Coverage Report

Created: 2023-06-07 08:11

/work/install-coverage/include/opencv4/opencv2/calib3d.hpp
Line
Count
Source (jump to first uncovered line)
1
/*M///////////////////////////////////////////////////////////////////////////////////////
2
//
3
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4
//
5
//  By downloading, copying, installing or using the software you agree to this license.
6
//  If you do not agree to this license, do not download, install,
7
//  copy or use the software.
8
//
9
//
10
//                          License Agreement
11
//                For Open Source Computer Vision Library
12
//
13
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
16
// Third party copyrights are property of their respective owners.
17
//
18
// Redistribution and use in source and binary forms, with or without modification,
19
// are permitted provided that the following conditions are met:
20
//
21
//   * Redistribution's of source code must retain the above copyright notice,
22
//     this list of conditions and the following disclaimer.
23
//
24
//   * Redistribution's in binary form must reproduce the above copyright notice,
25
//     this list of conditions and the following disclaimer in the documentation
26
//     and/or other materials provided with the distribution.
27
//
28
//   * The name of the copyright holders may not be used to endorse or promote products
29
//     derived from this software without specific prior written permission.
30
//
31
// This software is provided by the copyright holders and contributors "as is" and
32
// any express or implied warranties, including, but not limited to, the implied
33
// warranties of merchantability and fitness for a particular purpose are disclaimed.
34
// In no event shall the Intel Corporation or contributors be liable for any direct,
35
// indirect, incidental, special, exemplary, or consequential damages
36
// (including, but not limited to, procurement of substitute goods or services;
37
// loss of use, data, or profits; or business interruption) however caused
38
// and on any theory of liability, whether in contract, strict liability,
39
// or tort (including negligence or otherwise) arising in any way out of
40
// the use of this software, even if advised of the possibility of such damage.
41
//
42
//M*/
43
44
#ifndef OPENCV_CALIB3D_HPP
45
#define OPENCV_CALIB3D_HPP
46
47
#include "opencv2/core.hpp"
48
#include "opencv2/core/types.hpp"
49
#include "opencv2/features2d.hpp"
50
#include "opencv2/core/affine.hpp"
51
52
/**
53
  @defgroup calib3d Camera Calibration and 3D Reconstruction
54
55
The functions in this section use a so-called pinhole camera model. The view of a scene
56
is obtained by projecting a scene's 3D point \f$P_w\f$ into the image plane using a perspective
57
transformation which forms the corresponding pixel \f$p\f$. Both \f$P_w\f$ and \f$p\f$ are
58
represented in homogeneous coordinates, i.e. as 3D and 2D homogeneous vector respectively. You will
59
find a brief introduction to projective geometry, homogeneous vectors and homogeneous
60
transformations at the end of this section's introduction. For more succinct notation, we often drop
61
the 'homogeneous' and say vector instead of homogeneous vector.
62
63
The distortion-free projective transformation given by a  pinhole camera model is shown below.
64
65
\f[s \; p = A \begin{bmatrix} R|t \end{bmatrix} P_w,\f]
66
67
where \f$P_w\f$ is a 3D point expressed with respect to the world coordinate system,
68
\f$p\f$ is a 2D pixel in the image plane, \f$A\f$ is the camera intrinsic matrix,
69
\f$R\f$ and \f$t\f$ are the rotation and translation that describe the change of coordinates from
70
world to camera coordinate systems (or camera frame) and \f$s\f$ is the projective transformation's
71
arbitrary scaling and not part of the camera model.
72
73
The camera intrinsic matrix \f$A\f$ (notation used as in @cite Zhang2000 and also generally notated
74
as \f$K\f$) projects 3D points given in the camera coordinate system to 2D pixel coordinates, i.e.
75
76
\f[p = A P_c.\f]
77
78
The camera intrinsic matrix \f$A\f$ is composed of the focal lengths \f$f_x\f$ and \f$f_y\f$, which are
79
expressed in pixel units, and the principal point \f$(c_x, c_y)\f$, that is usually close to the
80
image center:
81
82
\f[A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1},\f]
83
84
and thus
85
86
\f[s \vecthree{u}{v}{1} = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1} \vecthree{X_c}{Y_c}{Z_c}.\f]
87
88
The matrix of intrinsic parameters does not depend on the scene viewed. So, once estimated, it can
89
be re-used as long as the focal length is fixed (in case of a zoom lens). Thus, if an image from the
90
camera is scaled by a factor, all of these parameters need to be scaled (multiplied/divided,
91
respectively) by the same factor.
92
93
The joint rotation-translation matrix \f$[R|t]\f$ is the matrix product of a projective
94
transformation and a homogeneous transformation. The 3-by-4 projective transformation maps 3D points
95
represented in camera coordinates to 2D points in the image plane and represented in normalized
96
camera coordinates \f$x' = X_c / Z_c\f$ and \f$y' = Y_c / Z_c\f$:
97
98
\f[Z_c \begin{bmatrix}
99
x' \\
100
y' \\
101
1
102
\end{bmatrix} = \begin{bmatrix}
103
1 & 0 & 0 & 0 \\
104
0 & 1 & 0 & 0 \\
105
0 & 0 & 1 & 0
106
\end{bmatrix}
107
\begin{bmatrix}
108
X_c \\
109
Y_c \\
110
Z_c \\
111
1
112
\end{bmatrix}.\f]
113
114
The homogeneous transformation is encoded by the extrinsic parameters \f$R\f$ and \f$t\f$ and
115
represents the change of basis from world coordinate system \f$w\f$ to the camera coordinate sytem
116
\f$c\f$. Thus, given the representation of the point \f$P\f$ in world coordinates, \f$P_w\f$, we
117
obtain \f$P\f$'s representation in the camera coordinate system, \f$P_c\f$, by
118
119
\f[P_c = \begin{bmatrix}
120
R & t \\
121
0 & 1
122
\end{bmatrix} P_w,\f]
123
124
This homogeneous transformation is composed out of \f$R\f$, a 3-by-3 rotation matrix, and \f$t\f$, a
125
3-by-1 translation vector:
126
127
\f[\begin{bmatrix}
128
R & t \\
129
0 & 1
130
\end{bmatrix} = \begin{bmatrix}
131
r_{11} & r_{12} & r_{13} & t_x \\
132
r_{21} & r_{22} & r_{23} & t_y \\
133
r_{31} & r_{32} & r_{33} & t_z \\
134
0 & 0 & 0 & 1
135
\end{bmatrix},
136
\f]
137
138
and therefore
139
140
\f[\begin{bmatrix}
141
X_c \\
142
Y_c \\
143
Z_c \\
144
1
145
\end{bmatrix} = \begin{bmatrix}
146
r_{11} & r_{12} & r_{13} & t_x \\
147
r_{21} & r_{22} & r_{23} & t_y \\
148
r_{31} & r_{32} & r_{33} & t_z \\
149
0 & 0 & 0 & 1
150
\end{bmatrix}
151
\begin{bmatrix}
152
X_w \\
153
Y_w \\
154
Z_w \\
155
1
156
\end{bmatrix}.\f]
157
158
Combining the projective transformation and the homogeneous transformation, we obtain the projective
159
transformation that maps 3D points in world coordinates into 2D points in the image plane and in
160
normalized camera coordinates:
161
162
\f[Z_c \begin{bmatrix}
163
x' \\
164
y' \\
165
1
166
\end{bmatrix} = \begin{bmatrix} R|t \end{bmatrix} \begin{bmatrix}
167
X_w \\
168
Y_w \\
169
Z_w \\
170
1
171
\end{bmatrix} = \begin{bmatrix}
172
r_{11} & r_{12} & r_{13} & t_x \\
173
r_{21} & r_{22} & r_{23} & t_y \\
174
r_{31} & r_{32} & r_{33} & t_z
175
\end{bmatrix}
176
\begin{bmatrix}
177
X_w \\
178
Y_w \\
179
Z_w \\
180
1
181
\end{bmatrix},\f]
182
183
with \f$x' = X_c / Z_c\f$ and \f$y' = Y_c / Z_c\f$. Putting the equations for instrincs and extrinsics together, we can write out
184
\f$s \; p = A \begin{bmatrix} R|t \end{bmatrix} P_w\f$ as
185
186
\f[s \vecthree{u}{v}{1} = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}
187
\begin{bmatrix}
188
r_{11} & r_{12} & r_{13} & t_x \\
189
r_{21} & r_{22} & r_{23} & t_y \\
190
r_{31} & r_{32} & r_{33} & t_z
191
\end{bmatrix}
192
\begin{bmatrix}
193
X_w \\
194
Y_w \\
195
Z_w \\
196
1
197
\end{bmatrix}.\f]
198
199
If \f$Z_c \ne 0\f$, the transformation above is equivalent to the following,
200
201
\f[\begin{bmatrix}
202
u \\
203
v
204
\end{bmatrix} = \begin{bmatrix}
205
f_x X_c/Z_c + c_x \\
206
f_y Y_c/Z_c + c_y
207
\end{bmatrix}\f]
208
209
with
210
211
\f[\vecthree{X_c}{Y_c}{Z_c} = \begin{bmatrix}
212
R|t
213
\end{bmatrix} \begin{bmatrix}
214
X_w \\
215
Y_w \\
216
Z_w \\
217
1
218
\end{bmatrix}.\f]
219
220
The following figure illustrates the pinhole camera model.
221
222
![Pinhole camera model](pics/pinhole_camera_model.png)
223
224
Real lenses usually have some distortion, mostly radial distortion, and slight tangential distortion.
225
So, the above model is extended as:
226
227
\f[\begin{bmatrix}
228
u \\
229
v
230
\end{bmatrix} = \begin{bmatrix}
231
f_x x'' + c_x \\
232
f_y y'' + c_y
233
\end{bmatrix}\f]
234
235
where
236
237
\f[\begin{bmatrix}
238
x'' \\
239
y''
240
\end{bmatrix} = \begin{bmatrix}
241
x' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} + 2 p_1 x' y' + p_2(r^2 + 2 x'^2) + s_1 r^2 + s_2 r^4 \\
242
y' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} + p_1 (r^2 + 2 y'^2) + 2 p_2 x' y' + s_3 r^2 + s_4 r^4 \\
243
\end{bmatrix}\f]
244
245
with
246
247
\f[r^2 = x'^2 + y'^2\f]
248
249
and
250
251
\f[\begin{bmatrix}
252
x'\\
253
y'
254
\end{bmatrix} = \begin{bmatrix}
255
X_c/Z_c \\
256
Y_c/Z_c
257
\end{bmatrix},\f]
258
259
if \f$Z_c \ne 0\f$.
260
261
The distortion parameters are the radial coefficients \f$k_1\f$, \f$k_2\f$, \f$k_3\f$, \f$k_4\f$, \f$k_5\f$, and \f$k_6\f$
262
,\f$p_1\f$ and \f$p_2\f$ are the tangential distortion coefficients, and \f$s_1\f$, \f$s_2\f$, \f$s_3\f$, and \f$s_4\f$,
263
are the thin prism distortion coefficients. Higher-order coefficients are not considered in OpenCV.
264
265
The next figures show two common types of radial distortion: barrel distortion
266
(\f$ 1 + k_1 r^2 + k_2 r^4 + k_3 r^6 \f$ monotonically decreasing)
267
and pincushion distortion (\f$ 1 + k_1 r^2 + k_2 r^4 + k_3 r^6 \f$ monotonically increasing).
268
Radial distortion is always monotonic for real lenses,
269
and if the estimator produces a non-monotonic result,
270
this should be considered a calibration failure.
271
More generally, radial distortion must be monotonic and the distortion function must be bijective.
272
A failed estimation result may look deceptively good near the image center
273
but will work poorly in e.g. AR/SFM applications.
274
The optimization method used in OpenCV camera calibration does not include these constraints as
275
the framework does not support the required integer programming and polynomial inequalities.
276
See [issue #15992](https://github.com/opencv/opencv/issues/15992) for additional information.
277
278
![](pics/distortion_examples.png)
279
![](pics/distortion_examples2.png)
280
281
In some cases, the image sensor may be tilted in order to focus an oblique plane in front of the
282
camera (Scheimpflug principle). This can be useful for particle image velocimetry (PIV) or
283
triangulation with a laser fan. The tilt causes a perspective distortion of \f$x''\f$ and
284
\f$y''\f$. This distortion can be modeled in the following way, see e.g. @cite Louhichi07.
285
286
\f[\begin{bmatrix}
287
u \\
288
v
289
\end{bmatrix} = \begin{bmatrix}
290
f_x x''' + c_x \\
291
f_y y''' + c_y
292
\end{bmatrix},\f]
293
294
where
295
296
\f[s\vecthree{x'''}{y'''}{1} =
297
\vecthreethree{R_{33}(\tau_x, \tau_y)}{0}{-R_{13}(\tau_x, \tau_y)}
298
{0}{R_{33}(\tau_x, \tau_y)}{-R_{23}(\tau_x, \tau_y)}
299
{0}{0}{1} R(\tau_x, \tau_y) \vecthree{x''}{y''}{1}\f]
300
301
and the matrix \f$R(\tau_x, \tau_y)\f$ is defined by two rotations with angular parameter
302
\f$\tau_x\f$ and \f$\tau_y\f$, respectively,
303
304
\f[
305
R(\tau_x, \tau_y) =
306
\vecthreethree{\cos(\tau_y)}{0}{-\sin(\tau_y)}{0}{1}{0}{\sin(\tau_y)}{0}{\cos(\tau_y)}
307
\vecthreethree{1}{0}{0}{0}{\cos(\tau_x)}{\sin(\tau_x)}{0}{-\sin(\tau_x)}{\cos(\tau_x)} =
308
\vecthreethree{\cos(\tau_y)}{\sin(\tau_y)\sin(\tau_x)}{-\sin(\tau_y)\cos(\tau_x)}
309
{0}{\cos(\tau_x)}{\sin(\tau_x)}
310
{\sin(\tau_y)}{-\cos(\tau_y)\sin(\tau_x)}{\cos(\tau_y)\cos(\tau_x)}.
311
\f]
312
313
In the functions below the coefficients are passed or returned as
314
315
\f[(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f]
316
317
vector. That is, if the vector contains four elements, it means that \f$k_3=0\f$ . The distortion
318
coefficients do not depend on the scene viewed. Thus, they also belong to the intrinsic camera
319
parameters. And they remain the same regardless of the captured image resolution. If, for example, a
320
camera has been calibrated on images of 320 x 240 resolution, absolutely the same distortion
321
coefficients can be used for 640 x 480 images from the same camera while \f$f_x\f$, \f$f_y\f$,
322
\f$c_x\f$, and \f$c_y\f$ need to be scaled appropriately.
323
324
The functions below use the above model to do the following:
325
326
-   Project 3D points to the image plane given intrinsic and extrinsic parameters.
327
-   Compute extrinsic parameters given intrinsic parameters, a few 3D points, and their
328
projections.
329
-   Estimate intrinsic and extrinsic camera parameters from several views of a known calibration
330
pattern (every view is described by several 3D-2D point correspondences).
331
-   Estimate the relative position and orientation of the stereo camera "heads" and compute the
332
*rectification* transformation that makes the camera optical axes parallel.
333
334
<B> Homogeneous Coordinates </B><br>
335
Homogeneous Coordinates are a system of coordinates that are used in projective geometry. Their use
336
allows to represent points at infinity by finite coordinates and simplifies formulas when compared
337
to the cartesian counterparts, e.g. they have the advantage that affine transformations can be
338
expressed as linear homogeneous transformation.
339
340
One obtains the homogeneous vector \f$P_h\f$ by appending a 1 along an n-dimensional cartesian
341
vector \f$P\f$ e.g. for a 3D cartesian vector the mapping \f$P \rightarrow P_h\f$ is:
342
343
\f[\begin{bmatrix}
344
X \\
345
Y \\
346
Z
347
\end{bmatrix} \rightarrow \begin{bmatrix}
348
X \\
349
Y \\
350
Z \\
351
1
352
\end{bmatrix}.\f]
353
354
For the inverse mapping \f$P_h \rightarrow P\f$, one divides all elements of the homogeneous vector
355
by its last element, e.g. for a 3D homogeneous vector one gets its 2D cartesian counterpart by:
356
357
\f[\begin{bmatrix}
358
X \\
359
Y \\
360
W
361
\end{bmatrix} \rightarrow \begin{bmatrix}
362
X / W \\
363
Y / W
364
\end{bmatrix},\f]
365
366
if \f$W \ne 0\f$.
367
368
Due to this mapping, all multiples \f$k P_h\f$, for \f$k \ne 0\f$, of a homogeneous point represent
369
the same point \f$P_h\f$. An intuitive understanding of this property is that under a projective
370
transformation, all multiples of \f$P_h\f$ are mapped to the same point. This is the physical
371
observation one does for pinhole cameras, as all points along a ray through the camera's pinhole are
372
projected to the same image point, e.g. all points along the red ray in the image of the pinhole
373
camera model above would be mapped to the same image coordinate. This property is also the source
374
for the scale ambiguity s in the equation of the pinhole camera model.
375
376
As mentioned, by using homogeneous coordinates we can express any change of basis parameterized by
377
\f$R\f$ and \f$t\f$ as a linear transformation, e.g. for the change of basis from coordinate system
378
0 to coordinate system 1 becomes:
379
380
\f[P_1 = R P_0 + t \rightarrow P_{h_1} = \begin{bmatrix}
381
R & t \\
382
0 & 1
383
\end{bmatrix} P_{h_0}.\f]
384
385
@note
386
    -   Many functions in this module take a camera intrinsic matrix as an input parameter. Although all
387
        functions assume the same structure of this parameter, they may name it differently. The
388
        parameter's description, however, will be clear in that a camera intrinsic matrix with the structure
389
        shown above is required.
390
    -   A calibration sample for 3 cameras in a horizontal position can be found at
391
        opencv_source_code/samples/cpp/3calibration.cpp
392
    -   A calibration sample based on a sequence of images can be found at
393
        opencv_source_code/samples/cpp/calibration.cpp
394
    -   A calibration sample in order to do 3D reconstruction can be found at
395
        opencv_source_code/samples/cpp/build3dmodel.cpp
396
    -   A calibration example on stereo calibration can be found at
397
        opencv_source_code/samples/cpp/stereo_calib.cpp
398
    -   A calibration example on stereo matching can be found at
399
        opencv_source_code/samples/cpp/stereo_match.cpp
400
    -   (Python) A camera calibration sample can be found at
401
        opencv_source_code/samples/python/calibrate.py
402
403
  @{
404
    @defgroup calib3d_fisheye Fisheye camera model
405
406
    Definitions: Let P be a point in 3D of coordinates X in the world reference frame (stored in the
407
    matrix X) The coordinate vector of P in the camera reference frame is:
408
409
    \f[Xc = R X + T\f]
410
411
    where R is the rotation matrix corresponding to the rotation vector om: R = rodrigues(om); call x, y
412
    and z the 3 coordinates of Xc:
413
414
    \f[x = Xc_1 \\ y = Xc_2 \\ z = Xc_3\f]
415
416
    The pinhole projection coordinates of P is [a; b] where
417
418
    \f[a = x / z \ and \ b = y / z \\ r^2 = a^2 + b^2 \\ \theta = atan(r)\f]
419
420
    Fisheye distortion:
421
422
    \f[\theta_d = \theta (1 + k_1 \theta^2 + k_2 \theta^4 + k_3 \theta^6 + k_4 \theta^8)\f]
423
424
    The distorted point coordinates are [x'; y'] where
425
426
    \f[x' = (\theta_d / r) a \\ y' = (\theta_d / r) b \f]
427
428
    Finally, conversion into pixel coordinates: The final pixel coordinates vector [u; v] where:
429
430
    \f[u = f_x (x' + \alpha y') + c_x \\
431
    v = f_y y' + c_y\f]
432
433
    Summary:
434
    Generic camera model @cite Kannala2006 with perspective projection and without distortion correction
435
436
    @defgroup calib3d_c C API
437
438
  @}
439
 */
440
441
namespace cv
442
{
443
444
//! @addtogroup calib3d
445
//! @{
446
447
//! type of the robust estimation algorithm
448
enum { LMEDS  = 4,  //!< least-median of squares algorithm
449
       RANSAC = 8,  //!< RANSAC algorithm
450
       RHO    = 16, //!< RHO algorithm
451
       USAC_DEFAULT  = 32, //!< USAC algorithm, default settings
452
       USAC_PARALLEL = 33, //!< USAC, parallel version
453
       USAC_FM_8PTS = 34,  //!< USAC, fundamental matrix 8 points
454
       USAC_FAST = 35,     //!< USAC, fast settings
455
       USAC_ACCURATE = 36, //!< USAC, accurate settings
456
       USAC_PROSAC = 37,   //!< USAC, sorted points, runs PROSAC
457
       USAC_MAGSAC = 38    //!< USAC, runs MAGSAC++
458
     };
459
460
enum SolvePnPMethod {
461
    SOLVEPNP_ITERATIVE   = 0, //!< Pose refinement using non-linear Levenberg-Marquardt minimization scheme @cite Madsen04 @cite Eade13 \n
462
                              //!< Initial solution for non-planar "objectPoints" needs at least 6 points and uses the DLT algorithm. \n
463
                              //!< Initial solution for planar "objectPoints" needs at least 4 points and uses pose from homography decomposition.
464
    SOLVEPNP_EPNP        = 1, //!< EPnP: Efficient Perspective-n-Point Camera Pose Estimation @cite lepetit2009epnp
465
    SOLVEPNP_P3P         = 2, //!< Complete Solution Classification for the Perspective-Three-Point Problem @cite gao2003complete
466
    SOLVEPNP_DLS         = 3, //!< **Broken implementation. Using this flag will fallback to EPnP.** \n
467
                              //!< A Direct Least-Squares (DLS) Method for PnP @cite hesch2011direct
468
    SOLVEPNP_UPNP        = 4, //!< **Broken implementation. Using this flag will fallback to EPnP.** \n
469
                              //!< Exhaustive Linearization for Robust Camera Pose and Focal Length Estimation @cite penate2013exhaustive
470
    SOLVEPNP_AP3P        = 5, //!< An Efficient Algebraic Solution to the Perspective-Three-Point Problem @cite Ke17
471
    SOLVEPNP_IPPE        = 6, //!< Infinitesimal Plane-Based Pose Estimation @cite Collins14 \n
472
                              //!< Object points must be coplanar.
473
    SOLVEPNP_IPPE_SQUARE = 7, //!< Infinitesimal Plane-Based Pose Estimation @cite Collins14 \n
474
                              //!< This is a special case suitable for marker pose estimation.\n
475
                              //!< 4 coplanar object points must be defined in the following order:
476
                              //!<   - point 0: [-squareLength / 2,  squareLength / 2, 0]
477
                              //!<   - point 1: [ squareLength / 2,  squareLength / 2, 0]
478
                              //!<   - point 2: [ squareLength / 2, -squareLength / 2, 0]
479
                              //!<   - point 3: [-squareLength / 2, -squareLength / 2, 0]
480
    SOLVEPNP_SQPNP       = 8, //!< SQPnP: A Consistently Fast and Globally OptimalSolution to the Perspective-n-Point Problem @cite Terzakis2020SQPnP
481
#ifndef CV_DOXYGEN
482
    SOLVEPNP_MAX_COUNT        //!< Used for count
483
#endif
484
};
485
486
enum { CALIB_CB_ADAPTIVE_THRESH = 1,
487
       CALIB_CB_NORMALIZE_IMAGE = 2,
488
       CALIB_CB_FILTER_QUADS    = 4,
489
       CALIB_CB_FAST_CHECK      = 8,
490
       CALIB_CB_EXHAUSTIVE      = 16,
491
       CALIB_CB_ACCURACY        = 32,
492
       CALIB_CB_LARGER          = 64,
493
       CALIB_CB_MARKER          = 128
494
     };
495
496
enum { CALIB_CB_SYMMETRIC_GRID  = 1,
497
       CALIB_CB_ASYMMETRIC_GRID = 2,
498
       CALIB_CB_CLUSTERING      = 4
499
     };
500
501
enum { CALIB_NINTRINSIC          = 18,
502
       CALIB_USE_INTRINSIC_GUESS = 0x00001,
503
       CALIB_FIX_ASPECT_RATIO    = 0x00002,
504
       CALIB_FIX_PRINCIPAL_POINT = 0x00004,
505
       CALIB_ZERO_TANGENT_DIST   = 0x00008,
506
       CALIB_FIX_FOCAL_LENGTH    = 0x00010,
507
       CALIB_FIX_K1              = 0x00020,
508
       CALIB_FIX_K2              = 0x00040,
509
       CALIB_FIX_K3              = 0x00080,
510
       CALIB_FIX_K4              = 0x00800,
511
       CALIB_FIX_K5              = 0x01000,
512
       CALIB_FIX_K6              = 0x02000,
513
       CALIB_RATIONAL_MODEL      = 0x04000,
514
       CALIB_THIN_PRISM_MODEL    = 0x08000,
515
       CALIB_FIX_S1_S2_S3_S4     = 0x10000,
516
       CALIB_TILTED_MODEL        = 0x40000,
517
       CALIB_FIX_TAUX_TAUY       = 0x80000,
518
       CALIB_USE_QR              = 0x100000, //!< use QR instead of SVD decomposition for solving. Faster but potentially less precise
519
       CALIB_FIX_TANGENT_DIST    = 0x200000,
520
       // only for stereo
521
       CALIB_FIX_INTRINSIC       = 0x00100,
522
       CALIB_SAME_FOCAL_LENGTH   = 0x00200,
523
       // for stereo rectification
524
       CALIB_ZERO_DISPARITY      = 0x00400,
525
       CALIB_USE_LU              = (1 << 17), //!< use LU instead of SVD decomposition for solving. much faster but potentially less precise
526
       CALIB_USE_EXTRINSIC_GUESS = (1 << 22)  //!< for stereoCalibrate
527
     };
528
529
//! the algorithm for finding fundamental matrix
530
enum { FM_7POINT = 1, //!< 7-point algorithm
531
       FM_8POINT = 2, //!< 8-point algorithm
532
       FM_LMEDS  = 4, //!< least-median algorithm. 7-point algorithm is used.
533
       FM_RANSAC = 8  //!< RANSAC algorithm. It needs at least 15 points. 7-point algorithm is used.
534
     };
535
536
enum HandEyeCalibrationMethod
537
{
538
    CALIB_HAND_EYE_TSAI         = 0, //!< A New Technique for Fully Autonomous and Efficient 3D Robotics Hand/Eye Calibration @cite Tsai89
539
    CALIB_HAND_EYE_PARK         = 1, //!< Robot Sensor Calibration: Solving AX = XB on the Euclidean Group @cite Park94
540
    CALIB_HAND_EYE_HORAUD       = 2, //!< Hand-eye Calibration @cite Horaud95
541
    CALIB_HAND_EYE_ANDREFF      = 3, //!< On-line Hand-Eye Calibration @cite Andreff99
542
    CALIB_HAND_EYE_DANIILIDIS   = 4  //!< Hand-Eye Calibration Using Dual Quaternions @cite Daniilidis98
543
};
544
545
enum RobotWorldHandEyeCalibrationMethod
546
{
547
    CALIB_ROBOT_WORLD_HAND_EYE_SHAH = 0, //!< Solving the robot-world/hand-eye calibration problem using the kronecker product @cite Shah2013SolvingTR
548
    CALIB_ROBOT_WORLD_HAND_EYE_LI   = 1  //!< Simultaneous robot-world and hand-eye calibration using dual-quaternions and kronecker product @cite Li2010SimultaneousRA
549
};
550
551
enum SamplingMethod { SAMPLING_UNIFORM, SAMPLING_PROGRESSIVE_NAPSAC, SAMPLING_NAPSAC,
552
        SAMPLING_PROSAC };
553
enum LocalOptimMethod {LOCAL_OPTIM_NULL, LOCAL_OPTIM_INNER_LO, LOCAL_OPTIM_INNER_AND_ITER_LO,
554
        LOCAL_OPTIM_GC, LOCAL_OPTIM_SIGMA};
555
enum ScoreMethod {SCORE_METHOD_RANSAC, SCORE_METHOD_MSAC, SCORE_METHOD_MAGSAC, SCORE_METHOD_LMEDS};
556
enum NeighborSearchMethod { NEIGH_FLANN_KNN, NEIGH_GRID, NEIGH_FLANN_RADIUS };
557
558
struct CV_EXPORTS_W_SIMPLE UsacParams
559
{ // in alphabetical order
560
    CV_WRAP UsacParams();
561
    CV_PROP_RW double confidence;
562
    CV_PROP_RW bool isParallel;
563
    CV_PROP_RW int loIterations;
564
    CV_PROP_RW LocalOptimMethod loMethod;
565
    CV_PROP_RW int loSampleSize;
566
    CV_PROP_RW int maxIterations;
567
    CV_PROP_RW NeighborSearchMethod neighborsSearch;
568
    CV_PROP_RW int randomGeneratorState;
569
    CV_PROP_RW SamplingMethod sampler;
570
    CV_PROP_RW ScoreMethod score;
571
    CV_PROP_RW double threshold;
572
};
573
574
/** @brief Converts a rotation matrix to a rotation vector or vice versa.
575
576
@param src Input rotation vector (3x1 or 1x3) or rotation matrix (3x3).
577
@param dst Output rotation matrix (3x3) or rotation vector (3x1 or 1x3), respectively.
578
@param jacobian Optional output Jacobian matrix, 3x9 or 9x3, which is a matrix of partial
579
derivatives of the output array components with respect to the input array components.
580
581
\f[\begin{array}{l} \theta \leftarrow norm(r) \\ r  \leftarrow r/ \theta \\ R =  \cos(\theta) I + (1- \cos{\theta} ) r r^T +  \sin(\theta) \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} \end{array}\f]
582
583
Inverse transformation can be also done easily, since
584
585
\f[\sin ( \theta ) \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} = \frac{R - R^T}{2}\f]
586
587
A rotation vector is a convenient and most compact representation of a rotation matrix (since any
588
rotation matrix has just 3 degrees of freedom). The representation is used in the global 3D geometry
589
optimization procedures like @ref calibrateCamera, @ref stereoCalibrate, or @ref solvePnP .
590
591
@note More information about the computation of the derivative of a 3D rotation matrix with respect to its exponential coordinate
592
can be found in:
593
    - A Compact Formula for the Derivative of a 3-D Rotation in Exponential Coordinates, Guillermo Gallego, Anthony J. Yezzi @cite Gallego2014ACF
594
595
@note Useful information on SE(3) and Lie Groups can be found in:
596
    - A tutorial on SE(3) transformation parameterizations and on-manifold optimization, Jose-Luis Blanco @cite blanco2010tutorial
597
    - Lie Groups for 2D and 3D Transformation, Ethan Eade @cite Eade17
598
    - A micro Lie theory for state estimation in robotics, Joan Solà, Jérémie Deray, Dinesh Atchuthan @cite Sol2018AML
599
 */
600
CV_EXPORTS_W void Rodrigues( InputArray src, OutputArray dst, OutputArray jacobian = noArray() );
601
602
603
604
/** Levenberg-Marquardt solver. Starting with the specified vector of parameters it
605
    optimizes the target vector criteria "err"
606
    (finds local minima of each target vector component absolute value).
607
608
    When needed, it calls user-provided callback.
609
*/
610
class CV_EXPORTS LMSolver : public Algorithm
611
{
612
public:
613
    class CV_EXPORTS Callback
614
    {
615
    public:
616
0
        virtual ~Callback() {}
617
        /**
618
         computes error and Jacobian for the specified vector of parameters
619
620
         @param param the current vector of parameters
621
         @param err output vector of errors: err_i = actual_f_i - ideal_f_i
622
         @param J output Jacobian: J_ij = d(ideal_f_i)/d(param_j)
623
624
         when J=noArray(), it means that it does not need to be computed.
625
         Dimensionality of error vector and param vector can be different.
626
         The callback should explicitly allocate (with "create" method) each output array
627
         (unless it's noArray()).
628
        */
629
        virtual bool compute(InputArray param, OutputArray err, OutputArray J) const = 0;
630
    };
631
632
    /**
633
       Runs Levenberg-Marquardt algorithm using the passed vector of parameters as the start point.
634
       The final vector of parameters (whether the algorithm converged or not) is stored at the same
635
       vector. The method returns the number of iterations used. If it's equal to the previously specified
636
       maxIters, there is a big chance the algorithm did not converge.
637
638
       @param param initial/final vector of parameters.
639
640
       Note that the dimensionality of parameter space is defined by the size of param vector,
641
       and the dimensionality of optimized criteria is defined by the size of err vector
642
       computed by the callback.
643
    */
644
    virtual int run(InputOutputArray param) const = 0;
645
646
    /**
647
       Sets the maximum number of iterations
648
       @param maxIters the number of iterations
649
    */
650
    virtual void setMaxIters(int maxIters) = 0;
651
    /**
652
       Retrieves the current maximum number of iterations
653
    */
654
    virtual int getMaxIters() const = 0;
655
656
    /**
657
       Creates Levenberg-Marquard solver
658
659
       @param cb callback
660
       @param maxIters maximum number of iterations that can be further
661
         modified using setMaxIters() method.
662
    */
663
    static Ptr<LMSolver> create(const Ptr<LMSolver::Callback>& cb, int maxIters);
664
    static Ptr<LMSolver> create(const Ptr<LMSolver::Callback>& cb, int maxIters, double eps);
665
};
666
667
668
669
/** @example samples/cpp/tutorial_code/features2D/Homography/pose_from_homography.cpp
670
An example program about pose estimation from coplanar points
671
672
Check @ref tutorial_homography "the corresponding tutorial" for more details
673
*/
674
675
/** @brief Finds a perspective transformation between two planes.
676
677
@param srcPoints Coordinates of the points in the original plane, a matrix of the type CV_32FC2
678
or vector\<Point2f\> .
679
@param dstPoints Coordinates of the points in the target plane, a matrix of the type CV_32FC2 or
680
a vector\<Point2f\> .
681
@param method Method used to compute a homography matrix. The following methods are possible:
682
-   **0** - a regular method using all the points, i.e., the least squares method
683
-   @ref RANSAC - RANSAC-based robust method
684
-   @ref LMEDS - Least-Median robust method
685
-   @ref RHO - PROSAC-based robust method
686
@param ransacReprojThreshold Maximum allowed reprojection error to treat a point pair as an inlier
687
(used in the RANSAC and RHO methods only). That is, if
688
\f[\| \texttt{dstPoints} _i -  \texttt{convertPointsHomogeneous} ( \texttt{H} \cdot \texttt{srcPoints} _i) \|_2  >  \texttt{ransacReprojThreshold}\f]
689
then the point \f$i\f$ is considered as an outlier. If srcPoints and dstPoints are measured in pixels,
690
it usually makes sense to set this parameter somewhere in the range of 1 to 10.
691
@param mask Optional output mask set by a robust method ( RANSAC or LMeDS ). Note that the input
692
mask values are ignored.
693
@param maxIters The maximum number of RANSAC iterations.
694
@param confidence Confidence level, between 0 and 1.
695
696
The function finds and returns the perspective transformation \f$H\f$ between the source and the
697
destination planes:
698
699
\f[s_i  \vecthree{x'_i}{y'_i}{1} \sim H  \vecthree{x_i}{y_i}{1}\f]
700
701
so that the back-projection error
702
703
\f[\sum _i \left ( x'_i- \frac{h_{11} x_i + h_{12} y_i + h_{13}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2+ \left ( y'_i- \frac{h_{21} x_i + h_{22} y_i + h_{23}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2\f]
704
705
is minimized. If the parameter method is set to the default value 0, the function uses all the point
706
pairs to compute an initial homography estimate with a simple least-squares scheme.
707
708
However, if not all of the point pairs ( \f$srcPoints_i\f$, \f$dstPoints_i\f$ ) fit the rigid perspective
709
transformation (that is, there are some outliers), this initial estimate will be poor. In this case,
710
you can use one of the three robust methods. The methods RANSAC, LMeDS and RHO try many different
711
random subsets of the corresponding point pairs (of four pairs each, collinear pairs are discarded), estimate the homography matrix
712
using this subset and a simple least-squares algorithm, and then compute the quality/goodness of the
713
computed homography (which is the number of inliers for RANSAC or the least median re-projection error for
714
LMeDS). The best subset is then used to produce the initial estimate of the homography matrix and
715
the mask of inliers/outliers.
716
717
Regardless of the method, robust or not, the computed homography matrix is refined further (using
718
inliers only in case of a robust method) with the Levenberg-Marquardt method to reduce the
719
re-projection error even more.
720
721
The methods RANSAC and RHO can handle practically any ratio of outliers but need a threshold to
722
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
723
correctly only when there are more than 50% of inliers. Finally, if there are no outliers and the
724
noise is rather small, use the default method (method=0).
725
726
The function is used to find initial intrinsic and extrinsic matrices. Homography matrix is
727
determined up to a scale. Thus, it is normalized so that \f$h_{33}=1\f$. Note that whenever an \f$H\f$ matrix
728
cannot be estimated, an empty one will be returned.
729
730
@sa
731
getAffineTransform, estimateAffine2D, estimateAffinePartial2D, getPerspectiveTransform, warpPerspective,
732
perspectiveTransform
733
 */
734
CV_EXPORTS_W Mat findHomography( InputArray srcPoints, InputArray dstPoints,
735
                                 int method = 0, double ransacReprojThreshold = 3,
736
                                 OutputArray mask=noArray(), const int maxIters = 2000,
737
                                 const double confidence = 0.995);
738
739
/** @overload */
740
CV_EXPORTS Mat findHomography( InputArray srcPoints, InputArray dstPoints,
741
                               OutputArray mask, int method = 0, double ransacReprojThreshold = 3 );
742
743
744
CV_EXPORTS_W Mat findHomography(InputArray srcPoints, InputArray dstPoints, OutputArray mask,
745
                   const UsacParams &params);
746
747
/** @brief Computes an RQ decomposition of 3x3 matrices.
748
749
@param src 3x3 input matrix.
750
@param mtxR Output 3x3 upper-triangular matrix.
751
@param mtxQ Output 3x3 orthogonal matrix.
752
@param Qx Optional output 3x3 rotation matrix around x-axis.
753
@param Qy Optional output 3x3 rotation matrix around y-axis.
754
@param Qz Optional output 3x3 rotation matrix around z-axis.
755
756
The function computes a RQ decomposition using the given rotations. This function is used in
757
#decomposeProjectionMatrix to decompose the left 3x3 submatrix of a projection matrix into a camera
758
and a rotation matrix.
759
760
It optionally returns three rotation matrices, one for each axis, and the three Euler angles in
761
degrees (as the return value) that could be used in OpenGL. Note, there is always more than one
762
sequence of rotations about the three principal axes that results in the same orientation of an
763
object, e.g. see @cite Slabaugh . Returned tree rotation matrices and corresponding three Euler angles
764
are only one of the possible solutions.
765
 */
766
CV_EXPORTS_W Vec3d RQDecomp3x3( InputArray src, OutputArray mtxR, OutputArray mtxQ,
767
                                OutputArray Qx = noArray(),
768
                                OutputArray Qy = noArray(),
769
                                OutputArray Qz = noArray());
770
771
/** @brief Decomposes a projection matrix into a rotation matrix and a camera intrinsic matrix.
772
773
@param projMatrix 3x4 input projection matrix P.
774
@param cameraMatrix Output 3x3 camera intrinsic matrix \f$\cameramatrix{A}\f$.
775
@param rotMatrix Output 3x3 external rotation matrix R.
776
@param transVect Output 4x1 translation vector T.
777
@param rotMatrixX Optional 3x3 rotation matrix around x-axis.
778
@param rotMatrixY Optional 3x3 rotation matrix around y-axis.
779
@param rotMatrixZ Optional 3x3 rotation matrix around z-axis.
780
@param eulerAngles Optional three-element vector containing three Euler angles of rotation in
781
degrees.
782
783
The function computes a decomposition of a projection matrix into a calibration and a rotation
784
matrix and the position of a camera.
785
786
It optionally returns three rotation matrices, one for each axis, and three Euler angles that could
787
be used in OpenGL. Note, there is always more than one sequence of rotations about the three
788
principal axes that results in the same orientation of an object, e.g. see @cite Slabaugh . Returned
789
tree rotation matrices and corresponding three Euler angles are only one of the possible solutions.
790
791
The function is based on #RQDecomp3x3 .
792
 */
793
CV_EXPORTS_W void decomposeProjectionMatrix( InputArray projMatrix, OutputArray cameraMatrix,
794
                                             OutputArray rotMatrix, OutputArray transVect,
795
                                             OutputArray rotMatrixX = noArray(),
796
                                             OutputArray rotMatrixY = noArray(),
797
                                             OutputArray rotMatrixZ = noArray(),
798
                                             OutputArray eulerAngles =noArray() );
799
800
/** @brief Computes partial derivatives of the matrix product for each multiplied matrix.
801
802
@param A First multiplied matrix.
803
@param B Second multiplied matrix.
804
@param dABdA First output derivative matrix d(A\*B)/dA of size
805
\f$\texttt{A.rows*B.cols} \times {A.rows*A.cols}\f$ .
806
@param dABdB Second output derivative matrix d(A\*B)/dB of size
807
\f$\texttt{A.rows*B.cols} \times {B.rows*B.cols}\f$ .
808
809
The function computes partial derivatives of the elements of the matrix product \f$A*B\f$ with regard to
810
the elements of each of the two input matrices. The function is used to compute the Jacobian
811
matrices in #stereoCalibrate but can also be used in any other similar optimization function.
812
 */
813
CV_EXPORTS_W void matMulDeriv( InputArray A, InputArray B, OutputArray dABdA, OutputArray dABdB );
814
815
/** @brief Combines two rotation-and-shift transformations.
816
817
@param rvec1 First rotation vector.
818
@param tvec1 First translation vector.
819
@param rvec2 Second rotation vector.
820
@param tvec2 Second translation vector.
821
@param rvec3 Output rotation vector of the superposition.
822
@param tvec3 Output translation vector of the superposition.
823
@param dr3dr1 Optional output derivative of rvec3 with regard to rvec1
824
@param dr3dt1 Optional output derivative of rvec3 with regard to tvec1
825
@param dr3dr2 Optional output derivative of rvec3 with regard to rvec2
826
@param dr3dt2 Optional output derivative of rvec3 with regard to tvec2
827
@param dt3dr1 Optional output derivative of tvec3 with regard to rvec1
828
@param dt3dt1 Optional output derivative of tvec3 with regard to tvec1
829
@param dt3dr2 Optional output derivative of tvec3 with regard to rvec2
830
@param dt3dt2 Optional output derivative of tvec3 with regard to tvec2
831
832
The functions compute:
833
834
\f[\begin{array}{l} \texttt{rvec3} =  \mathrm{rodrigues} ^{-1} \left ( \mathrm{rodrigues} ( \texttt{rvec2} )  \cdot \mathrm{rodrigues} ( \texttt{rvec1} ) \right )  \\ \texttt{tvec3} =  \mathrm{rodrigues} ( \texttt{rvec2} )  \cdot \texttt{tvec1} +  \texttt{tvec2} \end{array} ,\f]
835
836
where \f$\mathrm{rodrigues}\f$ denotes a rotation vector to a rotation matrix transformation, and
837
\f$\mathrm{rodrigues}^{-1}\f$ denotes the inverse transformation. See #Rodrigues for details.
838
839
Also, the functions can compute the derivatives of the output vectors with regards to the input
840
vectors (see #matMulDeriv ). The functions are used inside #stereoCalibrate but can also be used in
841
your own code where Levenberg-Marquardt or another gradient-based solver is used to optimize a
842
function that contains a matrix multiplication.
843
 */
844
CV_EXPORTS_W void composeRT( InputArray rvec1, InputArray tvec1,
845
                             InputArray rvec2, InputArray tvec2,
846
                             OutputArray rvec3, OutputArray tvec3,
847
                             OutputArray dr3dr1 = noArray(), OutputArray dr3dt1 = noArray(),
848
                             OutputArray dr3dr2 = noArray(), OutputArray dr3dt2 = noArray(),
849
                             OutputArray dt3dr1 = noArray(), OutputArray dt3dt1 = noArray(),
850
                             OutputArray dt3dr2 = noArray(), OutputArray dt3dt2 = noArray() );
851
852
/** @brief Projects 3D points to an image plane.
853
854
@param objectPoints Array of object points expressed wrt. the world coordinate frame. A 3xN/Nx3
855
1-channel or 1xN/Nx1 3-channel (or vector\<Point3f\> ), where N is the number of points in the view.
856
@param rvec The rotation vector (@ref Rodrigues) that, together with tvec, performs a change of
857
basis from world to camera coordinate system, see @ref calibrateCamera for details.
858
@param tvec The translation vector, see parameter description above.
859
@param cameraMatrix Camera intrinsic matrix \f$\cameramatrix{A}\f$ .
860
@param distCoeffs Input vector of distortion coefficients
861
\f$\distcoeffs\f$ . If the vector is empty, the zero distortion coefficients are assumed.
862
@param imagePoints Output array of image points, 1xN/Nx1 2-channel, or
863
vector\<Point2f\> .
864
@param jacobian Optional output 2Nx(10+\<numDistCoeffs\>) jacobian matrix of derivatives of image
865
points with respect to components of the rotation vector, translation vector, focal lengths,
866
coordinates of the principal point and the distortion coefficients. In the old interface different
867
components of the jacobian are returned via different output parameters.
868
@param aspectRatio Optional "fixed aspect ratio" parameter. If the parameter is not 0, the
869
function assumes that the aspect ratio (\f$f_x / f_y\f$) is fixed and correspondingly adjusts the
870
jacobian matrix.
871
872
The function computes the 2D projections of 3D points to the image plane, given intrinsic and
873
extrinsic camera parameters. Optionally, the function computes Jacobians -matrices of partial
874
derivatives of image points coordinates (as functions of all the input parameters) with respect to
875
the particular parameters, intrinsic and/or extrinsic. The Jacobians are used during the global
876
optimization in @ref calibrateCamera, @ref solvePnP, and @ref stereoCalibrate. The function itself
877
can also be used to compute a re-projection error, given the current intrinsic and extrinsic
878
parameters.
879
880
@note By setting rvec = tvec = \f$[0, 0, 0]\f$, or by setting cameraMatrix to a 3x3 identity matrix,
881
or by passing zero distortion coefficients, one can get various useful partial cases of the
882
function. This means, one can compute the distorted coordinates for a sparse set of points or apply
883
a perspective transformation (and also compute the derivatives) in the ideal zero-distortion setup.
884
 */
885
CV_EXPORTS_W void projectPoints( InputArray objectPoints,
886
                                 InputArray rvec, InputArray tvec,
887
                                 InputArray cameraMatrix, InputArray distCoeffs,
888
                                 OutputArray imagePoints,
889
                                 OutputArray jacobian = noArray(),
890
                                 double aspectRatio = 0 );
891
892
/** @example samples/cpp/tutorial_code/features2D/Homography/homography_from_camera_displacement.cpp
893
An example program about homography from the camera displacement
894
895
Check @ref tutorial_homography "the corresponding tutorial" for more details
896
*/
897
898
/** @brief Finds an object pose from 3D-2D point correspondences.
899
900
@see @ref calib3d_solvePnP
901
902
This function returns the rotation and the translation vectors that transform a 3D point expressed in the object
903
coordinate frame to the camera coordinate frame, using different methods:
904
- P3P methods (@ref SOLVEPNP_P3P, @ref SOLVEPNP_AP3P): need 4 input points to return a unique solution.
905
- @ref SOLVEPNP_IPPE Input points must be >= 4 and object points must be coplanar.
906
- @ref SOLVEPNP_IPPE_SQUARE Special case suitable for marker pose estimation.
907
Number of input points must be 4. Object points must be defined in the following order:
908
  - point 0: [-squareLength / 2,  squareLength / 2, 0]
909
  - point 1: [ squareLength / 2,  squareLength / 2, 0]
910
  - point 2: [ squareLength / 2, -squareLength / 2, 0]
911
  - point 3: [-squareLength / 2, -squareLength / 2, 0]
912
- for all the other flags, number of input points must be >= 4 and object points can be in any configuration.
913
914
@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or
915
1xN/Nx1 3-channel, where N is the number of points. vector\<Point3d\> can be also passed here.
916
@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
917
where N is the number of points. vector\<Point2d\> can be also passed here.
918
@param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ .
919
@param distCoeffs Input vector of distortion coefficients
920
\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are
921
assumed.
922
@param rvec Output rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from
923
the model coordinate system to the camera coordinate system.
924
@param tvec Output translation vector.
925
@param useExtrinsicGuess Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses
926
the provided rvec and tvec values as initial approximations of the rotation and translation
927
vectors, respectively, and further optimizes them.
928
@param flags Method for solving a PnP problem: see @ref calib3d_solvePnP_flags
929
930
More information about Perspective-n-Points is described in @ref calib3d_solvePnP
931
932
@note
933
   -   An example of how to use solvePnP for planar augmented reality can be found at
934
        opencv_source_code/samples/python/plane_ar.py
935
   -   If you are using Python:
936
        - Numpy array slices won't work as input because solvePnP requires contiguous
937
        arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of
938
        modules/calib3d/src/solvepnp.cpp version 2.4.9)
939
        - The P3P algorithm requires image points to be in an array of shape (N,1,2) due
940
        to its calling of #undistortPoints (around line 75 of modules/calib3d/src/solvepnp.cpp version 2.4.9)
941
        which requires 2-channel information.
942
        - Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of
943
        it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints =
944
        np.ascontiguousarray(D[:,:2]).reshape((N,1,2))
945
   -   The methods @ref SOLVEPNP_DLS and @ref SOLVEPNP_UPNP cannot be used as the current implementations are
946
       unstable and sometimes give completely wrong results. If you pass one of these two
947
       flags, @ref SOLVEPNP_EPNP method will be used instead.
948
   -   The minimum number of points is 4 in the general case. In the case of @ref SOLVEPNP_P3P and @ref SOLVEPNP_AP3P
949
       methods, it is required to use exactly 4 points (the first 3 points are used to estimate all the solutions
950
       of the P3P problem, the last one is used to retain the best solution that minimizes the reprojection error).
951
   -   With @ref SOLVEPNP_ITERATIVE method and `useExtrinsicGuess=true`, the minimum number of points is 3 (3 points
952
       are sufficient to compute a pose but there are up to 4 solutions). The initial solution should be close to the
953
       global solution to converge.
954
   -   With @ref SOLVEPNP_IPPE input points must be >= 4 and object points must be coplanar.
955
   -   With @ref SOLVEPNP_IPPE_SQUARE this is a special case suitable for marker pose estimation.
956
       Number of input points must be 4. Object points must be defined in the following order:
957
         - point 0: [-squareLength / 2,  squareLength / 2, 0]
958
         - point 1: [ squareLength / 2,  squareLength / 2, 0]
959
         - point 2: [ squareLength / 2, -squareLength / 2, 0]
960
         - point 3: [-squareLength / 2, -squareLength / 2, 0]
961
    -  With @ref SOLVEPNP_SQPNP input points must be >= 3
962
 */
963
CV_EXPORTS_W bool solvePnP( InputArray objectPoints, InputArray imagePoints,
964
                            InputArray cameraMatrix, InputArray distCoeffs,
965
                            OutputArray rvec, OutputArray tvec,
966
                            bool useExtrinsicGuess = false, int flags = SOLVEPNP_ITERATIVE );
967
968
/** @brief Finds an object pose from 3D-2D point correspondences using the RANSAC scheme.
969
970
@see @ref calib3d_solvePnP
971
972
@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or
973
1xN/Nx1 3-channel, where N is the number of points. vector\<Point3d\> can be also passed here.
974
@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
975
where N is the number of points. vector\<Point2d\> can be also passed here.
976
@param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ .
977
@param distCoeffs Input vector of distortion coefficients
978
\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are
979
assumed.
980
@param rvec Output rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from
981
the model coordinate system to the camera coordinate system.
982
@param tvec Output translation vector.
983
@param useExtrinsicGuess Parameter used for @ref SOLVEPNP_ITERATIVE. If true (1), the function uses
984
the provided rvec and tvec values as initial approximations of the rotation and translation
985
vectors, respectively, and further optimizes them.
986
@param iterationsCount Number of iterations.
987
@param reprojectionError Inlier threshold value used by the RANSAC procedure. The parameter value
988
is the maximum allowed distance between the observed and computed point projections to consider it
989
an inlier.
990
@param confidence The probability that the algorithm produces a useful result.
991
@param inliers Output vector that contains indices of inliers in objectPoints and imagePoints .
992
@param flags Method for solving a PnP problem (see @ref solvePnP ).
993
994
The function estimates an object pose given a set of object points, their corresponding image
995
projections, as well as the camera intrinsic matrix and the distortion coefficients. This function finds such
996
a pose that minimizes reprojection error, that is, the sum of squared distances between the observed
997
projections imagePoints and the projected (using @ref projectPoints ) objectPoints. The use of RANSAC
998
makes the function resistant to outliers.
999
1000
@note
1001
   -   An example of how to use solvePNPRansac for object detection can be found at
1002
        opencv_source_code/samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/
1003
   -   The default method used to estimate the camera pose for the Minimal Sample Sets step
1004
       is #SOLVEPNP_EPNP. Exceptions are:
1005
         - if you choose #SOLVEPNP_P3P or #SOLVEPNP_AP3P, these methods will be used.
1006
         - if the number of input points is equal to 4, #SOLVEPNP_P3P is used.
1007
   -   The method used to estimate the camera pose using all the inliers is defined by the
1008
       flags parameters unless it is equal to #SOLVEPNP_P3P or #SOLVEPNP_AP3P. In this case,
1009
       the method #SOLVEPNP_EPNP will be used instead.
1010
 */
1011
CV_EXPORTS_W bool solvePnPRansac( InputArray objectPoints, InputArray imagePoints,
1012
                                  InputArray cameraMatrix, InputArray distCoeffs,
1013
                                  OutputArray rvec, OutputArray tvec,
1014
                                  bool useExtrinsicGuess = false, int iterationsCount = 100,
1015
                                  float reprojectionError = 8.0, double confidence = 0.99,
1016
                                  OutputArray inliers = noArray(), int flags = SOLVEPNP_ITERATIVE );
1017
1018
1019
/*
1020
Finds rotation and translation vector.
1021
If cameraMatrix is given then run P3P. Otherwise run linear P6P and output cameraMatrix too.
1022
*/
1023
CV_EXPORTS_W bool solvePnPRansac( InputArray objectPoints, InputArray imagePoints,
1024
                     InputOutputArray cameraMatrix, InputArray distCoeffs,
1025
                     OutputArray rvec, OutputArray tvec, OutputArray inliers,
1026
                     const UsacParams &params=UsacParams());
1027
1028
/** @brief Finds an object pose from 3 3D-2D point correspondences.
1029
1030
@see @ref calib3d_solvePnP
1031
1032
@param objectPoints Array of object points in the object coordinate space, 3x3 1-channel or
1033
1x3/3x1 3-channel. vector\<Point3f\> can be also passed here.
1034
@param imagePoints Array of corresponding image points, 3x2 1-channel or 1x3/3x1 2-channel.
1035
 vector\<Point2f\> can be also passed here.
1036
@param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ .
1037
@param distCoeffs Input vector of distortion coefficients
1038
\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are
1039
assumed.
1040
@param rvecs Output rotation vectors (see @ref Rodrigues ) that, together with tvecs, brings points from
1041
the model coordinate system to the camera coordinate system. A P3P problem has up to 4 solutions.
1042
@param tvecs Output translation vectors.
1043
@param flags Method for solving a P3P problem:
1044
-   @ref SOLVEPNP_P3P Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang
1045
"Complete Solution Classification for the Perspective-Three-Point Problem" (@cite gao2003complete).
1046
-   @ref SOLVEPNP_AP3P Method is based on the paper of T. Ke and S. Roumeliotis.
1047
"An Efficient Algebraic Solution to the Perspective-Three-Point Problem" (@cite Ke17).
1048
1049
The function estimates the object pose given 3 object points, their corresponding image
1050
projections, as well as the camera intrinsic matrix and the distortion coefficients.
1051
1052
@note
1053
The solutions are sorted by reprojection errors (lowest to highest).
1054
 */
1055
CV_EXPORTS_W int solveP3P( InputArray objectPoints, InputArray imagePoints,
1056
                           InputArray cameraMatrix, InputArray distCoeffs,
1057
                           OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
1058
                           int flags );
1059
1060
/** @brief Refine a pose (the translation and the rotation that transform a 3D point expressed in the object coordinate frame
1061
to the camera coordinate frame) from a 3D-2D point correspondences and starting from an initial solution.
1062
1063
@see @ref calib3d_solvePnP
1064
1065
@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or 1xN/Nx1 3-channel,
1066
where N is the number of points. vector\<Point3d\> can also be passed here.
1067
@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
1068
where N is the number of points. vector\<Point2d\> can also be passed here.
1069
@param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ .
1070
@param distCoeffs Input vector of distortion coefficients
1071
\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are
1072
assumed.
1073
@param rvec Input/Output rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from
1074
the model coordinate system to the camera coordinate system. Input values are used as an initial solution.
1075
@param tvec Input/Output translation vector. Input values are used as an initial solution.
1076
@param criteria Criteria when to stop the Levenberg-Marquard iterative algorithm.
1077
1078
The function refines the object pose given at least 3 object points, their corresponding image
1079
projections, an initial solution for the rotation and translation vector,
1080
as well as the camera intrinsic matrix and the distortion coefficients.
1081
The function minimizes the projection error with respect to the rotation and the translation vectors, according
1082
to a Levenberg-Marquardt iterative minimization @cite Madsen04 @cite Eade13 process.
1083
 */
1084
CV_EXPORTS_W void solvePnPRefineLM( InputArray objectPoints, InputArray imagePoints,
1085
                                    InputArray cameraMatrix, InputArray distCoeffs,
1086
                                    InputOutputArray rvec, InputOutputArray tvec,
1087
                                    TermCriteria criteria = TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 20, FLT_EPSILON));
1088
1089
/** @brief Refine a pose (the translation and the rotation that transform a 3D point expressed in the object coordinate frame
1090
to the camera coordinate frame) from a 3D-2D point correspondences and starting from an initial solution.
1091
1092
@see @ref calib3d_solvePnP
1093
1094
@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or 1xN/Nx1 3-channel,
1095
where N is the number of points. vector\<Point3d\> can also be passed here.
1096
@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
1097
where N is the number of points. vector\<Point2d\> can also be passed here.
1098
@param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ .
1099
@param distCoeffs Input vector of distortion coefficients
1100
\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are
1101
assumed.
1102
@param rvec Input/Output rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from
1103
the model coordinate system to the camera coordinate system. Input values are used as an initial solution.
1104
@param tvec Input/Output translation vector. Input values are used as an initial solution.
1105
@param criteria Criteria when to stop the Levenberg-Marquard iterative algorithm.
1106
@param VVSlambda Gain for the virtual visual servoing control law, equivalent to the \f$\alpha\f$
1107
gain in the Damped Gauss-Newton formulation.
1108
1109
The function refines the object pose given at least 3 object points, their corresponding image
1110
projections, an initial solution for the rotation and translation vector,
1111
as well as the camera intrinsic matrix and the distortion coefficients.
1112
The function minimizes the projection error with respect to the rotation and the translation vectors, using a
1113
virtual visual servoing (VVS) @cite Chaumette06 @cite Marchand16 scheme.
1114
 */
1115
CV_EXPORTS_W void solvePnPRefineVVS( InputArray objectPoints, InputArray imagePoints,
1116
                                     InputArray cameraMatrix, InputArray distCoeffs,
1117
                                     InputOutputArray rvec, InputOutputArray tvec,
1118
                                     TermCriteria criteria = TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 20, FLT_EPSILON),
1119
                                     double VVSlambda = 1);
1120
1121
/** @brief Finds an object pose from 3D-2D point correspondences.
1122
1123
@see @ref calib3d_solvePnP
1124
1125
This function returns a list of all the possible solutions (a solution is a <rotation vector, translation vector>
1126
couple), depending on the number of input points and the chosen method:
1127
- P3P methods (@ref SOLVEPNP_P3P, @ref SOLVEPNP_AP3P): 3 or 4 input points. Number of returned solutions can be between 0 and 4 with 3 input points.
1128
- @ref SOLVEPNP_IPPE Input points must be >= 4 and object points must be coplanar. Returns 2 solutions.
1129
- @ref SOLVEPNP_IPPE_SQUARE Special case suitable for marker pose estimation.
1130
Number of input points must be 4 and 2 solutions are returned. Object points must be defined in the following order:
1131
  - point 0: [-squareLength / 2,  squareLength / 2, 0]
1132
  - point 1: [ squareLength / 2,  squareLength / 2, 0]
1133
  - point 2: [ squareLength / 2, -squareLength / 2, 0]
1134
  - point 3: [-squareLength / 2, -squareLength / 2, 0]
1135
- for all the other flags, number of input points must be >= 4 and object points can be in any configuration.
1136
Only 1 solution is returned.
1137
1138
@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or
1139
1xN/Nx1 3-channel, where N is the number of points. vector\<Point3d\> can be also passed here.
1140
@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
1141
where N is the number of points. vector\<Point2d\> can be also passed here.
1142
@param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ .
1143
@param distCoeffs Input vector of distortion coefficients
1144
\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are
1145
assumed.
1146
@param rvecs Vector of output rotation vectors (see @ref Rodrigues ) that, together with tvecs, brings points from
1147
the model coordinate system to the camera coordinate system.
1148
@param tvecs Vector of output translation vectors.
1149
@param useExtrinsicGuess Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses
1150
the provided rvec and tvec values as initial approximations of the rotation and translation
1151
vectors, respectively, and further optimizes them.
1152
@param flags Method for solving a PnP problem: see @ref calib3d_solvePnP_flags
1153
@param rvec Rotation vector used to initialize an iterative PnP refinement algorithm, when flag is @ref SOLVEPNP_ITERATIVE
1154
and useExtrinsicGuess is set to true.
1155
@param tvec Translation vector used to initialize an iterative PnP refinement algorithm, when flag is @ref SOLVEPNP_ITERATIVE
1156
and useExtrinsicGuess is set to true.
1157
@param reprojectionError Optional vector of reprojection error, that is the RMS error
1158
(\f$ \text{RMSE} = \sqrt{\frac{\sum_{i}^{N} \left ( \hat{y_i} - y_i \right )^2}{N}} \f$) between the input image points
1159
and the 3D object points projected with the estimated pose.
1160
1161
More information is described in @ref calib3d_solvePnP
1162
1163
@note
1164
   -   An example of how to use solvePnP for planar augmented reality can be found at
1165
        opencv_source_code/samples/python/plane_ar.py
1166
   -   If you are using Python:
1167
        - Numpy array slices won't work as input because solvePnP requires contiguous
1168
        arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of
1169
        modules/calib3d/src/solvepnp.cpp version 2.4.9)
1170
        - The P3P algorithm requires image points to be in an array of shape (N,1,2) due
1171
        to its calling of #undistortPoints (around line 75 of modules/calib3d/src/solvepnp.cpp version 2.4.9)
1172
        which requires 2-channel information.
1173
        - Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of
1174
        it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints =
1175
        np.ascontiguousarray(D[:,:2]).reshape((N,1,2))
1176
   -   The methods @ref SOLVEPNP_DLS and @ref SOLVEPNP_UPNP cannot be used as the current implementations are
1177
       unstable and sometimes give completely wrong results. If you pass one of these two
1178
       flags, @ref SOLVEPNP_EPNP method will be used instead.
1179
   -   The minimum number of points is 4 in the general case. In the case of @ref SOLVEPNP_P3P and @ref SOLVEPNP_AP3P
1180
       methods, it is required to use exactly 4 points (the first 3 points are used to estimate all the solutions
1181
       of the P3P problem, the last one is used to retain the best solution that minimizes the reprojection error).
1182
   -   With @ref SOLVEPNP_ITERATIVE method and `useExtrinsicGuess=true`, the minimum number of points is 3 (3 points
1183
       are sufficient to compute a pose but there are up to 4 solutions). The initial solution should be close to the
1184
       global solution to converge.
1185
   -   With @ref SOLVEPNP_IPPE input points must be >= 4 and object points must be coplanar.
1186
   -   With @ref SOLVEPNP_IPPE_SQUARE this is a special case suitable for marker pose estimation.
1187
       Number of input points must be 4. Object points must be defined in the following order:
1188
         - point 0: [-squareLength / 2,  squareLength / 2, 0]
1189
         - point 1: [ squareLength / 2,  squareLength / 2, 0]
1190
         - point 2: [ squareLength / 2, -squareLength / 2, 0]
1191
         - point 3: [-squareLength / 2, -squareLength / 2, 0]
1192
 */
1193
CV_EXPORTS_W int solvePnPGeneric( InputArray objectPoints, InputArray imagePoints,
1194
                                  InputArray cameraMatrix, InputArray distCoeffs,
1195
                                  OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
1196
                                  bool useExtrinsicGuess = false, SolvePnPMethod flags = SOLVEPNP_ITERATIVE,
1197
                                  InputArray rvec = noArray(), InputArray tvec = noArray(),
1198
                                  OutputArray reprojectionError = noArray() );
1199
1200
/** @brief Finds an initial camera intrinsic matrix from 3D-2D point correspondences.
1201
1202
@param objectPoints Vector of vectors of the calibration pattern points in the calibration pattern
1203
coordinate space. In the old interface all the per-view vectors are concatenated. See
1204
#calibrateCamera for details.
1205
@param imagePoints Vector of vectors of the projections of the calibration pattern points. In the
1206
old interface all the per-view vectors are concatenated.
1207
@param imageSize Image size in pixels used to initialize the principal point.
1208
@param aspectRatio If it is zero or negative, both \f$f_x\f$ and \f$f_y\f$ are estimated independently.
1209
Otherwise, \f$f_x = f_y \cdot \texttt{aspectRatio}\f$ .
1210
1211
The function estimates and returns an initial camera intrinsic matrix for the camera calibration process.
1212
Currently, the function only supports planar calibration patterns, which are patterns where each
1213
object point has z-coordinate =0.
1214
 */
1215
CV_EXPORTS_W Mat initCameraMatrix2D( InputArrayOfArrays objectPoints,
1216
                                     InputArrayOfArrays imagePoints,
1217
                                     Size imageSize, double aspectRatio = 1.0 );
1218
1219
/** @brief Finds the positions of internal corners of the chessboard.
1220
1221
@param image Source chessboard view. It must be an 8-bit grayscale or color image.
1222
@param patternSize Number of inner corners per a chessboard row and column
1223
( patternSize = cv::Size(points_per_row,points_per_colum) = cv::Size(columns,rows) ).
1224
@param corners Output array of detected corners.
1225
@param flags Various operation flags that can be zero or a combination of the following values:
1226
-   @ref CALIB_CB_ADAPTIVE_THRESH Use adaptive thresholding to convert the image to black
1227
and white, rather than a fixed threshold level (computed from the average image brightness).
1228
-   @ref CALIB_CB_NORMALIZE_IMAGE Normalize the image gamma with #equalizeHist before
1229
applying fixed or adaptive thresholding.
1230
-   @ref CALIB_CB_FILTER_QUADS Use additional criteria (like contour area, perimeter,
1231
square-like shape) to filter out false quads extracted at the contour retrieval stage.
1232
-   @ref CALIB_CB_FAST_CHECK Run a fast check on the image that looks for chessboard corners,
1233
and shortcut the call if none is found. This can drastically speed up the call in the
1234
degenerate condition when no chessboard is observed.
1235
1236
The function attempts to determine whether the input image is a view of the chessboard pattern and
1237
locate the internal chessboard corners. The function returns a non-zero value if all of the corners
1238
are found and they are placed in a certain order (row by row, left to right in every row).
1239
Otherwise, if the function fails to find all the corners or reorder them, it returns 0. For example,
1240
a regular chessboard has 8 x 8 squares and 7 x 7 internal corners, that is, points where the black
1241
squares touch each other. The detected coordinates are approximate, and to determine their positions
1242
more accurately, the function calls #cornerSubPix. You also may use the function #cornerSubPix with
1243
different parameters if returned coordinates are not accurate enough.
1244
1245
Sample usage of detecting and drawing chessboard corners: :
1246
@code
1247
    Size patternsize(8,6); //interior number of corners
1248
    Mat gray = ....; //source image
1249
    vector<Point2f> corners; //this will be filled by the detected corners
1250
1251
    //CALIB_CB_FAST_CHECK saves a lot of time on images
1252
    //that do not contain any chessboard corners
1253
    bool patternfound = findChessboardCorners(gray, patternsize, corners,
1254
            CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE
1255
            + CALIB_CB_FAST_CHECK);
1256
1257
    if(patternfound)
1258
      cornerSubPix(gray, corners, Size(11, 11), Size(-1, -1),
1259
        TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 30, 0.1));
1260
1261
    drawChessboardCorners(img, patternsize, Mat(corners), patternfound);
1262
@endcode
1263
@note The function requires white space (like a square-thick border, the wider the better) around
1264
the board to make the detection more robust in various environments. Otherwise, if there is no
1265
border and the background is dark, the outer black squares cannot be segmented properly and so the
1266
square grouping and ordering algorithm fails.
1267
1268
Use gen_pattern.py (@ref tutorial_camera_calibration_pattern) to create checkerboard.
1269
 */
1270
CV_EXPORTS_W bool findChessboardCorners( InputArray image, Size patternSize, OutputArray corners,
1271
                                         int flags = CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE );
1272
1273
/*
1274
   Checks whether the image contains chessboard of the specific size or not.
1275
   If yes, nonzero value is returned.
1276
*/
1277
CV_EXPORTS_W bool checkChessboard(InputArray img, Size size);
1278
1279
/** @brief Finds the positions of internal corners of the chessboard using a sector based approach.
1280
1281
@param image Source chessboard view. It must be an 8-bit grayscale or color image.
1282
@param patternSize Number of inner corners per a chessboard row and column
1283
( patternSize = cv::Size(points_per_row,points_per_colum) = cv::Size(columns,rows) ).
1284
@param corners Output array of detected corners.
1285
@param flags Various operation flags that can be zero or a combination of the following values:
1286
-   @ref CALIB_CB_NORMALIZE_IMAGE Normalize the image gamma with equalizeHist before detection.
1287
-   @ref CALIB_CB_EXHAUSTIVE Run an exhaustive search to improve detection rate.
1288
-   @ref CALIB_CB_ACCURACY Up sample input image to improve sub-pixel accuracy due to aliasing effects.
1289
-   @ref CALIB_CB_LARGER The detected pattern is allowed to be larger than patternSize (see description).
1290
-   @ref CALIB_CB_MARKER The detected pattern must have a marker (see description).
1291
This should be used if an accurate camera calibration is required.
1292
@param meta Optional output arrray of detected corners (CV_8UC1 and size = cv::Size(columns,rows)).
1293
Each entry stands for one corner of the pattern and can have one of the following values:
1294
-   0 = no meta data attached
1295
-   1 = left-top corner of a black cell
1296
-   2 = left-top corner of a white cell
1297
-   3 = left-top corner of a black cell with a white marker dot
1298
-   4 = left-top corner of a white cell with a black marker dot (pattern origin in case of markers otherwise first corner)
1299
1300
The function is analog to #findChessboardCorners but uses a localized radon
1301
transformation approximated by box filters being more robust to all sort of
1302
noise, faster on larger images and is able to directly return the sub-pixel
1303
position of the internal chessboard corners. The Method is based on the paper
1304
@cite duda2018 "Accurate Detection and Localization of Checkerboard Corners for
1305
Calibration" demonstrating that the returned sub-pixel positions are more
1306
accurate than the one returned by cornerSubPix allowing a precise camera
1307
calibration for demanding applications.
1308
1309
In the case, the flags @ref CALIB_CB_LARGER or @ref CALIB_CB_MARKER are given,
1310
the result can be recovered from the optional meta array. Both flags are
1311
helpful to use calibration patterns exceeding the field of view of the camera.
1312
These oversized patterns allow more accurate calibrations as corners can be
1313
utilized, which are as close as possible to the image borders.  For a
1314
consistent coordinate system across all images, the optional marker (see image
1315
below) can be used to move the origin of the board to the location where the
1316
black circle is located.
1317
1318
@note The function requires a white boarder with roughly the same width as one
1319
of the checkerboard fields around the whole board to improve the detection in
1320
various environments. In addition, because of the localized radon
1321
transformation it is beneficial to use round corners for the field corners
1322
which are located on the outside of the board. The following figure illustrates
1323
a sample checkerboard optimized for the detection. However, any other checkerboard
1324
can be used as well.
1325
1326
Use gen_pattern.py (@ref tutorial_camera_calibration_pattern) to create checkerboard.
1327
![Checkerboard](pics/checkerboard_radon.png)
1328
 */
1329
CV_EXPORTS_AS(findChessboardCornersSBWithMeta)
1330
bool findChessboardCornersSB(InputArray image,Size patternSize, OutputArray corners,
1331
                             int flags,OutputArray meta);
1332
/** @overload */
1333
CV_EXPORTS_W inline
1334
bool findChessboardCornersSB(InputArray image, Size patternSize, OutputArray corners,
1335
                             int flags = 0)
1336
0
{
1337
0
    return findChessboardCornersSB(image, patternSize, corners, flags, noArray());
1338
0
}
1339
1340
/** @brief Estimates the sharpness of a detected chessboard.
1341
1342
Image sharpness, as well as brightness, are a critical parameter for accuracte
1343
camera calibration. For accessing these parameters for filtering out
1344
problematic calibraiton images, this method calculates edge profiles by traveling from
1345
black to white chessboard cell centers. Based on this, the number of pixels is
1346
calculated required to transit from black to white. This width of the
1347
transition area is a good indication of how sharp the chessboard is imaged
1348
and should be below ~3.0 pixels.
1349
1350
@param image Gray image used to find chessboard corners
1351
@param patternSize Size of a found chessboard pattern
1352
@param corners Corners found by #findChessboardCornersSB
1353
@param rise_distance Rise distance 0.8 means 10% ... 90% of the final signal strength
1354
@param vertical By default edge responses for horizontal lines are calculated
1355
@param sharpness Optional output array with a sharpness value for calculated edge responses (see description)
1356
1357
The optional sharpness array is of type CV_32FC1 and has for each calculated
1358
profile one row with the following five entries:
1359
* 0 = x coordinate of the underlying edge in the image
1360
* 1 = y coordinate of the underlying edge in the image
1361
* 2 = width of the transition area (sharpness)
1362
* 3 = signal strength in the black cell (min brightness)
1363
* 4 = signal strength in the white cell (max brightness)
1364
1365
@return Scalar(average sharpness, average min brightness, average max brightness,0)
1366
*/
1367
CV_EXPORTS_W Scalar estimateChessboardSharpness(InputArray image, Size patternSize, InputArray corners,
1368
                                                float rise_distance=0.8F,bool vertical=false,
1369
                                                OutputArray sharpness=noArray());
1370
1371
1372
//! finds subpixel-accurate positions of the chessboard corners
1373
CV_EXPORTS_W bool find4QuadCornerSubpix( InputArray img, InputOutputArray corners, Size region_size );
1374
1375
/** @brief Renders the detected chessboard corners.
1376
1377
@param image Destination image. It must be an 8-bit color image.
1378
@param patternSize Number of inner corners per a chessboard row and column
1379
(patternSize = cv::Size(points_per_row,points_per_column)).
1380
@param corners Array of detected corners, the output of #findChessboardCorners.
1381
@param patternWasFound Parameter indicating whether the complete board was found or not. The
1382
return value of #findChessboardCorners should be passed here.
1383
1384
The function draws individual chessboard corners detected either as red circles if the board was not
1385
found, or as colored corners connected with lines if the board was found.
1386
 */
1387
CV_EXPORTS_W void drawChessboardCorners( InputOutputArray image, Size patternSize,
1388
                                         InputArray corners, bool patternWasFound );
1389
1390
/** @brief Draw axes of the world/object coordinate system from pose estimation. @sa solvePnP
1391
1392
@param image Input/output image. It must have 1 or 3 channels. The number of channels is not altered.
1393
@param cameraMatrix Input 3x3 floating-point matrix of camera intrinsic parameters.
1394
\f$\cameramatrix{A}\f$
1395
@param distCoeffs Input vector of distortion coefficients
1396
\f$\distcoeffs\f$. If the vector is empty, the zero distortion coefficients are assumed.
1397
@param rvec Rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from
1398
the model coordinate system to the camera coordinate system.
1399
@param tvec Translation vector.
1400
@param length Length of the painted axes in the same unit than tvec (usually in meters).
1401
@param thickness Line thickness of the painted axes.
1402
1403
This function draws the axes of the world/object coordinate system w.r.t. to the camera frame.
1404
OX is drawn in red, OY in green and OZ in blue.
1405
 */
1406
CV_EXPORTS_W void drawFrameAxes(InputOutputArray image, InputArray cameraMatrix, InputArray distCoeffs,
1407
                                InputArray rvec, InputArray tvec, float length, int thickness=3);
1408
1409
struct CV_EXPORTS_W_SIMPLE CirclesGridFinderParameters
1410
{
1411
    CV_WRAP CirclesGridFinderParameters();
1412
    CV_PROP_RW cv::Size2f densityNeighborhoodSize;
1413
    CV_PROP_RW float minDensity;
1414
    CV_PROP_RW int kmeansAttempts;
1415
    CV_PROP_RW int minDistanceToAddKeypoint;
1416
    CV_PROP_RW int keypointScale;
1417
    CV_PROP_RW float minGraphConfidence;
1418
    CV_PROP_RW float vertexGain;
1419
    CV_PROP_RW float vertexPenalty;
1420
    CV_PROP_RW float existingVertexGain;
1421
    CV_PROP_RW float edgeGain;
1422
    CV_PROP_RW float edgePenalty;
1423
    CV_PROP_RW float convexHullFactor;
1424
    CV_PROP_RW float minRNGEdgeSwitchDist;
1425
1426
    enum GridType
1427
    {
1428
      SYMMETRIC_GRID, ASYMMETRIC_GRID
1429
    };
1430
    GridType gridType;
1431
1432
    CV_PROP_RW float squareSize; //!< Distance between two adjacent points. Used by CALIB_CB_CLUSTERING.
1433
    CV_PROP_RW float maxRectifiedDistance; //!< Max deviation from prediction. Used by CALIB_CB_CLUSTERING.
1434
};
1435
1436
#ifndef DISABLE_OPENCV_3_COMPATIBILITY
1437
typedef CirclesGridFinderParameters CirclesGridFinderParameters2;
1438
#endif
1439
1440
/** @brief Finds centers in the grid of circles.
1441
1442
@param image grid view of input circles; it must be an 8-bit grayscale or color image.
1443
@param patternSize number of circles per row and column
1444
( patternSize = Size(points_per_row, points_per_colum) ).
1445
@param centers output array of detected centers.
1446
@param flags various operation flags that can be one of the following values:
1447
-   @ref CALIB_CB_SYMMETRIC_GRID uses symmetric pattern of circles.
1448
-   @ref CALIB_CB_ASYMMETRIC_GRID uses asymmetric pattern of circles.
1449
-   @ref CALIB_CB_CLUSTERING uses a special algorithm for grid detection. It is more robust to
1450
perspective distortions but much more sensitive to background clutter.
1451
@param blobDetector feature detector that finds blobs like dark circles on light background.
1452
                    If `blobDetector` is NULL then `image` represents Point2f array of candidates.
1453
@param parameters struct for finding circles in a grid pattern.
1454
1455
The function attempts to determine whether the input image contains a grid of circles. If it is, the
1456
function locates centers of the circles. The function returns a non-zero value if all of the centers
1457
have been found and they have been placed in a certain order (row by row, left to right in every
1458
row). Otherwise, if the function fails to find all the corners or reorder them, it returns 0.
1459
1460
Sample usage of detecting and drawing the centers of circles: :
1461
@code
1462
    Size patternsize(7,7); //number of centers
1463
    Mat gray = ...; //source image
1464
    vector<Point2f> centers; //this will be filled by the detected centers
1465
1466
    bool patternfound = findCirclesGrid(gray, patternsize, centers);
1467
1468
    drawChessboardCorners(img, patternsize, Mat(centers), patternfound);
1469
@endcode
1470
@note The function requires white space (like a square-thick border, the wider the better) around
1471
the board to make the detection more robust in various environments.
1472
 */
1473
CV_EXPORTS_W bool findCirclesGrid( InputArray image, Size patternSize,
1474
                                   OutputArray centers, int flags,
1475
                                   const Ptr<FeatureDetector> &blobDetector,
1476
                                   const CirclesGridFinderParameters& parameters);
1477
1478
/** @overload */
1479
CV_EXPORTS_W bool findCirclesGrid( InputArray image, Size patternSize,
1480
                                   OutputArray centers, int flags = CALIB_CB_SYMMETRIC_GRID,
1481
                                   const Ptr<FeatureDetector> &blobDetector = SimpleBlobDetector::create());
1482
1483
/** @brief Finds the camera intrinsic and extrinsic parameters from several views of a calibration
1484
pattern.
1485
1486
@param objectPoints In the new interface it is a vector of vectors of calibration pattern points in
1487
the calibration pattern coordinate space (e.g. std::vector<std::vector<cv::Vec3f>>). The outer
1488
vector contains as many elements as the number of pattern views. If the same calibration pattern
1489
is shown in each view and it is fully visible, all the vectors will be the same. Although, it is
1490
possible to use partially occluded patterns or even different patterns in different views. Then,
1491
the vectors will be different. Although the points are 3D, they all lie in the calibration pattern's
1492
XY coordinate plane (thus 0 in the Z-coordinate), if the used calibration pattern is a planar rig.
1493
In the old interface all the vectors of object points from different views are concatenated
1494
together.
1495
@param imagePoints In the new interface it is a vector of vectors of the projections of calibration
1496
pattern points (e.g. std::vector<std::vector<cv::Vec2f>>). imagePoints.size() and
1497
objectPoints.size(), and imagePoints[i].size() and objectPoints[i].size() for each i, must be equal,
1498
respectively. In the old interface all the vectors of object points from different views are
1499
concatenated together.
1500
@param imageSize Size of the image used only to initialize the camera intrinsic matrix.
1501
@param cameraMatrix Input/output 3x3 floating-point camera intrinsic matrix
1502
\f$\cameramatrix{A}\f$ . If @ref CALIB_USE_INTRINSIC_GUESS
1503
and/or @ref CALIB_FIX_ASPECT_RATIO, @ref CALIB_FIX_PRINCIPAL_POINT or @ref CALIB_FIX_FOCAL_LENGTH
1504
are specified, some or all of fx, fy, cx, cy must be initialized before calling the function.
1505
@param distCoeffs Input/output vector of distortion coefficients
1506
\f$\distcoeffs\f$.
1507
@param rvecs Output vector of rotation vectors (@ref Rodrigues ) estimated for each pattern view
1508
(e.g. std::vector<cv::Mat>>). That is, each i-th rotation vector together with the corresponding
1509
i-th translation vector (see the next output parameter description) brings the calibration pattern
1510
from the object coordinate space (in which object points are specified) to the camera coordinate
1511
space. In more technical terms, the tuple of the i-th rotation and translation vector performs
1512
a change of basis from object coordinate space to camera coordinate space. Due to its duality, this
1513
tuple is equivalent to the position of the calibration pattern with respect to the camera coordinate
1514
space.
1515
@param tvecs Output vector of translation vectors estimated for each pattern view, see parameter
1516
describtion above.
1517
@param stdDeviationsIntrinsics Output vector of standard deviations estimated for intrinsic
1518
parameters. Order of deviations values:
1519
\f$(f_x, f_y, c_x, c_y, k_1, k_2, p_1, p_2, k_3, k_4, k_5, k_6 , s_1, s_2, s_3,
1520
 s_4, \tau_x, \tau_y)\f$ If one of parameters is not estimated, it's deviation is equals to zero.
1521
@param stdDeviationsExtrinsics Output vector of standard deviations estimated for extrinsic
1522
parameters. Order of deviations values: \f$(R_0, T_0, \dotsc , R_{M - 1}, T_{M - 1})\f$ where M is
1523
the number of pattern views. \f$R_i, T_i\f$ are concatenated 1x3 vectors.
1524
 @param perViewErrors Output vector of the RMS re-projection error estimated for each pattern view.
1525
@param flags Different flags that may be zero or a combination of the following values:
1526
-   @ref CALIB_USE_INTRINSIC_GUESS cameraMatrix contains valid initial values of
1527
fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
1528
center ( imageSize is used), and focal distances are computed in a least-squares fashion.
1529
Note, that if intrinsic parameters are known, there is no need to use this function just to
1530
estimate extrinsic parameters. Use @ref solvePnP instead.
1531
-   @ref CALIB_FIX_PRINCIPAL_POINT The principal point is not changed during the global
1532
optimization. It stays at the center or at a different location specified when
1533
 @ref CALIB_USE_INTRINSIC_GUESS is set too.
1534
-   @ref CALIB_FIX_ASPECT_RATIO The functions consider only fy as a free parameter. The
1535
ratio fx/fy stays the same as in the input cameraMatrix . When
1536
 @ref CALIB_USE_INTRINSIC_GUESS is not set, the actual input values of fx and fy are
1537
ignored, only their ratio is computed and used further.
1538
-   @ref CALIB_ZERO_TANGENT_DIST Tangential distortion coefficients \f$(p_1, p_2)\f$ are set
1539
to zeros and stay zero.
1540
-   @ref CALIB_FIX_FOCAL_LENGTH The focal length is not changed during the global optimization if
1541
 @ref CALIB_USE_INTRINSIC_GUESS is set.
1542
-   @ref CALIB_FIX_K1,..., @ref CALIB_FIX_K6 The corresponding radial distortion
1543
coefficient is not changed during the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is
1544
set, the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
1545
-   @ref CALIB_RATIONAL_MODEL Coefficients k4, k5, and k6 are enabled. To provide the
1546
backward compatibility, this extra flag should be explicitly specified to make the
1547
calibration function use the rational model and return 8 coefficients or more.
1548
-   @ref CALIB_THIN_PRISM_MODEL Coefficients s1, s2, s3 and s4 are enabled. To provide the
1549
backward compatibility, this extra flag should be explicitly specified to make the
1550
calibration function use the thin prism model and return 12 coefficients or more.
1551
-   @ref CALIB_FIX_S1_S2_S3_S4 The thin prism distortion coefficients are not changed during
1552
the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
1553
supplied distCoeffs matrix is used. Otherwise, it is set to 0.
1554
-   @ref CALIB_TILTED_MODEL Coefficients tauX and tauY are enabled. To provide the
1555
backward compatibility, this extra flag should be explicitly specified to make the
1556
calibration function use the tilted sensor model and return 14 coefficients.
1557
-   @ref CALIB_FIX_TAUX_TAUY The coefficients of the tilted sensor model are not changed during
1558
the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
1559
supplied distCoeffs matrix is used. Otherwise, it is set to 0.
1560
@param criteria Termination criteria for the iterative optimization algorithm.
1561
1562
@return the overall RMS re-projection error.
1563
1564
The function estimates the intrinsic camera parameters and extrinsic parameters for each of the
1565
views. The algorithm is based on @cite Zhang2000 and @cite BouguetMCT . The coordinates of 3D object
1566
points and their corresponding 2D projections in each view must be specified. That may be achieved
1567
by using an object with known geometry and easily detectable feature points. Such an object is
1568
called a calibration rig or calibration pattern, and OpenCV has built-in support for a chessboard as
1569
a calibration rig (see @ref findChessboardCorners). Currently, initialization of intrinsic
1570
parameters (when @ref CALIB_USE_INTRINSIC_GUESS is not set) is only implemented for planar calibration
1571
patterns (where Z-coordinates of the object points must be all zeros). 3D calibration rigs can also
1572
be used as long as initial cameraMatrix is provided.
1573
1574
The algorithm performs the following steps:
1575
1576
-   Compute the initial intrinsic parameters (the option only available for planar calibration
1577
    patterns) or read them from the input parameters. The distortion coefficients are all set to
1578
    zeros initially unless some of CALIB_FIX_K? are specified.
1579
1580
-   Estimate the initial camera pose as if the intrinsic parameters have been already known. This is
1581
    done using @ref solvePnP .
1582
1583
-   Run the global Levenberg-Marquardt optimization algorithm to minimize the reprojection error,
1584
    that is, the total sum of squared distances between the observed feature points imagePoints and
1585
    the projected (using the current estimates for camera parameters and the poses) object points
1586
    objectPoints. See @ref projectPoints for details.
1587
1588
@note
1589
    If you use a non-square (i.e. non-N-by-N) grid and @ref findChessboardCorners for calibration,
1590
    and @ref calibrateCamera returns bad values (zero distortion coefficients, \f$c_x\f$ and
1591
    \f$c_y\f$ very far from the image center, and/or large differences between \f$f_x\f$ and
1592
    \f$f_y\f$ (ratios of 10:1 or more)), then you are probably using patternSize=cvSize(rows,cols)
1593
    instead of using patternSize=cvSize(cols,rows) in @ref findChessboardCorners.
1594
1595
@sa
1596
   calibrateCameraRO, findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate,
1597
   undistort
1598
 */
1599
CV_EXPORTS_AS(calibrateCameraExtended) double calibrateCamera( InputArrayOfArrays objectPoints,
1600
                                     InputArrayOfArrays imagePoints, Size imageSize,
1601
                                     InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
1602
                                     OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
1603
                                     OutputArray stdDeviationsIntrinsics,
1604
                                     OutputArray stdDeviationsExtrinsics,
1605
                                     OutputArray perViewErrors,
1606
                                     int flags = 0, TermCriteria criteria = TermCriteria(
1607
                                        TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) );
1608
1609
/** @overload */
1610
CV_EXPORTS_W double calibrateCamera( InputArrayOfArrays objectPoints,
1611
                                     InputArrayOfArrays imagePoints, Size imageSize,
1612
                                     InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
1613
                                     OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
1614
                                     int flags = 0, TermCriteria criteria = TermCriteria(
1615
                                        TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) );
1616
1617
/** @brief Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern.
1618
1619
This function is an extension of #calibrateCamera with the method of releasing object which was
1620
proposed in @cite strobl2011iccv. In many common cases with inaccurate, unmeasured, roughly planar
1621
targets (calibration plates), this method can dramatically improve the precision of the estimated
1622
camera parameters. Both the object-releasing method and standard method are supported by this
1623
function. Use the parameter **iFixedPoint** for method selection. In the internal implementation,
1624
#calibrateCamera is a wrapper for this function.
1625
1626
@param objectPoints Vector of vectors of calibration pattern points in the calibration pattern
1627
coordinate space. See #calibrateCamera for details. If the method of releasing object to be used,
1628
the identical calibration board must be used in each view and it must be fully visible, and all
1629
objectPoints[i] must be the same and all points should be roughly close to a plane. **The calibration
1630
target has to be rigid, or at least static if the camera (rather than the calibration target) is
1631
shifted for grabbing images.**
1632
@param imagePoints Vector of vectors of the projections of calibration pattern points. See
1633
#calibrateCamera for details.
1634
@param imageSize Size of the image used only to initialize the intrinsic camera matrix.
1635
@param iFixedPoint The index of the 3D object point in objectPoints[0] to be fixed. It also acts as
1636
a switch for calibration method selection. If object-releasing method to be used, pass in the
1637
parameter in the range of [1, objectPoints[0].size()-2], otherwise a value out of this range will
1638
make standard calibration method selected. Usually the top-right corner point of the calibration
1639
board grid is recommended to be fixed when object-releasing method being utilized. According to
1640
\cite strobl2011iccv, two other points are also fixed. In this implementation, objectPoints[0].front
1641
and objectPoints[0].back.z are used. With object-releasing method, accurate rvecs, tvecs and
1642
newObjPoints are only possible if coordinates of these three fixed points are accurate enough.
1643
@param cameraMatrix Output 3x3 floating-point camera matrix. See #calibrateCamera for details.
1644
@param distCoeffs Output vector of distortion coefficients. See #calibrateCamera for details.
1645
@param rvecs Output vector of rotation vectors estimated for each pattern view. See #calibrateCamera
1646
for details.
1647
@param tvecs Output vector of translation vectors estimated for each pattern view.
1648
@param newObjPoints The updated output vector of calibration pattern points. The coordinates might
1649
be scaled based on three fixed points. The returned coordinates are accurate only if the above
1650
mentioned three fixed points are accurate. If not needed, noArray() can be passed in. This parameter
1651
is ignored with standard calibration method.
1652
@param stdDeviationsIntrinsics Output vector of standard deviations estimated for intrinsic parameters.
1653
See #calibrateCamera for details.
1654
@param stdDeviationsExtrinsics Output vector of standard deviations estimated for extrinsic parameters.
1655
See #calibrateCamera for details.
1656
@param stdDeviationsObjPoints Output vector of standard deviations estimated for refined coordinates
1657
of calibration pattern points. It has the same size and order as objectPoints[0] vector. This
1658
parameter is ignored with standard calibration method.
1659
 @param perViewErrors Output vector of the RMS re-projection error estimated for each pattern view.
1660
@param flags Different flags that may be zero or a combination of some predefined values. See
1661
#calibrateCamera for details. If the method of releasing object is used, the calibration time may
1662
be much longer. CALIB_USE_QR or CALIB_USE_LU could be used for faster calibration with potentially
1663
less precise and less stable in some rare cases.
1664
@param criteria Termination criteria for the iterative optimization algorithm.
1665
1666
@return the overall RMS re-projection error.
1667
1668
The function estimates the intrinsic camera parameters and extrinsic parameters for each of the
1669
views. The algorithm is based on @cite Zhang2000, @cite BouguetMCT and @cite strobl2011iccv. See
1670
#calibrateCamera for other detailed explanations.
1671
@sa
1672
   calibrateCamera, findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate, undistort
1673
 */
1674
CV_EXPORTS_AS(calibrateCameraROExtended) double calibrateCameraRO( InputArrayOfArrays objectPoints,
1675
                                     InputArrayOfArrays imagePoints, Size imageSize, int iFixedPoint,
1676
                                     InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
1677
                                     OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
1678
                                     OutputArray newObjPoints,
1679
                                     OutputArray stdDeviationsIntrinsics,
1680
                                     OutputArray stdDeviationsExtrinsics,
1681
                                     OutputArray stdDeviationsObjPoints,
1682
                                     OutputArray perViewErrors,
1683
                                     int flags = 0, TermCriteria criteria = TermCriteria(
1684
                                        TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) );
1685
1686
/** @overload */
1687
CV_EXPORTS_W double calibrateCameraRO( InputArrayOfArrays objectPoints,
1688
                                     InputArrayOfArrays imagePoints, Size imageSize, int iFixedPoint,
1689
                                     InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
1690
                                     OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
1691
                                     OutputArray newObjPoints,
1692
                                     int flags = 0, TermCriteria criteria = TermCriteria(
1693
                                        TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) );
1694
1695
/** @brief Computes useful camera characteristics from the camera intrinsic matrix.
1696
1697
@param cameraMatrix Input camera intrinsic matrix that can be estimated by #calibrateCamera or
1698
#stereoCalibrate .
1699
@param imageSize Input image size in pixels.
1700
@param apertureWidth Physical width in mm of the sensor.
1701
@param apertureHeight Physical height in mm of the sensor.
1702
@param fovx Output field of view in degrees along the horizontal sensor axis.
1703
@param fovy Output field of view in degrees along the vertical sensor axis.
1704
@param focalLength Focal length of the lens in mm.
1705
@param principalPoint Principal point in mm.
1706
@param aspectRatio \f$f_y/f_x\f$
1707
1708
The function computes various useful camera characteristics from the previously estimated camera
1709
matrix.
1710
1711
@note
1712
   Do keep in mind that the unity measure 'mm' stands for whatever unit of measure one chooses for
1713
    the chessboard pitch (it can thus be any value).
1714
 */
1715
CV_EXPORTS_W void calibrationMatrixValues( InputArray cameraMatrix, Size imageSize,
1716
                                           double apertureWidth, double apertureHeight,
1717
                                           CV_OUT double& fovx, CV_OUT double& fovy,
1718
                                           CV_OUT double& focalLength, CV_OUT Point2d& principalPoint,
1719
                                           CV_OUT double& aspectRatio );
1720
1721
/** @brief Calibrates a stereo camera set up. This function finds the intrinsic parameters
1722
for each of the two cameras and the extrinsic parameters between the two cameras.
1723
1724
@param objectPoints Vector of vectors of the calibration pattern points. The same structure as
1725
in @ref calibrateCamera. For each pattern view, both cameras need to see the same object
1726
points. Therefore, objectPoints.size(), imagePoints1.size(), and imagePoints2.size() need to be
1727
equal as well as objectPoints[i].size(), imagePoints1[i].size(), and imagePoints2[i].size() need to
1728
be equal for each i.
1729
@param imagePoints1 Vector of vectors of the projections of the calibration pattern points,
1730
observed by the first camera. The same structure as in @ref calibrateCamera.
1731
@param imagePoints2 Vector of vectors of the projections of the calibration pattern points,
1732
observed by the second camera. The same structure as in @ref calibrateCamera.
1733
@param cameraMatrix1 Input/output camera intrinsic matrix for the first camera, the same as in
1734
@ref calibrateCamera. Furthermore, for the stereo case, additional flags may be used, see below.
1735
@param distCoeffs1 Input/output vector of distortion coefficients, the same as in
1736
@ref calibrateCamera.
1737
@param cameraMatrix2 Input/output second camera intrinsic matrix for the second camera. See description for
1738
cameraMatrix1.
1739
@param distCoeffs2 Input/output lens distortion coefficients for the second camera. See
1740
description for distCoeffs1.
1741
@param imageSize Size of the image used only to initialize the camera intrinsic matrices.
1742
@param R Output rotation matrix. Together with the translation vector T, this matrix brings
1743
points given in the first camera's coordinate system to points in the second camera's
1744
coordinate system. In more technical terms, the tuple of R and T performs a change of basis
1745
from the first camera's coordinate system to the second camera's coordinate system. Due to its
1746
duality, this tuple is equivalent to the position of the first camera with respect to the
1747
second camera coordinate system.
1748
@param T Output translation vector, see description above.
1749
@param E Output essential matrix.
1750
@param F Output fundamental matrix.
1751
@param rvecs Output vector of rotation vectors ( @ref Rodrigues ) estimated for each pattern view in the
1752
coordinate system of the first camera of the stereo pair (e.g. std::vector<cv::Mat>). More in detail, each
1753
i-th rotation vector together with the corresponding i-th translation vector (see the next output parameter
1754
description) brings the calibration pattern from the object coordinate space (in which object points are
1755
specified) to the camera coordinate space of the first camera of the stereo pair. In more technical terms,
1756
the tuple of the i-th rotation and translation vector performs a change of basis from object coordinate space
1757
to camera coordinate space of the first camera of the stereo pair.
1758
@param tvecs Output vector of translation vectors estimated for each pattern view, see parameter description
1759
of previous output parameter ( rvecs ).
1760
@param perViewErrors Output vector of the RMS re-projection error estimated for each pattern view.
1761
@param flags Different flags that may be zero or a combination of the following values:
1762
-   @ref CALIB_FIX_INTRINSIC Fix cameraMatrix? and distCoeffs? so that only R, T, E, and F
1763
matrices are estimated.
1764
-   @ref CALIB_USE_INTRINSIC_GUESS Optimize some or all of the intrinsic parameters
1765
according to the specified flags. Initial values are provided by the user.
1766
-   @ref CALIB_USE_EXTRINSIC_GUESS R and T contain valid initial values that are optimized further.
1767
Otherwise R and T are initialized to the median value of the pattern views (each dimension separately).
1768
-   @ref CALIB_FIX_PRINCIPAL_POINT Fix the principal points during the optimization.
1769
-   @ref CALIB_FIX_FOCAL_LENGTH Fix \f$f^{(j)}_x\f$ and \f$f^{(j)}_y\f$ .
1770
-   @ref CALIB_FIX_ASPECT_RATIO Optimize \f$f^{(j)}_y\f$ . Fix the ratio \f$f^{(j)}_x/f^{(j)}_y\f$
1771
.
1772
-   @ref CALIB_SAME_FOCAL_LENGTH Enforce \f$f^{(0)}_x=f^{(1)}_x\f$ and \f$f^{(0)}_y=f^{(1)}_y\f$ .
1773
-   @ref CALIB_ZERO_TANGENT_DIST Set tangential distortion coefficients for each camera to
1774
zeros and fix there.
1775
-   @ref CALIB_FIX_K1,..., @ref CALIB_FIX_K6 Do not change the corresponding radial
1776
distortion coefficient during the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set,
1777
the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
1778
-   @ref CALIB_RATIONAL_MODEL Enable coefficients k4, k5, and k6. To provide the backward
1779
compatibility, this extra flag should be explicitly specified to make the calibration
1780
function use the rational model and return 8 coefficients. If the flag is not set, the
1781
function computes and returns only 5 distortion coefficients.
1782
-   @ref CALIB_THIN_PRISM_MODEL Coefficients s1, s2, s3 and s4 are enabled. To provide the
1783
backward compatibility, this extra flag should be explicitly specified to make the
1784
calibration function use the thin prism model and return 12 coefficients. If the flag is not
1785
set, the function computes and returns only 5 distortion coefficients.
1786
-   @ref CALIB_FIX_S1_S2_S3_S4 The thin prism distortion coefficients are not changed during
1787
the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
1788
supplied distCoeffs matrix is used. Otherwise, it is set to 0.
1789
-   @ref CALIB_TILTED_MODEL Coefficients tauX and tauY are enabled. To provide the
1790
backward compatibility, this extra flag should be explicitly specified to make the
1791
calibration function use the tilted sensor model and return 14 coefficients. If the flag is not
1792
set, the function computes and returns only 5 distortion coefficients.
1793
-   @ref CALIB_FIX_TAUX_TAUY The coefficients of the tilted sensor model are not changed during
1794
the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
1795
supplied distCoeffs matrix is used. Otherwise, it is set to 0.
1796
@param criteria Termination criteria for the iterative optimization algorithm.
1797
1798
The function estimates the transformation between two cameras making a stereo pair. If one computes
1799
the poses of an object relative to the first camera and to the second camera,
1800
( \f$R_1\f$,\f$T_1\f$ ) and (\f$R_2\f$,\f$T_2\f$), respectively, for a stereo camera where the
1801
relative position and orientation between the two cameras are fixed, then those poses definitely
1802
relate to each other. This means, if the relative position and orientation (\f$R\f$,\f$T\f$) of the
1803
two cameras is known, it is possible to compute (\f$R_2\f$,\f$T_2\f$) when (\f$R_1\f$,\f$T_1\f$) is
1804
given. This is what the described function does. It computes (\f$R\f$,\f$T\f$) such that:
1805
1806
\f[R_2=R R_1\f]
1807
\f[T_2=R T_1 + T.\f]
1808
1809
Therefore, one can compute the coordinate representation of a 3D point for the second camera's
1810
coordinate system when given the point's coordinate representation in the first camera's coordinate
1811
system:
1812
1813
\f[\begin{bmatrix}
1814
X_2 \\
1815
Y_2 \\
1816
Z_2 \\
1817
1
1818
\end{bmatrix} = \begin{bmatrix}
1819
R & T \\
1820
0 & 1
1821
\end{bmatrix} \begin{bmatrix}
1822
X_1 \\
1823
Y_1 \\
1824
Z_1 \\
1825
1
1826
\end{bmatrix}.\f]
1827
1828
1829
Optionally, it computes the essential matrix E:
1830
1831
\f[E= \vecthreethree{0}{-T_2}{T_1}{T_2}{0}{-T_0}{-T_1}{T_0}{0} R\f]
1832
1833
where \f$T_i\f$ are components of the translation vector \f$T\f$ : \f$T=[T_0, T_1, T_2]^T\f$ .
1834
And the function can also compute the fundamental matrix F:
1835
1836
\f[F = cameraMatrix2^{-T}\cdot E \cdot cameraMatrix1^{-1}\f]
1837
1838
Besides the stereo-related information, the function can also perform a full calibration of each of
1839
the two cameras. However, due to the high dimensionality of the parameter space and noise in the
1840
input data, the function can diverge from the correct solution. If the intrinsic parameters can be
1841
estimated with high accuracy for each of the cameras individually (for example, using
1842
#calibrateCamera ), you are recommended to do so and then pass @ref CALIB_FIX_INTRINSIC flag to the
1843
function along with the computed intrinsic parameters. Otherwise, if all the parameters are
1844
estimated at once, it makes sense to restrict some parameters, for example, pass
1845
 @ref CALIB_SAME_FOCAL_LENGTH and @ref CALIB_ZERO_TANGENT_DIST flags, which is usually a
1846
reasonable assumption.
1847
1848
Similarly to #calibrateCamera, the function minimizes the total re-projection error for all the
1849
points in all the available views from both cameras. The function returns the final value of the
1850
re-projection error.
1851
 */
1852
CV_EXPORTS_AS(stereoCalibrateExtended) double stereoCalibrate( InputArrayOfArrays objectPoints,
1853
                                     InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
1854
                                     InputOutputArray cameraMatrix1, InputOutputArray distCoeffs1,
1855
                                     InputOutputArray cameraMatrix2, InputOutputArray distCoeffs2,
1856
                                     Size imageSize, InputOutputArray R, InputOutputArray T, OutputArray E, OutputArray F,
1857
                                     OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, OutputArray perViewErrors, int flags = CALIB_FIX_INTRINSIC,
1858
                                     TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6) );
1859
1860
/// @overload
1861
CV_EXPORTS_W double stereoCalibrate( InputArrayOfArrays objectPoints,
1862
                                     InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
1863
                                     InputOutputArray cameraMatrix1, InputOutputArray distCoeffs1,
1864
                                     InputOutputArray cameraMatrix2, InputOutputArray distCoeffs2,
1865
                                     Size imageSize, OutputArray R,OutputArray T, OutputArray E, OutputArray F,
1866
                                     int flags = CALIB_FIX_INTRINSIC,
1867
                                     TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6) );
1868
1869
/// @overload
1870
CV_EXPORTS_W double stereoCalibrate( InputArrayOfArrays objectPoints,
1871
                                     InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
1872
                                     InputOutputArray cameraMatrix1, InputOutputArray distCoeffs1,
1873
                                     InputOutputArray cameraMatrix2, InputOutputArray distCoeffs2,
1874
                                     Size imageSize, InputOutputArray R, InputOutputArray T, OutputArray E, OutputArray F,
1875
                                     OutputArray perViewErrors, int flags = CALIB_FIX_INTRINSIC,
1876
                                     TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6) );
1877
1878
/** @brief Computes rectification transforms for each head of a calibrated stereo camera.
1879
1880
@param cameraMatrix1 First camera intrinsic matrix.
1881
@param distCoeffs1 First camera distortion parameters.
1882
@param cameraMatrix2 Second camera intrinsic matrix.
1883
@param distCoeffs2 Second camera distortion parameters.
1884
@param imageSize Size of the image used for stereo calibration.
1885
@param R Rotation matrix from the coordinate system of the first camera to the second camera,
1886
see @ref stereoCalibrate.
1887
@param T Translation vector from the coordinate system of the first camera to the second camera,
1888
see @ref stereoCalibrate.
1889
@param R1 Output 3x3 rectification transform (rotation matrix) for the first camera. This matrix
1890
brings points given in the unrectified first camera's coordinate system to points in the rectified
1891
first camera's coordinate system. In more technical terms, it performs a change of basis from the
1892
unrectified first camera's coordinate system to the rectified first camera's coordinate system.
1893
@param R2 Output 3x3 rectification transform (rotation matrix) for the second camera. This matrix
1894
brings points given in the unrectified second camera's coordinate system to points in the rectified
1895
second camera's coordinate system. In more technical terms, it performs a change of basis from the
1896
unrectified second camera's coordinate system to the rectified second camera's coordinate system.
1897
@param P1 Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
1898
camera, i.e. it projects points given in the rectified first camera coordinate system into the
1899
rectified first camera's image.
1900
@param P2 Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
1901
camera, i.e. it projects points given in the rectified first camera coordinate system into the
1902
rectified second camera's image.
1903
@param Q Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see @ref reprojectImageTo3D).
1904
@param flags Operation flags that may be zero or @ref CALIB_ZERO_DISPARITY . If the flag is set,
1905
the function makes the principal points of each camera have the same pixel coordinates in the
1906
rectified views. And if the flag is not set, the function may still shift the images in the
1907
horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
1908
useful image area.
1909
@param alpha Free scaling parameter. If it is -1 or absent, the function performs the default
1910
scaling. Otherwise, the parameter should be between 0 and 1. alpha=0 means that the rectified
1911
images are zoomed and shifted so that only valid pixels are visible (no black areas after
1912
rectification). alpha=1 means that the rectified image is decimated and shifted so that all the
1913
pixels from the original images from the cameras are retained in the rectified images (no source
1914
image pixels are lost). Any intermediate value yields an intermediate result between
1915
those two extreme cases.
1916
@param newImageSize New image resolution after rectification. The same size should be passed to
1917
#initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
1918
is passed (default), it is set to the original imageSize . Setting it to a larger value can help you
1919
preserve details in the original image, especially when there is a big radial distortion.
1920
@param validPixROI1 Optional output rectangles inside the rectified images where all the pixels
1921
are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
1922
(see the picture below).
1923
@param validPixROI2 Optional output rectangles inside the rectified images where all the pixels
1924
are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
1925
(see the picture below).
1926
1927
The function computes the rotation matrices for each camera that (virtually) make both camera image
1928
planes the same plane. Consequently, this makes all the epipolar lines parallel and thus simplifies
1929
the dense stereo correspondence problem. The function takes the matrices computed by #stereoCalibrate
1930
as input. As output, it provides two rotation matrices and also two projection matrices in the new
1931
coordinates. The function distinguishes the following two cases:
1932
1933
-   **Horizontal stereo**: the first and the second camera views are shifted relative to each other
1934
    mainly along the x-axis (with possible small vertical shift). In the rectified images, the
1935
    corresponding epipolar lines in the left and right cameras are horizontal and have the same
1936
    y-coordinate. P1 and P2 look like:
1937
1938
    \f[\texttt{P1} = \begin{bmatrix}
1939
                        f & 0 & cx_1 & 0 \\
1940
                        0 & f & cy & 0 \\
1941
                        0 & 0 & 1 & 0
1942
                     \end{bmatrix}\f]
1943
1944
    \f[\texttt{P2} = \begin{bmatrix}
1945
                        f & 0 & cx_2 & T_x \cdot f \\
1946
                        0 & f & cy & 0 \\
1947
                        0 & 0 & 1 & 0
1948
                     \end{bmatrix} ,\f]
1949
1950
    \f[\texttt{Q} = \begin{bmatrix}
1951
                        1 & 0 & 0 & -cx_1 \\
1952
                        0 & 1 & 0 & -cy \\
1953
                        0 & 0 & 0 & f \\
1954
                        0 & 0 & -\frac{1}{T_x} & \frac{cx_1 - cx_2}{T_x}
1955
                    \end{bmatrix} \f]
1956
1957
    where \f$T_x\f$ is a horizontal shift between the cameras and \f$cx_1=cx_2\f$ if
1958
    @ref CALIB_ZERO_DISPARITY is set.
1959
1960
-   **Vertical stereo**: the first and the second camera views are shifted relative to each other
1961
    mainly in the vertical direction (and probably a bit in the horizontal direction too). The epipolar
1962
    lines in the rectified images are vertical and have the same x-coordinate. P1 and P2 look like:
1963
1964
    \f[\texttt{P1} = \begin{bmatrix}
1965
                        f & 0 & cx & 0 \\
1966
                        0 & f & cy_1 & 0 \\
1967
                        0 & 0 & 1 & 0
1968
                     \end{bmatrix}\f]
1969
1970
    \f[\texttt{P2} = \begin{bmatrix}
1971
                        f & 0 & cx & 0 \\
1972
                        0 & f & cy_2 & T_y \cdot f \\
1973
                        0 & 0 & 1 & 0
1974
                     \end{bmatrix},\f]
1975
1976
    \f[\texttt{Q} = \begin{bmatrix}
1977
                        1 & 0 & 0 & -cx \\
1978
                        0 & 1 & 0 & -cy_1 \\
1979
                        0 & 0 & 0 & f \\
1980
                        0 & 0 & -\frac{1}{T_y} & \frac{cy_1 - cy_2}{T_y}
1981
                    \end{bmatrix} \f]
1982
1983
    where \f$T_y\f$ is a vertical shift between the cameras and \f$cy_1=cy_2\f$ if
1984
    @ref CALIB_ZERO_DISPARITY is set.
1985
1986
As you can see, the first three columns of P1 and P2 will effectively be the new "rectified" camera
1987
matrices. The matrices, together with R1 and R2 , can then be passed to #initUndistortRectifyMap to
1988
initialize the rectification map for each camera.
1989
1990
See below the screenshot from the stereo_calib.cpp sample. Some red horizontal lines pass through
1991
the corresponding image regions. This means that the images are well rectified, which is what most
1992
stereo correspondence algorithms rely on. The green rectangles are roi1 and roi2 . You see that
1993
their interiors are all valid pixels.
1994
1995
![image](pics/stereo_undistort.jpg)
1996
 */
1997
CV_EXPORTS_W void stereoRectify( InputArray cameraMatrix1, InputArray distCoeffs1,
1998
                                 InputArray cameraMatrix2, InputArray distCoeffs2,
1999
                                 Size imageSize, InputArray R, InputArray T,
2000
                                 OutputArray R1, OutputArray R2,
2001
                                 OutputArray P1, OutputArray P2,
2002
                                 OutputArray Q, int flags = CALIB_ZERO_DISPARITY,
2003
                                 double alpha = -1, Size newImageSize = Size(),
2004
                                 CV_OUT Rect* validPixROI1 = 0, CV_OUT Rect* validPixROI2 = 0 );
2005
2006
/** @brief Computes a rectification transform for an uncalibrated stereo camera.
2007
2008
@param points1 Array of feature points in the first image.
2009
@param points2 The corresponding points in the second image. The same formats as in
2010
#findFundamentalMat are supported.
2011
@param F Input fundamental matrix. It can be computed from the same set of point pairs using
2012
#findFundamentalMat .
2013
@param imgSize Size of the image.
2014
@param H1 Output rectification homography matrix for the first image.
2015
@param H2 Output rectification homography matrix for the second image.
2016
@param threshold Optional threshold used to filter out the outliers. If the parameter is greater
2017
than zero, all the point pairs that do not comply with the epipolar geometry (that is, the points
2018
for which \f$|\texttt{points2[i]}^T \cdot \texttt{F} \cdot \texttt{points1[i]}|>\texttt{threshold}\f$ )
2019
are rejected prior to computing the homographies. Otherwise, all the points are considered inliers.
2020
2021
The function computes the rectification transformations without knowing intrinsic parameters of the
2022
cameras and their relative position in the space, which explains the suffix "uncalibrated". Another
2023
related difference from #stereoRectify is that the function outputs not the rectification
2024
transformations in the object (3D) space, but the planar perspective transformations encoded by the
2025
homography matrices H1 and H2 . The function implements the algorithm @cite Hartley99 .
2026
2027
@note
2028
   While the algorithm does not need to know the intrinsic parameters of the cameras, it heavily
2029
    depends on the epipolar geometry. Therefore, if the camera lenses have a significant distortion,
2030
    it would be better to correct it before computing the fundamental matrix and calling this
2031
    function. For example, distortion coefficients can be estimated for each head of stereo camera
2032
    separately by using #calibrateCamera . Then, the images can be corrected using #undistort , or
2033
    just the point coordinates can be corrected with #undistortPoints .
2034
 */
2035
CV_EXPORTS_W bool stereoRectifyUncalibrated( InputArray points1, InputArray points2,
2036
                                             InputArray F, Size imgSize,
2037
                                             OutputArray H1, OutputArray H2,
2038
                                             double threshold = 5 );
2039
2040
//! computes the rectification transformations for 3-head camera, where all the heads are on the same line.
2041
CV_EXPORTS_W float rectify3Collinear( InputArray cameraMatrix1, InputArray distCoeffs1,
2042
                                      InputArray cameraMatrix2, InputArray distCoeffs2,
2043
                                      InputArray cameraMatrix3, InputArray distCoeffs3,
2044
                                      InputArrayOfArrays imgpt1, InputArrayOfArrays imgpt3,
2045
                                      Size imageSize, InputArray R12, InputArray T12,
2046
                                      InputArray R13, InputArray T13,
2047
                                      OutputArray R1, OutputArray R2, OutputArray R3,
2048
                                      OutputArray P1, OutputArray P2, OutputArray P3,
2049
                                      OutputArray Q, double alpha, Size newImgSize,
2050
                                      CV_OUT Rect* roi1, CV_OUT Rect* roi2, int flags );
2051
2052
/** @brief Returns the new camera intrinsic matrix based on the free scaling parameter.
2053
2054
@param cameraMatrix Input camera intrinsic matrix.
2055
@param distCoeffs Input vector of distortion coefficients
2056
\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are
2057
assumed.
2058
@param imageSize Original image size.
2059
@param alpha Free scaling parameter between 0 (when all the pixels in the undistorted image are
2060
valid) and 1 (when all the source image pixels are retained in the undistorted image). See
2061
#stereoRectify for details.
2062
@param newImgSize Image size after rectification. By default, it is set to imageSize .
2063
@param validPixROI Optional output rectangle that outlines all-good-pixels region in the
2064
undistorted image. See roi1, roi2 description in #stereoRectify .
2065
@param centerPrincipalPoint Optional flag that indicates whether in the new camera intrinsic matrix the
2066
principal point should be at the image center or not. By default, the principal point is chosen to
2067
best fit a subset of the source image (determined by alpha) to the corrected image.
2068
@return new_camera_matrix Output new camera intrinsic matrix.
2069
2070
The function computes and returns the optimal new camera intrinsic matrix based on the free scaling parameter.
2071
By varying this parameter, you may retrieve only sensible pixels alpha=0 , keep all the original
2072
image pixels if there is valuable information in the corners alpha=1 , or get something in between.
2073
When alpha\>0 , the undistorted result is likely to have some black pixels corresponding to
2074
"virtual" pixels outside of the captured distorted image. The original camera intrinsic matrix, distortion
2075
coefficients, the computed new camera intrinsic matrix, and newImageSize should be passed to
2076
#initUndistortRectifyMap to produce the maps for #remap .
2077
 */
2078
CV_EXPORTS_W Mat getOptimalNewCameraMatrix( InputArray cameraMatrix, InputArray distCoeffs,
2079
                                            Size imageSize, double alpha, Size newImgSize = Size(),
2080
                                            CV_OUT Rect* validPixROI = 0,
2081
                                            bool centerPrincipalPoint = false);
2082
2083
/** @brief Computes Hand-Eye calibration: \f$_{}^{g}\textrm{T}_c\f$
2084
2085
@param[in] R_gripper2base Rotation part extracted from the homogeneous matrix that transforms a point
2086
expressed in the gripper frame to the robot base frame (\f$_{}^{b}\textrm{T}_g\f$).
2087
This is a vector (`vector<Mat>`) that contains the rotation, `(3x3)` rotation matrices or `(3x1)` rotation vectors,
2088
for all the transformations from gripper frame to robot base frame.
2089
@param[in] t_gripper2base Translation part extracted from the homogeneous matrix that transforms a point
2090
expressed in the gripper frame to the robot base frame (\f$_{}^{b}\textrm{T}_g\f$).
2091
This is a vector (`vector<Mat>`) that contains the `(3x1)` translation vectors for all the transformations
2092
from gripper frame to robot base frame.
2093
@param[in] R_target2cam Rotation part extracted from the homogeneous matrix that transforms a point
2094
expressed in the target frame to the camera frame (\f$_{}^{c}\textrm{T}_t\f$).
2095
This is a vector (`vector<Mat>`) that contains the rotation, `(3x3)` rotation matrices or `(3x1)` rotation vectors,
2096
for all the transformations from calibration target frame to camera frame.
2097
@param[in] t_target2cam Rotation part extracted from the homogeneous matrix that transforms a point
2098
expressed in the target frame to the camera frame (\f$_{}^{c}\textrm{T}_t\f$).
2099
This is a vector (`vector<Mat>`) that contains the `(3x1)` translation vectors for all the transformations
2100
from calibration target frame to camera frame.
2101
@param[out] R_cam2gripper Estimated `(3x3)` rotation part extracted from the homogeneous matrix that transforms a point
2102
expressed in the camera frame to the gripper frame (\f$_{}^{g}\textrm{T}_c\f$).
2103
@param[out] t_cam2gripper Estimated `(3x1)` translation part extracted from the homogeneous matrix that transforms a point
2104
expressed in the camera frame to the gripper frame (\f$_{}^{g}\textrm{T}_c\f$).
2105
@param[in] method One of the implemented Hand-Eye calibration method, see cv::HandEyeCalibrationMethod
2106
2107
The function performs the Hand-Eye calibration using various methods. One approach consists in estimating the
2108
rotation then the translation (separable solutions) and the following methods are implemented:
2109
  - R. Tsai, R. Lenz A New Technique for Fully Autonomous and Efficient 3D Robotics Hand/EyeCalibration \cite Tsai89
2110
  - F. Park, B. Martin Robot Sensor Calibration: Solving AX = XB on the Euclidean Group \cite Park94
2111
  - R. Horaud, F. Dornaika Hand-Eye Calibration \cite Horaud95
2112
2113
Another approach consists in estimating simultaneously the rotation and the translation (simultaneous solutions),
2114
with the following implemented methods:
2115
  - N. Andreff, R. Horaud, B. Espiau On-line Hand-Eye Calibration \cite Andreff99
2116
  - K. Daniilidis Hand-Eye Calibration Using Dual Quaternions \cite Daniilidis98
2117
2118
The following picture describes the Hand-Eye calibration problem where the transformation between a camera ("eye")
2119
mounted on a robot gripper ("hand") has to be estimated. This configuration is called eye-in-hand.
2120
2121
The eye-to-hand configuration consists in a static camera observing a calibration pattern mounted on the robot
2122
end-effector. The transformation from the camera to the robot base frame can then be estimated by inputting
2123
the suitable transformations to the function, see below.
2124
2125
![](pics/hand-eye_figure.png)
2126
2127
The calibration procedure is the following:
2128
  - a static calibration pattern is used to estimate the transformation between the target frame
2129
  and the camera frame
2130
  - the robot gripper is moved in order to acquire several poses
2131
  - for each pose, the homogeneous transformation between the gripper frame and the robot base frame is recorded using for
2132
  instance the robot kinematics
2133
\f[
2134
    \begin{bmatrix}
2135
    X_b\\
2136
    Y_b\\
2137
    Z_b\\
2138
    1
2139
    \end{bmatrix}
2140
    =
2141
    \begin{bmatrix}
2142
    _{}^{b}\textrm{R}_g & _{}^{b}\textrm{t}_g \\
2143
    0_{1 \times 3} & 1
2144
    \end{bmatrix}
2145
    \begin{bmatrix}
2146
    X_g\\
2147
    Y_g\\
2148
    Z_g\\
2149
    1
2150
    \end{bmatrix}
2151
\f]
2152
  - for each pose, the homogeneous transformation between the calibration target frame and the camera frame is recorded using
2153
  for instance a pose estimation method (PnP) from 2D-3D point correspondences
2154
\f[
2155
    \begin{bmatrix}
2156
    X_c\\
2157
    Y_c\\
2158
    Z_c\\
2159
    1
2160
    \end{bmatrix}
2161
    =
2162
    \begin{bmatrix}
2163
    _{}^{c}\textrm{R}_t & _{}^{c}\textrm{t}_t \\
2164
    0_{1 \times 3} & 1
2165
    \end{bmatrix}
2166
    \begin{bmatrix}
2167
    X_t\\
2168
    Y_t\\
2169
    Z_t\\
2170
    1
2171
    \end{bmatrix}
2172
\f]
2173
2174
The Hand-Eye calibration procedure returns the following homogeneous transformation
2175
\f[
2176
    \begin{bmatrix}
2177
    X_g\\
2178
    Y_g\\
2179
    Z_g\\
2180
    1
2181
    \end{bmatrix}
2182
    =
2183
    \begin{bmatrix}
2184
    _{}^{g}\textrm{R}_c & _{}^{g}\textrm{t}_c \\
2185
    0_{1 \times 3} & 1
2186
    \end{bmatrix}
2187
    \begin{bmatrix}
2188
    X_c\\
2189
    Y_c\\
2190
    Z_c\\
2191
    1
2192
    \end{bmatrix}
2193
\f]
2194
2195
This problem is also known as solving the \f$\mathbf{A}\mathbf{X}=\mathbf{X}\mathbf{B}\f$ equation:
2196
  - for an eye-in-hand configuration
2197
\f[
2198
    \begin{align*}
2199
    ^{b}{\textrm{T}_g}^{(1)} \hspace{0.2em} ^{g}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(1)} &=
2200
    \hspace{0.1em} ^{b}{\textrm{T}_g}^{(2)} \hspace{0.2em} ^{g}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(2)} \\
2201
2202
    (^{b}{\textrm{T}_g}^{(2)})^{-1} \hspace{0.2em} ^{b}{\textrm{T}_g}^{(1)} \hspace{0.2em} ^{g}\textrm{T}_c &=
2203
    \hspace{0.1em} ^{g}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(2)} (^{c}{\textrm{T}_t}^{(1)})^{-1} \\
2204
2205
    \textrm{A}_i \textrm{X} &= \textrm{X} \textrm{B}_i \\
2206
    \end{align*}
2207
\f]
2208
2209
  - for an eye-to-hand configuration
2210
\f[
2211
    \begin{align*}
2212
    ^{g}{\textrm{T}_b}^{(1)} \hspace{0.2em} ^{b}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(1)} &=
2213
    \hspace{0.1em} ^{g}{\textrm{T}_b}^{(2)} \hspace{0.2em} ^{b}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(2)} \\
2214
2215
    (^{g}{\textrm{T}_b}^{(2)})^{-1} \hspace{0.2em} ^{g}{\textrm{T}_b}^{(1)} \hspace{0.2em} ^{b}\textrm{T}_c &=
2216
    \hspace{0.1em} ^{b}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(2)} (^{c}{\textrm{T}_t}^{(1)})^{-1} \\
2217
2218
    \textrm{A}_i \textrm{X} &= \textrm{X} \textrm{B}_i \\
2219
    \end{align*}
2220
\f]
2221
2222
\note
2223
Additional information can be found on this [website](http://campar.in.tum.de/Chair/HandEyeCalibration).
2224
\note
2225
A minimum of 2 motions with non parallel rotation axes are necessary to determine the hand-eye transformation.
2226
So at least 3 different poses are required, but it is strongly recommended to use many more poses.
2227
2228
 */
2229
CV_EXPORTS_W void calibrateHandEye( InputArrayOfArrays R_gripper2base, InputArrayOfArrays t_gripper2base,
2230
                                    InputArrayOfArrays R_target2cam, InputArrayOfArrays t_target2cam,
2231
                                    OutputArray R_cam2gripper, OutputArray t_cam2gripper,
2232
                                    HandEyeCalibrationMethod method=CALIB_HAND_EYE_TSAI );
2233
2234
/** @brief Computes Robot-World/Hand-Eye calibration: \f$_{}^{w}\textrm{T}_b\f$ and \f$_{}^{c}\textrm{T}_g\f$
2235
2236
@param[in] R_world2cam Rotation part extracted from the homogeneous matrix that transforms a point
2237
expressed in the world frame to the camera frame (\f$_{}^{c}\textrm{T}_w\f$).
2238
This is a vector (`vector<Mat>`) that contains the rotation, `(3x3)` rotation matrices or `(3x1)` rotation vectors,
2239
for all the transformations from world frame to the camera frame.
2240
@param[in] t_world2cam Translation part extracted from the homogeneous matrix that transforms a point
2241
expressed in the world frame to the camera frame (\f$_{}^{c}\textrm{T}_w\f$).
2242
This is a vector (`vector<Mat>`) that contains the `(3x1)` translation vectors for all the transformations
2243
from world frame to the camera frame.
2244
@param[in] R_base2gripper Rotation part extracted from the homogeneous matrix that transforms a point
2245
expressed in the robot base frame to the gripper frame (\f$_{}^{g}\textrm{T}_b\f$).
2246
This is a vector (`vector<Mat>`) that contains the rotation, `(3x3)` rotation matrices or `(3x1)` rotation vectors,
2247
for all the transformations from robot base frame to the gripper frame.
2248
@param[in] t_base2gripper Rotation part extracted from the homogeneous matrix that transforms a point
2249
expressed in the robot base frame to the gripper frame (\f$_{}^{g}\textrm{T}_b\f$).
2250
This is a vector (`vector<Mat>`) that contains the `(3x1)` translation vectors for all the transformations
2251
from robot base frame to the gripper frame.
2252
@param[out] R_base2world Estimated `(3x3)` rotation part extracted from the homogeneous matrix that transforms a point
2253
expressed in the robot base frame to the world frame (\f$_{}^{w}\textrm{T}_b\f$).
2254
@param[out] t_base2world Estimated `(3x1)` translation part extracted from the homogeneous matrix that transforms a point
2255
expressed in the robot base frame to the world frame (\f$_{}^{w}\textrm{T}_b\f$).
2256
@param[out] R_gripper2cam Estimated `(3x3)` rotation part extracted from the homogeneous matrix that transforms a point
2257
expressed in the gripper frame to the camera frame (\f$_{}^{c}\textrm{T}_g\f$).
2258
@param[out] t_gripper2cam Estimated `(3x1)` translation part extracted from the homogeneous matrix that transforms a point
2259
expressed in the gripper frame to the camera frame (\f$_{}^{c}\textrm{T}_g\f$).
2260
@param[in] method One of the implemented Robot-World/Hand-Eye calibration method, see cv::RobotWorldHandEyeCalibrationMethod
2261
2262
The function performs the Robot-World/Hand-Eye calibration using various methods. One approach consists in estimating the
2263
rotation then the translation (separable solutions):
2264
  - M. Shah, Solving the robot-world/hand-eye calibration problem using the kronecker product \cite Shah2013SolvingTR
2265
2266
Another approach consists in estimating simultaneously the rotation and the translation (simultaneous solutions),
2267
with the following implemented method:
2268
  - A. Li, L. Wang, and D. Wu, Simultaneous robot-world and hand-eye calibration using dual-quaternions and kronecker product \cite Li2010SimultaneousRA
2269
2270
The following picture describes the Robot-World/Hand-Eye calibration problem where the transformations between a robot and a world frame
2271
and between a robot gripper ("hand") and a camera ("eye") mounted at the robot end-effector have to be estimated.
2272
2273
![](pics/robot-world_hand-eye_figure.png)
2274
2275
The calibration procedure is the following:
2276
  - a static calibration pattern is used to estimate the transformation between the target frame
2277
  and the camera frame
2278
  - the robot gripper is moved in order to acquire several poses
2279
  - for each pose, the homogeneous transformation between the gripper frame and the robot base frame is recorded using for
2280
  instance the robot kinematics
2281
\f[
2282
    \begin{bmatrix}
2283
    X_g\\
2284
    Y_g\\
2285
    Z_g\\
2286
    1
2287
    \end{bmatrix}
2288
    =
2289
    \begin{bmatrix}
2290
    _{}^{g}\textrm{R}_b & _{}^{g}\textrm{t}_b \\
2291
    0_{1 \times 3} & 1
2292
    \end{bmatrix}
2293
    \begin{bmatrix}
2294
    X_b\\
2295
    Y_b\\
2296
    Z_b\\
2297
    1
2298
    \end{bmatrix}
2299
\f]
2300
  - for each pose, the homogeneous transformation between the calibration target frame (the world frame) and the camera frame is recorded using
2301
  for instance a pose estimation method (PnP) from 2D-3D point correspondences
2302
\f[
2303
    \begin{bmatrix}
2304
    X_c\\
2305
    Y_c\\
2306
    Z_c\\
2307
    1
2308
    \end{bmatrix}
2309
    =
2310
    \begin{bmatrix}
2311
    _{}^{c}\textrm{R}_w & _{}^{c}\textrm{t}_w \\
2312
    0_{1 \times 3} & 1
2313
    \end{bmatrix}
2314
    \begin{bmatrix}
2315
    X_w\\
2316
    Y_w\\
2317
    Z_w\\
2318
    1
2319
    \end{bmatrix}
2320
\f]
2321
2322
The Robot-World/Hand-Eye calibration procedure returns the following homogeneous transformations
2323
\f[
2324
    \begin{bmatrix}
2325
    X_w\\
2326
    Y_w\\
2327
    Z_w\\
2328
    1
2329
    \end{bmatrix}
2330
    =
2331
    \begin{bmatrix}
2332
    _{}^{w}\textrm{R}_b & _{}^{w}\textrm{t}_b \\
2333
    0_{1 \times 3} & 1
2334
    \end{bmatrix}
2335
    \begin{bmatrix}
2336
    X_b\\
2337
    Y_b\\
2338
    Z_b\\
2339
    1
2340
    \end{bmatrix}
2341
\f]
2342
\f[
2343
    \begin{bmatrix}
2344
    X_c\\
2345
    Y_c\\
2346
    Z_c\\
2347
    1
2348
    \end{bmatrix}
2349
    =
2350
    \begin{bmatrix}
2351
    _{}^{c}\textrm{R}_g & _{}^{c}\textrm{t}_g \\
2352
    0_{1 \times 3} & 1
2353
    \end{bmatrix}
2354
    \begin{bmatrix}
2355
    X_g\\
2356
    Y_g\\
2357
    Z_g\\
2358
    1
2359
    \end{bmatrix}
2360
\f]
2361
2362
This problem is also known as solving the \f$\mathbf{A}\mathbf{X}=\mathbf{Z}\mathbf{B}\f$ equation, with:
2363
  - \f$\mathbf{A} \Leftrightarrow \hspace{0.1em} _{}^{c}\textrm{T}_w\f$
2364
  - \f$\mathbf{X} \Leftrightarrow \hspace{0.1em} _{}^{w}\textrm{T}_b\f$
2365
  - \f$\mathbf{Z} \Leftrightarrow \hspace{0.1em} _{}^{c}\textrm{T}_g\f$
2366
  - \f$\mathbf{B} \Leftrightarrow \hspace{0.1em} _{}^{g}\textrm{T}_b\f$
2367
2368
\note
2369
At least 3 measurements are required (input vectors size must be greater or equal to 3).
2370
2371
 */
2372
CV_EXPORTS_W void calibrateRobotWorldHandEye( InputArrayOfArrays R_world2cam, InputArrayOfArrays t_world2cam,
2373
                                              InputArrayOfArrays R_base2gripper, InputArrayOfArrays t_base2gripper,
2374
                                              OutputArray R_base2world, OutputArray t_base2world,
2375
                                              OutputArray R_gripper2cam, OutputArray t_gripper2cam,
2376
                                              RobotWorldHandEyeCalibrationMethod method=CALIB_ROBOT_WORLD_HAND_EYE_SHAH );
2377
2378
/** @brief Converts points from Euclidean to homogeneous space.
2379
2380
@param src Input vector of N-dimensional points.
2381
@param dst Output vector of N+1-dimensional points.
2382
2383
The function converts points from Euclidean to homogeneous space by appending 1's to the tuple of
2384
point coordinates. That is, each point (x1, x2, ..., xn) is converted to (x1, x2, ..., xn, 1).
2385
 */
2386
CV_EXPORTS_W void convertPointsToHomogeneous( InputArray src, OutputArray dst );
2387
2388
/** @brief Converts points from homogeneous to Euclidean space.
2389
2390
@param src Input vector of N-dimensional points.
2391
@param dst Output vector of N-1-dimensional points.
2392
2393
The function converts points homogeneous to Euclidean space using perspective projection. That is,
2394
each point (x1, x2, ... x(n-1), xn) is converted to (x1/xn, x2/xn, ..., x(n-1)/xn). When xn=0, the
2395
output point coordinates will be (0,0,0,...).
2396
 */
2397
CV_EXPORTS_W void convertPointsFromHomogeneous( InputArray src, OutputArray dst );
2398
2399
/** @brief Converts points to/from homogeneous coordinates.
2400
2401
@param src Input array or vector of 2D, 3D, or 4D points.
2402
@param dst Output vector of 2D, 3D, or 4D points.
2403
2404
The function converts 2D or 3D points from/to homogeneous coordinates by calling either
2405
#convertPointsToHomogeneous or #convertPointsFromHomogeneous.
2406
2407
@note The function is obsolete. Use one of the previous two functions instead.
2408
 */
2409
CV_EXPORTS void convertPointsHomogeneous( InputArray src, OutputArray dst );
2410
2411
/** @brief Calculates a fundamental matrix from the corresponding points in two images.
2412
2413
@param points1 Array of N points from the first image. The point coordinates should be
2414
floating-point (single or double precision).
2415
@param points2 Array of the second image points of the same size and format as points1 .
2416
@param method Method for computing a fundamental matrix.
2417
-   @ref FM_7POINT for a 7-point algorithm. \f$N = 7\f$
2418
-   @ref FM_8POINT for an 8-point algorithm. \f$N \ge 8\f$
2419
-   @ref FM_RANSAC for the RANSAC algorithm. \f$N \ge 8\f$
2420
-   @ref FM_LMEDS for the LMedS algorithm. \f$N \ge 8\f$
2421
@param ransacReprojThreshold Parameter used only for RANSAC. It is the maximum distance from a point to an epipolar
2422
line in pixels, beyond which the point is considered an outlier and is not used for computing the
2423
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
2424
point localization, image resolution, and the image noise.
2425
@param confidence Parameter used for the RANSAC and LMedS methods only. It specifies a desirable level
2426
of confidence (probability) that the estimated matrix is correct.
2427
@param[out] mask optional output mask
2428
@param maxIters The maximum number of robust method iterations.
2429
2430
The epipolar geometry is described by the following equation:
2431
2432
\f[[p_2; 1]^T F [p_1; 1] = 0\f]
2433
2434
where \f$F\f$ is a fundamental matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the
2435
second images, respectively.
2436
2437
The function calculates the fundamental matrix using one of four methods listed above and returns
2438
the found fundamental matrix. Normally just one matrix is found. But in case of the 7-point
2439
algorithm, the function may return up to 3 solutions ( \f$9 \times 3\f$ matrix that stores all 3
2440
matrices sequentially).
2441
2442
The calculated fundamental matrix may be passed further to #computeCorrespondEpilines that finds the
2443
epipolar lines corresponding to the specified points. It can also be passed to
2444
#stereoRectifyUncalibrated to compute the rectification transformation. :
2445
@code
2446
    // Example. Estimation of fundamental matrix using the RANSAC algorithm
2447
    int point_count = 100;
2448
    vector<Point2f> points1(point_count);
2449
    vector<Point2f> points2(point_count);
2450
2451
    // initialize the points here ...
2452
    for( int i = 0; i < point_count; i++ )
2453
    {
2454
        points1[i] = ...;
2455
        points2[i] = ...;
2456
    }
2457
2458
    Mat fundamental_matrix =
2459
     findFundamentalMat(points1, points2, FM_RANSAC, 3, 0.99);
2460
@endcode
2461
 */
2462
CV_EXPORTS_W Mat findFundamentalMat( InputArray points1, InputArray points2,
2463
                                     int method, double ransacReprojThreshold, double confidence,
2464
                                     int maxIters, OutputArray mask = noArray() );
2465
2466
/** @overload */
2467
CV_EXPORTS_W Mat findFundamentalMat( InputArray points1, InputArray points2,
2468
                                     int method = FM_RANSAC,
2469
                                     double ransacReprojThreshold = 3., double confidence = 0.99,
2470
                                     OutputArray mask = noArray() );
2471
2472
/** @overload */
2473
CV_EXPORTS Mat findFundamentalMat( InputArray points1, InputArray points2,
2474
                                   OutputArray mask, int method = FM_RANSAC,
2475
                                   double ransacReprojThreshold = 3., double confidence = 0.99 );
2476
2477
2478
CV_EXPORTS_W Mat findFundamentalMat( InputArray points1, InputArray points2,
2479
                        OutputArray mask, const UsacParams &params);
2480
2481
/** @brief Calculates an essential matrix from the corresponding points in two images.
2482
2483
@param points1 Array of N (N \>= 5) 2D points from the first image. The point coordinates should
2484
be floating-point (single or double precision).
2485
@param points2 Array of the second image points of the same size and format as points1 .
2486
@param cameraMatrix Camera intrinsic matrix \f$\cameramatrix{A}\f$ .
2487
Note that this function assumes that points1 and points2 are feature points from cameras with the
2488
same camera intrinsic matrix. If this assumption does not hold for your use case, use
2489
#undistortPoints with `P = cv::NoArray()` for both cameras to transform image points
2490
to normalized image coordinates, which are valid for the identity camera intrinsic matrix. When
2491
passing these coordinates, pass the identity matrix for this parameter.
2492
@param method Method for computing an essential matrix.
2493
-   @ref RANSAC for the RANSAC algorithm.
2494
-   @ref LMEDS for the LMedS algorithm.
2495
@param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
2496
confidence (probability) that the estimated matrix is correct.
2497
@param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
2498
line in pixels, beyond which the point is considered an outlier and is not used for computing the
2499
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
2500
point localization, image resolution, and the image noise.
2501
@param mask Output array of N elements, every element of which is set to 0 for outliers and to 1
2502
for the other points. The array is computed only in the RANSAC and LMedS methods.
2503
@param maxIters The maximum number of robust method iterations.
2504
2505
This function estimates essential matrix based on the five-point algorithm solver in @cite Nister03 .
2506
@cite SteweniusCFS is also a related. The epipolar geometry is described by the following equation:
2507
2508
\f[[p_2; 1]^T K^{-T} E K^{-1} [p_1; 1] = 0\f]
2509
2510
where \f$E\f$ is an essential matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the
2511
second images, respectively. The result of this function may be passed further to
2512
#decomposeEssentialMat or #recoverPose to recover the relative pose between cameras.
2513
 */
2514
CV_EXPORTS_W
2515
Mat findEssentialMat(
2516
    InputArray points1, InputArray points2,
2517
    InputArray cameraMatrix, int method = RANSAC,
2518
    double prob = 0.999, double threshold = 1.0,
2519
    int maxIters = 1000, OutputArray mask = noArray()
2520
);
2521
2522
/** @overload */
2523
CV_EXPORTS
2524
Mat findEssentialMat(
2525
    InputArray points1, InputArray points2,
2526
    InputArray cameraMatrix, int method,
2527
    double prob, double threshold,
2528
    OutputArray mask
2529
);  // TODO remove from OpenCV 5.0
2530
2531
/** @overload
2532
@param points1 Array of N (N \>= 5) 2D points from the first image. The point coordinates should
2533
be floating-point (single or double precision).
2534
@param points2 Array of the second image points of the same size and format as points1 .
2535
@param focal focal length of the camera. Note that this function assumes that points1 and points2
2536
are feature points from cameras with same focal length and principal point.
2537
@param pp principal point of the camera.
2538
@param method Method for computing a fundamental matrix.
2539
-   @ref RANSAC for the RANSAC algorithm.
2540
-   @ref LMEDS for the LMedS algorithm.
2541
@param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
2542
line in pixels, beyond which the point is considered an outlier and is not used for computing the
2543
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
2544
point localization, image resolution, and the image noise.
2545
@param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
2546
confidence (probability) that the estimated matrix is correct.
2547
@param mask Output array of N elements, every element of which is set to 0 for outliers and to 1
2548
for the other points. The array is computed only in the RANSAC and LMedS methods.
2549
@param maxIters The maximum number of robust method iterations.
2550
2551
This function differs from the one above that it computes camera intrinsic matrix from focal length and
2552
principal point:
2553
2554
\f[A =
2555
\begin{bmatrix}
2556
f & 0 & x_{pp}  \\
2557
0 & f & y_{pp}  \\
2558
0 & 0 & 1
2559
\end{bmatrix}\f]
2560
 */
2561
CV_EXPORTS_W
2562
Mat findEssentialMat(
2563
    InputArray points1, InputArray points2,
2564
    double focal = 1.0, Point2d pp = Point2d(0, 0),
2565
    int method = RANSAC, double prob = 0.999,
2566
    double threshold = 1.0, int maxIters = 1000,
2567
    OutputArray mask = noArray()
2568
);
2569
2570
/** @overload */
2571
CV_EXPORTS
2572
Mat findEssentialMat(
2573
    InputArray points1, InputArray points2,
2574
    double focal, Point2d pp,
2575
    int method, double prob,
2576
    double threshold, OutputArray mask
2577
);  // TODO remove from OpenCV 5.0
2578
2579
/** @brief Calculates an essential matrix from the corresponding points in two images from potentially two different cameras.
2580
2581
@param points1 Array of N (N \>= 5) 2D points from the first image. The point coordinates should
2582
be floating-point (single or double precision).
2583
@param points2 Array of the second image points of the same size and format as points1 .
2584
@param cameraMatrix1 Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
2585
Note that this function assumes that points1 and points2 are feature points from cameras with the
2586
same camera matrix. If this assumption does not hold for your use case, use
2587
#undistortPoints with `P = cv::NoArray()` for both cameras to transform image points
2588
to normalized image coordinates, which are valid for the identity camera matrix. When
2589
passing these coordinates, pass the identity matrix for this parameter.
2590
@param cameraMatrix2 Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
2591
Note that this function assumes that points1 and points2 are feature points from cameras with the
2592
same camera matrix. If this assumption does not hold for your use case, use
2593
#undistortPoints with `P = cv::NoArray()` for both cameras to transform image points
2594
to normalized image coordinates, which are valid for the identity camera matrix. When
2595
passing these coordinates, pass the identity matrix for this parameter.
2596
@param distCoeffs1 Input vector of distortion coefficients
2597
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
2598
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
2599
@param distCoeffs2 Input vector of distortion coefficients
2600
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
2601
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
2602
@param method Method for computing an essential matrix.
2603
-   @ref RANSAC for the RANSAC algorithm.
2604
-   @ref LMEDS for the LMedS algorithm.
2605
@param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
2606
confidence (probability) that the estimated matrix is correct.
2607
@param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
2608
line in pixels, beyond which the point is considered an outlier and is not used for computing the
2609
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
2610
point localization, image resolution, and the image noise.
2611
@param mask Output array of N elements, every element of which is set to 0 for outliers and to 1
2612
for the other points. The array is computed only in the RANSAC and LMedS methods.
2613
2614
This function estimates essential matrix based on the five-point algorithm solver in @cite Nister03 .
2615
@cite SteweniusCFS is also a related. The epipolar geometry is described by the following equation:
2616
2617
\f[[p_2; 1]^T K^{-T} E K^{-1} [p_1; 1] = 0\f]
2618
2619
where \f$E\f$ is an essential matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the
2620
second images, respectively. The result of this function may be passed further to
2621
#decomposeEssentialMat or  #recoverPose to recover the relative pose between cameras.
2622
 */
2623
CV_EXPORTS_W Mat findEssentialMat( InputArray points1, InputArray points2,
2624
                                 InputArray cameraMatrix1, InputArray distCoeffs1,
2625
                                 InputArray cameraMatrix2, InputArray distCoeffs2,
2626
                                 int method = RANSAC,
2627
                                 double prob = 0.999, double threshold = 1.0,
2628
                                 OutputArray mask = noArray() );
2629
2630
2631
CV_EXPORTS_W Mat findEssentialMat( InputArray points1, InputArray points2,
2632
                      InputArray cameraMatrix1, InputArray cameraMatrix2,
2633
                      InputArray dist_coeff1, InputArray dist_coeff2, OutputArray mask,
2634
                      const UsacParams &params);
2635
2636
/** @brief Decompose an essential matrix to possible rotations and translation.
2637
2638
@param E The input essential matrix.
2639
@param R1 One possible rotation matrix.
2640
@param R2 Another possible rotation matrix.
2641
@param t One possible translation.
2642
2643
This function decomposes the essential matrix E using svd decomposition @cite HartleyZ00. In
2644
general, four possible poses exist for the decomposition of E. They are \f$[R_1, t]\f$,
2645
\f$[R_1, -t]\f$, \f$[R_2, t]\f$, \f$[R_2, -t]\f$.
2646
2647
If E gives the epipolar constraint \f$[p_2; 1]^T A^{-T} E A^{-1} [p_1; 1] = 0\f$ between the image
2648
points \f$p_1\f$ in the first image and \f$p_2\f$ in second image, then any of the tuples
2649
\f$[R_1, t]\f$, \f$[R_1, -t]\f$, \f$[R_2, t]\f$, \f$[R_2, -t]\f$ is a change of basis from the first
2650
camera's coordinate system to the second camera's coordinate system. However, by decomposing E, one
2651
can only get the direction of the translation. For this reason, the translation t is returned with
2652
unit length.
2653
 */
2654
CV_EXPORTS_W void decomposeEssentialMat( InputArray E, OutputArray R1, OutputArray R2, OutputArray t );
2655
2656
/** @brief Recovers the relative camera rotation and the translation from corresponding points in two images from two different cameras, using cheirality check. Returns the number of
2657
inliers that pass the check.
2658
2659
@param points1 Array of N 2D points from the first image. The point coordinates should be
2660
floating-point (single or double precision).
2661
@param points2 Array of the second image points of the same size and format as points1 .
2662
@param cameraMatrix1 Input/output camera matrix for the first camera, the same as in
2663
@ref calibrateCamera. Furthermore, for the stereo case, additional flags may be used, see below.
2664
@param distCoeffs1 Input/output vector of distortion coefficients, the same as in
2665
@ref calibrateCamera.
2666
@param cameraMatrix2 Input/output camera matrix for the first camera, the same as in
2667
@ref calibrateCamera. Furthermore, for the stereo case, additional flags may be used, see below.
2668
@param distCoeffs2 Input/output vector of distortion coefficients, the same as in
2669
@ref calibrateCamera.
2670
@param E The output essential matrix.
2671
@param R Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
2672
that performs a change of basis from the first camera's coordinate system to the second camera's
2673
coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
2674
described below.
2675
@param t Output translation vector. This vector is obtained by @ref decomposeEssentialMat and
2676
therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
2677
length.
2678
@param method Method for computing an essential matrix.
2679
-   @ref RANSAC for the RANSAC algorithm.
2680
-   @ref LMEDS for the LMedS algorithm.
2681
@param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
2682
confidence (probability) that the estimated matrix is correct.
2683
@param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
2684
line in pixels, beyond which the point is considered an outlier and is not used for computing the
2685
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
2686
point localization, image resolution, and the image noise.
2687
@param mask Input/output mask for inliers in points1 and points2. If it is not empty, then it marks
2688
inliers in points1 and points2 for then given essential matrix E. Only these inliers will be used to
2689
recover pose. In the output mask only inliers which pass the cheirality check.
2690
2691
This function decomposes an essential matrix using @ref decomposeEssentialMat and then verifies
2692
possible pose hypotheses by doing cheirality check. The cheirality check means that the
2693
triangulated 3D points should have positive depth. Some details can be found in @cite Nister03.
2694
2695
This function can be used to process the output E and mask from @ref findEssentialMat. In this
2696
scenario, points1 and points2 are the same input for findEssentialMat.:
2697
@code
2698
    // Example. Estimation of fundamental matrix using the RANSAC algorithm
2699
    int point_count = 100;
2700
    vector<Point2f> points1(point_count);
2701
    vector<Point2f> points2(point_count);
2702
2703
    // initialize the points here ...
2704
    for( int i = 0; i < point_count; i++ )
2705
    {
2706
        points1[i] = ...;
2707
        points2[i] = ...;
2708
    }
2709
2710
    // Input: camera calibration of both cameras, for example using intrinsic chessboard calibration.
2711
    Mat cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2;
2712
2713
    // Output: Essential matrix, relative rotation and relative translation.
2714
    Mat E, R, t, mask;
2715
2716
    recoverPose(points1, points2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, E, R, t, mask);
2717
@endcode
2718
 */
2719
CV_EXPORTS_W int recoverPose( InputArray points1, InputArray points2,
2720
                            InputArray cameraMatrix1, InputArray distCoeffs1,
2721
                            InputArray cameraMatrix2, InputArray distCoeffs2,
2722
                            OutputArray E, OutputArray R, OutputArray t,
2723
                            int method = cv::RANSAC, double prob = 0.999, double threshold = 1.0,
2724
                            InputOutputArray mask = noArray());
2725
2726
/** @brief Recovers the relative camera rotation and the translation from an estimated essential
2727
matrix and the corresponding points in two images, using chirality check. Returns the number of
2728
inliers that pass the check.
2729
2730
@param E The input essential matrix.
2731
@param points1 Array of N 2D points from the first image. The point coordinates should be
2732
floating-point (single or double precision).
2733
@param points2 Array of the second image points of the same size and format as points1 .
2734
@param cameraMatrix Camera intrinsic matrix \f$\cameramatrix{A}\f$ .
2735
Note that this function assumes that points1 and points2 are feature points from cameras with the
2736
same camera intrinsic matrix.
2737
@param R Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
2738
that performs a change of basis from the first camera's coordinate system to the second camera's
2739
coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
2740
described below.
2741
@param t Output translation vector. This vector is obtained by @ref decomposeEssentialMat and
2742
therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
2743
length.
2744
@param mask Input/output mask for inliers in points1 and points2. If it is not empty, then it marks
2745
inliers in points1 and points2 for the given essential matrix E. Only these inliers will be used to
2746
recover pose. In the output mask only inliers which pass the chirality check.
2747
2748
This function decomposes an essential matrix using @ref decomposeEssentialMat and then verifies
2749
possible pose hypotheses by doing chirality check. The chirality check means that the
2750
triangulated 3D points should have positive depth. Some details can be found in @cite Nister03.
2751
2752
This function can be used to process the output E and mask from @ref findEssentialMat. In this
2753
scenario, points1 and points2 are the same input for #findEssentialMat :
2754
@code
2755
    // Example. Estimation of fundamental matrix using the RANSAC algorithm
2756
    int point_count = 100;
2757
    vector<Point2f> points1(point_count);
2758
    vector<Point2f> points2(point_count);
2759
2760
    // initialize the points here ...
2761
    for( int i = 0; i < point_count; i++ )
2762
    {
2763
        points1[i] = ...;
2764
        points2[i] = ...;
2765
    }
2766
2767
    // cametra matrix with both focal lengths = 1, and principal point = (0, 0)
2768
    Mat cameraMatrix = Mat::eye(3, 3, CV_64F);
2769
2770
    Mat E, R, t, mask;
2771
2772
    E = findEssentialMat(points1, points2, cameraMatrix, RANSAC, 0.999, 1.0, mask);
2773
    recoverPose(E, points1, points2, cameraMatrix, R, t, mask);
2774
@endcode
2775
 */
2776
CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2,
2777
                            InputArray cameraMatrix, OutputArray R, OutputArray t,
2778
                            InputOutputArray mask = noArray() );
2779
2780
/** @overload
2781
@param E The input essential matrix.
2782
@param points1 Array of N 2D points from the first image. The point coordinates should be
2783
floating-point (single or double precision).
2784
@param points2 Array of the second image points of the same size and format as points1 .
2785
@param R Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
2786
that performs a change of basis from the first camera's coordinate system to the second camera's
2787
coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
2788
description below.
2789
@param t Output translation vector. This vector is obtained by @ref decomposeEssentialMat and
2790
therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
2791
length.
2792
@param focal Focal length of the camera. Note that this function assumes that points1 and points2
2793
are feature points from cameras with same focal length and principal point.
2794
@param pp principal point of the camera.
2795
@param mask Input/output mask for inliers in points1 and points2. If it is not empty, then it marks
2796
inliers in points1 and points2 for the given essential matrix E. Only these inliers will be used to
2797
recover pose. In the output mask only inliers which pass the chirality check.
2798
2799
This function differs from the one above that it computes camera intrinsic matrix from focal length and
2800
principal point:
2801
2802
\f[A =
2803
\begin{bmatrix}
2804
f & 0 & x_{pp}  \\
2805
0 & f & y_{pp}  \\
2806
0 & 0 & 1
2807
\end{bmatrix}\f]
2808
 */
2809
CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2,
2810
                            OutputArray R, OutputArray t,
2811
                            double focal = 1.0, Point2d pp = Point2d(0, 0),
2812
                            InputOutputArray mask = noArray() );
2813
2814
/** @overload
2815
@param E The input essential matrix.
2816
@param points1 Array of N 2D points from the first image. The point coordinates should be
2817
floating-point (single or double precision).
2818
@param points2 Array of the second image points of the same size and format as points1.
2819
@param cameraMatrix Camera intrinsic matrix \f$\cameramatrix{A}\f$ .
2820
Note that this function assumes that points1 and points2 are feature points from cameras with the
2821
same camera intrinsic matrix.
2822
@param R Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
2823
that performs a change of basis from the first camera's coordinate system to the second camera's
2824
coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
2825
description below.
2826
@param t Output translation vector. This vector is obtained by @ref decomposeEssentialMat and
2827
therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
2828
length.
2829
@param distanceThresh threshold distance which is used to filter out far away points (i.e. infinite
2830
points).
2831
@param mask Input/output mask for inliers in points1 and points2. If it is not empty, then it marks
2832
inliers in points1 and points2 for the given essential matrix E. Only these inliers will be used to
2833
recover pose. In the output mask only inliers which pass the chirality check.
2834
@param triangulatedPoints 3D points which were reconstructed by triangulation.
2835
2836
This function differs from the one above that it outputs the triangulated 3D point that are used for
2837
the chirality check.
2838
 */
2839
CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2,
2840
                            InputArray cameraMatrix, OutputArray R, OutputArray t, double distanceThresh, InputOutputArray mask = noArray(),
2841
                            OutputArray triangulatedPoints = noArray());
2842
2843
/** @brief For points in an image of a stereo pair, computes the corresponding epilines in the other image.
2844
2845
@param points Input points. \f$N \times 1\f$ or \f$1 \times N\f$ matrix of type CV_32FC2 or
2846
vector\<Point2f\> .
2847
@param whichImage Index of the image (1 or 2) that contains the points .
2848
@param F Fundamental matrix that can be estimated using #findFundamentalMat or #stereoRectify .
2849
@param lines Output vector of the epipolar lines corresponding to the points in the other image.
2850
Each line \f$ax + by + c=0\f$ is encoded by 3 numbers \f$(a, b, c)\f$ .
2851
2852
For every point in one of the two images of a stereo pair, the function finds the equation of the
2853
corresponding epipolar line in the other image.
2854
2855
From the fundamental matrix definition (see #findFundamentalMat ), line \f$l^{(2)}_i\f$ in the second
2856
image for the point \f$p^{(1)}_i\f$ in the first image (when whichImage=1 ) is computed as:
2857
2858
\f[l^{(2)}_i = F p^{(1)}_i\f]
2859
2860
And vice versa, when whichImage=2, \f$l^{(1)}_i\f$ is computed from \f$p^{(2)}_i\f$ as:
2861
2862
\f[l^{(1)}_i = F^T p^{(2)}_i\f]
2863
2864
Line coefficients are defined up to a scale. They are normalized so that \f$a_i^2+b_i^2=1\f$ .
2865
 */
2866
CV_EXPORTS_W void computeCorrespondEpilines( InputArray points, int whichImage,
2867
                                             InputArray F, OutputArray lines );
2868
2869
/** @brief This function reconstructs 3-dimensional points (in homogeneous coordinates) by using
2870
their observations with a stereo camera.
2871
2872
@param projMatr1 3x4 projection matrix of the first camera, i.e. this matrix projects 3D points
2873
given in the world's coordinate system into the first image.
2874
@param projMatr2 3x4 projection matrix of the second camera, i.e. this matrix projects 3D points
2875
given in the world's coordinate system into the second image.
2876
@param projPoints1 2xN array of feature points in the first image. In the case of the c++ version,
2877
it can be also a vector of feature points or two-channel matrix of size 1xN or Nx1.
2878
@param projPoints2 2xN array of corresponding points in the second image. In the case of the c++
2879
version, it can be also a vector of feature points or two-channel matrix of size 1xN or Nx1.
2880
@param points4D 4xN array of reconstructed points in homogeneous coordinates. These points are
2881
returned in the world's coordinate system.
2882
2883
@note
2884
   Keep in mind that all input data should be of float type in order for this function to work.
2885
2886
@note
2887
   If the projection matrices from @ref stereoRectify are used, then the returned points are
2888
   represented in the first camera's rectified coordinate system.
2889
2890
@sa
2891
   reprojectImageTo3D
2892
 */
2893
CV_EXPORTS_W void triangulatePoints( InputArray projMatr1, InputArray projMatr2,
2894
                                     InputArray projPoints1, InputArray projPoints2,
2895
                                     OutputArray points4D );
2896
2897
/** @brief Refines coordinates of corresponding points.
2898
2899
@param F 3x3 fundamental matrix.
2900
@param points1 1xN array containing the first set of points.
2901
@param points2 1xN array containing the second set of points.
2902
@param newPoints1 The optimized points1.
2903
@param newPoints2 The optimized points2.
2904
2905
The function implements the Optimal Triangulation Method (see Multiple View Geometry @cite HartleyZ00 for details).
2906
For each given point correspondence points1[i] \<-\> points2[i], and a fundamental matrix F, it
2907
computes the corrected correspondences newPoints1[i] \<-\> newPoints2[i] that minimize the geometric
2908
error \f$d(points1[i], newPoints1[i])^2 + d(points2[i],newPoints2[i])^2\f$ (where \f$d(a,b)\f$ is the
2909
geometric distance between points \f$a\f$ and \f$b\f$ ) subject to the epipolar constraint
2910
\f$newPoints2^T \cdot F \cdot newPoints1 = 0\f$ .
2911
 */
2912
CV_EXPORTS_W void correctMatches( InputArray F, InputArray points1, InputArray points2,
2913
                                  OutputArray newPoints1, OutputArray newPoints2 );
2914
2915
/** @brief Filters off small noise blobs (speckles) in the disparity map
2916
2917
@param img The input 16-bit signed disparity image
2918
@param newVal The disparity value used to paint-off the speckles
2919
@param maxSpeckleSize The maximum speckle size to consider it a speckle. Larger blobs are not
2920
affected by the algorithm
2921
@param maxDiff Maximum difference between neighbor disparity pixels to put them into the same
2922
blob. Note that since StereoBM, StereoSGBM and may be other algorithms return a fixed-point
2923
disparity map, where disparity values are multiplied by 16, this scale factor should be taken into
2924
account when specifying this parameter value.
2925
@param buf The optional temporary buffer to avoid memory allocation within the function.
2926
 */
2927
CV_EXPORTS_W void filterSpeckles( InputOutputArray img, double newVal,
2928
                                  int maxSpeckleSize, double maxDiff,
2929
                                  InputOutputArray buf = noArray() );
2930
2931
//! computes valid disparity ROI from the valid ROIs of the rectified images (that are returned by #stereoRectify)
2932
CV_EXPORTS_W Rect getValidDisparityROI( Rect roi1, Rect roi2,
2933
                                        int minDisparity, int numberOfDisparities,
2934
                                        int blockSize );
2935
2936
//! validates disparity using the left-right check. The matrix "cost" should be computed by the stereo correspondence algorithm
2937
CV_EXPORTS_W void validateDisparity( InputOutputArray disparity, InputArray cost,
2938
                                     int minDisparity, int numberOfDisparities,
2939
                                     int disp12MaxDisp = 1 );
2940
2941
/** @brief Reprojects a disparity image to 3D space.
2942
2943
@param disparity Input single-channel 8-bit unsigned, 16-bit signed, 32-bit signed or 32-bit
2944
floating-point disparity image. The values of 8-bit / 16-bit signed formats are assumed to have no
2945
fractional bits. If the disparity is 16-bit signed format, as computed by @ref StereoBM or
2946
@ref StereoSGBM and maybe other algorithms, it should be divided by 16 (and scaled to float) before
2947
being used here.
2948
@param _3dImage Output 3-channel floating-point image of the same size as disparity. Each element of
2949
_3dImage(x,y) contains 3D coordinates of the point (x,y) computed from the disparity map. If one
2950
uses Q obtained by @ref stereoRectify, then the returned points are represented in the first
2951
camera's rectified coordinate system.
2952
@param Q \f$4 \times 4\f$ perspective transformation matrix that can be obtained with
2953
@ref stereoRectify.
2954
@param handleMissingValues Indicates, whether the function should handle missing values (i.e.
2955
points where the disparity was not computed). If handleMissingValues=true, then pixels with the
2956
minimal disparity that corresponds to the outliers (see StereoMatcher::compute ) are transformed
2957
to 3D points with a very large Z value (currently set to 10000).
2958
@param ddepth The optional output array depth. If it is -1, the output image will have CV_32F
2959
depth. ddepth can also be set to CV_16S, CV_32S or CV_32F.
2960
2961
The function transforms a single-channel disparity map to a 3-channel image representing a 3D
2962
surface. That is, for each pixel (x,y) and the corresponding disparity d=disparity(x,y) , it
2963
computes:
2964
2965
\f[\begin{bmatrix}
2966
X \\
2967
Y \\
2968
Z \\
2969
W
2970
\end{bmatrix} = Q \begin{bmatrix}
2971
x \\
2972
y \\
2973
\texttt{disparity} (x,y) \\
2974
z
2975
\end{bmatrix}.\f]
2976
2977
@sa
2978
   To reproject a sparse set of points {(x,y,d),...} to 3D space, use perspectiveTransform.
2979
 */
2980
CV_EXPORTS_W void reprojectImageTo3D( InputArray disparity,
2981
                                      OutputArray _3dImage, InputArray Q,
2982
                                      bool handleMissingValues = false,
2983
                                      int ddepth = -1 );
2984
2985
/** @brief Calculates the Sampson Distance between two points.
2986
2987
The function cv::sampsonDistance calculates and returns the first order approximation of the geometric error as:
2988
\f[
2989
sd( \texttt{pt1} , \texttt{pt2} )=
2990
\frac{(\texttt{pt2}^t \cdot \texttt{F} \cdot \texttt{pt1})^2}
2991
{((\texttt{F} \cdot \texttt{pt1})(0))^2 +
2992
((\texttt{F} \cdot \texttt{pt1})(1))^2 +
2993
((\texttt{F}^t \cdot \texttt{pt2})(0))^2 +
2994
((\texttt{F}^t \cdot \texttt{pt2})(1))^2}
2995
\f]
2996
The fundamental matrix may be calculated using the #findFundamentalMat function. See @cite HartleyZ00 11.4.3 for details.
2997
@param pt1 first homogeneous 2d point
2998
@param pt2 second homogeneous 2d point
2999
@param F fundamental matrix
3000
@return The computed Sampson distance.
3001
*/
3002
CV_EXPORTS_W double sampsonDistance(InputArray pt1, InputArray pt2, InputArray F);
3003
3004
/** @brief Computes an optimal affine transformation between two 3D point sets.
3005
3006
It computes
3007
\f[
3008
\begin{bmatrix}
3009
x\\
3010
y\\
3011
z\\
3012
\end{bmatrix}
3013
=
3014
\begin{bmatrix}
3015
a_{11} & a_{12} & a_{13}\\
3016
a_{21} & a_{22} & a_{23}\\
3017
a_{31} & a_{32} & a_{33}\\
3018
\end{bmatrix}
3019
\begin{bmatrix}
3020
X\\
3021
Y\\
3022
Z\\
3023
\end{bmatrix}
3024
+
3025
\begin{bmatrix}
3026
b_1\\
3027
b_2\\
3028
b_3\\
3029
\end{bmatrix}
3030
\f]
3031
3032
@param src First input 3D point set containing \f$(X,Y,Z)\f$.
3033
@param dst Second input 3D point set containing \f$(x,y,z)\f$.
3034
@param out Output 3D affine transformation matrix \f$3 \times 4\f$ of the form
3035
\f[
3036
\begin{bmatrix}
3037
a_{11} & a_{12} & a_{13} & b_1\\
3038
a_{21} & a_{22} & a_{23} & b_2\\
3039
a_{31} & a_{32} & a_{33} & b_3\\
3040
\end{bmatrix}
3041
\f]
3042
@param inliers Output vector indicating which points are inliers (1-inlier, 0-outlier).
3043
@param ransacThreshold Maximum reprojection error in the RANSAC algorithm to consider a point as
3044
an inlier.
3045
@param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
3046
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
3047
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
3048
3049
The function estimates an optimal 3D affine transformation between two 3D point sets using the
3050
RANSAC algorithm.
3051
 */
3052
CV_EXPORTS_W  int estimateAffine3D(InputArray src, InputArray dst,
3053
                                   OutputArray out, OutputArray inliers,
3054
                                   double ransacThreshold = 3, double confidence = 0.99);
3055
3056
/** @brief Computes an optimal affine transformation between two 3D point sets.
3057
3058
It computes \f$R,s,t\f$ minimizing \f$\sum{i} dst_i - c \cdot R \cdot src_i \f$
3059
where \f$R\f$ is a 3x3 rotation matrix, \f$t\f$ is a 3x1 translation vector and \f$s\f$ is a
3060
scalar size value. This is an implementation of the algorithm by Umeyama \cite umeyama1991least .
3061
The estimated affine transform has a homogeneous scale which is a subclass of affine
3062
transformations with 7 degrees of freedom. The paired point sets need to comprise at least 3
3063
points each.
3064
3065
@param src First input 3D point set.
3066
@param dst Second input 3D point set.
3067
@param scale If null is passed, the scale parameter c will be assumed to be 1.0.
3068
Else the pointed-to variable will be set to the optimal scale.
3069
@param force_rotation If true, the returned rotation will never be a reflection.
3070
This might be unwanted, e.g. when optimizing a transform between a right- and a
3071
left-handed coordinate system.
3072
@return 3D affine transformation matrix \f$3 \times 4\f$ of the form
3073
\f[T =
3074
\begin{bmatrix}
3075
R & t\\
3076
\end{bmatrix}
3077
\f]
3078
3079
 */
3080
CV_EXPORTS_W   cv::Mat estimateAffine3D(InputArray src, InputArray dst,
3081
                                        CV_OUT double* scale = nullptr, bool force_rotation = true);
3082
3083
/** @brief Computes an optimal translation between two 3D point sets.
3084
 *
3085
 * It computes
3086
 * \f[
3087
 * \begin{bmatrix}
3088
 * x\\
3089
 * y\\
3090
 * z\\
3091
 * \end{bmatrix}
3092
 * =
3093
 * \begin{bmatrix}
3094
 * X\\
3095
 * Y\\
3096
 * Z\\
3097
 * \end{bmatrix}
3098
 * +
3099
 * \begin{bmatrix}
3100
 * b_1\\
3101
 * b_2\\
3102
 * b_3\\
3103
 * \end{bmatrix}
3104
 * \f]
3105
 *
3106
 * @param src First input 3D point set containing \f$(X,Y,Z)\f$.
3107
 * @param dst Second input 3D point set containing \f$(x,y,z)\f$.
3108
 * @param out Output 3D translation vector \f$3 \times 1\f$ of the form
3109
 * \f[
3110
 * \begin{bmatrix}
3111
 * b_1 \\
3112
 * b_2 \\
3113
 * b_3 \\
3114
 * \end{bmatrix}
3115
 * \f]
3116
 * @param inliers Output vector indicating which points are inliers (1-inlier, 0-outlier).
3117
 * @param ransacThreshold Maximum reprojection error in the RANSAC algorithm to consider a point as
3118
 * an inlier.
3119
 * @param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
3120
 * between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
3121
 * significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
3122
 *
3123
 * The function estimates an optimal 3D translation between two 3D point sets using the
3124
 * RANSAC algorithm.
3125
 *  */
3126
CV_EXPORTS_W  int estimateTranslation3D(InputArray src, InputArray dst,
3127
                                        OutputArray out, OutputArray inliers,
3128
                                        double ransacThreshold = 3, double confidence = 0.99);
3129
3130
/** @brief Computes an optimal affine transformation between two 2D point sets.
3131
3132
It computes
3133
\f[
3134
\begin{bmatrix}
3135
x\\
3136
y\\
3137
\end{bmatrix}
3138
=
3139
\begin{bmatrix}
3140
a_{11} & a_{12}\\
3141
a_{21} & a_{22}\\
3142
\end{bmatrix}
3143
\begin{bmatrix}
3144
X\\
3145
Y\\
3146
\end{bmatrix}
3147
+
3148
\begin{bmatrix}
3149
b_1\\
3150
b_2\\
3151
\end{bmatrix}
3152
\f]
3153
3154
@param from First input 2D point set containing \f$(X,Y)\f$.
3155
@param to Second input 2D point set containing \f$(x,y)\f$.
3156
@param inliers Output vector indicating which points are inliers (1-inlier, 0-outlier).
3157
@param method Robust method used to compute transformation. The following methods are possible:
3158
-   @ref RANSAC - RANSAC-based robust method
3159
-   @ref LMEDS - Least-Median robust method
3160
RANSAC is the default method.
3161
@param ransacReprojThreshold Maximum reprojection error in the RANSAC algorithm to consider
3162
a point as an inlier. Applies only to RANSAC.
3163
@param maxIters The maximum number of robust method iterations.
3164
@param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
3165
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
3166
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
3167
@param refineIters Maximum number of iterations of refining algorithm (Levenberg-Marquardt).
3168
Passing 0 will disable refining, so the output matrix will be output of robust method.
3169
3170
@return Output 2D affine transformation matrix \f$2 \times 3\f$ or empty matrix if transformation
3171
could not be estimated. The returned matrix has the following form:
3172
\f[
3173
\begin{bmatrix}
3174
a_{11} & a_{12} & b_1\\
3175
a_{21} & a_{22} & b_2\\
3176
\end{bmatrix}
3177
\f]
3178
3179
The function estimates an optimal 2D affine transformation between two 2D point sets using the
3180
selected robust algorithm.
3181
3182
The computed transformation is then refined further (using only inliers) with the
3183
Levenberg-Marquardt method to reduce the re-projection error even more.
3184
3185
@note
3186
The RANSAC method can handle practically any ratio of outliers but needs a threshold to
3187
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
3188
correctly only when there are more than 50% of inliers.
3189
3190
@sa estimateAffinePartial2D, getAffineTransform
3191
*/
3192
CV_EXPORTS_W cv::Mat estimateAffine2D(InputArray from, InputArray to, OutputArray inliers = noArray(),
3193
                                  int method = RANSAC, double ransacReprojThreshold = 3,
3194
                                  size_t maxIters = 2000, double confidence = 0.99,
3195
                                  size_t refineIters = 10);
3196
3197
3198
CV_EXPORTS_W cv::Mat estimateAffine2D(InputArray pts1, InputArray pts2, OutputArray inliers,
3199
                     const UsacParams &params);
3200
3201
/** @brief Computes an optimal limited affine transformation with 4 degrees of freedom between
3202
two 2D point sets.
3203
3204
@param from First input 2D point set.
3205
@param to Second input 2D point set.
3206
@param inliers Output vector indicating which points are inliers.
3207
@param method Robust method used to compute transformation. The following methods are possible:
3208
-   @ref RANSAC - RANSAC-based robust method
3209
-   @ref LMEDS - Least-Median robust method
3210
RANSAC is the default method.
3211
@param ransacReprojThreshold Maximum reprojection error in the RANSAC algorithm to consider
3212
a point as an inlier. Applies only to RANSAC.
3213
@param maxIters The maximum number of robust method iterations.
3214
@param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
3215
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
3216
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
3217
@param refineIters Maximum number of iterations of refining algorithm (Levenberg-Marquardt).
3218
Passing 0 will disable refining, so the output matrix will be output of robust method.
3219
3220
@return Output 2D affine transformation (4 degrees of freedom) matrix \f$2 \times 3\f$ or
3221
empty matrix if transformation could not be estimated.
3222
3223
The function estimates an optimal 2D affine transformation with 4 degrees of freedom limited to
3224
combinations of translation, rotation, and uniform scaling. Uses the selected algorithm for robust
3225
estimation.
3226
3227
The computed transformation is then refined further (using only inliers) with the
3228
Levenberg-Marquardt method to reduce the re-projection error even more.
3229
3230
Estimated transformation matrix is:
3231
\f[ \begin{bmatrix} \cos(\theta) \cdot s & -\sin(\theta) \cdot s & t_x \\
3232
                \sin(\theta) \cdot s & \cos(\theta) \cdot s & t_y
3233
\end{bmatrix} \f]
3234
Where \f$ \theta \f$ is the rotation angle, \f$ s \f$ the scaling factor and \f$ t_x, t_y \f$ are
3235
translations in \f$ x, y \f$ axes respectively.
3236
3237
@note
3238
The RANSAC method can handle practically any ratio of outliers but need a threshold to
3239
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
3240
correctly only when there are more than 50% of inliers.
3241
3242
@sa estimateAffine2D, getAffineTransform
3243
*/
3244
CV_EXPORTS_W cv::Mat estimateAffinePartial2D(InputArray from, InputArray to, OutputArray inliers = noArray(),
3245
                                  int method = RANSAC, double ransacReprojThreshold = 3,
3246
                                  size_t maxIters = 2000, double confidence = 0.99,
3247
                                  size_t refineIters = 10);
3248
3249
/** @example samples/cpp/tutorial_code/features2D/Homography/decompose_homography.cpp
3250
An example program with homography decomposition.
3251
3252
Check @ref tutorial_homography "the corresponding tutorial" for more details.
3253
*/
3254
3255
/** @brief Decompose a homography matrix to rotation(s), translation(s) and plane normal(s).
3256
3257
@param H The input homography matrix between two images.
3258
@param K The input camera intrinsic matrix.
3259
@param rotations Array of rotation matrices.
3260
@param translations Array of translation matrices.
3261
@param normals Array of plane normal matrices.
3262
3263
This function extracts relative camera motion between two views of a planar object and returns up to
3264
four mathematical solution tuples of rotation, translation, and plane normal. The decomposition of
3265
the homography matrix H is described in detail in @cite Malis2007.
3266
3267
If the homography H, induced by the plane, gives the constraint
3268
\f[s_i \vecthree{x'_i}{y'_i}{1} \sim H \vecthree{x_i}{y_i}{1}\f] on the source image points
3269
\f$p_i\f$ and the destination image points \f$p'_i\f$, then the tuple of rotations[k] and
3270
translations[k] is a change of basis from the source camera's coordinate system to the destination
3271
camera's coordinate system. However, by decomposing H, one can only get the translation normalized
3272
by the (typically unknown) depth of the scene, i.e. its direction but with normalized length.
3273
3274
If point correspondences are available, at least two solutions may further be invalidated, by
3275
applying positive depth constraint, i.e. all points must be in front of the camera.
3276
 */
3277
CV_EXPORTS_W int decomposeHomographyMat(InputArray H,
3278
                                        InputArray K,
3279
                                        OutputArrayOfArrays rotations,
3280
                                        OutputArrayOfArrays translations,
3281
                                        OutputArrayOfArrays normals);
3282
3283
/** @brief Filters homography decompositions based on additional information.
3284
3285
@param rotations Vector of rotation matrices.
3286
@param normals Vector of plane normal matrices.
3287
@param beforePoints Vector of (rectified) visible reference points before the homography is applied
3288
@param afterPoints Vector of (rectified) visible reference points after the homography is applied
3289
@param possibleSolutions Vector of int indices representing the viable solution set after filtering
3290
@param pointsMask optional Mat/Vector of 8u type representing the mask for the inliers as given by the #findHomography function
3291
3292
This function is intended to filter the output of the #decomposeHomographyMat based on additional
3293
information as described in @cite Malis2007 . The summary of the method: the #decomposeHomographyMat function
3294
returns 2 unique solutions and their "opposites" for a total of 4 solutions. If we have access to the
3295
sets of points visible in the camera frame before and after the homography transformation is applied,
3296
we can determine which are the true potential solutions and which are the opposites by verifying which
3297
homographies are consistent with all visible reference points being in front of the camera. The inputs
3298
are left unchanged; the filtered solution set is returned as indices into the existing one.
3299
3300
*/
3301
CV_EXPORTS_W void filterHomographyDecompByVisibleRefpoints(InputArrayOfArrays rotations,
3302
                                                           InputArrayOfArrays normals,
3303
                                                           InputArray beforePoints,
3304
                                                           InputArray afterPoints,
3305
                                                           OutputArray possibleSolutions,
3306
                                                           InputArray pointsMask = noArray());
3307
3308
/** @brief The base class for stereo correspondence algorithms.
3309
 */
3310
class CV_EXPORTS_W StereoMatcher : public Algorithm
3311
{
3312
public:
3313
    enum { DISP_SHIFT = 4,
3314
           DISP_SCALE = (1 << DISP_SHIFT)
3315
         };
3316
3317
    /** @brief Computes disparity map for the specified stereo pair
3318
3319
    @param left Left 8-bit single-channel image.
3320
    @param right Right image of the same size and the same type as the left one.
3321
    @param disparity Output disparity map. It has the same size as the input images. Some algorithms,
3322
    like StereoBM or StereoSGBM compute 16-bit fixed-point disparity map (where each disparity value
3323
    has 4 fractional bits), whereas other algorithms output 32-bit floating-point disparity map.
3324
     */
3325
    CV_WRAP virtual void compute( InputArray left, InputArray right,
3326
                                  OutputArray disparity ) = 0;
3327
3328
    CV_WRAP virtual int getMinDisparity() const = 0;
3329
    CV_WRAP virtual void setMinDisparity(int minDisparity) = 0;
3330
3331
    CV_WRAP virtual int getNumDisparities() const = 0;
3332
    CV_WRAP virtual void setNumDisparities(int numDisparities) = 0;
3333
3334
    CV_WRAP virtual int getBlockSize() const = 0;
3335
    CV_WRAP virtual void setBlockSize(int blockSize) = 0;
3336
3337
    CV_WRAP virtual int getSpeckleWindowSize() const = 0;
3338
    CV_WRAP virtual void setSpeckleWindowSize(int speckleWindowSize) = 0;
3339
3340
    CV_WRAP virtual int getSpeckleRange() const = 0;
3341
    CV_WRAP virtual void setSpeckleRange(int speckleRange) = 0;
3342
3343
    CV_WRAP virtual int getDisp12MaxDiff() const = 0;
3344
    CV_WRAP virtual void setDisp12MaxDiff(int disp12MaxDiff) = 0;
3345
};
3346
3347
3348
/** @brief Class for computing stereo correspondence using the block matching algorithm, introduced and
3349
contributed to OpenCV by K. Konolige.
3350
 */
3351
class CV_EXPORTS_W StereoBM : public StereoMatcher
3352
{
3353
public:
3354
    enum { PREFILTER_NORMALIZED_RESPONSE = 0,
3355
           PREFILTER_XSOBEL              = 1
3356
         };
3357
3358
    CV_WRAP virtual int getPreFilterType() const = 0;
3359
    CV_WRAP virtual void setPreFilterType(int preFilterType) = 0;
3360
3361
    CV_WRAP virtual int getPreFilterSize() const = 0;
3362
    CV_WRAP virtual void setPreFilterSize(int preFilterSize) = 0;
3363
3364
    CV_WRAP virtual int getPreFilterCap() const = 0;
3365
    CV_WRAP virtual void setPreFilterCap(int preFilterCap) = 0;
3366
3367
    CV_WRAP virtual int getTextureThreshold() const = 0;
3368
    CV_WRAP virtual void setTextureThreshold(int textureThreshold) = 0;
3369
3370
    CV_WRAP virtual int getUniquenessRatio() const = 0;
3371
    CV_WRAP virtual void setUniquenessRatio(int uniquenessRatio) = 0;
3372
3373
    CV_WRAP virtual int getSmallerBlockSize() const = 0;
3374
    CV_WRAP virtual void setSmallerBlockSize(int blockSize) = 0;
3375
3376
    CV_WRAP virtual Rect getROI1() const = 0;
3377
    CV_WRAP virtual void setROI1(Rect roi1) = 0;
3378
3379
    CV_WRAP virtual Rect getROI2() const = 0;
3380
    CV_WRAP virtual void setROI2(Rect roi2) = 0;
3381
3382
    /** @brief Creates StereoBM object
3383
3384
    @param numDisparities the disparity search range. For each pixel algorithm will find the best
3385
    disparity from 0 (default minimum disparity) to numDisparities. The search range can then be
3386
    shifted by changing the minimum disparity.
3387
    @param blockSize the linear size of the blocks compared by the algorithm. The size should be odd
3388
    (as the block is centered at the current pixel). Larger block size implies smoother, though less
3389
    accurate disparity map. Smaller block size gives more detailed disparity map, but there is higher
3390
    chance for algorithm to find a wrong correspondence.
3391
3392
    The function create StereoBM object. You can then call StereoBM::compute() to compute disparity for
3393
    a specific stereo pair.
3394
     */
3395
    CV_WRAP static Ptr<StereoBM> create(int numDisparities = 0, int blockSize = 21);
3396
};
3397
3398
/** @brief The class implements the modified H. Hirschmuller algorithm @cite HH08 that differs from the original
3399
one as follows:
3400
3401
-   By default, the algorithm is single-pass, which means that you consider only 5 directions
3402
instead of 8. Set mode=StereoSGBM::MODE_HH in createStereoSGBM to run the full variant of the
3403
algorithm but beware that it may consume a lot of memory.
3404
-   The algorithm matches blocks, not individual pixels. Though, setting blockSize=1 reduces the
3405
blocks to single pixels.
3406
-   Mutual information cost function is not implemented. Instead, a simpler Birchfield-Tomasi
3407
sub-pixel metric from @cite BT98 is used. Though, the color images are supported as well.
3408
-   Some pre- and post- processing steps from K. Konolige algorithm StereoBM are included, for
3409
example: pre-filtering (StereoBM::PREFILTER_XSOBEL type) and post-filtering (uniqueness
3410
check, quadratic interpolation and speckle filtering).
3411
3412
@note
3413
   -   (Python) An example illustrating the use of the StereoSGBM matching algorithm can be found
3414
        at opencv_source_code/samples/python/stereo_match.py
3415
 */
3416
class CV_EXPORTS_W StereoSGBM : public StereoMatcher
3417
{
3418
public:
3419
    enum
3420
    {
3421
        MODE_SGBM = 0,
3422
        MODE_HH   = 1,
3423
        MODE_SGBM_3WAY = 2,
3424
        MODE_HH4  = 3
3425
    };
3426
3427
    CV_WRAP virtual int getPreFilterCap() const = 0;
3428
    CV_WRAP virtual void setPreFilterCap(int preFilterCap) = 0;
3429
3430
    CV_WRAP virtual int getUniquenessRatio() const = 0;
3431
    CV_WRAP virtual void setUniquenessRatio(int uniquenessRatio) = 0;
3432
3433
    CV_WRAP virtual int getP1() const = 0;
3434
    CV_WRAP virtual void setP1(int P1) = 0;
3435
3436
    CV_WRAP virtual int getP2() const = 0;
3437
    CV_WRAP virtual void setP2(int P2) = 0;
3438
3439
    CV_WRAP virtual int getMode() const = 0;
3440
    CV_WRAP virtual void setMode(int mode) = 0;
3441
3442
    /** @brief Creates StereoSGBM object
3443
3444
    @param minDisparity Minimum possible disparity value. Normally, it is zero but sometimes
3445
    rectification algorithms can shift images, so this parameter needs to be adjusted accordingly.
3446
    @param numDisparities Maximum disparity minus minimum disparity. The value is always greater than
3447
    zero. In the current implementation, this parameter must be divisible by 16.
3448
    @param blockSize Matched block size. It must be an odd number \>=1 . Normally, it should be
3449
    somewhere in the 3..11 range.
3450
    @param P1 The first parameter controlling the disparity smoothness. See below.
3451
    @param P2 The second parameter controlling the disparity smoothness. The larger the values are,
3452
    the smoother the disparity is. P1 is the penalty on the disparity change by plus or minus 1
3453
    between neighbor pixels. P2 is the penalty on the disparity change by more than 1 between neighbor
3454
    pixels. The algorithm requires P2 \> P1 . See stereo_match.cpp sample where some reasonably good
3455
    P1 and P2 values are shown (like 8\*number_of_image_channels\*blockSize\*blockSize and
3456
    32\*number_of_image_channels\*blockSize\*blockSize , respectively).
3457
    @param disp12MaxDiff Maximum allowed difference (in integer pixel units) in the left-right
3458
    disparity check. Set it to a non-positive value to disable the check.
3459
    @param preFilterCap Truncation value for the prefiltered image pixels. The algorithm first
3460
    computes x-derivative at each pixel and clips its value by [-preFilterCap, preFilterCap] interval.
3461
    The result values are passed to the Birchfield-Tomasi pixel cost function.
3462
    @param uniquenessRatio Margin in percentage by which the best (minimum) computed cost function
3463
    value should "win" the second best value to consider the found match correct. Normally, a value
3464
    within the 5-15 range is good enough.
3465
    @param speckleWindowSize Maximum size of smooth disparity regions to consider their noise speckles
3466
    and invalidate. Set it to 0 to disable speckle filtering. Otherwise, set it somewhere in the
3467
    50-200 range.
3468
    @param speckleRange Maximum disparity variation within each connected component. If you do speckle
3469
    filtering, set the parameter to a positive value, it will be implicitly multiplied by 16.
3470
    Normally, 1 or 2 is good enough.
3471
    @param mode Set it to StereoSGBM::MODE_HH to run the full-scale two-pass dynamic programming
3472
    algorithm. It will consume O(W\*H\*numDisparities) bytes, which is large for 640x480 stereo and
3473
    huge for HD-size pictures. By default, it is set to false .
3474
3475
    The first constructor initializes StereoSGBM with all the default parameters. So, you only have to
3476
    set StereoSGBM::numDisparities at minimum. The second constructor enables you to set each parameter
3477
    to a custom value.
3478
     */
3479
    CV_WRAP static Ptr<StereoSGBM> create(int minDisparity = 0, int numDisparities = 16, int blockSize = 3,
3480
                                          int P1 = 0, int P2 = 0, int disp12MaxDiff = 0,
3481
                                          int preFilterCap = 0, int uniquenessRatio = 0,
3482
                                          int speckleWindowSize = 0, int speckleRange = 0,
3483
                                          int mode = StereoSGBM::MODE_SGBM);
3484
};
3485
3486
3487
//! cv::undistort mode
3488
enum UndistortTypes
3489
{
3490
    PROJ_SPHERICAL_ORTHO  = 0,
3491
    PROJ_SPHERICAL_EQRECT = 1
3492
};
3493
3494
/** @brief Transforms an image to compensate for lens distortion.
3495
3496
The function transforms an image to compensate radial and tangential lens distortion.
3497
3498
The function is simply a combination of #initUndistortRectifyMap (with unity R ) and #remap
3499
(with bilinear interpolation). See the former function for details of the transformation being
3500
performed.
3501
3502
Those pixels in the destination image, for which there is no correspondent pixels in the source
3503
image, are filled with zeros (black color).
3504
3505
A particular subset of the source image that will be visible in the corrected image can be regulated
3506
by newCameraMatrix. You can use #getOptimalNewCameraMatrix to compute the appropriate
3507
newCameraMatrix depending on your requirements.
3508
3509
The camera matrix and the distortion parameters can be determined using #calibrateCamera. If
3510
the resolution of images is different from the resolution used at the calibration stage, \f$f_x,
3511
f_y, c_x\f$ and \f$c_y\f$ need to be scaled accordingly, while the distortion coefficients remain
3512
the same.
3513
3514
@param src Input (distorted) image.
3515
@param dst Output (corrected) image that has the same size and type as src .
3516
@param cameraMatrix Input camera matrix \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
3517
@param distCoeffs Input vector of distortion coefficients
3518
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
3519
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
3520
@param newCameraMatrix Camera matrix of the distorted image. By default, it is the same as
3521
cameraMatrix but you may additionally scale and shift the result by using a different matrix.
3522
 */
3523
CV_EXPORTS_W void undistort( InputArray src, OutputArray dst,
3524
                             InputArray cameraMatrix,
3525
                             InputArray distCoeffs,
3526
                             InputArray newCameraMatrix = noArray() );
3527
3528
/** @brief Computes the undistortion and rectification transformation map.
3529
3530
The function computes the joint undistortion and rectification transformation and represents the
3531
result in the form of maps for #remap. The undistorted image looks like original, as if it is
3532
captured with a camera using the camera matrix =newCameraMatrix and zero distortion. In case of a
3533
monocular camera, newCameraMatrix is usually equal to cameraMatrix, or it can be computed by
3534
#getOptimalNewCameraMatrix for a better control over scaling. In case of a stereo camera,
3535
newCameraMatrix is normally set to P1 or P2 computed by #stereoRectify .
3536
3537
Also, this new camera is oriented differently in the coordinate space, according to R. That, for
3538
example, helps to align two heads of a stereo camera so that the epipolar lines on both images
3539
become horizontal and have the same y- coordinate (in case of a horizontally aligned stereo camera).
3540
3541
The function actually builds the maps for the inverse mapping algorithm that is used by #remap. That
3542
is, for each pixel \f$(u, v)\f$ in the destination (corrected and rectified) image, the function
3543
computes the corresponding coordinates in the source image (that is, in the original image from
3544
camera). The following process is applied:
3545
\f[
3546
\begin{array}{l}
3547
x  \leftarrow (u - {c'}_x)/{f'}_x  \\
3548
y  \leftarrow (v - {c'}_y)/{f'}_y  \\
3549
{[X\,Y\,W]} ^T  \leftarrow R^{-1}*[x \, y \, 1]^T  \\
3550
x'  \leftarrow X/W  \\
3551
y'  \leftarrow Y/W  \\
3552
r^2  \leftarrow x'^2 + y'^2 \\
3553
x''  \leftarrow x' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6}
3554
+ 2p_1 x' y' + p_2(r^2 + 2 x'^2)  + s_1 r^2 + s_2 r^4\\
3555
y''  \leftarrow y' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6}
3556
+ p_1 (r^2 + 2 y'^2) + 2 p_2 x' y' + s_3 r^2 + s_4 r^4 \\
3557
s\vecthree{x'''}{y'''}{1} =
3558
\vecthreethree{R_{33}(\tau_x, \tau_y)}{0}{-R_{13}((\tau_x, \tau_y)}
3559
{0}{R_{33}(\tau_x, \tau_y)}{-R_{23}(\tau_x, \tau_y)}
3560
{0}{0}{1} R(\tau_x, \tau_y) \vecthree{x''}{y''}{1}\\
3561
map_x(u,v)  \leftarrow x''' f_x + c_x  \\
3562
map_y(u,v)  \leftarrow y''' f_y + c_y
3563
\end{array}
3564
\f]
3565
where \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
3566
are the distortion coefficients.
3567
3568
In case of a stereo camera, this function is called twice: once for each camera head, after
3569
#stereoRectify, which in its turn is called after #stereoCalibrate. But if the stereo camera
3570
was not calibrated, it is still possible to compute the rectification transformations directly from
3571
the fundamental matrix using #stereoRectifyUncalibrated. For each camera, the function computes
3572
homography H as the rectification transformation in a pixel domain, not a rotation matrix R in 3D
3573
space. R can be computed from H as
3574
\f[\texttt{R} = \texttt{cameraMatrix} ^{-1} \cdot \texttt{H} \cdot \texttt{cameraMatrix}\f]
3575
where cameraMatrix can be chosen arbitrarily.
3576
3577
@param cameraMatrix Input camera matrix \f$A=\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
3578
@param distCoeffs Input vector of distortion coefficients
3579
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
3580
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
3581
@param R Optional rectification transformation in the object space (3x3 matrix). R1 or R2 ,
3582
computed by #stereoRectify can be passed here. If the matrix is empty, the identity transformation
3583
is assumed. In #initUndistortRectifyMap R assumed to be an identity matrix.
3584
@param newCameraMatrix New camera matrix \f$A'=\vecthreethree{f_x'}{0}{c_x'}{0}{f_y'}{c_y'}{0}{0}{1}\f$.
3585
@param size Undistorted image size.
3586
@param m1type Type of the first output map that can be CV_32FC1, CV_32FC2 or CV_16SC2, see #convertMaps
3587
@param map1 The first output map.
3588
@param map2 The second output map.
3589
 */
3590
CV_EXPORTS_W
3591
void initUndistortRectifyMap(InputArray cameraMatrix, InputArray distCoeffs,
3592
                             InputArray R, InputArray newCameraMatrix,
3593
                             Size size, int m1type, OutputArray map1, OutputArray map2);
3594
3595
/** @brief Computes the projection and inverse-rectification transformation map. In essense, this is the inverse of
3596
#initUndistortRectifyMap to accomodate stereo-rectification of projectors ('inverse-cameras') in projector-camera pairs.
3597
3598
The function computes the joint projection and inverse rectification transformation and represents the
3599
result in the form of maps for #remap. The projected image looks like a distorted version of the original which,
3600
once projected by a projector, should visually match the original. In case of a monocular camera, newCameraMatrix
3601
is usually equal to cameraMatrix, or it can be computed by
3602
#getOptimalNewCameraMatrix for a better control over scaling. In case of a projector-camera pair,
3603
newCameraMatrix is normally set to P1 or P2 computed by #stereoRectify .
3604
3605
The projector is oriented differently in the coordinate space, according to R. In case of projector-camera pairs,
3606
this helps align the projector (in the same manner as #initUndistortRectifyMap for the camera) to create a stereo-rectified pair. This
3607
allows epipolar lines on both images to become horizontal and have the same y-coordinate (in case of a horizontally aligned projector-camera pair).
3608
3609
The function builds the maps for the inverse mapping algorithm that is used by #remap. That
3610
is, for each pixel \f$(u, v)\f$ in the destination (projected and inverse-rectified) image, the function
3611
computes the corresponding coordinates in the source image (that is, in the original digital image). The following process is applied:
3612
3613
\f[
3614
\begin{array}{l}
3615
\text{newCameraMatrix}\\
3616
x  \leftarrow (u - {c'}_x)/{f'}_x  \\
3617
y  \leftarrow (v - {c'}_y)/{f'}_y  \\
3618
3619
\\\text{Undistortion}
3620
\\\scriptsize{\textit{though equation shown is for radial undistortion, function implements cv::undistortPoints()}}\\
3621
r^2  \leftarrow x^2 + y^2 \\
3622
\theta \leftarrow \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6}\\
3623
x' \leftarrow \frac{x}{\theta} \\
3624
y'  \leftarrow \frac{y}{\theta} \\
3625
3626
\\\text{Rectification}\\
3627
{[X\,Y\,W]} ^T  \leftarrow R*[x' \, y' \, 1]^T  \\
3628
x''  \leftarrow X/W  \\
3629
y''  \leftarrow Y/W  \\
3630
3631
\\\text{cameraMatrix}\\
3632
map_x(u,v)  \leftarrow x'' f_x + c_x  \\
3633
map_y(u,v)  \leftarrow y'' f_y + c_y
3634
\end{array}
3635
\f]
3636
where \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
3637
are the distortion coefficients vector distCoeffs.
3638
3639
In case of a stereo-rectified projector-camera pair, this function is called for the projector while #initUndistortRectifyMap is called for the camera head.
3640
This is done after #stereoRectify, which in turn is called after #stereoCalibrate. If the projector-camera pair
3641
is not calibrated, it is still possible to compute the rectification transformations directly from
3642
the fundamental matrix using #stereoRectifyUncalibrated. For the projector and camera, the function computes
3643
homography H as the rectification transformation in a pixel domain, not a rotation matrix R in 3D
3644
space. R can be computed from H as
3645
\f[\texttt{R} = \texttt{cameraMatrix} ^{-1} \cdot \texttt{H} \cdot \texttt{cameraMatrix}\f]
3646
where cameraMatrix can be chosen arbitrarily.
3647
3648
@param cameraMatrix Input camera matrix \f$A=\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
3649
@param distCoeffs Input vector of distortion coefficients
3650
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
3651
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
3652
@param R Optional rectification transformation in the object space (3x3 matrix). R1 or R2,
3653
computed by #stereoRectify can be passed here. If the matrix is empty, the identity transformation
3654
is assumed.
3655
@param newCameraMatrix New camera matrix \f$A'=\vecthreethree{f_x'}{0}{c_x'}{0}{f_y'}{c_y'}{0}{0}{1}\f$.
3656
@param size Distorted image size.
3657
@param m1type Type of the first output map. Can be CV_32FC1, CV_32FC2 or CV_16SC2, see #convertMaps
3658
@param map1 The first output map for #remap.
3659
@param map2 The second output map for #remap.
3660
 */
3661
CV_EXPORTS_W
3662
void initInverseRectificationMap( InputArray cameraMatrix, InputArray distCoeffs,
3663
                           InputArray R, InputArray newCameraMatrix,
3664
                           const Size& size, int m1type, OutputArray map1, OutputArray map2 );
3665
3666
//! initializes maps for #remap for wide-angle
3667
CV_EXPORTS
3668
float initWideAngleProjMap(InputArray cameraMatrix, InputArray distCoeffs,
3669
                           Size imageSize, int destImageWidth,
3670
                           int m1type, OutputArray map1, OutputArray map2,
3671
                           enum UndistortTypes projType = PROJ_SPHERICAL_EQRECT, double alpha = 0);
3672
static inline
3673
float initWideAngleProjMap(InputArray cameraMatrix, InputArray distCoeffs,
3674
                           Size imageSize, int destImageWidth,
3675
                           int m1type, OutputArray map1, OutputArray map2,
3676
                           int projType, double alpha = 0)
3677
0
{
3678
0
    return initWideAngleProjMap(cameraMatrix, distCoeffs, imageSize, destImageWidth,
3679
0
                                m1type, map1, map2, (UndistortTypes)projType, alpha);
3680
0
}
Unexecuted instantiation: core_fuzzer.cc:cv::initWideAngleProjMap(cv::_InputArray const&, cv::_InputArray const&, cv::Size_<int>, int, int, cv::_OutputArray const&, cv::_OutputArray const&, int, double)
Unexecuted instantiation: filestorage_read_file_fuzzer.cc:cv::initWideAngleProjMap(cv::_InputArray const&, cv::_InputArray const&, cv::Size_<int>, int, int, cv::_OutputArray const&, cv::_OutputArray const&, int, double)
Unexecuted instantiation: imdecode_fuzzer.cc:cv::initWideAngleProjMap(cv::_InputArray const&, cv::_InputArray const&, cv::Size_<int>, int, int, cv::_OutputArray const&, cv::_OutputArray const&, int, double)
Unexecuted instantiation: filestorage_read_string_fuzzer.cc:cv::initWideAngleProjMap(cv::_InputArray const&, cv::_InputArray const&, cv::Size_<int>, int, int, cv::_OutputArray const&, cv::_OutputArray const&, int, double)
Unexecuted instantiation: imencode_fuzzer.cc:cv::initWideAngleProjMap(cv::_InputArray const&, cv::_InputArray const&, cv::Size_<int>, int, int, cv::_OutputArray const&, cv::_OutputArray const&, int, double)
Unexecuted instantiation: filestorage_read_filename_fuzzer.cc:cv::initWideAngleProjMap(cv::_InputArray const&, cv::_InputArray const&, cv::Size_<int>, int, int, cv::_OutputArray const&, cv::_OutputArray const&, int, double)
Unexecuted instantiation: generateusergallerycollage_fuzzer.cc:cv::initWideAngleProjMap(cv::_InputArray const&, cv::_InputArray const&, cv::Size_<int>, int, int, cv::_OutputArray const&, cv::_OutputArray const&, int, double)
Unexecuted instantiation: imread_fuzzer.cc:cv::initWideAngleProjMap(cv::_InputArray const&, cv::_InputArray const&, cv::Size_<int>, int, int, cv::_OutputArray const&, cv::_OutputArray const&, int, double)
3681
3682
/** @brief Returns the default new camera matrix.
3683
3684
The function returns the camera matrix that is either an exact copy of the input cameraMatrix (when
3685
centerPrinicipalPoint=false ), or the modified one (when centerPrincipalPoint=true).
3686
3687
In the latter case, the new camera matrix will be:
3688
3689
\f[\begin{bmatrix} f_x && 0 && ( \texttt{imgSize.width} -1)*0.5  \\ 0 && f_y && ( \texttt{imgSize.height} -1)*0.5  \\ 0 && 0 && 1 \end{bmatrix} ,\f]
3690
3691
where \f$f_x\f$ and \f$f_y\f$ are \f$(0,0)\f$ and \f$(1,1)\f$ elements of cameraMatrix, respectively.
3692
3693
By default, the undistortion functions in OpenCV (see #initUndistortRectifyMap, #undistort) do not
3694
move the principal point. However, when you work with stereo, it is important to move the principal
3695
points in both views to the same y-coordinate (which is required by most of stereo correspondence
3696
algorithms), and may be to the same x-coordinate too. So, you can form the new camera matrix for
3697
each view where the principal points are located at the center.
3698
3699
@param cameraMatrix Input camera matrix.
3700
@param imgsize Camera view image size in pixels.
3701
@param centerPrincipalPoint Location of the principal point in the new camera matrix. The
3702
parameter indicates whether this location should be at the image center or not.
3703
 */
3704
CV_EXPORTS_W
3705
Mat getDefaultNewCameraMatrix(InputArray cameraMatrix, Size imgsize = Size(),
3706
                              bool centerPrincipalPoint = false);
3707
3708
/** @brief Computes the ideal point coordinates from the observed point coordinates.
3709
3710
The function is similar to #undistort and #initUndistortRectifyMap but it operates on a
3711
sparse set of points instead of a raster image. Also the function performs a reverse transformation
3712
to  #projectPoints. In case of a 3D object, it does not reconstruct its 3D coordinates, but for a
3713
planar object, it does, up to a translation vector, if the proper R is specified.
3714
3715
For each observed point coordinate \f$(u, v)\f$ the function computes:
3716
\f[
3717
\begin{array}{l}
3718
x^{"}  \leftarrow (u - c_x)/f_x  \\
3719
y^{"}  \leftarrow (v - c_y)/f_y  \\
3720
(x',y') = undistort(x^{"},y^{"}, \texttt{distCoeffs}) \\
3721
{[X\,Y\,W]} ^T  \leftarrow R*[x' \, y' \, 1]^T  \\
3722
x  \leftarrow X/W  \\
3723
y  \leftarrow Y/W  \\
3724
\text{only performed if P is specified:} \\
3725
u'  \leftarrow x {f'}_x + {c'}_x  \\
3726
v'  \leftarrow y {f'}_y + {c'}_y
3727
\end{array}
3728
\f]
3729
3730
where *undistort* is an approximate iterative algorithm that estimates the normalized original
3731
point coordinates out of the normalized distorted point coordinates ("normalized" means that the
3732
coordinates do not depend on the camera matrix).
3733
3734
The function can be used for both a stereo camera head or a monocular camera (when R is empty).
3735
@param src Observed point coordinates, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel (CV_32FC2 or CV_64FC2) (or
3736
vector\<Point2f\> ).
3737
@param dst Output ideal point coordinates (1xN/Nx1 2-channel or vector\<Point2f\> ) after undistortion and reverse perspective
3738
transformation. If matrix P is identity or omitted, dst will contain normalized point coordinates.
3739
@param cameraMatrix Camera matrix \f$\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
3740
@param distCoeffs Input vector of distortion coefficients
3741
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
3742
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
3743
@param R Rectification transformation in the object space (3x3 matrix). R1 or R2 computed by
3744
#stereoRectify can be passed here. If the matrix is empty, the identity transformation is used.
3745
@param P New camera matrix (3x3) or new projection matrix (3x4) \f$\begin{bmatrix} {f'}_x & 0 & {c'}_x & t_x \\ 0 & {f'}_y & {c'}_y & t_y \\ 0 & 0 & 1 & t_z \end{bmatrix}\f$. P1 or P2 computed by
3746
#stereoRectify can be passed here. If the matrix is empty, the identity new camera matrix is used.
3747
 */
3748
CV_EXPORTS_W
3749
void undistortPoints(InputArray src, OutputArray dst,
3750
                     InputArray cameraMatrix, InputArray distCoeffs,
3751
                     InputArray R = noArray(), InputArray P = noArray());
3752
/** @overload
3753
    @note Default version of #undistortPoints does 5 iterations to compute undistorted points.
3754
 */
3755
CV_EXPORTS_AS(undistortPointsIter)
3756
void undistortPoints(InputArray src, OutputArray dst,
3757
                     InputArray cameraMatrix, InputArray distCoeffs,
3758
                     InputArray R, InputArray P, TermCriteria criteria);
3759
3760
/**
3761
 * @brief Compute undistorted image points position
3762
 *
3763
 * @param src Observed points position, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel (CV_32FC2 or
3764
CV_64FC2) (or vector\<Point2f\> ).
3765
 * @param dst Output undistorted points position (1xN/Nx1 2-channel or vector\<Point2f\> ).
3766
 * @param cameraMatrix Camera matrix \f$\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
3767
 * @param distCoeffs Distortion coefficients
3768
 */
3769
CV_EXPORTS_W
3770
void undistortImagePoints(InputArray src, OutputArray dst, InputArray cameraMatrix,
3771
                          InputArray distCoeffs,
3772
                          TermCriteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5,
3773
                                                      0.01));
3774
3775
//! @} calib3d
3776
3777
/** @brief The methods in this namespace use a so-called fisheye camera model.
3778
  @ingroup calib3d_fisheye
3779
*/
3780
namespace fisheye
3781
{
3782
//! @addtogroup calib3d_fisheye
3783
//! @{
3784
3785
    enum{
3786
        CALIB_USE_INTRINSIC_GUESS   = 1 << 0,
3787
        CALIB_RECOMPUTE_EXTRINSIC   = 1 << 1,
3788
        CALIB_CHECK_COND            = 1 << 2,
3789
        CALIB_FIX_SKEW              = 1 << 3,
3790
        CALIB_FIX_K1                = 1 << 4,
3791
        CALIB_FIX_K2                = 1 << 5,
3792
        CALIB_FIX_K3                = 1 << 6,
3793
        CALIB_FIX_K4                = 1 << 7,
3794
        CALIB_FIX_INTRINSIC         = 1 << 8,
3795
        CALIB_FIX_PRINCIPAL_POINT   = 1 << 9,
3796
        CALIB_ZERO_DISPARITY        = 1 << 10,
3797
        CALIB_FIX_FOCAL_LENGTH      = 1 << 11
3798
    };
3799
3800
    /** @brief Projects points using fisheye model
3801
3802
    @param objectPoints Array of object points, 1xN/Nx1 3-channel (or vector\<Point3f\> ), where N is
3803
    the number of points in the view.
3804
    @param imagePoints Output array of image points, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel, or
3805
    vector\<Point2f\>.
3806
    @param affine
3807
    @param K Camera intrinsic matrix \f$cameramatrix{K}\f$.
3808
    @param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.
3809
    @param alpha The skew coefficient.
3810
    @param jacobian Optional output 2Nx15 jacobian matrix of derivatives of image points with respect
3811
    to components of the focal lengths, coordinates of the principal point, distortion coefficients,
3812
    rotation vector, translation vector, and the skew. In the old interface different components of
3813
    the jacobian are returned via different output parameters.
3814
3815
    The function computes projections of 3D points to the image plane given intrinsic and extrinsic
3816
    camera parameters. Optionally, the function computes Jacobians - matrices of partial derivatives of
3817
    image points coordinates (as functions of all the input parameters) with respect to the particular
3818
    parameters, intrinsic and/or extrinsic.
3819
     */
3820
    CV_EXPORTS void projectPoints(InputArray objectPoints, OutputArray imagePoints, const Affine3d& affine,
3821
        InputArray K, InputArray D, double alpha = 0, OutputArray jacobian = noArray());
3822
3823
    /** @overload */
3824
    CV_EXPORTS_W void projectPoints(InputArray objectPoints, OutputArray imagePoints, InputArray rvec, InputArray tvec,
3825
        InputArray K, InputArray D, double alpha = 0, OutputArray jacobian = noArray());
3826
3827
    /** @brief Distorts 2D points using fisheye model.
3828
3829
    @param undistorted Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is
3830
    the number of points in the view.
3831
    @param K Camera intrinsic matrix \f$cameramatrix{K}\f$.
3832
    @param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.
3833
    @param alpha The skew coefficient.
3834
    @param distorted Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> .
3835
3836
    Note that the function assumes the camera intrinsic matrix of the undistorted points to be identity.
3837
    This means if you want to distort image points you have to multiply them with \f$K^{-1}\f$.
3838
     */
3839
    CV_EXPORTS_W void distortPoints(InputArray undistorted, OutputArray distorted, InputArray K, InputArray D, double alpha = 0);
3840
3841
    /** @brief Undistorts 2D points using fisheye model
3842
3843
    @param distorted Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is the
3844
    number of points in the view.
3845
    @param K Camera intrinsic matrix \f$cameramatrix{K}\f$.
3846
    @param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.
3847
    @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
3848
    1-channel or 1x1 3-channel
3849
    @param P New camera intrinsic matrix (3x3) or new projection matrix (3x4)
3850
    @param criteria Termination criteria
3851
    @param undistorted Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> .
3852
     */
3853
    CV_EXPORTS_W void undistortPoints(InputArray distorted, OutputArray undistorted,
3854
        InputArray K, InputArray D, InputArray R = noArray(), InputArray P  = noArray(),
3855
                TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 10, 1e-8));
3856
3857
    /** @brief Computes undistortion and rectification maps for image transform by #remap. If D is empty zero
3858
    distortion is used, if R or P is empty identity matrixes are used.
3859
3860
    @param K Camera intrinsic matrix \f$cameramatrix{K}\f$.
3861
    @param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.
3862
    @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
3863
    1-channel or 1x1 3-channel
3864
    @param P New camera intrinsic matrix (3x3) or new projection matrix (3x4)
3865
    @param size Undistorted image size.
3866
    @param m1type Type of the first output map that can be CV_32FC1 or CV_16SC2 . See #convertMaps
3867
    for details.
3868
    @param map1 The first output map.
3869
    @param map2 The second output map.
3870
     */
3871
    CV_EXPORTS_W void initUndistortRectifyMap(InputArray K, InputArray D, InputArray R, InputArray P,
3872
        const cv::Size& size, int m1type, OutputArray map1, OutputArray map2);
3873
3874
    /** @brief Transforms an image to compensate for fisheye lens distortion.
3875
3876
    @param distorted image with fisheye lens distortion.
3877
    @param undistorted Output image with compensated fisheye lens distortion.
3878
    @param K Camera intrinsic matrix \f$cameramatrix{K}\f$.
3879
    @param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.
3880
    @param Knew Camera intrinsic matrix of the distorted image. By default, it is the identity matrix but you
3881
    may additionally scale and shift the result by using a different matrix.
3882
    @param new_size the new size
3883
3884
    The function transforms an image to compensate radial and tangential lens distortion.
3885
3886
    The function is simply a combination of #fisheye::initUndistortRectifyMap (with unity R ) and #remap
3887
    (with bilinear interpolation). See the former function for details of the transformation being
3888
    performed.
3889
3890
    See below the results of undistortImage.
3891
       -   a\) result of undistort of perspective camera model (all possible coefficients (k_1, k_2, k_3,
3892
            k_4, k_5, k_6) of distortion were optimized under calibration)
3893
        -   b\) result of #fisheye::undistortImage of fisheye camera model (all possible coefficients (k_1, k_2,
3894
            k_3, k_4) of fisheye distortion were optimized under calibration)
3895
        -   c\) original image was captured with fisheye lens
3896
3897
    Pictures a) and b) almost the same. But if we consider points of image located far from the center
3898
    of image, we can notice that on image a) these points are distorted.
3899
3900
    ![image](pics/fisheye_undistorted.jpg)
3901
     */
3902
    CV_EXPORTS_W void undistortImage(InputArray distorted, OutputArray undistorted,
3903
        InputArray K, InputArray D, InputArray Knew = cv::noArray(), const Size& new_size = Size());
3904
3905
    /** @brief Estimates new camera intrinsic matrix for undistortion or rectification.
3906
3907
    @param K Camera intrinsic matrix \f$cameramatrix{K}\f$.
3908
    @param image_size Size of the image
3909
    @param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.
3910
    @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
3911
    1-channel or 1x1 3-channel
3912
    @param P New camera intrinsic matrix (3x3) or new projection matrix (3x4)
3913
    @param balance Sets the new focal length in range between the min focal length and the max focal
3914
    length. Balance is in range of [0, 1].
3915
    @param new_size the new size
3916
    @param fov_scale Divisor for new focal length.
3917
     */
3918
    CV_EXPORTS_W void estimateNewCameraMatrixForUndistortRectify(InputArray K, InputArray D, const Size &image_size, InputArray R,
3919
        OutputArray P, double balance = 0.0, const Size& new_size = Size(), double fov_scale = 1.0);
3920
3921
    /** @brief Performs camera calibration
3922
3923
    @param objectPoints vector of vectors of calibration pattern points in the calibration pattern
3924
    coordinate space.
3925
    @param imagePoints vector of vectors of the projections of calibration pattern points.
3926
    imagePoints.size() and objectPoints.size() and imagePoints[i].size() must be equal to
3927
    objectPoints[i].size() for each i.
3928
    @param image_size Size of the image used only to initialize the camera intrinsic matrix.
3929
    @param K Output 3x3 floating-point camera intrinsic matrix
3930
    \f$\cameramatrix{A}\f$ . If
3931
    @ref fisheye::CALIB_USE_INTRINSIC_GUESS is specified, some or all of fx, fy, cx, cy must be
3932
    initialized before calling the function.
3933
    @param D Output vector of distortion coefficients \f$\distcoeffsfisheye\f$.
3934
    @param rvecs Output vector of rotation vectors (see Rodrigues ) estimated for each pattern view.
3935
    That is, each k-th rotation vector together with the corresponding k-th translation vector (see
3936
    the next output parameter description) brings the calibration pattern from the model coordinate
3937
    space (in which object points are specified) to the world coordinate space, that is, a real
3938
    position of the calibration pattern in the k-th pattern view (k=0.. *M* -1).
3939
    @param tvecs Output vector of translation vectors estimated for each pattern view.
3940
    @param flags Different flags that may be zero or a combination of the following values:
3941
    -    @ref fisheye::CALIB_USE_INTRINSIC_GUESS  cameraMatrix contains valid initial values of
3942
    fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
3943
    center ( imageSize is used), and focal distances are computed in a least-squares fashion.
3944
    -    @ref fisheye::CALIB_RECOMPUTE_EXTRINSIC  Extrinsic will be recomputed after each iteration
3945
    of intrinsic optimization.
3946
    -    @ref fisheye::CALIB_CHECK_COND  The functions will check validity of condition number.
3947
    -    @ref fisheye::CALIB_FIX_SKEW  Skew coefficient (alpha) is set to zero and stay zero.
3948
    -    @ref fisheye::CALIB_FIX_K1,..., @ref fisheye::CALIB_FIX_K4 Selected distortion coefficients
3949
    are set to zeros and stay zero.
3950
    -    @ref fisheye::CALIB_FIX_PRINCIPAL_POINT  The principal point is not changed during the global
3951
optimization. It stays at the center or at a different location specified when @ref fisheye::CALIB_USE_INTRINSIC_GUESS is set too.
3952
    -    @ref fisheye::CALIB_FIX_FOCAL_LENGTH The focal length is not changed during the global
3953
optimization. It is the \f$max(width,height)/\pi\f$ or the provided \f$f_x\f$, \f$f_y\f$ when @ref fisheye::CALIB_USE_INTRINSIC_GUESS is set too.
3954
    @param criteria Termination criteria for the iterative optimization algorithm.
3955
     */
3956
    CV_EXPORTS_W double calibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, const Size& image_size,
3957
        InputOutputArray K, InputOutputArray D, OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, int flags = 0,
3958
            TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON));
3959
3960
    /** @brief Stereo rectification for fisheye camera model
3961
3962
    @param K1 First camera intrinsic matrix.
3963
    @param D1 First camera distortion parameters.
3964
    @param K2 Second camera intrinsic matrix.
3965
    @param D2 Second camera distortion parameters.
3966
    @param imageSize Size of the image used for stereo calibration.
3967
    @param R Rotation matrix between the coordinate systems of the first and the second
3968
    cameras.
3969
    @param tvec Translation vector between coordinate systems of the cameras.
3970
    @param R1 Output 3x3 rectification transform (rotation matrix) for the first camera.
3971
    @param R2 Output 3x3 rectification transform (rotation matrix) for the second camera.
3972
    @param P1 Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
3973
    camera.
3974
    @param P2 Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
3975
    camera.
3976
    @param Q Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see #reprojectImageTo3D ).
3977
    @param flags Operation flags that may be zero or @ref fisheye::CALIB_ZERO_DISPARITY . If the flag is set,
3978
    the function makes the principal points of each camera have the same pixel coordinates in the
3979
    rectified views. And if the flag is not set, the function may still shift the images in the
3980
    horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
3981
    useful image area.
3982
    @param newImageSize New image resolution after rectification. The same size should be passed to
3983
    #initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
3984
    is passed (default), it is set to the original imageSize . Setting it to larger value can help you
3985
    preserve details in the original image, especially when there is a big radial distortion.
3986
    @param balance Sets the new focal length in range between the min focal length and the max focal
3987
    length. Balance is in range of [0, 1].
3988
    @param fov_scale Divisor for new focal length.
3989
     */
3990
    CV_EXPORTS_W void stereoRectify(InputArray K1, InputArray D1, InputArray K2, InputArray D2, const Size &imageSize, InputArray R, InputArray tvec,
3991
        OutputArray R1, OutputArray R2, OutputArray P1, OutputArray P2, OutputArray Q, int flags, const Size &newImageSize = Size(),
3992
        double balance = 0.0, double fov_scale = 1.0);
3993
3994
    /** @brief Performs stereo calibration
3995
3996
    @param objectPoints Vector of vectors of the calibration pattern points.
3997
    @param imagePoints1 Vector of vectors of the projections of the calibration pattern points,
3998
    observed by the first camera.
3999
    @param imagePoints2 Vector of vectors of the projections of the calibration pattern points,
4000
    observed by the second camera.
4001
    @param K1 Input/output first camera intrinsic matrix:
4002
    \f$\vecthreethree{f_x^{(j)}}{0}{c_x^{(j)}}{0}{f_y^{(j)}}{c_y^{(j)}}{0}{0}{1}\f$ , \f$j = 0,\, 1\f$ . If
4003
    any of @ref fisheye::CALIB_USE_INTRINSIC_GUESS , @ref fisheye::CALIB_FIX_INTRINSIC are specified,
4004
    some or all of the matrix components must be initialized.
4005
    @param D1 Input/output vector of distortion coefficients \f$\distcoeffsfisheye\f$ of 4 elements.
4006
    @param K2 Input/output second camera intrinsic matrix. The parameter is similar to K1 .
4007
    @param D2 Input/output lens distortion coefficients for the second camera. The parameter is
4008
    similar to D1 .
4009
    @param imageSize Size of the image used only to initialize camera intrinsic matrix.
4010
    @param R Output rotation matrix between the 1st and the 2nd camera coordinate systems.
4011
    @param T Output translation vector between the coordinate systems of the cameras.
4012
    @param rvecs Output vector of rotation vectors ( @ref Rodrigues ) estimated for each pattern view in the
4013
    coordinate system of the first camera of the stereo pair (e.g. std::vector<cv::Mat>). More in detail, each
4014
    i-th rotation vector together with the corresponding i-th translation vector (see the next output parameter
4015
    description) brings the calibration pattern from the object coordinate space (in which object points are
4016
    specified) to the camera coordinate space of the first camera of the stereo pair. In more technical terms,
4017
    the tuple of the i-th rotation and translation vector performs a change of basis from object coordinate space
4018
    to camera coordinate space of the first camera of the stereo pair.
4019
    @param tvecs Output vector of translation vectors estimated for each pattern view, see parameter description
4020
    of previous output parameter ( rvecs ).
4021
    @param flags Different flags that may be zero or a combination of the following values:
4022
    -    @ref fisheye::CALIB_FIX_INTRINSIC  Fix K1, K2? and D1, D2? so that only R, T matrices
4023
    are estimated.
4024
    -    @ref fisheye::CALIB_USE_INTRINSIC_GUESS  K1, K2 contains valid initial values of
4025
    fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
4026
    center (imageSize is used), and focal distances are computed in a least-squares fashion.
4027
    -    @ref fisheye::CALIB_RECOMPUTE_EXTRINSIC  Extrinsic will be recomputed after each iteration
4028
    of intrinsic optimization.
4029
    -    @ref fisheye::CALIB_CHECK_COND  The functions will check validity of condition number.
4030
    -    @ref fisheye::CALIB_FIX_SKEW  Skew coefficient (alpha) is set to zero and stay zero.
4031
    -   @ref fisheye::CALIB_FIX_K1,..., @ref fisheye::CALIB_FIX_K4 Selected distortion coefficients are set to zeros and stay
4032
    zero.
4033
    @param criteria Termination criteria for the iterative optimization algorithm.
4034
     */
4035
    CV_EXPORTS_W double stereoCalibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
4036
                                  InputOutputArray K1, InputOutputArray D1, InputOutputArray K2, InputOutputArray D2, Size imageSize,
4037
                                  OutputArray R, OutputArray T, OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, int flags = fisheye::CALIB_FIX_INTRINSIC,
4038
                                  TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON));
4039
4040
    /// @overload
4041
    CV_EXPORTS_W double stereoCalibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
4042
                                  InputOutputArray K1, InputOutputArray D1, InputOutputArray K2, InputOutputArray D2, Size imageSize,
4043
                                  OutputArray R, OutputArray T, int flags = fisheye::CALIB_FIX_INTRINSIC,
4044
                                  TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON));
4045
4046
//! @} calib3d_fisheye
4047
} // end namespace fisheye
4048
4049
} //end namespace cv
4050
4051
#if 0 //def __cplusplus
4052
//////////////////////////////////////////////////////////////////////////////////////////
4053
class CV_EXPORTS CvLevMarq
4054
{
4055
public:
4056
    CvLevMarq();
4057
    CvLevMarq( int nparams, int nerrs, CvTermCriteria criteria=
4058
              cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON),
4059
              bool completeSymmFlag=false );
4060
    ~CvLevMarq();
4061
    void init( int nparams, int nerrs, CvTermCriteria criteria=
4062
              cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON),
4063
              bool completeSymmFlag=false );
4064
    bool update( const CvMat*& param, CvMat*& J, CvMat*& err );
4065
    bool updateAlt( const CvMat*& param, CvMat*& JtJ, CvMat*& JtErr, double*& errNorm );
4066
4067
    void clear();
4068
    void step();
4069
    enum { DONE=0, STARTED=1, CALC_J=2, CHECK_ERR=3 };
4070
4071
    cv::Ptr<CvMat> mask;
4072
    cv::Ptr<CvMat> prevParam;
4073
    cv::Ptr<CvMat> param;
4074
    cv::Ptr<CvMat> J;
4075
    cv::Ptr<CvMat> err;
4076
    cv::Ptr<CvMat> JtJ;
4077
    cv::Ptr<CvMat> JtJN;
4078
    cv::Ptr<CvMat> JtErr;
4079
    cv::Ptr<CvMat> JtJV;
4080
    cv::Ptr<CvMat> JtJW;
4081
    double prevErrNorm, errNorm;
4082
    int lambdaLg10;
4083
    CvTermCriteria criteria;
4084
    int state;
4085
    int iters;
4086
    bool completeSymmFlag;
4087
    int solveMethod;
4088
};
4089
#endif
4090
4091
#endif