Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.9/dist-packages/numpy/lib/format.py: 12%
289 statements
« prev ^ index » next coverage.py v7.4.4, created at 2024-04-09 06:12 +0000
« prev ^ index » next coverage.py v7.4.4, created at 2024-04-09 06:12 +0000
1"""
2Binary serialization
4NPY format
5==========
7A simple format for saving numpy arrays to disk with the full
8information about them.
10The ``.npy`` format is the standard binary file format in NumPy for
11persisting a *single* arbitrary NumPy array on disk. The format stores all
12of the shape and dtype information necessary to reconstruct the array
13correctly even on another machine with a different architecture.
14The format is designed to be as simple as possible while achieving
15its limited goals.
17The ``.npz`` format is the standard format for persisting *multiple* NumPy
18arrays on disk. A ``.npz`` file is a zip file containing multiple ``.npy``
19files, one for each array.
21Capabilities
22------------
24- Can represent all NumPy arrays including nested record arrays and
25 object arrays.
27- Represents the data in its native binary form.
29- Supports Fortran-contiguous arrays directly.
31- Stores all of the necessary information to reconstruct the array
32 including shape and dtype on a machine of a different
33 architecture. Both little-endian and big-endian arrays are
34 supported, and a file with little-endian numbers will yield
35 a little-endian array on any machine reading the file. The
36 types are described in terms of their actual sizes. For example,
37 if a machine with a 64-bit C "long int" writes out an array with
38 "long ints", a reading machine with 32-bit C "long ints" will yield
39 an array with 64-bit integers.
41- Is straightforward to reverse engineer. Datasets often live longer than
42 the programs that created them. A competent developer should be
43 able to create a solution in their preferred programming language to
44 read most ``.npy`` files that they have been given without much
45 documentation.
47- Allows memory-mapping of the data. See `open_memmap`.
49- Can be read from a filelike stream object instead of an actual file.
51- Stores object arrays, i.e. arrays containing elements that are arbitrary
52 Python objects. Files with object arrays are not to be mmapable, but
53 can be read and written to disk.
55Limitations
56-----------
58- Arbitrary subclasses of numpy.ndarray are not completely preserved.
59 Subclasses will be accepted for writing, but only the array data will
60 be written out. A regular numpy.ndarray object will be created
61 upon reading the file.
63.. warning::
65 Due to limitations in the interpretation of structured dtypes, dtypes
66 with fields with empty names will have the names replaced by 'f0', 'f1',
67 etc. Such arrays will not round-trip through the format entirely
68 accurately. The data is intact; only the field names will differ. We are
69 working on a fix for this. This fix will not require a change in the
70 file format. The arrays with such structures can still be saved and
71 restored, and the correct dtype may be restored by using the
72 ``loadedarray.view(correct_dtype)`` method.
74File extensions
75---------------
77We recommend using the ``.npy`` and ``.npz`` extensions for files saved
78in this format. This is by no means a requirement; applications may wish
79to use these file formats but use an extension specific to the
80application. In the absence of an obvious alternative, however,
81we suggest using ``.npy`` and ``.npz``.
83Version numbering
84-----------------
86The version numbering of these formats is independent of NumPy version
87numbering. If the format is upgraded, the code in `numpy.io` will still
88be able to read and write Version 1.0 files.
90Format Version 1.0
91------------------
93The first 6 bytes are a magic string: exactly ``\\x93NUMPY``.
95The next 1 byte is an unsigned byte: the major version number of the file
96format, e.g. ``\\x01``.
98The next 1 byte is an unsigned byte: the minor version number of the file
99format, e.g. ``\\x00``. Note: the version of the file format is not tied
100to the version of the numpy package.
102The next 2 bytes form a little-endian unsigned short int: the length of
103the header data HEADER_LEN.
105The next HEADER_LEN bytes form the header data describing the array's
106format. It is an ASCII string which contains a Python literal expression
107of a dictionary. It is terminated by a newline (``\\n``) and padded with
108spaces (``\\x20``) to make the total of
109``len(magic string) + 2 + len(length) + HEADER_LEN`` be evenly divisible
110by 64 for alignment purposes.
112The dictionary contains three keys:
114 "descr" : dtype.descr
115 An object that can be passed as an argument to the `numpy.dtype`
116 constructor to create the array's dtype.
117 "fortran_order" : bool
118 Whether the array data is Fortran-contiguous or not. Since
119 Fortran-contiguous arrays are a common form of non-C-contiguity,
120 we allow them to be written directly to disk for efficiency.
121 "shape" : tuple of int
122 The shape of the array.
124For repeatability and readability, the dictionary keys are sorted in
125alphabetic order. This is for convenience only. A writer SHOULD implement
126this if possible. A reader MUST NOT depend on this.
128Following the header comes the array data. If the dtype contains Python
129objects (i.e. ``dtype.hasobject is True``), then the data is a Python
130pickle of the array. Otherwise the data is the contiguous (either C-
131or Fortran-, depending on ``fortran_order``) bytes of the array.
132Consumers can figure out the number of bytes by multiplying the number
133of elements given by the shape (noting that ``shape=()`` means there is
1341 element) by ``dtype.itemsize``.
136Format Version 2.0
137------------------
139The version 1.0 format only allowed the array header to have a total size of
14065535 bytes. This can be exceeded by structured arrays with a large number of
141columns. The version 2.0 format extends the header size to 4 GiB.
142`numpy.save` will automatically save in 2.0 format if the data requires it,
143else it will always use the more compatible 1.0 format.
145The description of the fourth element of the header therefore has become:
146"The next 4 bytes form a little-endian unsigned int: the length of the header
147data HEADER_LEN."
149Format Version 3.0
150------------------
152This version replaces the ASCII string (which in practice was latin1) with
153a utf8-encoded string, so supports structured types with any unicode field
154names.
156Notes
157-----
158The ``.npy`` format, including motivation for creating it and a comparison of
159alternatives, is described in the
160:doc:`"npy-format" NEP <neps:nep-0001-npy-format>`, however details have
161evolved with time and this document is more current.
163"""
164import io
165import os
166import pickle
167import warnings
169import numpy
170from numpy.lib._utils_impl import drop_metadata
173__all__ = []
176EXPECTED_KEYS = {'descr', 'fortran_order', 'shape'}
177MAGIC_PREFIX = b'\x93NUMPY'
178MAGIC_LEN = len(MAGIC_PREFIX) + 2
179ARRAY_ALIGN = 64 # plausible values are powers of 2 between 16 and 4096
180BUFFER_SIZE = 2**18 # size of buffer for reading npz files in bytes
181# allow growth within the address space of a 64 bit machine along one axis
182GROWTH_AXIS_MAX_DIGITS = 21 # = len(str(8*2**64-1)) hypothetical int1 dtype
184# difference between version 1.0 and 2.0 is a 4 byte (I) header length
185# instead of 2 bytes (H) allowing storage of large structured arrays
186_header_size_info = {
187 (1, 0): ('<H', 'latin1'),
188 (2, 0): ('<I', 'latin1'),
189 (3, 0): ('<I', 'utf8'),
190}
192# Python's literal_eval is not actually safe for large inputs, since parsing
193# may become slow or even cause interpreter crashes.
194# This is an arbitrary, low limit which should make it safe in practice.
195_MAX_HEADER_SIZE = 10000
197def _check_version(version):
198 if version not in [(1, 0), (2, 0), (3, 0), None]:
199 msg = "we only support format version (1,0), (2,0), and (3,0), not %s"
200 raise ValueError(msg % (version,))
202def magic(major, minor):
203 """ Return the magic string for the given file format version.
205 Parameters
206 ----------
207 major : int in [0, 255]
208 minor : int in [0, 255]
210 Returns
211 -------
212 magic : str
214 Raises
215 ------
216 ValueError if the version cannot be formatted.
217 """
218 if major < 0 or major > 255:
219 raise ValueError("major version must be 0 <= major < 256")
220 if minor < 0 or minor > 255:
221 raise ValueError("minor version must be 0 <= minor < 256")
222 return MAGIC_PREFIX + bytes([major, minor])
224def read_magic(fp):
225 """ Read the magic string to get the version of the file format.
227 Parameters
228 ----------
229 fp : filelike object
231 Returns
232 -------
233 major : int
234 minor : int
235 """
236 magic_str = _read_bytes(fp, MAGIC_LEN, "magic string")
237 if magic_str[:-2] != MAGIC_PREFIX:
238 msg = "the magic string is not correct; expected %r, got %r"
239 raise ValueError(msg % (MAGIC_PREFIX, magic_str[:-2]))
240 major, minor = magic_str[-2:]
241 return major, minor
244def dtype_to_descr(dtype):
245 """
246 Get a serializable descriptor from the dtype.
248 The .descr attribute of a dtype object cannot be round-tripped through
249 the dtype() constructor. Simple types, like dtype('float32'), have
250 a descr which looks like a record array with one field with '' as
251 a name. The dtype() constructor interprets this as a request to give
252 a default name. Instead, we construct descriptor that can be passed to
253 dtype().
255 Parameters
256 ----------
257 dtype : dtype
258 The dtype of the array that will be written to disk.
260 Returns
261 -------
262 descr : object
263 An object that can be passed to `numpy.dtype()` in order to
264 replicate the input dtype.
266 """
267 # NOTE: that drop_metadata may not return the right dtype e.g. for user
268 # dtypes. In that case our code below would fail the same, though.
269 new_dtype = drop_metadata(dtype)
270 if new_dtype is not dtype:
271 warnings.warn("metadata on a dtype is not saved to an npy/npz. "
272 "Use another format (such as pickle) to store it.",
273 UserWarning, stacklevel=2)
274 if dtype.names is not None:
275 # This is a record array. The .descr is fine. XXX: parts of the
276 # record array with an empty name, like padding bytes, still get
277 # fiddled with. This needs to be fixed in the C implementation of
278 # dtype().
279 return dtype.descr
280 elif not type(dtype)._legacy:
281 # this must be a user-defined dtype since numpy does not yet expose any
282 # non-legacy dtypes in the public API
283 #
284 # non-legacy dtypes don't yet have __array_interface__
285 # support. Instead, as a hack, we use pickle to save the array, and lie
286 # that the dtype is object. When the array is loaded, the descriptor is
287 # unpickled with the array and the object dtype in the header is
288 # discarded.
289 #
290 # a future NEP should define a way to serialize user-defined
291 # descriptors and ideally work out the possible security implications
292 warnings.warn("Custom dtypes are saved as python objects using the "
293 "pickle protocol. Loading this file requires "
294 "allow_pickle=True to be set.",
295 UserWarning, stacklevel=2)
296 return "|O"
297 else:
298 return dtype.str
300def descr_to_dtype(descr):
301 """
302 Returns a dtype based off the given description.
304 This is essentially the reverse of `~lib.format.dtype_to_descr`. It will
305 remove the valueless padding fields created by, i.e. simple fields like
306 dtype('float32'), and then convert the description to its corresponding
307 dtype.
309 Parameters
310 ----------
311 descr : object
312 The object retrieved by dtype.descr. Can be passed to
313 `numpy.dtype` in order to replicate the input dtype.
315 Returns
316 -------
317 dtype : dtype
318 The dtype constructed by the description.
320 """
321 if isinstance(descr, str):
322 # No padding removal needed
323 return numpy.dtype(descr)
324 elif isinstance(descr, tuple):
325 # subtype, will always have a shape descr[1]
326 dt = descr_to_dtype(descr[0])
327 return numpy.dtype((dt, descr[1]))
329 titles = []
330 names = []
331 formats = []
332 offsets = []
333 offset = 0
334 for field in descr:
335 if len(field) == 2:
336 name, descr_str = field
337 dt = descr_to_dtype(descr_str)
338 else:
339 name, descr_str, shape = field
340 dt = numpy.dtype((descr_to_dtype(descr_str), shape))
342 # Ignore padding bytes, which will be void bytes with '' as name
343 # Once support for blank names is removed, only "if name == ''" needed)
344 is_pad = (name == '' and dt.type is numpy.void and dt.names is None)
345 if not is_pad:
346 title, name = name if isinstance(name, tuple) else (None, name)
347 titles.append(title)
348 names.append(name)
349 formats.append(dt)
350 offsets.append(offset)
351 offset += dt.itemsize
353 return numpy.dtype({'names': names, 'formats': formats, 'titles': titles,
354 'offsets': offsets, 'itemsize': offset})
356def header_data_from_array_1_0(array):
357 """ Get the dictionary of header metadata from a numpy.ndarray.
359 Parameters
360 ----------
361 array : numpy.ndarray
363 Returns
364 -------
365 d : dict
366 This has the appropriate entries for writing its string representation
367 to the header of the file.
368 """
369 d = {'shape': array.shape}
370 if array.flags.c_contiguous:
371 d['fortran_order'] = False
372 elif array.flags.f_contiguous:
373 d['fortran_order'] = True
374 else:
375 # Totally non-contiguous data. We will have to make it C-contiguous
376 # before writing. Note that we need to test for C_CONTIGUOUS first
377 # because a 1-D array is both C_CONTIGUOUS and F_CONTIGUOUS.
378 d['fortran_order'] = False
380 d['descr'] = dtype_to_descr(array.dtype)
381 return d
384def _wrap_header(header, version):
385 """
386 Takes a stringified header, and attaches the prefix and padding to it
387 """
388 import struct
389 assert version is not None
390 fmt, encoding = _header_size_info[version]
391 header = header.encode(encoding)
392 hlen = len(header) + 1
393 padlen = ARRAY_ALIGN - ((MAGIC_LEN + struct.calcsize(fmt) + hlen) % ARRAY_ALIGN)
394 try:
395 header_prefix = magic(*version) + struct.pack(fmt, hlen + padlen)
396 except struct.error:
397 msg = "Header length {} too big for version={}".format(hlen, version)
398 raise ValueError(msg) from None
400 # Pad the header with spaces and a final newline such that the magic
401 # string, the header-length short and the header are aligned on a
402 # ARRAY_ALIGN byte boundary. This supports memory mapping of dtypes
403 # aligned up to ARRAY_ALIGN on systems like Linux where mmap()
404 # offset must be page-aligned (i.e. the beginning of the file).
405 return header_prefix + header + b' '*padlen + b'\n'
408def _wrap_header_guess_version(header):
409 """
410 Like `_wrap_header`, but chooses an appropriate version given the contents
411 """
412 try:
413 return _wrap_header(header, (1, 0))
414 except ValueError:
415 pass
417 try:
418 ret = _wrap_header(header, (2, 0))
419 except UnicodeEncodeError:
420 pass
421 else:
422 warnings.warn("Stored array in format 2.0. It can only be"
423 "read by NumPy >= 1.9", UserWarning, stacklevel=2)
424 return ret
426 header = _wrap_header(header, (3, 0))
427 warnings.warn("Stored array in format 3.0. It can only be "
428 "read by NumPy >= 1.17", UserWarning, stacklevel=2)
429 return header
432def _write_array_header(fp, d, version=None):
433 """ Write the header for an array and returns the version used
435 Parameters
436 ----------
437 fp : filelike object
438 d : dict
439 This has the appropriate entries for writing its string representation
440 to the header of the file.
441 version : tuple or None
442 None means use oldest that works. Providing an explicit version will
443 raise a ValueError if the format does not allow saving this data.
444 Default: None
445 """
446 header = ["{"]
447 for key, value in sorted(d.items()):
448 # Need to use repr here, since we eval these when reading
449 header.append("'%s': %s, " % (key, repr(value)))
450 header.append("}")
451 header = "".join(header)
453 # Add some spare space so that the array header can be modified in-place
454 # when changing the array size, e.g. when growing it by appending data at
455 # the end.
456 shape = d['shape']
457 header += " " * ((GROWTH_AXIS_MAX_DIGITS - len(repr(
458 shape[-1 if d['fortran_order'] else 0]
459 ))) if len(shape) > 0 else 0)
461 if version is None:
462 header = _wrap_header_guess_version(header)
463 else:
464 header = _wrap_header(header, version)
465 fp.write(header)
467def write_array_header_1_0(fp, d):
468 """ Write the header for an array using the 1.0 format.
470 Parameters
471 ----------
472 fp : filelike object
473 d : dict
474 This has the appropriate entries for writing its string
475 representation to the header of the file.
476 """
477 _write_array_header(fp, d, (1, 0))
480def write_array_header_2_0(fp, d):
481 """ Write the header for an array using the 2.0 format.
482 The 2.0 format allows storing very large structured arrays.
484 .. versionadded:: 1.9.0
486 Parameters
487 ----------
488 fp : filelike object
489 d : dict
490 This has the appropriate entries for writing its string
491 representation to the header of the file.
492 """
493 _write_array_header(fp, d, (2, 0))
495def read_array_header_1_0(fp, max_header_size=_MAX_HEADER_SIZE):
496 """
497 Read an array header from a filelike object using the 1.0 file format
498 version.
500 This will leave the file object located just after the header.
502 Parameters
503 ----------
504 fp : filelike object
505 A file object or something with a `.read()` method like a file.
507 Returns
508 -------
509 shape : tuple of int
510 The shape of the array.
511 fortran_order : bool
512 The array data will be written out directly if it is either
513 C-contiguous or Fortran-contiguous. Otherwise, it will be made
514 contiguous before writing it out.
515 dtype : dtype
516 The dtype of the file's data.
517 max_header_size : int, optional
518 Maximum allowed size of the header. Large headers may not be safe
519 to load securely and thus require explicitly passing a larger value.
520 See :py:func:`ast.literal_eval()` for details.
522 Raises
523 ------
524 ValueError
525 If the data is invalid.
527 """
528 return _read_array_header(
529 fp, version=(1, 0), max_header_size=max_header_size)
531def read_array_header_2_0(fp, max_header_size=_MAX_HEADER_SIZE):
532 """
533 Read an array header from a filelike object using the 2.0 file format
534 version.
536 This will leave the file object located just after the header.
538 .. versionadded:: 1.9.0
540 Parameters
541 ----------
542 fp : filelike object
543 A file object or something with a `.read()` method like a file.
544 max_header_size : int, optional
545 Maximum allowed size of the header. Large headers may not be safe
546 to load securely and thus require explicitly passing a larger value.
547 See :py:func:`ast.literal_eval()` for details.
549 Returns
550 -------
551 shape : tuple of int
552 The shape of the array.
553 fortran_order : bool
554 The array data will be written out directly if it is either
555 C-contiguous or Fortran-contiguous. Otherwise, it will be made
556 contiguous before writing it out.
557 dtype : dtype
558 The dtype of the file's data.
560 Raises
561 ------
562 ValueError
563 If the data is invalid.
565 """
566 return _read_array_header(
567 fp, version=(2, 0), max_header_size=max_header_size)
570def _filter_header(s):
571 """Clean up 'L' in npz header ints.
573 Cleans up the 'L' in strings representing integers. Needed to allow npz
574 headers produced in Python2 to be read in Python3.
576 Parameters
577 ----------
578 s : string
579 Npy file header.
581 Returns
582 -------
583 header : str
584 Cleaned up header.
586 """
587 import tokenize
588 from io import StringIO
590 tokens = []
591 last_token_was_number = False
592 for token in tokenize.generate_tokens(StringIO(s).readline):
593 token_type = token[0]
594 token_string = token[1]
595 if (last_token_was_number and
596 token_type == tokenize.NAME and
597 token_string == "L"):
598 continue
599 else:
600 tokens.append(token)
601 last_token_was_number = (token_type == tokenize.NUMBER)
602 return tokenize.untokenize(tokens)
605def _read_array_header(fp, version, max_header_size=_MAX_HEADER_SIZE):
606 """
607 see read_array_header_1_0
608 """
609 # Read an unsigned, little-endian short int which has the length of the
610 # header.
611 import ast
612 import struct
613 hinfo = _header_size_info.get(version)
614 if hinfo is None:
615 raise ValueError("Invalid version {!r}".format(version))
616 hlength_type, encoding = hinfo
618 hlength_str = _read_bytes(fp, struct.calcsize(hlength_type), "array header length")
619 header_length = struct.unpack(hlength_type, hlength_str)[0]
620 header = _read_bytes(fp, header_length, "array header")
621 header = header.decode(encoding)
622 if len(header) > max_header_size:
623 raise ValueError(
624 f"Header info length ({len(header)}) is large and may not be safe "
625 "to load securely.\n"
626 "To allow loading, adjust `max_header_size` or fully trust "
627 "the `.npy` file using `allow_pickle=True`.\n"
628 "For safety against large resource use or crashes, sandboxing "
629 "may be necessary.")
631 # The header is a pretty-printed string representation of a literal
632 # Python dictionary with trailing newlines padded to a ARRAY_ALIGN byte
633 # boundary. The keys are strings.
634 # "shape" : tuple of int
635 # "fortran_order" : bool
636 # "descr" : dtype.descr
637 # Versions (2, 0) and (1, 0) could have been created by a Python 2
638 # implementation before header filtering was implemented.
639 #
640 # For performance reasons, we try without _filter_header first though
641 try:
642 d = ast.literal_eval(header)
643 except SyntaxError as e:
644 if version <= (2, 0):
645 header = _filter_header(header)
646 try:
647 d = ast.literal_eval(header)
648 except SyntaxError as e2:
649 msg = "Cannot parse header: {!r}"
650 raise ValueError(msg.format(header)) from e2
651 else:
652 warnings.warn(
653 "Reading `.npy` or `.npz` file required additional "
654 "header parsing as it was created on Python 2. Save the "
655 "file again to speed up loading and avoid this warning.",
656 UserWarning, stacklevel=4)
657 else:
658 msg = "Cannot parse header: {!r}"
659 raise ValueError(msg.format(header)) from e
660 if not isinstance(d, dict):
661 msg = "Header is not a dictionary: {!r}"
662 raise ValueError(msg.format(d))
664 if EXPECTED_KEYS != d.keys():
665 keys = sorted(d.keys())
666 msg = "Header does not contain the correct keys: {!r}"
667 raise ValueError(msg.format(keys))
669 # Sanity-check the values.
670 if (not isinstance(d['shape'], tuple) or
671 not all(isinstance(x, int) for x in d['shape'])):
672 msg = "shape is not valid: {!r}"
673 raise ValueError(msg.format(d['shape']))
674 if not isinstance(d['fortran_order'], bool):
675 msg = "fortran_order is not a valid bool: {!r}"
676 raise ValueError(msg.format(d['fortran_order']))
677 try:
678 dtype = descr_to_dtype(d['descr'])
679 except TypeError as e:
680 msg = "descr is not a valid dtype descriptor: {!r}"
681 raise ValueError(msg.format(d['descr'])) from e
683 return d['shape'], d['fortran_order'], dtype
685def write_array(fp, array, version=None, allow_pickle=True, pickle_kwargs=None):
686 """
687 Write an array to an NPY file, including a header.
689 If the array is neither C-contiguous nor Fortran-contiguous AND the
690 file_like object is not a real file object, this function will have to
691 copy data in memory.
693 Parameters
694 ----------
695 fp : file_like object
696 An open, writable file object, or similar object with a
697 ``.write()`` method.
698 array : ndarray
699 The array to write to disk.
700 version : (int, int) or None, optional
701 The version number of the format. None means use the oldest
702 supported version that is able to store the data. Default: None
703 allow_pickle : bool, optional
704 Whether to allow writing pickled data. Default: True
705 pickle_kwargs : dict, optional
706 Additional keyword arguments to pass to pickle.dump, excluding
707 'protocol'. These are only useful when pickling objects in object
708 arrays on Python 3 to Python 2 compatible format.
710 Raises
711 ------
712 ValueError
713 If the array cannot be persisted. This includes the case of
714 allow_pickle=False and array being an object array.
715 Various other errors
716 If the array contains Python objects as part of its dtype, the
717 process of pickling them may raise various errors if the objects
718 are not picklable.
720 """
721 _check_version(version)
722 _write_array_header(fp, header_data_from_array_1_0(array), version)
724 if array.itemsize == 0:
725 buffersize = 0
726 else:
727 # Set buffer size to 16 MiB to hide the Python loop overhead.
728 buffersize = max(16 * 1024 ** 2 // array.itemsize, 1)
730 dtype_class = type(array.dtype)
732 if array.dtype.hasobject or not dtype_class._legacy:
733 # We contain Python objects so we cannot write out the data
734 # directly. Instead, we will pickle it out
735 if not allow_pickle:
736 if array.dtype.hasobject:
737 raise ValueError("Object arrays cannot be saved when "
738 "allow_pickle=False")
739 if not dtype_class._legacy:
740 raise ValueError("User-defined dtypes cannot be saved "
741 "when allow_pickle=False")
742 if pickle_kwargs is None:
743 pickle_kwargs = {}
744 pickle.dump(array, fp, protocol=3, **pickle_kwargs)
745 elif array.flags.f_contiguous and not array.flags.c_contiguous:
746 if isfileobj(fp):
747 array.T.tofile(fp)
748 else:
749 for chunk in numpy.nditer(
750 array, flags=['external_loop', 'buffered', 'zerosize_ok'],
751 buffersize=buffersize, order='F'):
752 fp.write(chunk.tobytes('C'))
753 else:
754 if isfileobj(fp):
755 array.tofile(fp)
756 else:
757 for chunk in numpy.nditer(
758 array, flags=['external_loop', 'buffered', 'zerosize_ok'],
759 buffersize=buffersize, order='C'):
760 fp.write(chunk.tobytes('C'))
763def read_array(fp, allow_pickle=False, pickle_kwargs=None, *,
764 max_header_size=_MAX_HEADER_SIZE):
765 """
766 Read an array from an NPY file.
768 Parameters
769 ----------
770 fp : file_like object
771 If this is not a real file object, then this may take extra memory
772 and time.
773 allow_pickle : bool, optional
774 Whether to allow writing pickled data. Default: False
776 .. versionchanged:: 1.16.3
777 Made default False in response to CVE-2019-6446.
779 pickle_kwargs : dict
780 Additional keyword arguments to pass to pickle.load. These are only
781 useful when loading object arrays saved on Python 2 when using
782 Python 3.
783 max_header_size : int, optional
784 Maximum allowed size of the header. Large headers may not be safe
785 to load securely and thus require explicitly passing a larger value.
786 See :py:func:`ast.literal_eval()` for details.
787 This option is ignored when `allow_pickle` is passed. In that case
788 the file is by definition trusted and the limit is unnecessary.
790 Returns
791 -------
792 array : ndarray
793 The array from the data on disk.
795 Raises
796 ------
797 ValueError
798 If the data is invalid, or allow_pickle=False and the file contains
799 an object array.
801 """
802 if allow_pickle:
803 # Effectively ignore max_header_size, since `allow_pickle` indicates
804 # that the input is fully trusted.
805 max_header_size = 2**64
807 version = read_magic(fp)
808 _check_version(version)
809 shape, fortran_order, dtype = _read_array_header(
810 fp, version, max_header_size=max_header_size)
811 if len(shape) == 0:
812 count = 1
813 else:
814 count = numpy.multiply.reduce(shape, dtype=numpy.int64)
816 # Now read the actual data.
817 if dtype.hasobject:
818 # The array contained Python objects. We need to unpickle the data.
819 if not allow_pickle:
820 raise ValueError("Object arrays cannot be loaded when "
821 "allow_pickle=False")
822 if pickle_kwargs is None:
823 pickle_kwargs = {}
824 try:
825 array = pickle.load(fp, **pickle_kwargs)
826 except UnicodeError as err:
827 # Friendlier error message
828 raise UnicodeError("Unpickling a python object failed: %r\n"
829 "You may need to pass the encoding= option "
830 "to numpy.load" % (err,)) from err
831 else:
832 if isfileobj(fp):
833 # We can use the fast fromfile() function.
834 array = numpy.fromfile(fp, dtype=dtype, count=count)
835 else:
836 # This is not a real file. We have to read it the
837 # memory-intensive way.
838 # crc32 module fails on reads greater than 2 ** 32 bytes,
839 # breaking large reads from gzip streams. Chunk reads to
840 # BUFFER_SIZE bytes to avoid issue and reduce memory overhead
841 # of the read. In non-chunked case count < max_read_count, so
842 # only one read is performed.
844 # Use np.ndarray instead of np.empty since the latter does
845 # not correctly instantiate zero-width string dtypes; see
846 # https://github.com/numpy/numpy/pull/6430
847 array = numpy.ndarray(count, dtype=dtype)
849 if dtype.itemsize > 0:
850 # If dtype.itemsize == 0 then there's nothing more to read
851 max_read_count = BUFFER_SIZE // min(BUFFER_SIZE, dtype.itemsize)
853 for i in range(0, count, max_read_count):
854 read_count = min(max_read_count, count - i)
855 read_size = int(read_count * dtype.itemsize)
856 data = _read_bytes(fp, read_size, "array data")
857 array[i:i+read_count] = numpy.frombuffer(data, dtype=dtype,
858 count=read_count)
860 if fortran_order:
861 array.shape = shape[::-1]
862 array = array.transpose()
863 else:
864 array.shape = shape
866 return array
869def open_memmap(filename, mode='r+', dtype=None, shape=None,
870 fortran_order=False, version=None, *,
871 max_header_size=_MAX_HEADER_SIZE):
872 """
873 Open a .npy file as a memory-mapped array.
875 This may be used to read an existing file or create a new one.
877 Parameters
878 ----------
879 filename : str or path-like
880 The name of the file on disk. This may *not* be a file-like
881 object.
882 mode : str, optional
883 The mode in which to open the file; the default is 'r+'. In
884 addition to the standard file modes, 'c' is also accepted to mean
885 "copy on write." See `memmap` for the available mode strings.
886 dtype : data-type, optional
887 The data type of the array if we are creating a new file in "write"
888 mode, if not, `dtype` is ignored. The default value is None, which
889 results in a data-type of `float64`.
890 shape : tuple of int
891 The shape of the array if we are creating a new file in "write"
892 mode, in which case this parameter is required. Otherwise, this
893 parameter is ignored and is thus optional.
894 fortran_order : bool, optional
895 Whether the array should be Fortran-contiguous (True) or
896 C-contiguous (False, the default) if we are creating a new file in
897 "write" mode.
898 version : tuple of int (major, minor) or None
899 If the mode is a "write" mode, then this is the version of the file
900 format used to create the file. None means use the oldest
901 supported version that is able to store the data. Default: None
902 max_header_size : int, optional
903 Maximum allowed size of the header. Large headers may not be safe
904 to load securely and thus require explicitly passing a larger value.
905 See :py:func:`ast.literal_eval()` for details.
907 Returns
908 -------
909 marray : memmap
910 The memory-mapped array.
912 Raises
913 ------
914 ValueError
915 If the data or the mode is invalid.
916 OSError
917 If the file is not found or cannot be opened correctly.
919 See Also
920 --------
921 numpy.memmap
923 """
924 if isfileobj(filename):
925 raise ValueError("Filename must be a string or a path-like object."
926 " Memmap cannot use existing file handles.")
928 if 'w' in mode:
929 # We are creating the file, not reading it.
930 # Check if we ought to create the file.
931 _check_version(version)
932 # Ensure that the given dtype is an authentic dtype object rather
933 # than just something that can be interpreted as a dtype object.
934 dtype = numpy.dtype(dtype)
935 if dtype.hasobject:
936 msg = "Array can't be memory-mapped: Python objects in dtype."
937 raise ValueError(msg)
938 d = dict(
939 descr=dtype_to_descr(dtype),
940 fortran_order=fortran_order,
941 shape=shape,
942 )
943 # If we got here, then it should be safe to create the file.
944 with open(os.fspath(filename), mode+'b') as fp:
945 _write_array_header(fp, d, version)
946 offset = fp.tell()
947 else:
948 # Read the header of the file first.
949 with open(os.fspath(filename), 'rb') as fp:
950 version = read_magic(fp)
951 _check_version(version)
953 shape, fortran_order, dtype = _read_array_header(
954 fp, version, max_header_size=max_header_size)
955 if dtype.hasobject:
956 msg = "Array can't be memory-mapped: Python objects in dtype."
957 raise ValueError(msg)
958 offset = fp.tell()
960 if fortran_order:
961 order = 'F'
962 else:
963 order = 'C'
965 # We need to change a write-only mode to a read-write mode since we've
966 # already written data to the file.
967 if mode == 'w+':
968 mode = 'r+'
970 marray = numpy.memmap(filename, dtype=dtype, shape=shape, order=order,
971 mode=mode, offset=offset)
973 return marray
976def _read_bytes(fp, size, error_template="ran out of data"):
977 """
978 Read from file-like object until size bytes are read.
979 Raises ValueError if not EOF is encountered before size bytes are read.
980 Non-blocking objects only supported if they derive from io objects.
982 Required as e.g. ZipExtFile in python 2.6 can return less data than
983 requested.
984 """
985 data = bytes()
986 while True:
987 # io files (default in python3) return None or raise on
988 # would-block, python2 file will truncate, probably nothing can be
989 # done about that. note that regular files can't be non-blocking
990 try:
991 r = fp.read(size - len(data))
992 data += r
993 if len(r) == 0 or len(data) == size:
994 break
995 except BlockingIOError:
996 pass
997 if len(data) != size:
998 msg = "EOF: reading %s, expected %d bytes got %d"
999 raise ValueError(msg % (error_template, size, len(data)))
1000 else:
1001 return data
1004def isfileobj(f):
1005 if not isinstance(f, (io.FileIO, io.BufferedReader, io.BufferedWriter)):
1006 return False
1007 try:
1008 # BufferedReader/Writer may raise OSError when
1009 # fetching `fileno()` (e.g. when wrapping BytesIO).
1010 f.fileno()
1011 return True
1012 except OSError:
1013 return False