Coverage Report

Created: 2025-12-25 06:34

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/ogre/OgreMain/src/OgreRotationSpline.cpp
Line
Count
Source
1
/*
2
-----------------------------------------------------------------------------
3
This source file is part of OGRE
4
    (Object-oriented Graphics Rendering Engine)
5
For the latest info, see http://www.ogre3d.org/
6
7
Copyright (c) 2000-2014 Torus Knot Software Ltd
8
9
Permission is hereby granted, free of charge, to any person obtaining a copy
10
of this software and associated documentation files (the "Software"), to deal
11
in the Software without restriction, including without limitation the rights
12
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13
copies of the Software, and to permit persons to whom the Software is
14
furnished to do so, subject to the following conditions:
15
16
The above copyright notice and this permission notice shall be included in
17
all copies or substantial portions of the Software.
18
19
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
22
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25
THE SOFTWARE.
26
-----------------------------------------------------------------------------
27
*/
28
#include "OgreStableHeaders.h"
29
#include "OgreRotationalSpline.h"
30
31
32
33
namespace Ogre {
34
35
    //---------------------------------------------------------------------
36
    RotationalSpline::RotationalSpline()
37
0
        : mAutoCalc(true)
38
0
    {
39
0
    }
40
    //---------------------------------------------------------------------
41
    RotationalSpline::~RotationalSpline()
42
0
    {
43
0
    }
44
    //---------------------------------------------------------------------
45
    void RotationalSpline::addPoint(const Quaternion& p)
46
0
    {
47
0
        mPoints.push_back(p);
48
0
        if (mAutoCalc)
49
0
        {
50
0
            recalcTangents();
51
0
        }
52
0
    }
53
    //---------------------------------------------------------------------
54
    Quaternion RotationalSpline::interpolate(Real t, bool useShortestPath)
55
0
    {
56
        // Work out which segment this is in
57
0
        Real fSeg = t * (mPoints.size() - 1);
58
0
        unsigned int segIdx = (unsigned int)fSeg;
59
        // Apportion t 
60
0
        t = fSeg - segIdx;
61
62
0
        return interpolate(segIdx, t, useShortestPath);
63
64
0
    }
65
    //---------------------------------------------------------------------
66
    Quaternion RotationalSpline::interpolate(unsigned int fromIndex, Real t,
67
        bool useShortestPath)
68
0
    {
69
        // Bounds check
70
0
        assert (fromIndex < mPoints.size() &&
71
0
            "fromIndex out of bounds");
72
73
0
        if ((fromIndex + 1) == mPoints.size())
74
0
        {
75
            // Duff request, cannot blend to nothing
76
            // Just return source
77
0
            return mPoints[fromIndex];
78
79
0
        }
80
        // Fast special cases
81
0
        if (t == 0.0f)
82
0
        {
83
0
            return mPoints[fromIndex];
84
0
        }
85
0
        else if(t == 1.0f)
86
0
        {
87
0
            return mPoints[fromIndex + 1];
88
0
        }
89
90
        // Real interpolation
91
        // Use squad using tangents we've already set up
92
0
        Quaternion &p = mPoints[fromIndex];
93
0
        Quaternion &q = mPoints[fromIndex+1];
94
0
        Quaternion &a = mTangents[fromIndex];
95
0
        Quaternion &b = mTangents[fromIndex+1];
96
97
        // NB interpolate to nearest rotation
98
0
        return Quaternion::Squad(t, p, a, b, q, useShortestPath);
99
100
0
    }
101
    //---------------------------------------------------------------------
102
    void RotationalSpline::recalcTangents(void)
103
0
    {
104
        // ShoeMake (1987) approach
105
        // Just like Catmull-Rom really, just more gnarly
106
        // And no, I don't understand how to derive this!
107
        //
108
        // let p = point[i], pInv = p.Inverse
109
        // tangent[i] = p * exp( -0.25 * ( log(pInv * point[i+1]) + log(pInv * point[i-1]) ) )
110
        //
111
        // Assume endpoint tangents are parallel with line with neighbour
112
113
0
        unsigned int i, numPoints;
114
0
        bool isClosed;
115
116
0
        numPoints = (unsigned int)mPoints.size();
117
118
0
        if (numPoints < 2)
119
0
        {
120
            // Can't do anything yet
121
0
            return;
122
0
        }
123
124
0
        mTangents.resize(numPoints);
125
126
0
        if (mPoints[0] == mPoints[numPoints-1])
127
0
        {
128
0
            isClosed = true;
129
0
        }
130
0
        else
131
0
        {
132
0
            isClosed = false;
133
0
        }
134
135
0
        Quaternion invp, part1, part2, preExp;
136
0
        for(i = 0; i < numPoints; ++i)
137
0
        {
138
0
            Quaternion &p = mPoints[i];
139
0
            invp = p.Inverse();
140
141
0
            if (i ==0)
142
0
            {
143
                // special case start
144
0
                part1 = (invp * mPoints[i+1]).Log();
145
0
                if (isClosed)
146
0
                {
147
                    // Use numPoints-2 since numPoints-1 == end == start == this one
148
0
                    part2 = (invp * mPoints[numPoints-2]).Log();
149
0
                }
150
0
                else
151
0
                {
152
0
                    part2 = (invp * p).Log();
153
0
                }
154
0
            }
155
0
            else if (i == numPoints-1)
156
0
            {
157
                // special case end
158
0
                if (isClosed)
159
0
                {
160
                    // Wrap to [1] (not [0], this is the same as end == this one)
161
0
                    part1 = (invp * mPoints[1]).Log();
162
0
                }
163
0
                else
164
0
                {
165
0
                    part1 = (invp * p).Log();
166
0
                }
167
0
                part2 = (invp * mPoints[i-1]).Log();
168
0
            }
169
0
            else
170
0
            {
171
0
                part1 = (invp * mPoints[i+1]).Log();
172
0
                part2 = (invp * mPoints[i-1]).Log();
173
0
            }
174
175
0
            preExp = -0.25 * (part1 + part2);
176
0
            mTangents[i] = p * preExp.Exp();
177
            
178
0
        }
179
180
181
182
0
    }
183
    //---------------------------------------------------------------------
184
    const Quaternion& RotationalSpline::getPoint(unsigned short index) const
185
0
    {
186
0
        assert (index < mPoints.size() && "Point index is out of bounds!!");
187
188
0
        return mPoints[index];
189
0
    }
190
    //---------------------------------------------------------------------
191
    unsigned short RotationalSpline::getNumPoints(void) const
192
0
    {
193
0
        return (unsigned short)mPoints.size();
194
0
    }
195
    //---------------------------------------------------------------------
196
    void RotationalSpline::clear(void)
197
0
    {
198
0
        mPoints.clear();
199
0
        mTangents.clear();
200
0
    }
201
    //---------------------------------------------------------------------
202
    void RotationalSpline::updatePoint(unsigned short index, const Quaternion& value)
203
0
    {
204
0
        assert (index < mPoints.size() && "Point index is out of bounds!!");
205
206
0
        mPoints[index] = value;
207
0
        if (mAutoCalc)
208
0
        {
209
0
            recalcTangents();
210
0
        }
211
0
    }
212
    //---------------------------------------------------------------------
213
    void RotationalSpline::setAutoCalculate(bool autoCalc)
214
0
    {
215
0
        mAutoCalc = autoCalc;
216
0
    }
217
    //---------------------------------------------------------------------
218
219
220
221
}
222
223
224
225