/src/ogre/OgreMain/src/OgreShadowCaster.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | ----------------------------------------------------------------------------- |
3 | | This source file is part of OGRE |
4 | | (Object-oriented Graphics Rendering Engine) |
5 | | For the latest info, see http://www.ogre3d.org/ |
6 | | |
7 | | Copyright (c) 2000-2014 Torus Knot Software Ltd |
8 | | |
9 | | Permission is hereby granted, free of charge, to any person obtaining a copy |
10 | | of this software and associated documentation files (the "Software"), to deal |
11 | | in the Software without restriction, including without limitation the rights |
12 | | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
13 | | copies of the Software, and to permit persons to whom the Software is |
14 | | furnished to do so, subject to the following conditions: |
15 | | |
16 | | The above copyright notice and this permission notice shall be included in |
17 | | all copies or substantial portions of the Software. |
18 | | |
19 | | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
20 | | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
21 | | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
22 | | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
23 | | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
24 | | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
25 | | THE SOFTWARE. |
26 | | ----------------------------------------------------------------------------- |
27 | | */ |
28 | | #include "OgreStableHeaders.h" |
29 | | #include "OgreEdgeListBuilder.h" |
30 | | #include "OgreOptimisedUtil.h" |
31 | | |
32 | | namespace Ogre { |
33 | | ShadowRenderable::ShadowRenderable(MovableObject* parent, const HardwareIndexBufferSharedPtr& indexBuffer, |
34 | | const VertexData* vertexData, bool createSeparateLightCap, |
35 | | bool isLightCap) |
36 | 0 | : mLightCap(0), mParent(parent) |
37 | 0 | { |
38 | | // Initialise render op |
39 | 0 | mRenderOp.indexData = OGRE_NEW IndexData(); |
40 | 0 | mRenderOp.indexData->indexBuffer = indexBuffer; |
41 | 0 | mRenderOp.indexData->indexStart = 0; |
42 | | // index start and count are sorted out later |
43 | | |
44 | | // Create vertex data which just references position component (and 2 component) |
45 | 0 | mRenderOp.vertexData = OGRE_NEW VertexData(); |
46 | | // Map in position data |
47 | 0 | mRenderOp.vertexData->vertexDeclaration->addElement(0,0,VET_FLOAT3, VES_POSITION); |
48 | 0 | ushort origPosBind = |
49 | 0 | vertexData->vertexDeclaration->findElementBySemantic(VES_POSITION)->getSource(); |
50 | 0 | mPositionBuffer = vertexData->vertexBufferBinding->getBuffer(origPosBind); |
51 | 0 | mRenderOp.vertexData->vertexBufferBinding->setBinding(0, mPositionBuffer); |
52 | | // Map in w-coord buffer (if present) |
53 | 0 | if(vertexData->hardwareShadowVolWBuffer) |
54 | 0 | { |
55 | 0 | mRenderOp.vertexData->vertexDeclaration->addElement(1,0,VET_FLOAT1, VES_TEXTURE_COORDINATES, 0); |
56 | 0 | mWBuffer = vertexData->hardwareShadowVolWBuffer; |
57 | 0 | mRenderOp.vertexData->vertexBufferBinding->setBinding(1, mWBuffer); |
58 | 0 | } |
59 | | // Use same vertex start as input |
60 | 0 | mRenderOp.vertexData->vertexStart = vertexData->vertexStart; |
61 | |
|
62 | 0 | if (isLightCap) |
63 | 0 | { |
64 | | // Use original vertex count, no extrusion |
65 | 0 | mRenderOp.vertexData->vertexCount = vertexData->vertexCount; |
66 | 0 | } |
67 | 0 | else |
68 | 0 | { |
69 | | // Vertex count must take into account the doubling of the buffer, |
70 | | // because second half of the buffer is the extruded copy |
71 | 0 | mRenderOp.vertexData->vertexCount = vertexData->vertexCount * 2; |
72 | |
|
73 | 0 | if (createSeparateLightCap) |
74 | 0 | { |
75 | | // Create child light cap |
76 | 0 | mLightCap = OGRE_NEW ShadowRenderable(parent, indexBuffer, vertexData, false, true); |
77 | 0 | } |
78 | 0 | } |
79 | 0 | } |
80 | | ShadowRenderable::~ShadowRenderable() |
81 | 0 | { |
82 | 0 | delete mLightCap; |
83 | 0 | delete mRenderOp.indexData; |
84 | 0 | delete mRenderOp.vertexData; |
85 | 0 | } |
86 | | void ShadowRenderable::rebindIndexBuffer(const HardwareIndexBufferSharedPtr& indexBuffer) |
87 | 0 | { |
88 | 0 | mRenderOp.indexData->indexBuffer = indexBuffer; |
89 | 0 | if (mLightCap) mLightCap->rebindIndexBuffer(indexBuffer); |
90 | 0 | } |
91 | | void ShadowRenderable::getWorldTransforms(Matrix4* xform) const |
92 | 0 | { |
93 | 0 | *xform = mParent->_getParentNodeFullTransform(); |
94 | 0 | } |
95 | | const LightList& ShadowRenderable::getLights(void) const |
96 | 0 | { |
97 | | // return empty |
98 | 0 | static LightList ll; |
99 | 0 | return ll; |
100 | 0 | } |
101 | | //----------------------------------------------------------------------- |
102 | | const ShadowRenderableList& ShadowCaster::getShadowVolumeRenderableList( |
103 | | const Light* light, const HardwareIndexBufferPtr& indexBuffer, size_t& indexBufferUsedSize, |
104 | | float extrusionDist, int flags) |
105 | 0 | { |
106 | 0 | static ShadowRenderableList dummyList; |
107 | 0 | return dummyList; |
108 | 0 | } |
109 | | //----------------------------------------------------------------------- |
110 | | const AxisAlignedBox& ShadowCaster::getDarkCapBounds(const Light& light, Real extrusionDist) const |
111 | 0 | { |
112 | | // Extrude own light cap bounds |
113 | 0 | mWorldDarkCapBounds = getLightCapBounds(); |
114 | 0 | extrudeBounds(mWorldDarkCapBounds, light.getAs4DVector(), extrusionDist); |
115 | 0 | return mWorldDarkCapBounds; |
116 | 0 | } |
117 | | // ------------------------------------------------------------------------ |
118 | | void ShadowCaster::clearShadowRenderableList(ShadowRenderableList& shadowRenderables) |
119 | 0 | { |
120 | 0 | for(auto & shadowRenderable : shadowRenderables) |
121 | 0 | { |
122 | 0 | OGRE_DELETE shadowRenderable; |
123 | 0 | shadowRenderable = 0; |
124 | 0 | } |
125 | 0 | shadowRenderables.clear(); |
126 | 0 | } |
127 | | // ------------------------------------------------------------------------ |
128 | | void ShadowCaster::updateEdgeListLightFacing(EdgeData* edgeData, |
129 | | const Vector4& lightPos) |
130 | 0 | { |
131 | 0 | edgeData->updateTriangleLightFacing(lightPos); |
132 | 0 | } |
133 | | // ------------------------------------------------------------------------ |
134 | | static bool isBoundOkForMcGuire(const AxisAlignedBox& lightCapBounds, const Ogre::Vector3& lightPosition) |
135 | 0 | { |
136 | | // If light position is inside light cap bound then extrusion could be in opposite directions |
137 | | // and McGuire cap could intersect near clip plane of camera frustum without being noticed |
138 | 0 | if(lightCapBounds.contains(lightPosition)) |
139 | 0 | return false; |
140 | | |
141 | | // If angular size of object is too high then extrusion could be in almost opposite directions, |
142 | | // interpolated points would be extruded by shorter distance, and strange geometry of McGuire cap |
143 | | // could be visible even for well tesselated meshes. As a heuristic we will avoid McGuire cap if |
144 | | // angular size is larger than 60 degrees - it guarantees that interpolated points would be |
145 | | // extruded by at least cos(60deg/2) ~ 86% of the original extrusion distance. |
146 | 0 | if(lightCapBounds.getHalfSize().length() / (lightCapBounds.getCenter() - lightPosition).length() > 0.5) // if boundingSphereAngularSize > 60deg |
147 | 0 | { |
148 | | // Calculate angular size one more time using edge corners angular distance comparision, |
149 | | // Determine lit sides of the bound, store in mask |
150 | 0 | enum { L = 1, R = 2, B = 4, T = 8, F = 16, N = 32 }; // left, right, bottom, top, far, near |
151 | 0 | unsigned lightSidesMask = |
152 | 0 | (lightPosition.x < lightCapBounds.getMinimum().x ? L : 0) | // left |
153 | 0 | (lightPosition.x > lightCapBounds.getMaximum().x ? R : 0) | // right |
154 | 0 | (lightPosition.y < lightCapBounds.getMinimum().y ? B : 0) | // bottom |
155 | 0 | (lightPosition.y > lightCapBounds.getMaximum().y ? T : 0) | // top |
156 | 0 | (lightPosition.z < lightCapBounds.getMinimum().z ? F : 0) | // far |
157 | 0 | (lightPosition.z > lightCapBounds.getMaximum().z ? N : 0); // near |
158 | | |
159 | | // find corners on lit/unlit edge (should not be more than 6 simultaneously, but better be safe than sorry) |
160 | 0 | Ogre::Vector3 edgeCorners[8]; |
161 | 0 | unsigned edgeCornersCount = 0; |
162 | 0 | std::pair<unsigned, AxisAlignedBox::CornerEnum> cornerMap[8] = { |
163 | 0 | { F|L|B, AxisAlignedBox::FAR_LEFT_BOTTOM }, { F|R|B, AxisAlignedBox::FAR_RIGHT_BOTTOM }, |
164 | 0 | { F|L|T, AxisAlignedBox::FAR_LEFT_TOP }, { F|R|T, AxisAlignedBox::FAR_RIGHT_TOP }, |
165 | 0 | { N|L|B, AxisAlignedBox::NEAR_LEFT_BOTTOM },{ N|R|B, AxisAlignedBox::NEAR_RIGHT_BOTTOM }, |
166 | 0 | { N|L|T, AxisAlignedBox::NEAR_LEFT_TOP }, { N|R|T, AxisAlignedBox::NEAR_RIGHT_TOP }}; |
167 | 0 | for(auto& c : cornerMap) |
168 | 0 | if((lightSidesMask & c.first) != 0 && (lightSidesMask & c.first) != c.first) // if adjacent sides not all lit or all unlit |
169 | 0 | edgeCorners[edgeCornersCount++] = lightCapBounds.getCorner(c.second); |
170 | | |
171 | | // find max angular size in range [0..pi] by finding min cos of angular size, range [1..-1] |
172 | 0 | Real cosAngle = 1.0; |
173 | 0 | for(unsigned i0 = 0; i0 + 1 < edgeCornersCount; ++i0) |
174 | 0 | for(unsigned i1 = i0 + 1; i1 < edgeCornersCount; ++i1) |
175 | 0 | { |
176 | | // 4~6 edge corners, 6~15 angular distance calculations |
177 | 0 | Vector3 a = (edgeCorners[i0] - lightPosition).normalisedCopy(); |
178 | 0 | Vector3 b = (edgeCorners[i1] - lightPosition).normalisedCopy(); |
179 | 0 | Real cosAB = a.dotProduct(b); |
180 | 0 | if(cosAngle > cosAB) |
181 | 0 | cosAngle = cosAB; |
182 | 0 | } |
183 | | |
184 | 0 | if(cosAngle < 0.5) // angularSize > 60 degrees |
185 | 0 | return false; |
186 | 0 | } |
187 | | |
188 | 0 | return true; |
189 | 0 | } |
190 | | // ------------------------------------------------------------------------ |
191 | | void ShadowCaster::generateShadowVolume(EdgeData* edgeData, |
192 | | const HardwareIndexBufferSharedPtr& indexBuffer, size_t& indexBufferUsedSize, |
193 | | const Light* light, ShadowRenderableList& shadowRenderables, unsigned long flags) |
194 | 0 | { |
195 | | // Edge groups should be 1:1 with shadow renderables |
196 | 0 | assert(edgeData->edgeGroups.size() == shadowRenderables.size()); |
197 | |
|
198 | 0 | Light::LightTypes lightType = light->getType(); |
199 | | |
200 | | // Whether to use the McGuire method, a triangle fan covering all silhouette |
201 | | // This won't work properly with multiple separate edge groups (should be one fan per group, not implemented) |
202 | | // or when light position is too close to light cap bound. |
203 | 0 | bool useMcGuire = edgeData->edgeGroups.size() <= 1 && |
204 | 0 | (lightType == Light::LT_DIRECTIONAL || isBoundOkForMcGuire(getLightCapBounds(), light->getDerivedPosition())); |
205 | 0 | ShadowRenderableList::const_iterator si; |
206 | | |
207 | | // pre-count the size of index data we need since it makes a big perf difference |
208 | | // to GL in particular if we lock a smaller area of the index buffer |
209 | 0 | uint32 preCountIndexes = 0; |
210 | |
|
211 | 0 | si = shadowRenderables.begin(); |
212 | 0 | for (auto& eg : edgeData->edgeGroups) |
213 | 0 | { |
214 | 0 | bool firstDarkCapTri = true; |
215 | 0 | for (auto& edge : eg.edges) |
216 | 0 | { |
217 | | // Silhouette edge, when two tris has opposite light facing, or |
218 | | // degenerate edge where only tri 1 is valid and the tri light facing |
219 | 0 | char lightFacing = edgeData->triangleLightFacings[edge.triIndex[0]]; |
220 | 0 | if ((edge.degenerate && lightFacing) || |
221 | 0 | (!edge.degenerate && (lightFacing != edgeData->triangleLightFacings[edge.triIndex[1]]))) |
222 | 0 | { |
223 | |
|
224 | 0 | preCountIndexes += 3; |
225 | | |
226 | | // Are we extruding to infinity? |
227 | 0 | if (!(lightType == Light::LT_DIRECTIONAL && |
228 | 0 | flags & SRF_EXTRUDE_TO_INFINITY)) |
229 | 0 | { |
230 | 0 | preCountIndexes += 3; |
231 | 0 | } |
232 | |
|
233 | 0 | if(useMcGuire) |
234 | 0 | { |
235 | | // Do dark cap tri |
236 | | // Use McGuire et al method, a triangle fan covering all silhouette |
237 | | // edges and one point (taken from the initial tri) |
238 | 0 | if (flags & SRF_INCLUDE_DARK_CAP) |
239 | 0 | { |
240 | 0 | if (firstDarkCapTri) |
241 | 0 | { |
242 | 0 | firstDarkCapTri = false; |
243 | 0 | } |
244 | 0 | else |
245 | 0 | { |
246 | 0 | preCountIndexes += 3; |
247 | 0 | } |
248 | 0 | } |
249 | 0 | } |
250 | 0 | } |
251 | |
|
252 | 0 | } |
253 | |
|
254 | 0 | if(useMcGuire) |
255 | 0 | { |
256 | | // Do light cap |
257 | 0 | if (flags & SRF_INCLUDE_LIGHT_CAP) |
258 | 0 | { |
259 | | // Iterate over the triangles which are using this vertex set |
260 | 0 | EdgeData::TriangleList::const_iterator ti, tiend; |
261 | 0 | EdgeData::TriangleLightFacingList::const_iterator lfi; |
262 | 0 | ti = edgeData->triangles.begin() + eg.triStart; |
263 | 0 | tiend = ti + eg.triCount; |
264 | 0 | lfi = edgeData->triangleLightFacings.begin() + eg.triStart; |
265 | 0 | for ( ; ti != tiend; ++ti, ++lfi) |
266 | 0 | { |
267 | 0 | assert(ti->vertexSet == eg.vertexSet); |
268 | | // Check it's light facing |
269 | 0 | if (*lfi) |
270 | 0 | { |
271 | 0 | preCountIndexes += 3; |
272 | 0 | } |
273 | 0 | } |
274 | |
|
275 | 0 | } |
276 | 0 | } |
277 | 0 | else |
278 | 0 | { |
279 | | // Do both caps |
280 | 0 | int increment = ((flags & SRF_INCLUDE_DARK_CAP) ? 3 : 0) + ((flags & SRF_INCLUDE_LIGHT_CAP) ? 3 : 0); |
281 | 0 | if(increment != 0) |
282 | 0 | { |
283 | | // Iterate over the triangles which are using this vertex set |
284 | 0 | EdgeData::TriangleList::const_iterator ti, tiend; |
285 | 0 | EdgeData::TriangleLightFacingList::const_iterator lfi; |
286 | 0 | ti = edgeData->triangles.begin() + eg.triStart; |
287 | 0 | tiend = ti + eg.triCount; |
288 | 0 | lfi = edgeData->triangleLightFacings.begin() + eg.triStart; |
289 | 0 | for ( ; ti != tiend; ++ti, ++lfi) |
290 | 0 | { |
291 | 0 | assert(ti->vertexSet == eg.vertexSet); |
292 | | // Check it's light facing |
293 | 0 | if (*lfi) |
294 | 0 | preCountIndexes += increment; |
295 | 0 | } |
296 | 0 | } |
297 | 0 | } |
298 | 0 | ++si; |
299 | 0 | } |
300 | | // End pre-count |
301 | | |
302 | | //Check if index buffer is to small |
303 | 0 | if (preCountIndexes > indexBuffer->getNumIndexes()) |
304 | 0 | { |
305 | 0 | LogManager::getSingleton().logWarning( |
306 | 0 | "shadow index buffer size to small. Auto increasing buffer size to" + |
307 | 0 | StringConverter::toString(sizeof(unsigned short) * preCountIndexes)); |
308 | |
|
309 | 0 | SceneManager* pManager = Root::getSingleton()._getCurrentSceneManager(); |
310 | 0 | if (pManager) |
311 | 0 | { |
312 | 0 | pManager->setShadowIndexBufferSize(preCountIndexes); |
313 | 0 | } |
314 | | |
315 | | //Check that the index buffer size has actually increased |
316 | 0 | if (preCountIndexes > indexBuffer->getNumIndexes()) |
317 | 0 | { |
318 | | //increasing index buffer size has failed |
319 | 0 | OGRE_EXCEPT(Exception::ERR_INVALIDPARAMS, |
320 | 0 | "Lock request out of bounds.", |
321 | 0 | "ShadowCaster::generateShadowVolume"); |
322 | 0 | } |
323 | 0 | } |
324 | 0 | else if(indexBufferUsedSize + preCountIndexes > indexBuffer->getNumIndexes()) |
325 | 0 | { |
326 | 0 | indexBufferUsedSize = 0; |
327 | 0 | } |
328 | | |
329 | | // Lock index buffer for writing, just enough length as we need |
330 | 0 | HardwareBufferLockGuard indexLock(indexBuffer, |
331 | 0 | sizeof(unsigned short) * indexBufferUsedSize, sizeof(unsigned short) * preCountIndexes, |
332 | 0 | indexBufferUsedSize == 0 ? HardwareBuffer::HBL_DISCARD : HardwareBuffer::HBL_NO_OVERWRITE); |
333 | 0 | unsigned short* pIdx = static_cast<unsigned short*>(indexLock.pData); |
334 | 0 | uint32 numIndices = indexBufferUsedSize; |
335 | | |
336 | | // Iterate over the groups and form renderables for each based on their |
337 | | // lightFacing |
338 | 0 | si = shadowRenderables.begin(); |
339 | 0 | for (auto& eg : edgeData->edgeGroups) |
340 | 0 | { |
341 | | // Initialise the index start for this shadow renderable |
342 | 0 | IndexData* indexData = (*si)->getRenderOperationForUpdate()->indexData; |
343 | |
|
344 | 0 | if (indexData->indexBuffer != indexBuffer) |
345 | 0 | { |
346 | 0 | (*si)->rebindIndexBuffer(indexBuffer); |
347 | 0 | indexData = (*si)->getRenderOperationForUpdate()->indexData; |
348 | 0 | } |
349 | |
|
350 | 0 | indexData->indexStart = numIndices; |
351 | | // original number of verts (without extruded copy) |
352 | 0 | uint32 originalVertexCount = eg.vertexData->vertexCount; |
353 | 0 | bool firstDarkCapTri = true; |
354 | 0 | unsigned short darkCapStart = 0; |
355 | |
|
356 | 0 | for (auto& edge : eg.edges) |
357 | 0 | { |
358 | | // Silhouette edge, when two tris has opposite light facing, or |
359 | | // degenerate edge where only tri 1 is valid and the tri light facing |
360 | 0 | char lightFacing = edgeData->triangleLightFacings[edge.triIndex[0]]; |
361 | 0 | if ((edge.degenerate && lightFacing) || |
362 | 0 | (!edge.degenerate && (lightFacing != edgeData->triangleLightFacings[edge.triIndex[1]]))) |
363 | 0 | { |
364 | 0 | uint32 v0 = edge.vertIndex[0]; |
365 | 0 | uint32 v1 = edge.vertIndex[1]; |
366 | 0 | if (!lightFacing) |
367 | 0 | { |
368 | | // Inverse edge indexes when t1 is light away |
369 | 0 | std::swap(v0, v1); |
370 | 0 | } |
371 | | |
372 | | /* Note edge(v0, v1) run anticlockwise along the edge from |
373 | | the light facing tri so to point shadow volume tris outward, |
374 | | light cap indexes have to be backwards |
375 | | |
376 | | We emit 2 tris if light is a point light, 1 if light |
377 | | is directional, because directional lights cause all |
378 | | points to converge to a single point at infinity. |
379 | | |
380 | | First side tri = near1, near0, far0 |
381 | | Second tri = far0, far1, near1 |
382 | | |
383 | | 'far' indexes are 'near' index + originalVertexCount |
384 | | because 'far' verts are in the second half of the |
385 | | buffer |
386 | | */ |
387 | 0 | assert(v1 < 65536 && v0 < 65536 && (v0 + originalVertexCount) < 65536 && |
388 | 0 | "Vertex count exceeds 16-bit index limit!"); |
389 | 0 | *pIdx++ = static_cast<unsigned short>(v1); |
390 | 0 | *pIdx++ = static_cast<unsigned short>(v0); |
391 | 0 | *pIdx++ = static_cast<unsigned short>(v0 + originalVertexCount); |
392 | 0 | numIndices += 3; |
393 | | |
394 | | // Are we extruding to infinity? |
395 | 0 | if (!(lightType == Light::LT_DIRECTIONAL && |
396 | 0 | flags & SRF_EXTRUDE_TO_INFINITY)) |
397 | 0 | { |
398 | | // additional tri to make quad |
399 | 0 | *pIdx++ = static_cast<unsigned short>(v0 + originalVertexCount); |
400 | 0 | *pIdx++ = static_cast<unsigned short>(v1 + originalVertexCount); |
401 | 0 | *pIdx++ = static_cast<unsigned short>(v1); |
402 | 0 | numIndices += 3; |
403 | 0 | } |
404 | |
|
405 | 0 | if(useMcGuire) |
406 | 0 | { |
407 | | // Do dark cap tri |
408 | | // Use McGuire et al method, a triangle fan covering all silhouette |
409 | | // edges and one point (taken from the initial tri) |
410 | 0 | if (flags & SRF_INCLUDE_DARK_CAP) |
411 | 0 | { |
412 | 0 | if (firstDarkCapTri) |
413 | 0 | { |
414 | 0 | darkCapStart = static_cast<unsigned short>(v0 + originalVertexCount); |
415 | 0 | firstDarkCapTri = false; |
416 | 0 | } |
417 | 0 | else |
418 | 0 | { |
419 | 0 | *pIdx++ = darkCapStart; |
420 | 0 | *pIdx++ = static_cast<unsigned short>(v1 + originalVertexCount); |
421 | 0 | *pIdx++ = static_cast<unsigned short>(v0 + originalVertexCount); |
422 | 0 | numIndices += 3; |
423 | 0 | } |
424 | |
|
425 | 0 | } |
426 | 0 | } |
427 | 0 | } |
428 | |
|
429 | 0 | } |
430 | |
|
431 | 0 | if(!useMcGuire) |
432 | 0 | { |
433 | | // Do dark cap |
434 | 0 | if (flags & SRF_INCLUDE_DARK_CAP) |
435 | 0 | { |
436 | | // Iterate over the triangles which are using this vertex set |
437 | 0 | EdgeData::TriangleList::const_iterator ti, tiend; |
438 | 0 | EdgeData::TriangleLightFacingList::const_iterator lfi; |
439 | 0 | ti = edgeData->triangles.begin() + eg.triStart; |
440 | 0 | tiend = ti + eg.triCount; |
441 | 0 | lfi = edgeData->triangleLightFacings.begin() + eg.triStart; |
442 | 0 | for ( ; ti != tiend; ++ti, ++lfi) |
443 | 0 | { |
444 | 0 | const EdgeData::Triangle& t = *ti; |
445 | 0 | assert(t.vertexSet == eg.vertexSet); |
446 | | // Check it's light facing |
447 | 0 | if (*lfi) |
448 | 0 | { |
449 | 0 | assert(t.vertIndex[0] < 65536 && t.vertIndex[1] < 65536 && |
450 | 0 | t.vertIndex[2] < 65536 && |
451 | 0 | "16-bit index limit exceeded!"); |
452 | 0 | *pIdx++ = static_cast<unsigned short>(t.vertIndex[1] + originalVertexCount); |
453 | 0 | *pIdx++ = static_cast<unsigned short>(t.vertIndex[0] + originalVertexCount); |
454 | 0 | *pIdx++ = static_cast<unsigned short>(t.vertIndex[2] + originalVertexCount); |
455 | 0 | numIndices += 3; |
456 | 0 | } |
457 | 0 | } |
458 | |
|
459 | 0 | } |
460 | 0 | } |
461 | | |
462 | | // Do light cap |
463 | 0 | if (flags & SRF_INCLUDE_LIGHT_CAP) |
464 | 0 | { |
465 | | // separate light cap? |
466 | 0 | if ((*si)->isLightCapSeparate()) |
467 | 0 | { |
468 | | // update index count for this shadow renderable |
469 | 0 | indexData->indexCount = numIndices - indexData->indexStart; |
470 | | |
471 | | // get light cap index data for update |
472 | 0 | indexData = (*si)->getLightCapRenderable()->getRenderOperationForUpdate()->indexData; |
473 | | // start indexes after the current total |
474 | 0 | indexData->indexStart = numIndices; |
475 | 0 | } |
476 | | |
477 | | // Iterate over the triangles which are using this vertex set |
478 | 0 | EdgeData::TriangleList::const_iterator ti, tiend; |
479 | 0 | EdgeData::TriangleLightFacingList::const_iterator lfi; |
480 | 0 | ti = edgeData->triangles.begin() + eg.triStart; |
481 | 0 | tiend = ti + eg.triCount; |
482 | 0 | lfi = edgeData->triangleLightFacings.begin() + eg.triStart; |
483 | 0 | for ( ; ti != tiend; ++ti, ++lfi) |
484 | 0 | { |
485 | 0 | const EdgeData::Triangle& t = *ti; |
486 | 0 | assert(t.vertexSet == eg.vertexSet); |
487 | | // Check it's light facing |
488 | 0 | if (*lfi) |
489 | 0 | { |
490 | 0 | assert(t.vertIndex[0] < 65536 && t.vertIndex[1] < 65536 && |
491 | 0 | t.vertIndex[2] < 65536 && |
492 | 0 | "16-bit index limit exceeded!"); |
493 | 0 | *pIdx++ = static_cast<unsigned short>(t.vertIndex[0]); |
494 | 0 | *pIdx++ = static_cast<unsigned short>(t.vertIndex[1]); |
495 | 0 | *pIdx++ = static_cast<unsigned short>(t.vertIndex[2]); |
496 | 0 | numIndices += 3; |
497 | 0 | } |
498 | 0 | } |
499 | |
|
500 | 0 | } |
501 | | |
502 | | // update index count for current index data (either this shadow renderable or its light cap) |
503 | 0 | indexData->indexCount = numIndices - indexData->indexStart; |
504 | |
|
505 | 0 | ++si; |
506 | 0 | } |
507 | | |
508 | | // In debug mode, check we didn't overrun the index buffer |
509 | 0 | assert(numIndices == indexBufferUsedSize + preCountIndexes); |
510 | 0 | assert(numIndices <= indexBuffer->getNumIndexes() && |
511 | 0 | "Index buffer overrun while generating shadow volume!! " |
512 | 0 | "You must increase the size of the shadow index buffer."); |
513 | |
|
514 | 0 | indexBufferUsedSize = numIndices; |
515 | 0 | } |
516 | | // ------------------------------------------------------------------------ |
517 | | void ShadowCaster::extrudeVertices( |
518 | | const HardwareVertexBufferSharedPtr& vertexBuffer, |
519 | | size_t originalVertexCount, const Vector4& light, Real extrudeDist) |
520 | 0 | { |
521 | 0 | assert (vertexBuffer->getVertexSize() == sizeof(float) * 3 |
522 | 0 | && "Position buffer should contain only positions!"); |
523 | | |
524 | | // Extrude the first area of the buffer into the second area |
525 | | // Lock the entire buffer for writing, even though we'll only be |
526 | | // updating the latter because you can't have 2 locks on the same |
527 | | // buffer |
528 | 0 | HardwareBufferLockGuard vertexLock(vertexBuffer, HardwareBuffer::HBL_NORMAL); |
529 | 0 | float* pSrc = static_cast<float*>(vertexLock.pData); |
530 | | |
531 | | // TODO: We should add extra (ununsed) vertices ensure source and |
532 | | // destination buffer have same alignment for slight performance gain. |
533 | 0 | float* pDest = pSrc + originalVertexCount * 3; |
534 | |
|
535 | 0 | OptimisedUtil::getImplementation()->extrudeVertices( |
536 | 0 | light, extrudeDist, |
537 | 0 | pSrc, pDest, originalVertexCount); |
538 | 0 | } |
539 | | // ------------------------------------------------------------------------ |
540 | | void ShadowCaster::extrudeBounds(AxisAlignedBox& box, const Vector4& light, Real extrudeDist) const |
541 | 0 | { |
542 | 0 | Vector3 extrusionDir; |
543 | |
|
544 | 0 | if (light.w == 0) |
545 | 0 | { |
546 | | // Parallel projection guarantees min/max relationship remains the same |
547 | 0 | extrusionDir.x = -light.x; |
548 | 0 | extrusionDir.y = -light.y; |
549 | 0 | extrusionDir.z = -light.z; |
550 | 0 | extrusionDir.normalise(); |
551 | 0 | extrusionDir *= extrudeDist; |
552 | 0 | box.setExtents(box.getMinimum() + extrusionDir, |
553 | 0 | box.getMaximum() + extrusionDir); |
554 | 0 | } |
555 | 0 | else |
556 | 0 | { |
557 | 0 | Vector3 oldMin, oldMax, currentCorner; |
558 | | // Getting the original values |
559 | 0 | oldMin = box.getMinimum(); |
560 | 0 | oldMax = box.getMaximum(); |
561 | | // Starting the box again with a null content |
562 | 0 | box.setNull(); |
563 | | |
564 | | // merging all the extruded corners |
565 | | |
566 | | // 0 : min min min |
567 | 0 | currentCorner = oldMin; |
568 | 0 | extrusionDir.x = currentCorner.x - light.x; |
569 | 0 | extrusionDir.y = currentCorner.y - light.y; |
570 | 0 | extrusionDir.z = currentCorner.z - light.z; |
571 | 0 | box.merge(currentCorner + extrudeDist * extrusionDir.normalisedCopy()); |
572 | | |
573 | | // 6 : min min max |
574 | | // only z has changed |
575 | 0 | currentCorner.z = oldMax.z; |
576 | 0 | extrusionDir.z = currentCorner.z - light.z; |
577 | 0 | box.merge(currentCorner + extrudeDist * extrusionDir.normalisedCopy()); |
578 | | |
579 | | // 5 : min max max |
580 | 0 | currentCorner.y = oldMax.y; |
581 | 0 | extrusionDir.y = currentCorner.y - light.y; |
582 | 0 | box.merge(currentCorner + extrudeDist * extrusionDir.normalisedCopy()); |
583 | | |
584 | | // 1 : min max min |
585 | 0 | currentCorner.z = oldMin.z; |
586 | 0 | extrusionDir.z = currentCorner.z - light.z; |
587 | 0 | box.merge(currentCorner + extrudeDist * extrusionDir.normalisedCopy()); |
588 | | |
589 | | // 2 : max max min |
590 | 0 | currentCorner.x = oldMax.x; |
591 | 0 | extrusionDir.x = currentCorner.x - light.x; |
592 | 0 | box.merge(currentCorner + extrudeDist * extrusionDir.normalisedCopy()); |
593 | | |
594 | | // 4 : max max max |
595 | 0 | currentCorner.z = oldMax.z; |
596 | 0 | extrusionDir.z = currentCorner.z - light.z; |
597 | 0 | box.merge(currentCorner + extrudeDist * extrusionDir.normalisedCopy()); |
598 | | |
599 | | // 7 : max min max |
600 | 0 | currentCorner.y = oldMin.y; |
601 | 0 | extrusionDir.y = currentCorner.y - light.y; |
602 | 0 | box.merge(currentCorner + extrudeDist * extrusionDir.normalisedCopy()); |
603 | | |
604 | | // 3 : max min min |
605 | 0 | currentCorner.z = oldMin.z; |
606 | 0 | extrusionDir.z = currentCorner.z - light.z; |
607 | 0 | box.merge(currentCorner + extrudeDist * extrusionDir.normalisedCopy()); |
608 | |
|
609 | 0 | } |
610 | |
|
611 | 0 | } |
612 | | } |