 | 0 | return NULL; |
1252 | 0 | } |
1253 | | |
1254 | | static const char* |
1255 | | json_object_lookup_string_default( |
1256 | | const json_ctx * ctx, |
1257 | | tok_ref tid, |
1258 | | const char * key, |
1259 | | const char * def) |
1260 | 0 | { |
1261 | 0 | tid = json_object_lookup(ctx, tid, key, JSMN_STRING); |
1262 | 0 | if (INVALID_TOKEN != tid) |
1263 | 0 | return ctx->buf + ctx->tok[tid].start; |
1264 | 0 | return def; |
1265 | 0 | } |
1266 | | |
1267 | | /* ------------------------------------------------------------------ */ |
1268 | | |
1269 | | static json_int |
1270 | | json_object_lookup_int( |
1271 | | const json_ctx * ctx, |
1272 | | tok_ref tid, |
1273 | | const char * key) |
1274 | 0 | { |
1275 | 0 | json_int ret; |
1276 | 0 | const char * cp; |
1277 | 0 | char * ep; |
1278 | |
|
1279 | 0 | cp = json_object_lookup_primitive(ctx, tid, key); |
1280 | 0 | if (NULL != cp) { |
1281 | 0 | ret = strtojint(cp, &ep); |
1282 | 0 | if (cp != ep && '\0' == *ep) |
1283 | 0 | return ret; |
1284 | 0 | } else { |
1285 | 0 | errno = EINVAL; |
1286 | 0 | } |
1287 | 0 | return 0; |
1288 | 0 | } |
1289 | | |
1290 | | static json_int |
1291 | | json_object_lookup_int_default( |
1292 | | const json_ctx * ctx, |
1293 | | tok_ref tid, |
1294 | | const char * key, |
1295 | | json_int def) |
1296 | 0 | { |
1297 | 0 | json_int ret; |
1298 | 0 | const char * cp; |
1299 | 0 | char * ep; |
1300 | |
|
1301 | 0 | cp = json_object_lookup_primitive(ctx, tid, key); |
1302 | 0 | if (NULL != cp) { |
1303 | 0 | ret = strtojint(cp, &ep); |
1304 | 0 | if (cp != ep && '\0' == *ep) |
1305 | 0 | return ret; |
1306 | 0 | } |
1307 | 0 | return def; |
1308 | 0 | } |
1309 | | |
1310 | | /* ------------------------------------------------------------------ */ |
1311 | | #if 0 /* currently unused */ |
1312 | | static double |
1313 | | json_object_lookup_float( |
1314 | | const json_ctx * ctx, |
1315 | | tok_ref tid, |
1316 | | const char * key) |
1317 | | { |
1318 | | double ret; |
1319 | | const char * cp; |
1320 | | char * ep; |
1321 | | |
1322 | | cp = json_object_lookup_primitive(ctx, tid, key); |
1323 | | if (NULL != cp) { |
1324 | | ret = strtod(cp, &ep); |
1325 | | if (cp != ep && '\0' == *ep) |
1326 | | return ret; |
1327 | | } else { |
1328 | | errno = EINVAL; |
1329 | | } |
1330 | | return 0.0; |
1331 | | } |
1332 | | #endif |
1333 | | |
1334 | | static double |
1335 | | json_object_lookup_float_default( |
1336 | | const json_ctx * ctx, |
1337 | | tok_ref tid, |
1338 | | const char * key, |
1339 | | double def) |
1340 | 0 | { |
1341 | 0 | double ret; |
1342 | 0 | const char * cp; |
1343 | 0 | char * ep; |
1344 | |
|
1345 | 0 | cp = json_object_lookup_primitive(ctx, tid, key); |
1346 | 0 | if (NULL != cp) { |
1347 | 0 | ret = strtod(cp, &ep); |
1348 | 0 | if (cp != ep && '\0' == *ep) |
1349 | 0 | return ret; |
1350 | 0 | } |
1351 | 0 | return def; |
1352 | 0 | } |
1353 | | |
1354 | | /* ------------------------------------------------------------------ */ |
1355 | | |
1356 | | static BOOL |
1357 | | json_parse_record( |
1358 | | json_ctx * ctx, |
1359 | | char * buf, |
1360 | | size_t len) |
1361 | 0 | { |
1362 | 0 | jsmn_parser jsm; |
1363 | 0 | int idx, rc; |
1364 | |
|
1365 | 0 | jsmn_init(&jsm); |
1366 | 0 | rc = jsmn_parse(&jsm, buf, len, ctx->tok, JSMN_MAXTOK); |
1367 | 0 | if (rc <= 0) |
1368 | 0 | return FALSE; |
1369 | 0 | ctx->buf = buf; |
1370 | 0 | ctx->ntok = rc; |
1371 | |
|
1372 | 0 | if (JSMN_OBJECT != ctx->tok[0].type) |
1373 | 0 | return FALSE; /* not object!?! */ |
1374 | | |
1375 | | /* Make all tokens NUL terminated by overwriting the |
1376 | | * terminator symbol. Makes string compares and number parsing a |
1377 | | * lot easier! |
1378 | | */ |
1379 | 0 | for (idx = 0; idx < ctx->ntok; ++idx) |
1380 | 0 | if (ctx->tok[idx].end > ctx->tok[idx].start) |
1381 | 0 | ctx->buf[ctx->tok[idx].end] = '\0'; |
1382 | 0 | return TRUE; |
1383 | 0 | } |
1384 | | |
1385 | | |
1386 | | /* ===================================================================== |
1387 | | * static local helpers |
1388 | | */ |
1389 | | static BOOL |
1390 | | get_binary_time( |
1391 | | l_fp * const dest , |
1392 | | json_ctx * const jctx , |
1393 | | const char * const time_name, |
1394 | | const char * const frac_name, |
1395 | | long fscale ) |
1396 | 0 | { |
1397 | 0 | BOOL retv = FALSE; |
1398 | 0 | struct timespec ts; |
1399 | |
|
1400 | 0 | errno = 0; |
1401 | 0 | ts.tv_sec = (time_t)json_object_lookup_int(jctx, 0, time_name); |
1402 | 0 | ts.tv_nsec = (long )json_object_lookup_int(jctx, 0, frac_name); |
1403 | 0 | if (0 == errno) { |
1404 | 0 | ts.tv_nsec *= fscale; |
1405 | 0 | *dest = tspec_stamp_to_lfp(ts); |
1406 | 0 | retv = TRUE; |
1407 | 0 | } |
1408 | 0 | return retv; |
1409 | 0 | } |
1410 | | |
1411 | | /* ------------------------------------------------------------------ */ |
1412 | | /* Process a WATCH record |
1413 | | * |
1414 | | * Currently this is only used to recognise that the device is present |
1415 | | * and that we're listed subscribers. |
1416 | | */ |
1417 | | static void |
1418 | | process_watch( |
1419 | | peerT * const peer , |
1420 | | json_ctx * const jctx , |
1421 | | const l_fp * const rtime) |
1422 | 0 | { |
1423 | 0 | clockprocT * const pp = peer->procptr; |
1424 | 0 | gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr; |
1425 | |
|
1426 | 0 | const char * path; |
1427 | |
|
1428 | 0 | path = json_object_lookup_string(jctx, 0, "device"); |
1429 | 0 | if (NULL == path || strcmp(path, up->device)) |
1430 | 0 | return; |
1431 | | |
1432 | 0 | if (json_object_lookup_bool(jctx, 0, "enable") > 0 && |
1433 | 0 | json_object_lookup_bool(jctx, 0, "json" ) > 0 ) |
1434 | 0 | up->fl_watch = -1; |
1435 | 0 | else |
1436 | 0 | up->fl_watch = 0; |
1437 | 0 | DPRINTF(2, ("%s: process_watch, enabled=%d\n", |
1438 | 0 | up->logname, (up->fl_watch & 1))); |
1439 | 0 | } |
1440 | | |
1441 | | /* ------------------------------------------------------------------ */ |
1442 | | |
1443 | | static void |
1444 | | process_version( |
1445 | | peerT * const peer , |
1446 | | json_ctx * const jctx , |
1447 | | const l_fp * const rtime) |
1448 | 0 | { |
1449 | 0 | clockprocT * const pp = peer->procptr; |
1450 | 0 | gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr; |
1451 | |
|
1452 | 0 | int len; |
1453 | 0 | char * buf; |
1454 | 0 | const char *revision; |
1455 | 0 | const char *release; |
1456 | 0 | uint16_t pvhi, pvlo; |
1457 | | |
1458 | | /* get protocol version number */ |
1459 | 0 | revision = json_object_lookup_string_default( |
1460 | 0 | jctx, 0, "rev", "(unknown)"); |
1461 | 0 | release = json_object_lookup_string_default( |
1462 | 0 | jctx, 0, "release", "(unknown)"); |
1463 | 0 | errno = 0; |
1464 | 0 | pvhi = (uint16_t)json_object_lookup_int(jctx, 0, "proto_major"); |
1465 | 0 | pvlo = (uint16_t)json_object_lookup_int(jctx, 0, "proto_minor"); |
1466 | |
|
1467 | 0 | if (0 == errno) { |
1468 | 0 | if ( ! up->fl_vers) |
1469 | 0 | msyslog(LOG_INFO, |
1470 | 0 | "%s: GPSD revision=%s release=%s protocol=%u.%u", |
1471 | 0 | up->logname, revision, release, |
1472 | 0 | pvhi, pvlo); |
1473 | 0 | up->proto_version = PROTO_VERSION(pvhi, pvlo); |
1474 | 0 | up->fl_vers = -1; |
1475 | 0 | } else { |
1476 | 0 | if (syslogok(pp, up)) |
1477 | 0 | msyslog(LOG_INFO, |
1478 | 0 | "%s: could not evaluate version data", |
1479 | 0 | up->logname); |
1480 | 0 | return; |
1481 | 0 | } |
1482 | | /* With the 3.9 GPSD protocol, '*_musec' vanished from the PPS |
1483 | | * record and was replace by '*_nsec'. |
1484 | | */ |
1485 | 0 | up->pf_nsec = -(up->proto_version >= PROTO_VERSION(3,9)); |
1486 | | |
1487 | | /* With the 3.10 protocol we can get TOFF records for better |
1488 | | * timing information. |
1489 | | */ |
1490 | 0 | up->pf_toff = -(up->proto_version >= PROTO_VERSION(3,10)); |
1491 | | |
1492 | | /* request watch for our GPS device if not yet watched. |
1493 | | * |
1494 | | * The version string is also sent as a life signal, if we have |
1495 | | * seen useable data. So if we're already watching the device, |
1496 | | * skip the request. |
1497 | | * |
1498 | | * Reuse the input buffer, which is no longer needed in the |
1499 | | * current cycle. Also assume that we can write the watch |
1500 | | * request in one sweep into the socket; since we do not do |
1501 | | * output otherwise, this should always work. (Unless the |
1502 | | * TCP/IP window size gets lower than the length of the |
1503 | | * request. We handle that when it happens.) |
1504 | | */ |
1505 | 0 | if (up->fl_watch) |
1506 | 0 | return; |
1507 | | |
1508 | | /* The logon string is actually the ?WATCH command of GPSD, |
1509 | | * using JSON data and selecting the GPS device name we created |
1510 | | * from our unit number. We have an old a newer version that |
1511 | | * request PPS (and TOFF) transmission. |
1512 | | */ |
1513 | 0 | snprintf(up->buffer, sizeof(up->buffer), |
1514 | 0 | "?WATCH={\"device\":\"%s\",\"enable\":true,\"json\":true%s};\r\n", |
1515 | 0 | up->device, (up->pf_toff ? ",\"pps\":true" : "")); |
1516 | 0 | buf = up->buffer; |
1517 | 0 | len = strlen(buf); |
1518 | 0 | log_data(peer, "send", buf, len); |
1519 | 0 | if (len != write(pp->io.fd, buf, len) && (syslogok(pp, up))) { |
1520 | | /* Note: if the server fails to read our request, the |
1521 | | * resulting data timeout will take care of the |
1522 | | * connection! |
1523 | | */ |
1524 | 0 | msyslog(LOG_ERR, "%s: failed to write watch request (%m)", |
1525 | 0 | up->logname); |
1526 | 0 | } |
1527 | 0 | } |
1528 | | |
1529 | | /* ------------------------------------------------------------------ */ |
1530 | | |
1531 | | static void |
1532 | | process_tpv( |
1533 | | peerT * const peer , |
1534 | | json_ctx * const jctx , |
1535 | | const l_fp * const rtime) |
1536 | 0 | { |
1537 | 0 | clockprocT * const pp = peer->procptr; |
1538 | 0 | gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr; |
1539 | |
|
1540 | 0 | const char * gps_time; |
1541 | 0 | int gps_mode; |
1542 | 0 | double ept; |
1543 | 0 | int xlog2; |
1544 | |
|
1545 | 0 | gps_mode = (int)json_object_lookup_int_default( |
1546 | 0 | jctx, 0, "mode", 0); |
1547 | |
|
1548 | 0 | gps_time = json_object_lookup_string( |
1549 | 0 | jctx, 0, "time"); |
1550 | | |
1551 | | /* accept time stamps only in 2d or 3d fix */ |
1552 | 0 | if (gps_mode < 2 || NULL == gps_time) { |
1553 | | /* receiver has no fix; tell about and avoid stale data */ |
1554 | 0 | if ( ! up->pf_toff) |
1555 | 0 | ++up->tc_sti_recv; |
1556 | 0 | ++up->tc_nosync; |
1557 | 0 | up->fl_sti = 0; |
1558 | 0 | up->fl_pps = 0; |
1559 | 0 | up->fl_nosync = -1; |
1560 | 0 | return; |
1561 | 0 | } |
1562 | 0 | up->fl_nosync = 0; |
1563 | | |
1564 | | /* convert clock and set resulting ref time, but only if the |
1565 | | * TOFF sentence is *not* available |
1566 | | */ |
1567 | 0 | if ( ! up->pf_toff) { |
1568 | 0 | ++up->tc_sti_recv; |
1569 | | /* save last time code to clock data */ |
1570 | 0 | save_ltc(pp, gps_time); |
1571 | | /* now parse the time string */ |
1572 | 0 | if (convert_ascii_time(&up->sti_stamp, gps_time)) { |
1573 | 0 | DPRINTF(2, ("%s: process_tpv, stamp='%s'," |
1574 | 0 | " recvt='%s' mode=%u\n", |
1575 | 0 | up->logname, |
1576 | 0 | gmprettydate(&up->sti_stamp), |
1577 | 0 | gmprettydate(&up->sti_recvt), |
1578 | 0 | gps_mode)); |
1579 | | |
1580 | | /* have to use local receive time as substitute |
1581 | | * for the real receive time: TPV does not tell |
1582 | | * us. |
1583 | | */ |
1584 | 0 | up->sti_local = *rtime; |
1585 | 0 | up->sti_recvt = *rtime; |
1586 | 0 | L_SUB(&up->sti_recvt, &up->sti_fudge); |
1587 | 0 | up->fl_sti = -1; |
1588 | 0 | } else { |
1589 | 0 | ++up->tc_breply; |
1590 | 0 | up->fl_sti = 0; |
1591 | 0 | } |
1592 | 0 | } |
1593 | | |
1594 | | /* Set the precision from the GPSD data |
1595 | | * Use the ETP field for an estimation of the precision of the |
1596 | | * serial data. If ETP is not available, use the default serial |
1597 | | * data presion instead. (Note: The PPS branch has a different |
1598 | | * precision estimation, since it gets the proper value directly |
1599 | | * from GPSD!) |
1600 | | */ |
1601 | 0 | ept = json_object_lookup_float_default(jctx, 0, "ept", 2.0e-3); |
1602 | 0 | ept = frexp(fabs(ept)*0.70710678, &xlog2); /* ~ sqrt(0.5) */ |
1603 | 0 | if (ept < 0.25) |
1604 | 0 | xlog2 = INT_MIN; |
1605 | 0 | if (ept > 2.0) |
1606 | 0 | xlog2 = INT_MAX; |
1607 | 0 | up->sti_prec = clamped_precision(xlog2); |
1608 | 0 | } |
1609 | | |
1610 | | /* ------------------------------------------------------------------ */ |
1611 | | |
1612 | | static void |
1613 | | process_pps( |
1614 | | peerT * const peer , |
1615 | | json_ctx * const jctx , |
1616 | | const l_fp * const rtime) |
1617 | 0 | { |
1618 | 0 | clockprocT * const pp = peer->procptr; |
1619 | 0 | gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr; |
1620 | |
|
1621 | 0 | int xlog2; |
1622 | |
|
1623 | 0 | ++up->tc_pps_recv; |
1624 | | |
1625 | | /* Bail out if there's indication that time sync is bad or |
1626 | | * if we're explicitely requested to ignore PPS data. |
1627 | | */ |
1628 | 0 | if (up->fl_nosync) |
1629 | 0 | return; |
1630 | | |
1631 | 0 | up->pps_local = *rtime; |
1632 | | /* Now grab the time values. 'clock_*' is the event time of the |
1633 | | * pulse measured on the local system clock; 'real_*' is the GPS |
1634 | | * reference time GPSD associated with the pulse. |
1635 | | */ |
1636 | 0 | if (up->pf_nsec) { |
1637 | 0 | if ( ! get_binary_time(&up->pps_recvt2, jctx, |
1638 | 0 | "clock_sec", "clock_nsec", 1)) |
1639 | 0 | goto fail; |
1640 | 0 | if ( ! get_binary_time(&up->pps_stamp2, jctx, |
1641 | 0 | "real_sec", "real_nsec", 1)) |
1642 | 0 | goto fail; |
1643 | 0 | } else { |
1644 | 0 | if ( ! get_binary_time(&up->pps_recvt2, jctx, |
1645 | 0 | "clock_sec", "clock_musec", 1000)) |
1646 | 0 | goto fail; |
1647 | 0 | if ( ! get_binary_time(&up->pps_stamp2, jctx, |
1648 | 0 | "real_sec", "real_musec", 1000)) |
1649 | 0 | goto fail; |
1650 | 0 | } |
1651 | | |
1652 | | /* Try to read the precision field from the PPS record. If it's |
1653 | | * not there, take the precision from the serial data. |
1654 | | */ |
1655 | 0 | xlog2 = json_object_lookup_int_default( |
1656 | 0 | jctx, 0, "precision", up->sti_prec); |
1657 | 0 | up->pps_prec = clamped_precision(xlog2); |
1658 | | |
1659 | | /* Get fudged receive times for primary & secondary unit */ |
1660 | 0 | up->pps_recvt = up->pps_recvt2; |
1661 | 0 | L_SUB(&up->pps_recvt , &up->pps_fudge ); |
1662 | 0 | L_SUB(&up->pps_recvt2, &up->pps_fudge2); |
1663 | 0 | pp->lastrec = up->pps_recvt; |
1664 | | |
1665 | | /* Map to nearest full second as reference time stamp for the |
1666 | | * primary channel. Sanity checks are done in evaluation step. |
1667 | | */ |
1668 | 0 | up->pps_stamp = up->pps_recvt; |
1669 | 0 | L_ADDUF(&up->pps_stamp, 0x80000000u); |
1670 | 0 | up->pps_stamp.l_uf = 0; |
1671 | |
|
1672 | 0 | if (NULL != up->pps_peer) |
1673 | 0 | save_ltc(up->pps_peer->procptr, |
1674 | 0 | gmprettydate(&up->pps_stamp2)); |
1675 | 0 | DPRINTF(2, ("%s: PPS record processed," |
1676 | 0 | " stamp='%s', recvt='%s'\n", |
1677 | 0 | up->logname, |
1678 | 0 | gmprettydate(&up->pps_stamp2), |
1679 | 0 | gmprettydate(&up->pps_recvt2))); |
1680 | | |
1681 | 0 | up->fl_pps = (0 != (pp->sloppyclockflag & CLK_FLAG2)) - 1; |
1682 | 0 | up->fl_pps2 = -1; |
1683 | 0 | return; |
1684 | | |
1685 | 0 | fail: |
1686 | 0 | DPRINTF(1, ("%s: PPS record processing FAILED\n", |
1687 | 0 | up->logname)); |
1688 | 0 | ++up->tc_breply; |
1689 | 0 | } |
1690 | | |
1691 | | /* ------------------------------------------------------------------ */ |
1692 | | |
1693 | | static void |
1694 | | process_toff( |
1695 | | peerT * const peer , |
1696 | | json_ctx * const jctx , |
1697 | | const l_fp * const rtime) |
1698 | 0 | { |
1699 | 0 | clockprocT * const pp = peer->procptr; |
1700 | 0 | gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr; |
1701 | |
|
1702 | 0 | ++up->tc_sti_recv; |
1703 | | |
1704 | | /* remember this! */ |
1705 | 0 | up->pf_toff = -1; |
1706 | | |
1707 | | /* bail out if there's indication that time sync is bad */ |
1708 | 0 | if (up->fl_nosync) |
1709 | 0 | return; |
1710 | | |
1711 | 0 | if ( ! get_binary_time(&up->sti_recvt, jctx, |
1712 | 0 | "clock_sec", "clock_nsec", 1)) |
1713 | 0 | goto fail; |
1714 | 0 | if ( ! get_binary_time(&up->sti_stamp, jctx, |
1715 | 0 | "real_sec", "real_nsec", 1)) |
1716 | 0 | goto fail; |
1717 | 0 | L_SUB(&up->sti_recvt, &up->sti_fudge); |
1718 | 0 | up->sti_local = *rtime; |
1719 | 0 | up->fl_sti = -1; |
1720 | |
|
1721 | 0 | save_ltc(pp, gmprettydate(&up->sti_stamp)); |
1722 | 0 | DPRINTF(2, ("%s: TOFF record processed," |
1723 | 0 | " stamp='%s', recvt='%s'\n", |
1724 | 0 | up->logname, |
1725 | 0 | gmprettydate(&up->sti_stamp), |
1726 | 0 | gmprettydate(&up->sti_recvt))); |
1727 | 0 | return; |
1728 | | |
1729 | 0 | fail: |
1730 | 0 | DPRINTF(1, ("%s: TOFF record processing FAILED\n", |
1731 | 0 | up->logname)); |
1732 | 0 | ++up->tc_breply; |
1733 | 0 | } |
1734 | | |
1735 | | /* ------------------------------------------------------------------ */ |
1736 | | |
1737 | | static void |
1738 | | gpsd_parse( |
1739 | | peerT * const peer , |
1740 | | const l_fp * const rtime) |
1741 | 0 | { |
1742 | 0 | clockprocT * const pp = peer->procptr; |
1743 | 0 | gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr; |
1744 | |
|
1745 | 0 | const char * clsid; |
1746 | |
|
1747 | 0 | DPRINTF(2, ("%s: gpsd_parse: time %s '%.*s'\n", |
1748 | 0 | up->logname, ulfptoa(rtime, 6), |
1749 | 0 | up->buflen, up->buffer)); |
1750 | | |
1751 | | /* See if we can grab anything potentially useful. JSMN does not |
1752 | | * need a trailing NUL, but it needs the number of bytes to |
1753 | | * process. */ |
1754 | 0 | if (!json_parse_record(&up->json_parse, up->buffer, up->buflen)) { |
1755 | 0 | ++up->tc_breply; |
1756 | 0 | return; |
1757 | 0 | } |
1758 | | |
1759 | | /* Now dispatch over the objects we know */ |
1760 | 0 | clsid = json_object_lookup_string(&up->json_parse, 0, "class"); |
1761 | 0 | if (NULL == clsid) { |
1762 | 0 | ++up->tc_breply; |
1763 | 0 | return; |
1764 | 0 | } |
1765 | | |
1766 | 0 | if (!strcmp("TPV", clsid)) |
1767 | 0 | process_tpv(peer, &up->json_parse, rtime); |
1768 | 0 | else if (!strcmp("PPS", clsid)) |
1769 | 0 | process_pps(peer, &up->json_parse, rtime); |
1770 | 0 | else if (!strcmp("TOFF", clsid)) |
1771 | 0 | process_toff(peer, &up->json_parse, rtime); |
1772 | 0 | else if (!strcmp("VERSION", clsid)) |
1773 | 0 | process_version(peer, &up->json_parse, rtime); |
1774 | 0 | else if (!strcmp("WATCH", clsid)) |
1775 | 0 | process_watch(peer, &up->json_parse, rtime); |
1776 | 0 | else |
1777 | 0 | return; /* nothing we know about... */ |
1778 | 0 | ++up->tc_recv; |
1779 | | |
1780 | | /* if possible, feed the PPS side channel */ |
1781 | 0 | if (up->pps_peer) |
1782 | 0 | eval_pps_secondary( |
1783 | 0 | up->pps_peer, up->pps_peer->procptr, up); |
1784 | | |
1785 | | /* check PPS vs. STI receive times: |
1786 | | * If STI is before PPS, then clearly the STI is too old. If PPS |
1787 | | * is before STI by more than one second, then PPS is too old. |
1788 | | * Weed out stale time stamps & flags. |
1789 | | */ |
1790 | 0 | if (up->fl_pps && up->fl_sti) { |
1791 | 0 | l_fp diff; |
1792 | 0 | diff = up->sti_local; |
1793 | 0 | L_SUB(&diff, &up->pps_local); |
1794 | 0 | if (diff.l_i > 0) |
1795 | 0 | up->fl_pps = 0; /* pps too old */ |
1796 | 0 | else if (diff.l_i < 0) |
1797 | 0 | up->fl_sti = 0; /* serial data too old */ |
1798 | 0 | } |
1799 | | |
1800 | | /* dispatch to the mode-dependent processing functions */ |
1801 | 0 | switch (up->mode) { |
1802 | 0 | default: |
1803 | 0 | case MODE_OP_STI: |
1804 | 0 | eval_serial(peer, pp, up); |
1805 | 0 | break; |
1806 | | |
1807 | 0 | case MODE_OP_STRICT: |
1808 | 0 | eval_strict(peer, pp, up); |
1809 | 0 | break; |
1810 | | |
1811 | 0 | case MODE_OP_AUTO: |
1812 | 0 | eval_auto(peer, pp, up); |
1813 | 0 | break; |
1814 | 0 | } |
1815 | 0 | } |
1816 | | |
1817 | | /* ------------------------------------------------------------------ */ |
1818 | | |
1819 | | static void |
1820 | | gpsd_stop_socket( |
1821 | | peerT * const peer) |
1822 | 0 | { |
1823 | 0 | clockprocT * const pp = peer->procptr; |
1824 | 0 | gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr; |
1825 | |
|
1826 | 0 | if (-1 != pp->io.fd) { |
1827 | 0 | if (syslogok(pp, up)) |
1828 | 0 | msyslog(LOG_INFO, |
1829 | 0 | "%s: closing socket to GPSD, fd=%d", |
1830 | 0 | up->logname, pp->io.fd); |
1831 | 0 | else |
1832 | 0 | DPRINTF(1, ("%s: closing socket to GPSD, fd=%d\n", |
1833 | 0 | up->logname, pp->io.fd)); |
1834 | 0 | io_closeclock(&pp->io); |
1835 | 0 | pp->io.fd = -1; |
1836 | 0 | } |
1837 | 0 | up->tickover = up->tickpres; |
1838 | 0 | up->tickpres = min(up->tickpres + 5, TICKOVER_HIGH); |
1839 | 0 | up->fl_vers = 0; |
1840 | 0 | up->fl_sti = 0; |
1841 | 0 | up->fl_pps = 0; |
1842 | 0 | up->fl_watch = 0; |
1843 | 0 | } |
1844 | | |
1845 | | /* ------------------------------------------------------------------ */ |
1846 | | |
1847 | | static void |
1848 | | gpsd_init_socket( |
1849 | | peerT * const peer) |
1850 | 0 | { |
1851 | 0 | clockprocT * const pp = peer->procptr; |
1852 | 0 | gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr; |
1853 | 0 | addrinfoT * ai; |
1854 | 0 | int rc; |
1855 | 0 | int ov; |
1856 | | |
1857 | | /* draw next address to try */ |
1858 | 0 | if (NULL == up->addr) |
1859 | 0 | up->addr = s_gpsd_addr; |
1860 | 0 | ai = up->addr; |
1861 | 0 | up->addr = ai->ai_next; |
1862 | | |
1863 | | /* try to create a matching socket */ |
1864 | 0 | up->fdt = socket( |
1865 | 0 | ai->ai_family, ai->ai_socktype, ai->ai_protocol); |
1866 | 0 | if (-1 == up->fdt) { |
1867 | 0 | if (syslogok(pp, up)) |
1868 | 0 | msyslog(LOG_ERR, |
1869 | 0 | "%s: cannot create GPSD socket: %m", |
1870 | 0 | up->logname); |
1871 | 0 | goto no_socket; |
1872 | 0 | } |
1873 | | |
1874 | | /* Make sure the socket is non-blocking. Connect/reconnect and |
1875 | | * IO happen in an event-driven environment, and synchronous |
1876 | | * operations wreak havoc on that. |
1877 | | */ |
1878 | 0 | rc = fcntl(up->fdt, F_SETFL, O_NONBLOCK, 1); |
1879 | 0 | if (-1 == rc) { |
1880 | 0 | if (syslogok(pp, up)) |
1881 | 0 | msyslog(LOG_ERR, |
1882 | 0 | "%s: cannot set GPSD socket to non-blocking: %m", |
1883 | 0 | up->logname); |
1884 | 0 | goto no_socket; |
1885 | 0 | } |
1886 | | /* Disable nagling. The way both GPSD and NTPD handle the |
1887 | | * protocol makes it record-oriented, and in most cases |
1888 | | * complete records (JSON serialised objects) will be sent in |
1889 | | * one sweep. Nagling gives not much advantage but adds another |
1890 | | * delay, which can worsen the situation for some packets. |
1891 | | */ |
1892 | 0 | ov = 1; |
1893 | 0 | rc = setsockopt(up->fdt, IPPROTO_TCP, TCP_NODELAY, |
1894 | 0 | (void *)&ov, sizeof(ov)); |
1895 | 0 | if (-1 == rc) { |
1896 | 0 | if (syslogok(pp, up)) |
1897 | 0 | msyslog(LOG_INFO, |
1898 | 0 | "%s: cannot disable TCP nagle: %m", |
1899 | 0 | up->logname); |
1900 | 0 | } |
1901 | | |
1902 | | /* Start a non-blocking connect. There might be a synchronous |
1903 | | * connection result we have to handle. |
1904 | | */ |
1905 | 0 | rc = connect(up->fdt, ai->ai_addr, ai->ai_addrlen); |
1906 | 0 | if (-1 == rc) { |
1907 | 0 | if (errno == EINPROGRESS) { |
1908 | 0 | DPRINTF(1, ("%s: async connect pending, fd=%d\n", |
1909 | 0 | up->logname, up->fdt)); |
1910 | 0 | return; |
1911 | 0 | } |
1912 | | |
1913 | 0 | if (syslogok(pp, up)) |
1914 | 0 | msyslog(LOG_ERR, |
1915 | 0 | "%s: cannot connect GPSD socket: %m", |
1916 | 0 | up->logname); |
1917 | 0 | goto no_socket; |
1918 | 0 | } |
1919 | | |
1920 | | /* We had a successful synchronous connect, so we add the |
1921 | | * refclock processing ASAP. We still have to wait for the |
1922 | | * version string and apply the watch command later on, but we |
1923 | | * might as well get the show on the road now. |
1924 | | */ |
1925 | 0 | DPRINTF(1, ("%s: new socket connection, fd=%d\n", |
1926 | 0 | up->logname, up->fdt)); |
1927 | |
|
1928 | 0 | pp->io.fd = up->fdt; |
1929 | 0 | up->fdt = -1; |
1930 | 0 | if (0 == io_addclock(&pp->io)) { |
1931 | 0 | if (syslogok(pp, up)) |
1932 | 0 | msyslog(LOG_ERR, |
1933 | 0 | "%s: failed to register with I/O engine", |
1934 | 0 | up->logname); |
1935 | 0 | goto no_socket; |
1936 | 0 | } |
1937 | | |
1938 | 0 | return; |
1939 | | |
1940 | 0 | no_socket: |
1941 | 0 | if (-1 != pp->io.fd) |
1942 | 0 | close(pp->io.fd); |
1943 | 0 | if (-1 != up->fdt) |
1944 | 0 | close(up->fdt); |
1945 | 0 | pp->io.fd = -1; |
1946 | 0 | up->fdt = -1; |
1947 | 0 | up->tickover = up->tickpres; |
1948 | 0 | up->tickpres = min(up->tickpres + 5, TICKOVER_HIGH); |
1949 | 0 | } |
1950 | | |
1951 | | /* ------------------------------------------------------------------ */ |
1952 | | |
1953 | | static void |
1954 | | gpsd_test_socket( |
1955 | | peerT * const peer) |
1956 | 0 | { |
1957 | 0 | clockprocT * const pp = peer->procptr; |
1958 | 0 | gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr; |
1959 | |
|
1960 | 0 | int ec, rc; |
1961 | 0 | socklen_t lc; |
1962 | | |
1963 | | /* Check if the non-blocking connect was finished by testing the |
1964 | | * socket for writeability. Use the 'poll()' API if available |
1965 | | * and 'select()' otherwise. |
1966 | | */ |
1967 | 0 | DPRINTF(2, ("%s: check connect, fd=%d\n", |
1968 | 0 | up->logname, up->fdt)); |
1969 | |
|
1970 | 0 | #if defined(HAVE_SYS_POLL_H) |
1971 | 0 | { |
1972 | 0 | struct pollfd pfd; |
1973 | |
|
1974 | 0 | pfd.events = POLLOUT; |
1975 | 0 | pfd.fd = up->fdt; |
1976 | 0 | rc = poll(&pfd, 1, 0); |
1977 | 0 | if (1 != rc || !(pfd.revents & POLLOUT)) |
1978 | 0 | return; |
1979 | 0 | } |
1980 | | #elif defined(HAVE_SYS_SELECT_H) |
1981 | | { |
1982 | | struct timeval tout; |
1983 | | fd_set wset; |
1984 | | |
1985 | | memset(&tout, 0, sizeof(tout)); |
1986 | | FD_ZERO(&wset); |
1987 | | FD_SET(up->fdt, &wset); |
1988 | | rc = select(up->fdt+1, NULL, &wset, NULL, &tout); |
1989 | | if (0 == rc || !(FD_ISSET(up->fdt, &wset))) |
1990 | | return; |
1991 | | } |
1992 | | #else |
1993 | | # error Blooper! That should have been found earlier! |
1994 | | #endif |
1995 | | |
1996 | | /* next timeout is a full one... */ |
1997 | 0 | up->tickover = TICKOVER_LOW; |
1998 | | |
1999 | | /* check for socket error */ |
2000 | 0 | ec = 0; |
2001 | 0 | lc = sizeof(ec); |
2002 | 0 | rc = getsockopt(up->fdt, SOL_SOCKET, SO_ERROR, (void *)&ec, &lc); |
2003 | 0 | if (-1 == rc || 0 != ec) { |
2004 | 0 | const char *errtxt; |
2005 | 0 | if (0 == ec) |
2006 | 0 | ec = errno; |
2007 | 0 | errtxt = strerror(ec); |
2008 | 0 | if (syslogok(pp, up)) |
2009 | 0 | msyslog(LOG_ERR, |
2010 | 0 | "%s: async connect to GPSD failed," |
2011 | 0 | " fd=%d, ec=%d(%s)", |
2012 | 0 | up->logname, up->fdt, ec, errtxt); |
2013 | 0 | else |
2014 | 0 | DPRINTF(1, ("%s: async connect to GPSD failed," |
2015 | 0 | " fd=%d, ec=%d(%s)\n", |
2016 | 0 | up->logname, up->fdt, ec, errtxt)); |
2017 | 0 | goto no_socket; |
2018 | 0 | } else { |
2019 | 0 | DPRINTF(1, ("%s: async connect to GPSD succeeded, fd=%d\n", |
2020 | 0 | up->logname, up->fdt)); |
2021 | 0 | } |
2022 | | |
2023 | | /* swap socket FDs, and make sure the clock was added */ |
2024 | 0 | pp->io.fd = up->fdt; |
2025 | 0 | up->fdt = -1; |
2026 | 0 | if (0 == io_addclock(&pp->io)) { |
2027 | 0 | if (syslogok(pp, up)) |
2028 | 0 | msyslog(LOG_ERR, |
2029 | 0 | "%s: failed to register with I/O engine", |
2030 | 0 | up->logname); |
2031 | 0 | goto no_socket; |
2032 | 0 | } |
2033 | 0 | return; |
2034 | | |
2035 | 0 | no_socket: |
2036 | 0 | if (-1 != up->fdt) { |
2037 | 0 | DPRINTF(1, ("%s: closing socket, fd=%d\n", |
2038 | 0 | up->logname, up->fdt)); |
2039 | 0 | close(up->fdt); |
2040 | 0 | } |
2041 | 0 | up->fdt = -1; |
2042 | 0 | up->tickover = up->tickpres; |
2043 | 0 | up->tickpres = min(up->tickpres + 5, TICKOVER_HIGH); |
2044 | 0 | } |
2045 | | |
2046 | | /* ===================================================================== |
2047 | | * helper stuff |
2048 | | */ |
2049 | | |
2050 | | /* ------------------------------------------------------------------- |
2051 | | * store a properly clamped precision value |
2052 | | */ |
2053 | | static int16_t |
2054 | | clamped_precision( |
2055 | | int rawprec) |
2056 | 0 | { |
2057 | 0 | if (rawprec > 0) |
2058 | 0 | rawprec = 0; |
2059 | 0 | if (rawprec < -32) |
2060 | 0 | rawprec = -32; |
2061 | 0 | return (int16_t)rawprec; |
2062 | 0 | } |
2063 | | |
2064 | | /* ------------------------------------------------------------------- |
2065 | | * Convert a GPSD timestamp (ISO8601 Format) to an l_fp |
2066 | | */ |
2067 | | static BOOL |
2068 | | convert_ascii_time( |
2069 | | l_fp * fp , |
2070 | | const char * gps_time) |
2071 | 0 | { |
2072 | 0 | char *ep; |
2073 | 0 | struct tm gd; |
2074 | 0 | struct timespec ts; |
2075 | 0 | uint32_t dw; |
2076 | | |
2077 | | /* Use 'strptime' to take the brunt of the work, then parse |
2078 | | * the fractional part manually, starting with a digit weight of |
2079 | | * 10^8 nanoseconds. |
2080 | | */ |
2081 | 0 | ts.tv_nsec = 0; |
2082 | 0 | ep = strptime(gps_time, "%Y-%m-%dT%H:%M:%S", &gd); |
2083 | 0 | if (NULL == ep) |
2084 | 0 | return FALSE; /* could not parse the mandatory stuff! */ |
2085 | 0 | if (*ep == '.') { |
2086 | 0 | dw = 100000000u; |
2087 | 0 | while (isdigit(*(u_char*)++ep)) { |
2088 | 0 | ts.tv_nsec += (*(u_char*)ep - '0') * dw; |
2089 | 0 | dw /= 10u; |
2090 | 0 | } |
2091 | 0 | } |
2092 | 0 | if (ep[0] != 'Z' || ep[1] != '\0') |
2093 | 0 | return FALSE; /* trailing garbage */ |
2094 | | |
2095 | | /* Now convert the whole thing into a 'l_fp'. We do not use |
2096 | | * 'mkgmtime()' since its not standard and going through the |
2097 | | * calendar routines is not much effort, either. |
2098 | | */ |
2099 | 0 | ts.tv_sec = (ntpcal_tm_to_rd(&gd) - DAY_NTP_STARTS) * SECSPERDAY |
2100 | 0 | + ntpcal_tm_to_daysec(&gd); |
2101 | 0 | *fp = tspec_intv_to_lfp(ts); |
2102 | |
|
2103 | 0 | return TRUE; |
2104 | 0 | } |
2105 | | |
2106 | | /* ------------------------------------------------------------------- |
2107 | | * Save the last timecode string, making sure it's properly truncated |
2108 | | * if necessary and NUL terminated in any case. |
2109 | | */ |
2110 | | static void |
2111 | | save_ltc( |
2112 | | clockprocT * const pp, |
2113 | | const char * const tc) |
2114 | 0 | { |
2115 | 0 | size_t len = 0; |
2116 | | |
2117 | 0 | if (tc) { |
2118 | 0 | len = strlen(tc); |
2119 | 0 | if (len >= sizeof(pp->a_lastcode)) |
2120 | 0 | len = sizeof(pp->a_lastcode) - 1; |
2121 | 0 | memcpy(pp->a_lastcode, tc, len); |
2122 | 0 | } |
2123 | 0 | pp->lencode = (u_short)len; |
2124 | 0 | pp->a_lastcode[len] = '\0'; |
2125 | 0 | } |
2126 | | |
2127 | | /* ------------------------------------------------------------------- |
2128 | | * asprintf replacement... it's not available everywhere... |
2129 | | */ |
2130 | | static int |
2131 | | myasprintf( |
2132 | | char ** spp, |
2133 | | char const * fmt, |
2134 | | ... ) |
2135 | 0 | { |
2136 | 0 | size_t alen, plen; |
2137 | |
|
2138 | 0 | alen = 32; |
2139 | 0 | *spp = NULL; |
2140 | 0 | do { |
2141 | 0 | va_list va; |
2142 | |
|
2143 | 0 | alen += alen; |
2144 | 0 | free(*spp); |
2145 | 0 | *spp = (char*)malloc(alen); |
2146 | 0 | if (NULL == *spp) |
2147 | 0 | return -1; |
2148 | | |
2149 | 0 | va_start(va, fmt); |
2150 | 0 | plen = (size_t)vsnprintf(*spp, alen, fmt, va); |
2151 | 0 | va_end(va); |
2152 | 0 | } while (plen >= alen); |
2153 | | |
2154 | 0 | return (int)plen; |
2155 | 0 | } |
2156 | | |
2157 | | /* ------------------------------------------------------------------- |
2158 | | * dump a raw data buffer |
2159 | | */ |
2160 | | |
2161 | | static char * |
2162 | | add_string( |
2163 | | char *dp, |
2164 | | char *ep, |
2165 | | const char *sp) |
2166 | 0 | { |
2167 | 0 | while (dp != ep && *sp) |
2168 | 0 | *dp++ = *sp++; |
2169 | 0 | return dp; |
2170 | 0 | } |
2171 | | |
2172 | | static void |
2173 | | log_data( |
2174 | | peerT *peer, |
2175 | | const char *what, |
2176 | | const char *buf , |
2177 | | size_t len ) |
2178 | 0 | { |
2179 | | /* we're running single threaded with regards to the clocks. */ |
2180 | 0 | static char s_lbuf[2048]; |
2181 | |
|
2182 | 0 | clockprocT * const pp = peer->procptr; |
2183 | 0 | gpsd_unitT * const up = (gpsd_unitT *)pp->unitptr; |
2184 | |
|
2185 | 0 | if (debug > 1) { |
2186 | 0 | const char *sptr = buf; |
2187 | 0 | const char *stop = buf + len; |
2188 | 0 | char *dptr = s_lbuf; |
2189 | 0 | char *dtop = s_lbuf + sizeof(s_lbuf) - 1; /* for NUL */ |
2190 | |
|
2191 | 0 | while (sptr != stop && dptr != dtop) { |
2192 | 0 | u_char uch = (u_char)*sptr++; |
2193 | 0 | if (uch == '\\') { |
2194 | 0 | dptr = add_string(dptr, dtop, "\\\\"); |
2195 | 0 | } else if (isprint(uch)) { |
2196 | 0 | *dptr++ = (char)uch; |
2197 | 0 | } else { |
2198 | 0 | char fbuf[6]; |
2199 | 0 | snprintf(fbuf, sizeof(fbuf), "\\%03o", uch); |
2200 | 0 | dptr = add_string(dptr, dtop, fbuf); |
2201 | 0 | } |
2202 | 0 | } |
2203 | 0 | *dptr = '\0'; |
2204 | 0 | mprintf("%s[%s]: '%s'\n", up->logname, what, s_lbuf); |
2205 | 0 | } |
2206 | 0 | } |
2207 | | |
2208 | | #else |
2209 | | NONEMPTY_TRANSLATION_UNIT |
2210 | | #endif /* REFCLOCK && CLOCK_GPSDJSON */ |