Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.9/dist-packages/numpy/lib/_arraypad_impl.py: 8%

224 statements  

« prev     ^ index     » next       coverage.py v7.4.4, created at 2024-04-09 06:12 +0000

1""" 

2The arraypad module contains a group of functions to pad values onto the edges 

3of an n-dimensional array. 

4 

5""" 

6import numpy as np 

7from numpy._core.overrides import array_function_dispatch 

8from numpy.lib._index_tricks_impl import ndindex 

9 

10 

11__all__ = ['pad'] 

12 

13 

14############################################################################### 

15# Private utility functions. 

16 

17 

18def _round_if_needed(arr, dtype): 

19 """ 

20 Rounds arr inplace if destination dtype is integer. 

21 

22 Parameters 

23 ---------- 

24 arr : ndarray 

25 Input array. 

26 dtype : dtype 

27 The dtype of the destination array. 

28 """ 

29 if np.issubdtype(dtype, np.integer): 

30 arr.round(out=arr) 

31 

32 

33def _slice_at_axis(sl, axis): 

34 """ 

35 Construct tuple of slices to slice an array in the given dimension. 

36 

37 Parameters 

38 ---------- 

39 sl : slice 

40 The slice for the given dimension. 

41 axis : int 

42 The axis to which `sl` is applied. All other dimensions are left 

43 "unsliced". 

44 

45 Returns 

46 ------- 

47 sl : tuple of slices 

48 A tuple with slices matching `shape` in length. 

49 

50 Examples 

51 -------- 

52 >>> _slice_at_axis(slice(None, 3, -1), 1) 

53 (slice(None, None, None), slice(None, 3, -1), (...,)) 

54 """ 

55 return (slice(None),) * axis + (sl,) + (...,) 

56 

57 

58def _view_roi(array, original_area_slice, axis): 

59 """ 

60 Get a view of the current region of interest during iterative padding. 

61 

62 When padding multiple dimensions iteratively corner values are 

63 unnecessarily overwritten multiple times. This function reduces the 

64 working area for the first dimensions so that corners are excluded. 

65 

66 Parameters 

67 ---------- 

68 array : ndarray 

69 The array with the region of interest. 

70 original_area_slice : tuple of slices 

71 Denotes the area with original values of the unpadded array. 

72 axis : int 

73 The currently padded dimension assuming that `axis` is padded before 

74 `axis` + 1. 

75 

76 Returns 

77 ------- 

78 roi : ndarray 

79 The region of interest of the original `array`. 

80 """ 

81 axis += 1 

82 sl = (slice(None),) * axis + original_area_slice[axis:] 

83 return array[sl] 

84 

85 

86def _pad_simple(array, pad_width, fill_value=None): 

87 """ 

88 Pad array on all sides with either a single value or undefined values. 

89 

90 Parameters 

91 ---------- 

92 array : ndarray 

93 Array to grow. 

94 pad_width : sequence of tuple[int, int] 

95 Pad width on both sides for each dimension in `arr`. 

96 fill_value : scalar, optional 

97 If provided the padded area is filled with this value, otherwise 

98 the pad area left undefined. 

99 

100 Returns 

101 ------- 

102 padded : ndarray 

103 The padded array with the same dtype as`array`. Its order will default 

104 to C-style if `array` is not F-contiguous. 

105 original_area_slice : tuple 

106 A tuple of slices pointing to the area of the original array. 

107 """ 

108 # Allocate grown array 

109 new_shape = tuple( 

110 left + size + right 

111 for size, (left, right) in zip(array.shape, pad_width) 

112 ) 

113 order = 'F' if array.flags.fnc else 'C' # Fortran and not also C-order 

114 padded = np.empty(new_shape, dtype=array.dtype, order=order) 

115 

116 if fill_value is not None: 

117 padded.fill(fill_value) 

118 

119 # Copy old array into correct space 

120 original_area_slice = tuple( 

121 slice(left, left + size) 

122 for size, (left, right) in zip(array.shape, pad_width) 

123 ) 

124 padded[original_area_slice] = array 

125 

126 return padded, original_area_slice 

127 

128 

129def _set_pad_area(padded, axis, width_pair, value_pair): 

130 """ 

131 Set empty-padded area in given dimension. 

132 

133 Parameters 

134 ---------- 

135 padded : ndarray 

136 Array with the pad area which is modified inplace. 

137 axis : int 

138 Dimension with the pad area to set. 

139 width_pair : (int, int) 

140 Pair of widths that mark the pad area on both sides in the given 

141 dimension. 

142 value_pair : tuple of scalars or ndarrays 

143 Values inserted into the pad area on each side. It must match or be 

144 broadcastable to the shape of `arr`. 

145 """ 

146 left_slice = _slice_at_axis(slice(None, width_pair[0]), axis) 

147 padded[left_slice] = value_pair[0] 

148 

149 right_slice = _slice_at_axis( 

150 slice(padded.shape[axis] - width_pair[1], None), axis) 

151 padded[right_slice] = value_pair[1] 

152 

153 

154def _get_edges(padded, axis, width_pair): 

155 """ 

156 Retrieve edge values from empty-padded array in given dimension. 

157 

158 Parameters 

159 ---------- 

160 padded : ndarray 

161 Empty-padded array. 

162 axis : int 

163 Dimension in which the edges are considered. 

164 width_pair : (int, int) 

165 Pair of widths that mark the pad area on both sides in the given 

166 dimension. 

167 

168 Returns 

169 ------- 

170 left_edge, right_edge : ndarray 

171 Edge values of the valid area in `padded` in the given dimension. Its 

172 shape will always match `padded` except for the dimension given by 

173 `axis` which will have a length of 1. 

174 """ 

175 left_index = width_pair[0] 

176 left_slice = _slice_at_axis(slice(left_index, left_index + 1), axis) 

177 left_edge = padded[left_slice] 

178 

179 right_index = padded.shape[axis] - width_pair[1] 

180 right_slice = _slice_at_axis(slice(right_index - 1, right_index), axis) 

181 right_edge = padded[right_slice] 

182 

183 return left_edge, right_edge 

184 

185 

186def _get_linear_ramps(padded, axis, width_pair, end_value_pair): 

187 """ 

188 Construct linear ramps for empty-padded array in given dimension. 

189 

190 Parameters 

191 ---------- 

192 padded : ndarray 

193 Empty-padded array. 

194 axis : int 

195 Dimension in which the ramps are constructed. 

196 width_pair : (int, int) 

197 Pair of widths that mark the pad area on both sides in the given 

198 dimension. 

199 end_value_pair : (scalar, scalar) 

200 End values for the linear ramps which form the edge of the fully padded 

201 array. These values are included in the linear ramps. 

202 

203 Returns 

204 ------- 

205 left_ramp, right_ramp : ndarray 

206 Linear ramps to set on both sides of `padded`. 

207 """ 

208 edge_pair = _get_edges(padded, axis, width_pair) 

209 

210 left_ramp, right_ramp = ( 

211 np.linspace( 

212 start=end_value, 

213 stop=edge.squeeze(axis), # Dimension is replaced by linspace 

214 num=width, 

215 endpoint=False, 

216 dtype=padded.dtype, 

217 axis=axis 

218 ) 

219 for end_value, edge, width in zip( 

220 end_value_pair, edge_pair, width_pair 

221 ) 

222 ) 

223 

224 # Reverse linear space in appropriate dimension 

225 right_ramp = right_ramp[_slice_at_axis(slice(None, None, -1), axis)] 

226 

227 return left_ramp, right_ramp 

228 

229 

230def _get_stats(padded, axis, width_pair, length_pair, stat_func): 

231 """ 

232 Calculate statistic for the empty-padded array in given dimension. 

233 

234 Parameters 

235 ---------- 

236 padded : ndarray 

237 Empty-padded array. 

238 axis : int 

239 Dimension in which the statistic is calculated. 

240 width_pair : (int, int) 

241 Pair of widths that mark the pad area on both sides in the given 

242 dimension. 

243 length_pair : 2-element sequence of None or int 

244 Gives the number of values in valid area from each side that is 

245 taken into account when calculating the statistic. If None the entire 

246 valid area in `padded` is considered. 

247 stat_func : function 

248 Function to compute statistic. The expected signature is 

249 ``stat_func(x: ndarray, axis: int, keepdims: bool) -> ndarray``. 

250 

251 Returns 

252 ------- 

253 left_stat, right_stat : ndarray 

254 Calculated statistic for both sides of `padded`. 

255 """ 

256 # Calculate indices of the edges of the area with original values 

257 left_index = width_pair[0] 

258 right_index = padded.shape[axis] - width_pair[1] 

259 # as well as its length 

260 max_length = right_index - left_index 

261 

262 # Limit stat_lengths to max_length 

263 left_length, right_length = length_pair 

264 if left_length is None or max_length < left_length: 

265 left_length = max_length 

266 if right_length is None or max_length < right_length: 

267 right_length = max_length 

268 

269 if (left_length == 0 or right_length == 0) \ 

270 and stat_func in {np.amax, np.amin}: 

271 # amax and amin can't operate on an empty array, 

272 # raise a more descriptive warning here instead of the default one 

273 raise ValueError("stat_length of 0 yields no value for padding") 

274 

275 # Calculate statistic for the left side 

276 left_slice = _slice_at_axis( 

277 slice(left_index, left_index + left_length), axis) 

278 left_chunk = padded[left_slice] 

279 left_stat = stat_func(left_chunk, axis=axis, keepdims=True) 

280 _round_if_needed(left_stat, padded.dtype) 

281 

282 if left_length == right_length == max_length: 

283 # return early as right_stat must be identical to left_stat 

284 return left_stat, left_stat 

285 

286 # Calculate statistic for the right side 

287 right_slice = _slice_at_axis( 

288 slice(right_index - right_length, right_index), axis) 

289 right_chunk = padded[right_slice] 

290 right_stat = stat_func(right_chunk, axis=axis, keepdims=True) 

291 _round_if_needed(right_stat, padded.dtype) 

292 

293 return left_stat, right_stat 

294 

295 

296def _set_reflect_both(padded, axis, width_pair, method, include_edge=False): 

297 """ 

298 Pad `axis` of `arr` with reflection. 

299 

300 Parameters 

301 ---------- 

302 padded : ndarray 

303 Input array of arbitrary shape. 

304 axis : int 

305 Axis along which to pad `arr`. 

306 width_pair : (int, int) 

307 Pair of widths that mark the pad area on both sides in the given 

308 dimension. 

309 method : str 

310 Controls method of reflection; options are 'even' or 'odd'. 

311 include_edge : bool 

312 If true, edge value is included in reflection, otherwise the edge 

313 value forms the symmetric axis to the reflection. 

314 

315 Returns 

316 ------- 

317 pad_amt : tuple of ints, length 2 

318 New index positions of padding to do along the `axis`. If these are 

319 both 0, padding is done in this dimension. 

320 """ 

321 left_pad, right_pad = width_pair 

322 old_length = padded.shape[axis] - right_pad - left_pad 

323 

324 if include_edge: 

325 # Edge is included, we need to offset the pad amount by 1 

326 edge_offset = 1 

327 else: 

328 edge_offset = 0 # Edge is not included, no need to offset pad amount 

329 old_length -= 1 # but must be omitted from the chunk 

330 

331 if left_pad > 0: 

332 # Pad with reflected values on left side: 

333 # First limit chunk size which can't be larger than pad area 

334 chunk_length = min(old_length, left_pad) 

335 # Slice right to left, stop on or next to edge, start relative to stop 

336 stop = left_pad - edge_offset 

337 start = stop + chunk_length 

338 left_slice = _slice_at_axis(slice(start, stop, -1), axis) 

339 left_chunk = padded[left_slice] 

340 

341 if method == "odd": 

342 # Negate chunk and align with edge 

343 edge_slice = _slice_at_axis(slice(left_pad, left_pad + 1), axis) 

344 left_chunk = 2 * padded[edge_slice] - left_chunk 

345 

346 # Insert chunk into padded area 

347 start = left_pad - chunk_length 

348 stop = left_pad 

349 pad_area = _slice_at_axis(slice(start, stop), axis) 

350 padded[pad_area] = left_chunk 

351 # Adjust pointer to left edge for next iteration 

352 left_pad -= chunk_length 

353 

354 if right_pad > 0: 

355 # Pad with reflected values on right side: 

356 # First limit chunk size which can't be larger than pad area 

357 chunk_length = min(old_length, right_pad) 

358 # Slice right to left, start on or next to edge, stop relative to start 

359 start = -right_pad + edge_offset - 2 

360 stop = start - chunk_length 

361 right_slice = _slice_at_axis(slice(start, stop, -1), axis) 

362 right_chunk = padded[right_slice] 

363 

364 if method == "odd": 

365 # Negate chunk and align with edge 

366 edge_slice = _slice_at_axis( 

367 slice(-right_pad - 1, -right_pad), axis) 

368 right_chunk = 2 * padded[edge_slice] - right_chunk 

369 

370 # Insert chunk into padded area 

371 start = padded.shape[axis] - right_pad 

372 stop = start + chunk_length 

373 pad_area = _slice_at_axis(slice(start, stop), axis) 

374 padded[pad_area] = right_chunk 

375 # Adjust pointer to right edge for next iteration 

376 right_pad -= chunk_length 

377 

378 return left_pad, right_pad 

379 

380 

381def _set_wrap_both(padded, axis, width_pair, original_period): 

382 """ 

383 Pad `axis` of `arr` with wrapped values. 

384 

385 Parameters 

386 ---------- 

387 padded : ndarray 

388 Input array of arbitrary shape. 

389 axis : int 

390 Axis along which to pad `arr`. 

391 width_pair : (int, int) 

392 Pair of widths that mark the pad area on both sides in the given 

393 dimension. 

394 original_period : int 

395 Original length of data on `axis` of `arr`. 

396 

397 Returns 

398 ------- 

399 pad_amt : tuple of ints, length 2 

400 New index positions of padding to do along the `axis`. If these are 

401 both 0, padding is done in this dimension. 

402 """ 

403 left_pad, right_pad = width_pair 

404 period = padded.shape[axis] - right_pad - left_pad 

405 # Avoid wrapping with only a subset of the original area by ensuring period 

406 # can only be a multiple of the original area's length. 

407 period = period // original_period * original_period 

408 

409 # If the current dimension of `arr` doesn't contain enough valid values 

410 # (not part of the undefined pad area) we need to pad multiple times. 

411 # Each time the pad area shrinks on both sides which is communicated with 

412 # these variables. 

413 new_left_pad = 0 

414 new_right_pad = 0 

415 

416 if left_pad > 0: 

417 # Pad with wrapped values on left side 

418 # First slice chunk from left side of the non-pad area. 

419 # Use min(period, left_pad) to ensure that chunk is not larger than 

420 # pad area. 

421 slice_end = left_pad + period 

422 slice_start = slice_end - min(period, left_pad) 

423 right_slice = _slice_at_axis(slice(slice_start, slice_end), axis) 

424 right_chunk = padded[right_slice] 

425 

426 if left_pad > period: 

427 # Chunk is smaller than pad area 

428 pad_area = _slice_at_axis(slice(left_pad - period, left_pad), axis) 

429 new_left_pad = left_pad - period 

430 else: 

431 # Chunk matches pad area 

432 pad_area = _slice_at_axis(slice(None, left_pad), axis) 

433 padded[pad_area] = right_chunk 

434 

435 if right_pad > 0: 

436 # Pad with wrapped values on right side 

437 # First slice chunk from right side of the non-pad area. 

438 # Use min(period, right_pad) to ensure that chunk is not larger than 

439 # pad area. 

440 slice_start = -right_pad - period 

441 slice_end = slice_start + min(period, right_pad) 

442 left_slice = _slice_at_axis(slice(slice_start, slice_end), axis) 

443 left_chunk = padded[left_slice] 

444 

445 if right_pad > period: 

446 # Chunk is smaller than pad area 

447 pad_area = _slice_at_axis( 

448 slice(-right_pad, -right_pad + period), axis) 

449 new_right_pad = right_pad - period 

450 else: 

451 # Chunk matches pad area 

452 pad_area = _slice_at_axis(slice(-right_pad, None), axis) 

453 padded[pad_area] = left_chunk 

454 

455 return new_left_pad, new_right_pad 

456 

457 

458def _as_pairs(x, ndim, as_index=False): 

459 """ 

460 Broadcast `x` to an array with the shape (`ndim`, 2). 

461 

462 A helper function for `pad` that prepares and validates arguments like 

463 `pad_width` for iteration in pairs. 

464 

465 Parameters 

466 ---------- 

467 x : {None, scalar, array-like} 

468 The object to broadcast to the shape (`ndim`, 2). 

469 ndim : int 

470 Number of pairs the broadcasted `x` will have. 

471 as_index : bool, optional 

472 If `x` is not None, try to round each element of `x` to an integer 

473 (dtype `np.intp`) and ensure every element is positive. 

474 

475 Returns 

476 ------- 

477 pairs : nested iterables, shape (`ndim`, 2) 

478 The broadcasted version of `x`. 

479 

480 Raises 

481 ------ 

482 ValueError 

483 If `as_index` is True and `x` contains negative elements. 

484 Or if `x` is not broadcastable to the shape (`ndim`, 2). 

485 """ 

486 if x is None: 

487 # Pass through None as a special case, otherwise np.round(x) fails 

488 # with an AttributeError 

489 return ((None, None),) * ndim 

490 

491 x = np.array(x) 

492 if as_index: 

493 x = np.round(x).astype(np.intp, copy=False) 

494 

495 if x.ndim < 3: 

496 # Optimization: Possibly use faster paths for cases where `x` has 

497 # only 1 or 2 elements. `np.broadcast_to` could handle these as well 

498 # but is currently slower 

499 

500 if x.size == 1: 

501 # x was supplied as a single value 

502 x = x.ravel() # Ensure x[0] works for x.ndim == 0, 1, 2 

503 if as_index and x < 0: 

504 raise ValueError("index can't contain negative values") 

505 return ((x[0], x[0]),) * ndim 

506 

507 if x.size == 2 and x.shape != (2, 1): 

508 # x was supplied with a single value for each side 

509 # but except case when each dimension has a single value 

510 # which should be broadcasted to a pair, 

511 # e.g. [[1], [2]] -> [[1, 1], [2, 2]] not [[1, 2], [1, 2]] 

512 x = x.ravel() # Ensure x[0], x[1] works 

513 if as_index and (x[0] < 0 or x[1] < 0): 

514 raise ValueError("index can't contain negative values") 

515 return ((x[0], x[1]),) * ndim 

516 

517 if as_index and x.min() < 0: 

518 raise ValueError("index can't contain negative values") 

519 

520 # Converting the array with `tolist` seems to improve performance 

521 # when iterating and indexing the result (see usage in `pad`) 

522 return np.broadcast_to(x, (ndim, 2)).tolist() 

523 

524 

525def _pad_dispatcher(array, pad_width, mode=None, **kwargs): 

526 return (array,) 

527 

528 

529############################################################################### 

530# Public functions 

531 

532 

533@array_function_dispatch(_pad_dispatcher, module='numpy') 

534def pad(array, pad_width, mode='constant', **kwargs): 

535 """ 

536 Pad an array. 

537 

538 Parameters 

539 ---------- 

540 array : array_like of rank N 

541 The array to pad. 

542 pad_width : {sequence, array_like, int} 

543 Number of values padded to the edges of each axis. 

544 ``((before_1, after_1), ... (before_N, after_N))`` unique pad widths 

545 for each axis. 

546 ``(before, after)`` or ``((before, after),)`` yields same before 

547 and after pad for each axis. 

548 ``(pad,)`` or ``int`` is a shortcut for before = after = pad width 

549 for all axes. 

550 mode : str or function, optional 

551 One of the following string values or a user supplied function. 

552 

553 'constant' (default) 

554 Pads with a constant value. 

555 'edge' 

556 Pads with the edge values of array. 

557 'linear_ramp' 

558 Pads with the linear ramp between end_value and the 

559 array edge value. 

560 'maximum' 

561 Pads with the maximum value of all or part of the 

562 vector along each axis. 

563 'mean' 

564 Pads with the mean value of all or part of the 

565 vector along each axis. 

566 'median' 

567 Pads with the median value of all or part of the 

568 vector along each axis. 

569 'minimum' 

570 Pads with the minimum value of all or part of the 

571 vector along each axis. 

572 'reflect' 

573 Pads with the reflection of the vector mirrored on 

574 the first and last values of the vector along each 

575 axis. 

576 'symmetric' 

577 Pads with the reflection of the vector mirrored 

578 along the edge of the array. 

579 'wrap' 

580 Pads with the wrap of the vector along the axis. 

581 The first values are used to pad the end and the 

582 end values are used to pad the beginning. 

583 'empty' 

584 Pads with undefined values. 

585 

586 .. versionadded:: 1.17 

587 

588 <function> 

589 Padding function, see Notes. 

590 stat_length : sequence or int, optional 

591 Used in 'maximum', 'mean', 'median', and 'minimum'. Number of 

592 values at edge of each axis used to calculate the statistic value. 

593 

594 ``((before_1, after_1), ... (before_N, after_N))`` unique statistic 

595 lengths for each axis. 

596 

597 ``(before, after)`` or ``((before, after),)`` yields same before 

598 and after statistic lengths for each axis. 

599 

600 ``(stat_length,)`` or ``int`` is a shortcut for 

601 ``before = after = statistic`` length for all axes. 

602 

603 Default is ``None``, to use the entire axis. 

604 constant_values : sequence or scalar, optional 

605 Used in 'constant'. The values to set the padded values for each 

606 axis. 

607 

608 ``((before_1, after_1), ... (before_N, after_N))`` unique pad constants 

609 for each axis. 

610 

611 ``(before, after)`` or ``((before, after),)`` yields same before 

612 and after constants for each axis. 

613 

614 ``(constant,)`` or ``constant`` is a shortcut for 

615 ``before = after = constant`` for all axes. 

616 

617 Default is 0. 

618 end_values : sequence or scalar, optional 

619 Used in 'linear_ramp'. The values used for the ending value of the 

620 linear_ramp and that will form the edge of the padded array. 

621 

622 ``((before_1, after_1), ... (before_N, after_N))`` unique end values 

623 for each axis. 

624 

625 ``(before, after)`` or ``((before, after),)`` yields same before 

626 and after end values for each axis. 

627 

628 ``(constant,)`` or ``constant`` is a shortcut for 

629 ``before = after = constant`` for all axes. 

630 

631 Default is 0. 

632 reflect_type : {'even', 'odd'}, optional 

633 Used in 'reflect', and 'symmetric'. The 'even' style is the 

634 default with an unaltered reflection around the edge value. For 

635 the 'odd' style, the extended part of the array is created by 

636 subtracting the reflected values from two times the edge value. 

637 

638 Returns 

639 ------- 

640 pad : ndarray 

641 Padded array of rank equal to `array` with shape increased 

642 according to `pad_width`. 

643 

644 Notes 

645 ----- 

646 .. versionadded:: 1.7.0 

647 

648 For an array with rank greater than 1, some of the padding of later 

649 axes is calculated from padding of previous axes. This is easiest to 

650 think about with a rank 2 array where the corners of the padded array 

651 are calculated by using padded values from the first axis. 

652 

653 The padding function, if used, should modify a rank 1 array in-place. It 

654 has the following signature:: 

655 

656 padding_func(vector, iaxis_pad_width, iaxis, kwargs) 

657 

658 where 

659 

660 vector : ndarray 

661 A rank 1 array already padded with zeros. Padded values are 

662 vector[:iaxis_pad_width[0]] and vector[-iaxis_pad_width[1]:]. 

663 iaxis_pad_width : tuple 

664 A 2-tuple of ints, iaxis_pad_width[0] represents the number of 

665 values padded at the beginning of vector where 

666 iaxis_pad_width[1] represents the number of values padded at 

667 the end of vector. 

668 iaxis : int 

669 The axis currently being calculated. 

670 kwargs : dict 

671 Any keyword arguments the function requires. 

672 

673 Examples 

674 -------- 

675 >>> a = [1, 2, 3, 4, 5] 

676 >>> np.pad(a, (2, 3), 'constant', constant_values=(4, 6)) 

677 array([4, 4, 1, ..., 6, 6, 6]) 

678 

679 >>> np.pad(a, (2, 3), 'edge') 

680 array([1, 1, 1, ..., 5, 5, 5]) 

681 

682 >>> np.pad(a, (2, 3), 'linear_ramp', end_values=(5, -4)) 

683 array([ 5, 3, 1, 2, 3, 4, 5, 2, -1, -4]) 

684 

685 >>> np.pad(a, (2,), 'maximum') 

686 array([5, 5, 1, 2, 3, 4, 5, 5, 5]) 

687 

688 >>> np.pad(a, (2,), 'mean') 

689 array([3, 3, 1, 2, 3, 4, 5, 3, 3]) 

690 

691 >>> np.pad(a, (2,), 'median') 

692 array([3, 3, 1, 2, 3, 4, 5, 3, 3]) 

693 

694 >>> a = [[1, 2], [3, 4]] 

695 >>> np.pad(a, ((3, 2), (2, 3)), 'minimum') 

696 array([[1, 1, 1, 2, 1, 1, 1], 

697 [1, 1, 1, 2, 1, 1, 1], 

698 [1, 1, 1, 2, 1, 1, 1], 

699 [1, 1, 1, 2, 1, 1, 1], 

700 [3, 3, 3, 4, 3, 3, 3], 

701 [1, 1, 1, 2, 1, 1, 1], 

702 [1, 1, 1, 2, 1, 1, 1]]) 

703 

704 >>> a = [1, 2, 3, 4, 5] 

705 >>> np.pad(a, (2, 3), 'reflect') 

706 array([3, 2, 1, 2, 3, 4, 5, 4, 3, 2]) 

707 

708 >>> np.pad(a, (2, 3), 'reflect', reflect_type='odd') 

709 array([-1, 0, 1, 2, 3, 4, 5, 6, 7, 8]) 

710 

711 >>> np.pad(a, (2, 3), 'symmetric') 

712 array([2, 1, 1, 2, 3, 4, 5, 5, 4, 3]) 

713 

714 >>> np.pad(a, (2, 3), 'symmetric', reflect_type='odd') 

715 array([0, 1, 1, 2, 3, 4, 5, 5, 6, 7]) 

716 

717 >>> np.pad(a, (2, 3), 'wrap') 

718 array([4, 5, 1, 2, 3, 4, 5, 1, 2, 3]) 

719 

720 >>> def pad_with(vector, pad_width, iaxis, kwargs): 

721 ... pad_value = kwargs.get('padder', 10) 

722 ... vector[:pad_width[0]] = pad_value 

723 ... vector[-pad_width[1]:] = pad_value 

724 >>> a = np.arange(6) 

725 >>> a = a.reshape((2, 3)) 

726 >>> np.pad(a, 2, pad_with) 

727 array([[10, 10, 10, 10, 10, 10, 10], 

728 [10, 10, 10, 10, 10, 10, 10], 

729 [10, 10, 0, 1, 2, 10, 10], 

730 [10, 10, 3, 4, 5, 10, 10], 

731 [10, 10, 10, 10, 10, 10, 10], 

732 [10, 10, 10, 10, 10, 10, 10]]) 

733 >>> np.pad(a, 2, pad_with, padder=100) 

734 array([[100, 100, 100, 100, 100, 100, 100], 

735 [100, 100, 100, 100, 100, 100, 100], 

736 [100, 100, 0, 1, 2, 100, 100], 

737 [100, 100, 3, 4, 5, 100, 100], 

738 [100, 100, 100, 100, 100, 100, 100], 

739 [100, 100, 100, 100, 100, 100, 100]]) 

740 """ 

741 array = np.asarray(array) 

742 pad_width = np.asarray(pad_width) 

743 

744 if not pad_width.dtype.kind == 'i': 

745 raise TypeError('`pad_width` must be of integral type.') 

746 

747 # Broadcast to shape (array.ndim, 2) 

748 pad_width = _as_pairs(pad_width, array.ndim, as_index=True) 

749 

750 if callable(mode): 

751 # Old behavior: Use user-supplied function with np.apply_along_axis 

752 function = mode 

753 # Create a new zero padded array 

754 padded, _ = _pad_simple(array, pad_width, fill_value=0) 

755 # And apply along each axis 

756 

757 for axis in range(padded.ndim): 

758 # Iterate using ndindex as in apply_along_axis, but assuming that 

759 # function operates inplace on the padded array. 

760 

761 # view with the iteration axis at the end 

762 view = np.moveaxis(padded, axis, -1) 

763 

764 # compute indices for the iteration axes, and append a trailing 

765 # ellipsis to prevent 0d arrays decaying to scalars (gh-8642) 

766 inds = ndindex(view.shape[:-1]) 

767 inds = (ind + (Ellipsis,) for ind in inds) 

768 for ind in inds: 

769 function(view[ind], pad_width[axis], axis, kwargs) 

770 

771 return padded 

772 

773 # Make sure that no unsupported keywords were passed for the current mode 

774 allowed_kwargs = { 

775 'empty': [], 'edge': [], 'wrap': [], 

776 'constant': ['constant_values'], 

777 'linear_ramp': ['end_values'], 

778 'maximum': ['stat_length'], 

779 'mean': ['stat_length'], 

780 'median': ['stat_length'], 

781 'minimum': ['stat_length'], 

782 'reflect': ['reflect_type'], 

783 'symmetric': ['reflect_type'], 

784 } 

785 try: 

786 unsupported_kwargs = set(kwargs) - set(allowed_kwargs[mode]) 

787 except KeyError: 

788 raise ValueError("mode '{}' is not supported".format(mode)) from None 

789 if unsupported_kwargs: 

790 raise ValueError("unsupported keyword arguments for mode '{}': {}" 

791 .format(mode, unsupported_kwargs)) 

792 

793 stat_functions = {"maximum": np.amax, "minimum": np.amin, 

794 "mean": np.mean, "median": np.median} 

795 

796 # Create array with final shape and original values 

797 # (padded area is undefined) 

798 padded, original_area_slice = _pad_simple(array, pad_width) 

799 # And prepare iteration over all dimensions 

800 # (zipping may be more readable than using enumerate) 

801 axes = range(padded.ndim) 

802 

803 if mode == "constant": 

804 values = kwargs.get("constant_values", 0) 

805 values = _as_pairs(values, padded.ndim) 

806 for axis, width_pair, value_pair in zip(axes, pad_width, values): 

807 roi = _view_roi(padded, original_area_slice, axis) 

808 _set_pad_area(roi, axis, width_pair, value_pair) 

809 

810 elif mode == "empty": 

811 pass # Do nothing as _pad_simple already returned the correct result 

812 

813 elif array.size == 0: 

814 # Only modes "constant" and "empty" can extend empty axes, all other 

815 # modes depend on `array` not being empty 

816 # -> ensure every empty axis is only "padded with 0" 

817 for axis, width_pair in zip(axes, pad_width): 

818 if array.shape[axis] == 0 and any(width_pair): 

819 raise ValueError( 

820 "can't extend empty axis {} using modes other than " 

821 "'constant' or 'empty'".format(axis) 

822 ) 

823 # passed, don't need to do anything more as _pad_simple already 

824 # returned the correct result 

825 

826 elif mode == "edge": 

827 for axis, width_pair in zip(axes, pad_width): 

828 roi = _view_roi(padded, original_area_slice, axis) 

829 edge_pair = _get_edges(roi, axis, width_pair) 

830 _set_pad_area(roi, axis, width_pair, edge_pair) 

831 

832 elif mode == "linear_ramp": 

833 end_values = kwargs.get("end_values", 0) 

834 end_values = _as_pairs(end_values, padded.ndim) 

835 for axis, width_pair, value_pair in zip(axes, pad_width, end_values): 

836 roi = _view_roi(padded, original_area_slice, axis) 

837 ramp_pair = _get_linear_ramps(roi, axis, width_pair, value_pair) 

838 _set_pad_area(roi, axis, width_pair, ramp_pair) 

839 

840 elif mode in stat_functions: 

841 func = stat_functions[mode] 

842 length = kwargs.get("stat_length", None) 

843 length = _as_pairs(length, padded.ndim, as_index=True) 

844 for axis, width_pair, length_pair in zip(axes, pad_width, length): 

845 roi = _view_roi(padded, original_area_slice, axis) 

846 stat_pair = _get_stats(roi, axis, width_pair, length_pair, func) 

847 _set_pad_area(roi, axis, width_pair, stat_pair) 

848 

849 elif mode in {"reflect", "symmetric"}: 

850 method = kwargs.get("reflect_type", "even") 

851 include_edge = True if mode == "symmetric" else False 

852 for axis, (left_index, right_index) in zip(axes, pad_width): 

853 if array.shape[axis] == 1 and (left_index > 0 or right_index > 0): 

854 # Extending singleton dimension for 'reflect' is legacy 

855 # behavior; it really should raise an error. 

856 edge_pair = _get_edges(padded, axis, (left_index, right_index)) 

857 _set_pad_area( 

858 padded, axis, (left_index, right_index), edge_pair) 

859 continue 

860 

861 roi = _view_roi(padded, original_area_slice, axis) 

862 while left_index > 0 or right_index > 0: 

863 # Iteratively pad until dimension is filled with reflected 

864 # values. This is necessary if the pad area is larger than 

865 # the length of the original values in the current dimension. 

866 left_index, right_index = _set_reflect_both( 

867 roi, axis, (left_index, right_index), 

868 method, include_edge 

869 ) 

870 

871 elif mode == "wrap": 

872 for axis, (left_index, right_index) in zip(axes, pad_width): 

873 roi = _view_roi(padded, original_area_slice, axis) 

874 original_period = padded.shape[axis] - right_index - left_index 

875 while left_index > 0 or right_index > 0: 

876 # Iteratively pad until dimension is filled with wrapped 

877 # values. This is necessary if the pad area is larger than 

878 # the length of the original values in the current dimension. 

879 left_index, right_index = _set_wrap_both( 

880 roi, axis, (left_index, right_index), original_period) 

881 

882 return padded