Coverage Report

Created: 2025-08-25 06:48

/src/ogre/OgreMain/include/OgreLight.h
Line
Count
Source (jump to first uncovered line)
1
/*
2
-----------------------------------------------------------------------------
3
This source file is part of OGRE
4
    (Object-oriented Graphics Rendering Engine)
5
For the latest info, see http://www.ogre3d.org/
6
7
Copyright (c) 2000-2014 Torus Knot Software Ltd
8
9
Permission is hereby granted, free of charge, to any person obtaining a copy
10
of this software and associated documentation files (the "Software"), to deal
11
in the Software without restriction, including without limitation the rights
12
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13
copies of the Software, and to permit persons to whom the Software is
14
furnished to do so, subject to the following conditions:
15
16
The above copyright notice and this permission notice shall be included in
17
all copies or substantial portions of the Software.
18
19
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
22
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25
THE SOFTWARE.
26
-----------------------------------------------------------------------------
27
*/
28
#ifndef _LIGHT_H__
29
#define _LIGHT_H__
30
31
#include "OgrePrerequisites.h"
32
33
#include "OgreColourValue.h"
34
#include "OgreVector.h"
35
#include "OgreMovableObject.h"
36
#include "OgrePlaneBoundedVolume.h"
37
#include "OgreNode.h"
38
#include "OgreCamera.h"
39
#include "OgreHeaderPrefix.h"
40
41
namespace Ogre {
42
43
44
    /** \addtogroup Core
45
    *  @{
46
    */
47
    /** \addtogroup Scene
48
    *  @{
49
    */
50
    /** Representation of a dynamic light source in the scene.
51
52
        Lights are added to the scene like any other object. They contain various
53
        parameters like type, attenuation (how light intensity fades with
54
        distance), colour etc.
55
56
        The light colour is computed based on the
57
        [Direct3D Light Model](https://docs.microsoft.com/en-us/windows/win32/direct3d9/mathematics-of-lighting) as:
58
59
        \f[ L_d = C_d \cdot p \cdot ( N \cdot L_{dir}) \cdot A \cdot S \f]
60
        \f[ L_s = C_s \cdot p \cdot ( N \cdot H)^s \cdot A \cdot S \f]
61
62
        where
63
        \f[ A = \frac{1}{c + l \cdot d + q \cdot d^2} \f]
64
        and only computed when attenuation is enabled,
65
66
        \f[ S = \left[ \frac{\rho - cos(0.5 \cdot \phi)}{cos(0.5 \cdot \theta) - cos(0.5 \cdot \phi)} \right]^f \f]
67
        and only computed with spotlights
68
69
        - \f$C_d\f$ is the light diffuse colour
70
        - \f$C_s\f$ is the light specular colour
71
        - \f$p\f$ is the light power scale factor
72
        - \f$s\f$ is the surface shininess
73
        - \f$N\f$ is the current surface normal
74
        - \f$L_{dir}\f$ is vector from the vertex position to the light (constant for directional lights)
75
        - \f$H = normalised(L_{dir} + V)\f$, where V is the vector from the vertex position to the camera
76
        - \f$c, l, q\f$ are the constant, linear and quadratic attenuation factors
77
        - \f$d = |L_{dir}|\f$
78
        - \f$\theta, \phi, f\f$ are the spotlight inner angle, outer angle and falloff
79
        - \f$\rho = \langle L_{dir} , L_{dcs} \rangle \f$ where \f$L_{dcs}\f$ is the light direction in camera space
80
81
        The defaults when a light is created is pure white diffuse light, with no
82
        attenuation (does not decrease with distance) and a range of 1000 world units.
83
84
        Lights are created by using the SceneManager::createLight method. They subsequently must be
85
        added to a SceneNode to orient them in the scene and to allow moving them.
86
87
        Remember also that dynamic lights rely on modifying the colour of vertices based on the position of
88
        the light compared to an object's vertex normals. Dynamic lighting will only look good if the
89
        object being lit has a fair level of tessellation and the normals are properly set. This is particularly
90
        true for the spotlight which will only look right on highly tessellated models. In the future OGRE may be
91
        extended for certain scene types so an alternative to the standard dynamic lighting may be used, such
92
            as dynamic lightmaps.
93
    */
94
    class _OgreExport Light : public MovableObject
95
    {
96
    public:
97
        /// Temp tag used for sorting
98
        Real tempSquareDist;
99
        /// internal method for calculating current squared distance from some world position
100
        void _calcTempSquareDist(const Vector3& worldPos);
101
102
        /// Defines the type of light
103
        enum LightTypes : uint8
104
        {
105
            /// Point light sources give off light equally in all directions, so require only position not direction
106
            LT_POINT = 0,
107
            /// Directional lights simulate parallel light beams from a distant source, hence have direction but no position
108
            LT_DIRECTIONAL = 1,
109
            /// Spotlights simulate a cone of light from a source so require position and direction, plus extra values for falloff
110
            LT_SPOTLIGHT = 2,
111
            /// A rectangular area light, requires position, direction, width and height
112
            LT_RECTLIGHT = 3
113
        };
114
115
        /** Default constructor (for Python mainly).
116
        */
117
        Light();
118
119
        /** Normal constructor. Should not be called directly, but rather the SceneManager::createLight method should be used.
120
        */
121
        Light(const String& name);
122
123
        /** Standard destructor.
124
        */
125
        ~Light();
126
127
        /** Sets the type of light - see LightTypes for more info.
128
        */
129
        void setType(LightTypes type);
130
131
        /** Returns the light type.
132
        */
133
        LightTypes getType(void) const;
134
135
        /** Sets the colour of the diffuse light given off by this source.
136
137
            Material objects have ambient, diffuse and specular values which indicate how much of each type of
138
            light an object reflects. This value denotes the amount and colour of this type of light the light
139
            exudes into the scene. The actual appearance of objects is a combination of the two.
140
        @par
141
            Diffuse light simulates the typical light emanating from light sources and affects the base colour
142
            of objects together with ambient light.
143
        */
144
        void setDiffuseColour(float red, float green, float blue);
145
146
        /// @overload
147
        void setDiffuseColour(const ColourValue& colour);
148
149
        /** Returns the colour of the diffuse light given off by this light source (see setDiffuseColour for more info).
150
        */
151
        const ColourValue& getDiffuseColour(void) const;
152
153
        /** Sets the colour of the specular light given off by this source.
154
155
            Material objects have ambient, diffuse and specular values which indicate how much of each type of
156
            light an object reflects. This value denotes the amount and colour of this type of light the light
157
            exudes into the scene. The actual appearance of objects is a combination of the two.
158
        @par
159
            Specular light affects the appearance of shiny highlights on objects, and is also dependent on the
160
            'shininess' Material value.
161
        */
162
        void setSpecularColour(float red, float green, float blue);
163
164
        /// @overload
165
        void setSpecularColour(const ColourValue& colour);
166
167
        /** Returns the colour of specular light given off by this light source.
168
        */
169
        const ColourValue& getSpecularColour(void) const;
170
171
        /** Sets the attenuation parameters of the light source i.e. how it diminishes with distance.
172
173
            Lights normally get fainter the further they are away. Also, each light is given a maximum range
174
            beyond which it cannot affect any objects.
175
        @par
176
            Light attenuation is not applicable to directional lights since they have an infinite range and
177
            constant intensity.
178
        @par
179
            This follows a standard attenuation approach - see any good 3D text for the details of what they mean
180
            since i don't have room here!
181
        @param range
182
            The absolute upper range of the light in world units.
183
        @param constant
184
            The constant factor in the attenuation formula: 1.0 means never attenuate, 0.0 is complete attenuation.
185
        @param linear
186
            The linear factor in the attenuation formula: 1 means attenuate evenly over the distance.
187
        @param quadratic
188
            The quadratic factor in the attenuation formula: adds a curvature to the attenuation formula.
189
        */
190
        void setAttenuation(float range, float constant, float linear, float quadratic)
191
0
        {
192
0
            mAttenuation = {range, constant, linear, quadratic};
193
0
        }
194
195
        /** Returns the absolute upper range of the light.
196
        */
197
0
        float getAttenuationRange(void) const { return mAttenuation[0]; }
198
199
        /** Returns the constant factor in the attenuation formula.
200
        */
201
0
        float getAttenuationConstant(void) const { return mAttenuation[1]; }
202
203
        /** Returns the linear factor in the attenuation formula.
204
        */
205
0
        float getAttenuationLinear(void) const { return mAttenuation[2]; }
206
207
        /** Returns the quadric factor in the attenuation formula.
208
        */
209
0
        float getAttenuationQuadric(void) const { return mAttenuation[3]; }
210
211
        /// Returns all the attenuation params as (range, constant, linear, quadratic)
212
0
        const Vector4f& getAttenuation() const { return mAttenuation; }
213
214
#ifdef OGRE_NODELESS_POSITIONING
215
        /** Sets the position of the light.
216
217
            Applicable to point lights and spotlights only.
218
        @note
219
            This will be overridden if the light is attached to a SceneNode.
220
        @deprecated attach to SceneNode and use SceneNode::setPosition
221
        */
222
        OGRE_DEPRECATED void setPosition(Real x, Real y, Real z);
223
224
        /// @overload
225
        /// @deprecated attach to SceneNode and use SceneNode::setPosition
226
        OGRE_DEPRECATED void setPosition(const Vector3& vec);
227
228
        /** Returns the position of the light.
229
        @note
230
            Applicable to point lights and spotlights only.
231
        @deprecated attach to SceneNode and use SceneNode::getPosition
232
        */
233
        OGRE_DEPRECATED const Vector3& getPosition(void) const;
234
235
        /// @deprecated attach to SceneNode and use SceneNode::setDirection
236
        OGRE_DEPRECATED void setDirection(Real x, Real y, Real z);
237
238
        /// @overload
239
        /// @deprecated attach to SceneNode and use SceneNode::setDirection
240
        OGRE_DEPRECATED void setDirection(const Vector3& vec);
241
242
        /**
243
        @deprecated attach to SceneNode and use SceneNode::getLocalAxes
244
        */
245
        OGRE_DEPRECATED const Vector3& getDirection(void) const;
246
247
        void _notifyAttached(Node* parent, bool isTagPoint = false) override;
248
        void _notifyMoved(void) override;
249
#endif
250
        /** Sets the range of a spotlight, i.e. the angle of the inner and outer cones
251
            and the rate of falloff between them.
252
        @param innerAngle
253
            Angle covered by the bright inner cone
254
            @note
255
                The inner cone applicable only to Direct3D, it'll always treat as zero in OpenGL.
256
        @param outerAngle
257
            Angle covered by the outer cone
258
        @param falloff
259
            The rate of falloff between the inner and outer cones. 1.0 means a linear falloff,
260
            less means slower falloff, higher means faster falloff.
261
        */
262
        void setSpotlightRange(const Radian& innerAngle, const Radian& outerAngle, Real falloff = 1.0);
263
264
        /** Returns the angle covered by the spotlights inner cone.
265
        */
266
        const Radian& getSpotlightInnerAngle(void) const;
267
268
        /** Returns the angle covered by the spotlights outer cone.
269
        */
270
        const Radian& getSpotlightOuterAngle(void) const;
271
272
        /** Returns the falloff between the inner and outer cones of the spotlight.
273
        */
274
        Real getSpotlightFalloff(void) const;
275
276
        /** Sets the angle covered by the spotlights inner cone.
277
        */
278
        void setSpotlightInnerAngle(const Radian& val);
279
280
        /** Sets the angle covered by the spotlights outer cone.
281
        */
282
        void setSpotlightOuterAngle(const Radian& val);
283
284
        /** Sets the falloff between the inner and outer cones of the spotlight.
285
        */
286
        void setSpotlightFalloff(Real val);
287
288
        /** Set the near clip plane distance to be used by spotlights that use light
289
            clipping, allowing you to render spots as if they start from further
290
            down their frustum. 
291
        @param nearClip
292
            The near distance.
293
        */
294
0
        void setSpotlightNearClipDistance(Real nearClip) { mSpotNearClip = nearClip; }
295
        
296
        /** Returns the near clip plane distance to be used by spotlights that use light
297
            clipping.
298
        */
299
0
        Real getSpotlightNearClipDistance() const { return mSpotNearClip; }
300
301
        /** Sets the size of the area covered by a area light. */
302
0
        void setSourceSize(float width, float height) { mSourceSize = {width, height}; }
303
0
        Vector2f getSourceSize() const { return mSourceSize; }
304
305
        /// The width half vector of the source in world space
306
        Vector3f getDerivedSourceHalfWidth() const;
307
308
        /// The height half vector of the source in world space
309
        Vector3f getDerivedSourceHalfHeight() const;
310
311
        /** Set a scaling factor to indicate the relative power of a light.
312
313
            This factor is only useful in High Dynamic Range (HDR) rendering.
314
            You can bind it to a shader variable to take it into account,
315
            @see GpuProgramParameters
316
        @param power
317
            The power rating of this light, default is 1.0.
318
        */
319
        void setPowerScale(Real power);
320
321
        /** Returns the scaling factor which indicates the relative power of a
322
            light.
323
        */
324
        Real getPowerScale(void) const;
325
326
0
        Real getBoundingRadius(void) const override { return 0; }
327
        const AxisAlignedBox& getBoundingBox(void) const override;
328
329
0
        void _updateRenderQueue(RenderQueue* queue) override {} // No rendering
330
331
        /** @copydoc MovableObject::getMovableType */
332
        const String& getMovableType(void) const override;
333
334
        /** Retrieves the position of the light including any transform from nodes it is attached to. 
335
        @param cameraRelativeIfSet If set to true, returns data in camera-relative units if that's been set up (render use)
336
        */
337
#ifdef OGRE_NODELESS_POSITIONING
338
        const Vector3& getDerivedPosition(bool cameraRelativeIfSet = false) const;
339
#else
340
        Vector3 getDerivedPosition(bool cameraRelativeIfSet = false) const
341
0
        {
342
0
            assert(mParentNode && "Light must be attached to a SceneNode");
343
0
            auto ret = mParentNode->_getDerivedPosition();
344
0
            if (cameraRelativeIfSet && mCameraToBeRelativeTo)
345
0
                ret -= mCameraToBeRelativeTo->getDerivedPosition();
346
0
            return ret;
347
0
        }
348
#endif
349
350
        /** Retrieves the direction of the light including any transform from nodes it is attached to. */
351
#ifdef OGRE_NODELESS_POSITIONING
352
        const Vector3& getDerivedDirection(void) const;
353
#else
354
        Vector3 getDerivedDirection(void) const
355
0
        {
356
0
            assert(mParentNode && "Light must be attached to a SceneNode");
357
0
            return -mParentNode->_getDerivedOrientation().zAxis();
358
0
        }
359
#endif
360
361
        /** @copydoc MovableObject::setVisible
362
363
            Although lights themselves are not 'visible', setting a light to invisible
364
            means it no longer affects the scene.
365
        */
366
0
        void setVisible(bool visible) { MovableObject::setVisible(visible); }
367
368
        /** Returns the details of this light as a 4D vector.
369
370
            Getting details of a light as a 4D vector can be useful for
371
            doing general calculations between different light types; for
372
            example the vector can represent both position lights (w=1.0f)
373
            and directional lights (w=0.0f) and be used in the same 
374
            calculations.
375
        @param cameraRelativeIfSet
376
            If set to @c true, returns data in camera-relative units if that's been set up (render use).
377
        */
378
        Vector4 getAs4DVector(bool cameraRelativeIfSet = false) const;
379
380
        /** Internal method for calculating the 'near clip volume', which is
381
            the volume formed between the near clip rectangle of the 
382
            camera and the light.
383
384
            This volume is a pyramid for a point/spot light and
385
            a cuboid for a directional light. It can used to detect whether
386
            an object could be casting a shadow on the viewport. Note that
387
            the reference returned is to a shared volume which will be 
388
            reused across calls to this method.
389
        */
390
        virtual const PlaneBoundedVolume& _getNearClipVolume(const Camera* const cam) const;
391
392
        /** Internal method for calculating the clip volumes outside of the 
393
            frustum which can be used to determine which objects are casting
394
            shadow on the frustum as a whole. 
395
396
            Each of the volumes is a pyramid for a point/spot light and
397
            a cuboid for a directional light. 
398
        */
399
        virtual const PlaneBoundedVolumeList& _getFrustumClipVolumes(const Camera* const cam) const;
400
401
        /// Override to return specific type flag
402
        uint32 getTypeFlags(void) const override;
403
404
        /// @copydoc AnimableObject::createAnimableValue
405
        AnimableValuePtr createAnimableValue(const String& valueName) override;
406
407
        /** Set this light to use a custom shadow camera when rendering texture shadows.
408
409
            This changes the shadow camera setup for just this light,  you can set
410
            the shadow camera setup globally using SceneManager::setShadowCameraSetup
411
        @see ShadowCameraSetup
412
        */
413
        void setCustomShadowCameraSetup(const ShadowCameraSetupPtr& customShadowSetup);
414
415
        /** Reset the shadow camera setup to the default. 
416
        @see ShadowCameraSetup
417
        */
418
        void resetCustomShadowCameraSetup(void);
419
420
        /** Return a pointer to the custom shadow camera setup (null means use SceneManager global version). */
421
        const ShadowCameraSetupPtr& getCustomShadowCameraSetup(void) const;
422
423
        void visitRenderables(Renderable::Visitor* visitor, 
424
            bool debugRenderables = false) override;
425
426
        /** Returns the index at which this light is in the current render.
427
428
            Lights will be present in the in a list for every renderable,
429
            detected and sorted appropriately, and sometimes it's useful to know 
430
            what position in that list a given light occupies. This can vary 
431
            from frame to frame (and object to object) so you should not use this
432
            value unless you're sure the context is correct.
433
        */
434
0
        size_t _getIndexInFrame() const { return mIndexInFrame; }
435
0
        void _notifyIndexInFrame(size_t i) { mIndexInFrame = i; }
436
        
437
        /** Sets the maximum distance away from the camera that shadows
438
            by this light will be visible.
439
440
            Shadow techniques can be expensive, therefore it is a good idea
441
            to limit them to being rendered close to the camera if possible,
442
            and to skip the expense of rendering shadows for distance objects.
443
            This method allows you to set the distance at which shadows casters
444
            will be culled.
445
        */
446
        void setShadowFarDistance(Real distance);
447
        /** Tells the light to use the shadow far distance of the SceneManager
448
        */
449
        void resetShadowFarDistance(void);
450
        /** Returns the maximum distance away from the camera that shadows
451
            by this light will be visible.
452
        */
453
        Real getShadowFarDistance(void) const;
454
        Real getShadowFarDistanceSquared(void) const;
455
456
        /** Set the near clip plane distance to be used by the shadow camera, if
457
            this light casts texture shadows.
458
        @param nearClip
459
            The distance, or -1 to use the main camera setting.
460
        */
461
0
        void setShadowNearClipDistance(Real nearClip) { mShadowNearClipDist = nearClip; }
462
463
        /** Returns the near clip plane distance to be used by the shadow camera, if
464
            this light casts texture shadows.
465
466
            May be zero if the light doesn't have it's own near distance set;
467
            use _deriveShadowNearDistance for a version guaranteed to give a result.
468
        */
469
0
        Real getShadowNearClipDistance() const { return mShadowNearClipDist; }
470
471
        /** Derive a shadow camera near distance from either the light, or
472
            from the main camera if the light doesn't have its own setting.
473
        */
474
        Real _deriveShadowNearClipDistance(const Camera* maincam) const;
475
476
        /** Set the far clip plane distance to be used by the shadow camera, if
477
            this light casts texture shadows.
478
479
            This is different from the 'shadow far distance', which is
480
            always measured from the main camera. This distance is the far clip plane
481
            of the light camera.
482
        @param farClip
483
            The distance, or -1 to use the main camera setting.
484
        */
485
0
        void setShadowFarClipDistance(Real farClip) { mShadowFarClipDist = farClip; }
486
487
        /** Returns the far clip plane distance to be used by the shadow camera, if
488
            this light casts texture shadows.
489
490
            May be zero if the light doesn't have it's own far distance set;
491
            use _deriveShadowfarDistance for a version guaranteed to give a result.
492
        */
493
0
        Real getShadowFarClipDistance() const { return mShadowFarClipDist; }
494
495
        /** Derive a shadow camera far distance
496
        */
497
        Real _deriveShadowFarClipDistance() const;
498
        /// @deprecated use _deriveShadowFarClipDistance()
499
        OGRE_DEPRECATED Real _deriveShadowFarClipDistance(const Camera*) const
500
0
        {
501
0
            return _deriveShadowFarClipDistance();
502
0
        }
503
504
        /// Set the camera which this light should be relative to, for camera-relative rendering
505
        void _setCameraRelative(Camera* cam);
506
507
        /** Sets a custom parameter for this Light, which may be used to 
508
            drive calculations for this specific Renderable, like GPU program parameters.
509
510
            Calling this method simply associates a numeric index with a 4-dimensional
511
            value for this specific Light. This is most useful if the material
512
            which this Renderable uses a vertex or fragment program, and has an 
513
            ACT_LIGHT_CUSTOM parameter entry. This parameter entry can refer to the
514
            index you specify as part of this call, thereby mapping a custom
515
            parameter for this renderable to a program parameter.
516
        @param index
517
            The index with which to associate the value. Note that this
518
            does not have to start at 0, and can include gaps. It also has no direct
519
            correlation with a GPU program parameter index - the mapping between the
520
            two is performed by the ACT_LIGHT_CUSTOM entry, if that is used.
521
        @param value
522
            The value to associate.
523
        */
524
        void setCustomParameter(uint16 index, const Vector4f& value);
525
526
        /** Returns the custom value associated with this Light at the given index.
527
        @param index Index of the parameter to retrieve
528
        @see setCustomParameter for full details.
529
        */
530
        const Vector4f& getCustomParameter(uint16 index) const;
531
532
        /** Update a custom GpuProgramParameters constant which is derived from 
533
            information only this Light knows.
534
535
            This method allows a Light to map in a custom GPU program parameter
536
            based on it's own data. This is represented by a GPU auto parameter
537
            of ACT_LIGHT_CUSTOM, and to allow there to be more than one of these per
538
            Light, the 'data' field on the auto parameter will identify
539
            which parameter is being updated and on which light. The implementation 
540
            of this method must identify the parameter being updated, and call a 'setConstant' 
541
            method on the passed in GpuProgramParameters object.
542
        @par
543
            You do not need to override this method if you're using the standard
544
            sets of data associated with the Renderable as provided by setCustomParameter
545
            and getCustomParameter. By default, the implementation will map from the
546
            value indexed by the 'constantEntry.data' parameter to a value previously
547
            set by setCustomParameter. But custom Renderables are free to override
548
            this if they want, in any case.
549
        @param paramIndex
550
            The index of the constant being updated
551
        @param constantEntry
552
            The auto constant entry from the program parameters
553
        @param params
554
            The parameters object which this method should call to 
555
            set the updated parameters.
556
        */
557
        virtual void _updateCustomGpuParameter(uint16 paramIndex, 
558
            const GpuProgramParameters::AutoConstantEntry& constantEntry, 
559
            GpuProgramParameters* params) const;
560
                
561
        /** Check whether a sphere is included in the lighted area of the light 
562
        @note 
563
            The function trades accuracy for efficiency. As a result you may get
564
            false-positives (The function should not return any false-negatives).
565
        */
566
        bool isInLightRange(const Ogre::Sphere& sphere) const;
567
        
568
        /** Check whether a bounding box is included in the lighted area of the light
569
        @note 
570
            The function trades accuracy for efficiency. As a result you may get
571
            false-positives (The function should not return any false-negatives).
572
        */
573
        bool isInLightRange(const Ogre::AxisAlignedBox& container) const;
574
    
575
    private:
576
#ifdef OGRE_NODELESS_POSITIONING
577
        Vector3 mPosition;
578
        Vector3 mDirection;
579
        mutable Vector3 mDerivedPosition;
580
        mutable Vector3 mDerivedDirection;
581
        // Slightly hacky but unless we separate observed light render state from main Light...
582
        mutable Vector3 mDerivedCamRelativePosition;
583
        mutable bool mDerivedCamRelativeDirty;
584
        /// Is the derived transform dirty?
585
        mutable bool mDerivedTransformDirty;
586
587
        /// Internal method for synchronising with parent node (if any)
588
        virtual void update(void) const;
589
#endif
590
        ColourValue mDiffuse;
591
        ColourValue mSpecular;
592
593
        Radian mSpotOuter;
594
        Radian mSpotInner;
595
        Real mSpotFalloff;
596
        Real mSpotNearClip;
597
        // range, const, linear, quad coeffs
598
        Vector4f mAttenuation;
599
        Real mShadowFarDist;
600
        Real mShadowFarDistSquared;
601
        size_t mIndexInFrame;
602
        
603
        Real mShadowNearClipDist;
604
        Real mShadowFarClipDist;
605
606
        Camera* mCameraToBeRelativeTo;
607
608
        mutable PlaneBoundedVolume mNearClipVolume;
609
        mutable PlaneBoundedVolumeList mFrustumClipVolumes;
610
611
        /// Pointer to a custom shadow camera setup.
612
        mutable ShadowCameraSetupPtr mCustomShadowCameraSetup;
613
614
        typedef std::map<uint16, Vector4f> CustomParameterMap;
615
        /// Stores the custom parameters for the light.
616
        CustomParameterMap mCustomParameters;
617
        Real mPowerScale;
618
        Vector2f mSourceSize;
619
        LightTypes mLightType;
620
        bool mOwnShadowFarDist;
621
    };
622
    /** @} */
623
    /** @} */
624
625
#include "OgreHeaderSuffix.h"
626
627
} // namespace Ogre
628
#endif // _LIGHT_H__