/work/install-coverage/include/opencv4/opencv2/dnn/dnn.hpp
Line | Count | Source (jump to first uncovered line) |
1 | | /*M/////////////////////////////////////////////////////////////////////////////////////// |
2 | | // |
3 | | // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
4 | | // |
5 | | // By downloading, copying, installing or using the software you agree to this license. |
6 | | // If you do not agree to this license, do not download, install, |
7 | | // copy or use the software. |
8 | | // |
9 | | // |
10 | | // License Agreement |
11 | | // For Open Source Computer Vision Library |
12 | | // |
13 | | // Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
14 | | // Third party copyrights are property of their respective owners. |
15 | | // |
16 | | // Redistribution and use in source and binary forms, with or without modification, |
17 | | // are permitted provided that the following conditions are met: |
18 | | // |
19 | | // * Redistribution's of source code must retain the above copyright notice, |
20 | | // this list of conditions and the following disclaimer. |
21 | | // |
22 | | // * Redistribution's in binary form must reproduce the above copyright notice, |
23 | | // this list of conditions and the following disclaimer in the documentation |
24 | | // and/or other materials provided with the distribution. |
25 | | // |
26 | | // * The name of the copyright holders may not be used to endorse or promote products |
27 | | // derived from this software without specific prior written permission. |
28 | | // |
29 | | // This software is provided by the copyright holders and contributors "as is" and |
30 | | // any express or implied warranties, including, but not limited to, the implied |
31 | | // warranties of merchantability and fitness for a particular purpose are disclaimed. |
32 | | // In no event shall the Intel Corporation or contributors be liable for any direct, |
33 | | // indirect, incidental, special, exemplary, or consequential damages |
34 | | // (including, but not limited to, procurement of substitute goods or services; |
35 | | // loss of use, data, or profits; or business interruption) however caused |
36 | | // and on any theory of liability, whether in contract, strict liability, |
37 | | // or tort (including negligence or otherwise) arising in any way out of |
38 | | // the use of this software, even if advised of the possibility of such damage. |
39 | | // |
40 | | //M*/ |
41 | | |
42 | | #ifndef OPENCV_DNN_DNN_HPP |
43 | | #define OPENCV_DNN_DNN_HPP |
44 | | |
45 | | #include <vector> |
46 | | #include <opencv2/core.hpp> |
47 | | #include "opencv2/core/async.hpp" |
48 | | |
49 | | #include "../dnn/version.hpp" |
50 | | |
51 | | #include <opencv2/dnn/dict.hpp> |
52 | | |
53 | | namespace cv { |
54 | | namespace dnn { |
55 | | |
56 | | namespace accessor { |
57 | | class DnnNetAccessor; // forward declaration |
58 | | } |
59 | | |
60 | | CV__DNN_INLINE_NS_BEGIN |
61 | | //! @addtogroup dnn |
62 | | //! @{ |
63 | | |
64 | | typedef std::vector<int> MatShape; |
65 | | |
66 | | /** |
67 | | * @brief Enum of computation backends supported by layers. |
68 | | * @see Net::setPreferableBackend |
69 | | */ |
70 | | enum Backend |
71 | | { |
72 | | //! DNN_BACKEND_DEFAULT equals to DNN_BACKEND_INFERENCE_ENGINE if |
73 | | //! OpenCV is built with Intel OpenVINO or |
74 | | //! DNN_BACKEND_OPENCV otherwise. |
75 | | DNN_BACKEND_DEFAULT = 0, |
76 | | DNN_BACKEND_HALIDE, |
77 | | DNN_BACKEND_INFERENCE_ENGINE, //!< Intel OpenVINO computational backend |
78 | | //!< @note Tutorial how to build OpenCV with OpenVINO: @ref tutorial_dnn_openvino |
79 | | DNN_BACKEND_OPENCV, |
80 | | DNN_BACKEND_VKCOM, |
81 | | DNN_BACKEND_CUDA, |
82 | | DNN_BACKEND_WEBNN, |
83 | | DNN_BACKEND_TIMVX, |
84 | | DNN_BACKEND_CANN, |
85 | | #if defined(__OPENCV_BUILD) || defined(BUILD_PLUGIN) |
86 | | #if !defined(OPENCV_BINDING_PARSER) |
87 | | DNN_BACKEND_INFERENCE_ENGINE_NGRAPH = 1000000, // internal - use DNN_BACKEND_INFERENCE_ENGINE + setInferenceEngineBackendType() |
88 | | DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019, // internal - use DNN_BACKEND_INFERENCE_ENGINE + setInferenceEngineBackendType() |
89 | | #endif |
90 | | #endif |
91 | | }; |
92 | | |
93 | | /** |
94 | | * @brief Enum of target devices for computations. |
95 | | * @see Net::setPreferableTarget |
96 | | */ |
97 | | enum Target |
98 | | { |
99 | | DNN_TARGET_CPU = 0, |
100 | | DNN_TARGET_OPENCL, |
101 | | DNN_TARGET_OPENCL_FP16, |
102 | | DNN_TARGET_MYRIAD, |
103 | | DNN_TARGET_VULKAN, |
104 | | DNN_TARGET_FPGA, //!< FPGA device with CPU fallbacks using Inference Engine's Heterogeneous plugin. |
105 | | DNN_TARGET_CUDA, |
106 | | DNN_TARGET_CUDA_FP16, |
107 | | DNN_TARGET_HDDL, |
108 | | DNN_TARGET_NPU, |
109 | | DNN_TARGET_CPU_FP16, // Only the ARM platform is supported. Low precision computing, accelerate model inference. |
110 | | }; |
111 | | |
112 | | /** |
113 | | * @brief Enum of data layout for model inference. |
114 | | * @see Image2BlobParams |
115 | | */ |
116 | | enum DataLayout |
117 | | { |
118 | | DNN_LAYOUT_UNKNOWN = 0, |
119 | | DNN_LAYOUT_ND = 1, //!< OpenCV data layout for 2D data. |
120 | | DNN_LAYOUT_NCHW = 2, //!< OpenCV data layout for 4D data. |
121 | | DNN_LAYOUT_NCDHW = 3, //!< OpenCV data layout for 5D data. |
122 | | DNN_LAYOUT_NHWC = 4, //!< Tensorflow-like data layout for 4D data. |
123 | | DNN_LAYOUT_NDHWC = 5, //!< Tensorflow-like data layout for 5D data. |
124 | | DNN_LAYOUT_PLANAR = 6, //!< Tensorflow-like data layout, it should only be used at tf or tflite model parsing. |
125 | | }; |
126 | | |
127 | | CV_EXPORTS std::vector< std::pair<Backend, Target> > getAvailableBackends(); |
128 | | CV_EXPORTS_W std::vector<Target> getAvailableTargets(dnn::Backend be); |
129 | | |
130 | | /** |
131 | | * @brief Enables detailed logging of the DNN model loading with CV DNN API. |
132 | | * @param[in] isDiagnosticsMode Indicates whether diagnostic mode should be set. |
133 | | * |
134 | | * Diagnostic mode provides detailed logging of the model loading stage to explore |
135 | | * potential problems (ex.: not implemented layer type). |
136 | | * |
137 | | * @note In diagnostic mode series of assertions will be skipped, it can lead to the |
138 | | * expected application crash. |
139 | | */ |
140 | | CV_EXPORTS void enableModelDiagnostics(bool isDiagnosticsMode); |
141 | | |
142 | | /** @brief This class provides all data needed to initialize layer. |
143 | | * |
144 | | * It includes dictionary with scalar params (which can be read by using Dict interface), |
145 | | * blob params #blobs and optional meta information: #name and #type of layer instance. |
146 | | */ |
147 | | class CV_EXPORTS LayerParams : public Dict |
148 | | { |
149 | | public: |
150 | | //TODO: Add ability to name blob params |
151 | | std::vector<Mat> blobs; //!< List of learned parameters stored as blobs. |
152 | | |
153 | | String name; //!< Name of the layer instance (optional, can be used internal purposes). |
154 | | String type; //!< Type name which was used for creating layer by layer factory (optional). |
155 | | }; |
156 | | |
157 | | /** |
158 | | * @brief Derivatives of this class encapsulates functions of certain backends. |
159 | | */ |
160 | | class BackendNode |
161 | | { |
162 | | public: |
163 | | explicit BackendNode(int backendId); |
164 | | |
165 | | virtual ~BackendNode(); //!< Virtual destructor to make polymorphism. |
166 | | |
167 | | int backendId; //!< Backend identifier. |
168 | | }; |
169 | | |
170 | | /** |
171 | | * @brief Derivatives of this class wraps cv::Mat for different backends and targets. |
172 | | */ |
173 | | class BackendWrapper |
174 | | { |
175 | | public: |
176 | | BackendWrapper(int backendId, int targetId); |
177 | | |
178 | | /** |
179 | | * @brief Wrap cv::Mat for specific backend and target. |
180 | | * @param[in] targetId Target identifier. |
181 | | * @param[in] m cv::Mat for wrapping. |
182 | | * |
183 | | * Make CPU->GPU data transfer if it's require for the target. |
184 | | */ |
185 | | BackendWrapper(int targetId, const cv::Mat& m); |
186 | | |
187 | | /** |
188 | | * @brief Make wrapper for reused cv::Mat. |
189 | | * @param[in] base Wrapper of cv::Mat that will be reused. |
190 | | * @param[in] shape Specific shape. |
191 | | * |
192 | | * Initialize wrapper from another one. It'll wrap the same host CPU |
193 | | * memory and mustn't allocate memory on device(i.e. GPU). It might |
194 | | * has different shape. Use in case of CPU memory reusing for reuse |
195 | | * associated memory on device too. |
196 | | */ |
197 | | BackendWrapper(const Ptr<BackendWrapper>& base, const MatShape& shape); |
198 | | |
199 | | virtual ~BackendWrapper(); //!< Virtual destructor to make polymorphism. |
200 | | |
201 | | /** |
202 | | * @brief Transfer data to CPU host memory. |
203 | | */ |
204 | | virtual void copyToHost() = 0; |
205 | | |
206 | | /** |
207 | | * @brief Indicate that an actual data is on CPU. |
208 | | */ |
209 | | virtual void setHostDirty() = 0; |
210 | | |
211 | | int backendId; //!< Backend identifier. |
212 | | int targetId; //!< Target identifier. |
213 | | }; |
214 | | |
215 | | class CV_EXPORTS ActivationLayer; |
216 | | |
217 | | /** @brief This interface class allows to build new Layers - are building blocks of networks. |
218 | | * |
219 | | * Each class, derived from Layer, must implement allocate() methods to declare own outputs and forward() to compute outputs. |
220 | | * Also before using the new layer into networks you must register your layer by using one of @ref dnnLayerFactory "LayerFactory" macros. |
221 | | */ |
222 | | class CV_EXPORTS_W Layer : public Algorithm |
223 | | { |
224 | | public: |
225 | | |
226 | | //! List of learned parameters must be stored here to allow read them by using Net::getParam(). |
227 | | CV_PROP_RW std::vector<Mat> blobs; |
228 | | |
229 | | /** @brief Computes and sets internal parameters according to inputs, outputs and blobs. |
230 | | * @deprecated Use Layer::finalize(InputArrayOfArrays, OutputArrayOfArrays) instead |
231 | | * @param[in] input vector of already allocated input blobs |
232 | | * @param[out] output vector of already allocated output blobs |
233 | | * |
234 | | * If this method is called after network has allocated all memory for input and output blobs |
235 | | * and before inferencing. |
236 | | */ |
237 | | CV_DEPRECATED_EXTERNAL |
238 | | virtual void finalize(const std::vector<Mat*> &input, std::vector<Mat> &output); |
239 | | |
240 | | /** @brief Computes and sets internal parameters according to inputs, outputs and blobs. |
241 | | * @param[in] inputs vector of already allocated input blobs |
242 | | * @param[out] outputs vector of already allocated output blobs |
243 | | * |
244 | | * If this method is called after network has allocated all memory for input and output blobs |
245 | | * and before inferencing. |
246 | | */ |
247 | | CV_WRAP virtual void finalize(InputArrayOfArrays inputs, OutputArrayOfArrays outputs); |
248 | | |
249 | | /** @brief Given the @p input blobs, computes the output @p blobs. |
250 | | * @deprecated Use Layer::forward(InputArrayOfArrays, OutputArrayOfArrays, OutputArrayOfArrays) instead |
251 | | * @param[in] input the input blobs. |
252 | | * @param[out] output allocated output blobs, which will store results of the computation. |
253 | | * @param[out] internals allocated internal blobs |
254 | | */ |
255 | | CV_DEPRECATED_EXTERNAL |
256 | | virtual void forward(std::vector<Mat*> &input, std::vector<Mat> &output, std::vector<Mat> &internals); |
257 | | |
258 | | /** @brief Given the @p input blobs, computes the output @p blobs. |
259 | | * @param[in] inputs the input blobs. |
260 | | * @param[out] outputs allocated output blobs, which will store results of the computation. |
261 | | * @param[out] internals allocated internal blobs |
262 | | */ |
263 | | virtual void forward(InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals); |
264 | | |
265 | | /** @brief Tries to quantize the given layer and compute the quantization parameters required for fixed point implementation. |
266 | | * @param[in] scales input and output scales. |
267 | | * @param[in] zeropoints input and output zeropoints. |
268 | | * @param[out] params Quantized parameters required for fixed point implementation of that layer. |
269 | | * @returns True if layer can be quantized. |
270 | | */ |
271 | | virtual bool tryQuantize(const std::vector<std::vector<float> > &scales, |
272 | | const std::vector<std::vector<int> > &zeropoints, LayerParams& params); |
273 | | |
274 | | /** @brief Given the @p input blobs, computes the output @p blobs. |
275 | | * @param[in] inputs the input blobs. |
276 | | * @param[out] outputs allocated output blobs, which will store results of the computation. |
277 | | * @param[out] internals allocated internal blobs |
278 | | */ |
279 | | void forward_fallback(InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals); |
280 | | |
281 | | /** @brief |
282 | | * @overload |
283 | | * @deprecated Use Layer::finalize(InputArrayOfArrays, OutputArrayOfArrays) instead |
284 | | */ |
285 | | CV_DEPRECATED_EXTERNAL |
286 | | void finalize(const std::vector<Mat> &inputs, CV_OUT std::vector<Mat> &outputs); |
287 | | |
288 | | /** @brief |
289 | | * @overload |
290 | | * @deprecated Use Layer::finalize(InputArrayOfArrays, OutputArrayOfArrays) instead |
291 | | */ |
292 | | CV_DEPRECATED std::vector<Mat> finalize(const std::vector<Mat> &inputs); |
293 | | |
294 | | /** @brief Allocates layer and computes output. |
295 | | * @deprecated This method will be removed in the future release. |
296 | | */ |
297 | | CV_DEPRECATED CV_WRAP void run(const std::vector<Mat> &inputs, CV_OUT std::vector<Mat> &outputs, |
298 | | CV_IN_OUT std::vector<Mat> &internals); |
299 | | |
300 | | /** @brief Returns index of input blob into the input array. |
301 | | * @param inputName label of input blob |
302 | | * |
303 | | * Each layer input and output can be labeled to easily identify them using "%<layer_name%>[.output_name]" notation. |
304 | | * This method maps label of input blob to its index into input vector. |
305 | | */ |
306 | | virtual int inputNameToIndex(String inputName); // FIXIT const |
307 | | /** @brief Returns index of output blob in output array. |
308 | | * @see inputNameToIndex() |
309 | | */ |
310 | | CV_WRAP virtual int outputNameToIndex(const String& outputName); // FIXIT const |
311 | | |
312 | | /** |
313 | | * @brief Ask layer if it support specific backend for doing computations. |
314 | | * @param[in] backendId computation backend identifier. |
315 | | * @see Backend |
316 | | */ |
317 | | virtual bool supportBackend(int backendId); // FIXIT const |
318 | | |
319 | | /** |
320 | | * @brief Returns Halide backend node. |
321 | | * @param[in] inputs Input Halide buffers. |
322 | | * @see BackendNode, BackendWrapper |
323 | | * |
324 | | * Input buffers should be exactly the same that will be used in forward invocations. |
325 | | * Despite we can use Halide::ImageParam based on input shape only, |
326 | | * it helps prevent some memory management issues (if something wrong, |
327 | | * Halide tests will be failed). |
328 | | */ |
329 | | virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs); |
330 | | |
331 | | virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> > &inputs, const std::vector<Ptr<BackendNode> >& nodes); |
332 | | |
333 | | virtual Ptr<BackendNode> initVkCom(const std::vector<Ptr<BackendWrapper> > &inputs, std::vector<Ptr<BackendWrapper> > &outputs); |
334 | | |
335 | | virtual Ptr<BackendNode> initWebnn(const std::vector<Ptr<BackendWrapper> > &inputs, const std::vector<Ptr<BackendNode> >& nodes); |
336 | | |
337 | | /** |
338 | | * @brief Returns a CUDA backend node |
339 | | * |
340 | | * @param context void pointer to CSLContext object |
341 | | * @param inputs layer inputs |
342 | | * @param outputs layer outputs |
343 | | */ |
344 | | virtual Ptr<BackendNode> initCUDA( |
345 | | void *context, |
346 | | const std::vector<Ptr<BackendWrapper>>& inputs, |
347 | | const std::vector<Ptr<BackendWrapper>>& outputs |
348 | | ); |
349 | | |
350 | | /** |
351 | | * @brief Returns a TimVX backend node |
352 | | * |
353 | | * @param timVxInfo void pointer to CSLContext object |
354 | | * @param inputsWrapper layer inputs |
355 | | * @param outputsWrapper layer outputs |
356 | | * @param isLast if the node is the last one of the TimVX Graph. |
357 | | */ |
358 | | virtual Ptr<BackendNode> initTimVX(void* timVxInfo, |
359 | | const std::vector<Ptr<BackendWrapper> > &inputsWrapper, |
360 | | const std::vector<Ptr<BackendWrapper> > &outputsWrapper, |
361 | | bool isLast); |
362 | | |
363 | | /** |
364 | | * @brief Returns a CANN backend node |
365 | | * |
366 | | * @param inputs input tensors of CANN operator |
367 | | * @param outputs output tensors of CANN operator |
368 | | * @param nodes nodes of input tensors |
369 | | */ |
370 | | virtual Ptr<BackendNode> initCann(const std::vector<Ptr<BackendWrapper> > &inputs, |
371 | | const std::vector<Ptr<BackendWrapper> > &outputs, |
372 | | const std::vector<Ptr<BackendNode> >& nodes); |
373 | | |
374 | | /** |
375 | | * @brief Automatic Halide scheduling based on layer hyper-parameters. |
376 | | * @param[in] node Backend node with Halide functions. |
377 | | * @param[in] inputs Blobs that will be used in forward invocations. |
378 | | * @param[in] outputs Blobs that will be used in forward invocations. |
379 | | * @param[in] targetId Target identifier |
380 | | * @see BackendNode, Target |
381 | | * |
382 | | * Layer don't use own Halide::Func members because we can have applied |
383 | | * layers fusing. In this way the fused function should be scheduled. |
384 | | */ |
385 | | virtual void applyHalideScheduler(Ptr<BackendNode>& node, |
386 | | const std::vector<Mat*> &inputs, |
387 | | const std::vector<Mat> &outputs, |
388 | | int targetId) const; |
389 | | |
390 | | /** |
391 | | * @brief Implement layers fusing. |
392 | | * @param[in] node Backend node of bottom layer. |
393 | | * @see BackendNode |
394 | | * |
395 | | * Actual for graph-based backends. If layer attached successfully, |
396 | | * returns non-empty cv::Ptr to node of the same backend. |
397 | | * Fuse only over the last function. |
398 | | */ |
399 | | virtual Ptr<BackendNode> tryAttach(const Ptr<BackendNode>& node); |
400 | | |
401 | | /** |
402 | | * @brief Tries to attach to the layer the subsequent activation layer, i.e. do the layer fusion in a partial case. |
403 | | * @param[in] layer The subsequent activation layer. |
404 | | * |
405 | | * Returns true if the activation layer has been attached successfully. |
406 | | */ |
407 | | virtual bool setActivation(const Ptr<ActivationLayer>& layer); |
408 | | |
409 | | /** |
410 | | * @brief Try to fuse current layer with a next one |
411 | | * @param[in] top Next layer to be fused. |
412 | | * @returns True if fusion was performed. |
413 | | */ |
414 | | virtual bool tryFuse(Ptr<Layer>& top); |
415 | | |
416 | | /** |
417 | | * @brief Returns parameters of layers with channel-wise multiplication and addition. |
418 | | * @param[out] scale Channel-wise multipliers. Total number of values should |
419 | | * be equal to number of channels. |
420 | | * @param[out] shift Channel-wise offsets. Total number of values should |
421 | | * be equal to number of channels. |
422 | | * |
423 | | * Some layers can fuse their transformations with further layers. |
424 | | * In example, convolution + batch normalization. This way base layer |
425 | | * use weights from layer after it. Fused layer is skipped. |
426 | | * By default, @p scale and @p shift are empty that means layer has no |
427 | | * element-wise multiplications or additions. |
428 | | */ |
429 | | virtual void getScaleShift(Mat& scale, Mat& shift) const; |
430 | | |
431 | | /** |
432 | | * @brief Returns scale and zeropoint of layers |
433 | | * @param[out] scale Output scale |
434 | | * @param[out] zeropoint Output zeropoint |
435 | | * |
436 | | * By default, @p scale is 1 and @p zeropoint is 0. |
437 | | */ |
438 | | virtual void getScaleZeropoint(float& scale, int& zeropoint) const; |
439 | | |
440 | | |
441 | | /** |
442 | | * @brief "Detaches" all the layers, attached to particular layer. |
443 | | */ |
444 | | virtual void unsetAttached(); |
445 | | |
446 | | virtual bool getMemoryShapes(const std::vector<MatShape> &inputs, |
447 | | const int requiredOutputs, |
448 | | std::vector<MatShape> &outputs, |
449 | | std::vector<MatShape> &internals) const; |
450 | | |
451 | | virtual int64 getFLOPS(const std::vector<MatShape> &inputs, |
452 | 0 | const std::vector<MatShape> &outputs) const {CV_UNUSED(inputs); CV_UNUSED(outputs); return 0;} |
453 | | |
454 | | virtual bool updateMemoryShapes(const std::vector<MatShape> &inputs); |
455 | | |
456 | | CV_PROP String name; //!< Name of the layer instance, can be used for logging or other internal purposes. |
457 | | CV_PROP String type; //!< Type name which was used for creating layer by layer factory. |
458 | | CV_PROP int preferableTarget; //!< prefer target for layer forwarding |
459 | | |
460 | | Layer(); |
461 | | explicit Layer(const LayerParams ¶ms); //!< Initializes only #name, #type and #blobs fields. |
462 | | void setParamsFrom(const LayerParams ¶ms); //!< Initializes only #name, #type and #blobs fields. |
463 | | virtual ~Layer(); |
464 | | }; |
465 | | |
466 | | /** @brief This class allows to create and manipulate comprehensive artificial neural networks. |
467 | | * |
468 | | * Neural network is presented as directed acyclic graph (DAG), where vertices are Layer instances, |
469 | | * and edges specify relationships between layers inputs and outputs. |
470 | | * |
471 | | * Each network layer has unique integer id and unique string name inside its network. |
472 | | * LayerId can store either layer name or layer id. |
473 | | * |
474 | | * This class supports reference counting of its instances, i. e. copies point to the same instance. |
475 | | */ |
476 | | class CV_EXPORTS_W_SIMPLE Net |
477 | | { |
478 | | public: |
479 | | |
480 | | CV_WRAP Net(); //!< Default constructor. |
481 | | CV_WRAP ~Net(); //!< Destructor frees the net only if there aren't references to the net anymore. |
482 | | |
483 | | /** @brief Create a network from Intel's Model Optimizer intermediate representation (IR). |
484 | | * @param[in] xml XML configuration file with network's topology. |
485 | | * @param[in] bin Binary file with trained weights. |
486 | | * Networks imported from Intel's Model Optimizer are launched in Intel's Inference Engine |
487 | | * backend. |
488 | | */ |
489 | | CV_WRAP static Net readFromModelOptimizer(const String& xml, const String& bin); |
490 | | |
491 | | /** @brief Create a network from Intel's Model Optimizer in-memory buffers with intermediate representation (IR). |
492 | | * @param[in] bufferModelConfig buffer with model's configuration. |
493 | | * @param[in] bufferWeights buffer with model's trained weights. |
494 | | * @returns Net object. |
495 | | */ |
496 | | CV_WRAP static |
497 | | Net readFromModelOptimizer(const std::vector<uchar>& bufferModelConfig, const std::vector<uchar>& bufferWeights); |
498 | | |
499 | | /** @brief Create a network from Intel's Model Optimizer in-memory buffers with intermediate representation (IR). |
500 | | * @param[in] bufferModelConfigPtr buffer pointer of model's configuration. |
501 | | * @param[in] bufferModelConfigSize buffer size of model's configuration. |
502 | | * @param[in] bufferWeightsPtr buffer pointer of model's trained weights. |
503 | | * @param[in] bufferWeightsSize buffer size of model's trained weights. |
504 | | * @returns Net object. |
505 | | */ |
506 | | static |
507 | | Net readFromModelOptimizer(const uchar* bufferModelConfigPtr, size_t bufferModelConfigSize, |
508 | | const uchar* bufferWeightsPtr, size_t bufferWeightsSize); |
509 | | |
510 | | /** Returns true if there are no layers in the network. */ |
511 | | CV_WRAP bool empty() const; |
512 | | |
513 | | /** @brief Dump net to String |
514 | | * @returns String with structure, hyperparameters, backend, target and fusion |
515 | | * Call method after setInput(). To see correct backend, target and fusion run after forward(). |
516 | | */ |
517 | | CV_WRAP String dump(); |
518 | | /** @brief Dump net structure, hyperparameters, backend, target and fusion to dot file |
519 | | * @param path path to output file with .dot extension |
520 | | * @see dump() |
521 | | */ |
522 | | CV_WRAP void dumpToFile(const String& path); |
523 | | /** @brief Adds new layer to the net. |
524 | | * @param name unique name of the adding layer. |
525 | | * @param type typename of the adding layer (type must be registered in LayerRegister). |
526 | | * @param dtype datatype of output blobs. |
527 | | * @param params parameters which will be used to initialize the creating layer. |
528 | | * @returns unique identifier of created layer, or -1 if a failure will happen. |
529 | | */ |
530 | | int addLayer(const String &name, const String &type, const int &dtype, LayerParams ¶ms); |
531 | | |
532 | | /** @overload Datatype of output blobs set to default CV_32F */ |
533 | | int addLayer(const String &name, const String &type, LayerParams ¶ms); |
534 | | |
535 | | /** @brief Adds new layer and connects its first input to the first output of previously added layer. |
536 | | * @see addLayer() |
537 | | */ |
538 | | int addLayerToPrev(const String &name, const String &type, const int &dtype, LayerParams ¶ms); |
539 | | |
540 | | /** @overload */ |
541 | | int addLayerToPrev(const String &name, const String &type, LayerParams ¶ms); |
542 | | |
543 | | /** @brief Converts string name of the layer to the integer identifier. |
544 | | * @returns id of the layer, or -1 if the layer wasn't found. |
545 | | */ |
546 | | CV_WRAP int getLayerId(const String &layer) const; |
547 | | |
548 | | CV_WRAP std::vector<String> getLayerNames() const; |
549 | | |
550 | | /** @brief Container for strings and integers. |
551 | | * |
552 | | * @deprecated Use getLayerId() with int result. |
553 | | */ |
554 | | typedef DictValue LayerId; |
555 | | |
556 | | /** @brief Returns pointer to layer with specified id or name which the network use. */ |
557 | | CV_WRAP Ptr<Layer> getLayer(int layerId) const; |
558 | | /** @overload |
559 | | * @deprecated Use int getLayerId(const String &layer) |
560 | | */ |
561 | 0 | CV_WRAP inline Ptr<Layer> getLayer(const String& layerName) const { return getLayer(getLayerId(layerName)); } |
562 | | /** @overload |
563 | | * @deprecated to be removed |
564 | | */ |
565 | | CV_WRAP Ptr<Layer> getLayer(const LayerId& layerId) const; |
566 | | |
567 | | /** @brief Returns pointers to input layers of specific layer. */ |
568 | | std::vector<Ptr<Layer> > getLayerInputs(int layerId) const; // FIXIT: CV_WRAP |
569 | | |
570 | | /** @brief Connects output of the first layer to input of the second layer. |
571 | | * @param outPin descriptor of the first layer output. |
572 | | * @param inpPin descriptor of the second layer input. |
573 | | * |
574 | | * Descriptors have the following template <DFN><layer_name>[.input_number]</DFN>: |
575 | | * - the first part of the template <DFN>layer_name</DFN> is string name of the added layer. |
576 | | * If this part is empty then the network input pseudo layer will be used; |
577 | | * - the second optional part of the template <DFN>input_number</DFN> |
578 | | * is either number of the layer input, either label one. |
579 | | * If this part is omitted then the first layer input will be used. |
580 | | * |
581 | | * @see setNetInputs(), Layer::inputNameToIndex(), Layer::outputNameToIndex() |
582 | | */ |
583 | | CV_WRAP void connect(String outPin, String inpPin); |
584 | | |
585 | | /** @brief Connects #@p outNum output of the first layer to #@p inNum input of the second layer. |
586 | | * @param outLayerId identifier of the first layer |
587 | | * @param outNum number of the first layer output |
588 | | * @param inpLayerId identifier of the second layer |
589 | | * @param inpNum number of the second layer input |
590 | | */ |
591 | | void connect(int outLayerId, int outNum, int inpLayerId, int inpNum); |
592 | | |
593 | | /** @brief Registers network output with name |
594 | | * |
595 | | * Function may create additional 'Identity' layer. |
596 | | * |
597 | | * @param outputName identifier of the output |
598 | | * @param layerId identifier of the second layer |
599 | | * @param outputPort number of the second layer input |
600 | | * |
601 | | * @returns index of bound layer (the same as layerId or newly created) |
602 | | */ |
603 | | int registerOutput(const std::string& outputName, int layerId, int outputPort); |
604 | | |
605 | | /** @brief Sets outputs names of the network input pseudo layer. |
606 | | * |
607 | | * Each net always has special own the network input pseudo layer with id=0. |
608 | | * This layer stores the user blobs only and don't make any computations. |
609 | | * In fact, this layer provides the only way to pass user data into the network. |
610 | | * As any other layer, this layer can label its outputs and this function provides an easy way to do this. |
611 | | */ |
612 | | CV_WRAP void setInputsNames(const std::vector<String> &inputBlobNames); |
613 | | |
614 | | /** @brief Specify shape of network input. |
615 | | */ |
616 | | CV_WRAP void setInputShape(const String &inputName, const MatShape& shape); |
617 | | |
618 | | /** @brief Runs forward pass to compute output of layer with name @p outputName. |
619 | | * @param outputName name for layer which output is needed to get |
620 | | * @return blob for first output of specified layer. |
621 | | * @details By default runs forward pass for the whole network. |
622 | | */ |
623 | | CV_WRAP Mat forward(const String& outputName = String()); |
624 | | |
625 | | /** @brief Runs forward pass to compute output of layer with name @p outputName. |
626 | | * @param outputName name for layer which output is needed to get |
627 | | * @details By default runs forward pass for the whole network. |
628 | | * |
629 | | * This is an asynchronous version of forward(const String&). |
630 | | * dnn::DNN_BACKEND_INFERENCE_ENGINE backend is required. |
631 | | */ |
632 | | CV_WRAP AsyncArray forwardAsync(const String& outputName = String()); |
633 | | |
634 | | /** @brief Runs forward pass to compute output of layer with name @p outputName. |
635 | | * @param outputBlobs contains all output blobs for specified layer. |
636 | | * @param outputName name for layer which output is needed to get |
637 | | * @details If @p outputName is empty, runs forward pass for the whole network. |
638 | | */ |
639 | | CV_WRAP void forward(OutputArrayOfArrays outputBlobs, const String& outputName = String()); |
640 | | |
641 | | /** @brief Runs forward pass to compute outputs of layers listed in @p outBlobNames. |
642 | | * @param outputBlobs contains blobs for first outputs of specified layers. |
643 | | * @param outBlobNames names for layers which outputs are needed to get |
644 | | */ |
645 | | CV_WRAP void forward(OutputArrayOfArrays outputBlobs, |
646 | | const std::vector<String>& outBlobNames); |
647 | | |
648 | | /** @brief Runs forward pass to compute outputs of layers listed in @p outBlobNames. |
649 | | * @param outputBlobs contains all output blobs for each layer specified in @p outBlobNames. |
650 | | * @param outBlobNames names for layers which outputs are needed to get |
651 | | */ |
652 | | CV_WRAP_AS(forwardAndRetrieve) void forward(CV_OUT std::vector<std::vector<Mat> >& outputBlobs, |
653 | | const std::vector<String>& outBlobNames); |
654 | | |
655 | | /** @brief Returns a quantized Net from a floating-point Net. |
656 | | * @param calibData Calibration data to compute the quantization parameters. |
657 | | * @param inputsDtype Datatype of quantized net's inputs. Can be CV_32F or CV_8S. |
658 | | * @param outputsDtype Datatype of quantized net's outputs. Can be CV_32F or CV_8S. |
659 | | * @param perChannel Quantization granularity of quantized Net. The default is true, that means quantize model |
660 | | * in per-channel way (channel-wise). Set it false to quantize model in per-tensor way (or tensor-wise). |
661 | | */ |
662 | | CV_WRAP Net quantize(InputArrayOfArrays calibData, int inputsDtype, int outputsDtype, bool perChannel=true); |
663 | | |
664 | | /** @brief Returns input scale and zeropoint for a quantized Net. |
665 | | * @param scales output parameter for returning input scales. |
666 | | * @param zeropoints output parameter for returning input zeropoints. |
667 | | */ |
668 | | CV_WRAP void getInputDetails(CV_OUT std::vector<float>& scales, CV_OUT std::vector<int>& zeropoints) const; |
669 | | |
670 | | /** @brief Returns output scale and zeropoint for a quantized Net. |
671 | | * @param scales output parameter for returning output scales. |
672 | | * @param zeropoints output parameter for returning output zeropoints. |
673 | | */ |
674 | | CV_WRAP void getOutputDetails(CV_OUT std::vector<float>& scales, CV_OUT std::vector<int>& zeropoints) const; |
675 | | |
676 | | /** |
677 | | * @brief Compile Halide layers. |
678 | | * @param[in] scheduler Path to YAML file with scheduling directives. |
679 | | * @see setPreferableBackend |
680 | | * |
681 | | * Schedule layers that support Halide backend. Then compile them for |
682 | | * specific target. For layers that not represented in scheduling file |
683 | | * or if no manual scheduling used at all, automatic scheduling will be applied. |
684 | | */ |
685 | | CV_WRAP void setHalideScheduler(const String& scheduler); |
686 | | |
687 | | /** |
688 | | * @brief Ask network to use specific computation backend where it supported. |
689 | | * @param[in] backendId backend identifier. |
690 | | * @see Backend |
691 | | * |
692 | | * If OpenCV is compiled with Intel's Inference Engine library, DNN_BACKEND_DEFAULT |
693 | | * means DNN_BACKEND_INFERENCE_ENGINE. Otherwise it equals to DNN_BACKEND_OPENCV. |
694 | | */ |
695 | | CV_WRAP void setPreferableBackend(int backendId); |
696 | | |
697 | | /** |
698 | | * @brief Ask network to make computations on specific target device. |
699 | | * @param[in] targetId target identifier. |
700 | | * @see Target |
701 | | * |
702 | | * List of supported combinations backend / target: |
703 | | * | | DNN_BACKEND_OPENCV | DNN_BACKEND_INFERENCE_ENGINE | DNN_BACKEND_HALIDE | DNN_BACKEND_CUDA | |
704 | | * |------------------------|--------------------|------------------------------|--------------------|-------------------| |
705 | | * | DNN_TARGET_CPU | + | + | + | | |
706 | | * | DNN_TARGET_OPENCL | + | + | + | | |
707 | | * | DNN_TARGET_OPENCL_FP16 | + | + | | | |
708 | | * | DNN_TARGET_MYRIAD | | + | | | |
709 | | * | DNN_TARGET_FPGA | | + | | | |
710 | | * | DNN_TARGET_CUDA | | | | + | |
711 | | * | DNN_TARGET_CUDA_FP16 | | | | + | |
712 | | * | DNN_TARGET_HDDL | | + | | | |
713 | | */ |
714 | | CV_WRAP void setPreferableTarget(int targetId); |
715 | | |
716 | | /** @brief Sets the new input value for the network |
717 | | * @param blob A new blob. Should have CV_32F or CV_8U depth. |
718 | | * @param name A name of input layer. |
719 | | * @param scalefactor An optional normalization scale. |
720 | | * @param mean An optional mean subtraction values. |
721 | | * @see connect(String, String) to know format of the descriptor. |
722 | | * |
723 | | * If scale or mean values are specified, a final input blob is computed |
724 | | * as: |
725 | | * \f[input(n,c,h,w) = scalefactor \times (blob(n,c,h,w) - mean_c)\f] |
726 | | */ |
727 | | CV_WRAP void setInput(InputArray blob, const String& name = "", |
728 | | double scalefactor = 1.0, const Scalar& mean = Scalar()); |
729 | | |
730 | | /** @brief Sets the new value for the learned param of the layer. |
731 | | * @param layer name or id of the layer. |
732 | | * @param numParam index of the layer parameter in the Layer::blobs array. |
733 | | * @param blob the new value. |
734 | | * @see Layer::blobs |
735 | | * @note If shape of the new blob differs from the previous shape, |
736 | | * then the following forward pass may fail. |
737 | | */ |
738 | | CV_WRAP void setParam(int layer, int numParam, const Mat &blob); |
739 | 0 | CV_WRAP inline void setParam(const String& layerName, int numParam, const Mat &blob) { return setParam(getLayerId(layerName), numParam, blob); } |
740 | | |
741 | | /** @brief Returns parameter blob of the layer. |
742 | | * @param layer name or id of the layer. |
743 | | * @param numParam index of the layer parameter in the Layer::blobs array. |
744 | | * @see Layer::blobs |
745 | | */ |
746 | | CV_WRAP Mat getParam(int layer, int numParam = 0) const; |
747 | 0 | CV_WRAP inline Mat getParam(const String& layerName, int numParam = 0) const { return getParam(getLayerId(layerName), numParam); } |
748 | | |
749 | | /** @brief Returns indexes of layers with unconnected outputs. |
750 | | * |
751 | | * FIXIT: Rework API to registerOutput() approach, deprecate this call |
752 | | */ |
753 | | CV_WRAP std::vector<int> getUnconnectedOutLayers() const; |
754 | | |
755 | | /** @brief Returns names of layers with unconnected outputs. |
756 | | * |
757 | | * FIXIT: Rework API to registerOutput() approach, deprecate this call |
758 | | */ |
759 | | CV_WRAP std::vector<String> getUnconnectedOutLayersNames() const; |
760 | | |
761 | | /** @brief Returns input and output shapes for all layers in loaded model; |
762 | | * preliminary inferencing isn't necessary. |
763 | | * @param netInputShapes shapes for all input blobs in net input layer. |
764 | | * @param layersIds output parameter for layer IDs. |
765 | | * @param inLayersShapes output parameter for input layers shapes; |
766 | | * order is the same as in layersIds |
767 | | * @param outLayersShapes output parameter for output layers shapes; |
768 | | * order is the same as in layersIds |
769 | | */ |
770 | | CV_WRAP void getLayersShapes(const std::vector<MatShape>& netInputShapes, |
771 | | CV_OUT std::vector<int>& layersIds, |
772 | | CV_OUT std::vector<std::vector<MatShape> >& inLayersShapes, |
773 | | CV_OUT std::vector<std::vector<MatShape> >& outLayersShapes) const; |
774 | | |
775 | | /** @overload */ |
776 | | CV_WRAP void getLayersShapes(const MatShape& netInputShape, |
777 | | CV_OUT std::vector<int>& layersIds, |
778 | | CV_OUT std::vector<std::vector<MatShape> >& inLayersShapes, |
779 | | CV_OUT std::vector<std::vector<MatShape> >& outLayersShapes) const; |
780 | | |
781 | | /** @brief Returns input and output shapes for layer with specified |
782 | | * id in loaded model; preliminary inferencing isn't necessary. |
783 | | * @param netInputShape shape input blob in net input layer. |
784 | | * @param layerId id for layer. |
785 | | * @param inLayerShapes output parameter for input layers shapes; |
786 | | * order is the same as in layersIds |
787 | | * @param outLayerShapes output parameter for output layers shapes; |
788 | | * order is the same as in layersIds |
789 | | */ |
790 | | void getLayerShapes(const MatShape& netInputShape, |
791 | | const int layerId, |
792 | | CV_OUT std::vector<MatShape>& inLayerShapes, |
793 | | CV_OUT std::vector<MatShape>& outLayerShapes) const; // FIXIT: CV_WRAP |
794 | | |
795 | | /** @overload */ |
796 | | void getLayerShapes(const std::vector<MatShape>& netInputShapes, |
797 | | const int layerId, |
798 | | CV_OUT std::vector<MatShape>& inLayerShapes, |
799 | | CV_OUT std::vector<MatShape>& outLayerShapes) const; // FIXIT: CV_WRAP |
800 | | |
801 | | /** @brief Computes FLOP for whole loaded model with specified input shapes. |
802 | | * @param netInputShapes vector of shapes for all net inputs. |
803 | | * @returns computed FLOP. |
804 | | */ |
805 | | CV_WRAP int64 getFLOPS(const std::vector<MatShape>& netInputShapes) const; |
806 | | /** @overload */ |
807 | | CV_WRAP int64 getFLOPS(const MatShape& netInputShape) const; |
808 | | /** @overload */ |
809 | | CV_WRAP int64 getFLOPS(const int layerId, |
810 | | const std::vector<MatShape>& netInputShapes) const; |
811 | | /** @overload */ |
812 | | CV_WRAP int64 getFLOPS(const int layerId, |
813 | | const MatShape& netInputShape) const; |
814 | | |
815 | | /** @brief Returns list of types for layer used in model. |
816 | | * @param layersTypes output parameter for returning types. |
817 | | */ |
818 | | CV_WRAP void getLayerTypes(CV_OUT std::vector<String>& layersTypes) const; |
819 | | |
820 | | /** @brief Returns count of layers of specified type. |
821 | | * @param layerType type. |
822 | | * @returns count of layers |
823 | | */ |
824 | | CV_WRAP int getLayersCount(const String& layerType) const; |
825 | | |
826 | | /** @brief Computes bytes number which are required to store |
827 | | * all weights and intermediate blobs for model. |
828 | | * @param netInputShapes vector of shapes for all net inputs. |
829 | | * @param weights output parameter to store resulting bytes for weights. |
830 | | * @param blobs output parameter to store resulting bytes for intermediate blobs. |
831 | | */ |
832 | | void getMemoryConsumption(const std::vector<MatShape>& netInputShapes, |
833 | | CV_OUT size_t& weights, CV_OUT size_t& blobs) const; // FIXIT: CV_WRAP |
834 | | /** @overload */ |
835 | | CV_WRAP void getMemoryConsumption(const MatShape& netInputShape, |
836 | | CV_OUT size_t& weights, CV_OUT size_t& blobs) const; |
837 | | /** @overload */ |
838 | | CV_WRAP void getMemoryConsumption(const int layerId, |
839 | | const std::vector<MatShape>& netInputShapes, |
840 | | CV_OUT size_t& weights, CV_OUT size_t& blobs) const; |
841 | | /** @overload */ |
842 | | CV_WRAP void getMemoryConsumption(const int layerId, |
843 | | const MatShape& netInputShape, |
844 | | CV_OUT size_t& weights, CV_OUT size_t& blobs) const; |
845 | | |
846 | | /** @brief Computes bytes number which are required to store |
847 | | * all weights and intermediate blobs for each layer. |
848 | | * @param netInputShapes vector of shapes for all net inputs. |
849 | | * @param layerIds output vector to save layer IDs. |
850 | | * @param weights output parameter to store resulting bytes for weights. |
851 | | * @param blobs output parameter to store resulting bytes for intermediate blobs. |
852 | | */ |
853 | | void getMemoryConsumption(const std::vector<MatShape>& netInputShapes, |
854 | | CV_OUT std::vector<int>& layerIds, |
855 | | CV_OUT std::vector<size_t>& weights, |
856 | | CV_OUT std::vector<size_t>& blobs) const; // FIXIT: CV_WRAP |
857 | | /** @overload */ |
858 | | void getMemoryConsumption(const MatShape& netInputShape, |
859 | | CV_OUT std::vector<int>& layerIds, |
860 | | CV_OUT std::vector<size_t>& weights, |
861 | | CV_OUT std::vector<size_t>& blobs) const; // FIXIT: CV_WRAP |
862 | | |
863 | | /** @brief Enables or disables layer fusion in the network. |
864 | | * @param fusion true to enable the fusion, false to disable. The fusion is enabled by default. |
865 | | */ |
866 | | CV_WRAP void enableFusion(bool fusion); |
867 | | |
868 | | /** @brief Enables or disables the Winograd compute branch. The Winograd compute branch can speed up |
869 | | * 3x3 Convolution at a small loss of accuracy. |
870 | | * @param useWinograd true to enable the Winograd compute branch. The default is true. |
871 | | */ |
872 | | CV_WRAP void enableWinograd(bool useWinograd); |
873 | | |
874 | | /** @brief Returns overall time for inference and timings (in ticks) for layers. |
875 | | * |
876 | | * Indexes in returned vector correspond to layers ids. Some layers can be fused with others, |
877 | | * in this case zero ticks count will be return for that skipped layers. Supported by DNN_BACKEND_OPENCV on DNN_TARGET_CPU only. |
878 | | * |
879 | | * @param[out] timings vector for tick timings for all layers. |
880 | | * @return overall ticks for model inference. |
881 | | */ |
882 | | CV_WRAP int64 getPerfProfile(CV_OUT std::vector<double>& timings); |
883 | | |
884 | | |
885 | | struct Impl; |
886 | 0 | inline Impl* getImpl() const { return impl.get(); } |
887 | 0 | inline Impl& getImplRef() const { CV_DbgAssert(impl); return *impl.get(); } |
888 | | friend class accessor::DnnNetAccessor; |
889 | | protected: |
890 | | Ptr<Impl> impl; |
891 | | }; |
892 | | |
893 | | /** @brief Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files. |
894 | | * @param cfgFile path to the .cfg file with text description of the network architecture. |
895 | | * @param darknetModel path to the .weights file with learned network. |
896 | | * @returns Network object that ready to do forward, throw an exception in failure cases. |
897 | | * @returns Net object. |
898 | | */ |
899 | | CV_EXPORTS_W Net readNetFromDarknet(const String &cfgFile, const String &darknetModel = String()); |
900 | | |
901 | | /** @brief Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files. |
902 | | * @param bufferCfg A buffer contains a content of .cfg file with text description of the network architecture. |
903 | | * @param bufferModel A buffer contains a content of .weights file with learned network. |
904 | | * @returns Net object. |
905 | | */ |
906 | | CV_EXPORTS_W Net readNetFromDarknet(const std::vector<uchar>& bufferCfg, |
907 | | const std::vector<uchar>& bufferModel = std::vector<uchar>()); |
908 | | |
909 | | /** @brief Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files. |
910 | | * @param bufferCfg A buffer contains a content of .cfg file with text description of the network architecture. |
911 | | * @param lenCfg Number of bytes to read from bufferCfg |
912 | | * @param bufferModel A buffer contains a content of .weights file with learned network. |
913 | | * @param lenModel Number of bytes to read from bufferModel |
914 | | * @returns Net object. |
915 | | */ |
916 | | CV_EXPORTS Net readNetFromDarknet(const char *bufferCfg, size_t lenCfg, |
917 | | const char *bufferModel = NULL, size_t lenModel = 0); |
918 | | |
919 | | /** @brief Reads a network model stored in <a href="http://caffe.berkeleyvision.org">Caffe</a> framework's format. |
920 | | * @param prototxt path to the .prototxt file with text description of the network architecture. |
921 | | * @param caffeModel path to the .caffemodel file with learned network. |
922 | | * @returns Net object. |
923 | | */ |
924 | | CV_EXPORTS_W Net readNetFromCaffe(const String &prototxt, const String &caffeModel = String()); |
925 | | |
926 | | /** @brief Reads a network model stored in Caffe model in memory. |
927 | | * @param bufferProto buffer containing the content of the .prototxt file |
928 | | * @param bufferModel buffer containing the content of the .caffemodel file |
929 | | * @returns Net object. |
930 | | */ |
931 | | CV_EXPORTS_W Net readNetFromCaffe(const std::vector<uchar>& bufferProto, |
932 | | const std::vector<uchar>& bufferModel = std::vector<uchar>()); |
933 | | |
934 | | /** @brief Reads a network model stored in Caffe model in memory. |
935 | | * @details This is an overloaded member function, provided for convenience. |
936 | | * It differs from the above function only in what argument(s) it accepts. |
937 | | * @param bufferProto buffer containing the content of the .prototxt file |
938 | | * @param lenProto length of bufferProto |
939 | | * @param bufferModel buffer containing the content of the .caffemodel file |
940 | | * @param lenModel length of bufferModel |
941 | | * @returns Net object. |
942 | | */ |
943 | | CV_EXPORTS Net readNetFromCaffe(const char *bufferProto, size_t lenProto, |
944 | | const char *bufferModel = NULL, size_t lenModel = 0); |
945 | | |
946 | | /** @brief Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format. |
947 | | * @param model path to the .pb file with binary protobuf description of the network architecture |
948 | | * @param config path to the .pbtxt file that contains text graph definition in protobuf format. |
949 | | * Resulting Net object is built by text graph using weights from a binary one that |
950 | | * let us make it more flexible. |
951 | | * @returns Net object. |
952 | | */ |
953 | | CV_EXPORTS_W Net readNetFromTensorflow(const String &model, const String &config = String()); |
954 | | |
955 | | /** @brief Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format. |
956 | | * @param bufferModel buffer containing the content of the pb file |
957 | | * @param bufferConfig buffer containing the content of the pbtxt file |
958 | | * @returns Net object. |
959 | | */ |
960 | | CV_EXPORTS_W Net readNetFromTensorflow(const std::vector<uchar>& bufferModel, |
961 | | const std::vector<uchar>& bufferConfig = std::vector<uchar>()); |
962 | | |
963 | | /** @brief Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format. |
964 | | * @details This is an overloaded member function, provided for convenience. |
965 | | * It differs from the above function only in what argument(s) it accepts. |
966 | | * @param bufferModel buffer containing the content of the pb file |
967 | | * @param lenModel length of bufferModel |
968 | | * @param bufferConfig buffer containing the content of the pbtxt file |
969 | | * @param lenConfig length of bufferConfig |
970 | | */ |
971 | | CV_EXPORTS Net readNetFromTensorflow(const char *bufferModel, size_t lenModel, |
972 | | const char *bufferConfig = NULL, size_t lenConfig = 0); |
973 | | |
974 | | /** @brief Reads a network model stored in <a href="https://www.tensorflow.org/lite">TFLite</a> framework's format. |
975 | | * @param model path to the .tflite file with binary flatbuffers description of the network architecture |
976 | | * @returns Net object. |
977 | | */ |
978 | | CV_EXPORTS_W Net readNetFromTFLite(const String &model); |
979 | | |
980 | | /** @brief Reads a network model stored in <a href="https://www.tensorflow.org/lite">TFLite</a> framework's format. |
981 | | * @param bufferModel buffer containing the content of the tflite file |
982 | | * @returns Net object. |
983 | | */ |
984 | | CV_EXPORTS_W Net readNetFromTFLite(const std::vector<uchar>& bufferModel); |
985 | | |
986 | | /** @brief Reads a network model stored in <a href="https://www.tensorflow.org/lite">TFLite</a> framework's format. |
987 | | * @details This is an overloaded member function, provided for convenience. |
988 | | * It differs from the above function only in what argument(s) it accepts. |
989 | | * @param bufferModel buffer containing the content of the tflite file |
990 | | * @param lenModel length of bufferModel |
991 | | */ |
992 | | CV_EXPORTS Net readNetFromTFLite(const char *bufferModel, size_t lenModel); |
993 | | |
994 | | /** |
995 | | * @brief Reads a network model stored in <a href="http://torch.ch">Torch7</a> framework's format. |
996 | | * @param model path to the file, dumped from Torch by using torch.save() function. |
997 | | * @param isBinary specifies whether the network was serialized in ascii mode or binary. |
998 | | * @param evaluate specifies testing phase of network. If true, it's similar to evaluate() method in Torch. |
999 | | * @returns Net object. |
1000 | | * |
1001 | | * @note Ascii mode of Torch serializer is more preferable, because binary mode extensively use `long` type of C language, |
1002 | | * which has various bit-length on different systems. |
1003 | | * |
1004 | | * The loading file must contain serialized <a href="https://github.com/torch/nn/blob/master/doc/module.md">nn.Module</a> object |
1005 | | * with importing network. Try to eliminate a custom objects from serialazing data to avoid importing errors. |
1006 | | * |
1007 | | * List of supported layers (i.e. object instances derived from Torch nn.Module class): |
1008 | | * - nn.Sequential |
1009 | | * - nn.Parallel |
1010 | | * - nn.Concat |
1011 | | * - nn.Linear |
1012 | | * - nn.SpatialConvolution |
1013 | | * - nn.SpatialMaxPooling, nn.SpatialAveragePooling |
1014 | | * - nn.ReLU, nn.TanH, nn.Sigmoid |
1015 | | * - nn.Reshape |
1016 | | * - nn.SoftMax, nn.LogSoftMax |
1017 | | * |
1018 | | * Also some equivalents of these classes from cunn, cudnn, and fbcunn may be successfully imported. |
1019 | | */ |
1020 | | CV_EXPORTS_W Net readNetFromTorch(const String &model, bool isBinary = true, bool evaluate = true); |
1021 | | |
1022 | | /** |
1023 | | * @brief Read deep learning network represented in one of the supported formats. |
1024 | | * @param[in] model Binary file contains trained weights. The following file |
1025 | | * extensions are expected for models from different frameworks: |
1026 | | * * `*.caffemodel` (Caffe, http://caffe.berkeleyvision.org/) |
1027 | | * * `*.pb` (TensorFlow, https://www.tensorflow.org/) |
1028 | | * * `*.t7` | `*.net` (Torch, http://torch.ch/) |
1029 | | * * `*.weights` (Darknet, https://pjreddie.com/darknet/) |
1030 | | * * `*.bin` (DLDT, https://software.intel.com/openvino-toolkit) |
1031 | | * * `*.onnx` (ONNX, https://onnx.ai/) |
1032 | | * @param[in] config Text file contains network configuration. It could be a |
1033 | | * file with the following extensions: |
1034 | | * * `*.prototxt` (Caffe, http://caffe.berkeleyvision.org/) |
1035 | | * * `*.pbtxt` (TensorFlow, https://www.tensorflow.org/) |
1036 | | * * `*.cfg` (Darknet, https://pjreddie.com/darknet/) |
1037 | | * * `*.xml` (DLDT, https://software.intel.com/openvino-toolkit) |
1038 | | * @param[in] framework Explicit framework name tag to determine a format. |
1039 | | * @returns Net object. |
1040 | | * |
1041 | | * This function automatically detects an origin framework of trained model |
1042 | | * and calls an appropriate function such @ref readNetFromCaffe, @ref readNetFromTensorflow, |
1043 | | * @ref readNetFromTorch or @ref readNetFromDarknet. An order of @p model and @p config |
1044 | | * arguments does not matter. |
1045 | | */ |
1046 | | CV_EXPORTS_W Net readNet(const String& model, const String& config = "", const String& framework = ""); |
1047 | | |
1048 | | /** |
1049 | | * @brief Read deep learning network represented in one of the supported formats. |
1050 | | * @details This is an overloaded member function, provided for convenience. |
1051 | | * It differs from the above function only in what argument(s) it accepts. |
1052 | | * @param[in] framework Name of origin framework. |
1053 | | * @param[in] bufferModel A buffer with a content of binary file with weights |
1054 | | * @param[in] bufferConfig A buffer with a content of text file contains network configuration. |
1055 | | * @returns Net object. |
1056 | | */ |
1057 | | CV_EXPORTS_W Net readNet(const String& framework, const std::vector<uchar>& bufferModel, |
1058 | | const std::vector<uchar>& bufferConfig = std::vector<uchar>()); |
1059 | | |
1060 | | /** @brief Loads blob which was serialized as torch.Tensor object of Torch7 framework. |
1061 | | * @warning This function has the same limitations as readNetFromTorch(). |
1062 | | */ |
1063 | | CV_EXPORTS_W Mat readTorchBlob(const String &filename, bool isBinary = true); |
1064 | | |
1065 | | /** @brief Load a network from Intel's Model Optimizer intermediate representation. |
1066 | | * @param[in] xml XML configuration file with network's topology. |
1067 | | * @param[in] bin Binary file with trained weights. |
1068 | | * @returns Net object. |
1069 | | * Networks imported from Intel's Model Optimizer are launched in Intel's Inference Engine |
1070 | | * backend. |
1071 | | */ |
1072 | | CV_EXPORTS_W |
1073 | | Net readNetFromModelOptimizer(const String &xml, const String &bin); |
1074 | | |
1075 | | /** @brief Load a network from Intel's Model Optimizer intermediate representation. |
1076 | | * @param[in] bufferModelConfig Buffer contains XML configuration with network's topology. |
1077 | | * @param[in] bufferWeights Buffer contains binary data with trained weights. |
1078 | | * @returns Net object. |
1079 | | * Networks imported from Intel's Model Optimizer are launched in Intel's Inference Engine |
1080 | | * backend. |
1081 | | */ |
1082 | | CV_EXPORTS_W |
1083 | | Net readNetFromModelOptimizer(const std::vector<uchar>& bufferModelConfig, const std::vector<uchar>& bufferWeights); |
1084 | | |
1085 | | /** @brief Load a network from Intel's Model Optimizer intermediate representation. |
1086 | | * @param[in] bufferModelConfigPtr Pointer to buffer which contains XML configuration with network's topology. |
1087 | | * @param[in] bufferModelConfigSize Binary size of XML configuration data. |
1088 | | * @param[in] bufferWeightsPtr Pointer to buffer which contains binary data with trained weights. |
1089 | | * @param[in] bufferWeightsSize Binary size of trained weights data. |
1090 | | * @returns Net object. |
1091 | | * Networks imported from Intel's Model Optimizer are launched in Intel's Inference Engine |
1092 | | * backend. |
1093 | | */ |
1094 | | CV_EXPORTS |
1095 | | Net readNetFromModelOptimizer(const uchar* bufferModelConfigPtr, size_t bufferModelConfigSize, |
1096 | | const uchar* bufferWeightsPtr, size_t bufferWeightsSize); |
1097 | | |
1098 | | /** @brief Reads a network model <a href="https://onnx.ai/">ONNX</a>. |
1099 | | * @param onnxFile path to the .onnx file with text description of the network architecture. |
1100 | | * @returns Network object that ready to do forward, throw an exception in failure cases. |
1101 | | */ |
1102 | | CV_EXPORTS_W Net readNetFromONNX(const String &onnxFile); |
1103 | | |
1104 | | /** @brief Reads a network model from <a href="https://onnx.ai/">ONNX</a> |
1105 | | * in-memory buffer. |
1106 | | * @param buffer memory address of the first byte of the buffer. |
1107 | | * @param sizeBuffer size of the buffer. |
1108 | | * @returns Network object that ready to do forward, throw an exception |
1109 | | * in failure cases. |
1110 | | */ |
1111 | | CV_EXPORTS Net readNetFromONNX(const char* buffer, size_t sizeBuffer); |
1112 | | |
1113 | | /** @brief Reads a network model from <a href="https://onnx.ai/">ONNX</a> |
1114 | | * in-memory buffer. |
1115 | | * @param buffer in-memory buffer that stores the ONNX model bytes. |
1116 | | * @returns Network object that ready to do forward, throw an exception |
1117 | | * in failure cases. |
1118 | | */ |
1119 | | CV_EXPORTS_W Net readNetFromONNX(const std::vector<uchar>& buffer); |
1120 | | |
1121 | | /** @brief Creates blob from .pb file. |
1122 | | * @param path to the .pb file with input tensor. |
1123 | | * @returns Mat. |
1124 | | */ |
1125 | | CV_EXPORTS_W Mat readTensorFromONNX(const String& path); |
1126 | | |
1127 | | /** @brief Creates 4-dimensional blob from image. Optionally resizes and crops @p image from center, |
1128 | | * subtract @p mean values, scales values by @p scalefactor, swap Blue and Red channels. |
1129 | | * @param image input image (with 1-, 3- or 4-channels). |
1130 | | * @param scalefactor multiplier for @p images values. |
1131 | | * @param size spatial size for output image |
1132 | | * @param mean scalar with mean values which are subtracted from channels. Values are intended |
1133 | | * to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true. |
1134 | | * @param swapRB flag which indicates that swap first and last channels |
1135 | | * in 3-channel image is necessary. |
1136 | | * @param crop flag which indicates whether image will be cropped after resize or not |
1137 | | * @param ddepth Depth of output blob. Choose CV_32F or CV_8U. |
1138 | | * @details if @p crop is true, input image is resized so one side after resize is equal to corresponding |
1139 | | * dimension in @p size and another one is equal or larger. Then, crop from the center is performed. |
1140 | | * If @p crop is false, direct resize without cropping and preserving aspect ratio is performed. |
1141 | | * @returns 4-dimensional Mat with NCHW dimensions order. |
1142 | | * |
1143 | | * @note |
1144 | | * The order and usage of `scalefactor` and `mean` are (input - mean) * scalefactor. |
1145 | | */ |
1146 | | CV_EXPORTS_W Mat blobFromImage(InputArray image, double scalefactor=1.0, const Size& size = Size(), |
1147 | | const Scalar& mean = Scalar(), bool swapRB=false, bool crop=false, |
1148 | | int ddepth=CV_32F); |
1149 | | |
1150 | | /** @brief Creates 4-dimensional blob from image. |
1151 | | * @details This is an overloaded member function, provided for convenience. |
1152 | | * It differs from the above function only in what argument(s) it accepts. |
1153 | | */ |
1154 | | CV_EXPORTS void blobFromImage(InputArray image, OutputArray blob, double scalefactor=1.0, |
1155 | | const Size& size = Size(), const Scalar& mean = Scalar(), |
1156 | | bool swapRB=false, bool crop=false, int ddepth=CV_32F); |
1157 | | |
1158 | | |
1159 | | /** @brief Creates 4-dimensional blob from series of images. Optionally resizes and |
1160 | | * crops @p images from center, subtract @p mean values, scales values by @p scalefactor, |
1161 | | * swap Blue and Red channels. |
1162 | | * @param images input images (all with 1-, 3- or 4-channels). |
1163 | | * @param size spatial size for output image |
1164 | | * @param mean scalar with mean values which are subtracted from channels. Values are intended |
1165 | | * to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true. |
1166 | | * @param scalefactor multiplier for @p images values. |
1167 | | * @param swapRB flag which indicates that swap first and last channels |
1168 | | * in 3-channel image is necessary. |
1169 | | * @param crop flag which indicates whether image will be cropped after resize or not |
1170 | | * @param ddepth Depth of output blob. Choose CV_32F or CV_8U. |
1171 | | * @details if @p crop is true, input image is resized so one side after resize is equal to corresponding |
1172 | | * dimension in @p size and another one is equal or larger. Then, crop from the center is performed. |
1173 | | * If @p crop is false, direct resize without cropping and preserving aspect ratio is performed. |
1174 | | * @returns 4-dimensional Mat with NCHW dimensions order. |
1175 | | * |
1176 | | * @note |
1177 | | * The order and usage of `scalefactor` and `mean` are (input - mean) * scalefactor. |
1178 | | */ |
1179 | | CV_EXPORTS_W Mat blobFromImages(InputArrayOfArrays images, double scalefactor=1.0, |
1180 | | Size size = Size(), const Scalar& mean = Scalar(), bool swapRB=false, bool crop=false, |
1181 | | int ddepth=CV_32F); |
1182 | | |
1183 | | /** @brief Creates 4-dimensional blob from series of images. |
1184 | | * @details This is an overloaded member function, provided for convenience. |
1185 | | * It differs from the above function only in what argument(s) it accepts. |
1186 | | */ |
1187 | | CV_EXPORTS void blobFromImages(InputArrayOfArrays images, OutputArray blob, |
1188 | | double scalefactor=1.0, Size size = Size(), |
1189 | | const Scalar& mean = Scalar(), bool swapRB=false, bool crop=false, |
1190 | | int ddepth=CV_32F); |
1191 | | |
1192 | | /** |
1193 | | * @brief Enum of image processing mode. |
1194 | | * To facilitate the specialization pre-processing requirements of the dnn model. |
1195 | | * For example, the `letter box` often used in the Yolo series of models. |
1196 | | * @see Image2BlobParams |
1197 | | */ |
1198 | | enum ImagePaddingMode |
1199 | | { |
1200 | | DNN_PMODE_NULL = 0, // !< Default. Resize to required input size without extra processing. |
1201 | | DNN_PMODE_CROP_CENTER = 1, // !< Image will be cropped after resize. |
1202 | | DNN_PMODE_LETTERBOX = 2, // !< Resize image to the desired size while preserving the aspect ratio of original image. |
1203 | | }; |
1204 | | |
1205 | | /** @brief Processing params of image to blob. |
1206 | | * |
1207 | | * It includes all possible image processing operations and corresponding parameters. |
1208 | | * |
1209 | | * @see blobFromImageWithParams |
1210 | | * |
1211 | | * @note |
1212 | | * The order and usage of `scalefactor` and `mean` are (input - mean) * scalefactor. |
1213 | | * The order and usage of `scalefactor`, `size`, `mean`, `swapRB`, and `ddepth` are consistent |
1214 | | * with the function of @ref blobFromImage. |
1215 | | */ |
1216 | | struct CV_EXPORTS_W_SIMPLE Image2BlobParams |
1217 | | { |
1218 | | CV_WRAP Image2BlobParams(); |
1219 | | CV_WRAP Image2BlobParams(const Scalar& scalefactor, const Size& size = Size(), const Scalar& mean = Scalar(), |
1220 | | bool swapRB = false, int ddepth = CV_32F, DataLayout datalayout = DNN_LAYOUT_NCHW, |
1221 | | ImagePaddingMode mode = DNN_PMODE_NULL); |
1222 | | |
1223 | | CV_PROP_RW Scalar scalefactor; //!< scalefactor multiplier for input image values. |
1224 | | CV_PROP_RW Size size; //!< Spatial size for output image. |
1225 | | CV_PROP_RW Scalar mean; //!< Scalar with mean values which are subtracted from channels. |
1226 | | CV_PROP_RW bool swapRB; //!< Flag which indicates that swap first and last channels |
1227 | | CV_PROP_RW int ddepth; //!< Depth of output blob. Choose CV_32F or CV_8U. |
1228 | | CV_PROP_RW DataLayout datalayout; //!< Order of output dimensions. Choose DNN_LAYOUT_NCHW or DNN_LAYOUT_NHWC. |
1229 | | CV_PROP_RW ImagePaddingMode paddingmode; //!< Image padding mode. @see ImagePaddingMode. |
1230 | | }; |
1231 | | |
1232 | | /** @brief Creates 4-dimensional blob from image with given params. |
1233 | | * |
1234 | | * @details This function is an extension of @ref blobFromImage to meet more image preprocess needs. |
1235 | | * Given input image and preprocessing parameters, and function outputs the blob. |
1236 | | * |
1237 | | * @param image input image (all with 1-, 3- or 4-channels). |
1238 | | * @param param struct of Image2BlobParams, contains all parameters needed by processing of image to blob. |
1239 | | * @return 4-dimensional Mat. |
1240 | | */ |
1241 | | CV_EXPORTS_W Mat blobFromImageWithParams(InputArray image, const Image2BlobParams& param = Image2BlobParams()); |
1242 | | |
1243 | | /** @overload */ |
1244 | | CV_EXPORTS_W void blobFromImageWithParams(InputArray image, OutputArray blob, const Image2BlobParams& param = Image2BlobParams()); |
1245 | | |
1246 | | /** @brief Creates 4-dimensional blob from series of images with given params. |
1247 | | * |
1248 | | * @details This function is an extension of @ref blobFromImages to meet more image preprocess needs. |
1249 | | * Given input image and preprocessing parameters, and function outputs the blob. |
1250 | | * |
1251 | | * @param images input image (all with 1-, 3- or 4-channels). |
1252 | | * @param param struct of Image2BlobParams, contains all parameters needed by processing of image to blob. |
1253 | | * @returns 4-dimensional Mat. |
1254 | | */ |
1255 | | CV_EXPORTS_W Mat blobFromImagesWithParams(InputArrayOfArrays images, const Image2BlobParams& param = Image2BlobParams()); |
1256 | | |
1257 | | /** @overload */ |
1258 | | CV_EXPORTS_W void blobFromImagesWithParams(InputArrayOfArrays images, OutputArray blob, const Image2BlobParams& param = Image2BlobParams()); |
1259 | | |
1260 | | /** @brief Parse a 4D blob and output the images it contains as 2D arrays through a simpler data structure |
1261 | | * (std::vector<cv::Mat>). |
1262 | | * @param[in] blob_ 4 dimensional array (images, channels, height, width) in floating point precision (CV_32F) from |
1263 | | * which you would like to extract the images. |
1264 | | * @param[out] images_ array of 2D Mat containing the images extracted from the blob in floating point precision |
1265 | | * (CV_32F). They are non normalized neither mean added. The number of returned images equals the first dimension |
1266 | | * of the blob (batch size). Every image has a number of channels equals to the second dimension of the blob (depth). |
1267 | | */ |
1268 | | CV_EXPORTS_W void imagesFromBlob(const cv::Mat& blob_, OutputArrayOfArrays images_); |
1269 | | |
1270 | | /** @brief Convert all weights of Caffe network to half precision floating point. |
1271 | | * @param src Path to origin model from Caffe framework contains single |
1272 | | * precision floating point weights (usually has `.caffemodel` extension). |
1273 | | * @param dst Path to destination model with updated weights. |
1274 | | * @param layersTypes Set of layers types which parameters will be converted. |
1275 | | * By default, converts only Convolutional and Fully-Connected layers' |
1276 | | * weights. |
1277 | | * |
1278 | | * @note Shrinked model has no origin float32 weights so it can't be used |
1279 | | * in origin Caffe framework anymore. However the structure of data |
1280 | | * is taken from NVidia's Caffe fork: https://github.com/NVIDIA/caffe. |
1281 | | * So the resulting model may be used there. |
1282 | | */ |
1283 | | CV_EXPORTS_W void shrinkCaffeModel(const String& src, const String& dst, |
1284 | | const std::vector<String>& layersTypes = std::vector<String>()); |
1285 | | |
1286 | | /** @brief Create a text representation for a binary network stored in protocol buffer format. |
1287 | | * @param[in] model A path to binary network. |
1288 | | * @param[in] output A path to output text file to be created. |
1289 | | * |
1290 | | * @note To reduce output file size, trained weights are not included. |
1291 | | */ |
1292 | | CV_EXPORTS_W void writeTextGraph(const String& model, const String& output); |
1293 | | |
1294 | | /** @brief Performs non maximum suppression given boxes and corresponding scores. |
1295 | | |
1296 | | * @param bboxes a set of bounding boxes to apply NMS. |
1297 | | * @param scores a set of corresponding confidences. |
1298 | | * @param score_threshold a threshold used to filter boxes by score. |
1299 | | * @param nms_threshold a threshold used in non maximum suppression. |
1300 | | * @param indices the kept indices of bboxes after NMS. |
1301 | | * @param eta a coefficient in adaptive threshold formula: \f$nms\_threshold_{i+1}=eta\cdot nms\_threshold_i\f$. |
1302 | | * @param top_k if `>0`, keep at most @p top_k picked indices. |
1303 | | */ |
1304 | | CV_EXPORTS void NMSBoxes(const std::vector<Rect>& bboxes, const std::vector<float>& scores, |
1305 | | const float score_threshold, const float nms_threshold, |
1306 | | CV_OUT std::vector<int>& indices, |
1307 | | const float eta = 1.f, const int top_k = 0); |
1308 | | |
1309 | | CV_EXPORTS_W void NMSBoxes(const std::vector<Rect2d>& bboxes, const std::vector<float>& scores, |
1310 | | const float score_threshold, const float nms_threshold, |
1311 | | CV_OUT std::vector<int>& indices, |
1312 | | const float eta = 1.f, const int top_k = 0); |
1313 | | |
1314 | | CV_EXPORTS_AS(NMSBoxesRotated) void NMSBoxes(const std::vector<RotatedRect>& bboxes, const std::vector<float>& scores, |
1315 | | const float score_threshold, const float nms_threshold, |
1316 | | CV_OUT std::vector<int>& indices, |
1317 | | const float eta = 1.f, const int top_k = 0); |
1318 | | |
1319 | | /** @brief Performs batched non maximum suppression on given boxes and corresponding scores across different classes. |
1320 | | |
1321 | | * @param bboxes a set of bounding boxes to apply NMS. |
1322 | | * @param scores a set of corresponding confidences. |
1323 | | * @param class_ids a set of corresponding class ids. Ids are integer and usually start from 0. |
1324 | | * @param score_threshold a threshold used to filter boxes by score. |
1325 | | * @param nms_threshold a threshold used in non maximum suppression. |
1326 | | * @param indices the kept indices of bboxes after NMS. |
1327 | | * @param eta a coefficient in adaptive threshold formula: \f$nms\_threshold_{i+1}=eta\cdot nms\_threshold_i\f$. |
1328 | | * @param top_k if `>0`, keep at most @p top_k picked indices. |
1329 | | */ |
1330 | | CV_EXPORTS void NMSBoxesBatched(const std::vector<Rect>& bboxes, const std::vector<float>& scores, const std::vector<int>& class_ids, |
1331 | | const float score_threshold, const float nms_threshold, |
1332 | | CV_OUT std::vector<int>& indices, |
1333 | | const float eta = 1.f, const int top_k = 0); |
1334 | | |
1335 | | CV_EXPORTS_W void NMSBoxesBatched(const std::vector<Rect2d>& bboxes, const std::vector<float>& scores, const std::vector<int>& class_ids, |
1336 | | const float score_threshold, const float nms_threshold, |
1337 | | CV_OUT std::vector<int>& indices, |
1338 | | const float eta = 1.f, const int top_k = 0); |
1339 | | |
1340 | | /** |
1341 | | * @brief Enum of Soft NMS methods. |
1342 | | * @see softNMSBoxes |
1343 | | */ |
1344 | | enum class SoftNMSMethod |
1345 | | { |
1346 | | SOFTNMS_LINEAR = 1, |
1347 | | SOFTNMS_GAUSSIAN = 2 |
1348 | | }; |
1349 | | |
1350 | | /** @brief Performs soft non maximum suppression given boxes and corresponding scores. |
1351 | | * Reference: https://arxiv.org/abs/1704.04503 |
1352 | | * @param bboxes a set of bounding boxes to apply Soft NMS. |
1353 | | * @param scores a set of corresponding confidences. |
1354 | | * @param updated_scores a set of corresponding updated confidences. |
1355 | | * @param score_threshold a threshold used to filter boxes by score. |
1356 | | * @param nms_threshold a threshold used in non maximum suppression. |
1357 | | * @param indices the kept indices of bboxes after NMS. |
1358 | | * @param top_k keep at most @p top_k picked indices. |
1359 | | * @param sigma parameter of Gaussian weighting. |
1360 | | * @param method Gaussian or linear. |
1361 | | * @see SoftNMSMethod |
1362 | | */ |
1363 | | CV_EXPORTS_W void softNMSBoxes(const std::vector<Rect>& bboxes, |
1364 | | const std::vector<float>& scores, |
1365 | | CV_OUT std::vector<float>& updated_scores, |
1366 | | const float score_threshold, |
1367 | | const float nms_threshold, |
1368 | | CV_OUT std::vector<int>& indices, |
1369 | | size_t top_k = 0, |
1370 | | const float sigma = 0.5, |
1371 | | SoftNMSMethod method = SoftNMSMethod::SOFTNMS_GAUSSIAN); |
1372 | | |
1373 | | |
1374 | | /** @brief This class is presented high-level API for neural networks. |
1375 | | * |
1376 | | * Model allows to set params for preprocessing input image. |
1377 | | * Model creates net from file with trained weights and config, |
1378 | | * sets preprocessing input and runs forward pass. |
1379 | | */ |
1380 | | class CV_EXPORTS_W_SIMPLE Model |
1381 | | { |
1382 | | public: |
1383 | | CV_DEPRECATED_EXTERNAL // avoid using in C++ code, will be moved to "protected" (need to fix bindings first) |
1384 | | Model(); |
1385 | | |
1386 | | Model(const Model&) = default; |
1387 | | Model(Model&&) = default; |
1388 | | Model& operator=(const Model&) = default; |
1389 | | Model& operator=(Model&&) = default; |
1390 | | |
1391 | | /** |
1392 | | * @brief Create model from deep learning network represented in one of the supported formats. |
1393 | | * An order of @p model and @p config arguments does not matter. |
1394 | | * @param[in] model Binary file contains trained weights. |
1395 | | * @param[in] config Text file contains network configuration. |
1396 | | */ |
1397 | | CV_WRAP Model(const String& model, const String& config = ""); |
1398 | | |
1399 | | /** |
1400 | | * @brief Create model from deep learning network. |
1401 | | * @param[in] network Net object. |
1402 | | */ |
1403 | | CV_WRAP Model(const Net& network); |
1404 | | |
1405 | | /** @brief Set input size for frame. |
1406 | | * @param[in] size New input size. |
1407 | | * @note If shape of the new blob less than 0, then frame size not change. |
1408 | | */ |
1409 | | CV_WRAP Model& setInputSize(const Size& size); |
1410 | | |
1411 | | /** @overload |
1412 | | * @param[in] width New input width. |
1413 | | * @param[in] height New input height. |
1414 | | */ |
1415 | | CV_WRAP inline |
1416 | 0 | Model& setInputSize(int width, int height) { return setInputSize(Size(width, height)); } |
1417 | | |
1418 | | /** @brief Set mean value for frame. |
1419 | | * @param[in] mean Scalar with mean values which are subtracted from channels. |
1420 | | */ |
1421 | | CV_WRAP Model& setInputMean(const Scalar& mean); |
1422 | | |
1423 | | /** @brief Set scalefactor value for frame. |
1424 | | * @param[in] scale Multiplier for frame values. |
1425 | | */ |
1426 | | CV_WRAP Model& setInputScale(const Scalar& scale); |
1427 | | |
1428 | | /** @brief Set flag crop for frame. |
1429 | | * @param[in] crop Flag which indicates whether image will be cropped after resize or not. |
1430 | | */ |
1431 | | CV_WRAP Model& setInputCrop(bool crop); |
1432 | | |
1433 | | /** @brief Set flag swapRB for frame. |
1434 | | * @param[in] swapRB Flag which indicates that swap first and last channels. |
1435 | | */ |
1436 | | CV_WRAP Model& setInputSwapRB(bool swapRB); |
1437 | | |
1438 | | /** @brief Set preprocessing parameters for frame. |
1439 | | * @param[in] size New input size. |
1440 | | * @param[in] mean Scalar with mean values which are subtracted from channels. |
1441 | | * @param[in] scale Multiplier for frame values. |
1442 | | * @param[in] swapRB Flag which indicates that swap first and last channels. |
1443 | | * @param[in] crop Flag which indicates whether image will be cropped after resize or not. |
1444 | | * blob(n, c, y, x) = scale * resize( frame(y, x, c) ) - mean(c) ) |
1445 | | */ |
1446 | | CV_WRAP void setInputParams(double scale = 1.0, const Size& size = Size(), |
1447 | | const Scalar& mean = Scalar(), bool swapRB = false, bool crop = false); |
1448 | | |
1449 | | /** @brief Given the @p input frame, create input blob, run net and return the output @p blobs. |
1450 | | * @param[in] frame The input image. |
1451 | | * @param[out] outs Allocated output blobs, which will store results of the computation. |
1452 | | */ |
1453 | | CV_WRAP void predict(InputArray frame, OutputArrayOfArrays outs) const; |
1454 | | |
1455 | | |
1456 | | // ============================== Net proxy methods ============================== |
1457 | | // Never expose methods with network implementation details, like: |
1458 | | // - addLayer, addLayerToPrev, connect, setInputsNames, setInputShape, setParam, getParam |
1459 | | // - getLayer*, getUnconnectedOutLayers, getUnconnectedOutLayersNames, getLayersShapes |
1460 | | // - forward* methods, setInput |
1461 | | |
1462 | | /// @sa Net::setPreferableBackend |
1463 | | CV_WRAP Model& setPreferableBackend(dnn::Backend backendId); |
1464 | | /// @sa Net::setPreferableTarget |
1465 | | CV_WRAP Model& setPreferableTarget(dnn::Target targetId); |
1466 | | |
1467 | | CV_DEPRECATED_EXTERNAL |
1468 | 0 | operator Net&() const { return getNetwork_(); } |
1469 | | |
1470 | | //protected: - internal/tests usage only |
1471 | | Net& getNetwork_() const; |
1472 | 0 | inline Net& getNetwork_() { return const_cast<const Model*>(this)->getNetwork_(); } |
1473 | | |
1474 | | struct Impl; |
1475 | 0 | inline Impl* getImpl() const { return impl.get(); } |
1476 | 0 | inline Impl& getImplRef() const { CV_DbgAssert(impl); return *impl.get(); } |
1477 | | protected: |
1478 | | Ptr<Impl> impl; |
1479 | | }; |
1480 | | |
1481 | | /** @brief This class represents high-level API for classification models. |
1482 | | * |
1483 | | * ClassificationModel allows to set params for preprocessing input image. |
1484 | | * ClassificationModel creates net from file with trained weights and config, |
1485 | | * sets preprocessing input, runs forward pass and return top-1 prediction. |
1486 | | */ |
1487 | | class CV_EXPORTS_W_SIMPLE ClassificationModel : public Model |
1488 | | { |
1489 | | public: |
1490 | | CV_DEPRECATED_EXTERNAL // avoid using in C++ code, will be moved to "protected" (need to fix bindings first) |
1491 | | ClassificationModel(); |
1492 | | |
1493 | | /** |
1494 | | * @brief Create classification model from network represented in one of the supported formats. |
1495 | | * An order of @p model and @p config arguments does not matter. |
1496 | | * @param[in] model Binary file contains trained weights. |
1497 | | * @param[in] config Text file contains network configuration. |
1498 | | */ |
1499 | | CV_WRAP ClassificationModel(const String& model, const String& config = ""); |
1500 | | |
1501 | | /** |
1502 | | * @brief Create model from deep learning network. |
1503 | | * @param[in] network Net object. |
1504 | | */ |
1505 | | CV_WRAP ClassificationModel(const Net& network); |
1506 | | |
1507 | | /** |
1508 | | * @brief Set enable/disable softmax post processing option. |
1509 | | * |
1510 | | * If this option is true, softmax is applied after forward inference within the classify() function |
1511 | | * to convert the confidences range to [0.0-1.0]. |
1512 | | * This function allows you to toggle this behavior. |
1513 | | * Please turn true when not contain softmax layer in model. |
1514 | | * @param[in] enable Set enable softmax post processing within the classify() function. |
1515 | | */ |
1516 | | CV_WRAP ClassificationModel& setEnableSoftmaxPostProcessing(bool enable); |
1517 | | |
1518 | | /** |
1519 | | * @brief Get enable/disable softmax post processing option. |
1520 | | * |
1521 | | * This option defaults to false, softmax post processing is not applied within the classify() function. |
1522 | | */ |
1523 | | CV_WRAP bool getEnableSoftmaxPostProcessing() const; |
1524 | | |
1525 | | /** @brief Given the @p input frame, create input blob, run net and return top-1 prediction. |
1526 | | * @param[in] frame The input image. |
1527 | | */ |
1528 | | std::pair<int, float> classify(InputArray frame); |
1529 | | |
1530 | | /** @overload */ |
1531 | | CV_WRAP void classify(InputArray frame, CV_OUT int& classId, CV_OUT float& conf); |
1532 | | }; |
1533 | | |
1534 | | /** @brief This class represents high-level API for keypoints models |
1535 | | * |
1536 | | * KeypointsModel allows to set params for preprocessing input image. |
1537 | | * KeypointsModel creates net from file with trained weights and config, |
1538 | | * sets preprocessing input, runs forward pass and returns the x and y coordinates of each detected keypoint |
1539 | | */ |
1540 | | class CV_EXPORTS_W_SIMPLE KeypointsModel: public Model |
1541 | | { |
1542 | | public: |
1543 | | /** |
1544 | | * @brief Create keypoints model from network represented in one of the supported formats. |
1545 | | * An order of @p model and @p config arguments does not matter. |
1546 | | * @param[in] model Binary file contains trained weights. |
1547 | | * @param[in] config Text file contains network configuration. |
1548 | | */ |
1549 | | CV_WRAP KeypointsModel(const String& model, const String& config = ""); |
1550 | | |
1551 | | /** |
1552 | | * @brief Create model from deep learning network. |
1553 | | * @param[in] network Net object. |
1554 | | */ |
1555 | | CV_WRAP KeypointsModel(const Net& network); |
1556 | | |
1557 | | /** @brief Given the @p input frame, create input blob, run net |
1558 | | * @param[in] frame The input image. |
1559 | | * @param thresh minimum confidence threshold to select a keypoint |
1560 | | * @returns a vector holding the x and y coordinates of each detected keypoint |
1561 | | * |
1562 | | */ |
1563 | | CV_WRAP std::vector<Point2f> estimate(InputArray frame, float thresh=0.5); |
1564 | | }; |
1565 | | |
1566 | | /** @brief This class represents high-level API for segmentation models |
1567 | | * |
1568 | | * SegmentationModel allows to set params for preprocessing input image. |
1569 | | * SegmentationModel creates net from file with trained weights and config, |
1570 | | * sets preprocessing input, runs forward pass and returns the class prediction for each pixel. |
1571 | | */ |
1572 | | class CV_EXPORTS_W_SIMPLE SegmentationModel: public Model |
1573 | | { |
1574 | | public: |
1575 | | /** |
1576 | | * @brief Create segmentation model from network represented in one of the supported formats. |
1577 | | * An order of @p model and @p config arguments does not matter. |
1578 | | * @param[in] model Binary file contains trained weights. |
1579 | | * @param[in] config Text file contains network configuration. |
1580 | | */ |
1581 | | CV_WRAP SegmentationModel(const String& model, const String& config = ""); |
1582 | | |
1583 | | /** |
1584 | | * @brief Create model from deep learning network. |
1585 | | * @param[in] network Net object. |
1586 | | */ |
1587 | | CV_WRAP SegmentationModel(const Net& network); |
1588 | | |
1589 | | /** @brief Given the @p input frame, create input blob, run net |
1590 | | * @param[in] frame The input image. |
1591 | | * @param[out] mask Allocated class prediction for each pixel |
1592 | | */ |
1593 | | CV_WRAP void segment(InputArray frame, OutputArray mask); |
1594 | | }; |
1595 | | |
1596 | | /** @brief This class represents high-level API for object detection networks. |
1597 | | * |
1598 | | * DetectionModel allows to set params for preprocessing input image. |
1599 | | * DetectionModel creates net from file with trained weights and config, |
1600 | | * sets preprocessing input, runs forward pass and return result detections. |
1601 | | * For DetectionModel SSD, Faster R-CNN, YOLO topologies are supported. |
1602 | | */ |
1603 | | class CV_EXPORTS_W_SIMPLE DetectionModel : public Model |
1604 | | { |
1605 | | public: |
1606 | | /** |
1607 | | * @brief Create detection model from network represented in one of the supported formats. |
1608 | | * An order of @p model and @p config arguments does not matter. |
1609 | | * @param[in] model Binary file contains trained weights. |
1610 | | * @param[in] config Text file contains network configuration. |
1611 | | */ |
1612 | | CV_WRAP DetectionModel(const String& model, const String& config = ""); |
1613 | | |
1614 | | /** |
1615 | | * @brief Create model from deep learning network. |
1616 | | * @param[in] network Net object. |
1617 | | */ |
1618 | | CV_WRAP DetectionModel(const Net& network); |
1619 | | |
1620 | | CV_DEPRECATED_EXTERNAL // avoid using in C++ code (need to fix bindings first) |
1621 | | DetectionModel(); |
1622 | | |
1623 | | /** |
1624 | | * @brief nmsAcrossClasses defaults to false, |
1625 | | * such that when non max suppression is used during the detect() function, it will do so per-class. |
1626 | | * This function allows you to toggle this behaviour. |
1627 | | * @param[in] value The new value for nmsAcrossClasses |
1628 | | */ |
1629 | | CV_WRAP DetectionModel& setNmsAcrossClasses(bool value); |
1630 | | |
1631 | | /** |
1632 | | * @brief Getter for nmsAcrossClasses. This variable defaults to false, |
1633 | | * such that when non max suppression is used during the detect() function, it will do so only per-class |
1634 | | */ |
1635 | | CV_WRAP bool getNmsAcrossClasses(); |
1636 | | |
1637 | | /** @brief Given the @p input frame, create input blob, run net and return result detections. |
1638 | | * @param[in] frame The input image. |
1639 | | * @param[out] classIds Class indexes in result detection. |
1640 | | * @param[out] confidences A set of corresponding confidences. |
1641 | | * @param[out] boxes A set of bounding boxes. |
1642 | | * @param[in] confThreshold A threshold used to filter boxes by confidences. |
1643 | | * @param[in] nmsThreshold A threshold used in non maximum suppression. |
1644 | | */ |
1645 | | CV_WRAP void detect(InputArray frame, CV_OUT std::vector<int>& classIds, |
1646 | | CV_OUT std::vector<float>& confidences, CV_OUT std::vector<Rect>& boxes, |
1647 | | float confThreshold = 0.5f, float nmsThreshold = 0.0f); |
1648 | | }; |
1649 | | |
1650 | | |
1651 | | /** @brief This class represents high-level API for text recognition networks. |
1652 | | * |
1653 | | * TextRecognitionModel allows to set params for preprocessing input image. |
1654 | | * TextRecognitionModel creates net from file with trained weights and config, |
1655 | | * sets preprocessing input, runs forward pass and return recognition result. |
1656 | | * For TextRecognitionModel, CRNN-CTC is supported. |
1657 | | */ |
1658 | | class CV_EXPORTS_W_SIMPLE TextRecognitionModel : public Model |
1659 | | { |
1660 | | public: |
1661 | | CV_DEPRECATED_EXTERNAL // avoid using in C++ code, will be moved to "protected" (need to fix bindings first) |
1662 | | TextRecognitionModel(); |
1663 | | |
1664 | | /** |
1665 | | * @brief Create Text Recognition model from deep learning network |
1666 | | * Call setDecodeType() and setVocabulary() after constructor to initialize the decoding method |
1667 | | * @param[in] network Net object |
1668 | | */ |
1669 | | CV_WRAP TextRecognitionModel(const Net& network); |
1670 | | |
1671 | | /** |
1672 | | * @brief Create text recognition model from network represented in one of the supported formats |
1673 | | * Call setDecodeType() and setVocabulary() after constructor to initialize the decoding method |
1674 | | * @param[in] model Binary file contains trained weights |
1675 | | * @param[in] config Text file contains network configuration |
1676 | | */ |
1677 | | CV_WRAP inline |
1678 | | TextRecognitionModel(const std::string& model, const std::string& config = "") |
1679 | 0 | : TextRecognitionModel(readNet(model, config)) { /* nothing */ } |
1680 | | |
1681 | | /** |
1682 | | * @brief Set the decoding method of translating the network output into string |
1683 | | * @param[in] decodeType The decoding method of translating the network output into string, currently supported type: |
1684 | | * - `"CTC-greedy"` greedy decoding for the output of CTC-based methods |
1685 | | * - `"CTC-prefix-beam-search"` Prefix beam search decoding for the output of CTC-based methods |
1686 | | */ |
1687 | | CV_WRAP |
1688 | | TextRecognitionModel& setDecodeType(const std::string& decodeType); |
1689 | | |
1690 | | /** |
1691 | | * @brief Get the decoding method |
1692 | | * @return the decoding method |
1693 | | */ |
1694 | | CV_WRAP |
1695 | | const std::string& getDecodeType() const; |
1696 | | |
1697 | | /** |
1698 | | * @brief Set the decoding method options for `"CTC-prefix-beam-search"` decode usage |
1699 | | * @param[in] beamSize Beam size for search |
1700 | | * @param[in] vocPruneSize Parameter to optimize big vocabulary search, |
1701 | | * only take top @p vocPruneSize tokens in each search step, @p vocPruneSize <= 0 stands for disable this prune. |
1702 | | */ |
1703 | | CV_WRAP |
1704 | | TextRecognitionModel& setDecodeOptsCTCPrefixBeamSearch(int beamSize, int vocPruneSize = 0); |
1705 | | |
1706 | | /** |
1707 | | * @brief Set the vocabulary for recognition. |
1708 | | * @param[in] vocabulary the associated vocabulary of the network. |
1709 | | */ |
1710 | | CV_WRAP |
1711 | | TextRecognitionModel& setVocabulary(const std::vector<std::string>& vocabulary); |
1712 | | |
1713 | | /** |
1714 | | * @brief Get the vocabulary for recognition. |
1715 | | * @return vocabulary the associated vocabulary |
1716 | | */ |
1717 | | CV_WRAP |
1718 | | const std::vector<std::string>& getVocabulary() const; |
1719 | | |
1720 | | /** |
1721 | | * @brief Given the @p input frame, create input blob, run net and return recognition result |
1722 | | * @param[in] frame The input image |
1723 | | * @return The text recognition result |
1724 | | */ |
1725 | | CV_WRAP |
1726 | | std::string recognize(InputArray frame) const; |
1727 | | |
1728 | | /** |
1729 | | * @brief Given the @p input frame, create input blob, run net and return recognition result |
1730 | | * @param[in] frame The input image |
1731 | | * @param[in] roiRects List of text detection regions of interest (cv::Rect, CV_32SC4). ROIs is be cropped as the network inputs |
1732 | | * @param[out] results A set of text recognition results. |
1733 | | */ |
1734 | | CV_WRAP |
1735 | | void recognize(InputArray frame, InputArrayOfArrays roiRects, CV_OUT std::vector<std::string>& results) const; |
1736 | | }; |
1737 | | |
1738 | | |
1739 | | /** @brief Base class for text detection networks |
1740 | | */ |
1741 | | class CV_EXPORTS_W_SIMPLE TextDetectionModel : public Model |
1742 | | { |
1743 | | protected: |
1744 | | CV_DEPRECATED_EXTERNAL // avoid using in C++ code, will be moved to "protected" (need to fix bindings first) |
1745 | | TextDetectionModel(); |
1746 | | |
1747 | | public: |
1748 | | |
1749 | | /** @brief Performs detection |
1750 | | * |
1751 | | * Given the input @p frame, prepare network input, run network inference, post-process network output and return result detections. |
1752 | | * |
1753 | | * Each result is quadrangle's 4 points in this order: |
1754 | | * - bottom-left |
1755 | | * - top-left |
1756 | | * - top-right |
1757 | | * - bottom-right |
1758 | | * |
1759 | | * Use cv::getPerspectiveTransform function to retrieve image region without perspective transformations. |
1760 | | * |
1761 | | * @note If DL model doesn't support that kind of output then result may be derived from detectTextRectangles() output. |
1762 | | * |
1763 | | * @param[in] frame The input image |
1764 | | * @param[out] detections array with detections' quadrangles (4 points per result) |
1765 | | * @param[out] confidences array with detection confidences |
1766 | | */ |
1767 | | CV_WRAP |
1768 | | void detect( |
1769 | | InputArray frame, |
1770 | | CV_OUT std::vector< std::vector<Point> >& detections, |
1771 | | CV_OUT std::vector<float>& confidences |
1772 | | ) const; |
1773 | | |
1774 | | /** @overload */ |
1775 | | CV_WRAP |
1776 | | void detect( |
1777 | | InputArray frame, |
1778 | | CV_OUT std::vector< std::vector<Point> >& detections |
1779 | | ) const; |
1780 | | |
1781 | | /** @brief Performs detection |
1782 | | * |
1783 | | * Given the input @p frame, prepare network input, run network inference, post-process network output and return result detections. |
1784 | | * |
1785 | | * Each result is rotated rectangle. |
1786 | | * |
1787 | | * @note Result may be inaccurate in case of strong perspective transformations. |
1788 | | * |
1789 | | * @param[in] frame the input image |
1790 | | * @param[out] detections array with detections' RotationRect results |
1791 | | * @param[out] confidences array with detection confidences |
1792 | | */ |
1793 | | CV_WRAP |
1794 | | void detectTextRectangles( |
1795 | | InputArray frame, |
1796 | | CV_OUT std::vector<cv::RotatedRect>& detections, |
1797 | | CV_OUT std::vector<float>& confidences |
1798 | | ) const; |
1799 | | |
1800 | | /** @overload */ |
1801 | | CV_WRAP |
1802 | | void detectTextRectangles( |
1803 | | InputArray frame, |
1804 | | CV_OUT std::vector<cv::RotatedRect>& detections |
1805 | | ) const; |
1806 | | }; |
1807 | | |
1808 | | /** @brief This class represents high-level API for text detection DL networks compatible with EAST model. |
1809 | | * |
1810 | | * Configurable parameters: |
1811 | | * - (float) confThreshold - used to filter boxes by confidences, default: 0.5f |
1812 | | * - (float) nmsThreshold - used in non maximum suppression, default: 0.0f |
1813 | | */ |
1814 | | class CV_EXPORTS_W_SIMPLE TextDetectionModel_EAST : public TextDetectionModel |
1815 | | { |
1816 | | public: |
1817 | | CV_DEPRECATED_EXTERNAL // avoid using in C++ code, will be moved to "protected" (need to fix bindings first) |
1818 | | TextDetectionModel_EAST(); |
1819 | | |
1820 | | /** |
1821 | | * @brief Create text detection algorithm from deep learning network |
1822 | | * @param[in] network Net object |
1823 | | */ |
1824 | | CV_WRAP TextDetectionModel_EAST(const Net& network); |
1825 | | |
1826 | | /** |
1827 | | * @brief Create text detection model from network represented in one of the supported formats. |
1828 | | * An order of @p model and @p config arguments does not matter. |
1829 | | * @param[in] model Binary file contains trained weights. |
1830 | | * @param[in] config Text file contains network configuration. |
1831 | | */ |
1832 | | CV_WRAP inline |
1833 | | TextDetectionModel_EAST(const std::string& model, const std::string& config = "") |
1834 | 0 | : TextDetectionModel_EAST(readNet(model, config)) { /* nothing */ } |
1835 | | |
1836 | | /** |
1837 | | * @brief Set the detection confidence threshold |
1838 | | * @param[in] confThreshold A threshold used to filter boxes by confidences |
1839 | | */ |
1840 | | CV_WRAP |
1841 | | TextDetectionModel_EAST& setConfidenceThreshold(float confThreshold); |
1842 | | |
1843 | | /** |
1844 | | * @brief Get the detection confidence threshold |
1845 | | */ |
1846 | | CV_WRAP |
1847 | | float getConfidenceThreshold() const; |
1848 | | |
1849 | | /** |
1850 | | * @brief Set the detection NMS filter threshold |
1851 | | * @param[in] nmsThreshold A threshold used in non maximum suppression |
1852 | | */ |
1853 | | CV_WRAP |
1854 | | TextDetectionModel_EAST& setNMSThreshold(float nmsThreshold); |
1855 | | |
1856 | | /** |
1857 | | * @brief Get the detection confidence threshold |
1858 | | */ |
1859 | | CV_WRAP |
1860 | | float getNMSThreshold() const; |
1861 | | }; |
1862 | | |
1863 | | /** @brief This class represents high-level API for text detection DL networks compatible with DB model. |
1864 | | * |
1865 | | * Related publications: @cite liao2020real |
1866 | | * Paper: https://arxiv.org/abs/1911.08947 |
1867 | | * For more information about the hyper-parameters setting, please refer to https://github.com/MhLiao/DB |
1868 | | * |
1869 | | * Configurable parameters: |
1870 | | * - (float) binaryThreshold - The threshold of the binary map. It is usually set to 0.3. |
1871 | | * - (float) polygonThreshold - The threshold of text polygons. It is usually set to 0.5, 0.6, and 0.7. Default is 0.5f |
1872 | | * - (double) unclipRatio - The unclip ratio of the detected text region, which determines the output size. It is usually set to 2.0. |
1873 | | * - (int) maxCandidates - The max number of the output results. |
1874 | | */ |
1875 | | class CV_EXPORTS_W_SIMPLE TextDetectionModel_DB : public TextDetectionModel |
1876 | | { |
1877 | | public: |
1878 | | CV_DEPRECATED_EXTERNAL // avoid using in C++ code, will be moved to "protected" (need to fix bindings first) |
1879 | | TextDetectionModel_DB(); |
1880 | | |
1881 | | /** |
1882 | | * @brief Create text detection algorithm from deep learning network. |
1883 | | * @param[in] network Net object. |
1884 | | */ |
1885 | | CV_WRAP TextDetectionModel_DB(const Net& network); |
1886 | | |
1887 | | /** |
1888 | | * @brief Create text detection model from network represented in one of the supported formats. |
1889 | | * An order of @p model and @p config arguments does not matter. |
1890 | | * @param[in] model Binary file contains trained weights. |
1891 | | * @param[in] config Text file contains network configuration. |
1892 | | */ |
1893 | | CV_WRAP inline |
1894 | | TextDetectionModel_DB(const std::string& model, const std::string& config = "") |
1895 | 0 | : TextDetectionModel_DB(readNet(model, config)) { /* nothing */ } |
1896 | | |
1897 | | CV_WRAP TextDetectionModel_DB& setBinaryThreshold(float binaryThreshold); |
1898 | | CV_WRAP float getBinaryThreshold() const; |
1899 | | |
1900 | | CV_WRAP TextDetectionModel_DB& setPolygonThreshold(float polygonThreshold); |
1901 | | CV_WRAP float getPolygonThreshold() const; |
1902 | | |
1903 | | CV_WRAP TextDetectionModel_DB& setUnclipRatio(double unclipRatio); |
1904 | | CV_WRAP double getUnclipRatio() const; |
1905 | | |
1906 | | CV_WRAP TextDetectionModel_DB& setMaxCandidates(int maxCandidates); |
1907 | | CV_WRAP int getMaxCandidates() const; |
1908 | | }; |
1909 | | |
1910 | | //! @} |
1911 | | CV__DNN_INLINE_NS_END |
1912 | | } |
1913 | | } |
1914 | | |
1915 | | #include <opencv2/dnn/layer.hpp> |
1916 | | #include <opencv2/dnn/dnn.inl.hpp> |
1917 | | |
1918 | | /// @deprecated Include this header directly from application. Automatic inclusion will be removed |
1919 | | #include <opencv2/dnn/utils/inference_engine.hpp> |
1920 | | |
1921 | | #endif /* OPENCV_DNN_DNN_HPP */ |