Coverage Report

Created: 2023-05-19 06:16

/src/ntp-dev/ntpd/refclock_irig.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * refclock_irig - audio IRIG-B/E demodulator/decoder
3
 */
4
#ifdef HAVE_CONFIG_H
5
#include <config.h>
6
#endif
7
8
#if defined(REFCLOCK) && defined(CLOCK_IRIG)
9
10
#include "ntpd.h"
11
#include "ntp_io.h"
12
#include "ntp_refclock.h"
13
#include "ntp_calendar.h"
14
#include "ntp_stdlib.h"
15
16
#include <stdio.h>
17
#include <ctype.h>
18
#include <math.h>
19
#ifdef HAVE_SYS_IOCTL_H
20
#include <sys/ioctl.h>
21
#endif /* HAVE_SYS_IOCTL_H */
22
23
#include "audio.h"
24
25
/*
26
 * Audio IRIG-B/E demodulator/decoder
27
 *
28
 * This driver synchronizes the computer time using data encoded in
29
 * IRIG-B/E signals commonly produced by GPS receivers and other timing
30
 * devices. The IRIG signal is an amplitude-modulated carrier with
31
 * pulse-width modulated data bits. For IRIG-B, the carrier frequency is
32
 * 1000 Hz and bit rate 100 b/s; for IRIG-E, the carrier frequenchy is
33
 * 100 Hz and bit rate 10 b/s. The driver automatically recognizes which
34
 & format is in use.
35
 *
36
 * The driver requires an audio codec or sound card with sampling rate 8
37
 * kHz and mu-law companding. This is the same standard as used by the
38
 * telephone industry and is supported by most hardware and operating
39
 * systems, including Solaris, SunOS, FreeBSD, NetBSD and Linux. In this
40
 * implementation, only one audio driver and codec can be supported on a
41
 * single machine.
42
 *
43
 * The program processes 8000-Hz mu-law companded samples using separate
44
 * signal filters for IRIG-B and IRIG-E, a comb filter, envelope
45
 * detector and automatic threshold corrector. Cycle crossings relative
46
 * to the corrected slice level determine the width of each pulse and
47
 * its value - zero, one or position identifier.
48
 *
49
 * The data encode 20 BCD digits which determine the second, minute,
50
 * hour and day of the year and sometimes the year and synchronization
51
 * condition. The comb filter exponentially averages the corresponding
52
 * samples of successive baud intervals in order to reliably identify
53
 * the reference carrier cycle. A type-II phase-lock loop (PLL) performs
54
 * additional integration and interpolation to accurately determine the
55
 * zero crossing of that cycle, which determines the reference
56
 * timestamp. A pulse-width discriminator demodulates the data pulses,
57
 * which are then encoded as the BCD digits of the timecode.
58
 *
59
 * The timecode and reference timestamp are updated once each second
60
 * with IRIG-B (ten seconds with IRIG-E) and local clock offset samples
61
 * saved for later processing. At poll intervals of 64 s, the saved
62
 * samples are processed by a trimmed-mean filter and used to update the
63
 * system clock.
64
 *
65
 * An automatic gain control feature provides protection against
66
 * overdriven or underdriven input signal amplitudes. It is designed to
67
 * maintain adequate demodulator signal amplitude while avoiding
68
 * occasional noise spikes. In order to assure reliable capture, the
69
 * decompanded input signal amplitude must be greater than 100 units and
70
 * the codec sample frequency error less than 250 PPM (.025 percent).
71
 *
72
 * Monitor Data
73
 *
74
 * The timecode format used for debugging and data recording includes
75
 * data helpful in diagnosing problems with the IRIG signal and codec
76
 * connections. The driver produces one line for each timecode in the
77
 * following format:
78
 *
79
 * 00 00 98 23 19:26:52 2782 143 0.694 10 0.3 66.5 3094572411.00027
80
 *
81
 * If clockstats is enabled, the most recent line is written to the
82
 * clockstats file every 64 s. If verbose recording is enabled (fudge
83
 * flag 4) each line is written as generated.
84
 *
85
 * The first field containes the error flags in hex, where the hex bits
86
 * are interpreted as below. This is followed by the year of century,
87
 * day of year and time of day. Note that the time of day is for the
88
 * previous minute, not the current time. The status indicator and year
89
 * are not produced by some IRIG devices and appear as zeros. Following
90
 * these fields are the carrier amplitude (0-3000), codec gain (0-255),
91
 * modulation index (0-1), time constant (4-10), carrier phase error
92
 * +-.5) and carrier frequency error (PPM). The last field is the on-
93
 * time timestamp in NTP format.
94
 *
95
 * The error flags are defined as follows in hex:
96
 *
97
 * x01  Low signal. The carrier amplitude is less than 100 units. This
98
 *  is usually the result of no signal or wrong input port.
99
 * x02  Frequency error. The codec frequency error is greater than 250
100
 *  PPM. This may be due to wrong signal format or (rarely)
101
 *  defective codec.
102
 * x04  Modulation error. The IRIG modulation index is less than 0.5.
103
 *  This is usually the result of an overdriven codec, wrong signal
104
 *  format or wrong input port.
105
 * x08  Frame synch error. The decoder frame does not match the IRIG
106
 *  frame. This is usually the result of an overdriven codec, wrong
107
 *  signal format or noisy IRIG signal. It may also be the result of
108
 *  an IRIG signature check which indicates a failure of the IRIG
109
 *  signal synchronization source.
110
 * x10  Data bit error. The data bit length is out of tolerance. This is
111
 *  usually the result of an overdriven codec, wrong signal format
112
 *  or noisy IRIG signal.
113
 * x20  Seconds numbering discrepancy. The decoder second does not match
114
 *  the IRIG second. This is usually the result of an overdriven
115
 *  codec, wrong signal format or noisy IRIG signal.
116
 * x40  Codec error (overrun). The machine is not fast enough to keep up
117
 *  with the codec.
118
 * x80  Device status error (Spectracom).
119
 *
120
 *
121
 * Once upon a time, an UltrSPARC 30 and Solaris 2.7 kept the clock
122
 * within a few tens of microseconds relative to the IRIG-B signal.
123
 * Accuracy with IRIG-E was about ten times worse. Unfortunately, Sun
124
 * broke the 2.7 audio driver in 2.8, which has a 10-ms sawtooth
125
 * modulation.
126
 *
127
 * Unlike other drivers, which can have multiple instantiations, this
128
 * one supports only one. It does not seem likely that more than one
129
 * audio codec would be useful in a single machine. More than one would
130
 * probably chew up too much CPU time anyway.
131
 *
132
 * Fudge factors
133
 *
134
 * Fudge flag4 causes the dubugging output described above to be
135
 * recorded in the clockstats file. Fudge flag2 selects the audio input
136
 * port, where 0 is the mike port (default) and 1 is the line-in port.
137
 * It does not seem useful to select the compact disc player port. Fudge
138
 * flag3 enables audio monitoring of the input signal. For this purpose,
139
 * the monitor gain is set t a default value. Fudgetime2 is used as a
140
 * frequency vernier for broken codec sample frequency.
141
 *
142
 * Alarm codes
143
 *
144
 * CEVNT_BADTIME  invalid date or time
145
 * CEVNT_TIMEOUT  no IRIG data since last poll
146
 */
147
/*
148
 * Interface definitions
149
 */
150
0
#define DEVICE_AUDIO  "/dev/audio" /* audio device name */
151
0
#define PRECISION (-17)  /* precision assumed (about 10 us) */
152
0
#define REFID   "IRIG"  /* reference ID */
153
0
#define DESCRIPTION "Generic IRIG Audio Driver" /* WRU */
154
0
#define AUDIO_BUFSIZ  320  /* audio buffer size (40 ms) */
155
0
#define SECOND    8000  /* nominal sample rate (Hz) */
156
0
#define BAUD    80  /* samples per baud interval */
157
0
#define OFFSET    128  /* companded sample offset */
158
#define SIZE    256 /* decompanding table size */
159
0
#define CYCLE   8  /* samples per bit */
160
0
#define SUBFLD    10  /* bits per frame */
161
0
#define FIELD   100  /* bits per second */
162
0
#define MINTC   2  /* min PLL time constant */
163
0
#define MAXTC   10  /* max PLL time constant max */
164
0
#define MAXAMP    3000.  /* maximum signal amplitude */
165
0
#define MINAMP    2000.  /* minimum signal amplitude */
166
0
#define DRPOUT    100.  /* dropout signal amplitude */
167
0
#define MODMIN    0.5  /* minimum modulation index */
168
0
#define MAXFREQ   (250e-6 * SECOND) /* freq tolerance (.025%) */
169
170
/*
171
 * The on-time synchronization point is the positive-going zero crossing
172
 * of the first cycle of the second. The IIR baseband filter phase delay
173
 * is 1.03 ms for IRIG-B and 3.47 ms for IRIG-E. The fudge value 2.68 ms
174
 * due to the codec and other causes was determined by calibrating to a
175
 * PPS signal from a GPS receiver.
176
 *
177
 * The results with a 2.4-GHz P4 running FreeBSD 6.1 are generally
178
 * within .02 ms short-term with .02 ms jitter. The processor load due
179
 * to the driver is 0.51 percent.
180
 */
181
0
#define IRIG_B  ((1.03 + 2.68) / 1000)  /* IRIG-B system delay (s) */
182
0
#define IRIG_E  ((3.47 + 2.68) / 1000)  /* IRIG-E system delay (s) */
183
184
/*
185
 * Data bit definitions
186
 */
187
0
#define BIT0    0  /* zero */
188
0
#define BIT1    1  /* one */
189
0
#define BITP    2  /* position identifier */
190
191
/*
192
 * Error flags
193
 */
194
0
#define IRIG_ERR_AMP  0x01  /* low carrier amplitude */
195
0
#define IRIG_ERR_FREQ 0x02  /* frequency tolerance exceeded */
196
0
#define IRIG_ERR_MOD  0x04  /* low modulation index */
197
0
#define IRIG_ERR_SYNCH  0x08  /* frame synch error */
198
0
#define IRIG_ERR_DECODE 0x10  /* frame decoding error */
199
0
#define IRIG_ERR_CHECK  0x20  /* second numbering discrepancy */
200
#define IRIG_ERR_ERROR  0x40  /* codec error (overrun) */
201
0
#define IRIG_ERR_SIGERR 0x80  /* IRIG status error (Spectracom) */
202
203
static  char  hexchar[] = "0123456789abcdef";
204
205
/*
206
 * IRIG unit control structure
207
 */
208
struct irigunit {
209
  u_char  timecode[2 * SUBFLD + 1]; /* timecode string */
210
  l_fp  timestamp;  /* audio sample timestamp */
211
  l_fp  tick;   /* audio sample increment */
212
  l_fp  refstamp; /* reference timestamp */
213
  l_fp  chrstamp; /* baud timestamp */
214
  l_fp  prvstamp; /* previous baud timestamp */
215
  double  integ[BAUD];  /* baud integrator */
216
  double  phase, freq;  /* logical clock phase and frequency */
217
  double  zxing;    /* phase detector integrator */
218
  double  yxing;    /* cycle phase */
219
  double  exing;    /* envelope phase */
220
  double  modndx;   /* modulation index */
221
  double  irig_b;   /* IRIG-B signal amplitude */
222
  double  irig_e;   /* IRIG-E signal amplitude */
223
  int errflg;   /* error flags */
224
  /*
225
   * Audio codec variables
226
   */
227
  double  comp[SIZE]; /* decompanding table */
228
  double  signal;   /* peak signal for AGC */
229
  int port;   /* codec port */
230
  int gain;   /* codec gain */
231
  int mongain;  /* codec monitor gain */
232
  int seccnt;   /* second interval counter */
233
234
  /*
235
   * RF variables
236
   */
237
  double  bpf[9];   /* IRIG-B filter shift register */
238
  double  lpf[5];   /* IRIG-E filter shift register */
239
  double  envmin, envmax; /* envelope min and max */
240
  double  slice;    /* envelope slice level */
241
  double  intmin, intmax; /* integrated envelope min and max */
242
  double  maxsignal;  /* integrated peak amplitude */
243
  double  noise;    /* integrated noise amplitude */
244
  double  lastenv[CYCLE]; /* last cycle amplitudes */
245
  double  lastint[CYCLE]; /* last integrated cycle amplitudes */
246
  double  lastsig;  /* last carrier sample */
247
  double  fdelay;   /* filter delay */
248
  int decim;    /* sample decimation factor */
249
  int envphase; /* envelope phase */
250
  int envptr;   /* envelope phase pointer */
251
  int envsw;    /* envelope state */
252
  int envxing;  /* envelope slice crossing */
253
  int tc;   /* time constant */
254
  int tcount;   /* time constant counter */
255
  int badcnt;   /* decimation interval counter */
256
257
  /*
258
   * Decoder variables
259
   */
260
  int pulse;    /* cycle counter */
261
  int cycles;   /* carrier cycles */
262
  int dcycles;  /* data cycles */
263
  int lastbit;  /* last code element */
264
  int second;   /* previous second */
265
  int bitcnt;   /* bit count in frame */
266
  int frmcnt;   /* bit count in second */
267
  int xptr;   /* timecode pointer */
268
  int bits;   /* demodulated bits */
269
};
270
271
/*
272
 * Function prototypes
273
 */
274
static  int irig_start  (int, struct peer *);
275
static  void  irig_shutdown (int, struct peer *);
276
static  void  irig_receive  (struct recvbuf *);
277
static  void  irig_poll (int, struct peer *);
278
279
/*
280
 * More function prototypes
281
 */
282
static  void  irig_base (struct peer *, double);
283
static  void  irig_rf   (struct peer *, double);
284
static  void  irig_baud (struct peer *, int);
285
static  void  irig_decode (struct peer *, int);
286
static  void  irig_gain (struct peer *);
287
288
/*
289
 * Transfer vector
290
 */
291
struct  refclock refclock_irig = {
292
  irig_start,   /* start up driver */
293
  irig_shutdown,    /* shut down driver */
294
  irig_poll,    /* transmit poll message */
295
  noentry,    /* not used (old irig_control) */
296
  noentry,    /* initialize driver (not used) */
297
  noentry,    /* not used (old irig_buginfo) */
298
  NOFLAGS     /* not used */
299
};
300
301
302
/*
303
 * irig_start - open the devices and initialize data for processing
304
 */
305
static int
306
irig_start(
307
  int unit,   /* instance number (used for PCM) */
308
  struct peer *peer /* peer structure pointer */
309
  )
310
0
{
311
0
  struct refclockproc *pp;
312
0
  struct irigunit *up;
313
314
  /*
315
   * Local variables
316
   */
317
0
  int fd;   /* file descriptor */
318
0
  int i;    /* index */
319
0
  double  step;   /* codec adjustment */
320
321
  /*
322
   * Open audio device
323
   */
324
0
  fd = audio_init(DEVICE_AUDIO, AUDIO_BUFSIZ, unit);
325
0
  if (fd < 0)
326
0
    return (0);
327
0
#ifdef DEBUG
328
0
  if (debug)
329
0
    audio_show();
330
0
#endif
331
332
  /*
333
   * Allocate and initialize unit structure
334
   */
335
0
  up = emalloc_zero(sizeof(*up));
336
0
  pp = peer->procptr;
337
0
  pp->io.clock_recv = irig_receive;
338
0
  pp->io.srcclock = peer;
339
0
  pp->io.datalen = 0;
340
0
  pp->io.fd = fd;
341
0
  if (!io_addclock(&pp->io)) {
342
0
    close(fd);
343
0
    pp->io.fd = -1;
344
0
    free(up);
345
0
    return (0);
346
0
  }
347
0
  pp->unitptr = up;
348
349
  /*
350
   * Initialize miscellaneous variables
351
   */
352
0
  peer->precision = PRECISION;
353
0
  pp->clockdesc = DESCRIPTION;
354
0
  memcpy((char *)&pp->refid, REFID, 4);
355
0
  up->tc = MINTC;
356
0
  up->decim = 1;
357
0
  up->gain = 127;
358
359
  /*
360
   * The companded samples are encoded sign-magnitude. The table
361
   * contains all the 256 values in the interest of speed.
362
   */
363
0
  up->comp[0] = up->comp[OFFSET] = 0.;
364
0
  up->comp[1] = 1; up->comp[OFFSET + 1] = -1.;
365
0
  up->comp[2] = 3; up->comp[OFFSET + 2] = -3.;
366
0
  step = 2.;
367
0
  for (i = 3; i < OFFSET; i++) {
368
0
    up->comp[i] = up->comp[i - 1] + step;
369
0
    up->comp[OFFSET + i] = -up->comp[i];
370
0
    if (i % 16 == 0)
371
0
      step *= 2.;
372
0
  }
373
0
  DTOLFP(1. / SECOND, &up->tick);
374
0
  return (1);
375
0
}
376
377
378
/*
379
 * irig_shutdown - shut down the clock
380
 */
381
static void
382
irig_shutdown(
383
  int unit,   /* instance number (not used) */
384
  struct peer *peer /* peer structure pointer */
385
  )
386
0
{
387
0
  struct refclockproc *pp;
388
0
  struct irigunit *up;
389
390
0
  pp = peer->procptr;
391
0
  up = pp->unitptr;
392
0
  if (-1 != pp->io.fd)
393
0
    io_closeclock(&pp->io);
394
0
  if (NULL != up)
395
0
    free(up);
396
0
}
397
398
399
/*
400
 * irig_receive - receive data from the audio device
401
 *
402
 * This routine reads input samples and adjusts the logical clock to
403
 * track the irig clock by dropping or duplicating codec samples.
404
 */
405
static void
406
irig_receive(
407
  struct recvbuf *rbufp /* receive buffer structure pointer */
408
  )
409
0
{
410
0
  struct peer *peer;
411
0
  struct refclockproc *pp;
412
0
  struct irigunit *up;
413
414
  /*
415
   * Local variables
416
   */
417
0
  double  sample;   /* codec sample */
418
0
  u_char  *dpt;   /* buffer pointer */
419
0
  int bufcnt;   /* buffer counter */
420
0
  l_fp  ltemp;    /* l_fp temp */
421
422
0
  peer = rbufp->recv_peer;
423
0
  pp = peer->procptr;
424
0
  up = pp->unitptr;
425
426
  /*
427
   * Main loop - read until there ain't no more. Note codec
428
   * samples are bit-inverted.
429
   */
430
0
  DTOLFP((double)rbufp->recv_length / SECOND, &ltemp);
431
0
  L_SUB(&rbufp->recv_time, &ltemp);
432
0
  up->timestamp = rbufp->recv_time;
433
0
  dpt = rbufp->recv_buffer;
434
0
  for (bufcnt = 0; bufcnt < rbufp->recv_length; bufcnt++) {
435
0
    sample = up->comp[~*dpt++ & 0xff];
436
437
    /*
438
     * Variable frequency oscillator. The codec oscillator
439
     * runs at the nominal rate of 8000 samples per second,
440
     * or 125 us per sample. A frequency change of one unit
441
     * results in either duplicating or deleting one sample
442
     * per second, which results in a frequency change of
443
     * 125 PPM.
444
     */
445
0
    up->phase += (up->freq + clock_codec) / SECOND;
446
0
    up->phase += pp->fudgetime2 / 1e6;
447
0
    if (up->phase >= .5) {
448
0
      up->phase -= 1.;
449
0
    } else if (up->phase < -.5) {
450
0
      up->phase += 1.;
451
0
      irig_rf(peer, sample);
452
0
      irig_rf(peer, sample);
453
0
    } else {
454
0
      irig_rf(peer, sample);
455
0
    }
456
0
    L_ADD(&up->timestamp, &up->tick);
457
0
    sample = fabs(sample);
458
0
    if (sample > up->signal)
459
0
      up->signal = sample;
460
0
    up->signal += (sample - up->signal) /
461
0
        1000;
462
463
    /*
464
     * Once each second, determine the IRIG format and gain.
465
     */
466
0
    up->seccnt = (up->seccnt + 1) % SECOND;
467
0
    if (up->seccnt == 0) {
468
0
      if (up->irig_b > up->irig_e) {
469
0
        up->decim = 1;
470
0
        up->fdelay = IRIG_B;
471
0
      } else {
472
0
        up->decim = 10;
473
0
        up->fdelay = IRIG_E;
474
0
      }
475
0
      up->irig_b = up->irig_e = 0;
476
0
      irig_gain(peer);
477
478
0
    }
479
0
  }
480
481
  /*
482
   * Set the input port and monitor gain for the next buffer.
483
   */
484
0
  if (pp->sloppyclockflag & CLK_FLAG2)
485
0
    up->port = 2;
486
0
  else
487
0
    up->port = 1;
488
0
  if (pp->sloppyclockflag & CLK_FLAG3)
489
0
    up->mongain = MONGAIN;
490
0
  else
491
0
    up->mongain = 0;
492
0
}
493
494
495
/*
496
 * irig_rf - RF processing
497
 *
498
 * This routine filters the RF signal using a bandass filter for IRIG-B
499
 * and a lowpass filter for IRIG-E. In case of IRIG-E, the samples are
500
 * decimated by a factor of ten. Note that the codec filters function as
501
 * roofing filters to attenuate both the high and low ends of the
502
 * passband. IIR filter coefficients were determined using Matlab Signal
503
 * Processing Toolkit.
504
 */
505
static void
506
irig_rf(
507
  struct peer *peer,  /* peer structure pointer */
508
  double  sample    /* current signal sample */
509
  )
510
0
{
511
0
  struct refclockproc *pp;
512
0
  struct irigunit *up;
513
514
  /*
515
   * Local variables
516
   */
517
0
  double  irig_b, irig_e; /* irig filter outputs */
518
519
0
  pp = peer->procptr;
520
0
  up = pp->unitptr;
521
522
  /*
523
   * IRIG-B filter. Matlab 4th-order IIR elliptic, 800-1200 Hz
524
   * bandpass, 0.3 dB passband ripple, -50 dB stopband ripple,
525
   * phase delay 1.03 ms.
526
   */
527
0
  irig_b = (up->bpf[8] = up->bpf[7]) * 6.505491e-001;
528
0
  irig_b += (up->bpf[7] = up->bpf[6]) * -3.875180e+000;
529
0
  irig_b += (up->bpf[6] = up->bpf[5]) * 1.151180e+001;
530
0
  irig_b += (up->bpf[5] = up->bpf[4]) * -2.141264e+001;
531
0
  irig_b += (up->bpf[4] = up->bpf[3]) * 2.712837e+001;
532
0
  irig_b += (up->bpf[3] = up->bpf[2]) * -2.384486e+001;
533
0
  irig_b += (up->bpf[2] = up->bpf[1]) * 1.427663e+001;
534
0
  irig_b += (up->bpf[1] = up->bpf[0]) * -5.352734e+000;
535
0
  up->bpf[0] = sample - irig_b;
536
0
  irig_b = up->bpf[0] * 4.952157e-003
537
0
      + up->bpf[1] * -2.055878e-002
538
0
      + up->bpf[2] * 4.401413e-002
539
0
      + up->bpf[3] * -6.558851e-002
540
0
      + up->bpf[4] * 7.462108e-002
541
0
      + up->bpf[5] * -6.558851e-002
542
0
      + up->bpf[6] * 4.401413e-002
543
0
      + up->bpf[7] * -2.055878e-002
544
0
      + up->bpf[8] * 4.952157e-003;
545
0
  up->irig_b += irig_b * irig_b;
546
547
  /*
548
   * IRIG-E filter. Matlab 4th-order IIR elliptic, 130-Hz lowpass,
549
   * 0.3 dB passband ripple, -50 dB stopband ripple, phase delay
550
   * 3.47 ms.
551
   */
552
0
  irig_e = (up->lpf[4] = up->lpf[3]) * 8.694604e-001;
553
0
  irig_e += (up->lpf[3] = up->lpf[2]) * -3.589893e+000;
554
0
  irig_e += (up->lpf[2] = up->lpf[1]) * 5.570154e+000;
555
0
  irig_e += (up->lpf[1] = up->lpf[0]) * -3.849667e+000;
556
0
  up->lpf[0] = sample - irig_e;
557
0
  irig_e = up->lpf[0] * 3.215696e-003
558
0
      + up->lpf[1] * -1.174951e-002
559
0
      + up->lpf[2] * 1.712074e-002
560
0
      + up->lpf[3] * -1.174951e-002
561
0
      + up->lpf[4] * 3.215696e-003;
562
0
  up->irig_e += irig_e * irig_e;
563
564
  /*
565
   * Decimate by a factor of either 1 (IRIG-B) or 10 (IRIG-E).
566
   */
567
0
  up->badcnt = (up->badcnt + 1) % up->decim;
568
0
  if (up->badcnt == 0) {
569
0
    if (up->decim == 1)
570
0
      irig_base(peer, irig_b);
571
0
    else
572
0
      irig_base(peer, irig_e);
573
0
  }
574
0
}
575
576
/*
577
 * irig_base - baseband processing
578
 *
579
 * This routine processes the baseband signal and demodulates the AM
580
 * carrier using a synchronous detector. It then synchronizes to the
581
 * data frame at the baud rate and decodes the width-modulated data
582
 * pulses.
583
 */
584
static void
585
irig_base(
586
  struct peer *peer,  /* peer structure pointer */
587
  double  sample    /* current signal sample */
588
  )
589
0
{
590
0
  struct refclockproc *pp;
591
0
  struct irigunit *up;
592
593
  /*
594
   * Local variables
595
   */
596
0
  double  lope;   /* integrator output */
597
0
  double  env;    /* envelope detector output */
598
0
  double  dtemp;
599
0
  int carphase; /* carrier phase */
600
601
0
  pp = peer->procptr;
602
0
  up = pp->unitptr;
603
604
  /*
605
   * Synchronous baud integrator. Corresponding samples of current
606
   * and past baud intervals are integrated to refine the envelope
607
   * amplitude and phase estimate. We keep one cycle (1 ms) of the
608
   * raw data and one baud (10 ms) of the integrated data.
609
   */
610
0
  up->envphase = (up->envphase + 1) % BAUD;
611
0
  up->integ[up->envphase] += (sample - up->integ[up->envphase]) /
612
0
      (5 * up->tc);
613
0
  lope = up->integ[up->envphase];
614
0
  carphase = up->envphase % CYCLE;
615
0
  up->lastenv[carphase] = sample;
616
0
  up->lastint[carphase] = lope;
617
618
  /*
619
   * Phase detector. Find the negative-going zero crossing
620
   * relative to sample 4 in the 8-sample sycle. A phase change of
621
   * 360 degrees produces an output change of one unit.
622
   */ 
623
0
  if (up->lastsig > 0 && lope <= 0)
624
0
    up->zxing += (double)(carphase - 4) / CYCLE;
625
0
  up->lastsig = lope;
626
627
  /*
628
   * End of the baud. Update signal/noise estimates and PLL
629
   * phase, frequency and time constant.
630
   */
631
0
  if (up->envphase == 0) {
632
0
    up->maxsignal = up->intmax; up->noise = up->intmin;
633
0
    up->intmin = 1e6; up->intmax = -1e6;
634
0
    if (up->maxsignal < DRPOUT)
635
0
      up->errflg |= IRIG_ERR_AMP;
636
0
    if (up->maxsignal > 0)
637
0
      up->modndx = (up->maxsignal - up->noise) /
638
0
          up->maxsignal;
639
0
    else
640
0
      up->modndx = 0;
641
0
    if (up->modndx < MODMIN)
642
0
      up->errflg |= IRIG_ERR_MOD;
643
0
    if (up->errflg & (IRIG_ERR_AMP | IRIG_ERR_FREQ |
644
0
       IRIG_ERR_MOD | IRIG_ERR_SYNCH)) {
645
0
      up->tc = MINTC;
646
0
      up->tcount = 0;
647
0
    }
648
649
    /*
650
     * Update PLL phase and frequency. The PLL time constant
651
     * is set initially to stabilize the frequency within a
652
     * minute or two, then increases to the maximum. The
653
     * frequency is clamped so that the PLL capture range
654
     * cannot be exceeded.
655
     */
656
0
    dtemp = up->zxing * up->decim / BAUD;
657
0
    up->yxing = dtemp;
658
0
    up->zxing = 0.;
659
0
    up->phase += dtemp / up->tc;
660
0
    up->freq += dtemp / (4. * up->tc * up->tc);
661
0
    if (up->freq > MAXFREQ) {
662
0
      up->freq = MAXFREQ;
663
0
      up->errflg |= IRIG_ERR_FREQ;
664
0
    } else if (up->freq < -MAXFREQ) {
665
0
      up->freq = -MAXFREQ;
666
0
      up->errflg |= IRIG_ERR_FREQ;
667
0
    }
668
0
  }
669
670
  /*
671
   * Synchronous demodulator. There are eight samples in the cycle
672
   * and ten cycles in the baud. Since the PLL has aligned the
673
   * negative-going zero crossing at sample 4, the maximum
674
   * amplitude is at sample 2 and minimum at sample 6. The
675
   * beginning of the data pulse is determined from the integrated
676
   * samples, while the end of the pulse is determined from the
677
   * raw samples. The raw data bits are demodulated relative to
678
   * the slice level and left-shifted in the decoding register.
679
   */
680
0
  if (carphase != 7)
681
0
    return;
682
683
0
  lope = (up->lastint[2] - up->lastint[6]) / 2.;
684
0
  if (lope > up->intmax)
685
0
    up->intmax = lope;
686
0
  if (lope < up->intmin)
687
0
    up->intmin = lope;
688
689
  /*
690
   * Pulse code demodulator and reference timestamp. The decoder
691
   * looks for a sequence of ten bits; the first two bits must be
692
   * one, the last two bits must be zero. Frame synch is asserted
693
   * when three correct frames have been found.
694
   */
695
0
  up->pulse = (up->pulse + 1) % 10;
696
0
  up->cycles <<= 1;
697
0
  if (lope >= (up->maxsignal + up->noise) / 2.)
698
0
    up->cycles |= 1;
699
0
  if ((up->cycles & 0x303c0f03) == 0x300c0300) {
700
0
    if (up->pulse != 0)
701
0
      up->errflg |= IRIG_ERR_SYNCH;
702
0
    up->pulse = 0;
703
0
  }
704
705
  /*
706
   * Assemble the baud and max/min to get the slice level for the
707
   * next baud. The slice level is based on the maximum over the
708
   * first two bits and the minimum over the last two bits, with
709
   * the slice level halfway between the maximum and minimum.
710
   */
711
0
  env = (up->lastenv[2] - up->lastenv[6]) / 2.;
712
0
  up->dcycles <<= 1;
713
0
  if (env >= up->slice)
714
0
    up->dcycles |= 1;
715
0
  switch(up->pulse) {
716
717
0
  case 0:
718
0
    irig_baud(peer, up->dcycles);
719
0
    if (env < up->envmin)
720
0
      up->envmin = env;
721
0
    up->slice = (up->envmax + up->envmin) / 2;
722
0
    up->envmin = 1e6; up->envmax = -1e6;
723
0
    break;
724
725
0
  case 1:
726
0
    up->envmax = env;
727
0
    break;
728
729
0
  case 2:
730
0
    if (env > up->envmax)
731
0
      up->envmax = env;
732
0
    break;
733
734
0
  case 9:
735
0
    up->envmin = env;
736
0
    break;
737
0
  }
738
0
}
739
740
/*
741
 * irig_baud - update the PLL and decode the pulse-width signal
742
 */
743
static void
744
irig_baud(
745
  struct peer *peer,  /* peer structure pointer */
746
  int bits    /* decoded bits */
747
  )
748
0
{
749
0
  struct refclockproc *pp;
750
0
  struct irigunit *up;
751
0
  double  dtemp;
752
0
  l_fp  ltemp;
753
754
0
        pp = peer->procptr;
755
0
  up = pp->unitptr;
756
757
  /*
758
   * The PLL time constant starts out small, in order to
759
   * sustain a frequency tolerance of 250 PPM. It
760
   * gradually increases as the loop settles down. Note
761
   * that small wiggles are not believed, unless they
762
   * persist for lots of samples.
763
   */
764
0
  up->exing = -up->yxing;
765
0
  if (abs(up->envxing - up->envphase) <= 1) {
766
0
    up->tcount++;
767
0
    if (up->tcount > 20 * up->tc) {
768
0
      up->tc++;
769
0
      if (up->tc > MAXTC)
770
0
        up->tc = MAXTC;
771
0
      up->tcount = 0;
772
0
      up->envxing = up->envphase;
773
0
    } else {
774
0
      up->exing -= up->envxing - up->envphase;
775
0
    }
776
0
  } else {
777
0
    up->tcount = 0;
778
0
    up->envxing = up->envphase;
779
0
  }
780
781
  /*
782
   * Strike the baud timestamp as the positive zero crossing of
783
   * the first bit, accounting for the codec delay and filter
784
   * delay.
785
   */
786
0
  up->prvstamp = up->chrstamp;
787
0
  dtemp = up->decim * (up->exing / SECOND) + up->fdelay;
788
0
  DTOLFP(dtemp, &ltemp);
789
0
  up->chrstamp = up->timestamp;
790
0
  L_SUB(&up->chrstamp, &ltemp);
791
792
  /*
793
   * The data bits are collected in ten-bit bauds. The first two
794
   * bits are not used. The resulting patterns represent runs of
795
   * 0-1 bits (0), 2-4 bits (1) and 5-7 bits (PI). The remaining
796
   * 8-bit run represents a soft error and is treated as 0.
797
   */
798
0
  switch (up->dcycles & 0xff) {
799
800
0
  case 0x00:    /* 0-1 bits (0) */
801
0
  case 0x80:
802
0
    irig_decode(peer, BIT0);
803
0
    break;
804
805
0
  case 0xc0:    /* 2-4 bits (1) */
806
0
  case 0xe0:
807
0
  case 0xf0:
808
0
    irig_decode(peer, BIT1);
809
0
    break;
810
811
0
  case 0xf8:    /* (5-7 bits (PI) */
812
0
  case 0xfc:
813
0
  case 0xfe:
814
0
    irig_decode(peer, BITP);
815
0
    break;
816
817
0
  default:    /* 8 bits (error) */
818
0
    irig_decode(peer, BIT0);
819
0
    up->errflg |= IRIG_ERR_DECODE;
820
0
  }
821
0
}
822
823
824
/*
825
 * irig_decode - decode the data
826
 *
827
 * This routine assembles bauds into digits, digits into frames and
828
 * frames into the timecode fields. Bits can have values of zero, one
829
 * or position identifier. There are four bits per digit, ten digits per
830
 * frame and ten frames per second.
831
 */
832
static void
833
irig_decode(
834
  struct  peer *peer, /* peer structure pointer */
835
  int bit   /* data bit (0, 1 or 2) */
836
  )
837
0
{
838
0
  struct refclockproc *pp;
839
0
  struct irigunit *up;
840
841
  /*
842
   * Local variables
843
   */
844
0
  int syncdig;  /* sync digit (Spectracom) */
845
0
  char  sbs[6 + 1]; /* binary seconds since 0h */
846
0
  char  spare[2 + 1]; /* mulligan digits */
847
0
  int temp;
848
849
0
  syncdig = 0;
850
0
  pp = peer->procptr;
851
0
  up = pp->unitptr;
852
853
  /*
854
   * Assemble frame bits.
855
   */
856
0
  up->bits >>= 1;
857
0
  if (bit == BIT1) {
858
0
    up->bits |= 0x200;
859
0
  } else if (bit == BITP && up->lastbit == BITP) {
860
861
    /*
862
     * Frame sync - two adjacent position identifiers, which
863
     * mark the beginning of the second. The reference time
864
     * is the beginning of the second position identifier,
865
     * so copy the character timestamp to the reference
866
     * timestamp.
867
     */
868
0
    if (up->frmcnt != 1)
869
0
      up->errflg |= IRIG_ERR_SYNCH;
870
0
    up->frmcnt = 1;
871
0
    up->refstamp = up->prvstamp;
872
0
  }
873
0
  up->lastbit = bit;
874
0
  if (up->frmcnt % SUBFLD == 0) {
875
876
    /*
877
     * End of frame. Encode two hexadecimal digits in
878
     * little-endian timecode field. Note frame 1 is shifted
879
     * right one bit to account for the marker PI.
880
     */
881
0
    temp = up->bits;
882
0
    if (up->frmcnt == 10)
883
0
      temp >>= 1;
884
0
    if (up->xptr >= 2) {
885
0
      up->timecode[--up->xptr] = hexchar[temp & 0xf];
886
0
      up->timecode[--up->xptr] = hexchar[(temp >> 5) &
887
0
          0xf];
888
0
    }
889
0
    if (up->frmcnt == 0) {
890
891
      /*
892
       * End of second. Decode the timecode and wind
893
       * the clock. Not all IRIG generators have the
894
       * year; if so, it is nonzero after year 2000.
895
       * Not all have the hardware status bit; if so,
896
       * it is lit when the source is okay and dim
897
       * when bad. We watch this only if the year is
898
       * nonzero. Not all are configured for signature
899
       * control. If so, all BCD digits are set to
900
       * zero if the source is bad. In this case the
901
       * refclock_process() will reject the timecode
902
       * as invalid.
903
       */
904
0
      up->xptr = 2 * SUBFLD;
905
0
      if (sscanf((char *)up->timecode,
906
0
         "%6s%2d%1d%2s%3d%2d%2d%2d", sbs, &pp->year,
907
0
          &syncdig, spare, &pp->day, &pp->hour,
908
0
          &pp->minute, &pp->second) != 8)
909
0
        pp->leap = LEAP_NOTINSYNC;
910
0
      else
911
0
        pp->leap = LEAP_NOWARNING;
912
0
      up->second = (up->second + up->decim) % 60;
913
914
      /*
915
       * Raise an alarm if the day field is zero,
916
       * which happens when signature control is
917
       * enabled and the device has lost
918
       * synchronization. Raise an alarm if the year
919
       * field is nonzero and the sync indicator is
920
       * zero, which happens when a Spectracom radio
921
       * has lost synchronization. Raise an alarm if
922
       * the expected second does not agree with the
923
       * decoded second, which happens with a garbled
924
       * IRIG signal. We are very particular.
925
       */
926
0
      if (pp->day == 0 || (pp->year != 0 && syncdig ==
927
0
          0))
928
0
        up->errflg |= IRIG_ERR_SIGERR;
929
0
      if (pp->second != up->second)
930
0
        up->errflg |= IRIG_ERR_CHECK;
931
0
      up->second = pp->second;
932
933
      /*
934
       * Wind the clock only if there are no errors
935
       * and the time constant has reached the
936
       * maximum.
937
       */
938
0
      if (up->errflg == 0 && up->tc == MAXTC) {
939
0
        pp->lastref = pp->lastrec;
940
0
        pp->lastrec = up->refstamp;
941
0
        if (!refclock_process(pp))
942
0
          refclock_report(peer,
943
0
              CEVNT_BADTIME);
944
0
      }
945
0
      snprintf(pp->a_lastcode, sizeof(pp->a_lastcode),
946
0
          "%02x %02d %03d %02d:%02d:%02d %4.0f %3d %6.3f %2d %6.2f %6.1f %s",
947
0
          up->errflg, pp->year, pp->day,
948
0
          pp->hour, pp->minute, pp->second,
949
0
          up->maxsignal, up->gain, up->modndx,
950
0
          up->tc, up->exing * 1e6 / SECOND, up->freq *
951
0
          1e6 / SECOND, ulfptoa(&pp->lastrec, 6));
952
0
      pp->lencode = strlen(pp->a_lastcode);
953
0
      up->errflg = 0;
954
0
      if (pp->sloppyclockflag & CLK_FLAG4) {
955
0
        record_clock_stats(&peer->srcadr,
956
0
            pp->a_lastcode);
957
0
#ifdef DEBUG
958
0
        if (debug)
959
0
          printf("irig %s\n",
960
0
              pp->a_lastcode);
961
0
#endif /* DEBUG */
962
0
      }
963
0
    }
964
0
  }
965
0
  up->frmcnt = (up->frmcnt + 1) % FIELD;
966
0
}
967
968
969
/*
970
 * irig_poll - called by the transmit procedure
971
 *
972
 * This routine sweeps up the timecode updates since the last poll. For
973
 * IRIG-B there should be at least 60 updates; for IRIG-E there should
974
 * be at least 6. If nothing is heard, a timeout event is declared. 
975
 */
976
static void
977
irig_poll(
978
  int unit,   /* instance number (not used) */
979
  struct peer *peer /* peer structure pointer */
980
  )
981
0
{
982
0
  struct refclockproc *pp;
983
984
0
  pp = peer->procptr;
985
986
0
  if (pp->coderecv == pp->codeproc) {
987
0
    refclock_report(peer, CEVNT_TIMEOUT);
988
0
    return;
989
990
0
  }
991
0
  refclock_receive(peer);
992
0
  if (!(pp->sloppyclockflag & CLK_FLAG4)) {
993
0
    record_clock_stats(&peer->srcadr, pp->a_lastcode);
994
0
#ifdef DEBUG
995
0
    if (debug)
996
0
      printf("irig %s\n", pp->a_lastcode);
997
0
#endif /* DEBUG */
998
0
  }
999
0
  pp->polls++;
1000
  
1001
0
}
1002
1003
1004
/*
1005
 * irig_gain - adjust codec gain
1006
 *
1007
 * This routine is called at the end of each second. It uses the AGC to
1008
 * bradket the maximum signal level between MINAMP and MAXAMP to avoid
1009
 * hunting. The routine also jiggles the input port and selectively
1010
 * mutes the monitor.
1011
 */
1012
static void
1013
irig_gain(
1014
  struct peer *peer /* peer structure pointer */
1015
  )
1016
0
{
1017
0
  struct refclockproc *pp;
1018
0
  struct irigunit *up;
1019
1020
0
  pp = peer->procptr;
1021
0
  up = pp->unitptr;
1022
1023
  /*
1024
   * Apparently, the codec uses only the high order bits of the
1025
   * gain control field. Thus, it may take awhile for changes to
1026
   * wiggle the hardware bits.
1027
   */
1028
0
  if (up->maxsignal < MINAMP) {
1029
0
    up->gain += 4;
1030
0
    if (up->gain > MAXGAIN)
1031
0
      up->gain = MAXGAIN;
1032
0
  } else if (up->maxsignal > MAXAMP) {
1033
0
    up->gain -= 4;
1034
0
    if (up->gain < 0)
1035
0
      up->gain = 0;
1036
0
  }
1037
0
  audio_gain(up->gain, up->mongain, up->port);
1038
0
}
1039
1040
1041
#else
1042
int refclock_irig_bs;
1043
#endif /* REFCLOCK */