Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.9/dist-packages/numpy/lib/_stride_tricks_impl.py: 24%

92 statements  

« prev     ^ index     » next       coverage.py v7.4.4, created at 2024-04-09 06:12 +0000

1""" 

2Utilities that manipulate strides to achieve desirable effects. 

3 

4An explanation of strides can be found in the :ref:`arrays.ndarray`. 

5 

6Functions 

7--------- 

8 

9.. autosummary:: 

10 :toctree: generated/ 

11 

12""" 

13import numpy as np 

14from numpy._core.numeric import normalize_axis_tuple 

15from numpy._core.overrides import array_function_dispatch, set_module 

16 

17__all__ = ['broadcast_to', 'broadcast_arrays', 'broadcast_shapes'] 

18 

19 

20class DummyArray: 

21 """Dummy object that just exists to hang __array_interface__ dictionaries 

22 and possibly keep alive a reference to a base array. 

23 """ 

24 

25 def __init__(self, interface, base=None): 

26 self.__array_interface__ = interface 

27 self.base = base 

28 

29 

30def _maybe_view_as_subclass(original_array, new_array): 

31 if type(original_array) is not type(new_array): 

32 # if input was an ndarray subclass and subclasses were OK, 

33 # then view the result as that subclass. 

34 new_array = new_array.view(type=type(original_array)) 

35 # Since we have done something akin to a view from original_array, we 

36 # should let the subclass finalize (if it has it implemented, i.e., is 

37 # not None). 

38 if new_array.__array_finalize__: 

39 new_array.__array_finalize__(original_array) 

40 return new_array 

41 

42 

43@set_module("numpy.lib.stride_tricks") 

44def as_strided(x, shape=None, strides=None, subok=False, writeable=True): 

45 """ 

46 Create a view into the array with the given shape and strides. 

47 

48 .. warning:: This function has to be used with extreme care, see notes. 

49 

50 Parameters 

51 ---------- 

52 x : ndarray 

53 Array to create a new. 

54 shape : sequence of int, optional 

55 The shape of the new array. Defaults to ``x.shape``. 

56 strides : sequence of int, optional 

57 The strides of the new array. Defaults to ``x.strides``. 

58 subok : bool, optional 

59 .. versionadded:: 1.10 

60 

61 If True, subclasses are preserved. 

62 writeable : bool, optional 

63 .. versionadded:: 1.12 

64 

65 If set to False, the returned array will always be readonly. 

66 Otherwise it will be writable if the original array was. It 

67 is advisable to set this to False if possible (see Notes). 

68 

69 Returns 

70 ------- 

71 view : ndarray 

72 

73 See also 

74 -------- 

75 broadcast_to : broadcast an array to a given shape. 

76 reshape : reshape an array. 

77 lib.stride_tricks.sliding_window_view : 

78 userfriendly and safe function for a creation of sliding window views. 

79 

80 Notes 

81 ----- 

82 ``as_strided`` creates a view into the array given the exact strides 

83 and shape. This means it manipulates the internal data structure of 

84 ndarray and, if done incorrectly, the array elements can point to 

85 invalid memory and can corrupt results or crash your program. 

86 It is advisable to always use the original ``x.strides`` when 

87 calculating new strides to avoid reliance on a contiguous memory 

88 layout. 

89 

90 Furthermore, arrays created with this function often contain self 

91 overlapping memory, so that two elements are identical. 

92 Vectorized write operations on such arrays will typically be 

93 unpredictable. They may even give different results for small, large, 

94 or transposed arrays. 

95 

96 Since writing to these arrays has to be tested and done with great 

97 care, you may want to use ``writeable=False`` to avoid accidental write 

98 operations. 

99 

100 For these reasons it is advisable to avoid ``as_strided`` when 

101 possible. 

102 """ 

103 # first convert input to array, possibly keeping subclass 

104 x = np.array(x, copy=None, subok=subok) 

105 interface = dict(x.__array_interface__) 

106 if shape is not None: 

107 interface['shape'] = tuple(shape) 

108 if strides is not None: 

109 interface['strides'] = tuple(strides) 

110 

111 array = np.asarray(DummyArray(interface, base=x)) 

112 # The route via `__interface__` does not preserve structured 

113 # dtypes. Since dtype should remain unchanged, we set it explicitly. 

114 array.dtype = x.dtype 

115 

116 view = _maybe_view_as_subclass(x, array) 

117 

118 if view.flags.writeable and not writeable: 

119 view.flags.writeable = False 

120 

121 return view 

122 

123 

124def _sliding_window_view_dispatcher(x, window_shape, axis=None, *, 

125 subok=None, writeable=None): 

126 return (x,) 

127 

128 

129@array_function_dispatch( 

130 _sliding_window_view_dispatcher, module="numpy.lib.stride_tricks" 

131) 

132def sliding_window_view(x, window_shape, axis=None, *, 

133 subok=False, writeable=False): 

134 """ 

135 Create a sliding window view into the array with the given window shape. 

136 

137 Also known as rolling or moving window, the window slides across all 

138 dimensions of the array and extracts subsets of the array at all window 

139 positions. 

140  

141 .. versionadded:: 1.20.0 

142 

143 Parameters 

144 ---------- 

145 x : array_like 

146 Array to create the sliding window view from. 

147 window_shape : int or tuple of int 

148 Size of window over each axis that takes part in the sliding window. 

149 If `axis` is not present, must have same length as the number of input 

150 array dimensions. Single integers `i` are treated as if they were the 

151 tuple `(i,)`. 

152 axis : int or tuple of int, optional 

153 Axis or axes along which the sliding window is applied. 

154 By default, the sliding window is applied to all axes and 

155 `window_shape[i]` will refer to axis `i` of `x`. 

156 If `axis` is given as a `tuple of int`, `window_shape[i]` will refer to 

157 the axis `axis[i]` of `x`. 

158 Single integers `i` are treated as if they were the tuple `(i,)`. 

159 subok : bool, optional 

160 If True, sub-classes will be passed-through, otherwise the returned 

161 array will be forced to be a base-class array (default). 

162 writeable : bool, optional 

163 When true, allow writing to the returned view. The default is false, 

164 as this should be used with caution: the returned view contains the 

165 same memory location multiple times, so writing to one location will 

166 cause others to change. 

167 

168 Returns 

169 ------- 

170 view : ndarray 

171 Sliding window view of the array. The sliding window dimensions are 

172 inserted at the end, and the original dimensions are trimmed as 

173 required by the size of the sliding window. 

174 That is, ``view.shape = x_shape_trimmed + window_shape``, where 

175 ``x_shape_trimmed`` is ``x.shape`` with every entry reduced by one less 

176 than the corresponding window size. 

177 

178 See Also 

179 -------- 

180 lib.stride_tricks.as_strided: A lower-level and less safe routine for 

181 creating arbitrary views from custom shape and strides. 

182 broadcast_to: broadcast an array to a given shape. 

183 

184 Notes 

185 ----- 

186 For many applications using a sliding window view can be convenient, but 

187 potentially very slow. Often specialized solutions exist, for example: 

188 

189 - `scipy.signal.fftconvolve` 

190 

191 - filtering functions in `scipy.ndimage` 

192 

193 - moving window functions provided by 

194 `bottleneck <https://github.com/pydata/bottleneck>`_. 

195 

196 As a rough estimate, a sliding window approach with an input size of `N` 

197 and a window size of `W` will scale as `O(N*W)` where frequently a special 

198 algorithm can achieve `O(N)`. That means that the sliding window variant 

199 for a window size of 100 can be a 100 times slower than a more specialized 

200 version. 

201 

202 Nevertheless, for small window sizes, when no custom algorithm exists, or 

203 as a prototyping and developing tool, this function can be a good solution. 

204 

205 Examples 

206 -------- 

207 >>> from numpy.lib.stride_tricks import sliding_window_view 

208 >>> x = np.arange(6) 

209 >>> x.shape 

210 (6,) 

211 >>> v = sliding_window_view(x, 3) 

212 >>> v.shape 

213 (4, 3) 

214 >>> v 

215 array([[0, 1, 2], 

216 [1, 2, 3], 

217 [2, 3, 4], 

218 [3, 4, 5]]) 

219 

220 This also works in more dimensions, e.g. 

221 

222 >>> i, j = np.ogrid[:3, :4] 

223 >>> x = 10*i + j 

224 >>> x.shape 

225 (3, 4) 

226 >>> x 

227 array([[ 0, 1, 2, 3], 

228 [10, 11, 12, 13], 

229 [20, 21, 22, 23]]) 

230 >>> shape = (2,2) 

231 >>> v = sliding_window_view(x, shape) 

232 >>> v.shape 

233 (2, 3, 2, 2) 

234 >>> v 

235 array([[[[ 0, 1], 

236 [10, 11]], 

237 [[ 1, 2], 

238 [11, 12]], 

239 [[ 2, 3], 

240 [12, 13]]], 

241 [[[10, 11], 

242 [20, 21]], 

243 [[11, 12], 

244 [21, 22]], 

245 [[12, 13], 

246 [22, 23]]]]) 

247 

248 The axis can be specified explicitly: 

249 

250 >>> v = sliding_window_view(x, 3, 0) 

251 >>> v.shape 

252 (1, 4, 3) 

253 >>> v 

254 array([[[ 0, 10, 20], 

255 [ 1, 11, 21], 

256 [ 2, 12, 22], 

257 [ 3, 13, 23]]]) 

258 

259 The same axis can be used several times. In that case, every use reduces 

260 the corresponding original dimension: 

261 

262 >>> v = sliding_window_view(x, (2, 3), (1, 1)) 

263 >>> v.shape 

264 (3, 1, 2, 3) 

265 >>> v 

266 array([[[[ 0, 1, 2], 

267 [ 1, 2, 3]]], 

268 [[[10, 11, 12], 

269 [11, 12, 13]]], 

270 [[[20, 21, 22], 

271 [21, 22, 23]]]]) 

272 

273 Combining with stepped slicing (`::step`), this can be used to take sliding 

274 views which skip elements: 

275 

276 >>> x = np.arange(7) 

277 >>> sliding_window_view(x, 5)[:, ::2] 

278 array([[0, 2, 4], 

279 [1, 3, 5], 

280 [2, 4, 6]]) 

281 

282 or views which move by multiple elements 

283 

284 >>> x = np.arange(7) 

285 >>> sliding_window_view(x, 3)[::2, :] 

286 array([[0, 1, 2], 

287 [2, 3, 4], 

288 [4, 5, 6]]) 

289 

290 A common application of `sliding_window_view` is the calculation of running 

291 statistics. The simplest example is the 

292 `moving average <https://en.wikipedia.org/wiki/Moving_average>`_: 

293 

294 >>> x = np.arange(6) 

295 >>> x.shape 

296 (6,) 

297 >>> v = sliding_window_view(x, 3) 

298 >>> v.shape 

299 (4, 3) 

300 >>> v 

301 array([[0, 1, 2], 

302 [1, 2, 3], 

303 [2, 3, 4], 

304 [3, 4, 5]]) 

305 >>> moving_average = v.mean(axis=-1) 

306 >>> moving_average 

307 array([1., 2., 3., 4.]) 

308 

309 Note that a sliding window approach is often **not** optimal (see Notes). 

310 """ 

311 window_shape = (tuple(window_shape) 

312 if np.iterable(window_shape) 

313 else (window_shape,)) 

314 # first convert input to array, possibly keeping subclass 

315 x = np.array(x, copy=None, subok=subok) 

316 

317 window_shape_array = np.array(window_shape) 

318 if np.any(window_shape_array < 0): 

319 raise ValueError('`window_shape` cannot contain negative values') 

320 

321 if axis is None: 

322 axis = tuple(range(x.ndim)) 

323 if len(window_shape) != len(axis): 

324 raise ValueError(f'Since axis is `None`, must provide ' 

325 f'window_shape for all dimensions of `x`; ' 

326 f'got {len(window_shape)} window_shape elements ' 

327 f'and `x.ndim` is {x.ndim}.') 

328 else: 

329 axis = normalize_axis_tuple(axis, x.ndim, allow_duplicate=True) 

330 if len(window_shape) != len(axis): 

331 raise ValueError(f'Must provide matching length window_shape and ' 

332 f'axis; got {len(window_shape)} window_shape ' 

333 f'elements and {len(axis)} axes elements.') 

334 

335 out_strides = x.strides + tuple(x.strides[ax] for ax in axis) 

336 

337 # note: same axis can be windowed repeatedly 

338 x_shape_trimmed = list(x.shape) 

339 for ax, dim in zip(axis, window_shape): 

340 if x_shape_trimmed[ax] < dim: 

341 raise ValueError( 

342 'window shape cannot be larger than input array shape') 

343 x_shape_trimmed[ax] -= dim - 1 

344 out_shape = tuple(x_shape_trimmed) + window_shape 

345 return as_strided(x, strides=out_strides, shape=out_shape, 

346 subok=subok, writeable=writeable) 

347 

348 

349def _broadcast_to(array, shape, subok, readonly): 

350 shape = tuple(shape) if np.iterable(shape) else (shape,) 

351 array = np.array(array, copy=None, subok=subok) 

352 if not shape and array.shape: 

353 raise ValueError('cannot broadcast a non-scalar to a scalar array') 

354 if any(size < 0 for size in shape): 

355 raise ValueError('all elements of broadcast shape must be non-' 

356 'negative') 

357 extras = [] 

358 it = np.nditer( 

359 (array,), flags=['multi_index', 'refs_ok', 'zerosize_ok'] + extras, 

360 op_flags=['readonly'], itershape=shape, order='C') 

361 with it: 

362 # never really has writebackifcopy semantics 

363 broadcast = it.itviews[0] 

364 result = _maybe_view_as_subclass(array, broadcast) 

365 # In a future version this will go away 

366 if not readonly and array.flags._writeable_no_warn: 

367 result.flags.writeable = True 

368 result.flags._warn_on_write = True 

369 return result 

370 

371 

372def _broadcast_to_dispatcher(array, shape, subok=None): 

373 return (array,) 

374 

375 

376@array_function_dispatch(_broadcast_to_dispatcher, module='numpy') 

377def broadcast_to(array, shape, subok=False): 

378 """Broadcast an array to a new shape. 

379 

380 Parameters 

381 ---------- 

382 array : array_like 

383 The array to broadcast. 

384 shape : tuple or int 

385 The shape of the desired array. A single integer ``i`` is interpreted 

386 as ``(i,)``. 

387 subok : bool, optional 

388 If True, then sub-classes will be passed-through, otherwise 

389 the returned array will be forced to be a base-class array (default). 

390 

391 Returns 

392 ------- 

393 broadcast : array 

394 A readonly view on the original array with the given shape. It is 

395 typically not contiguous. Furthermore, more than one element of a 

396 broadcasted array may refer to a single memory location. 

397 

398 Raises 

399 ------ 

400 ValueError 

401 If the array is not compatible with the new shape according to NumPy's 

402 broadcasting rules. 

403 

404 See Also 

405 -------- 

406 broadcast 

407 broadcast_arrays 

408 broadcast_shapes 

409 

410 Notes 

411 ----- 

412 .. versionadded:: 1.10.0 

413 

414 Examples 

415 -------- 

416 >>> x = np.array([1, 2, 3]) 

417 >>> np.broadcast_to(x, (3, 3)) 

418 array([[1, 2, 3], 

419 [1, 2, 3], 

420 [1, 2, 3]]) 

421 """ 

422 return _broadcast_to(array, shape, subok=subok, readonly=True) 

423 

424 

425def _broadcast_shape(*args): 

426 """Returns the shape of the arrays that would result from broadcasting the 

427 supplied arrays against each other. 

428 """ 

429 # use the old-iterator because np.nditer does not handle size 0 arrays 

430 # consistently 

431 b = np.broadcast(*args[:32]) 

432 # unfortunately, it cannot handle 32 or more arguments directly 

433 for pos in range(32, len(args), 31): 

434 # ironically, np.broadcast does not properly handle np.broadcast 

435 # objects (it treats them as scalars) 

436 # use broadcasting to avoid allocating the full array 

437 b = broadcast_to(0, b.shape) 

438 b = np.broadcast(b, *args[pos:(pos + 31)]) 

439 return b.shape 

440 

441 

442@set_module('numpy') 

443def broadcast_shapes(*args): 

444 """ 

445 Broadcast the input shapes into a single shape. 

446 

447 :ref:`Learn more about broadcasting here <basics.broadcasting>`. 

448 

449 .. versionadded:: 1.20.0 

450 

451 Parameters 

452 ---------- 

453 *args : tuples of ints, or ints 

454 The shapes to be broadcast against each other. 

455 

456 Returns 

457 ------- 

458 tuple 

459 Broadcasted shape. 

460 

461 Raises 

462 ------ 

463 ValueError 

464 If the shapes are not compatible and cannot be broadcast according 

465 to NumPy's broadcasting rules. 

466 

467 See Also 

468 -------- 

469 broadcast 

470 broadcast_arrays 

471 broadcast_to 

472 

473 Examples 

474 -------- 

475 >>> np.broadcast_shapes((1, 2), (3, 1), (3, 2)) 

476 (3, 2) 

477 

478 >>> np.broadcast_shapes((6, 7), (5, 6, 1), (7,), (5, 1, 7)) 

479 (5, 6, 7) 

480 """ 

481 arrays = [np.empty(x, dtype=[]) for x in args] 

482 return _broadcast_shape(*arrays) 

483 

484 

485def _broadcast_arrays_dispatcher(*args, subok=None): 

486 return args 

487 

488 

489@array_function_dispatch(_broadcast_arrays_dispatcher, module='numpy') 

490def broadcast_arrays(*args, subok=False): 

491 """ 

492 Broadcast any number of arrays against each other. 

493 

494 Parameters 

495 ---------- 

496 *args : array_likes 

497 The arrays to broadcast. 

498 

499 subok : bool, optional 

500 If True, then sub-classes will be passed-through, otherwise 

501 the returned arrays will be forced to be a base-class array (default). 

502 

503 Returns 

504 ------- 

505 broadcasted : tuple of arrays 

506 These arrays are views on the original arrays. They are typically 

507 not contiguous. Furthermore, more than one element of a 

508 broadcasted array may refer to a single memory location. If you need 

509 to write to the arrays, make copies first. While you can set the 

510 ``writable`` flag True, writing to a single output value may end up 

511 changing more than one location in the output array. 

512 

513 .. deprecated:: 1.17 

514 The output is currently marked so that if written to, a deprecation 

515 warning will be emitted. A future version will set the 

516 ``writable`` flag False so writing to it will raise an error. 

517 

518 See Also 

519 -------- 

520 broadcast 

521 broadcast_to 

522 broadcast_shapes 

523 

524 Examples 

525 -------- 

526 >>> x = np.array([[1,2,3]]) 

527 >>> y = np.array([[4],[5]]) 

528 >>> np.broadcast_arrays(x, y) 

529 (array([[1, 2, 3], 

530 [1, 2, 3]]), 

531 array([[4, 4, 4], 

532 [5, 5, 5]])) 

533 

534 Here is a useful idiom for getting contiguous copies instead of 

535 non-contiguous views. 

536 

537 >>> [np.array(a) for a in np.broadcast_arrays(x, y)] 

538 [array([[1, 2, 3], 

539 [1, 2, 3]]), 

540 array([[4, 4, 4], 

541 [5, 5, 5]])] 

542 

543 """ 

544 # nditer is not used here to avoid the limit of 32 arrays. 

545 # Otherwise, something like the following one-liner would suffice: 

546 # return np.nditer(args, flags=['multi_index', 'zerosize_ok'], 

547 # order='C').itviews 

548 

549 args = tuple(np.array(_m, copy=None, subok=subok) for _m in args) 

550 

551 shape = _broadcast_shape(*args) 

552 

553 if all(array.shape == shape for array in args): 

554 # Common case where nothing needs to be broadcasted. 

555 return args 

556 

557 return tuple(_broadcast_to(array, shape, subok=subok, readonly=False) 

558 for array in args)