Coverage Report

Created: 2023-06-07 08:11

/work/install-coverage/include/opencv4/opencv2/flann.hpp
Line
Count
Source (jump to first uncovered line)
1
/*M///////////////////////////////////////////////////////////////////////////////////////
2
//
3
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4
//
5
//  By downloading, copying, installing or using the software you agree to this license.
6
//  If you do not agree to this license, do not download, install,
7
//  copy or use the software.
8
//
9
//
10
//                           License Agreement
11
//                For Open Source Computer Vision Library
12
//
13
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15
// Third party copyrights are property of their respective owners.
16
//
17
// Redistribution and use in source and binary forms, with or without modification,
18
// are permitted provided that the following conditions are met:
19
//
20
//   * Redistribution's of source code must retain the above copyright notice,
21
//     this list of conditions and the following disclaimer.
22
//
23
//   * Redistribution's in binary form must reproduce the above copyright notice,
24
//     this list of conditions and the following disclaimer in the documentation
25
//     and/or other materials provided with the distribution.
26
//
27
//   * The name of the copyright holders may not be used to endorse or promote products
28
//     derived from this software without specific prior written permission.
29
//
30
// This software is provided by the copyright holders and contributors "as is" and
31
// any express or implied warranties, including, but not limited to, the implied
32
// warranties of merchantability and fitness for a particular purpose are disclaimed.
33
// In no event shall the Intel Corporation or contributors be liable for any direct,
34
// indirect, incidental, special, exemplary, or consequential damages
35
// (including, but not limited to, procurement of substitute goods or services;
36
// loss of use, data, or profits; or business interruption) however caused
37
// and on any theory of liability, whether in contract, strict liability,
38
// or tort (including negligence or otherwise) arising in any way out of
39
// the use of this software, even if advised of the possibility of such damage.
40
//
41
//M*/
42
43
#ifndef OPENCV_FLANN_HPP
44
#define OPENCV_FLANN_HPP
45
46
#include "opencv2/core.hpp"
47
#include "opencv2/flann/miniflann.hpp"
48
#include "opencv2/flann/flann_base.hpp"
49
50
/**
51
@defgroup flann Clustering and Search in Multi-Dimensional Spaces
52
53
This section documents OpenCV's interface to the FLANN library. FLANN (Fast Library for Approximate
54
Nearest Neighbors) is a library that contains a collection of algorithms optimized for fast nearest
55
neighbor search in large datasets and for high dimensional features. More information about FLANN
56
can be found in @cite Muja2009 .
57
*/
58
59
namespace cvflann
60
{
61
    CV_EXPORTS flann_distance_t flann_distance_type();
62
    CV_DEPRECATED CV_EXPORTS void set_distance_type(flann_distance_t distance_type, int order);
63
}
64
65
66
namespace cv
67
{
68
namespace flann
69
{
70
71
72
//! @addtogroup flann
73
//! @{
74
75
template <typename T> struct CvType {};
76
0
template <> struct CvType<unsigned char> { static int type() { return CV_8U; } };
77
0
template <> struct CvType<char> { static int type() { return CV_8S; } };
78
0
template <> struct CvType<unsigned short> { static int type() { return CV_16U; } };
79
0
template <> struct CvType<short> { static int type() { return CV_16S; } };
80
0
template <> struct CvType<int> { static int type() { return CV_32S; } };
81
0
template <> struct CvType<float> { static int type() { return CV_32F; } };
82
0
template <> struct CvType<double> { static int type() { return CV_64F; } };
83
84
85
// bring the flann parameters into this namespace
86
using ::cvflann::get_param;
87
using ::cvflann::print_params;
88
89
// bring the flann distances into this namespace
90
using ::cvflann::L2_Simple;
91
using ::cvflann::L2;
92
using ::cvflann::L1;
93
using ::cvflann::MinkowskiDistance;
94
using ::cvflann::MaxDistance;
95
using ::cvflann::HammingLUT;
96
using ::cvflann::Hamming;
97
using ::cvflann::Hamming2;
98
using ::cvflann::DNAmmingLUT;
99
using ::cvflann::DNAmming2;
100
using ::cvflann::HistIntersectionDistance;
101
using ::cvflann::HellingerDistance;
102
using ::cvflann::ChiSquareDistance;
103
using ::cvflann::KL_Divergence;
104
105
106
/** @brief The FLANN nearest neighbor index class. This class is templated with the type of elements for which
107
the index is built.
108
109
`Distance` functor specifies the metric to be used to calculate the distance between two points.
110
There are several `Distance` functors that are readily available:
111
112
cv::cvflann::L2_Simple - Squared Euclidean distance functor.
113
This is the simpler, unrolled version. This is preferable for very low dimensionality data (eg 3D points)
114
115
cv::flann::L2 - Squared Euclidean distance functor, optimized version.
116
117
cv::flann::L1 - Manhattan distance functor, optimized version.
118
119
cv::flann::MinkowskiDistance -  The Minkowski distance functor.
120
This is highly optimised with loop unrolling.
121
The computation of squared root at the end is omitted for efficiency.
122
123
cv::flann::MaxDistance - The max distance functor. It computes the
124
maximum distance between two vectors. This distance is not a valid kdtree distance, it's not
125
dimensionwise additive.
126
127
cv::flann::HammingLUT -  %Hamming distance functor. It counts the bit
128
differences between two strings using a lookup table implementation.
129
130
cv::flann::Hamming - %Hamming distance functor. Population count is
131
performed using library calls, if available. Lookup table implementation is used as a fallback.
132
133
cv::flann::Hamming2 - %Hamming distance functor. Population count is
134
implemented in 12 arithmetic operations (one of which is multiplication).
135
136
cv::flann::DNAmmingLUT -  %Adaptation of the Hamming distance functor to DNA comparison.
137
As the four bases A, C, G, T of the DNA (or A, G, C, U for RNA) can be coded on 2 bits,
138
it counts the bits pairs differences between two sequences using a lookup table implementation.
139
140
cv::flann::DNAmming2 - %Adaptation of the Hamming distance functor to DNA comparison.
141
Bases differences count are vectorised thanks to arithmetic operations using standard
142
registers (AVX2 and AVX-512 should come in a near future).
143
144
cv::flann::HistIntersectionDistance - The histogram
145
intersection distance functor.
146
147
cv::flann::HellingerDistance - The Hellinger distance functor.
148
149
cv::flann::ChiSquareDistance - The chi-square distance functor.
150
151
cv::flann::KL_Divergence - The Kullback-Leibler divergence functor.
152
153
Although the provided implementations cover a vast range of cases, it is also possible to use
154
a custom implementation. The distance functor is a class whose `operator()` computes the distance
155
between two features. If the distance is also a kd-tree compatible distance, it should also provide an
156
`accum_dist()` method that computes the distance between individual feature dimensions.
157
158
In addition to `operator()` and `accum_dist()`, a distance functor should also define the
159
`ElementType` and the `ResultType` as the types of the elements it operates on and the type of the
160
result it computes. If a distance functor can be used as a kd-tree distance (meaning that the full
161
distance between a pair of features can be accumulated from the partial distances between the
162
individual dimensions) a typedef `is_kdtree_distance` should be present inside the distance functor.
163
If the distance is not a kd-tree distance, but it's a distance in a vector space (the individual
164
dimensions of the elements it operates on can be accessed independently) a typedef
165
`is_vector_space_distance` should be defined inside the functor. If neither typedef is defined, the
166
distance is assumed to be a metric distance and will only be used with indexes operating on
167
generic metric distances.
168
 */
169
template <typename Distance>
170
class GenericIndex
171
{
172
public:
173
        typedef typename Distance::ElementType ElementType;
174
        typedef typename Distance::ResultType DistanceType;
175
176
        /** @brief Constructs a nearest neighbor search index for a given dataset.
177
178
        @param features Matrix of containing the features(points) to index. The size of the matrix is
179
        num_features x feature_dimensionality and the data type of the elements in the matrix must
180
        coincide with the type of the index.
181
        @param params Structure containing the index parameters. The type of index that will be
182
        constructed depends on the type of this parameter. See the description.
183
        @param distance
184
185
        The method constructs a fast search structure from a set of features using the specified algorithm
186
        with specified parameters, as defined by params. params is a reference to one of the following class
187
        IndexParams descendants:
188
189
        - **LinearIndexParams** When passing an object of this type, the index will perform a linear,
190
        brute-force search. :
191
        @code
192
        struct LinearIndexParams : public IndexParams
193
        {
194
        };
195
        @endcode
196
        - **KDTreeIndexParams** When passing an object of this type the index constructed will consist of
197
        a set of randomized kd-trees which will be searched in parallel. :
198
        @code
199
        struct KDTreeIndexParams : public IndexParams
200
        {
201
            KDTreeIndexParams( int trees = 4 );
202
        };
203
        @endcode
204
        - **HierarchicalClusteringIndexParams** When passing an object of this type the index constructed
205
        will be a hierarchical tree of clusters, dividing each set of points into n clusters whose centers
206
        are picked among the points without further refinement of their position.
207
        This algorithm fits both floating, integer and binary vectors. :
208
        @code
209
        struct HierarchicalClusteringIndexParams : public IndexParams
210
        {
211
            HierarchicalClusteringIndexParams(
212
                int branching = 32,
213
                flann_centers_init_t centers_init = CENTERS_RANDOM,
214
                int trees = 4,
215
                int leaf_size = 100);
216
217
        };
218
        @endcode
219
        - **KMeansIndexParams** When passing an object of this type the index constructed will be a
220
        hierarchical k-means tree (one tree by default), dividing each set of points into n clusters
221
        whose barycenters are refined iteratively.
222
        Note that this algorithm has been extended to the support of binary vectors as an alternative
223
        to LSH when knn search speed is the criterium. It will also outperform LSH when processing
224
        directly (i.e. without the use of MCA/PCA) datasets whose points share mostly the same values
225
        for most of the dimensions. It is recommended to set more than one tree with binary data. :
226
        @code
227
        struct KMeansIndexParams : public IndexParams
228
        {
229
            KMeansIndexParams(
230
                int branching = 32,
231
                int iterations = 11,
232
                flann_centers_init_t centers_init = CENTERS_RANDOM,
233
                float cb_index = 0.2,
234
                int trees = 1);
235
        };
236
        @endcode
237
        - **CompositeIndexParams** When using a parameters object of this type the index created
238
        combines the randomized kd-trees and the hierarchical k-means tree. :
239
        @code
240
        struct CompositeIndexParams : public IndexParams
241
        {
242
            CompositeIndexParams(
243
                int trees = 4,
244
                int branching = 32,
245
                int iterations = 11,
246
                flann_centers_init_t centers_init = CENTERS_RANDOM,
247
                float cb_index = 0.2 );
248
        };
249
        @endcode
250
        - **LshIndexParams** When using a parameters object of this type the index created uses
251
        multi-probe LSH (by Multi-Probe LSH: Efficient Indexing for High-Dimensional Similarity Search
252
        by Qin Lv, William Josephson, Zhe Wang, Moses Charikar, Kai Li., Proceedings of the 33rd
253
        International Conference on Very Large Data Bases (VLDB). Vienna, Austria. September 2007).
254
        This algorithm is designed for binary vectors. :
255
        @code
256
        struct LshIndexParams : public IndexParams
257
        {
258
            LshIndexParams(
259
                int table_number,
260
                int key_size,
261
                int multi_probe_level );
262
        };
263
        @endcode
264
        - **AutotunedIndexParams** When passing an object of this type the index created is
265
        automatically tuned to offer the best performance, by choosing the optimal index type
266
        (randomized kd-trees, hierarchical kmeans, linear) and parameters for the dataset provided. :
267
        @code
268
        struct AutotunedIndexParams : public IndexParams
269
        {
270
            AutotunedIndexParams(
271
                float target_precision = 0.9,
272
                float build_weight = 0.01,
273
                float memory_weight = 0,
274
                float sample_fraction = 0.1 );
275
        };
276
        @endcode
277
        - **SavedIndexParams** This object type is used for loading a previously saved index from the
278
        disk. :
279
        @code
280
        struct SavedIndexParams : public IndexParams
281
        {
282
            SavedIndexParams( String filename );
283
        };
284
        @endcode
285
         */
286
        GenericIndex(const Mat& features, const ::cvflann::IndexParams& params, Distance distance = Distance());
287
288
        ~GenericIndex();
289
290
        /** @brief Performs a K-nearest neighbor search for a given query point using the index.
291
292
        @param query The query point
293
        @param indices Vector that will contain the indices of the K-nearest neighbors found. It must have
294
        at least knn size.
295
        @param dists Vector that will contain the distances to the K-nearest neighbors found. It must have
296
        at least knn size.
297
        @param knn Number of nearest neighbors to search for.
298
        @param params SearchParams
299
         */
300
        void knnSearch(const std::vector<ElementType>& query, std::vector<int>& indices,
301
                       std::vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& params);
302
        void knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& params);
303
304
        /** @brief Performs a radius nearest neighbor search for a given query point using the index.
305
306
        @param query The query point.
307
        @param indices Vector that will contain the indices of the nearest neighbors found.
308
        @param dists Vector that will contain the distances to the nearest neighbors found. It has the same
309
        number of elements as indices.
310
        @param radius The search radius.
311
        @param params SearchParams
312
313
        This function returns the number of nearest neighbors found.
314
        */
315
        int radiusSearch(const std::vector<ElementType>& query, std::vector<int>& indices,
316
                         std::vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& params);
317
        int radiusSearch(const Mat& query, Mat& indices, Mat& dists,
318
                         DistanceType radius, const ::cvflann::SearchParams& params);
319
320
        void save(String filename) { nnIndex->save(filename); }
321
322
        int veclen() const { return nnIndex->veclen(); }
323
324
        int size() const { return (int)nnIndex->size(); }
325
326
        ::cvflann::IndexParams getParameters() { return nnIndex->getParameters(); }
327
328
        CV_DEPRECATED const ::cvflann::IndexParams* getIndexParameters() { return nnIndex->getIndexParameters(); }
329
330
private:
331
        ::cvflann::Index<Distance>* nnIndex;
332
        Mat _dataset;
333
};
334
335
//! @cond IGNORED
336
337
#define FLANN_DISTANCE_CHECK \
338
    if ( ::cvflann::flann_distance_type() != cvflann::FLANN_DIST_L2) { \
339
        printf("[WARNING] You are using cv::flann::Index (or cv::flann::GenericIndex) and have also changed "\
340
        "the distance using cvflann::set_distance_type. This is no longer working as expected "\
341
        "(cv::flann::Index always uses L2). You should create the index templated on the distance, "\
342
        "for example for L1 distance use: GenericIndex< L1<float> > \n"); \
343
    }
344
345
346
template <typename Distance>
347
GenericIndex<Distance>::GenericIndex(const Mat& dataset, const ::cvflann::IndexParams& params, Distance distance)
348
: _dataset(dataset)
349
{
350
    CV_Assert(dataset.type() == CvType<ElementType>::type());
351
    CV_Assert(dataset.isContinuous());
352
    ::cvflann::Matrix<ElementType> m_dataset((ElementType*)_dataset.ptr<ElementType>(0), _dataset.rows, _dataset.cols);
353
354
    nnIndex = new ::cvflann::Index<Distance>(m_dataset, params, distance);
355
356
    FLANN_DISTANCE_CHECK
357
358
    nnIndex->buildIndex();
359
}
360
361
template <typename Distance>
362
GenericIndex<Distance>::~GenericIndex()
363
{
364
    delete nnIndex;
365
}
366
367
template <typename Distance>
368
void GenericIndex<Distance>::knnSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& searchParams)
369
{
370
    ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size());
371
    ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size());
372
    ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size());
373
374
    FLANN_DISTANCE_CHECK
375
376
    nnIndex->knnSearch(m_query,m_indices,m_dists,knn,searchParams);
377
}
378
379
380
template <typename Distance>
381
void GenericIndex<Distance>::knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& searchParams)
382
{
383
    CV_Assert(queries.type() == CvType<ElementType>::type());
384
    CV_Assert(queries.isContinuous());
385
    ::cvflann::Matrix<ElementType> m_queries((ElementType*)queries.ptr<ElementType>(0), queries.rows, queries.cols);
386
387
    CV_Assert(indices.type() == CV_32S);
388
    CV_Assert(indices.isContinuous());
389
    ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols);
390
391
    CV_Assert(dists.type() == CvType<DistanceType>::type());
392
    CV_Assert(dists.isContinuous());
393
    ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols);
394
395
    FLANN_DISTANCE_CHECK
396
397
    nnIndex->knnSearch(m_queries,m_indices,m_dists,knn, searchParams);
398
}
399
400
template <typename Distance>
401
int GenericIndex<Distance>::radiusSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams)
402
{
403
    ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size());
404
    ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size());
405
    ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size());
406
407
    FLANN_DISTANCE_CHECK
408
409
    return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
410
}
411
412
template <typename Distance>
413
int GenericIndex<Distance>::radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams)
414
{
415
    CV_Assert(query.type() == CvType<ElementType>::type());
416
    CV_Assert(query.isContinuous());
417
    ::cvflann::Matrix<ElementType> m_query((ElementType*)query.ptr<ElementType>(0), query.rows, query.cols);
418
419
    CV_Assert(indices.type() == CV_32S);
420
    CV_Assert(indices.isContinuous());
421
    ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols);
422
423
    CV_Assert(dists.type() == CvType<DistanceType>::type());
424
    CV_Assert(dists.isContinuous());
425
    ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols);
426
427
    FLANN_DISTANCE_CHECK
428
429
    return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
430
}
431
432
/**
433
 * @deprecated Use GenericIndex class instead
434
 */
435
template <typename T>
436
class Index_
437
{
438
public:
439
    typedef typename L2<T>::ElementType ElementType;
440
    typedef typename L2<T>::ResultType DistanceType;
441
442
    CV_DEPRECATED Index_(const Mat& dataset, const ::cvflann::IndexParams& params)
443
    {
444
        printf("[WARNING] The cv::flann::Index_<T> class is deperecated, use cv::flann::GenericIndex<Distance> instead\n");
445
446
        CV_Assert(dataset.type() == CvType<ElementType>::type());
447
        CV_Assert(dataset.isContinuous());
448
        ::cvflann::Matrix<ElementType> m_dataset((ElementType*)dataset.ptr<ElementType>(0), dataset.rows, dataset.cols);
449
450
        if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L2 ) {
451
            nnIndex_L1 = NULL;
452
            nnIndex_L2 = new ::cvflann::Index< L2<ElementType> >(m_dataset, params);
453
        }
454
        else if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L1 ) {
455
            nnIndex_L1 = new ::cvflann::Index< L1<ElementType> >(m_dataset, params);
456
            nnIndex_L2 = NULL;
457
        }
458
        else {
459
            printf("[ERROR] cv::flann::Index_<T> only provides backwards compatibility for the L1 and L2 distances. "
460
                   "For other distance types you must use cv::flann::GenericIndex<Distance>\n");
461
            CV_Assert(0);
462
        }
463
        if (nnIndex_L1) nnIndex_L1->buildIndex();
464
        if (nnIndex_L2) nnIndex_L2->buildIndex();
465
    }
466
    CV_DEPRECATED ~Index_()
467
    {
468
        if (nnIndex_L1) delete nnIndex_L1;
469
        if (nnIndex_L2) delete nnIndex_L2;
470
    }
471
472
    CV_DEPRECATED void knnSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& searchParams)
473
    {
474
        ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size());
475
        ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size());
476
        ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size());
477
478
        if (nnIndex_L1) nnIndex_L1->knnSearch(m_query,m_indices,m_dists,knn,searchParams);
479
        if (nnIndex_L2) nnIndex_L2->knnSearch(m_query,m_indices,m_dists,knn,searchParams);
480
    }
481
    CV_DEPRECATED void knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& searchParams)
482
    {
483
        CV_Assert(queries.type() == CvType<ElementType>::type());
484
        CV_Assert(queries.isContinuous());
485
        ::cvflann::Matrix<ElementType> m_queries((ElementType*)queries.ptr<ElementType>(0), queries.rows, queries.cols);
486
487
        CV_Assert(indices.type() == CV_32S);
488
        CV_Assert(indices.isContinuous());
489
        ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols);
490
491
        CV_Assert(dists.type() == CvType<DistanceType>::type());
492
        CV_Assert(dists.isContinuous());
493
        ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols);
494
495
        if (nnIndex_L1) nnIndex_L1->knnSearch(m_queries,m_indices,m_dists,knn, searchParams);
496
        if (nnIndex_L2) nnIndex_L2->knnSearch(m_queries,m_indices,m_dists,knn, searchParams);
497
    }
498
499
    CV_DEPRECATED int radiusSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams)
500
    {
501
        ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size());
502
        ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size());
503
        ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size());
504
505
        if (nnIndex_L1) return nnIndex_L1->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
506
        if (nnIndex_L2) return nnIndex_L2->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
507
    }
508
509
    CV_DEPRECATED int radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams)
510
    {
511
        CV_Assert(query.type() == CvType<ElementType>::type());
512
        CV_Assert(query.isContinuous());
513
        ::cvflann::Matrix<ElementType> m_query((ElementType*)query.ptr<ElementType>(0), query.rows, query.cols);
514
515
        CV_Assert(indices.type() == CV_32S);
516
        CV_Assert(indices.isContinuous());
517
        ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols);
518
519
        CV_Assert(dists.type() == CvType<DistanceType>::type());
520
        CV_Assert(dists.isContinuous());
521
        ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols);
522
523
        if (nnIndex_L1) return nnIndex_L1->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
524
        if (nnIndex_L2) return nnIndex_L2->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
525
    }
526
527
    CV_DEPRECATED void save(String filename)
528
    {
529
        if (nnIndex_L1) nnIndex_L1->save(filename);
530
        if (nnIndex_L2) nnIndex_L2->save(filename);
531
    }
532
533
    CV_DEPRECATED int veclen() const
534
    {
535
        if (nnIndex_L1) return nnIndex_L1->veclen();
536
        if (nnIndex_L2) return nnIndex_L2->veclen();
537
    }
538
539
    CV_DEPRECATED int size() const
540
    {
541
        if (nnIndex_L1) return nnIndex_L1->size();
542
        if (nnIndex_L2) return nnIndex_L2->size();
543
    }
544
545
    CV_DEPRECATED ::cvflann::IndexParams getParameters()
546
    {
547
        if (nnIndex_L1) return nnIndex_L1->getParameters();
548
        if (nnIndex_L2) return nnIndex_L2->getParameters();
549
550
    }
551
552
    CV_DEPRECATED const ::cvflann::IndexParams* getIndexParameters()
553
    {
554
        if (nnIndex_L1) return nnIndex_L1->getIndexParameters();
555
        if (nnIndex_L2) return nnIndex_L2->getIndexParameters();
556
    }
557
558
private:
559
    // providing backwards compatibility for L2 and L1 distances (most common)
560
    ::cvflann::Index< L2<ElementType> >* nnIndex_L2;
561
    ::cvflann::Index< L1<ElementType> >* nnIndex_L1;
562
};
563
564
//! @endcond
565
566
/** @brief Clusters features using hierarchical k-means algorithm.
567
568
@param features The points to be clustered. The matrix must have elements of type
569
Distance::ElementType.
570
@param centers The centers of the clusters obtained. The matrix must have type
571
Distance::CentersType. The number of rows in this matrix represents the number of clusters desired,
572
however, because of the way the cut in the hierarchical tree is chosen, the number of clusters
573
computed will be the highest number of the form (branching-1)\*k+1 that's lower than the number of
574
clusters desired, where branching is the tree's branching factor (see description of the
575
KMeansIndexParams).
576
@param params Parameters used in the construction of the hierarchical k-means tree.
577
@param d Distance to be used for clustering.
578
579
The method clusters the given feature vectors by constructing a hierarchical k-means tree and
580
choosing a cut in the tree that minimizes the cluster's variance. It returns the number of clusters
581
found.
582
 */
583
template <typename Distance>
584
int hierarchicalClustering(const Mat& features, Mat& centers, const ::cvflann::KMeansIndexParams& params,
585
                           Distance d = Distance())
586
{
587
    typedef typename Distance::ElementType ElementType;
588
    typedef typename Distance::CentersType CentersType;
589
590
    CV_Assert(features.type() == CvType<ElementType>::type());
591
    CV_Assert(features.isContinuous());
592
    ::cvflann::Matrix<ElementType> m_features((ElementType*)features.ptr<ElementType>(0), features.rows, features.cols);
593
594
    CV_Assert(centers.type() == CvType<CentersType>::type());
595
    CV_Assert(centers.isContinuous());
596
    ::cvflann::Matrix<CentersType> m_centers((CentersType*)centers.ptr<CentersType>(0), centers.rows, centers.cols);
597
598
    return ::cvflann::hierarchicalClustering<Distance>(m_features, m_centers, params, d);
599
}
600
601
//! @cond IGNORED
602
603
template <typename ELEM_TYPE, typename DIST_TYPE>
604
CV_DEPRECATED int hierarchicalClustering(const Mat& features, Mat& centers, const ::cvflann::KMeansIndexParams& params)
605
{
606
    printf("[WARNING] cv::flann::hierarchicalClustering<ELEM_TYPE,DIST_TYPE> is deprecated, use "
607
        "cv::flann::hierarchicalClustering<Distance> instead\n");
608
609
    if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L2 ) {
610
        return hierarchicalClustering< L2<ELEM_TYPE> >(features, centers, params);
611
    }
612
    else if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L1 ) {
613
        return hierarchicalClustering< L1<ELEM_TYPE> >(features, centers, params);
614
    }
615
    else {
616
        printf("[ERROR] cv::flann::hierarchicalClustering<ELEM_TYPE,DIST_TYPE> only provides backwards "
617
        "compatibility for the L1 and L2 distances. "
618
        "For other distance types you must use cv::flann::hierarchicalClustering<Distance>\n");
619
        CV_Assert(0);
620
    }
621
}
622
623
//! @endcond
624
625
//! @} flann
626
627
} } // namespace cv::flann
628
629
#endif