Coverage Report

Created: 2025-08-28 06:22

/src/ogre/OgreMain/include/OgreQuaternion.h
Line
Count
Source (jump to first uncovered line)
1
/*
2
-----------------------------------------------------------------------------
3
This source file is part of OGRE
4
    (Object-oriented Graphics Rendering Engine)
5
For the latest info, see http://www.ogre3d.org/
6
7
Copyright (c) 2000-2014 Torus Knot Software Ltd
8
9
Permission is hereby granted, free of charge, to any person obtaining a copy
10
of this software and associated documentation files (the "Software"), to deal
11
in the Software without restriction, including without limitation the rights
12
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13
copies of the Software, and to permit persons to whom the Software is
14
furnished to do so, subject to the following conditions:
15
16
The above copyright notice and this permission notice shall be included in
17
all copies or substantial portions of the Software.
18
19
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
22
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25
THE SOFTWARE.
26
-----------------------------------------------------------------------------
27
*/
28
// This file is based on material originally from:
29
// Geometric Tools, LLC
30
// Copyright (c) 1998-2010
31
// Distributed under the Boost Software License, Version 1.0.
32
// http://www.boost.org/LICENSE_1_0.txt
33
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
34
35
36
#ifndef __Quaternion_H__
37
#define __Quaternion_H__
38
39
#include "OgrePrerequisites.h"
40
#include "OgreMath.h"
41
42
namespace Ogre {
43
44
    /** \addtogroup Core
45
    *  @{
46
    */
47
    /** \addtogroup Math
48
    *  @{
49
    */
50
    /** Implementation of a Quaternion, i.e. a rotation around an axis.
51
        For more information about Quaternions and the theory behind it, we recommend reading:
52
        http://www.ogre3d.org/tikiwiki/Quaternion+and+Rotation+Primer and
53
        http://www.cprogramming.com/tutorial/3d/quaternions.html and
54
        http://www.gamedev.net/page/resources/_/reference/programming/math-and-physics/quaternions/quaternion-powers-r1095
55
    */
56
    class _OgreExport Quaternion
57
    {
58
    public:
59
        /// Default constructor, initializes to identity rotation (aka 0°)
60
        inline Quaternion ()
61
0
            : w(1), x(0), y(0), z(0)
62
0
        {
63
0
        }
64
        /// Copy constructor
65
        inline Quaternion(const Ogre::Quaternion& rhs)
66
0
            : w(rhs.w), x(rhs.x), y(rhs.y), z(rhs.z)
67
0
        {}
68
        /// Construct from an explicit list of values
69
        inline Quaternion (
70
            Real fW,
71
            Real fX, Real fY, Real fZ)
72
            : w(fW), x(fX), y(fY), z(fZ)
73
        {
74
        }
75
        /// Construct a quaternion from a rotation matrix
76
        inline Quaternion(const Matrix3& rot)
77
0
        {
78
0
            this->FromRotationMatrix(rot);
79
0
        }
80
        /// Construct a quaternion from an angle/axis
81
        inline Quaternion(const Radian& rfAngle, const Vector3& rkAxis)
82
0
        {
83
0
            this->FromAngleAxis(rfAngle, rkAxis);
84
0
        }
85
        /// Construct a quaternion from 3 orthonormal local axes
86
        inline Quaternion(const Vector3& xaxis, const Vector3& yaxis, const Vector3& zaxis)
87
0
        {
88
0
            this->FromAxes(xaxis, yaxis, zaxis);
89
0
        }
90
        /// Construct a quaternion from 3 orthonormal local axes
91
        inline Quaternion(const Vector3* akAxis)
92
0
        {
93
0
            this->FromAxes(akAxis);
94
0
        }
95
        /// Construct a quaternion from 4 manual w/x/y/z values
96
        inline Quaternion(Real* valptr)
97
0
        {
98
0
            memcpy(&w, valptr, sizeof(Real)*4);
99
0
        }
100
101
        /** Exchange the contents of this quaternion with another. 
102
        */
103
        inline void swap(Quaternion& other)
104
0
        {
105
0
            std::swap(w, other.w);
106
0
            std::swap(x, other.x);
107
0
            std::swap(y, other.y);
108
0
            std::swap(z, other.z);
109
0
        }
110
111
        /// Array accessor operator
112
        inline Real operator [] ( const size_t i ) const
113
0
        {
114
0
            assert( i < 4 );
115
0
116
0
            return *(&w+i);
117
0
        }
118
119
        /// Array accessor operator
120
        inline Real& operator [] ( const size_t i )
121
0
        {
122
0
            assert( i < 4 );
123
0
124
0
            return *(&w+i);
125
0
        }
126
127
        /// Pointer accessor for direct copying
128
        inline Real* ptr()
129
0
        {
130
0
            return &w;
131
0
        }
132
133
        /// Pointer accessor for direct copying
134
        inline const Real* ptr() const
135
0
        {
136
0
            return &w;
137
0
        }
138
139
        void FromRotationMatrix (const Matrix3& kRot);
140
        void ToRotationMatrix (Matrix3& kRot) const;
141
        /** Setups the quaternion using the supplied vector, and "roll" around
142
            that vector by the specified radians.
143
        */
144
        void FromAngleAxis (const Radian& rfAngle, const Vector3& rkAxis);
145
        void ToAngleAxis (Radian& rfAngle, Vector3& rkAxis) const;
146
0
        inline void ToAngleAxis (Degree& dAngle, Vector3& rkAxis) const {
147
0
            Radian rAngle;
148
0
            ToAngleAxis ( rAngle, rkAxis );
149
0
            dAngle = rAngle;
150
0
        }
151
        /** Constructs the quaternion using 3 axes, the axes are assumed to be orthonormal
152
            @see FromAxes
153
        */
154
        void FromAxes (const Vector3* akAxis);
155
        void FromAxes (const Vector3& xAxis, const Vector3& yAxis, const Vector3& zAxis);
156
        /** Gets the 3 orthonormal axes defining the quaternion. @see FromAxes */
157
        void ToAxes (Vector3* akAxis) const;
158
        void ToAxes (Vector3& xAxis, Vector3& yAxis, Vector3& zAxis) const;
159
160
        /** Returns the X orthonormal axis defining the quaternion. Same as doing
161
            xAxis = Vector3::UNIT_X * this. Also called the local X-axis
162
        */
163
        Vector3 xAxis(void) const;
164
165
        /** Returns the Y orthonormal axis defining the quaternion. Same as doing
166
            yAxis = Vector3::UNIT_Y * this. Also called the local Y-axis
167
        */
168
        Vector3 yAxis(void) const;
169
170
        /** Returns the Z orthonormal axis defining the quaternion. Same as doing
171
            zAxis = Vector3::UNIT_Z * this. Also called the local Z-axis
172
        */
173
        Vector3 zAxis(void) const;
174
175
        inline Quaternion& operator= (const Quaternion& rkQ)
176
0
        {
177
0
            w = rkQ.w;
178
0
            x = rkQ.x;
179
0
            y = rkQ.y;
180
0
            z = rkQ.z;
181
0
            return *this;
182
0
        }
183
        Quaternion operator+ (const Quaternion& rkQ) const;
184
        Quaternion operator- (const Quaternion& rkQ) const;
185
        Quaternion operator*(const Quaternion& rkQ) const;
186
        Quaternion operator*(Real s) const
187
0
        {
188
0
            return Quaternion(s * w, s * x, s * y, s * z);
189
0
        }
190
        friend Quaternion operator*(Real s, const Quaternion& q)
191
0
        {
192
0
            return q * s;
193
0
        }
194
0
        Quaternion operator-() const { return Quaternion(-w, -x, -y, -z); }
195
        inline bool operator== (const Quaternion& rhs) const
196
0
        {
197
0
            return (rhs.x == x) && (rhs.y == y) &&
198
0
                (rhs.z == z) && (rhs.w == w);
199
0
        }
200
        inline bool operator!= (const Quaternion& rhs) const
201
0
        {
202
0
            return !operator==(rhs);
203
0
        }
204
        // functions of a quaternion
205
        /// Returns the dot product of the quaternion
206
        Real Dot(const Quaternion& rkQ) const
207
0
        {
208
0
            return w * rkQ.w + x * rkQ.x + y * rkQ.y + z * rkQ.z;
209
0
        }
210
        /// Returns the normal length of this quaternion.
211
0
        Real Norm() const { return Math::Sqrt(w * w + x * x + y * y + z * z); }
212
        /// Normalises this quaternion, and returns the previous length
213
        Real normalise(void)
214
0
        {
215
0
            Real len = Norm();
216
0
            *this = 1.0f / len * *this;
217
0
            return len;
218
0
        }
219
        Quaternion Inverse () const;  /// Apply to non-zero quaternion
220
        Quaternion UnitInverse () const;  /// Apply to unit-length quaternion
221
        Quaternion Exp () const;
222
        Quaternion Log () const;
223
224
        /// Rotation of a vector by a quaternion
225
        Vector3 operator* (const Vector3& rkVector) const;
226
227
        /** Calculate the local roll element of this quaternion.
228
        @param reprojectAxis By default the method returns the 'intuitive' result
229
            that is, if you projected the local X of the quaternion onto the XY plane,
230
            the angle between it and global X is returned. The co-domain of the returned
231
            value is from -180 to 180 degrees. If set to false though, the result is
232
            the rotation around Z axis that could be used to implement the quaternion
233
            using some non-intuitive order of rotations. This behavior is preserved for
234
            backward compatibility, to decompose quaternion into yaw, pitch and roll use
235
            q.ToRotationMatrix().ToEulerAnglesYXZ(yaw, pitch, roll) instead.
236
        */
237
        Radian getRoll(bool reprojectAxis = true) const;
238
        /** Calculate the local pitch element of this quaternion
239
        @param reprojectAxis By default the method returns the 'intuitive' result
240
            that is, if you projected the local Y of the quaternion onto the YZ plane,
241
            the angle between it and global Y is returned. The co-domain of the returned
242
            value is from -180 to 180 degrees. If set to false though, the result is
243
            the rotation around X axis that could be used to implement the quaternion
244
            using some non-intuitive order of rotations. This behavior is preserved for
245
            backward compatibility, to decompose quaternion into yaw, pitch and roll use
246
            q.ToRotationMatrix().ToEulerAnglesYXZ(yaw, pitch, roll) instead.
247
        */
248
        Radian getPitch(bool reprojectAxis = true) const;
249
        /** Calculate the local yaw element of this quaternion
250
        @param reprojectAxis By default the method returns the 'intuitive' result
251
            that is, if you projected the local Z of the quaternion onto the ZX plane,
252
            the angle between it and global Z is returned. The co-domain of the returned
253
            value is from -180 to 180 degrees. If set to false though, the result is
254
            the rotation around Y axis that could be used to implement the quaternion 
255
            using some non-intuitive order of rotations. This behavior is preserved for
256
            backward compatibility, to decompose quaternion into yaw, pitch and roll use
257
            q.ToRotationMatrix().ToEulerAnglesYXZ(yaw, pitch, roll) instead.
258
        */
259
        Radian getYaw(bool reprojectAxis = true) const;
260
        
261
        /** Equality with tolerance (tolerance is max angle difference)
262
        @remark Both equals() and orientationEquals() measure the exact same thing.
263
                One measures the difference by angle, the other by a different, non-linear metric.
264
        */
265
        bool equals(const Quaternion& rhs, const Radian& tolerance) const
266
0
        {
267
0
            Real d = Dot(rhs);
268
0
            Radian angle = Math::ACos(2.0f * d*d - 1.0f);
269
0
270
0
            return Math::Abs(angle.valueRadians()) <= tolerance.valueRadians();
271
0
        }
272
        
273
        /** Compare two quaternions which are assumed to be used as orientations.
274
        @remark Both equals() and orientationEquals() measure the exact same thing.
275
                One measures the difference by angle, the other by a different, non-linear metric.
276
        @return true if the two orientations are the same or very close, relative to the given tolerance.
277
            Slerp ( 0.75f, A, B ) != Slerp ( 0.25f, B, A );
278
            therefore be careful if your code relies in the order of the operands.
279
            This is specially important in IK animation.
280
        */
281
        inline bool orientationEquals( const Quaternion& other, Real tolerance = 1e-3f ) const
282
0
        {
283
0
            Real d = this->Dot(other);
284
0
            return 1 - d*d < tolerance;
285
0
        }
286
        
287
        /** Performs Spherical linear interpolation between two quaternions, and returns the result.
288
            Slerp ( 0.0f, A, B ) = A
289
            Slerp ( 1.0f, A, B ) = B
290
            @return Interpolated quaternion
291
292
            Slerp has the proprieties of performing the interpolation at constant
293
            velocity, and being torque-minimal (unless shortestPath=false).
294
            However, it's NOT commutative, which means
295
            Slerp ( 0.75f, A, B ) != Slerp ( 0.25f, B, A );
296
            therefore be careful if your code relies in the order of the operands.
297
            This is specially important in IK animation.
298
        */
299
        static Quaternion Slerp (Real fT, const Quaternion& rkP,
300
            const Quaternion& rkQ, bool shortestPath = false);
301
302
        /** @see Slerp. It adds extra "spins" (i.e. rotates several times) specified
303
            by parameter 'iExtraSpins' while interpolating before arriving to the
304
            final values
305
        */
306
        static Quaternion SlerpExtraSpins (Real fT,
307
            const Quaternion& rkP, const Quaternion& rkQ,
308
            int iExtraSpins);
309
310
        /// Setup for spherical quadratic interpolation
311
        static void Intermediate (const Quaternion& rkQ0,
312
            const Quaternion& rkQ1, const Quaternion& rkQ2,
313
            Quaternion& rka, Quaternion& rkB);
314
315
        /// Spherical quadratic interpolation
316
        static Quaternion Squad (Real fT, const Quaternion& rkP,
317
            const Quaternion& rkA, const Quaternion& rkB,
318
            const Quaternion& rkQ, bool shortestPath = false);
319
320
        /** Performs Normalised linear interpolation between two quaternions, and returns the result.
321
            nlerp ( 0.0f, A, B ) = A
322
            nlerp ( 1.0f, A, B ) = B
323
324
            Nlerp is faster than Slerp.
325
            Nlerp has the proprieties of being commutative (@see Slerp;
326
            commutativity is desired in certain places, like IK animation), and
327
            being torque-minimal (unless shortestPath=false). However, it's performing
328
            the interpolation at non-constant velocity; sometimes this is desired,
329
            sometimes it is not. Having a non-constant velocity can produce a more
330
            natural rotation feeling without the need of tweaking the weights; however
331
            if your scene relies on the timing of the rotation or assumes it will point
332
            at a specific angle at a specific weight value, Slerp is a better choice.
333
        */
334
        static Quaternion nlerp(Real fT, const Quaternion& rkP, 
335
            const Quaternion& rkQ, bool shortestPath = false);
336
337
        /// Cutoff for sine near zero
338
        static const Real msEpsilon;
339
340
        // special values
341
        static const Quaternion ZERO;
342
        static const Quaternion IDENTITY;
343
344
        Real w, x, y, z;
345
346
#ifndef OGRE_FAST_MATH
347
        /// Check whether this quaternion contains valid values
348
        inline bool isNaN() const
349
0
        {
350
0
            return Math::isNaN(x) || Math::isNaN(y) || Math::isNaN(z) || Math::isNaN(w);
351
0
        }
352
#endif
353
354
        /** Function for writing to a stream. Outputs "Quaternion(w, x, y, z)" with w,x,y,z
355
            being the member values of the quaternion.
356
        */
357
        inline friend std::ostream& operator <<
358
            ( std::ostream& o, const Quaternion& q )
359
0
        {
360
0
            o << "Quaternion(" << q.w << ", " << q.x << ", " << q.y << ", " << q.z << ")";
361
0
            return o;
362
0
        }
363
364
    };
365
    /** @} */
366
    /** @} */
367
368
}
369
370
371
372
373
#endif