Coverage Report

Created: 2023-06-07 08:11

/work/install-coverage/include/opencv4/opencv2/imgproc.hpp
Line
Count
Source (jump to first uncovered line)
1
/*M///////////////////////////////////////////////////////////////////////////////////////
2
//
3
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4
//
5
//  By downloading, copying, installing or using the software you agree to this license.
6
//  If you do not agree to this license, do not download, install,
7
//  copy or use the software.
8
//
9
//
10
//                           License Agreement
11
//                For Open Source Computer Vision Library
12
//
13
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15
// Third party copyrights are property of their respective owners.
16
//
17
// Redistribution and use in source and binary forms, with or without modification,
18
// are permitted provided that the following conditions are met:
19
//
20
//   * Redistribution's of source code must retain the above copyright notice,
21
//     this list of conditions and the following disclaimer.
22
//
23
//   * Redistribution's in binary form must reproduce the above copyright notice,
24
//     this list of conditions and the following disclaimer in the documentation
25
//     and/or other materials provided with the distribution.
26
//
27
//   * The name of the copyright holders may not be used to endorse or promote products
28
//     derived from this software without specific prior written permission.
29
//
30
// This software is provided by the copyright holders and contributors "as is" and
31
// any express or implied warranties, including, but not limited to, the implied
32
// warranties of merchantability and fitness for a particular purpose are disclaimed.
33
// In no event shall the Intel Corporation or contributors be liable for any direct,
34
// indirect, incidental, special, exemplary, or consequential damages
35
// (including, but not limited to, procurement of substitute goods or services;
36
// loss of use, data, or profits; or business interruption) however caused
37
// and on any theory of liability, whether in contract, strict liability,
38
// or tort (including negligence or otherwise) arising in any way out of
39
// the use of this software, even if advised of the possibility of such damage.
40
//
41
//M*/
42
43
#ifndef OPENCV_IMGPROC_HPP
44
#define OPENCV_IMGPROC_HPP
45
46
#include "opencv2/core.hpp"
47
48
/**
49
  @defgroup imgproc Image Processing
50
51
This module includes image-processing functions.
52
53
  @{
54
    @defgroup imgproc_filter Image Filtering
55
56
Functions and classes described in this section are used to perform various linear or non-linear
57
filtering operations on 2D images (represented as Mat's). It means that for each pixel location
58
\f$(x,y)\f$ in the source image (normally, rectangular), its neighborhood is considered and used to
59
compute the response. In case of a linear filter, it is a weighted sum of pixel values. In case of
60
morphological operations, it is the minimum or maximum values, and so on. The computed response is
61
stored in the destination image at the same location \f$(x,y)\f$. It means that the output image
62
will be of the same size as the input image. Normally, the functions support multi-channel arrays,
63
in which case every channel is processed independently. Therefore, the output image will also have
64
the same number of channels as the input one.
65
66
Another common feature of the functions and classes described in this section is that, unlike
67
simple arithmetic functions, they need to extrapolate values of some non-existing pixels. For
68
example, if you want to smooth an image using a Gaussian \f$3 \times 3\f$ filter, then, when
69
processing the left-most pixels in each row, you need pixels to the left of them, that is, outside
70
of the image. You can let these pixels be the same as the left-most image pixels ("replicated
71
border" extrapolation method), or assume that all the non-existing pixels are zeros ("constant
72
border" extrapolation method), and so on. OpenCV enables you to specify the extrapolation method.
73
For details, see #BorderTypes
74
75
@anchor filter_depths
76
### Depth combinations
77
Input depth (src.depth()) | Output depth (ddepth)
78
--------------------------|----------------------
79
CV_8U                     | -1/CV_16S/CV_32F/CV_64F
80
CV_16U/CV_16S             | -1/CV_32F/CV_64F
81
CV_32F                    | -1/CV_32F
82
CV_64F                    | -1/CV_64F
83
84
@note when ddepth=-1, the output image will have the same depth as the source.
85
86
@note if you need double floating-point accuracy and using single floating-point input data
87
(CV_32F input and CV_64F output depth combination), you can use @ref Mat.convertTo to convert
88
the input data to the desired precision.
89
90
    @defgroup imgproc_transform Geometric Image Transformations
91
92
The functions in this section perform various geometrical transformations of 2D images. They do not
93
change the image content but deform the pixel grid and map this deformed grid to the destination
94
image. In fact, to avoid sampling artifacts, the mapping is done in the reverse order, from
95
destination to the source. That is, for each pixel \f$(x, y)\f$ of the destination image, the
96
functions compute coordinates of the corresponding "donor" pixel in the source image and copy the
97
pixel value:
98
99
\f[\texttt{dst} (x,y)= \texttt{src} (f_x(x,y), f_y(x,y))\f]
100
101
In case when you specify the forward mapping \f$\left<g_x, g_y\right>: \texttt{src} \rightarrow
102
\texttt{dst}\f$, the OpenCV functions first compute the corresponding inverse mapping
103
\f$\left<f_x, f_y\right>: \texttt{dst} \rightarrow \texttt{src}\f$ and then use the above formula.
104
105
The actual implementations of the geometrical transformations, from the most generic remap and to
106
the simplest and the fastest resize, need to solve two main problems with the above formula:
107
108
- Extrapolation of non-existing pixels. Similarly to the filtering functions described in the
109
previous section, for some \f$(x,y)\f$, either one of \f$f_x(x,y)\f$, or \f$f_y(x,y)\f$, or both
110
of them may fall outside of the image. In this case, an extrapolation method needs to be used.
111
OpenCV provides the same selection of extrapolation methods as in the filtering functions. In
112
addition, it provides the method #BORDER_TRANSPARENT. This means that the corresponding pixels in
113
the destination image will not be modified at all.
114
115
- Interpolation of pixel values. Usually \f$f_x(x,y)\f$ and \f$f_y(x,y)\f$ are floating-point
116
numbers. This means that \f$\left<f_x, f_y\right>\f$ can be either an affine or perspective
117
transformation, or radial lens distortion correction, and so on. So, a pixel value at fractional
118
coordinates needs to be retrieved. In the simplest case, the coordinates can be just rounded to the
119
nearest integer coordinates and the corresponding pixel can be used. This is called a
120
nearest-neighbor interpolation. However, a better result can be achieved by using more
121
sophisticated [interpolation methods](http://en.wikipedia.org/wiki/Multivariate_interpolation) ,
122
where a polynomial function is fit into some neighborhood of the computed pixel \f$(f_x(x,y),
123
f_y(x,y))\f$, and then the value of the polynomial at \f$(f_x(x,y), f_y(x,y))\f$ is taken as the
124
interpolated pixel value. In OpenCV, you can choose between several interpolation methods. See
125
#resize for details.
126
127
@note The geometrical transformations do not work with `CV_8S` or `CV_32S` images.
128
129
    @defgroup imgproc_misc Miscellaneous Image Transformations
130
    @defgroup imgproc_draw Drawing Functions
131
132
Drawing functions work with matrices/images of arbitrary depth. The boundaries of the shapes can be
133
rendered with antialiasing (implemented only for 8-bit images for now). All the functions include
134
the parameter color that uses an RGB value (that may be constructed with the Scalar constructor )
135
for color images and brightness for grayscale images. For color images, the channel ordering is
136
normally *Blue, Green, Red*. This is what imshow, imread, and imwrite expect. So, if you form a
137
color using the Scalar constructor, it should look like:
138
139
\f[\texttt{Scalar} (blue \_ component, green \_ component, red \_ component[, alpha \_ component])\f]
140
141
If you are using your own image rendering and I/O functions, you can use any channel ordering. The
142
drawing functions process each channel independently and do not depend on the channel order or even
143
on the used color space. The whole image can be converted from BGR to RGB or to a different color
144
space using cvtColor .
145
146
If a drawn figure is partially or completely outside the image, the drawing functions clip it. Also,
147
many drawing functions can handle pixel coordinates specified with sub-pixel accuracy. This means
148
that the coordinates can be passed as fixed-point numbers encoded as integers. The number of
149
fractional bits is specified by the shift parameter and the real point coordinates are calculated as
150
\f$\texttt{Point}(x,y)\rightarrow\texttt{Point2f}(x*2^{-shift},y*2^{-shift})\f$ . This feature is
151
especially effective when rendering antialiased shapes.
152
153
@note The functions do not support alpha-transparency when the target image is 4-channel. In this
154
case, the color[3] is simply copied to the repainted pixels. Thus, if you want to paint
155
semi-transparent shapes, you can paint them in a separate buffer and then blend it with the main
156
image.
157
158
    @defgroup imgproc_color_conversions Color Space Conversions
159
    @defgroup imgproc_colormap ColorMaps in OpenCV
160
161
The human perception isn't built for observing fine changes in grayscale images. Human eyes are more
162
sensitive to observing changes between colors, so you often need to recolor your grayscale images to
163
get a clue about them. OpenCV now comes with various colormaps to enhance the visualization in your
164
computer vision application.
165
166
In OpenCV you only need applyColorMap to apply a colormap on a given image. The following sample
167
code reads the path to an image from command line, applies a Jet colormap on it and shows the
168
result:
169
170
@include snippets/imgproc_applyColorMap.cpp
171
172
@see #ColormapTypes
173
174
    @defgroup imgproc_subdiv2d Planar Subdivision
175
176
The Subdiv2D class described in this section is used to perform various planar subdivision on
177
a set of 2D points (represented as vector of Point2f). OpenCV subdivides a plane into triangles
178
using the Delaunay's algorithm, which corresponds to the dual graph of the Voronoi diagram.
179
In the figure below, the Delaunay's triangulation is marked with black lines and the Voronoi
180
diagram with red lines.
181
182
![Delaunay triangulation (black) and Voronoi (red)](pics/delaunay_voronoi.png)
183
184
The subdivisions can be used for the 3D piece-wise transformation of a plane, morphing, fast
185
location of points on the plane, building special graphs (such as NNG,RNG), and so forth.
186
187
    @defgroup imgproc_hist Histograms
188
    @defgroup imgproc_shape Structural Analysis and Shape Descriptors
189
    @defgroup imgproc_motion Motion Analysis and Object Tracking
190
    @defgroup imgproc_feature Feature Detection
191
    @defgroup imgproc_object Object Detection
192
    @defgroup imgproc_segmentation Image Segmentation
193
    @defgroup imgproc_c C API
194
    @defgroup imgproc_hal Hardware Acceleration Layer
195
    @{
196
        @defgroup imgproc_hal_functions Functions
197
        @defgroup imgproc_hal_interface Interface
198
    @}
199
  @}
200
*/
201
202
namespace cv
203
{
204
205
/** @addtogroup imgproc
206
@{
207
*/
208
209
//! @addtogroup imgproc_filter
210
//! @{
211
212
enum SpecialFilter {
213
    FILTER_SCHARR = -1
214
};
215
216
//! type of morphological operation
217
enum MorphTypes{
218
    MORPH_ERODE    = 0, //!< see #erode
219
    MORPH_DILATE   = 1, //!< see #dilate
220
    MORPH_OPEN     = 2, //!< an opening operation
221
                        //!< \f[\texttt{dst} = \mathrm{open} ( \texttt{src} , \texttt{element} )= \mathrm{dilate} ( \mathrm{erode} ( \texttt{src} , \texttt{element} ))\f]
222
    MORPH_CLOSE    = 3, //!< a closing operation
223
                        //!< \f[\texttt{dst} = \mathrm{close} ( \texttt{src} , \texttt{element} )= \mathrm{erode} ( \mathrm{dilate} ( \texttt{src} , \texttt{element} ))\f]
224
    MORPH_GRADIENT = 4, //!< a morphological gradient
225
                        //!< \f[\texttt{dst} = \mathrm{morph\_grad} ( \texttt{src} , \texttt{element} )= \mathrm{dilate} ( \texttt{src} , \texttt{element} )- \mathrm{erode} ( \texttt{src} , \texttt{element} )\f]
226
    MORPH_TOPHAT   = 5, //!< "top hat"
227
                        //!< \f[\texttt{dst} = \mathrm{tophat} ( \texttt{src} , \texttt{element} )= \texttt{src} - \mathrm{open} ( \texttt{src} , \texttt{element} )\f]
228
    MORPH_BLACKHAT = 6, //!< "black hat"
229
                        //!< \f[\texttt{dst} = \mathrm{blackhat} ( \texttt{src} , \texttt{element} )= \mathrm{close} ( \texttt{src} , \texttt{element} )- \texttt{src}\f]
230
    MORPH_HITMISS  = 7  //!< "hit or miss"
231
                        //!<   .- Only supported for CV_8UC1 binary images. A tutorial can be found in the documentation
232
};
233
234
//! shape of the structuring element
235
enum MorphShapes {
236
    MORPH_RECT    = 0, //!< a rectangular structuring element:  \f[E_{ij}=1\f]
237
    MORPH_CROSS   = 1, //!< a cross-shaped structuring element:
238
                       //!< \f[E_{ij} = \begin{cases} 1 & \texttt{if } {i=\texttt{anchor.y } {or } {j=\texttt{anchor.x}}} \\0 & \texttt{otherwise} \end{cases}\f]
239
    MORPH_ELLIPSE = 2 //!< an elliptic structuring element, that is, a filled ellipse inscribed
240
                      //!< into the rectangle Rect(0, 0, esize.width, 0.esize.height)
241
};
242
243
//! @} imgproc_filter
244
245
//! @addtogroup imgproc_transform
246
//! @{
247
248
//! interpolation algorithm
249
enum InterpolationFlags{
250
    /** nearest neighbor interpolation */
251
    INTER_NEAREST        = 0,
252
    /** bilinear interpolation */
253
    INTER_LINEAR         = 1,
254
    /** bicubic interpolation */
255
    INTER_CUBIC          = 2,
256
    /** resampling using pixel area relation. It may be a preferred method for image decimation, as
257
    it gives moire'-free results. But when the image is zoomed, it is similar to the INTER_NEAREST
258
    method. */
259
    INTER_AREA           = 3,
260
    /** Lanczos interpolation over 8x8 neighborhood */
261
    INTER_LANCZOS4       = 4,
262
    /** Bit exact bilinear interpolation */
263
    INTER_LINEAR_EXACT = 5,
264
    /** Bit exact nearest neighbor interpolation. This will produce same results as
265
    the nearest neighbor method in PIL, scikit-image or Matlab. */
266
    INTER_NEAREST_EXACT  = 6,
267
    /** mask for interpolation codes */
268
    INTER_MAX            = 7,
269
    /** flag, fills all of the destination image pixels. If some of them correspond to outliers in the
270
    source image, they are set to zero */
271
    WARP_FILL_OUTLIERS   = 8,
272
    /** flag, inverse transformation
273
274
    For example, #linearPolar or #logPolar transforms:
275
    - flag is __not__ set: \f$dst( \rho , \phi ) = src(x,y)\f$
276
    - flag is set: \f$dst(x,y) = src( \rho , \phi )\f$
277
    */
278
    WARP_INVERSE_MAP     = 16
279
};
280
281
/** \brief Specify the polar mapping mode
282
@sa warpPolar
283
*/
284
enum WarpPolarMode
285
{
286
    WARP_POLAR_LINEAR = 0, ///< Remaps an image to/from polar space.
287
    WARP_POLAR_LOG = 256   ///< Remaps an image to/from semilog-polar space.
288
};
289
290
enum InterpolationMasks {
291
       INTER_BITS      = 5,
292
       INTER_BITS2     = INTER_BITS * 2,
293
       INTER_TAB_SIZE  = 1 << INTER_BITS,
294
       INTER_TAB_SIZE2 = INTER_TAB_SIZE * INTER_TAB_SIZE
295
     };
296
297
//! @} imgproc_transform
298
299
//! @addtogroup imgproc_misc
300
//! @{
301
302
//! Distance types for Distance Transform and M-estimators
303
//! @see distanceTransform, fitLine
304
enum DistanceTypes {
305
    DIST_USER    = -1,  //!< User defined distance
306
    DIST_L1      = 1,   //!< distance = |x1-x2| + |y1-y2|
307
    DIST_L2      = 2,   //!< the simple euclidean distance
308
    DIST_C       = 3,   //!< distance = max(|x1-x2|,|y1-y2|)
309
    DIST_L12     = 4,   //!< L1-L2 metric: distance = 2(sqrt(1+x*x/2) - 1))
310
    DIST_FAIR    = 5,   //!< distance = c^2(|x|/c-log(1+|x|/c)), c = 1.3998
311
    DIST_WELSCH  = 6,   //!< distance = c^2/2(1-exp(-(x/c)^2)), c = 2.9846
312
    DIST_HUBER   = 7    //!< distance = |x|<c ? x^2/2 : c(|x|-c/2), c=1.345
313
};
314
315
//! Mask size for distance transform
316
enum DistanceTransformMasks {
317
    DIST_MASK_3       = 3, //!< mask=3
318
    DIST_MASK_5       = 5, //!< mask=5
319
    DIST_MASK_PRECISE = 0  //!<
320
};
321
322
//! type of the threshold operation
323
//! ![threshold types](pics/threshold.png)
324
enum ThresholdTypes {
325
    THRESH_BINARY     = 0, //!< \f[\texttt{dst} (x,y) =  \fork{\texttt{maxval}}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{0}{otherwise}\f]
326
    THRESH_BINARY_INV = 1, //!< \f[\texttt{dst} (x,y) =  \fork{0}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{\texttt{maxval}}{otherwise}\f]
327
    THRESH_TRUNC      = 2, //!< \f[\texttt{dst} (x,y) =  \fork{\texttt{threshold}}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{\texttt{src}(x,y)}{otherwise}\f]
328
    THRESH_TOZERO     = 3, //!< \f[\texttt{dst} (x,y) =  \fork{\texttt{src}(x,y)}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{0}{otherwise}\f]
329
    THRESH_TOZERO_INV = 4, //!< \f[\texttt{dst} (x,y) =  \fork{0}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{\texttt{src}(x,y)}{otherwise}\f]
330
    THRESH_MASK       = 7,
331
    THRESH_OTSU       = 8, //!< flag, use Otsu algorithm to choose the optimal threshold value
332
    THRESH_TRIANGLE   = 16 //!< flag, use Triangle algorithm to choose the optimal threshold value
333
};
334
335
//! adaptive threshold algorithm
336
//! @see adaptiveThreshold
337
enum AdaptiveThresholdTypes {
338
    /** the threshold value \f$T(x,y)\f$ is a mean of the \f$\texttt{blockSize} \times
339
    \texttt{blockSize}\f$ neighborhood of \f$(x, y)\f$ minus C */
340
    ADAPTIVE_THRESH_MEAN_C     = 0,
341
    /** the threshold value \f$T(x, y)\f$ is a weighted sum (cross-correlation with a Gaussian
342
    window) of the \f$\texttt{blockSize} \times \texttt{blockSize}\f$ neighborhood of \f$(x, y)\f$
343
    minus C . The default sigma (standard deviation) is used for the specified blockSize . See
344
    #getGaussianKernel*/
345
    ADAPTIVE_THRESH_GAUSSIAN_C = 1
346
};
347
348
//! class of the pixel in GrabCut algorithm
349
enum GrabCutClasses {
350
    GC_BGD    = 0,  //!< an obvious background pixels
351
    GC_FGD    = 1,  //!< an obvious foreground (object) pixel
352
    GC_PR_BGD = 2,  //!< a possible background pixel
353
    GC_PR_FGD = 3   //!< a possible foreground pixel
354
};
355
356
//! GrabCut algorithm flags
357
enum GrabCutModes {
358
    /** The function initializes the state and the mask using the provided rectangle. After that it
359
    runs iterCount iterations of the algorithm. */
360
    GC_INIT_WITH_RECT  = 0,
361
    /** The function initializes the state using the provided mask. Note that GC_INIT_WITH_RECT
362
    and GC_INIT_WITH_MASK can be combined. Then, all the pixels outside of the ROI are
363
    automatically initialized with GC_BGD .*/
364
    GC_INIT_WITH_MASK  = 1,
365
    /** The value means that the algorithm should just resume. */
366
    GC_EVAL            = 2,
367
    /** The value means that the algorithm should just run the grabCut algorithm (a single iteration) with the fixed model */
368
    GC_EVAL_FREEZE_MODEL = 3
369
};
370
371
//! distanceTransform algorithm flags
372
enum DistanceTransformLabelTypes {
373
    /** each connected component of zeros in src (as well as all the non-zero pixels closest to the
374
    connected component) will be assigned the same label */
375
    DIST_LABEL_CCOMP = 0,
376
    /** each zero pixel (and all the non-zero pixels closest to it) gets its own label. */
377
    DIST_LABEL_PIXEL = 1
378
};
379
380
//! floodfill algorithm flags
381
enum FloodFillFlags {
382
    /** If set, the difference between the current pixel and seed pixel is considered. Otherwise,
383
    the difference between neighbor pixels is considered (that is, the range is floating). */
384
    FLOODFILL_FIXED_RANGE = 1 << 16,
385
    /** If set, the function does not change the image ( newVal is ignored), and only fills the
386
    mask with the value specified in bits 8-16 of flags as described above. This option only make
387
    sense in function variants that have the mask parameter. */
388
    FLOODFILL_MASK_ONLY   = 1 << 17
389
};
390
391
//! @} imgproc_misc
392
393
//! @addtogroup imgproc_shape
394
//! @{
395
396
//! connected components statistics
397
enum ConnectedComponentsTypes {
398
    CC_STAT_LEFT   = 0, //!< The leftmost (x) coordinate which is the inclusive start of the bounding
399
                        //!< box in the horizontal direction.
400
    CC_STAT_TOP    = 1, //!< The topmost (y) coordinate which is the inclusive start of the bounding
401
                        //!< box in the vertical direction.
402
    CC_STAT_WIDTH  = 2, //!< The horizontal size of the bounding box
403
    CC_STAT_HEIGHT = 3, //!< The vertical size of the bounding box
404
    CC_STAT_AREA   = 4, //!< The total area (in pixels) of the connected component
405
#ifndef CV_DOXYGEN
406
    CC_STAT_MAX    = 5 //!< Max enumeration value. Used internally only for memory allocation
407
#endif
408
};
409
410
//! connected components algorithm
411
enum ConnectedComponentsAlgorithmsTypes {
412
    CCL_DEFAULT   = -1, //!< Spaghetti @cite Bolelli2019 algorithm for 8-way connectivity, Spaghetti4C @cite Bolelli2021 algorithm for 4-way connectivity.
413
    CCL_WU        = 0,  //!< SAUF @cite Wu2009 algorithm for 8-way connectivity, SAUF algorithm for 4-way connectivity. The parallel implementation described in @cite Bolelli2017 is available for SAUF.
414
    CCL_GRANA     = 1,  //!< BBDT @cite Grana2010 algorithm for 8-way connectivity, SAUF algorithm for 4-way connectivity. The parallel implementation described in @cite Bolelli2017 is available for both BBDT and SAUF.
415
    CCL_BOLELLI   = 2,  //!< Spaghetti @cite Bolelli2019 algorithm for 8-way connectivity, Spaghetti4C @cite Bolelli2021 algorithm for 4-way connectivity. The parallel implementation described in @cite Bolelli2017 is available for both Spaghetti and Spaghetti4C.
416
    CCL_SAUF      = 3,  //!< Same as CCL_WU. It is preferable to use the flag with the name of the algorithm (CCL_SAUF) rather than the one with the name of the first author (CCL_WU).
417
    CCL_BBDT      = 4,  //!< Same as CCL_GRANA. It is preferable to use the flag with the name of the algorithm (CCL_BBDT) rather than the one with the name of the first author (CCL_GRANA).
418
    CCL_SPAGHETTI = 5,  //!< Same as CCL_BOLELLI. It is preferable to use the flag with the name of the algorithm (CCL_SPAGHETTI) rather than the one with the name of the first author (CCL_BOLELLI).
419
};
420
421
//! mode of the contour retrieval algorithm
422
enum RetrievalModes {
423
    /** retrieves only the extreme outer contours. It sets `hierarchy[i][2]=hierarchy[i][3]=-1` for
424
    all the contours. */
425
    RETR_EXTERNAL  = 0,
426
    /** retrieves all of the contours without establishing any hierarchical relationships. */
427
    RETR_LIST      = 1,
428
    /** retrieves all of the contours and organizes them into a two-level hierarchy. At the top
429
    level, there are external boundaries of the components. At the second level, there are
430
    boundaries of the holes. If there is another contour inside a hole of a connected component, it
431
    is still put at the top level. */
432
    RETR_CCOMP     = 2,
433
    /** retrieves all of the contours and reconstructs a full hierarchy of nested contours.*/
434
    RETR_TREE      = 3,
435
    RETR_FLOODFILL = 4 //!<
436
};
437
438
//! the contour approximation algorithm
439
enum ContourApproximationModes {
440
    /** stores absolutely all the contour points. That is, any 2 subsequent points (x1,y1) and
441
    (x2,y2) of the contour will be either horizontal, vertical or diagonal neighbors, that is,
442
    max(abs(x1-x2),abs(y2-y1))==1. */
443
    CHAIN_APPROX_NONE      = 1,
444
    /** compresses horizontal, vertical, and diagonal segments and leaves only their end points.
445
    For example, an up-right rectangular contour is encoded with 4 points. */
446
    CHAIN_APPROX_SIMPLE    = 2,
447
    /** applies one of the flavors of the Teh-Chin chain approximation algorithm @cite TehChin89 */
448
    CHAIN_APPROX_TC89_L1   = 3,
449
    /** applies one of the flavors of the Teh-Chin chain approximation algorithm @cite TehChin89 */
450
    CHAIN_APPROX_TC89_KCOS = 4
451
};
452
453
/** @brief Shape matching methods
454
455
\f$A\f$ denotes object1,\f$B\f$ denotes object2
456
457
\f$\begin{array}{l} m^A_i =  \mathrm{sign} (h^A_i)  \cdot \log{h^A_i} \\ m^B_i =  \mathrm{sign} (h^B_i)  \cdot \log{h^B_i} \end{array}\f$
458
459
and \f$h^A_i, h^B_i\f$ are the Hu moments of \f$A\f$ and \f$B\f$ , respectively.
460
*/
461
enum ShapeMatchModes {
462
    CONTOURS_MATCH_I1  =1, //!< \f[I_1(A,B) =  \sum _{i=1...7}  \left |  \frac{1}{m^A_i} -  \frac{1}{m^B_i} \right |\f]
463
    CONTOURS_MATCH_I2  =2, //!< \f[I_2(A,B) =  \sum _{i=1...7}  \left | m^A_i - m^B_i  \right |\f]
464
    CONTOURS_MATCH_I3  =3  //!< \f[I_3(A,B) =  \max _{i=1...7}  \frac{ \left| m^A_i - m^B_i \right| }{ \left| m^A_i \right| }\f]
465
};
466
467
//! @} imgproc_shape
468
469
//! @addtogroup imgproc_feature
470
//! @{
471
472
//! Variants of a Hough transform
473
enum HoughModes {
474
475
    /** classical or standard Hough transform. Every line is represented by two floating-point
476
    numbers \f$(\rho, \theta)\f$ , where \f$\rho\f$ is a distance between (0,0) point and the line,
477
    and \f$\theta\f$ is the angle between x-axis and the normal to the line. Thus, the matrix must
478
    be (the created sequence will be) of CV_32FC2 type */
479
    HOUGH_STANDARD      = 0,
480
    /** probabilistic Hough transform (more efficient in case if the picture contains a few long
481
    linear segments). It returns line segments rather than the whole line. Each segment is
482
    represented by starting and ending points, and the matrix must be (the created sequence will
483
    be) of the CV_32SC4 type. */
484
    HOUGH_PROBABILISTIC = 1,
485
    /** multi-scale variant of the classical Hough transform. The lines are encoded the same way as
486
    HOUGH_STANDARD. */
487
    HOUGH_MULTI_SCALE   = 2,
488
    HOUGH_GRADIENT      = 3, //!< basically *21HT*, described in @cite Yuen90
489
    HOUGH_GRADIENT_ALT  = 4, //!< variation of HOUGH_GRADIENT to get better accuracy
490
};
491
492
//! Variants of Line Segment %Detector
493
enum LineSegmentDetectorModes {
494
    LSD_REFINE_NONE = 0, //!< No refinement applied
495
    LSD_REFINE_STD  = 1, //!< Standard refinement is applied. E.g. breaking arches into smaller straighter line approximations.
496
    LSD_REFINE_ADV  = 2  //!< Advanced refinement. Number of false alarms is calculated, lines are
497
                         //!< refined through increase of precision, decrement in size, etc.
498
};
499
500
//! @} imgproc_feature
501
502
/** Histogram comparison methods
503
  @ingroup imgproc_hist
504
*/
505
enum HistCompMethods {
506
    /** Correlation
507
    \f[d(H_1,H_2) =  \frac{\sum_I (H_1(I) - \bar{H_1}) (H_2(I) - \bar{H_2})}{\sqrt{\sum_I(H_1(I) - \bar{H_1})^2 \sum_I(H_2(I) - \bar{H_2})^2}}\f]
508
    where
509
    \f[\bar{H_k} =  \frac{1}{N} \sum _J H_k(J)\f]
510
    and \f$N\f$ is a total number of histogram bins. */
511
    HISTCMP_CORREL        = 0,
512
    /** Chi-Square
513
    \f[d(H_1,H_2) =  \sum _I  \frac{\left(H_1(I)-H_2(I)\right)^2}{H_1(I)}\f] */
514
    HISTCMP_CHISQR        = 1,
515
    /** Intersection
516
    \f[d(H_1,H_2) =  \sum _I  \min (H_1(I), H_2(I))\f] */
517
    HISTCMP_INTERSECT     = 2,
518
    /** Bhattacharyya distance
519
    (In fact, OpenCV computes Hellinger distance, which is related to Bhattacharyya coefficient.)
520
    \f[d(H_1,H_2) =  \sqrt{1 - \frac{1}{\sqrt{\bar{H_1} \bar{H_2} N^2}} \sum_I \sqrt{H_1(I) \cdot H_2(I)}}\f] */
521
    HISTCMP_BHATTACHARYYA = 3,
522
    HISTCMP_HELLINGER     = HISTCMP_BHATTACHARYYA, //!< Synonym for HISTCMP_BHATTACHARYYA
523
    /** Alternative Chi-Square
524
    \f[d(H_1,H_2) =  2 * \sum _I  \frac{\left(H_1(I)-H_2(I)\right)^2}{H_1(I)+H_2(I)}\f]
525
    This alternative formula is regularly used for texture comparison. See e.g. @cite Puzicha1997 */
526
    HISTCMP_CHISQR_ALT    = 4,
527
    /** Kullback-Leibler divergence
528
    \f[d(H_1,H_2) = \sum _I H_1(I) \log \left(\frac{H_1(I)}{H_2(I)}\right)\f] */
529
    HISTCMP_KL_DIV        = 5
530
};
531
532
/** the color conversion codes
533
@see @ref imgproc_color_conversions
534
@ingroup imgproc_color_conversions
535
 */
536
enum ColorConversionCodes {
537
    COLOR_BGR2BGRA     = 0, //!< add alpha channel to RGB or BGR image
538
    COLOR_RGB2RGBA     = COLOR_BGR2BGRA,
539
540
    COLOR_BGRA2BGR     = 1, //!< remove alpha channel from RGB or BGR image
541
    COLOR_RGBA2RGB     = COLOR_BGRA2BGR,
542
543
    COLOR_BGR2RGBA     = 2, //!< convert between RGB and BGR color spaces (with or without alpha channel)
544
    COLOR_RGB2BGRA     = COLOR_BGR2RGBA,
545
546
    COLOR_RGBA2BGR     = 3,
547
    COLOR_BGRA2RGB     = COLOR_RGBA2BGR,
548
549
    COLOR_BGR2RGB      = 4,
550
    COLOR_RGB2BGR      = COLOR_BGR2RGB,
551
552
    COLOR_BGRA2RGBA    = 5,
553
    COLOR_RGBA2BGRA    = COLOR_BGRA2RGBA,
554
555
    COLOR_BGR2GRAY     = 6, //!< convert between RGB/BGR and grayscale, @ref color_convert_rgb_gray "color conversions"
556
    COLOR_RGB2GRAY     = 7,
557
    COLOR_GRAY2BGR     = 8,
558
    COLOR_GRAY2RGB     = COLOR_GRAY2BGR,
559
    COLOR_GRAY2BGRA    = 9,
560
    COLOR_GRAY2RGBA    = COLOR_GRAY2BGRA,
561
    COLOR_BGRA2GRAY    = 10,
562
    COLOR_RGBA2GRAY    = 11,
563
564
    COLOR_BGR2BGR565   = 12, //!< convert between RGB/BGR and BGR565 (16-bit images)
565
    COLOR_RGB2BGR565   = 13,
566
    COLOR_BGR5652BGR   = 14,
567
    COLOR_BGR5652RGB   = 15,
568
    COLOR_BGRA2BGR565  = 16,
569
    COLOR_RGBA2BGR565  = 17,
570
    COLOR_BGR5652BGRA  = 18,
571
    COLOR_BGR5652RGBA  = 19,
572
573
    COLOR_GRAY2BGR565  = 20, //!< convert between grayscale to BGR565 (16-bit images)
574
    COLOR_BGR5652GRAY  = 21,
575
576
    COLOR_BGR2BGR555   = 22,  //!< convert between RGB/BGR and BGR555 (16-bit images)
577
    COLOR_RGB2BGR555   = 23,
578
    COLOR_BGR5552BGR   = 24,
579
    COLOR_BGR5552RGB   = 25,
580
    COLOR_BGRA2BGR555  = 26,
581
    COLOR_RGBA2BGR555  = 27,
582
    COLOR_BGR5552BGRA  = 28,
583
    COLOR_BGR5552RGBA  = 29,
584
585
    COLOR_GRAY2BGR555  = 30, //!< convert between grayscale and BGR555 (16-bit images)
586
    COLOR_BGR5552GRAY  = 31,
587
588
    COLOR_BGR2XYZ      = 32, //!< convert RGB/BGR to CIE XYZ, @ref color_convert_rgb_xyz "color conversions"
589
    COLOR_RGB2XYZ      = 33,
590
    COLOR_XYZ2BGR      = 34,
591
    COLOR_XYZ2RGB      = 35,
592
593
    COLOR_BGR2YCrCb    = 36, //!< convert RGB/BGR to luma-chroma (aka YCC), @ref color_convert_rgb_ycrcb "color conversions"
594
    COLOR_RGB2YCrCb    = 37,
595
    COLOR_YCrCb2BGR    = 38,
596
    COLOR_YCrCb2RGB    = 39,
597
598
    COLOR_BGR2HSV      = 40, //!< convert RGB/BGR to HSV (hue saturation value) with H range 0..180 if 8 bit image, @ref color_convert_rgb_hsv "color conversions"
599
    COLOR_RGB2HSV      = 41,
600
601
    COLOR_BGR2Lab      = 44, //!< convert RGB/BGR to CIE Lab, @ref color_convert_rgb_lab "color conversions"
602
    COLOR_RGB2Lab      = 45,
603
604
    COLOR_BGR2Luv      = 50, //!< convert RGB/BGR to CIE Luv, @ref color_convert_rgb_luv "color conversions"
605
    COLOR_RGB2Luv      = 51,
606
    COLOR_BGR2HLS      = 52, //!< convert RGB/BGR to HLS (hue lightness saturation) with H range 0..180 if 8 bit image, @ref color_convert_rgb_hls "color conversions"
607
    COLOR_RGB2HLS      = 53,
608
609
    COLOR_HSV2BGR      = 54, //!< backward conversions HSV to RGB/BGR with H range 0..180 if 8 bit image
610
    COLOR_HSV2RGB      = 55,
611
612
    COLOR_Lab2BGR      = 56,
613
    COLOR_Lab2RGB      = 57,
614
    COLOR_Luv2BGR      = 58,
615
    COLOR_Luv2RGB      = 59,
616
    COLOR_HLS2BGR      = 60, //!< backward conversions HLS to RGB/BGR with H range 0..180 if 8 bit image
617
    COLOR_HLS2RGB      = 61,
618
619
    COLOR_BGR2HSV_FULL = 66, //!< convert RGB/BGR to HSV (hue saturation value) with H range 0..255 if 8 bit image, @ref color_convert_rgb_hsv "color conversions"
620
    COLOR_RGB2HSV_FULL = 67,
621
    COLOR_BGR2HLS_FULL = 68, //!< convert RGB/BGR to HLS (hue lightness saturation) with H range 0..255 if 8 bit image, @ref color_convert_rgb_hls "color conversions"
622
    COLOR_RGB2HLS_FULL = 69,
623
624
    COLOR_HSV2BGR_FULL = 70, //!< backward conversions HSV to RGB/BGR with H range 0..255 if 8 bit image
625
    COLOR_HSV2RGB_FULL = 71,
626
    COLOR_HLS2BGR_FULL = 72, //!< backward conversions HLS to RGB/BGR with H range 0..255 if 8 bit image
627
    COLOR_HLS2RGB_FULL = 73,
628
629
    COLOR_LBGR2Lab     = 74,
630
    COLOR_LRGB2Lab     = 75,
631
    COLOR_LBGR2Luv     = 76,
632
    COLOR_LRGB2Luv     = 77,
633
634
    COLOR_Lab2LBGR     = 78,
635
    COLOR_Lab2LRGB     = 79,
636
    COLOR_Luv2LBGR     = 80,
637
    COLOR_Luv2LRGB     = 81,
638
639
    COLOR_BGR2YUV      = 82, //!< convert between RGB/BGR and YUV
640
    COLOR_RGB2YUV      = 83,
641
    COLOR_YUV2BGR      = 84,
642
    COLOR_YUV2RGB      = 85,
643
644
    //! YUV 4:2:0 family to RGB
645
    COLOR_YUV2RGB_NV12  = 90,
646
    COLOR_YUV2BGR_NV12  = 91,
647
    COLOR_YUV2RGB_NV21  = 92,
648
    COLOR_YUV2BGR_NV21  = 93,
649
    COLOR_YUV420sp2RGB  = COLOR_YUV2RGB_NV21,
650
    COLOR_YUV420sp2BGR  = COLOR_YUV2BGR_NV21,
651
652
    COLOR_YUV2RGBA_NV12 = 94,
653
    COLOR_YUV2BGRA_NV12 = 95,
654
    COLOR_YUV2RGBA_NV21 = 96,
655
    COLOR_YUV2BGRA_NV21 = 97,
656
    COLOR_YUV420sp2RGBA = COLOR_YUV2RGBA_NV21,
657
    COLOR_YUV420sp2BGRA = COLOR_YUV2BGRA_NV21,
658
659
    COLOR_YUV2RGB_YV12  = 98,
660
    COLOR_YUV2BGR_YV12  = 99,
661
    COLOR_YUV2RGB_IYUV  = 100,
662
    COLOR_YUV2BGR_IYUV  = 101,
663
    COLOR_YUV2RGB_I420  = COLOR_YUV2RGB_IYUV,
664
    COLOR_YUV2BGR_I420  = COLOR_YUV2BGR_IYUV,
665
    COLOR_YUV420p2RGB   = COLOR_YUV2RGB_YV12,
666
    COLOR_YUV420p2BGR   = COLOR_YUV2BGR_YV12,
667
668
    COLOR_YUV2RGBA_YV12 = 102,
669
    COLOR_YUV2BGRA_YV12 = 103,
670
    COLOR_YUV2RGBA_IYUV = 104,
671
    COLOR_YUV2BGRA_IYUV = 105,
672
    COLOR_YUV2RGBA_I420 = COLOR_YUV2RGBA_IYUV,
673
    COLOR_YUV2BGRA_I420 = COLOR_YUV2BGRA_IYUV,
674
    COLOR_YUV420p2RGBA  = COLOR_YUV2RGBA_YV12,
675
    COLOR_YUV420p2BGRA  = COLOR_YUV2BGRA_YV12,
676
677
    COLOR_YUV2GRAY_420  = 106,
678
    COLOR_YUV2GRAY_NV21 = COLOR_YUV2GRAY_420,
679
    COLOR_YUV2GRAY_NV12 = COLOR_YUV2GRAY_420,
680
    COLOR_YUV2GRAY_YV12 = COLOR_YUV2GRAY_420,
681
    COLOR_YUV2GRAY_IYUV = COLOR_YUV2GRAY_420,
682
    COLOR_YUV2GRAY_I420 = COLOR_YUV2GRAY_420,
683
    COLOR_YUV420sp2GRAY = COLOR_YUV2GRAY_420,
684
    COLOR_YUV420p2GRAY  = COLOR_YUV2GRAY_420,
685
686
    //! YUV 4:2:2 family to RGB
687
    COLOR_YUV2RGB_UYVY = 107,
688
    COLOR_YUV2BGR_UYVY = 108,
689
    //COLOR_YUV2RGB_VYUY = 109,
690
    //COLOR_YUV2BGR_VYUY = 110,
691
    COLOR_YUV2RGB_Y422 = COLOR_YUV2RGB_UYVY,
692
    COLOR_YUV2BGR_Y422 = COLOR_YUV2BGR_UYVY,
693
    COLOR_YUV2RGB_UYNV = COLOR_YUV2RGB_UYVY,
694
    COLOR_YUV2BGR_UYNV = COLOR_YUV2BGR_UYVY,
695
696
    COLOR_YUV2RGBA_UYVY = 111,
697
    COLOR_YUV2BGRA_UYVY = 112,
698
    //COLOR_YUV2RGBA_VYUY = 113,
699
    //COLOR_YUV2BGRA_VYUY = 114,
700
    COLOR_YUV2RGBA_Y422 = COLOR_YUV2RGBA_UYVY,
701
    COLOR_YUV2BGRA_Y422 = COLOR_YUV2BGRA_UYVY,
702
    COLOR_YUV2RGBA_UYNV = COLOR_YUV2RGBA_UYVY,
703
    COLOR_YUV2BGRA_UYNV = COLOR_YUV2BGRA_UYVY,
704
705
    COLOR_YUV2RGB_YUY2 = 115,
706
    COLOR_YUV2BGR_YUY2 = 116,
707
    COLOR_YUV2RGB_YVYU = 117,
708
    COLOR_YUV2BGR_YVYU = 118,
709
    COLOR_YUV2RGB_YUYV = COLOR_YUV2RGB_YUY2,
710
    COLOR_YUV2BGR_YUYV = COLOR_YUV2BGR_YUY2,
711
    COLOR_YUV2RGB_YUNV = COLOR_YUV2RGB_YUY2,
712
    COLOR_YUV2BGR_YUNV = COLOR_YUV2BGR_YUY2,
713
714
    COLOR_YUV2RGBA_YUY2 = 119,
715
    COLOR_YUV2BGRA_YUY2 = 120,
716
    COLOR_YUV2RGBA_YVYU = 121,
717
    COLOR_YUV2BGRA_YVYU = 122,
718
    COLOR_YUV2RGBA_YUYV = COLOR_YUV2RGBA_YUY2,
719
    COLOR_YUV2BGRA_YUYV = COLOR_YUV2BGRA_YUY2,
720
    COLOR_YUV2RGBA_YUNV = COLOR_YUV2RGBA_YUY2,
721
    COLOR_YUV2BGRA_YUNV = COLOR_YUV2BGRA_YUY2,
722
723
    COLOR_YUV2GRAY_UYVY = 123,
724
    COLOR_YUV2GRAY_YUY2 = 124,
725
    //CV_YUV2GRAY_VYUY    = CV_YUV2GRAY_UYVY,
726
    COLOR_YUV2GRAY_Y422 = COLOR_YUV2GRAY_UYVY,
727
    COLOR_YUV2GRAY_UYNV = COLOR_YUV2GRAY_UYVY,
728
    COLOR_YUV2GRAY_YVYU = COLOR_YUV2GRAY_YUY2,
729
    COLOR_YUV2GRAY_YUYV = COLOR_YUV2GRAY_YUY2,
730
    COLOR_YUV2GRAY_YUNV = COLOR_YUV2GRAY_YUY2,
731
732
    //! alpha premultiplication
733
    COLOR_RGBA2mRGBA    = 125,
734
    COLOR_mRGBA2RGBA    = 126,
735
736
    //! RGB to YUV 4:2:0 family
737
    COLOR_RGB2YUV_I420  = 127,
738
    COLOR_BGR2YUV_I420  = 128,
739
    COLOR_RGB2YUV_IYUV  = COLOR_RGB2YUV_I420,
740
    COLOR_BGR2YUV_IYUV  = COLOR_BGR2YUV_I420,
741
742
    COLOR_RGBA2YUV_I420 = 129,
743
    COLOR_BGRA2YUV_I420 = 130,
744
    COLOR_RGBA2YUV_IYUV = COLOR_RGBA2YUV_I420,
745
    COLOR_BGRA2YUV_IYUV = COLOR_BGRA2YUV_I420,
746
    COLOR_RGB2YUV_YV12  = 131,
747
    COLOR_BGR2YUV_YV12  = 132,
748
    COLOR_RGBA2YUV_YV12 = 133,
749
    COLOR_BGRA2YUV_YV12 = 134,
750
751
    //! Demosaicing, see @ref color_convert_bayer "color conversions" for additional information
752
    COLOR_BayerBG2BGR = 46, //!< equivalent to RGGB Bayer pattern
753
    COLOR_BayerGB2BGR = 47, //!< equivalent to GRBG Bayer pattern
754
    COLOR_BayerRG2BGR = 48, //!< equivalent to BGGR Bayer pattern
755
    COLOR_BayerGR2BGR = 49, //!< equivalent to GBRG Bayer pattern
756
757
    COLOR_BayerRGGB2BGR = COLOR_BayerBG2BGR,
758
    COLOR_BayerGRBG2BGR = COLOR_BayerGB2BGR,
759
    COLOR_BayerBGGR2BGR = COLOR_BayerRG2BGR,
760
    COLOR_BayerGBRG2BGR = COLOR_BayerGR2BGR,
761
762
    COLOR_BayerRGGB2RGB = COLOR_BayerBGGR2BGR,
763
    COLOR_BayerGRBG2RGB = COLOR_BayerGBRG2BGR,
764
    COLOR_BayerBGGR2RGB = COLOR_BayerRGGB2BGR,
765
    COLOR_BayerGBRG2RGB = COLOR_BayerGRBG2BGR,
766
767
    COLOR_BayerBG2RGB = COLOR_BayerRG2BGR, //!< equivalent to RGGB Bayer pattern
768
    COLOR_BayerGB2RGB = COLOR_BayerGR2BGR, //!< equivalent to GRBG Bayer pattern
769
    COLOR_BayerRG2RGB = COLOR_BayerBG2BGR, //!< equivalent to BGGR Bayer pattern
770
    COLOR_BayerGR2RGB = COLOR_BayerGB2BGR, //!< equivalent to GBRG Bayer pattern
771
772
    COLOR_BayerBG2GRAY = 86, //!< equivalent to RGGB Bayer pattern
773
    COLOR_BayerGB2GRAY = 87, //!< equivalent to GRBG Bayer pattern
774
    COLOR_BayerRG2GRAY = 88, //!< equivalent to BGGR Bayer pattern
775
    COLOR_BayerGR2GRAY = 89, //!< equivalent to GBRG Bayer pattern
776
777
    COLOR_BayerRGGB2GRAY = COLOR_BayerBG2GRAY,
778
    COLOR_BayerGRBG2GRAY = COLOR_BayerGB2GRAY,
779
    COLOR_BayerBGGR2GRAY = COLOR_BayerRG2GRAY,
780
    COLOR_BayerGBRG2GRAY = COLOR_BayerGR2GRAY,
781
782
    //! Demosaicing using Variable Number of Gradients
783
    COLOR_BayerBG2BGR_VNG = 62, //!< equivalent to RGGB Bayer pattern
784
    COLOR_BayerGB2BGR_VNG = 63, //!< equivalent to GRBG Bayer pattern
785
    COLOR_BayerRG2BGR_VNG = 64, //!< equivalent to BGGR Bayer pattern
786
    COLOR_BayerGR2BGR_VNG = 65, //!< equivalent to GBRG Bayer pattern
787
788
    COLOR_BayerRGGB2BGR_VNG = COLOR_BayerBG2BGR_VNG,
789
    COLOR_BayerGRBG2BGR_VNG = COLOR_BayerGB2BGR_VNG,
790
    COLOR_BayerBGGR2BGR_VNG = COLOR_BayerRG2BGR_VNG,
791
    COLOR_BayerGBRG2BGR_VNG = COLOR_BayerGR2BGR_VNG,
792
793
    COLOR_BayerRGGB2RGB_VNG = COLOR_BayerBGGR2BGR_VNG,
794
    COLOR_BayerGRBG2RGB_VNG = COLOR_BayerGBRG2BGR_VNG,
795
    COLOR_BayerBGGR2RGB_VNG = COLOR_BayerRGGB2BGR_VNG,
796
    COLOR_BayerGBRG2RGB_VNG = COLOR_BayerGRBG2BGR_VNG,
797
798
    COLOR_BayerBG2RGB_VNG = COLOR_BayerRG2BGR_VNG, //!< equivalent to RGGB Bayer pattern
799
    COLOR_BayerGB2RGB_VNG = COLOR_BayerGR2BGR_VNG, //!< equivalent to GRBG Bayer pattern
800
    COLOR_BayerRG2RGB_VNG = COLOR_BayerBG2BGR_VNG, //!< equivalent to BGGR Bayer pattern
801
    COLOR_BayerGR2RGB_VNG = COLOR_BayerGB2BGR_VNG, //!< equivalent to GBRG Bayer pattern
802
803
    //! Edge-Aware Demosaicing
804
    COLOR_BayerBG2BGR_EA  = 135, //!< equivalent to RGGB Bayer pattern
805
    COLOR_BayerGB2BGR_EA  = 136, //!< equivalent to GRBG Bayer pattern
806
    COLOR_BayerRG2BGR_EA  = 137, //!< equivalent to BGGR Bayer pattern
807
    COLOR_BayerGR2BGR_EA  = 138, //!< equivalent to GBRG Bayer pattern
808
809
    COLOR_BayerRGGB2BGR_EA  = COLOR_BayerBG2BGR_EA,
810
    COLOR_BayerGRBG2BGR_EA  = COLOR_BayerGB2BGR_EA,
811
    COLOR_BayerBGGR2BGR_EA  = COLOR_BayerRG2BGR_EA,
812
    COLOR_BayerGBRG2BGR_EA  = COLOR_BayerGR2BGR_EA,
813
814
    COLOR_BayerRGGB2RGB_EA  = COLOR_BayerBGGR2BGR_EA,
815
    COLOR_BayerGRBG2RGB_EA  = COLOR_BayerGBRG2BGR_EA,
816
    COLOR_BayerBGGR2RGB_EA  = COLOR_BayerRGGB2BGR_EA,
817
    COLOR_BayerGBRG2RGB_EA  = COLOR_BayerGRBG2BGR_EA,
818
819
    COLOR_BayerBG2RGB_EA  = COLOR_BayerRG2BGR_EA, //!< equivalent to RGGB Bayer pattern
820
    COLOR_BayerGB2RGB_EA  = COLOR_BayerGR2BGR_EA, //!< equivalent to GRBG Bayer pattern
821
    COLOR_BayerRG2RGB_EA  = COLOR_BayerBG2BGR_EA, //!< equivalent to BGGR Bayer pattern
822
    COLOR_BayerGR2RGB_EA  = COLOR_BayerGB2BGR_EA, //!< equivalent to GBRG Bayer pattern
823
824
    //! Demosaicing with alpha channel
825
    COLOR_BayerBG2BGRA = 139, //!< equivalent to RGGB Bayer pattern
826
    COLOR_BayerGB2BGRA = 140, //!< equivalent to GRBG Bayer pattern
827
    COLOR_BayerRG2BGRA = 141, //!< equivalent to BGGR Bayer pattern
828
    COLOR_BayerGR2BGRA = 142, //!< equivalent to GBRG Bayer pattern
829
830
    COLOR_BayerRGGB2BGRA = COLOR_BayerBG2BGRA,
831
    COLOR_BayerGRBG2BGRA = COLOR_BayerGB2BGRA,
832
    COLOR_BayerBGGR2BGRA = COLOR_BayerRG2BGRA,
833
    COLOR_BayerGBRG2BGRA = COLOR_BayerGR2BGRA,
834
835
    COLOR_BayerRGGB2RGBA = COLOR_BayerBGGR2BGRA,
836
    COLOR_BayerGRBG2RGBA = COLOR_BayerGBRG2BGRA,
837
    COLOR_BayerBGGR2RGBA = COLOR_BayerRGGB2BGRA,
838
    COLOR_BayerGBRG2RGBA = COLOR_BayerGRBG2BGRA,
839
840
    COLOR_BayerBG2RGBA = COLOR_BayerRG2BGRA, //!< equivalent to RGGB Bayer pattern
841
    COLOR_BayerGB2RGBA = COLOR_BayerGR2BGRA, //!< equivalent to GRBG Bayer pattern
842
    COLOR_BayerRG2RGBA = COLOR_BayerBG2BGRA, //!< equivalent to BGGR Bayer pattern
843
    COLOR_BayerGR2RGBA = COLOR_BayerGB2BGRA, //!< equivalent to GBRG Bayer pattern
844
845
    COLOR_COLORCVT_MAX  = 143
846
};
847
848
//! @addtogroup imgproc_shape
849
//! @{
850
851
//! types of intersection between rectangles
852
enum RectanglesIntersectTypes {
853
    INTERSECT_NONE = 0, //!< No intersection
854
    INTERSECT_PARTIAL  = 1, //!< There is a partial intersection
855
    INTERSECT_FULL  = 2 //!< One of the rectangle is fully enclosed in the other
856
};
857
858
/** types of line
859
@ingroup imgproc_draw
860
*/
861
enum LineTypes {
862
    FILLED  = -1,
863
    LINE_4  = 4, //!< 4-connected line
864
    LINE_8  = 8, //!< 8-connected line
865
    LINE_AA = 16 //!< antialiased line
866
};
867
868
/** Only a subset of Hershey fonts <https://en.wikipedia.org/wiki/Hershey_fonts> are supported
869
@ingroup imgproc_draw
870
*/
871
enum HersheyFonts {
872
    FONT_HERSHEY_SIMPLEX        = 0, //!< normal size sans-serif font
873
    FONT_HERSHEY_PLAIN          = 1, //!< small size sans-serif font
874
    FONT_HERSHEY_DUPLEX         = 2, //!< normal size sans-serif font (more complex than FONT_HERSHEY_SIMPLEX)
875
    FONT_HERSHEY_COMPLEX        = 3, //!< normal size serif font
876
    FONT_HERSHEY_TRIPLEX        = 4, //!< normal size serif font (more complex than FONT_HERSHEY_COMPLEX)
877
    FONT_HERSHEY_COMPLEX_SMALL  = 5, //!< smaller version of FONT_HERSHEY_COMPLEX
878
    FONT_HERSHEY_SCRIPT_SIMPLEX = 6, //!< hand-writing style font
879
    FONT_HERSHEY_SCRIPT_COMPLEX = 7, //!< more complex variant of FONT_HERSHEY_SCRIPT_SIMPLEX
880
    FONT_ITALIC                 = 16 //!< flag for italic font
881
};
882
883
/** Possible set of marker types used for the cv::drawMarker function
884
@ingroup imgproc_draw
885
*/
886
enum MarkerTypes
887
{
888
    MARKER_CROSS = 0,           //!< A crosshair marker shape
889
    MARKER_TILTED_CROSS = 1,    //!< A 45 degree tilted crosshair marker shape
890
    MARKER_STAR = 2,            //!< A star marker shape, combination of cross and tilted cross
891
    MARKER_DIAMOND = 3,         //!< A diamond marker shape
892
    MARKER_SQUARE = 4,          //!< A square marker shape
893
    MARKER_TRIANGLE_UP = 5,     //!< An upwards pointing triangle marker shape
894
    MARKER_TRIANGLE_DOWN = 6    //!< A downwards pointing triangle marker shape
895
};
896
897
/** @brief finds arbitrary template in the grayscale image using Generalized Hough Transform
898
*/
899
class CV_EXPORTS_W GeneralizedHough : public Algorithm
900
{
901
public:
902
    //! set template to search
903
    CV_WRAP virtual void setTemplate(InputArray templ, Point templCenter = Point(-1, -1)) = 0;
904
    CV_WRAP virtual void setTemplate(InputArray edges, InputArray dx, InputArray dy, Point templCenter = Point(-1, -1)) = 0;
905
906
    //! find template on image
907
    CV_WRAP virtual void detect(InputArray image, OutputArray positions, OutputArray votes = noArray()) = 0;
908
    CV_WRAP virtual void detect(InputArray edges, InputArray dx, InputArray dy, OutputArray positions, OutputArray votes = noArray()) = 0;
909
910
    //! Canny low threshold.
911
    CV_WRAP virtual void setCannyLowThresh(int cannyLowThresh) = 0;
912
    CV_WRAP virtual int getCannyLowThresh() const = 0;
913
914
    //! Canny high threshold.
915
    CV_WRAP virtual void setCannyHighThresh(int cannyHighThresh) = 0;
916
    CV_WRAP virtual int getCannyHighThresh() const = 0;
917
918
    //! Minimum distance between the centers of the detected objects.
919
    CV_WRAP virtual void setMinDist(double minDist) = 0;
920
    CV_WRAP virtual double getMinDist() const = 0;
921
922
    //! Inverse ratio of the accumulator resolution to the image resolution.
923
    CV_WRAP virtual void setDp(double dp) = 0;
924
    CV_WRAP virtual double getDp() const = 0;
925
926
    //! Maximal size of inner buffers.
927
    CV_WRAP virtual void setMaxBufferSize(int maxBufferSize) = 0;
928
    CV_WRAP virtual int getMaxBufferSize() const = 0;
929
};
930
931
/** @brief finds arbitrary template in the grayscale image using Generalized Hough Transform
932
933
Detects position only without translation and rotation @cite Ballard1981 .
934
*/
935
class CV_EXPORTS_W GeneralizedHoughBallard : public GeneralizedHough
936
{
937
public:
938
    //! R-Table levels.
939
    CV_WRAP virtual void setLevels(int levels) = 0;
940
    CV_WRAP virtual int getLevels() const = 0;
941
942
    //! The accumulator threshold for the template centers at the detection stage. The smaller it is, the more false positions may be detected.
943
    CV_WRAP virtual void setVotesThreshold(int votesThreshold) = 0;
944
    CV_WRAP virtual int getVotesThreshold() const = 0;
945
};
946
947
/** @brief finds arbitrary template in the grayscale image using Generalized Hough Transform
948
949
Detects position, translation and rotation @cite Guil1999 .
950
*/
951
class CV_EXPORTS_W GeneralizedHoughGuil : public GeneralizedHough
952
{
953
public:
954
    //! Angle difference in degrees between two points in feature.
955
    CV_WRAP virtual void setXi(double xi) = 0;
956
    CV_WRAP virtual double getXi() const = 0;
957
958
    //! Feature table levels.
959
    CV_WRAP virtual void setLevels(int levels) = 0;
960
    CV_WRAP virtual int getLevels() const = 0;
961
962
    //! Maximal difference between angles that treated as equal.
963
    CV_WRAP virtual void setAngleEpsilon(double angleEpsilon) = 0;
964
    CV_WRAP virtual double getAngleEpsilon() const = 0;
965
966
    //! Minimal rotation angle to detect in degrees.
967
    CV_WRAP virtual void setMinAngle(double minAngle) = 0;
968
    CV_WRAP virtual double getMinAngle() const = 0;
969
970
    //! Maximal rotation angle to detect in degrees.
971
    CV_WRAP virtual void setMaxAngle(double maxAngle) = 0;
972
    CV_WRAP virtual double getMaxAngle() const = 0;
973
974
    //! Angle step in degrees.
975
    CV_WRAP virtual void setAngleStep(double angleStep) = 0;
976
    CV_WRAP virtual double getAngleStep() const = 0;
977
978
    //! Angle votes threshold.
979
    CV_WRAP virtual void setAngleThresh(int angleThresh) = 0;
980
    CV_WRAP virtual int getAngleThresh() const = 0;
981
982
    //! Minimal scale to detect.
983
    CV_WRAP virtual void setMinScale(double minScale) = 0;
984
    CV_WRAP virtual double getMinScale() const = 0;
985
986
    //! Maximal scale to detect.
987
    CV_WRAP virtual void setMaxScale(double maxScale) = 0;
988
    CV_WRAP virtual double getMaxScale() const = 0;
989
990
    //! Scale step.
991
    CV_WRAP virtual void setScaleStep(double scaleStep) = 0;
992
    CV_WRAP virtual double getScaleStep() const = 0;
993
994
    //! Scale votes threshold.
995
    CV_WRAP virtual void setScaleThresh(int scaleThresh) = 0;
996
    CV_WRAP virtual int getScaleThresh() const = 0;
997
998
    //! Position votes threshold.
999
    CV_WRAP virtual void setPosThresh(int posThresh) = 0;
1000
    CV_WRAP virtual int getPosThresh() const = 0;
1001
};
1002
1003
//! @} imgproc_shape
1004
1005
//! @addtogroup imgproc_hist
1006
//! @{
1007
1008
/** @brief Base class for Contrast Limited Adaptive Histogram Equalization.
1009
*/
1010
class CV_EXPORTS_W CLAHE : public Algorithm
1011
{
1012
public:
1013
    /** @brief Equalizes the histogram of a grayscale image using Contrast Limited Adaptive Histogram Equalization.
1014
1015
    @param src Source image of type CV_8UC1 or CV_16UC1.
1016
    @param dst Destination image.
1017
     */
1018
    CV_WRAP virtual void apply(InputArray src, OutputArray dst) = 0;
1019
1020
    /** @brief Sets threshold for contrast limiting.
1021
1022
    @param clipLimit threshold value.
1023
    */
1024
    CV_WRAP virtual void setClipLimit(double clipLimit) = 0;
1025
1026
    //! Returns threshold value for contrast limiting.
1027
    CV_WRAP virtual double getClipLimit() const = 0;
1028
1029
    /** @brief Sets size of grid for histogram equalization. Input image will be divided into
1030
    equally sized rectangular tiles.
1031
1032
    @param tileGridSize defines the number of tiles in row and column.
1033
    */
1034
    CV_WRAP virtual void setTilesGridSize(Size tileGridSize) = 0;
1035
1036
    //!@brief Returns Size defines the number of tiles in row and column.
1037
    CV_WRAP virtual Size getTilesGridSize() const = 0;
1038
1039
    CV_WRAP virtual void collectGarbage() = 0;
1040
};
1041
1042
//! @} imgproc_hist
1043
1044
//! @addtogroup imgproc_subdiv2d
1045
//! @{
1046
1047
class CV_EXPORTS_W Subdiv2D
1048
{
1049
public:
1050
    /** Subdiv2D point location cases */
1051
    enum { PTLOC_ERROR        = -2, //!< Point location error
1052
           PTLOC_OUTSIDE_RECT = -1, //!< Point outside the subdivision bounding rect
1053
           PTLOC_INSIDE       = 0, //!< Point inside some facet
1054
           PTLOC_VERTEX       = 1, //!< Point coincides with one of the subdivision vertices
1055
           PTLOC_ON_EDGE      = 2  //!< Point on some edge
1056
         };
1057
1058
    /** Subdiv2D edge type navigation (see: getEdge()) */
1059
    enum { NEXT_AROUND_ORG   = 0x00,
1060
           NEXT_AROUND_DST   = 0x22,
1061
           PREV_AROUND_ORG   = 0x11,
1062
           PREV_AROUND_DST   = 0x33,
1063
           NEXT_AROUND_LEFT  = 0x13,
1064
           NEXT_AROUND_RIGHT = 0x31,
1065
           PREV_AROUND_LEFT  = 0x20,
1066
           PREV_AROUND_RIGHT = 0x02
1067
         };
1068
1069
    /** creates an empty Subdiv2D object.
1070
    To create a new empty Delaunay subdivision you need to use the #initDelaunay function.
1071
     */
1072
    CV_WRAP Subdiv2D();
1073
1074
    /** @overload
1075
1076
    @param rect Rectangle that includes all of the 2D points that are to be added to the subdivision.
1077
1078
    The function creates an empty Delaunay subdivision where 2D points can be added using the function
1079
    insert() . All of the points to be added must be within the specified rectangle, otherwise a runtime
1080
    error is raised.
1081
     */
1082
    CV_WRAP Subdiv2D(Rect rect);
1083
1084
    /** @brief Creates a new empty Delaunay subdivision
1085
1086
    @param rect Rectangle that includes all of the 2D points that are to be added to the subdivision.
1087
1088
     */
1089
    CV_WRAP void initDelaunay(Rect rect);
1090
1091
    /** @brief Insert a single point into a Delaunay triangulation.
1092
1093
    @param pt Point to insert.
1094
1095
    The function inserts a single point into a subdivision and modifies the subdivision topology
1096
    appropriately. If a point with the same coordinates exists already, no new point is added.
1097
    @returns the ID of the point.
1098
1099
    @note If the point is outside of the triangulation specified rect a runtime error is raised.
1100
     */
1101
    CV_WRAP int insert(Point2f pt);
1102
1103
    /** @brief Insert multiple points into a Delaunay triangulation.
1104
1105
    @param ptvec Points to insert.
1106
1107
    The function inserts a vector of points into a subdivision and modifies the subdivision topology
1108
    appropriately.
1109
     */
1110
    CV_WRAP void insert(const std::vector<Point2f>& ptvec);
1111
1112
    /** @brief Returns the location of a point within a Delaunay triangulation.
1113
1114
    @param pt Point to locate.
1115
    @param edge Output edge that the point belongs to or is located to the right of it.
1116
    @param vertex Optional output vertex the input point coincides with.
1117
1118
    The function locates the input point within the subdivision and gives one of the triangle edges
1119
    or vertices.
1120
1121
    @returns an integer which specify one of the following five cases for point location:
1122
    -  The point falls into some facet. The function returns #PTLOC_INSIDE and edge will contain one of
1123
       edges of the facet.
1124
    -  The point falls onto the edge. The function returns #PTLOC_ON_EDGE and edge will contain this edge.
1125
    -  The point coincides with one of the subdivision vertices. The function returns #PTLOC_VERTEX and
1126
       vertex will contain a pointer to the vertex.
1127
    -  The point is outside the subdivision reference rectangle. The function returns #PTLOC_OUTSIDE_RECT
1128
       and no pointers are filled.
1129
    -  One of input arguments is invalid. A runtime error is raised or, if silent or "parent" error
1130
       processing mode is selected, #PTLOC_ERROR is returned.
1131
     */
1132
    CV_WRAP int locate(Point2f pt, CV_OUT int& edge, CV_OUT int& vertex);
1133
1134
    /** @brief Finds the subdivision vertex closest to the given point.
1135
1136
    @param pt Input point.
1137
    @param nearestPt Output subdivision vertex point.
1138
1139
    The function is another function that locates the input point within the subdivision. It finds the
1140
    subdivision vertex that is the closest to the input point. It is not necessarily one of vertices
1141
    of the facet containing the input point, though the facet (located using locate() ) is used as a
1142
    starting point.
1143
1144
    @returns vertex ID.
1145
     */
1146
    CV_WRAP int findNearest(Point2f pt, CV_OUT Point2f* nearestPt = 0);
1147
1148
    /** @brief Returns a list of all edges.
1149
1150
    @param edgeList Output vector.
1151
1152
    The function gives each edge as a 4 numbers vector, where each two are one of the edge
1153
    vertices. i.e. org_x = v[0], org_y = v[1], dst_x = v[2], dst_y = v[3].
1154
     */
1155
    CV_WRAP void getEdgeList(CV_OUT std::vector<Vec4f>& edgeList) const;
1156
1157
    /** @brief Returns a list of the leading edge ID connected to each triangle.
1158
1159
    @param leadingEdgeList Output vector.
1160
1161
    The function gives one edge ID for each triangle.
1162
     */
1163
    CV_WRAP void getLeadingEdgeList(CV_OUT std::vector<int>& leadingEdgeList) const;
1164
1165
    /** @brief Returns a list of all triangles.
1166
1167
    @param triangleList Output vector.
1168
1169
    The function gives each triangle as a 6 numbers vector, where each two are one of the triangle
1170
    vertices. i.e. p1_x = v[0], p1_y = v[1], p2_x = v[2], p2_y = v[3], p3_x = v[4], p3_y = v[5].
1171
     */
1172
    CV_WRAP void getTriangleList(CV_OUT std::vector<Vec6f>& triangleList) const;
1173
1174
    /** @brief Returns a list of all Voronoi facets.
1175
1176
    @param idx Vector of vertices IDs to consider. For all vertices you can pass empty vector.
1177
    @param facetList Output vector of the Voronoi facets.
1178
    @param facetCenters Output vector of the Voronoi facets center points.
1179
1180
     */
1181
    CV_WRAP void getVoronoiFacetList(const std::vector<int>& idx, CV_OUT std::vector<std::vector<Point2f> >& facetList,
1182
                                     CV_OUT std::vector<Point2f>& facetCenters);
1183
1184
    /** @brief Returns vertex location from vertex ID.
1185
1186
    @param vertex vertex ID.
1187
    @param firstEdge Optional. The first edge ID which is connected to the vertex.
1188
    @returns vertex (x,y)
1189
1190
     */
1191
    CV_WRAP Point2f getVertex(int vertex, CV_OUT int* firstEdge = 0) const;
1192
1193
    /** @brief Returns one of the edges related to the given edge.
1194
1195
    @param edge Subdivision edge ID.
1196
    @param nextEdgeType Parameter specifying which of the related edges to return.
1197
    The following values are possible:
1198
    -   NEXT_AROUND_ORG next around the edge origin ( eOnext on the picture below if e is the input edge)
1199
    -   NEXT_AROUND_DST next around the edge vertex ( eDnext )
1200
    -   PREV_AROUND_ORG previous around the edge origin (reversed eRnext )
1201
    -   PREV_AROUND_DST previous around the edge destination (reversed eLnext )
1202
    -   NEXT_AROUND_LEFT next around the left facet ( eLnext )
1203
    -   NEXT_AROUND_RIGHT next around the right facet ( eRnext )
1204
    -   PREV_AROUND_LEFT previous around the left facet (reversed eOnext )
1205
    -   PREV_AROUND_RIGHT previous around the right facet (reversed eDnext )
1206
1207
    ![sample output](pics/quadedge.png)
1208
1209
    @returns edge ID related to the input edge.
1210
     */
1211
    CV_WRAP int getEdge( int edge, int nextEdgeType ) const;
1212
1213
    /** @brief Returns next edge around the edge origin.
1214
1215
    @param edge Subdivision edge ID.
1216
1217
    @returns an integer which is next edge ID around the edge origin: eOnext on the
1218
    picture above if e is the input edge).
1219
     */
1220
    CV_WRAP int nextEdge(int edge) const;
1221
1222
    /** @brief Returns another edge of the same quad-edge.
1223
1224
    @param edge Subdivision edge ID.
1225
    @param rotate Parameter specifying which of the edges of the same quad-edge as the input
1226
    one to return. The following values are possible:
1227
    -   0 - the input edge ( e on the picture below if e is the input edge)
1228
    -   1 - the rotated edge ( eRot )
1229
    -   2 - the reversed edge (reversed e (in green))
1230
    -   3 - the reversed rotated edge (reversed eRot (in green))
1231
1232
    @returns one of the edges ID of the same quad-edge as the input edge.
1233
     */
1234
    CV_WRAP int rotateEdge(int edge, int rotate) const;
1235
    CV_WRAP int symEdge(int edge) const;
1236
1237
    /** @brief Returns the edge origin.
1238
1239
    @param edge Subdivision edge ID.
1240
    @param orgpt Output vertex location.
1241
1242
    @returns vertex ID.
1243
     */
1244
    CV_WRAP int edgeOrg(int edge, CV_OUT Point2f* orgpt = 0) const;
1245
1246
    /** @brief Returns the edge destination.
1247
1248
    @param edge Subdivision edge ID.
1249
    @param dstpt Output vertex location.
1250
1251
    @returns vertex ID.
1252
     */
1253
    CV_WRAP int edgeDst(int edge, CV_OUT Point2f* dstpt = 0) const;
1254
1255
protected:
1256
    int newEdge();
1257
    void deleteEdge(int edge);
1258
    int newPoint(Point2f pt, bool isvirtual, int firstEdge = 0);
1259
    void deletePoint(int vtx);
1260
    void setEdgePoints( int edge, int orgPt, int dstPt );
1261
    void splice( int edgeA, int edgeB );
1262
    int connectEdges( int edgeA, int edgeB );
1263
    void swapEdges( int edge );
1264
    int isRightOf(Point2f pt, int edge) const;
1265
    void calcVoronoi();
1266
    void clearVoronoi();
1267
    void checkSubdiv() const;
1268
1269
    struct CV_EXPORTS Vertex
1270
    {
1271
        Vertex();
1272
        Vertex(Point2f pt, bool isvirtual, int firstEdge=0);
1273
        bool isvirtual() const;
1274
        bool isfree() const;
1275
1276
        int firstEdge;
1277
        int type;
1278
        Point2f pt;
1279
    };
1280
1281
    struct CV_EXPORTS QuadEdge
1282
    {
1283
        QuadEdge();
1284
        QuadEdge(int edgeidx);
1285
        bool isfree() const;
1286
1287
        int next[4];
1288
        int pt[4];
1289
    };
1290
1291
    //! All of the vertices
1292
    std::vector<Vertex> vtx;
1293
    //! All of the edges
1294
    std::vector<QuadEdge> qedges;
1295
    int freeQEdge;
1296
    int freePoint;
1297
    bool validGeometry;
1298
1299
    int recentEdge;
1300
    //! Top left corner of the bounding rect
1301
    Point2f topLeft;
1302
    //! Bottom right corner of the bounding rect
1303
    Point2f bottomRight;
1304
};
1305
1306
//! @} imgproc_subdiv2d
1307
1308
//! @addtogroup imgproc_feature
1309
//! @{
1310
1311
/** @example samples/cpp/lsd_lines.cpp
1312
An example using the LineSegmentDetector
1313
\image html building_lsd.png "Sample output image" width=434 height=300
1314
*/
1315
1316
/** @brief Line segment detector class
1317
1318
following the algorithm described at @cite Rafael12 .
1319
1320
@note Implementation has been removed from OpenCV version 3.4.6 to 3.4.15 and version 4.1.0 to 4.5.3 due original code license conflict.
1321
restored again after [Computation of a NFA](https://github.com/rafael-grompone-von-gioi/binomial_nfa) code published under the MIT license.
1322
*/
1323
class CV_EXPORTS_W LineSegmentDetector : public Algorithm
1324
{
1325
public:
1326
1327
    /** @brief Finds lines in the input image.
1328
1329
    This is the output of the default parameters of the algorithm on the above shown image.
1330
1331
    ![image](pics/building_lsd.png)
1332
1333
    @param image A grayscale (CV_8UC1) input image. If only a roi needs to be selected, use:
1334
    `lsd_ptr-\>detect(image(roi), lines, ...); lines += Scalar(roi.x, roi.y, roi.x, roi.y);`
1335
    @param lines A vector of Vec4f elements specifying the beginning and ending point of a line. Where
1336
    Vec4f is (x1, y1, x2, y2), point 1 is the start, point 2 - end. Returned lines are strictly
1337
    oriented depending on the gradient.
1338
    @param width Vector of widths of the regions, where the lines are found. E.g. Width of line.
1339
    @param prec Vector of precisions with which the lines are found.
1340
    @param nfa Vector containing number of false alarms in the line region, with precision of 10%. The
1341
    bigger the value, logarithmically better the detection.
1342
    - -1 corresponds to 10 mean false alarms
1343
    - 0 corresponds to 1 mean false alarm
1344
    - 1 corresponds to 0.1 mean false alarms
1345
    This vector will be calculated only when the objects type is #LSD_REFINE_ADV.
1346
    */
1347
    CV_WRAP virtual void detect(InputArray image, OutputArray lines,
1348
                        OutputArray width = noArray(), OutputArray prec = noArray(),
1349
                        OutputArray nfa = noArray()) = 0;
1350
1351
    /** @brief Draws the line segments on a given image.
1352
    @param image The image, where the lines will be drawn. Should be bigger or equal to the image,
1353
    where the lines were found.
1354
    @param lines A vector of the lines that needed to be drawn.
1355
     */
1356
    CV_WRAP virtual void drawSegments(InputOutputArray image, InputArray lines) = 0;
1357
1358
    /** @brief Draws two groups of lines in blue and red, counting the non overlapping (mismatching) pixels.
1359
1360
    @param size The size of the image, where lines1 and lines2 were found.
1361
    @param lines1 The first group of lines that needs to be drawn. It is visualized in blue color.
1362
    @param lines2 The second group of lines. They visualized in red color.
1363
    @param image Optional image, where the lines will be drawn. The image should be color(3-channel)
1364
    in order for lines1 and lines2 to be drawn in the above mentioned colors.
1365
     */
1366
    CV_WRAP virtual int compareSegments(const Size& size, InputArray lines1, InputArray lines2, InputOutputArray image = noArray()) = 0;
1367
1368
0
    virtual ~LineSegmentDetector() { }
1369
};
1370
1371
/** @brief Creates a smart pointer to a LineSegmentDetector object and initializes it.
1372
1373
The LineSegmentDetector algorithm is defined using the standard values. Only advanced users may want
1374
to edit those, as to tailor it for their own application.
1375
1376
@param refine The way found lines will be refined, see #LineSegmentDetectorModes
1377
@param scale The scale of the image that will be used to find the lines. Range (0..1].
1378
@param sigma_scale Sigma for Gaussian filter. It is computed as sigma = sigma_scale/scale.
1379
@param quant Bound to the quantization error on the gradient norm.
1380
@param ang_th Gradient angle tolerance in degrees.
1381
@param log_eps Detection threshold: -log10(NFA) \> log_eps. Used only when advance refinement is chosen.
1382
@param density_th Minimal density of aligned region points in the enclosing rectangle.
1383
@param n_bins Number of bins in pseudo-ordering of gradient modulus.
1384
 */
1385
CV_EXPORTS_W Ptr<LineSegmentDetector> createLineSegmentDetector(
1386
    int refine = LSD_REFINE_STD, double scale = 0.8,
1387
    double sigma_scale = 0.6, double quant = 2.0, double ang_th = 22.5,
1388
    double log_eps = 0, double density_th = 0.7, int n_bins = 1024);
1389
1390
//! @} imgproc_feature
1391
1392
//! @addtogroup imgproc_filter
1393
//! @{
1394
1395
/** @brief Returns Gaussian filter coefficients.
1396
1397
The function computes and returns the \f$\texttt{ksize} \times 1\f$ matrix of Gaussian filter
1398
coefficients:
1399
1400
\f[G_i= \alpha *e^{-(i-( \texttt{ksize} -1)/2)^2/(2* \texttt{sigma}^2)},\f]
1401
1402
where \f$i=0..\texttt{ksize}-1\f$ and \f$\alpha\f$ is the scale factor chosen so that \f$\sum_i G_i=1\f$.
1403
1404
Two of such generated kernels can be passed to sepFilter2D. Those functions automatically recognize
1405
smoothing kernels (a symmetrical kernel with sum of weights equal to 1) and handle them accordingly.
1406
You may also use the higher-level GaussianBlur.
1407
@param ksize Aperture size. It should be odd ( \f$\texttt{ksize} \mod 2 = 1\f$ ) and positive.
1408
@param sigma Gaussian standard deviation. If it is non-positive, it is computed from ksize as
1409
`sigma = 0.3*((ksize-1)*0.5 - 1) + 0.8`.
1410
@param ktype Type of filter coefficients. It can be CV_32F or CV_64F .
1411
@sa  sepFilter2D, getDerivKernels, getStructuringElement, GaussianBlur
1412
 */
1413
CV_EXPORTS_W Mat getGaussianKernel( int ksize, double sigma, int ktype = CV_64F );
1414
1415
/** @brief Returns filter coefficients for computing spatial image derivatives.
1416
1417
The function computes and returns the filter coefficients for spatial image derivatives. When
1418
`ksize=FILTER_SCHARR`, the Scharr \f$3 \times 3\f$ kernels are generated (see #Scharr). Otherwise, Sobel
1419
kernels are generated (see #Sobel). The filters are normally passed to #sepFilter2D or to
1420
1421
@param kx Output matrix of row filter coefficients. It has the type ktype .
1422
@param ky Output matrix of column filter coefficients. It has the type ktype .
1423
@param dx Derivative order in respect of x.
1424
@param dy Derivative order in respect of y.
1425
@param ksize Aperture size. It can be FILTER_SCHARR, 1, 3, 5, or 7.
1426
@param normalize Flag indicating whether to normalize (scale down) the filter coefficients or not.
1427
Theoretically, the coefficients should have the denominator \f$=2^{ksize*2-dx-dy-2}\f$. If you are
1428
going to filter floating-point images, you are likely to use the normalized kernels. But if you
1429
compute derivatives of an 8-bit image, store the results in a 16-bit image, and wish to preserve
1430
all the fractional bits, you may want to set normalize=false .
1431
@param ktype Type of filter coefficients. It can be CV_32f or CV_64F .
1432
 */
1433
CV_EXPORTS_W void getDerivKernels( OutputArray kx, OutputArray ky,
1434
                                   int dx, int dy, int ksize,
1435
                                   bool normalize = false, int ktype = CV_32F );
1436
1437
/** @brief Returns Gabor filter coefficients.
1438
1439
For more details about gabor filter equations and parameters, see: [Gabor
1440
Filter](http://en.wikipedia.org/wiki/Gabor_filter).
1441
1442
@param ksize Size of the filter returned.
1443
@param sigma Standard deviation of the gaussian envelope.
1444
@param theta Orientation of the normal to the parallel stripes of a Gabor function.
1445
@param lambd Wavelength of the sinusoidal factor.
1446
@param gamma Spatial aspect ratio.
1447
@param psi Phase offset.
1448
@param ktype Type of filter coefficients. It can be CV_32F or CV_64F .
1449
 */
1450
CV_EXPORTS_W Mat getGaborKernel( Size ksize, double sigma, double theta, double lambd,
1451
                                 double gamma, double psi = CV_PI*0.5, int ktype = CV_64F );
1452
1453
//! returns "magic" border value for erosion and dilation. It is automatically transformed to Scalar::all(-DBL_MAX) for dilation.
1454
0
static inline Scalar morphologyDefaultBorderValue() { return Scalar::all(DBL_MAX); }
Unexecuted instantiation: core_fuzzer.cc:cv::morphologyDefaultBorderValue()
Unexecuted instantiation: filestorage_read_file_fuzzer.cc:cv::morphologyDefaultBorderValue()
Unexecuted instantiation: imdecode_fuzzer.cc:cv::morphologyDefaultBorderValue()
Unexecuted instantiation: filestorage_read_string_fuzzer.cc:cv::morphologyDefaultBorderValue()
Unexecuted instantiation: imencode_fuzzer.cc:cv::morphologyDefaultBorderValue()
Unexecuted instantiation: filestorage_read_filename_fuzzer.cc:cv::morphologyDefaultBorderValue()
Unexecuted instantiation: generateusergallerycollage_fuzzer.cc:cv::morphologyDefaultBorderValue()
Unexecuted instantiation: imread_fuzzer.cc:cv::morphologyDefaultBorderValue()
1455
1456
/** @brief Returns a structuring element of the specified size and shape for morphological operations.
1457
1458
The function constructs and returns the structuring element that can be further passed to #erode,
1459
#dilate or #morphologyEx. But you can also construct an arbitrary binary mask yourself and use it as
1460
the structuring element.
1461
1462
@param shape Element shape that could be one of #MorphShapes
1463
@param ksize Size of the structuring element.
1464
@param anchor Anchor position within the element. The default value \f$(-1, -1)\f$ means that the
1465
anchor is at the center. Note that only the shape of a cross-shaped element depends on the anchor
1466
position. In other cases the anchor just regulates how much the result of the morphological
1467
operation is shifted.
1468
 */
1469
CV_EXPORTS_W Mat getStructuringElement(int shape, Size ksize, Point anchor = Point(-1,-1));
1470
1471
/** @example samples/cpp/tutorial_code/ImgProc/Smoothing/Smoothing.cpp
1472
Sample code for simple filters
1473
![Sample screenshot](Smoothing_Tutorial_Result_Median_Filter.jpg)
1474
Check @ref tutorial_gausian_median_blur_bilateral_filter "the corresponding tutorial" for more details
1475
 */
1476
1477
/** @brief Blurs an image using the median filter.
1478
1479
The function smoothes an image using the median filter with the \f$\texttt{ksize} \times
1480
\texttt{ksize}\f$ aperture. Each channel of a multi-channel image is processed independently.
1481
In-place operation is supported.
1482
1483
@note The median filter uses #BORDER_REPLICATE internally to cope with border pixels, see #BorderTypes
1484
1485
@param src input 1-, 3-, or 4-channel image; when ksize is 3 or 5, the image depth should be
1486
CV_8U, CV_16U, or CV_32F, for larger aperture sizes, it can only be CV_8U.
1487
@param dst destination array of the same size and type as src.
1488
@param ksize aperture linear size; it must be odd and greater than 1, for example: 3, 5, 7 ...
1489
@sa  bilateralFilter, blur, boxFilter, GaussianBlur
1490
 */
1491
CV_EXPORTS_W void medianBlur( InputArray src, OutputArray dst, int ksize );
1492
1493
/** @brief Blurs an image using a Gaussian filter.
1494
1495
The function convolves the source image with the specified Gaussian kernel. In-place filtering is
1496
supported.
1497
1498
@param src input image; the image can have any number of channels, which are processed
1499
independently, but the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
1500
@param dst output image of the same size and type as src.
1501
@param ksize Gaussian kernel size. ksize.width and ksize.height can differ but they both must be
1502
positive and odd. Or, they can be zero's and then they are computed from sigma.
1503
@param sigmaX Gaussian kernel standard deviation in X direction.
1504
@param sigmaY Gaussian kernel standard deviation in Y direction; if sigmaY is zero, it is set to be
1505
equal to sigmaX, if both sigmas are zeros, they are computed from ksize.width and ksize.height,
1506
respectively (see #getGaussianKernel for details); to fully control the result regardless of
1507
possible future modifications of all this semantics, it is recommended to specify all of ksize,
1508
sigmaX, and sigmaY.
1509
@param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
1510
1511
@sa  sepFilter2D, filter2D, blur, boxFilter, bilateralFilter, medianBlur
1512
 */
1513
CV_EXPORTS_W void GaussianBlur( InputArray src, OutputArray dst, Size ksize,
1514
                                double sigmaX, double sigmaY = 0,
1515
                                int borderType = BORDER_DEFAULT );
1516
1517
/** @brief Applies the bilateral filter to an image.
1518
1519
The function applies bilateral filtering to the input image, as described in
1520
http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html
1521
bilateralFilter can reduce unwanted noise very well while keeping edges fairly sharp. However, it is
1522
very slow compared to most filters.
1523
1524
_Sigma values_: For simplicity, you can set the 2 sigma values to be the same. If they are small (\<
1525
10), the filter will not have much effect, whereas if they are large (\> 150), they will have a very
1526
strong effect, making the image look "cartoonish".
1527
1528
_Filter size_: Large filters (d \> 5) are very slow, so it is recommended to use d=5 for real-time
1529
applications, and perhaps d=9 for offline applications that need heavy noise filtering.
1530
1531
This filter does not work inplace.
1532
@param src Source 8-bit or floating-point, 1-channel or 3-channel image.
1533
@param dst Destination image of the same size and type as src .
1534
@param d Diameter of each pixel neighborhood that is used during filtering. If it is non-positive,
1535
it is computed from sigmaSpace.
1536
@param sigmaColor Filter sigma in the color space. A larger value of the parameter means that
1537
farther colors within the pixel neighborhood (see sigmaSpace) will be mixed together, resulting
1538
in larger areas of semi-equal color.
1539
@param sigmaSpace Filter sigma in the coordinate space. A larger value of the parameter means that
1540
farther pixels will influence each other as long as their colors are close enough (see sigmaColor
1541
). When d\>0, it specifies the neighborhood size regardless of sigmaSpace. Otherwise, d is
1542
proportional to sigmaSpace.
1543
@param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes
1544
 */
1545
CV_EXPORTS_W void bilateralFilter( InputArray src, OutputArray dst, int d,
1546
                                   double sigmaColor, double sigmaSpace,
1547
                                   int borderType = BORDER_DEFAULT );
1548
1549
/** @brief Blurs an image using the box filter.
1550
1551
The function smooths an image using the kernel:
1552
1553
\f[\texttt{K} =  \alpha \begin{bmatrix} 1 & 1 & 1 &  \cdots & 1 & 1  \\ 1 & 1 & 1 &  \cdots & 1 & 1  \\ \hdotsfor{6} \\ 1 & 1 & 1 &  \cdots & 1 & 1 \end{bmatrix}\f]
1554
1555
where
1556
1557
\f[\alpha = \begin{cases} \frac{1}{\texttt{ksize.width*ksize.height}} & \texttt{when } \texttt{normalize=true}  \\1 & \texttt{otherwise}\end{cases}\f]
1558
1559
Unnormalized box filter is useful for computing various integral characteristics over each pixel
1560
neighborhood, such as covariance matrices of image derivatives (used in dense optical flow
1561
algorithms, and so on). If you need to compute pixel sums over variable-size windows, use #integral.
1562
1563
@param src input image.
1564
@param dst output image of the same size and type as src.
1565
@param ddepth the output image depth (-1 to use src.depth()).
1566
@param ksize blurring kernel size.
1567
@param anchor anchor point; default value Point(-1,-1) means that the anchor is at the kernel
1568
center.
1569
@param normalize flag, specifying whether the kernel is normalized by its area or not.
1570
@param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes. #BORDER_WRAP is not supported.
1571
@sa  blur, bilateralFilter, GaussianBlur, medianBlur, integral
1572
 */
1573
CV_EXPORTS_W void boxFilter( InputArray src, OutputArray dst, int ddepth,
1574
                             Size ksize, Point anchor = Point(-1,-1),
1575
                             bool normalize = true,
1576
                             int borderType = BORDER_DEFAULT );
1577
1578
/** @brief Calculates the normalized sum of squares of the pixel values overlapping the filter.
1579
1580
For every pixel \f$ (x, y) \f$ in the source image, the function calculates the sum of squares of those neighboring
1581
pixel values which overlap the filter placed over the pixel \f$ (x, y) \f$.
1582
1583
The unnormalized square box filter can be useful in computing local image statistics such as the local
1584
variance and standard deviation around the neighborhood of a pixel.
1585
1586
@param src input image
1587
@param dst output image of the same size and type as src
1588
@param ddepth the output image depth (-1 to use src.depth())
1589
@param ksize kernel size
1590
@param anchor kernel anchor point. The default value of Point(-1, -1) denotes that the anchor is at the kernel
1591
center.
1592
@param normalize flag, specifying whether the kernel is to be normalized by it's area or not.
1593
@param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes. #BORDER_WRAP is not supported.
1594
@sa boxFilter
1595
*/
1596
CV_EXPORTS_W void sqrBoxFilter( InputArray src, OutputArray dst, int ddepth,
1597
                                Size ksize, Point anchor = Point(-1, -1),
1598
                                bool normalize = true,
1599
                                int borderType = BORDER_DEFAULT );
1600
1601
/** @brief Blurs an image using the normalized box filter.
1602
1603
The function smooths an image using the kernel:
1604
1605
\f[\texttt{K} =  \frac{1}{\texttt{ksize.width*ksize.height}} \begin{bmatrix} 1 & 1 & 1 &  \cdots & 1 & 1  \\ 1 & 1 & 1 &  \cdots & 1 & 1  \\ \hdotsfor{6} \\ 1 & 1 & 1 &  \cdots & 1 & 1  \\ \end{bmatrix}\f]
1606
1607
The call `blur(src, dst, ksize, anchor, borderType)` is equivalent to `boxFilter(src, dst, src.type(), ksize,
1608
anchor, true, borderType)`.
1609
1610
@param src input image; it can have any number of channels, which are processed independently, but
1611
the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
1612
@param dst output image of the same size and type as src.
1613
@param ksize blurring kernel size.
1614
@param anchor anchor point; default value Point(-1,-1) means that the anchor is at the kernel
1615
center.
1616
@param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes. #BORDER_WRAP is not supported.
1617
@sa  boxFilter, bilateralFilter, GaussianBlur, medianBlur
1618
 */
1619
CV_EXPORTS_W void blur( InputArray src, OutputArray dst,
1620
                        Size ksize, Point anchor = Point(-1,-1),
1621
                        int borderType = BORDER_DEFAULT );
1622
1623
/** @brief Blurs an image using the stackBlur.
1624
1625
The function applies and stackBlur to an image.
1626
stackBlur can generate similar results as Gaussian blur, and the time consumption does not increase with the increase of kernel size.
1627
It creates a kind of moving stack of colors whilst scanning through the image. Thereby it just has to add one new block of color to the right side
1628
of the stack and remove the leftmost color. The remaining colors on the topmost layer of the stack are either added on or reduced by one,
1629
depending on if they are on the right or on the left side of the stack. The only supported borderType is BORDER_REPLICATE.
1630
Original paper was proposed by Mario Klingemann, which can be found http://underdestruction.com/2004/02/25/stackblur-2004.
1631
1632
@param src input image. The number of channels can be arbitrary, but the depth should be one of
1633
CV_8U, CV_16U, CV_16S or CV_32F.
1634
@param dst output image of the same size and type as src.
1635
@param ksize stack-blurring kernel size. The ksize.width and ksize.height can differ but they both must be
1636
positive and odd.
1637
*/
1638
CV_EXPORTS_W void stackBlur(InputArray src, OutputArray dst, Size ksize);
1639
1640
/** @brief Convolves an image with the kernel.
1641
1642
The function applies an arbitrary linear filter to an image. In-place operation is supported. When
1643
the aperture is partially outside the image, the function interpolates outlier pixel values
1644
according to the specified border mode.
1645
1646
The function does actually compute correlation, not the convolution:
1647
1648
\f[\texttt{dst} (x,y) =  \sum _{ \substack{0\leq x' < \texttt{kernel.cols}\\{0\leq y' < \texttt{kernel.rows}}}}  \texttt{kernel} (x',y')* \texttt{src} (x+x'- \texttt{anchor.x} ,y+y'- \texttt{anchor.y} )\f]
1649
1650
That is, the kernel is not mirrored around the anchor point. If you need a real convolution, flip
1651
the kernel using #flip and set the new anchor to `(kernel.cols - anchor.x - 1, kernel.rows -
1652
anchor.y - 1)`.
1653
1654
The function uses the DFT-based algorithm in case of sufficiently large kernels (~`11 x 11` or
1655
larger) and the direct algorithm for small kernels.
1656
1657
@param src input image.
1658
@param dst output image of the same size and the same number of channels as src.
1659
@param ddepth desired depth of the destination image, see @ref filter_depths "combinations"
1660
@param kernel convolution kernel (or rather a correlation kernel), a single-channel floating point
1661
matrix; if you want to apply different kernels to different channels, split the image into
1662
separate color planes using split and process them individually.
1663
@param anchor anchor of the kernel that indicates the relative position of a filtered point within
1664
the kernel; the anchor should lie within the kernel; default value (-1,-1) means that the anchor
1665
is at the kernel center.
1666
@param delta optional value added to the filtered pixels before storing them in dst.
1667
@param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
1668
@sa  sepFilter2D, dft, matchTemplate
1669
 */
1670
CV_EXPORTS_W void filter2D( InputArray src, OutputArray dst, int ddepth,
1671
                            InputArray kernel, Point anchor = Point(-1,-1),
1672
                            double delta = 0, int borderType = BORDER_DEFAULT );
1673
1674
/** @brief Applies a separable linear filter to an image.
1675
1676
The function applies a separable linear filter to the image. That is, first, every row of src is
1677
filtered with the 1D kernel kernelX. Then, every column of the result is filtered with the 1D
1678
kernel kernelY. The final result shifted by delta is stored in dst .
1679
1680
@param src Source image.
1681
@param dst Destination image of the same size and the same number of channels as src .
1682
@param ddepth Destination image depth, see @ref filter_depths "combinations"
1683
@param kernelX Coefficients for filtering each row.
1684
@param kernelY Coefficients for filtering each column.
1685
@param anchor Anchor position within the kernel. The default value \f$(-1,-1)\f$ means that the anchor
1686
is at the kernel center.
1687
@param delta Value added to the filtered results before storing them.
1688
@param borderType Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
1689
@sa  filter2D, Sobel, GaussianBlur, boxFilter, blur
1690
 */
1691
CV_EXPORTS_W void sepFilter2D( InputArray src, OutputArray dst, int ddepth,
1692
                               InputArray kernelX, InputArray kernelY,
1693
                               Point anchor = Point(-1,-1),
1694
                               double delta = 0, int borderType = BORDER_DEFAULT );
1695
1696
/** @example samples/cpp/tutorial_code/ImgTrans/Sobel_Demo.cpp
1697
Sample code using Sobel and/or Scharr OpenCV functions to make a simple Edge Detector
1698
![Sample screenshot](Sobel_Derivatives_Tutorial_Result.jpg)
1699
Check @ref tutorial_sobel_derivatives "the corresponding tutorial" for more details
1700
*/
1701
1702
/** @brief Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator.
1703
1704
In all cases except one, the \f$\texttt{ksize} \times \texttt{ksize}\f$ separable kernel is used to
1705
calculate the derivative. When \f$\texttt{ksize = 1}\f$, the \f$3 \times 1\f$ or \f$1 \times 3\f$
1706
kernel is used (that is, no Gaussian smoothing is done). `ksize = 1` can only be used for the first
1707
or the second x- or y- derivatives.
1708
1709
There is also the special value `ksize = #FILTER_SCHARR (-1)` that corresponds to the \f$3\times3\f$ Scharr
1710
filter that may give more accurate results than the \f$3\times3\f$ Sobel. The Scharr aperture is
1711
1712
\f[\vecthreethree{-3}{0}{3}{-10}{0}{10}{-3}{0}{3}\f]
1713
1714
for the x-derivative, or transposed for the y-derivative.
1715
1716
The function calculates an image derivative by convolving the image with the appropriate kernel:
1717
1718
\f[\texttt{dst} =  \frac{\partial^{xorder+yorder} \texttt{src}}{\partial x^{xorder} \partial y^{yorder}}\f]
1719
1720
The Sobel operators combine Gaussian smoothing and differentiation, so the result is more or less
1721
resistant to the noise. Most often, the function is called with ( xorder = 1, yorder = 0, ksize = 3)
1722
or ( xorder = 0, yorder = 1, ksize = 3) to calculate the first x- or y- image derivative. The first
1723
case corresponds to a kernel of:
1724
1725
\f[\vecthreethree{-1}{0}{1}{-2}{0}{2}{-1}{0}{1}\f]
1726
1727
The second case corresponds to a kernel of:
1728
1729
\f[\vecthreethree{-1}{-2}{-1}{0}{0}{0}{1}{2}{1}\f]
1730
1731
@param src input image.
1732
@param dst output image of the same size and the same number of channels as src .
1733
@param ddepth output image depth, see @ref filter_depths "combinations"; in the case of
1734
    8-bit input images it will result in truncated derivatives.
1735
@param dx order of the derivative x.
1736
@param dy order of the derivative y.
1737
@param ksize size of the extended Sobel kernel; it must be 1, 3, 5, or 7.
1738
@param scale optional scale factor for the computed derivative values; by default, no scaling is
1739
applied (see #getDerivKernels for details).
1740
@param delta optional delta value that is added to the results prior to storing them in dst.
1741
@param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
1742
@sa  Scharr, Laplacian, sepFilter2D, filter2D, GaussianBlur, cartToPolar
1743
 */
1744
CV_EXPORTS_W void Sobel( InputArray src, OutputArray dst, int ddepth,
1745
                         int dx, int dy, int ksize = 3,
1746
                         double scale = 1, double delta = 0,
1747
                         int borderType = BORDER_DEFAULT );
1748
1749
/** @brief Calculates the first order image derivative in both x and y using a Sobel operator
1750
1751
Equivalent to calling:
1752
1753
@code
1754
Sobel( src, dx, CV_16SC1, 1, 0, 3 );
1755
Sobel( src, dy, CV_16SC1, 0, 1, 3 );
1756
@endcode
1757
1758
@param src input image.
1759
@param dx output image with first-order derivative in x.
1760
@param dy output image with first-order derivative in y.
1761
@param ksize size of Sobel kernel. It must be 3.
1762
@param borderType pixel extrapolation method, see #BorderTypes.
1763
                  Only #BORDER_DEFAULT=#BORDER_REFLECT_101 and #BORDER_REPLICATE are supported.
1764
1765
@sa Sobel
1766
 */
1767
1768
CV_EXPORTS_W void spatialGradient( InputArray src, OutputArray dx,
1769
                                   OutputArray dy, int ksize = 3,
1770
                                   int borderType = BORDER_DEFAULT );
1771
1772
/** @brief Calculates the first x- or y- image derivative using Scharr operator.
1773
1774
The function computes the first x- or y- spatial image derivative using the Scharr operator. The
1775
call
1776
1777
\f[\texttt{Scharr(src, dst, ddepth, dx, dy, scale, delta, borderType)}\f]
1778
1779
is equivalent to
1780
1781
\f[\texttt{Sobel(src, dst, ddepth, dx, dy, FILTER_SCHARR, scale, delta, borderType)} .\f]
1782
1783
@param src input image.
1784
@param dst output image of the same size and the same number of channels as src.
1785
@param ddepth output image depth, see @ref filter_depths "combinations"
1786
@param dx order of the derivative x.
1787
@param dy order of the derivative y.
1788
@param scale optional scale factor for the computed derivative values; by default, no scaling is
1789
applied (see #getDerivKernels for details).
1790
@param delta optional delta value that is added to the results prior to storing them in dst.
1791
@param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
1792
@sa  cartToPolar
1793
 */
1794
CV_EXPORTS_W void Scharr( InputArray src, OutputArray dst, int ddepth,
1795
                          int dx, int dy, double scale = 1, double delta = 0,
1796
                          int borderType = BORDER_DEFAULT );
1797
1798
/** @example samples/cpp/laplace.cpp
1799
An example using Laplace transformations for edge detection
1800
*/
1801
1802
/** @brief Calculates the Laplacian of an image.
1803
1804
The function calculates the Laplacian of the source image by adding up the second x and y
1805
derivatives calculated using the Sobel operator:
1806
1807
\f[\texttt{dst} =  \Delta \texttt{src} =  \frac{\partial^2 \texttt{src}}{\partial x^2} +  \frac{\partial^2 \texttt{src}}{\partial y^2}\f]
1808
1809
This is done when `ksize > 1`. When `ksize == 1`, the Laplacian is computed by filtering the image
1810
with the following \f$3 \times 3\f$ aperture:
1811
1812
\f[\vecthreethree {0}{1}{0}{1}{-4}{1}{0}{1}{0}\f]
1813
1814
@param src Source image.
1815
@param dst Destination image of the same size and the same number of channels as src .
1816
@param ddepth Desired depth of the destination image, see @ref filter_depths "combinations".
1817
@param ksize Aperture size used to compute the second-derivative filters. See #getDerivKernels for
1818
details. The size must be positive and odd.
1819
@param scale Optional scale factor for the computed Laplacian values. By default, no scaling is
1820
applied. See #getDerivKernels for details.
1821
@param delta Optional delta value that is added to the results prior to storing them in dst .
1822
@param borderType Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
1823
@sa  Sobel, Scharr
1824
 */
1825
CV_EXPORTS_W void Laplacian( InputArray src, OutputArray dst, int ddepth,
1826
                             int ksize = 1, double scale = 1, double delta = 0,
1827
                             int borderType = BORDER_DEFAULT );
1828
1829
//! @} imgproc_filter
1830
1831
//! @addtogroup imgproc_feature
1832
//! @{
1833
1834
/** @example samples/cpp/edge.cpp
1835
This program demonstrates usage of the Canny edge detector
1836
1837
Check @ref tutorial_canny_detector "the corresponding tutorial" for more details
1838
*/
1839
1840
/** @brief Finds edges in an image using the Canny algorithm @cite Canny86 .
1841
1842
The function finds edges in the input image and marks them in the output map edges using the
1843
Canny algorithm. The smallest value between threshold1 and threshold2 is used for edge linking. The
1844
largest value is used to find initial segments of strong edges. See
1845
<http://en.wikipedia.org/wiki/Canny_edge_detector>
1846
1847
@param image 8-bit input image.
1848
@param edges output edge map; single channels 8-bit image, which has the same size as image .
1849
@param threshold1 first threshold for the hysteresis procedure.
1850
@param threshold2 second threshold for the hysteresis procedure.
1851
@param apertureSize aperture size for the Sobel operator.
1852
@param L2gradient a flag, indicating whether a more accurate \f$L_2\f$ norm
1853
\f$=\sqrt{(dI/dx)^2 + (dI/dy)^2}\f$ should be used to calculate the image gradient magnitude (
1854
L2gradient=true ), or whether the default \f$L_1\f$ norm \f$=|dI/dx|+|dI/dy|\f$ is enough (
1855
L2gradient=false ).
1856
 */
1857
CV_EXPORTS_W void Canny( InputArray image, OutputArray edges,
1858
                         double threshold1, double threshold2,
1859
                         int apertureSize = 3, bool L2gradient = false );
1860
1861
/** \overload
1862
1863
Finds edges in an image using the Canny algorithm with custom image gradient.
1864
1865
@param dx 16-bit x derivative of input image (CV_16SC1 or CV_16SC3).
1866
@param dy 16-bit y derivative of input image (same type as dx).
1867
@param edges output edge map; single channels 8-bit image, which has the same size as image .
1868
@param threshold1 first threshold for the hysteresis procedure.
1869
@param threshold2 second threshold for the hysteresis procedure.
1870
@param L2gradient a flag, indicating whether a more accurate \f$L_2\f$ norm
1871
\f$=\sqrt{(dI/dx)^2 + (dI/dy)^2}\f$ should be used to calculate the image gradient magnitude (
1872
L2gradient=true ), or whether the default \f$L_1\f$ norm \f$=|dI/dx|+|dI/dy|\f$ is enough (
1873
L2gradient=false ).
1874
 */
1875
CV_EXPORTS_W void Canny( InputArray dx, InputArray dy,
1876
                         OutputArray edges,
1877
                         double threshold1, double threshold2,
1878
                         bool L2gradient = false );
1879
1880
/** @brief Calculates the minimal eigenvalue of gradient matrices for corner detection.
1881
1882
The function is similar to cornerEigenValsAndVecs but it calculates and stores only the minimal
1883
eigenvalue of the covariance matrix of derivatives, that is, \f$\min(\lambda_1, \lambda_2)\f$ in terms
1884
of the formulae in the cornerEigenValsAndVecs description.
1885
1886
@param src Input single-channel 8-bit or floating-point image.
1887
@param dst Image to store the minimal eigenvalues. It has the type CV_32FC1 and the same size as
1888
src .
1889
@param blockSize Neighborhood size (see the details on #cornerEigenValsAndVecs ).
1890
@param ksize Aperture parameter for the Sobel operator.
1891
@param borderType Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported.
1892
 */
1893
CV_EXPORTS_W void cornerMinEigenVal( InputArray src, OutputArray dst,
1894
                                     int blockSize, int ksize = 3,
1895
                                     int borderType = BORDER_DEFAULT );
1896
1897
/** @brief Harris corner detector.
1898
1899
The function runs the Harris corner detector on the image. Similarly to cornerMinEigenVal and
1900
cornerEigenValsAndVecs , for each pixel \f$(x, y)\f$ it calculates a \f$2\times2\f$ gradient covariance
1901
matrix \f$M^{(x,y)}\f$ over a \f$\texttt{blockSize} \times \texttt{blockSize}\f$ neighborhood. Then, it
1902
computes the following characteristic:
1903
1904
\f[\texttt{dst} (x,y) =  \mathrm{det} M^{(x,y)} - k  \cdot \left ( \mathrm{tr} M^{(x,y)} \right )^2\f]
1905
1906
Corners in the image can be found as the local maxima of this response map.
1907
1908
@param src Input single-channel 8-bit or floating-point image.
1909
@param dst Image to store the Harris detector responses. It has the type CV_32FC1 and the same
1910
size as src .
1911
@param blockSize Neighborhood size (see the details on #cornerEigenValsAndVecs ).
1912
@param ksize Aperture parameter for the Sobel operator.
1913
@param k Harris detector free parameter. See the formula above.
1914
@param borderType Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported.
1915
 */
1916
CV_EXPORTS_W void cornerHarris( InputArray src, OutputArray dst, int blockSize,
1917
                                int ksize, double k,
1918
                                int borderType = BORDER_DEFAULT );
1919
1920
/** @brief Calculates eigenvalues and eigenvectors of image blocks for corner detection.
1921
1922
For every pixel \f$p\f$ , the function cornerEigenValsAndVecs considers a blockSize \f$\times\f$ blockSize
1923
neighborhood \f$S(p)\f$ . It calculates the covariation matrix of derivatives over the neighborhood as:
1924
1925
\f[M =  \begin{bmatrix} \sum _{S(p)}(dI/dx)^2 &  \sum _{S(p)}dI/dx dI/dy  \\ \sum _{S(p)}dI/dx dI/dy &  \sum _{S(p)}(dI/dy)^2 \end{bmatrix}\f]
1926
1927
where the derivatives are computed using the Sobel operator.
1928
1929
After that, it finds eigenvectors and eigenvalues of \f$M\f$ and stores them in the destination image as
1930
\f$(\lambda_1, \lambda_2, x_1, y_1, x_2, y_2)\f$ where
1931
1932
-   \f$\lambda_1, \lambda_2\f$ are the non-sorted eigenvalues of \f$M\f$
1933
-   \f$x_1, y_1\f$ are the eigenvectors corresponding to \f$\lambda_1\f$
1934
-   \f$x_2, y_2\f$ are the eigenvectors corresponding to \f$\lambda_2\f$
1935
1936
The output of the function can be used for robust edge or corner detection.
1937
1938
@param src Input single-channel 8-bit or floating-point image.
1939
@param dst Image to store the results. It has the same size as src and the type CV_32FC(6) .
1940
@param blockSize Neighborhood size (see details below).
1941
@param ksize Aperture parameter for the Sobel operator.
1942
@param borderType Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported.
1943
1944
@sa  cornerMinEigenVal, cornerHarris, preCornerDetect
1945
 */
1946
CV_EXPORTS_W void cornerEigenValsAndVecs( InputArray src, OutputArray dst,
1947
                                          int blockSize, int ksize,
1948
                                          int borderType = BORDER_DEFAULT );
1949
1950
/** @brief Calculates a feature map for corner detection.
1951
1952
The function calculates the complex spatial derivative-based function of the source image
1953
1954
\f[\texttt{dst} = (D_x  \texttt{src} )^2  \cdot D_{yy}  \texttt{src} + (D_y  \texttt{src} )^2  \cdot D_{xx}  \texttt{src} - 2 D_x  \texttt{src} \cdot D_y  \texttt{src} \cdot D_{xy}  \texttt{src}\f]
1955
1956
where \f$D_x\f$,\f$D_y\f$ are the first image derivatives, \f$D_{xx}\f$,\f$D_{yy}\f$ are the second image
1957
derivatives, and \f$D_{xy}\f$ is the mixed derivative.
1958
1959
The corners can be found as local maximums of the functions, as shown below:
1960
@code
1961
    Mat corners, dilated_corners;
1962
    preCornerDetect(image, corners, 3);
1963
    // dilation with 3x3 rectangular structuring element
1964
    dilate(corners, dilated_corners, Mat(), 1);
1965
    Mat corner_mask = corners == dilated_corners;
1966
@endcode
1967
1968
@param src Source single-channel 8-bit of floating-point image.
1969
@param dst Output image that has the type CV_32F and the same size as src .
1970
@param ksize %Aperture size of the Sobel .
1971
@param borderType Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported.
1972
 */
1973
CV_EXPORTS_W void preCornerDetect( InputArray src, OutputArray dst, int ksize,
1974
                                   int borderType = BORDER_DEFAULT );
1975
1976
/** @brief Refines the corner locations.
1977
1978
The function iterates to find the sub-pixel accurate location of corners or radial saddle
1979
points as described in @cite forstner1987fast, and as shown on the figure below.
1980
1981
![image](pics/cornersubpix.png)
1982
1983
Sub-pixel accurate corner locator is based on the observation that every vector from the center \f$q\f$
1984
to a point \f$p\f$ located within a neighborhood of \f$q\f$ is orthogonal to the image gradient at \f$p\f$
1985
subject to image and measurement noise. Consider the expression:
1986
1987
\f[\epsilon _i = {DI_{p_i}}^T  \cdot (q - p_i)\f]
1988
1989
where \f${DI_{p_i}}\f$ is an image gradient at one of the points \f$p_i\f$ in a neighborhood of \f$q\f$ . The
1990
value of \f$q\f$ is to be found so that \f$\epsilon_i\f$ is minimized. A system of equations may be set up
1991
with \f$\epsilon_i\f$ set to zero:
1992
1993
\f[\sum _i(DI_{p_i}  \cdot {DI_{p_i}}^T) \cdot q -  \sum _i(DI_{p_i}  \cdot {DI_{p_i}}^T  \cdot p_i)\f]
1994
1995
where the gradients are summed within a neighborhood ("search window") of \f$q\f$ . Calling the first
1996
gradient term \f$G\f$ and the second gradient term \f$b\f$ gives:
1997
1998
\f[q = G^{-1}  \cdot b\f]
1999
2000
The algorithm sets the center of the neighborhood window at this new center \f$q\f$ and then iterates
2001
until the center stays within a set threshold.
2002
2003
@param image Input single-channel, 8-bit or float image.
2004
@param corners Initial coordinates of the input corners and refined coordinates provided for
2005
output.
2006
@param winSize Half of the side length of the search window. For example, if winSize=Size(5,5) ,
2007
then a \f$(5*2+1) \times (5*2+1) = 11 \times 11\f$ search window is used.
2008
@param zeroZone Half of the size of the dead region in the middle of the search zone over which
2009
the summation in the formula below is not done. It is used sometimes to avoid possible
2010
singularities of the autocorrelation matrix. The value of (-1,-1) indicates that there is no such
2011
a size.
2012
@param criteria Criteria for termination of the iterative process of corner refinement. That is,
2013
the process of corner position refinement stops either after criteria.maxCount iterations or when
2014
the corner position moves by less than criteria.epsilon on some iteration.
2015
 */
2016
CV_EXPORTS_W void cornerSubPix( InputArray image, InputOutputArray corners,
2017
                                Size winSize, Size zeroZone,
2018
                                TermCriteria criteria );
2019
2020
/** @brief Determines strong corners on an image.
2021
2022
The function finds the most prominent corners in the image or in the specified image region, as
2023
described in @cite Shi94
2024
2025
-   Function calculates the corner quality measure at every source image pixel using the
2026
    #cornerMinEigenVal or #cornerHarris .
2027
-   Function performs a non-maximum suppression (the local maximums in *3 x 3* neighborhood are
2028
    retained).
2029
-   The corners with the minimal eigenvalue less than
2030
    \f$\texttt{qualityLevel} \cdot \max_{x,y} qualityMeasureMap(x,y)\f$ are rejected.
2031
-   The remaining corners are sorted by the quality measure in the descending order.
2032
-   Function throws away each corner for which there is a stronger corner at a distance less than
2033
    maxDistance.
2034
2035
The function can be used to initialize a point-based tracker of an object.
2036
2037
@note If the function is called with different values A and B of the parameter qualityLevel , and
2038
A \> B, the vector of returned corners with qualityLevel=A will be the prefix of the output vector
2039
with qualityLevel=B .
2040
2041
@param image Input 8-bit or floating-point 32-bit, single-channel image.
2042
@param corners Output vector of detected corners.
2043
@param maxCorners Maximum number of corners to return. If there are more corners than are found,
2044
the strongest of them is returned. `maxCorners <= 0` implies that no limit on the maximum is set
2045
and all detected corners are returned.
2046
@param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The
2047
parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
2048
(see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the
2049
quality measure less than the product are rejected. For example, if the best corner has the
2050
quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
2051
less than 15 are rejected.
2052
@param minDistance Minimum possible Euclidean distance between the returned corners.
2053
@param mask Optional region of interest. If the image is not empty (it needs to have the type
2054
CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected.
2055
@param blockSize Size of an average block for computing a derivative covariation matrix over each
2056
pixel neighborhood. See cornerEigenValsAndVecs .
2057
@param useHarrisDetector Parameter indicating whether to use a Harris detector (see #cornerHarris)
2058
or #cornerMinEigenVal.
2059
@param k Free parameter of the Harris detector.
2060
2061
@sa  cornerMinEigenVal, cornerHarris, calcOpticalFlowPyrLK, estimateRigidTransform,
2062
 */
2063
2064
CV_EXPORTS_W void goodFeaturesToTrack( InputArray image, OutputArray corners,
2065
                                     int maxCorners, double qualityLevel, double minDistance,
2066
                                     InputArray mask = noArray(), int blockSize = 3,
2067
                                     bool useHarrisDetector = false, double k = 0.04 );
2068
2069
CV_EXPORTS_W void goodFeaturesToTrack( InputArray image, OutputArray corners,
2070
                                     int maxCorners, double qualityLevel, double minDistance,
2071
                                     InputArray mask, int blockSize,
2072
                                     int gradientSize, bool useHarrisDetector = false,
2073
                                     double k = 0.04 );
2074
2075
/** @brief Same as above, but returns also quality measure of the detected corners.
2076
2077
@param image Input 8-bit or floating-point 32-bit, single-channel image.
2078
@param corners Output vector of detected corners.
2079
@param maxCorners Maximum number of corners to return. If there are more corners than are found,
2080
the strongest of them is returned. `maxCorners <= 0` implies that no limit on the maximum is set
2081
and all detected corners are returned.
2082
@param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The
2083
parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
2084
(see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the
2085
quality measure less than the product are rejected. For example, if the best corner has the
2086
quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
2087
less than 15 are rejected.
2088
@param minDistance Minimum possible Euclidean distance between the returned corners.
2089
@param mask Region of interest. If the image is not empty (it needs to have the type
2090
CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected.
2091
@param cornersQuality Output vector of quality measure of the detected corners.
2092
@param blockSize Size of an average block for computing a derivative covariation matrix over each
2093
pixel neighborhood. See cornerEigenValsAndVecs .
2094
@param gradientSize Aperture parameter for the Sobel operator used for derivatives computation.
2095
See cornerEigenValsAndVecs .
2096
@param useHarrisDetector Parameter indicating whether to use a Harris detector (see #cornerHarris)
2097
or #cornerMinEigenVal.
2098
@param k Free parameter of the Harris detector.
2099
 */
2100
CV_EXPORTS CV_WRAP_AS(goodFeaturesToTrackWithQuality) void goodFeaturesToTrack(
2101
        InputArray image, OutputArray corners,
2102
        int maxCorners, double qualityLevel, double minDistance,
2103
        InputArray mask, OutputArray cornersQuality, int blockSize = 3,
2104
        int gradientSize = 3, bool useHarrisDetector = false, double k = 0.04);
2105
2106
/** @example samples/cpp/tutorial_code/ImgTrans/houghlines.cpp
2107
An example using the Hough line detector
2108
![Sample input image](Hough_Lines_Tutorial_Original_Image.jpg) ![Output image](Hough_Lines_Tutorial_Result.jpg)
2109
*/
2110
2111
/** @brief Finds lines in a binary image using the standard Hough transform.
2112
2113
The function implements the standard or standard multi-scale Hough transform algorithm for line
2114
detection. See <http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm> for a good explanation of Hough
2115
transform.
2116
2117
@param image 8-bit, single-channel binary source image. The image may be modified by the function.
2118
@param lines Output vector of lines. Each line is represented by a 2 or 3 element vector
2119
\f$(\rho, \theta)\f$ or \f$(\rho, \theta, \textrm{votes})\f$, where \f$\rho\f$ is the distance from
2120
the coordinate origin \f$(0,0)\f$ (top-left corner of the image), \f$\theta\f$ is the line rotation
2121
angle in radians ( \f$0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}\f$ ), and
2122
\f$\textrm{votes}\f$ is the value of accumulator.
2123
@param rho Distance resolution of the accumulator in pixels.
2124
@param theta Angle resolution of the accumulator in radians.
2125
@param threshold %Accumulator threshold parameter. Only those lines are returned that get enough
2126
votes ( \f$>\texttt{threshold}\f$ ).
2127
@param srn For the multi-scale Hough transform, it is a divisor for the distance resolution rho.
2128
The coarse accumulator distance resolution is rho and the accurate accumulator resolution is
2129
rho/srn. If both srn=0 and stn=0, the classical Hough transform is used. Otherwise, both these
2130
parameters should be positive.
2131
@param stn For the multi-scale Hough transform, it is a divisor for the distance resolution theta.
2132
@param min_theta For standard and multi-scale Hough transform, minimum angle to check for lines.
2133
Must fall between 0 and max_theta.
2134
@param max_theta For standard and multi-scale Hough transform, an upper bound for the angle.
2135
Must fall between min_theta and CV_PI. The actual maximum angle in the accumulator may be slightly
2136
less than max_theta, depending on the parameters min_theta and theta.
2137
 */
2138
CV_EXPORTS_W void HoughLines( InputArray image, OutputArray lines,
2139
                              double rho, double theta, int threshold,
2140
                              double srn = 0, double stn = 0,
2141
                              double min_theta = 0, double max_theta = CV_PI );
2142
2143
/** @brief Finds line segments in a binary image using the probabilistic Hough transform.
2144
2145
The function implements the probabilistic Hough transform algorithm for line detection, described
2146
in @cite Matas00
2147
2148
See the line detection example below:
2149
@include snippets/imgproc_HoughLinesP.cpp
2150
This is a sample picture the function parameters have been tuned for:
2151
2152
![image](pics/building.jpg)
2153
2154
And this is the output of the above program in case of the probabilistic Hough transform:
2155
2156
![image](pics/houghp.png)
2157
2158
@param image 8-bit, single-channel binary source image. The image may be modified by the function.
2159
@param lines Output vector of lines. Each line is represented by a 4-element vector
2160
\f$(x_1, y_1, x_2, y_2)\f$ , where \f$(x_1,y_1)\f$ and \f$(x_2, y_2)\f$ are the ending points of each detected
2161
line segment.
2162
@param rho Distance resolution of the accumulator in pixels.
2163
@param theta Angle resolution of the accumulator in radians.
2164
@param threshold %Accumulator threshold parameter. Only those lines are returned that get enough
2165
votes ( \f$>\texttt{threshold}\f$ ).
2166
@param minLineLength Minimum line length. Line segments shorter than that are rejected.
2167
@param maxLineGap Maximum allowed gap between points on the same line to link them.
2168
2169
@sa LineSegmentDetector
2170
 */
2171
CV_EXPORTS_W void HoughLinesP( InputArray image, OutputArray lines,
2172
                               double rho, double theta, int threshold,
2173
                               double minLineLength = 0, double maxLineGap = 0 );
2174
2175
/** @brief Finds lines in a set of points using the standard Hough transform.
2176
2177
The function finds lines in a set of points using a modification of the Hough transform.
2178
@include snippets/imgproc_HoughLinesPointSet.cpp
2179
@param point Input vector of points. Each vector must be encoded as a Point vector \f$(x,y)\f$. Type must be CV_32FC2 or CV_32SC2.
2180
@param lines Output vector of found lines. Each vector is encoded as a vector<Vec3d> \f$(votes, rho, theta)\f$.
2181
The larger the value of 'votes', the higher the reliability of the Hough line.
2182
@param lines_max Max count of Hough lines.
2183
@param threshold %Accumulator threshold parameter. Only those lines are returned that get enough
2184
votes ( \f$>\texttt{threshold}\f$ ).
2185
@param min_rho Minimum value for \f$\rho\f$ for the accumulator (Note: \f$\rho\f$ can be negative. The absolute value \f$|\rho|\f$ is the distance of a line to the origin.).
2186
@param max_rho Maximum value for \f$\rho\f$ for the accumulator.
2187
@param rho_step Distance resolution of the accumulator.
2188
@param min_theta Minimum angle value of the accumulator in radians.
2189
@param max_theta Upper bound for the angle value of the accumulator in radians. The actual maximum
2190
angle may be slightly less than max_theta, depending on the parameters min_theta and theta_step.
2191
@param theta_step Angle resolution of the accumulator in radians.
2192
 */
2193
CV_EXPORTS_W void HoughLinesPointSet( InputArray point, OutputArray lines, int lines_max, int threshold,
2194
                                      double min_rho, double max_rho, double rho_step,
2195
                                      double min_theta, double max_theta, double theta_step );
2196
2197
/** @example samples/cpp/tutorial_code/ImgTrans/houghcircles.cpp
2198
An example using the Hough circle detector
2199
*/
2200
2201
/** @brief Finds circles in a grayscale image using the Hough transform.
2202
2203
The function finds circles in a grayscale image using a modification of the Hough transform.
2204
2205
Example: :
2206
@include snippets/imgproc_HoughLinesCircles.cpp
2207
2208
@note Usually the function detects the centers of circles well. However, it may fail to find correct
2209
radii. You can assist to the function by specifying the radius range ( minRadius and maxRadius ) if
2210
you know it. Or, in the case of #HOUGH_GRADIENT method you may set maxRadius to a negative number
2211
to return centers only without radius search, and find the correct radius using an additional procedure.
2212
2213
It also helps to smooth image a bit unless it's already soft. For example,
2214
GaussianBlur() with 7x7 kernel and 1.5x1.5 sigma or similar blurring may help.
2215
2216
@param image 8-bit, single-channel, grayscale input image.
2217
@param circles Output vector of found circles. Each vector is encoded as  3 or 4 element
2218
floating-point vector \f$(x, y, radius)\f$ or \f$(x, y, radius, votes)\f$ .
2219
@param method Detection method, see #HoughModes. The available methods are #HOUGH_GRADIENT and #HOUGH_GRADIENT_ALT.
2220
@param dp Inverse ratio of the accumulator resolution to the image resolution. For example, if
2221
dp=1 , the accumulator has the same resolution as the input image. If dp=2 , the accumulator has
2222
half as big width and height. For #HOUGH_GRADIENT_ALT the recommended value is dp=1.5,
2223
unless some small very circles need to be detected.
2224
@param minDist Minimum distance between the centers of the detected circles. If the parameter is
2225
too small, multiple neighbor circles may be falsely detected in addition to a true one. If it is
2226
too large, some circles may be missed.
2227
@param param1 First method-specific parameter. In case of #HOUGH_GRADIENT and #HOUGH_GRADIENT_ALT,
2228
it is the higher threshold of the two passed to the Canny edge detector (the lower one is twice smaller).
2229
Note that #HOUGH_GRADIENT_ALT uses #Scharr algorithm to compute image derivatives, so the threshold value
2230
shough normally be higher, such as 300 or normally exposed and contrasty images.
2231
@param param2 Second method-specific parameter. In case of #HOUGH_GRADIENT, it is the
2232
accumulator threshold for the circle centers at the detection stage. The smaller it is, the more
2233
false circles may be detected. Circles, corresponding to the larger accumulator values, will be
2234
returned first. In the case of #HOUGH_GRADIENT_ALT algorithm, this is the circle "perfectness" measure.
2235
The closer it to 1, the better shaped circles algorithm selects. In most cases 0.9 should be fine.
2236
If you want get better detection of small circles, you may decrease it to 0.85, 0.8 or even less.
2237
But then also try to limit the search range [minRadius, maxRadius] to avoid many false circles.
2238
@param minRadius Minimum circle radius.
2239
@param maxRadius Maximum circle radius. If <= 0, uses the maximum image dimension. If < 0, #HOUGH_GRADIENT returns
2240
centers without finding the radius. #HOUGH_GRADIENT_ALT always computes circle radiuses.
2241
2242
@sa fitEllipse, minEnclosingCircle
2243
 */
2244
CV_EXPORTS_W void HoughCircles( InputArray image, OutputArray circles,
2245
                               int method, double dp, double minDist,
2246
                               double param1 = 100, double param2 = 100,
2247
                               int minRadius = 0, int maxRadius = 0 );
2248
2249
//! @} imgproc_feature
2250
2251
//! @addtogroup imgproc_filter
2252
//! @{
2253
2254
/** @example samples/cpp/tutorial_code/ImgProc/Morphology_2.cpp
2255
Advanced morphology Transformations sample code
2256
![Sample screenshot](Morphology_2_Tutorial_Result.jpg)
2257
Check @ref tutorial_opening_closing_hats "the corresponding tutorial" for more details
2258
*/
2259
2260
/** @brief Erodes an image by using a specific structuring element.
2261
2262
The function erodes the source image using the specified structuring element that determines the
2263
shape of a pixel neighborhood over which the minimum is taken:
2264
2265
\f[\texttt{dst} (x,y) =  \min _{(x',y'):  \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\f]
2266
2267
The function supports the in-place mode. Erosion can be applied several ( iterations ) times. In
2268
case of multi-channel images, each channel is processed independently.
2269
2270
@param src input image; the number of channels can be arbitrary, but the depth should be one of
2271
CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
2272
@param dst output image of the same size and type as src.
2273
@param kernel structuring element used for erosion; if `element=Mat()`, a `3 x 3` rectangular
2274
structuring element is used. Kernel can be created using #getStructuringElement.
2275
@param anchor position of the anchor within the element; default value (-1, -1) means that the
2276
anchor is at the element center.
2277
@param iterations number of times erosion is applied.
2278
@param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
2279
@param borderValue border value in case of a constant border
2280
@sa  dilate, morphologyEx, getStructuringElement
2281
 */
2282
CV_EXPORTS_W void erode( InputArray src, OutputArray dst, InputArray kernel,
2283
                         Point anchor = Point(-1,-1), int iterations = 1,
2284
                         int borderType = BORDER_CONSTANT,
2285
                         const Scalar& borderValue = morphologyDefaultBorderValue() );
2286
2287
/** @example samples/cpp/tutorial_code/ImgProc/Morphology_1.cpp
2288
Erosion and Dilation sample code
2289
![Sample Screenshot-Erosion](Morphology_1_Tutorial_Erosion_Result.jpg)![Sample Screenshot-Dilation](Morphology_1_Tutorial_Dilation_Result.jpg)
2290
Check @ref tutorial_erosion_dilatation "the corresponding tutorial" for more details
2291
*/
2292
2293
/** @brief Dilates an image by using a specific structuring element.
2294
2295
The function dilates the source image using the specified structuring element that determines the
2296
shape of a pixel neighborhood over which the maximum is taken:
2297
\f[\texttt{dst} (x,y) =  \max _{(x',y'):  \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\f]
2298
2299
The function supports the in-place mode. Dilation can be applied several ( iterations ) times. In
2300
case of multi-channel images, each channel is processed independently.
2301
2302
@param src input image; the number of channels can be arbitrary, but the depth should be one of
2303
CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
2304
@param dst output image of the same size and type as src.
2305
@param kernel structuring element used for dilation; if element=Mat(), a 3 x 3 rectangular
2306
structuring element is used. Kernel can be created using #getStructuringElement
2307
@param anchor position of the anchor within the element; default value (-1, -1) means that the
2308
anchor is at the element center.
2309
@param iterations number of times dilation is applied.
2310
@param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not suported.
2311
@param borderValue border value in case of a constant border
2312
@sa  erode, morphologyEx, getStructuringElement
2313
 */
2314
CV_EXPORTS_W void dilate( InputArray src, OutputArray dst, InputArray kernel,
2315
                          Point anchor = Point(-1,-1), int iterations = 1,
2316
                          int borderType = BORDER_CONSTANT,
2317
                          const Scalar& borderValue = morphologyDefaultBorderValue() );
2318
2319
/** @brief Performs advanced morphological transformations.
2320
2321
The function cv::morphologyEx can perform advanced morphological transformations using an erosion and dilation as
2322
basic operations.
2323
2324
Any of the operations can be done in-place. In case of multi-channel images, each channel is
2325
processed independently.
2326
2327
@param src Source image. The number of channels can be arbitrary. The depth should be one of
2328
CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
2329
@param dst Destination image of the same size and type as source image.
2330
@param op Type of a morphological operation, see #MorphTypes
2331
@param kernel Structuring element. It can be created using #getStructuringElement.
2332
@param anchor Anchor position with the kernel. Negative values mean that the anchor is at the
2333
kernel center.
2334
@param iterations Number of times erosion and dilation are applied.
2335
@param borderType Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
2336
@param borderValue Border value in case of a constant border. The default value has a special
2337
meaning.
2338
@sa  dilate, erode, getStructuringElement
2339
@note The number of iterations is the number of times erosion or dilatation operation will be applied.
2340
For instance, an opening operation (#MORPH_OPEN) with two iterations is equivalent to apply
2341
successively: erode -> erode -> dilate -> dilate (and not erode -> dilate -> erode -> dilate).
2342
 */
2343
CV_EXPORTS_W void morphologyEx( InputArray src, OutputArray dst,
2344
                                int op, InputArray kernel,
2345
                                Point anchor = Point(-1,-1), int iterations = 1,
2346
                                int borderType = BORDER_CONSTANT,
2347
                                const Scalar& borderValue = morphologyDefaultBorderValue() );
2348
2349
//! @} imgproc_filter
2350
2351
//! @addtogroup imgproc_transform
2352
//! @{
2353
2354
/** @brief Resizes an image.
2355
2356
The function resize resizes the image src down to or up to the specified size. Note that the
2357
initial dst type or size are not taken into account. Instead, the size and type are derived from
2358
the `src`,`dsize`,`fx`, and `fy`. If you want to resize src so that it fits the pre-created dst,
2359
you may call the function as follows:
2360
@code
2361
    // explicitly specify dsize=dst.size(); fx and fy will be computed from that.
2362
    resize(src, dst, dst.size(), 0, 0, interpolation);
2363
@endcode
2364
If you want to decimate the image by factor of 2 in each direction, you can call the function this
2365
way:
2366
@code
2367
    // specify fx and fy and let the function compute the destination image size.
2368
    resize(src, dst, Size(), 0.5, 0.5, interpolation);
2369
@endcode
2370
To shrink an image, it will generally look best with #INTER_AREA interpolation, whereas to
2371
enlarge an image, it will generally look best with #INTER_CUBIC (slow) or #INTER_LINEAR
2372
(faster but still looks OK).
2373
2374
@param src input image.
2375
@param dst output image; it has the size dsize (when it is non-zero) or the size computed from
2376
src.size(), fx, and fy; the type of dst is the same as of src.
2377
@param dsize output image size; if it equals zero (`None` in Python), it is computed as:
2378
 \f[\texttt{dsize = Size(round(fx*src.cols), round(fy*src.rows))}\f]
2379
 Either dsize or both fx and fy must be non-zero.
2380
@param fx scale factor along the horizontal axis; when it equals 0, it is computed as
2381
\f[\texttt{(double)dsize.width/src.cols}\f]
2382
@param fy scale factor along the vertical axis; when it equals 0, it is computed as
2383
\f[\texttt{(double)dsize.height/src.rows}\f]
2384
@param interpolation interpolation method, see #InterpolationFlags
2385
2386
@sa  warpAffine, warpPerspective, remap
2387
 */
2388
CV_EXPORTS_W void resize( InputArray src, OutputArray dst,
2389
                          Size dsize, double fx = 0, double fy = 0,
2390
                          int interpolation = INTER_LINEAR );
2391
2392
/** @brief Applies an affine transformation to an image.
2393
2394
The function warpAffine transforms the source image using the specified matrix:
2395
2396
\f[\texttt{dst} (x,y) =  \texttt{src} ( \texttt{M} _{11} x +  \texttt{M} _{12} y +  \texttt{M} _{13}, \texttt{M} _{21} x +  \texttt{M} _{22} y +  \texttt{M} _{23})\f]
2397
2398
when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted
2399
with #invertAffineTransform and then put in the formula above instead of M. The function cannot
2400
operate in-place.
2401
2402
@param src input image.
2403
@param dst output image that has the size dsize and the same type as src .
2404
@param M \f$2\times 3\f$ transformation matrix.
2405
@param dsize size of the output image.
2406
@param flags combination of interpolation methods (see #InterpolationFlags) and the optional
2407
flag #WARP_INVERSE_MAP that means that M is the inverse transformation (
2408
\f$\texttt{dst}\rightarrow\texttt{src}\f$ ).
2409
@param borderMode pixel extrapolation method (see #BorderTypes); when
2410
borderMode=#BORDER_TRANSPARENT, it means that the pixels in the destination image corresponding to
2411
the "outliers" in the source image are not modified by the function.
2412
@param borderValue value used in case of a constant border; by default, it is 0.
2413
2414
@sa  warpPerspective, resize, remap, getRectSubPix, transform
2415
 */
2416
CV_EXPORTS_W void warpAffine( InputArray src, OutputArray dst,
2417
                              InputArray M, Size dsize,
2418
                              int flags = INTER_LINEAR,
2419
                              int borderMode = BORDER_CONSTANT,
2420
                              const Scalar& borderValue = Scalar());
2421
2422
/** @example samples/cpp/warpPerspective_demo.cpp
2423
An example program shows using cv::getPerspectiveTransform and cv::warpPerspective for image warping
2424
*/
2425
2426
/** @brief Applies a perspective transformation to an image.
2427
2428
The function warpPerspective transforms the source image using the specified matrix:
2429
2430
\f[\texttt{dst} (x,y) =  \texttt{src} \left ( \frac{M_{11} x + M_{12} y + M_{13}}{M_{31} x + M_{32} y + M_{33}} ,
2431
     \frac{M_{21} x + M_{22} y + M_{23}}{M_{31} x + M_{32} y + M_{33}} \right )\f]
2432
2433
when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted with invert
2434
and then put in the formula above instead of M. The function cannot operate in-place.
2435
2436
@param src input image.
2437
@param dst output image that has the size dsize and the same type as src .
2438
@param M \f$3\times 3\f$ transformation matrix.
2439
@param dsize size of the output image.
2440
@param flags combination of interpolation methods (#INTER_LINEAR or #INTER_NEAREST) and the
2441
optional flag #WARP_INVERSE_MAP, that sets M as the inverse transformation (
2442
\f$\texttt{dst}\rightarrow\texttt{src}\f$ ).
2443
@param borderMode pixel extrapolation method (#BORDER_CONSTANT or #BORDER_REPLICATE).
2444
@param borderValue value used in case of a constant border; by default, it equals 0.
2445
2446
@sa  warpAffine, resize, remap, getRectSubPix, perspectiveTransform
2447
 */
2448
CV_EXPORTS_W void warpPerspective( InputArray src, OutputArray dst,
2449
                                   InputArray M, Size dsize,
2450
                                   int flags = INTER_LINEAR,
2451
                                   int borderMode = BORDER_CONSTANT,
2452
                                   const Scalar& borderValue = Scalar());
2453
2454
/** @brief Applies a generic geometrical transformation to an image.
2455
2456
The function remap transforms the source image using the specified map:
2457
2458
\f[\texttt{dst} (x,y) =  \texttt{src} (map_x(x,y),map_y(x,y))\f]
2459
2460
where values of pixels with non-integer coordinates are computed using one of available
2461
interpolation methods. \f$map_x\f$ and \f$map_y\f$ can be encoded as separate floating-point maps
2462
in \f$map_1\f$ and \f$map_2\f$ respectively, or interleaved floating-point maps of \f$(x,y)\f$ in
2463
\f$map_1\f$, or fixed-point maps created by using #convertMaps. The reason you might want to
2464
convert from floating to fixed-point representations of a map is that they can yield much faster
2465
(\~2x) remapping operations. In the converted case, \f$map_1\f$ contains pairs (cvFloor(x),
2466
cvFloor(y)) and \f$map_2\f$ contains indices in a table of interpolation coefficients.
2467
2468
This function cannot operate in-place.
2469
2470
@param src Source image.
2471
@param dst Destination image. It has the same size as map1 and the same type as src .
2472
@param map1 The first map of either (x,y) points or just x values having the type CV_16SC2 ,
2473
CV_32FC1, or CV_32FC2. See #convertMaps for details on converting a floating point
2474
representation to fixed-point for speed.
2475
@param map2 The second map of y values having the type CV_16UC1, CV_32FC1, or none (empty map
2476
if map1 is (x,y) points), respectively.
2477
@param interpolation Interpolation method (see #InterpolationFlags). The methods #INTER_AREA
2478
and #INTER_LINEAR_EXACT are not supported by this function.
2479
@param borderMode Pixel extrapolation method (see #BorderTypes). When
2480
borderMode=#BORDER_TRANSPARENT, it means that the pixels in the destination image that
2481
corresponds to the "outliers" in the source image are not modified by the function.
2482
@param borderValue Value used in case of a constant border. By default, it is 0.
2483
@note
2484
Due to current implementation limitations the size of an input and output images should be less than 32767x32767.
2485
 */
2486
CV_EXPORTS_W void remap( InputArray src, OutputArray dst,
2487
                         InputArray map1, InputArray map2,
2488
                         int interpolation, int borderMode = BORDER_CONSTANT,
2489
                         const Scalar& borderValue = Scalar());
2490
2491
/** @brief Converts image transformation maps from one representation to another.
2492
2493
The function converts a pair of maps for remap from one representation to another. The following
2494
options ( (map1.type(), map2.type()) \f$\rightarrow\f$ (dstmap1.type(), dstmap2.type()) ) are
2495
supported:
2496
2497
- \f$\texttt{(CV_32FC1, CV_32FC1)} \rightarrow \texttt{(CV_16SC2, CV_16UC1)}\f$. This is the
2498
most frequently used conversion operation, in which the original floating-point maps (see #remap)
2499
are converted to a more compact and much faster fixed-point representation. The first output array
2500
contains the rounded coordinates and the second array (created only when nninterpolation=false )
2501
contains indices in the interpolation tables.
2502
2503
- \f$\texttt{(CV_32FC2)} \rightarrow \texttt{(CV_16SC2, CV_16UC1)}\f$. The same as above but
2504
the original maps are stored in one 2-channel matrix.
2505
2506
- Reverse conversion. Obviously, the reconstructed floating-point maps will not be exactly the same
2507
as the originals.
2508
2509
@param map1 The first input map of type CV_16SC2, CV_32FC1, or CV_32FC2 .
2510
@param map2 The second input map of type CV_16UC1, CV_32FC1, or none (empty matrix),
2511
respectively.
2512
@param dstmap1 The first output map that has the type dstmap1type and the same size as src .
2513
@param dstmap2 The second output map.
2514
@param dstmap1type Type of the first output map that should be CV_16SC2, CV_32FC1, or
2515
CV_32FC2 .
2516
@param nninterpolation Flag indicating whether the fixed-point maps are used for the
2517
nearest-neighbor or for a more complex interpolation.
2518
2519
@sa  remap, undistort, initUndistortRectifyMap
2520
 */
2521
CV_EXPORTS_W void convertMaps( InputArray map1, InputArray map2,
2522
                               OutputArray dstmap1, OutputArray dstmap2,
2523
                               int dstmap1type, bool nninterpolation = false );
2524
2525
/** @brief Calculates an affine matrix of 2D rotation.
2526
2527
The function calculates the following matrix:
2528
2529
\f[\begin{bmatrix} \alpha &  \beta & (1- \alpha )  \cdot \texttt{center.x} -  \beta \cdot \texttt{center.y} \\ - \beta &  \alpha &  \beta \cdot \texttt{center.x} + (1- \alpha )  \cdot \texttt{center.y} \end{bmatrix}\f]
2530
2531
where
2532
2533
\f[\begin{array}{l} \alpha =  \texttt{scale} \cdot \cos \texttt{angle} , \\ \beta =  \texttt{scale} \cdot \sin \texttt{angle} \end{array}\f]
2534
2535
The transformation maps the rotation center to itself. If this is not the target, adjust the shift.
2536
2537
@param center Center of the rotation in the source image.
2538
@param angle Rotation angle in degrees. Positive values mean counter-clockwise rotation (the
2539
coordinate origin is assumed to be the top-left corner).
2540
@param scale Isotropic scale factor.
2541
2542
@sa  getAffineTransform, warpAffine, transform
2543
 */
2544
CV_EXPORTS_W Mat getRotationMatrix2D(Point2f center, double angle, double scale);
2545
2546
/** @sa getRotationMatrix2D */
2547
CV_EXPORTS Matx23d getRotationMatrix2D_(Point2f center, double angle, double scale);
2548
2549
inline
2550
Mat getRotationMatrix2D(Point2f center, double angle, double scale)
2551
0
{
2552
0
    return Mat(getRotationMatrix2D_(center, angle, scale), true);
2553
0
}
2554
2555
/** @brief Calculates an affine transform from three pairs of the corresponding points.
2556
2557
The function calculates the \f$2 \times 3\f$ matrix of an affine transform so that:
2558
2559
\f[\begin{bmatrix} x'_i \\ y'_i \end{bmatrix} = \texttt{map_matrix} \cdot \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}\f]
2560
2561
where
2562
2563
\f[dst(i)=(x'_i,y'_i), src(i)=(x_i, y_i), i=0,1,2\f]
2564
2565
@param src Coordinates of triangle vertices in the source image.
2566
@param dst Coordinates of the corresponding triangle vertices in the destination image.
2567
2568
@sa  warpAffine, transform
2569
 */
2570
CV_EXPORTS Mat getAffineTransform( const Point2f src[], const Point2f dst[] );
2571
2572
/** @brief Inverts an affine transformation.
2573
2574
The function computes an inverse affine transformation represented by \f$2 \times 3\f$ matrix M:
2575
2576
\f[\begin{bmatrix} a_{11} & a_{12} & b_1  \\ a_{21} & a_{22} & b_2 \end{bmatrix}\f]
2577
2578
The result is also a \f$2 \times 3\f$ matrix of the same type as M.
2579
2580
@param M Original affine transformation.
2581
@param iM Output reverse affine transformation.
2582
 */
2583
CV_EXPORTS_W void invertAffineTransform( InputArray M, OutputArray iM );
2584
2585
/** @brief Calculates a perspective transform from four pairs of the corresponding points.
2586
2587
The function calculates the \f$3 \times 3\f$ matrix of a perspective transform so that:
2588
2589
\f[\begin{bmatrix} t_i x'_i \\ t_i y'_i \\ t_i \end{bmatrix} = \texttt{map_matrix} \cdot \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}\f]
2590
2591
where
2592
2593
\f[dst(i)=(x'_i,y'_i), src(i)=(x_i, y_i), i=0,1,2,3\f]
2594
2595
@param src Coordinates of quadrangle vertices in the source image.
2596
@param dst Coordinates of the corresponding quadrangle vertices in the destination image.
2597
@param solveMethod method passed to cv::solve (#DecompTypes)
2598
2599
@sa  findHomography, warpPerspective, perspectiveTransform
2600
 */
2601
CV_EXPORTS_W Mat getPerspectiveTransform(InputArray src, InputArray dst, int solveMethod = DECOMP_LU);
2602
2603
/** @overload */
2604
CV_EXPORTS Mat getPerspectiveTransform(const Point2f src[], const Point2f dst[], int solveMethod = DECOMP_LU);
2605
2606
2607
CV_EXPORTS_W Mat getAffineTransform( InputArray src, InputArray dst );
2608
2609
/** @brief Retrieves a pixel rectangle from an image with sub-pixel accuracy.
2610
2611
The function getRectSubPix extracts pixels from src:
2612
2613
\f[patch(x, y) = src(x +  \texttt{center.x} - ( \texttt{dst.cols} -1)*0.5, y +  \texttt{center.y} - ( \texttt{dst.rows} -1)*0.5)\f]
2614
2615
where the values of the pixels at non-integer coordinates are retrieved using bilinear
2616
interpolation. Every channel of multi-channel images is processed independently. Also
2617
the image should be a single channel or three channel image. While the center of the
2618
rectangle must be inside the image, parts of the rectangle may be outside.
2619
2620
@param image Source image.
2621
@param patchSize Size of the extracted patch.
2622
@param center Floating point coordinates of the center of the extracted rectangle within the
2623
source image. The center must be inside the image.
2624
@param patch Extracted patch that has the size patchSize and the same number of channels as src .
2625
@param patchType Depth of the extracted pixels. By default, they have the same depth as src .
2626
2627
@sa  warpAffine, warpPerspective
2628
 */
2629
CV_EXPORTS_W void getRectSubPix( InputArray image, Size patchSize,
2630
                                 Point2f center, OutputArray patch, int patchType = -1 );
2631
2632
/** @example samples/cpp/polar_transforms.cpp
2633
An example using the cv::linearPolar and cv::logPolar operations
2634
*/
2635
2636
/** @brief Remaps an image to semilog-polar coordinates space.
2637
2638
@deprecated This function produces same result as cv::warpPolar(src, dst, src.size(), center, maxRadius, flags+WARP_POLAR_LOG);
2639
2640
@internal
2641
Transform the source image using the following transformation (See @ref polar_remaps_reference_image "Polar remaps reference image d)"):
2642
\f[\begin{array}{l}
2643
  dst( \rho , \phi ) = src(x,y) \\
2644
  dst.size() \leftarrow src.size()
2645
\end{array}\f]
2646
2647
where
2648
\f[\begin{array}{l}
2649
  I = (dx,dy) = (x - center.x,y - center.y) \\
2650
  \rho = M \cdot log_e(\texttt{magnitude} (I)) ,\\
2651
  \phi = Kangle \cdot \texttt{angle} (I) \\
2652
\end{array}\f]
2653
2654
and
2655
\f[\begin{array}{l}
2656
  M = src.cols / log_e(maxRadius) \\
2657
  Kangle = src.rows / 2\Pi \\
2658
\end{array}\f]
2659
2660
The function emulates the human "foveal" vision and can be used for fast scale and
2661
rotation-invariant template matching, for object tracking and so forth.
2662
@param src Source image
2663
@param dst Destination image. It will have same size and type as src.
2664
@param center The transformation center; where the output precision is maximal
2665
@param M Magnitude scale parameter. It determines the radius of the bounding circle to transform too.
2666
@param flags A combination of interpolation methods, see #InterpolationFlags
2667
2668
@note
2669
-   The function can not operate in-place.
2670
-   To calculate magnitude and angle in degrees #cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees.
2671
2672
@sa cv::linearPolar
2673
@endinternal
2674
*/
2675
CV_EXPORTS_W void logPolar( InputArray src, OutputArray dst,
2676
                            Point2f center, double M, int flags );
2677
2678
/** @brief Remaps an image to polar coordinates space.
2679
2680
@deprecated This function produces same result as cv::warpPolar(src, dst, src.size(), center, maxRadius, flags)
2681
2682
@internal
2683
Transform the source image using the following transformation (See @ref polar_remaps_reference_image "Polar remaps reference image c)"):
2684
\f[\begin{array}{l}
2685
  dst( \rho , \phi ) = src(x,y) \\
2686
  dst.size() \leftarrow src.size()
2687
\end{array}\f]
2688
2689
where
2690
\f[\begin{array}{l}
2691
  I = (dx,dy) = (x - center.x,y - center.y) \\
2692
  \rho = Kmag \cdot \texttt{magnitude} (I) ,\\
2693
  \phi = angle \cdot \texttt{angle} (I)
2694
\end{array}\f]
2695
2696
and
2697
\f[\begin{array}{l}
2698
  Kx = src.cols / maxRadius \\
2699
  Ky = src.rows / 2\Pi
2700
\end{array}\f]
2701
2702
2703
@param src Source image
2704
@param dst Destination image. It will have same size and type as src.
2705
@param center The transformation center;
2706
@param maxRadius The radius of the bounding circle to transform. It determines the inverse magnitude scale parameter too.
2707
@param flags A combination of interpolation methods, see #InterpolationFlags
2708
2709
@note
2710
-   The function can not operate in-place.
2711
-   To calculate magnitude and angle in degrees #cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees.
2712
2713
@sa cv::logPolar
2714
@endinternal
2715
*/
2716
CV_EXPORTS_W void linearPolar( InputArray src, OutputArray dst,
2717
                               Point2f center, double maxRadius, int flags );
2718
2719
2720
/** \brief Remaps an image to polar or semilog-polar coordinates space
2721
2722
@anchor polar_remaps_reference_image
2723
![Polar remaps reference](pics/polar_remap_doc.png)
2724
2725
Transform the source image using the following transformation:
2726
\f[
2727
dst(\rho , \phi ) = src(x,y)
2728
\f]
2729
2730
where
2731
\f[
2732
\begin{array}{l}
2733
\vec{I} = (x - center.x, \;y - center.y) \\
2734
\phi = Kangle \cdot \texttt{angle} (\vec{I}) \\
2735
\rho = \left\{\begin{matrix}
2736
Klin \cdot \texttt{magnitude} (\vec{I}) & default \\
2737
Klog \cdot log_e(\texttt{magnitude} (\vec{I})) & if \; semilog \\
2738
\end{matrix}\right.
2739
\end{array}
2740
\f]
2741
2742
and
2743
\f[
2744
\begin{array}{l}
2745
Kangle = dsize.height / 2\Pi \\
2746
Klin = dsize.width / maxRadius \\
2747
Klog = dsize.width / log_e(maxRadius) \\
2748
\end{array}
2749
\f]
2750
2751
2752
\par Linear vs semilog mapping
2753
2754
Polar mapping can be linear or semi-log. Add one of #WarpPolarMode to `flags` to specify the polar mapping mode.
2755
2756
Linear is the default mode.
2757
2758
The semilog mapping emulates the human "foveal" vision that permit very high acuity on the line of sight (central vision)
2759
in contrast to peripheral vision where acuity is minor.
2760
2761
\par Option on `dsize`:
2762
2763
- if both values in `dsize <=0 ` (default),
2764
the destination image will have (almost) same area of source bounding circle:
2765
\f[\begin{array}{l}
2766
dsize.area  \leftarrow (maxRadius^2 \cdot \Pi) \\
2767
dsize.width = \texttt{cvRound}(maxRadius) \\
2768
dsize.height = \texttt{cvRound}(maxRadius \cdot \Pi) \\
2769
\end{array}\f]
2770
2771
2772
- if only `dsize.height <= 0`,
2773
the destination image area will be proportional to the bounding circle area but scaled by `Kx * Kx`:
2774
\f[\begin{array}{l}
2775
dsize.height = \texttt{cvRound}(dsize.width \cdot \Pi) \\
2776
\end{array}
2777
\f]
2778
2779
- if both values in `dsize > 0 `,
2780
the destination image will have the given size therefore the area of the bounding circle will be scaled to `dsize`.
2781
2782
2783
\par Reverse mapping
2784
2785
You can get reverse mapping adding #WARP_INVERSE_MAP to `flags`
2786
\snippet polar_transforms.cpp InverseMap
2787
2788
In addiction, to calculate the original coordinate from a polar mapped coordinate \f$(rho, phi)->(x, y)\f$:
2789
\snippet polar_transforms.cpp InverseCoordinate
2790
2791
@param src Source image.
2792
@param dst Destination image. It will have same type as src.
2793
@param dsize The destination image size (see description for valid options).
2794
@param center The transformation center.
2795
@param maxRadius The radius of the bounding circle to transform. It determines the inverse magnitude scale parameter too.
2796
@param flags A combination of interpolation methods, #InterpolationFlags + #WarpPolarMode.
2797
            - Add #WARP_POLAR_LINEAR to select linear polar mapping (default)
2798
            - Add #WARP_POLAR_LOG to select semilog polar mapping
2799
            - Add #WARP_INVERSE_MAP for reverse mapping.
2800
@note
2801
-  The function can not operate in-place.
2802
-  To calculate magnitude and angle in degrees #cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees.
2803
-  This function uses #remap. Due to current implementation limitations the size of an input and output images should be less than 32767x32767.
2804
2805
@sa cv::remap
2806
*/
2807
CV_EXPORTS_W void warpPolar(InputArray src, OutputArray dst, Size dsize,
2808
                            Point2f center, double maxRadius, int flags);
2809
2810
2811
//! @} imgproc_transform
2812
2813
//! @addtogroup imgproc_misc
2814
//! @{
2815
2816
/** @brief Calculates the integral of an image.
2817
2818
The function calculates one or more integral images for the source image as follows:
2819
2820
\f[\texttt{sum} (X,Y) =  \sum _{x<X,y<Y}  \texttt{image} (x,y)\f]
2821
2822
\f[\texttt{sqsum} (X,Y) =  \sum _{x<X,y<Y}  \texttt{image} (x,y)^2\f]
2823
2824
\f[\texttt{tilted} (X,Y) =  \sum _{y<Y,abs(x-X+1) \leq Y-y-1}  \texttt{image} (x,y)\f]
2825
2826
Using these integral images, you can calculate sum, mean, and standard deviation over a specific
2827
up-right or rotated rectangular region of the image in a constant time, for example:
2828
2829
\f[\sum _{x_1 \leq x < x_2,  \, y_1  \leq y < y_2}  \texttt{image} (x,y) =  \texttt{sum} (x_2,y_2)- \texttt{sum} (x_1,y_2)- \texttt{sum} (x_2,y_1)+ \texttt{sum} (x_1,y_1)\f]
2830
2831
It makes possible to do a fast blurring or fast block correlation with a variable window size, for
2832
example. In case of multi-channel images, sums for each channel are accumulated independently.
2833
2834
As a practical example, the next figure shows the calculation of the integral of a straight
2835
rectangle Rect(4,4,3,2) and of a tilted rectangle Rect(5,1,2,3) . The selected pixels in the
2836
original image are shown, as well as the relative pixels in the integral images sum and tilted .
2837
2838
![integral calculation example](pics/integral.png)
2839
2840
@param src input image as \f$W \times H\f$, 8-bit or floating-point (32f or 64f).
2841
@param sum integral image as \f$(W+1)\times (H+1)\f$ , 32-bit integer or floating-point (32f or 64f).
2842
@param sqsum integral image for squared pixel values; it is \f$(W+1)\times (H+1)\f$, double-precision
2843
floating-point (64f) array.
2844
@param tilted integral for the image rotated by 45 degrees; it is \f$(W+1)\times (H+1)\f$ array with
2845
the same data type as sum.
2846
@param sdepth desired depth of the integral and the tilted integral images, CV_32S, CV_32F, or
2847
CV_64F.
2848
@param sqdepth desired depth of the integral image of squared pixel values, CV_32F or CV_64F.
2849
 */
2850
CV_EXPORTS_AS(integral3) void integral( InputArray src, OutputArray sum,
2851
                                        OutputArray sqsum, OutputArray tilted,
2852
                                        int sdepth = -1, int sqdepth = -1 );
2853
2854
/** @overload */
2855
CV_EXPORTS_W void integral( InputArray src, OutputArray sum, int sdepth = -1 );
2856
2857
/** @overload */
2858
CV_EXPORTS_AS(integral2) void integral( InputArray src, OutputArray sum,
2859
                                        OutputArray sqsum, int sdepth = -1, int sqdepth = -1 );
2860
2861
//! @} imgproc_misc
2862
2863
//! @addtogroup imgproc_motion
2864
//! @{
2865
2866
/** @brief Adds an image to the accumulator image.
2867
2868
The function adds src or some of its elements to dst :
2869
2870
\f[\texttt{dst} (x,y)  \leftarrow \texttt{dst} (x,y) +  \texttt{src} (x,y)  \quad \text{if} \quad \texttt{mask} (x,y)  \ne 0\f]
2871
2872
The function supports multi-channel images. Each channel is processed independently.
2873
2874
The function cv::accumulate can be used, for example, to collect statistics of a scene background
2875
viewed by a still camera and for the further foreground-background segmentation.
2876
2877
@param src Input image of type CV_8UC(n), CV_16UC(n), CV_32FC(n) or CV_64FC(n), where n is a positive integer.
2878
@param dst %Accumulator image with the same number of channels as input image, and a depth of CV_32F or CV_64F.
2879
@param mask Optional operation mask.
2880
2881
@sa  accumulateSquare, accumulateProduct, accumulateWeighted
2882
 */
2883
CV_EXPORTS_W void accumulate( InputArray src, InputOutputArray dst,
2884
                              InputArray mask = noArray() );
2885
2886
/** @brief Adds the square of a source image to the accumulator image.
2887
2888
The function adds the input image src or its selected region, raised to a power of 2, to the
2889
accumulator dst :
2890
2891
\f[\texttt{dst} (x,y)  \leftarrow \texttt{dst} (x,y) +  \texttt{src} (x,y)^2  \quad \text{if} \quad \texttt{mask} (x,y)  \ne 0\f]
2892
2893
The function supports multi-channel images. Each channel is processed independently.
2894
2895
@param src Input image as 1- or 3-channel, 8-bit or 32-bit floating point.
2896
@param dst %Accumulator image with the same number of channels as input image, 32-bit or 64-bit
2897
floating-point.
2898
@param mask Optional operation mask.
2899
2900
@sa  accumulateSquare, accumulateProduct, accumulateWeighted
2901
 */
2902
CV_EXPORTS_W void accumulateSquare( InputArray src, InputOutputArray dst,
2903
                                    InputArray mask = noArray() );
2904
2905
/** @brief Adds the per-element product of two input images to the accumulator image.
2906
2907
The function adds the product of two images or their selected regions to the accumulator dst :
2908
2909
\f[\texttt{dst} (x,y)  \leftarrow \texttt{dst} (x,y) +  \texttt{src1} (x,y)  \cdot \texttt{src2} (x,y)  \quad \text{if} \quad \texttt{mask} (x,y)  \ne 0\f]
2910
2911
The function supports multi-channel images. Each channel is processed independently.
2912
2913
@param src1 First input image, 1- or 3-channel, 8-bit or 32-bit floating point.
2914
@param src2 Second input image of the same type and the same size as src1 .
2915
@param dst %Accumulator image with the same number of channels as input images, 32-bit or 64-bit
2916
floating-point.
2917
@param mask Optional operation mask.
2918
2919
@sa  accumulate, accumulateSquare, accumulateWeighted
2920
 */
2921
CV_EXPORTS_W void accumulateProduct( InputArray src1, InputArray src2,
2922
                                     InputOutputArray dst, InputArray mask=noArray() );
2923
2924
/** @brief Updates a running average.
2925
2926
The function calculates the weighted sum of the input image src and the accumulator dst so that dst
2927
becomes a running average of a frame sequence:
2928
2929
\f[\texttt{dst} (x,y)  \leftarrow (1- \texttt{alpha} )  \cdot \texttt{dst} (x,y) +  \texttt{alpha} \cdot \texttt{src} (x,y)  \quad \text{if} \quad \texttt{mask} (x,y)  \ne 0\f]
2930
2931
That is, alpha regulates the update speed (how fast the accumulator "forgets" about earlier images).
2932
The function supports multi-channel images. Each channel is processed independently.
2933
2934
@param src Input image as 1- or 3-channel, 8-bit or 32-bit floating point.
2935
@param dst %Accumulator image with the same number of channels as input image, 32-bit or 64-bit
2936
floating-point.
2937
@param alpha Weight of the input image.
2938
@param mask Optional operation mask.
2939
2940
@sa  accumulate, accumulateSquare, accumulateProduct
2941
 */
2942
CV_EXPORTS_W void accumulateWeighted( InputArray src, InputOutputArray dst,
2943
                                      double alpha, InputArray mask = noArray() );
2944
2945
/** @brief The function is used to detect translational shifts that occur between two images.
2946
2947
The operation takes advantage of the Fourier shift theorem for detecting the translational shift in
2948
the frequency domain. It can be used for fast image registration as well as motion estimation. For
2949
more information please see <http://en.wikipedia.org/wiki/Phase_correlation>
2950
2951
Calculates the cross-power spectrum of two supplied source arrays. The arrays are padded if needed
2952
with getOptimalDFTSize.
2953
2954
The function performs the following equations:
2955
- First it applies a Hanning window (see <http://en.wikipedia.org/wiki/Hann_function>) to each
2956
image to remove possible edge effects. This window is cached until the array size changes to speed
2957
up processing time.
2958
- Next it computes the forward DFTs of each source array:
2959
\f[\mathbf{G}_a = \mathcal{F}\{src_1\}, \; \mathbf{G}_b = \mathcal{F}\{src_2\}\f]
2960
where \f$\mathcal{F}\f$ is the forward DFT.
2961
- It then computes the cross-power spectrum of each frequency domain array:
2962
\f[R = \frac{ \mathbf{G}_a \mathbf{G}_b^*}{|\mathbf{G}_a \mathbf{G}_b^*|}\f]
2963
- Next the cross-correlation is converted back into the time domain via the inverse DFT:
2964
\f[r = \mathcal{F}^{-1}\{R\}\f]
2965
- Finally, it computes the peak location and computes a 5x5 weighted centroid around the peak to
2966
achieve sub-pixel accuracy.
2967
\f[(\Delta x, \Delta y) = \texttt{weightedCentroid} \{\arg \max_{(x, y)}\{r\}\}\f]
2968
- If non-zero, the response parameter is computed as the sum of the elements of r within the 5x5
2969
centroid around the peak location. It is normalized to a maximum of 1 (meaning there is a single
2970
peak) and will be smaller when there are multiple peaks.
2971
2972
@param src1 Source floating point array (CV_32FC1 or CV_64FC1)
2973
@param src2 Source floating point array (CV_32FC1 or CV_64FC1)
2974
@param window Floating point array with windowing coefficients to reduce edge effects (optional).
2975
@param response Signal power within the 5x5 centroid around the peak, between 0 and 1 (optional).
2976
@returns detected phase shift (sub-pixel) between the two arrays.
2977
2978
@sa dft, getOptimalDFTSize, idft, mulSpectrums createHanningWindow
2979
 */
2980
CV_EXPORTS_W Point2d phaseCorrelate(InputArray src1, InputArray src2,
2981
                                    InputArray window = noArray(), CV_OUT double* response = 0);
2982
2983
/** @brief This function computes a Hanning window coefficients in two dimensions.
2984
2985
See (http://en.wikipedia.org/wiki/Hann_function) and (http://en.wikipedia.org/wiki/Window_function)
2986
for more information.
2987
2988
An example is shown below:
2989
@code
2990
    // create hanning window of size 100x100 and type CV_32F
2991
    Mat hann;
2992
    createHanningWindow(hann, Size(100, 100), CV_32F);
2993
@endcode
2994
@param dst Destination array to place Hann coefficients in
2995
@param winSize The window size specifications (both width and height must be > 1)
2996
@param type Created array type
2997
 */
2998
CV_EXPORTS_W void createHanningWindow(OutputArray dst, Size winSize, int type);
2999
3000
/** @brief Performs the per-element division of the first Fourier spectrum by the second Fourier spectrum.
3001
3002
The function cv::divSpectrums performs the per-element division of the first array by the second array.
3003
The arrays are CCS-packed or complex matrices that are results of a real or complex Fourier transform.
3004
3005
@param a first input array.
3006
@param b second input array of the same size and type as src1 .
3007
@param c output array of the same size and type as src1 .
3008
@param flags operation flags; currently, the only supported flag is cv::DFT_ROWS, which indicates that
3009
each row of src1 and src2 is an independent 1D Fourier spectrum. If you do not want to use this flag, then simply add a `0` as value.
3010
@param conjB optional flag that conjugates the second input array before the multiplication (true)
3011
or not (false).
3012
*/
3013
CV_EXPORTS_W void divSpectrums(InputArray a, InputArray b, OutputArray c,
3014
                               int flags, bool conjB = false);
3015
3016
//! @} imgproc_motion
3017
3018
//! @addtogroup imgproc_misc
3019
//! @{
3020
3021
/** @brief Applies a fixed-level threshold to each array element.
3022
3023
The function applies fixed-level thresholding to a multiple-channel array. The function is typically
3024
used to get a bi-level (binary) image out of a grayscale image ( #compare could be also used for
3025
this purpose) or for removing a noise, that is, filtering out pixels with too small or too large
3026
values. There are several types of thresholding supported by the function. They are determined by
3027
type parameter.
3028
3029
Also, the special values #THRESH_OTSU or #THRESH_TRIANGLE may be combined with one of the
3030
above values. In these cases, the function determines the optimal threshold value using the Otsu's
3031
or Triangle algorithm and uses it instead of the specified thresh.
3032
3033
@note Currently, the Otsu's and Triangle methods are implemented only for 8-bit single-channel images.
3034
3035
@param src input array (multiple-channel, 8-bit or 32-bit floating point).
3036
@param dst output array of the same size  and type and the same number of channels as src.
3037
@param thresh threshold value.
3038
@param maxval maximum value to use with the #THRESH_BINARY and #THRESH_BINARY_INV thresholding
3039
types.
3040
@param type thresholding type (see #ThresholdTypes).
3041
@return the computed threshold value if Otsu's or Triangle methods used.
3042
3043
@sa  adaptiveThreshold, findContours, compare, min, max
3044
 */
3045
CV_EXPORTS_W double threshold( InputArray src, OutputArray dst,
3046
                               double thresh, double maxval, int type );
3047
3048
3049
/** @brief Applies an adaptive threshold to an array.
3050
3051
The function transforms a grayscale image to a binary image according to the formulae:
3052
-   **THRESH_BINARY**
3053
    \f[dst(x,y) =  \fork{\texttt{maxValue}}{if \(src(x,y) > T(x,y)\)}{0}{otherwise}\f]
3054
-   **THRESH_BINARY_INV**
3055
    \f[dst(x,y) =  \fork{0}{if \(src(x,y) > T(x,y)\)}{\texttt{maxValue}}{otherwise}\f]
3056
where \f$T(x,y)\f$ is a threshold calculated individually for each pixel (see adaptiveMethod parameter).
3057
3058
The function can process the image in-place.
3059
3060
@param src Source 8-bit single-channel image.
3061
@param dst Destination image of the same size and the same type as src.
3062
@param maxValue Non-zero value assigned to the pixels for which the condition is satisfied
3063
@param adaptiveMethod Adaptive thresholding algorithm to use, see #AdaptiveThresholdTypes.
3064
The #BORDER_REPLICATE | #BORDER_ISOLATED is used to process boundaries.
3065
@param thresholdType Thresholding type that must be either #THRESH_BINARY or #THRESH_BINARY_INV,
3066
see #ThresholdTypes.
3067
@param blockSize Size of a pixel neighborhood that is used to calculate a threshold value for the
3068
pixel: 3, 5, 7, and so on.
3069
@param C Constant subtracted from the mean or weighted mean (see the details below). Normally, it
3070
is positive but may be zero or negative as well.
3071
3072
@sa  threshold, blur, GaussianBlur
3073
 */
3074
CV_EXPORTS_W void adaptiveThreshold( InputArray src, OutputArray dst,
3075
                                     double maxValue, int adaptiveMethod,
3076
                                     int thresholdType, int blockSize, double C );
3077
3078
//! @} imgproc_misc
3079
3080
//! @addtogroup imgproc_filter
3081
//! @{
3082
3083
/** @example samples/cpp/tutorial_code/ImgProc/Pyramids/Pyramids.cpp
3084
An example using pyrDown and pyrUp functions
3085
*/
3086
3087
/** @brief Blurs an image and downsamples it.
3088
3089
By default, size of the output image is computed as `Size((src.cols+1)/2, (src.rows+1)/2)`, but in
3090
any case, the following conditions should be satisfied:
3091
3092
\f[\begin{array}{l} | \texttt{dstsize.width} *2-src.cols| \leq 2 \\ | \texttt{dstsize.height} *2-src.rows| \leq 2 \end{array}\f]
3093
3094
The function performs the downsampling step of the Gaussian pyramid construction. First, it
3095
convolves the source image with the kernel:
3096
3097
\f[\frac{1}{256} \begin{bmatrix} 1 & 4 & 6 & 4 & 1  \\ 4 & 16 & 24 & 16 & 4  \\ 6 & 24 & 36 & 24 & 6  \\ 4 & 16 & 24 & 16 & 4  \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix}\f]
3098
3099
Then, it downsamples the image by rejecting even rows and columns.
3100
3101
@param src input image.
3102
@param dst output image; it has the specified size and the same type as src.
3103
@param dstsize size of the output image.
3104
@param borderType Pixel extrapolation method, see #BorderTypes (#BORDER_CONSTANT isn't supported)
3105
 */
3106
CV_EXPORTS_W void pyrDown( InputArray src, OutputArray dst,
3107
                           const Size& dstsize = Size(), int borderType = BORDER_DEFAULT );
3108
3109
/** @brief Upsamples an image and then blurs it.
3110
3111
By default, size of the output image is computed as `Size(src.cols\*2, (src.rows\*2)`, but in any
3112
case, the following conditions should be satisfied:
3113
3114
\f[\begin{array}{l} | \texttt{dstsize.width} -src.cols*2| \leq  ( \texttt{dstsize.width}   \mod  2)  \\ | \texttt{dstsize.height} -src.rows*2| \leq  ( \texttt{dstsize.height}   \mod  2) \end{array}\f]
3115
3116
The function performs the upsampling step of the Gaussian pyramid construction, though it can
3117
actually be used to construct the Laplacian pyramid. First, it upsamples the source image by
3118
injecting even zero rows and columns and then convolves the result with the same kernel as in
3119
pyrDown multiplied by 4.
3120
3121
@param src input image.
3122
@param dst output image. It has the specified size and the same type as src .
3123
@param dstsize size of the output image.
3124
@param borderType Pixel extrapolation method, see #BorderTypes (only #BORDER_DEFAULT is supported)
3125
 */
3126
CV_EXPORTS_W void pyrUp( InputArray src, OutputArray dst,
3127
                         const Size& dstsize = Size(), int borderType = BORDER_DEFAULT );
3128
3129
/** @brief Constructs the Gaussian pyramid for an image.
3130
3131
The function constructs a vector of images and builds the Gaussian pyramid by recursively applying
3132
pyrDown to the previously built pyramid layers, starting from `dst[0]==src`.
3133
3134
@param src Source image. Check pyrDown for the list of supported types.
3135
@param dst Destination vector of maxlevel+1 images of the same type as src. dst[0] will be the
3136
same as src. dst[1] is the next pyramid layer, a smoothed and down-sized src, and so on.
3137
@param maxlevel 0-based index of the last (the smallest) pyramid layer. It must be non-negative.
3138
@param borderType Pixel extrapolation method, see #BorderTypes (#BORDER_CONSTANT isn't supported)
3139
 */
3140
CV_EXPORTS void buildPyramid( InputArray src, OutputArrayOfArrays dst,
3141
                              int maxlevel, int borderType = BORDER_DEFAULT );
3142
3143
//! @} imgproc_filter
3144
3145
//! @addtogroup imgproc_hist
3146
//! @{
3147
3148
/** @example samples/cpp/demhist.cpp
3149
An example for creating histograms of an image
3150
*/
3151
3152
/** @brief Calculates a histogram of a set of arrays.
3153
3154
The function cv::calcHist calculates the histogram of one or more arrays. The elements of a tuple used
3155
to increment a histogram bin are taken from the corresponding input arrays at the same location. The
3156
sample below shows how to compute a 2D Hue-Saturation histogram for a color image. :
3157
@include snippets/imgproc_calcHist.cpp
3158
3159
@param images Source arrays. They all should have the same depth, CV_8U, CV_16U or CV_32F , and the same
3160
size. Each of them can have an arbitrary number of channels.
3161
@param nimages Number of source images.
3162
@param channels List of the dims channels used to compute the histogram. The first array channels
3163
are numerated from 0 to images[0].channels()-1 , the second array channels are counted from
3164
images[0].channels() to images[0].channels() + images[1].channels()-1, and so on.
3165
@param mask Optional mask. If the matrix is not empty, it must be an 8-bit array of the same size
3166
as images[i] . The non-zero mask elements mark the array elements counted in the histogram.
3167
@param hist Output histogram, which is a dense or sparse dims -dimensional array.
3168
@param dims Histogram dimensionality that must be positive and not greater than CV_MAX_DIMS
3169
(equal to 32 in the current OpenCV version).
3170
@param histSize Array of histogram sizes in each dimension.
3171
@param ranges Array of the dims arrays of the histogram bin boundaries in each dimension. When the
3172
histogram is uniform ( uniform =true), then for each dimension i it is enough to specify the lower
3173
(inclusive) boundary \f$L_0\f$ of the 0-th histogram bin and the upper (exclusive) boundary
3174
\f$U_{\texttt{histSize}[i]-1}\f$ for the last histogram bin histSize[i]-1 . That is, in case of a
3175
uniform histogram each of ranges[i] is an array of 2 elements. When the histogram is not uniform (
3176
uniform=false ), then each of ranges[i] contains histSize[i]+1 elements:
3177
\f$L_0, U_0=L_1, U_1=L_2, ..., U_{\texttt{histSize[i]}-2}=L_{\texttt{histSize[i]}-1}, U_{\texttt{histSize[i]}-1}\f$
3178
. The array elements, that are not between \f$L_0\f$ and \f$U_{\texttt{histSize[i]}-1}\f$ , are not
3179
counted in the histogram.
3180
@param uniform Flag indicating whether the histogram is uniform or not (see above).
3181
@param accumulate Accumulation flag. If it is set, the histogram is not cleared in the beginning
3182
when it is allocated. This feature enables you to compute a single histogram from several sets of
3183
arrays, or to update the histogram in time.
3184
*/
3185
CV_EXPORTS void calcHist( const Mat* images, int nimages,
3186
                          const int* channels, InputArray mask,
3187
                          OutputArray hist, int dims, const int* histSize,
3188
                          const float** ranges, bool uniform = true, bool accumulate = false );
3189
3190
/** @overload
3191
3192
this variant uses %SparseMat for output
3193
*/
3194
CV_EXPORTS void calcHist( const Mat* images, int nimages,
3195
                          const int* channels, InputArray mask,
3196
                          SparseMat& hist, int dims,
3197
                          const int* histSize, const float** ranges,
3198
                          bool uniform = true, bool accumulate = false );
3199
3200
/** @overload
3201
3202
this variant supports only uniform histograms.
3203
3204
ranges argument is either empty vector or a flattened vector of histSize.size()*2 elements
3205
(histSize.size() element pairs). The first and second elements of each pair specify the lower and
3206
upper boundaries.
3207
*/
3208
CV_EXPORTS_W void calcHist( InputArrayOfArrays images,
3209
                            const std::vector<int>& channels,
3210
                            InputArray mask, OutputArray hist,
3211
                            const std::vector<int>& histSize,
3212
                            const std::vector<float>& ranges,
3213
                            bool accumulate = false );
3214
3215
/** @brief Calculates the back projection of a histogram.
3216
3217
The function cv::calcBackProject calculates the back project of the histogram. That is, similarly to
3218
#calcHist , at each location (x, y) the function collects the values from the selected channels
3219
in the input images and finds the corresponding histogram bin. But instead of incrementing it, the
3220
function reads the bin value, scales it by scale , and stores in backProject(x,y) . In terms of
3221
statistics, the function computes probability of each element value in respect with the empirical
3222
probability distribution represented by the histogram. See how, for example, you can find and track
3223
a bright-colored object in a scene:
3224
3225
- Before tracking, show the object to the camera so that it covers almost the whole frame.
3226
Calculate a hue histogram. The histogram may have strong maximums, corresponding to the dominant
3227
colors in the object.
3228
3229
- When tracking, calculate a back projection of a hue plane of each input video frame using that
3230
pre-computed histogram. Threshold the back projection to suppress weak colors. It may also make
3231
sense to suppress pixels with non-sufficient color saturation and too dark or too bright pixels.
3232
3233
- Find connected components in the resulting picture and choose, for example, the largest
3234
component.
3235
3236
This is an approximate algorithm of the CamShift color object tracker.
3237
3238
@param images Source arrays. They all should have the same depth, CV_8U, CV_16U or CV_32F , and the same
3239
size. Each of them can have an arbitrary number of channels.
3240
@param nimages Number of source images.
3241
@param channels The list of channels used to compute the back projection. The number of channels
3242
must match the histogram dimensionality. The first array channels are numerated from 0 to
3243
images[0].channels()-1 , the second array channels are counted from images[0].channels() to
3244
images[0].channels() + images[1].channels()-1, and so on.
3245
@param hist Input histogram that can be dense or sparse.
3246
@param backProject Destination back projection array that is a single-channel array of the same
3247
size and depth as images[0] .
3248
@param ranges Array of arrays of the histogram bin boundaries in each dimension. See #calcHist .
3249
@param scale Optional scale factor for the output back projection.
3250
@param uniform Flag indicating whether the histogram is uniform or not (see above).
3251
3252
@sa calcHist, compareHist
3253
 */
3254
CV_EXPORTS void calcBackProject( const Mat* images, int nimages,
3255
                                 const int* channels, InputArray hist,
3256
                                 OutputArray backProject, const float** ranges,
3257
                                 double scale = 1, bool uniform = true );
3258
3259
/** @overload */
3260
CV_EXPORTS void calcBackProject( const Mat* images, int nimages,
3261
                                 const int* channels, const SparseMat& hist,
3262
                                 OutputArray backProject, const float** ranges,
3263
                                 double scale = 1, bool uniform = true );
3264
3265
/** @overload */
3266
CV_EXPORTS_W void calcBackProject( InputArrayOfArrays images, const std::vector<int>& channels,
3267
                                   InputArray hist, OutputArray dst,
3268
                                   const std::vector<float>& ranges,
3269
                                   double scale );
3270
3271
/** @brief Compares two histograms.
3272
3273
The function cv::compareHist compares two dense or two sparse histograms using the specified method.
3274
3275
The function returns \f$d(H_1, H_2)\f$ .
3276
3277
While the function works well with 1-, 2-, 3-dimensional dense histograms, it may not be suitable
3278
for high-dimensional sparse histograms. In such histograms, because of aliasing and sampling
3279
problems, the coordinates of non-zero histogram bins can slightly shift. To compare such histograms
3280
or more general sparse configurations of weighted points, consider using the #EMD function.
3281
3282
@param H1 First compared histogram.
3283
@param H2 Second compared histogram of the same size as H1 .
3284
@param method Comparison method, see #HistCompMethods
3285
 */
3286
CV_EXPORTS_W double compareHist( InputArray H1, InputArray H2, int method );
3287
3288
/** @overload */
3289
CV_EXPORTS double compareHist( const SparseMat& H1, const SparseMat& H2, int method );
3290
3291
/** @brief Equalizes the histogram of a grayscale image.
3292
3293
The function equalizes the histogram of the input image using the following algorithm:
3294
3295
- Calculate the histogram \f$H\f$ for src .
3296
- Normalize the histogram so that the sum of histogram bins is 255.
3297
- Compute the integral of the histogram:
3298
\f[H'_i =  \sum _{0  \le j < i} H(j)\f]
3299
- Transform the image using \f$H'\f$ as a look-up table: \f$\texttt{dst}(x,y) = H'(\texttt{src}(x,y))\f$
3300
3301
The algorithm normalizes the brightness and increases the contrast of the image.
3302
3303
@param src Source 8-bit single channel image.
3304
@param dst Destination image of the same size and type as src .
3305
 */
3306
CV_EXPORTS_W void equalizeHist( InputArray src, OutputArray dst );
3307
3308
/** @brief Creates a smart pointer to a cv::CLAHE class and initializes it.
3309
3310
@param clipLimit Threshold for contrast limiting.
3311
@param tileGridSize Size of grid for histogram equalization. Input image will be divided into
3312
equally sized rectangular tiles. tileGridSize defines the number of tiles in row and column.
3313
 */
3314
CV_EXPORTS_W Ptr<CLAHE> createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8));
3315
3316
/** @brief Computes the "minimal work" distance between two weighted point configurations.
3317
3318
The function computes the earth mover distance and/or a lower boundary of the distance between the
3319
two weighted point configurations. One of the applications described in @cite RubnerSept98,
3320
@cite Rubner2000 is multi-dimensional histogram comparison for image retrieval. EMD is a transportation
3321
problem that is solved using some modification of a simplex algorithm, thus the complexity is
3322
exponential in the worst case, though, on average it is much faster. In the case of a real metric
3323
the lower boundary can be calculated even faster (using linear-time algorithm) and it can be used
3324
to determine roughly whether the two signatures are far enough so that they cannot relate to the
3325
same object.
3326
3327
@param signature1 First signature, a \f$\texttt{size1}\times \texttt{dims}+1\f$ floating-point matrix.
3328
Each row stores the point weight followed by the point coordinates. The matrix is allowed to have
3329
a single column (weights only) if the user-defined cost matrix is used. The weights must be
3330
non-negative and have at least one non-zero value.
3331
@param signature2 Second signature of the same format as signature1 , though the number of rows
3332
may be different. The total weights may be different. In this case an extra "dummy" point is added
3333
to either signature1 or signature2. The weights must be non-negative and have at least one non-zero
3334
value.
3335
@param distType Used metric. See #DistanceTypes.
3336
@param cost User-defined \f$\texttt{size1}\times \texttt{size2}\f$ cost matrix. Also, if a cost matrix
3337
is used, lower boundary lowerBound cannot be calculated because it needs a metric function.
3338
@param lowerBound Optional input/output parameter: lower boundary of a distance between the two
3339
signatures that is a distance between mass centers. The lower boundary may not be calculated if
3340
the user-defined cost matrix is used, the total weights of point configurations are not equal, or
3341
if the signatures consist of weights only (the signature matrices have a single column). You
3342
**must** initialize \*lowerBound . If the calculated distance between mass centers is greater or
3343
equal to \*lowerBound (it means that the signatures are far enough), the function does not
3344
calculate EMD. In any case \*lowerBound is set to the calculated distance between mass centers on
3345
return. Thus, if you want to calculate both distance between mass centers and EMD, \*lowerBound
3346
should be set to 0.
3347
@param flow Resultant \f$\texttt{size1} \times \texttt{size2}\f$ flow matrix: \f$\texttt{flow}_{i,j}\f$ is
3348
a flow from \f$i\f$ -th point of signature1 to \f$j\f$ -th point of signature2 .
3349
 */
3350
CV_EXPORTS float EMD( InputArray signature1, InputArray signature2,
3351
                      int distType, InputArray cost=noArray(),
3352
                      float* lowerBound = 0, OutputArray flow = noArray() );
3353
3354
CV_EXPORTS_AS(EMD) float wrapperEMD( InputArray signature1, InputArray signature2,
3355
                      int distType, InputArray cost=noArray(),
3356
                      CV_IN_OUT Ptr<float> lowerBound = Ptr<float>(), OutputArray flow = noArray() );
3357
3358
//! @} imgproc_hist
3359
3360
//! @addtogroup imgproc_segmentation
3361
//! @{
3362
3363
/** @example samples/cpp/watershed.cpp
3364
An example using the watershed algorithm
3365
*/
3366
3367
/** @brief Performs a marker-based image segmentation using the watershed algorithm.
3368
3369
The function implements one of the variants of watershed, non-parametric marker-based segmentation
3370
algorithm, described in @cite Meyer92 .
3371
3372
Before passing the image to the function, you have to roughly outline the desired regions in the
3373
image markers with positive (\>0) indices. So, every region is represented as one or more connected
3374
components with the pixel values 1, 2, 3, and so on. Such markers can be retrieved from a binary
3375
mask using #findContours and #drawContours (see the watershed.cpp demo). The markers are "seeds" of
3376
the future image regions. All the other pixels in markers , whose relation to the outlined regions
3377
is not known and should be defined by the algorithm, should be set to 0's. In the function output,
3378
each pixel in markers is set to a value of the "seed" components or to -1 at boundaries between the
3379
regions.
3380
3381
@note Any two neighbor connected components are not necessarily separated by a watershed boundary
3382
(-1's pixels); for example, they can touch each other in the initial marker image passed to the
3383
function.
3384
3385
@param image Input 8-bit 3-channel image.
3386
@param markers Input/output 32-bit single-channel image (map) of markers. It should have the same
3387
size as image .
3388
3389
@sa findContours
3390
 */
3391
CV_EXPORTS_W void watershed( InputArray image, InputOutputArray markers );
3392
3393
//! @} imgproc_segmentation
3394
3395
//! @addtogroup imgproc_filter
3396
//! @{
3397
3398
/** @brief Performs initial step of meanshift segmentation of an image.
3399
3400
The function implements the filtering stage of meanshift segmentation, that is, the output of the
3401
function is the filtered "posterized" image with color gradients and fine-grain texture flattened.
3402
At every pixel (X,Y) of the input image (or down-sized input image, see below) the function executes
3403
meanshift iterations, that is, the pixel (X,Y) neighborhood in the joint space-color hyperspace is
3404
considered:
3405
3406
\f[(x,y): X- \texttt{sp} \le x  \le X+ \texttt{sp} , Y- \texttt{sp} \le y  \le Y+ \texttt{sp} , ||(R,G,B)-(r,g,b)||   \le \texttt{sr}\f]
3407
3408
where (R,G,B) and (r,g,b) are the vectors of color components at (X,Y) and (x,y), respectively
3409
(though, the algorithm does not depend on the color space used, so any 3-component color space can
3410
be used instead). Over the neighborhood the average spatial value (X',Y') and average color vector
3411
(R',G',B') are found and they act as the neighborhood center on the next iteration:
3412
3413
\f[(X,Y)~(X',Y'), (R,G,B)~(R',G',B').\f]
3414
3415
After the iterations over, the color components of the initial pixel (that is, the pixel from where
3416
the iterations started) are set to the final value (average color at the last iteration):
3417
3418
\f[I(X,Y) <- (R*,G*,B*)\f]
3419
3420
When maxLevel \> 0, the gaussian pyramid of maxLevel+1 levels is built, and the above procedure is
3421
run on the smallest layer first. After that, the results are propagated to the larger layer and the
3422
iterations are run again only on those pixels where the layer colors differ by more than sr from the
3423
lower-resolution layer of the pyramid. That makes boundaries of color regions sharper. Note that the
3424
results will be actually different from the ones obtained by running the meanshift procedure on the
3425
whole original image (i.e. when maxLevel==0).
3426
3427
@param src The source 8-bit, 3-channel image.
3428
@param dst The destination image of the same format and the same size as the source.
3429
@param sp The spatial window radius.
3430
@param sr The color window radius.
3431
@param maxLevel Maximum level of the pyramid for the segmentation.
3432
@param termcrit Termination criteria: when to stop meanshift iterations.
3433
 */
3434
CV_EXPORTS_W void pyrMeanShiftFiltering( InputArray src, OutputArray dst,
3435
                                         double sp, double sr, int maxLevel = 1,
3436
                                         TermCriteria termcrit=TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS,5,1) );
3437
3438
//! @}
3439
3440
//! @addtogroup imgproc_segmentation
3441
//! @{
3442
3443
/** @example samples/cpp/grabcut.cpp
3444
An example using the GrabCut algorithm
3445
![Sample Screenshot](grabcut_output1.jpg)
3446
*/
3447
3448
/** @brief Runs the GrabCut algorithm.
3449
3450
The function implements the [GrabCut image segmentation algorithm](http://en.wikipedia.org/wiki/GrabCut).
3451
3452
@param img Input 8-bit 3-channel image.
3453
@param mask Input/output 8-bit single-channel mask. The mask is initialized by the function when
3454
mode is set to #GC_INIT_WITH_RECT. Its elements may have one of the #GrabCutClasses.
3455
@param rect ROI containing a segmented object. The pixels outside of the ROI are marked as
3456
"obvious background". The parameter is only used when mode==#GC_INIT_WITH_RECT .
3457
@param bgdModel Temporary array for the background model. Do not modify it while you are
3458
processing the same image.
3459
@param fgdModel Temporary arrays for the foreground model. Do not modify it while you are
3460
processing the same image.
3461
@param iterCount Number of iterations the algorithm should make before returning the result. Note
3462
that the result can be refined with further calls with mode==#GC_INIT_WITH_MASK or
3463
mode==GC_EVAL .
3464
@param mode Operation mode that could be one of the #GrabCutModes
3465
 */
3466
CV_EXPORTS_W void grabCut( InputArray img, InputOutputArray mask, Rect rect,
3467
                           InputOutputArray bgdModel, InputOutputArray fgdModel,
3468
                           int iterCount, int mode = GC_EVAL );
3469
3470
//! @} imgproc_segmentation
3471
3472
//! @addtogroup imgproc_misc
3473
//! @{
3474
3475
/** @example samples/cpp/distrans.cpp
3476
An example on using the distance transform
3477
*/
3478
3479
/** @brief Calculates the distance to the closest zero pixel for each pixel of the source image.
3480
3481
The function cv::distanceTransform calculates the approximate or precise distance from every binary
3482
image pixel to the nearest zero pixel. For zero image pixels, the distance will obviously be zero.
3483
3484
When maskSize == #DIST_MASK_PRECISE and distanceType == #DIST_L2 , the function runs the
3485
algorithm described in @cite Felzenszwalb04 . This algorithm is parallelized with the TBB library.
3486
3487
In other cases, the algorithm @cite Borgefors86 is used. This means that for a pixel the function
3488
finds the shortest path to the nearest zero pixel consisting of basic shifts: horizontal, vertical,
3489
diagonal, or knight's move (the latest is available for a \f$5\times 5\f$ mask). The overall
3490
distance is calculated as a sum of these basic distances. Since the distance function should be
3491
symmetric, all of the horizontal and vertical shifts must have the same cost (denoted as a ), all
3492
the diagonal shifts must have the same cost (denoted as `b`), and all knight's moves must have the
3493
same cost (denoted as `c`). For the #DIST_C and #DIST_L1 types, the distance is calculated
3494
precisely, whereas for #DIST_L2 (Euclidean distance) the distance can be calculated only with a
3495
relative error (a \f$5\times 5\f$ mask gives more accurate results). For `a`,`b`, and `c`, OpenCV
3496
uses the values suggested in the original paper:
3497
- DIST_L1: `a = 1, b = 2`
3498
- DIST_L2:
3499
    - `3 x 3`: `a=0.955, b=1.3693`
3500
    - `5 x 5`: `a=1, b=1.4, c=2.1969`
3501
- DIST_C: `a = 1, b = 1`
3502
3503
Typically, for a fast, coarse distance estimation #DIST_L2, a \f$3\times 3\f$ mask is used. For a
3504
more accurate distance estimation #DIST_L2, a \f$5\times 5\f$ mask or the precise algorithm is used.
3505
Note that both the precise and the approximate algorithms are linear on the number of pixels.
3506
3507
This variant of the function does not only compute the minimum distance for each pixel \f$(x, y)\f$
3508
but also identifies the nearest connected component consisting of zero pixels
3509
(labelType==#DIST_LABEL_CCOMP) or the nearest zero pixel (labelType==#DIST_LABEL_PIXEL). Index of the
3510
component/pixel is stored in `labels(x, y)`. When labelType==#DIST_LABEL_CCOMP, the function
3511
automatically finds connected components of zero pixels in the input image and marks them with
3512
distinct labels. When labelType==#DIST_LABEL_PIXEL, the function scans through the input image and
3513
marks all the zero pixels with distinct labels.
3514
3515
In this mode, the complexity is still linear. That is, the function provides a very fast way to
3516
compute the Voronoi diagram for a binary image. Currently, the second variant can use only the
3517
approximate distance transform algorithm, i.e. maskSize=#DIST_MASK_PRECISE is not supported
3518
yet.
3519
3520
@param src 8-bit, single-channel (binary) source image.
3521
@param dst Output image with calculated distances. It is a 8-bit or 32-bit floating-point,
3522
single-channel image of the same size as src.
3523
@param labels Output 2D array of labels (the discrete Voronoi diagram). It has the type
3524
CV_32SC1 and the same size as src.
3525
@param distanceType Type of distance, see #DistanceTypes
3526
@param maskSize Size of the distance transform mask, see #DistanceTransformMasks.
3527
#DIST_MASK_PRECISE is not supported by this variant. In case of the #DIST_L1 or #DIST_C distance type,
3528
the parameter is forced to 3 because a \f$3\times 3\f$ mask gives the same result as \f$5\times
3529
5\f$ or any larger aperture.
3530
@param labelType Type of the label array to build, see #DistanceTransformLabelTypes.
3531
 */
3532
CV_EXPORTS_AS(distanceTransformWithLabels) void distanceTransform( InputArray src, OutputArray dst,
3533
                                     OutputArray labels, int distanceType, int maskSize,
3534
                                     int labelType = DIST_LABEL_CCOMP );
3535
3536
/** @overload
3537
@param src 8-bit, single-channel (binary) source image.
3538
@param dst Output image with calculated distances. It is a 8-bit or 32-bit floating-point,
3539
single-channel image of the same size as src .
3540
@param distanceType Type of distance, see #DistanceTypes
3541
@param maskSize Size of the distance transform mask, see #DistanceTransformMasks. In case of the
3542
#DIST_L1 or #DIST_C distance type, the parameter is forced to 3 because a \f$3\times 3\f$ mask gives
3543
the same result as \f$5\times 5\f$ or any larger aperture.
3544
@param dstType Type of output image. It can be CV_8U or CV_32F. Type CV_8U can be used only for
3545
the first variant of the function and distanceType == #DIST_L1.
3546
*/
3547
CV_EXPORTS_W void distanceTransform( InputArray src, OutputArray dst,
3548
                                     int distanceType, int maskSize, int dstType=CV_32F);
3549
3550
/** @brief Fills a connected component with the given color.
3551
3552
The function cv::floodFill fills a connected component starting from the seed point with the specified
3553
color. The connectivity is determined by the color/brightness closeness of the neighbor pixels. The
3554
pixel at \f$(x,y)\f$ is considered to belong to the repainted domain if:
3555
3556
- in case of a grayscale image and floating range
3557
\f[\texttt{src} (x',y')- \texttt{loDiff} \leq \texttt{src} (x,y)  \leq \texttt{src} (x',y')+ \texttt{upDiff}\f]
3558
3559
3560
- in case of a grayscale image and fixed range
3561
\f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)- \texttt{loDiff} \leq \texttt{src} (x,y)  \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)+ \texttt{upDiff}\f]
3562
3563
3564
- in case of a color image and floating range
3565
\f[\texttt{src} (x',y')_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} (x',y')_r+ \texttt{upDiff} _r,\f]
3566
\f[\texttt{src} (x',y')_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} (x',y')_g+ \texttt{upDiff} _g\f]
3567
and
3568
\f[\texttt{src} (x',y')_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} (x',y')_b+ \texttt{upDiff} _b\f]
3569
3570
3571
- in case of a color image and fixed range
3572
\f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r+ \texttt{upDiff} _r,\f]
3573
\f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g+ \texttt{upDiff} _g\f]
3574
and
3575
\f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b+ \texttt{upDiff} _b\f]
3576
3577
3578
where \f$src(x',y')\f$ is the value of one of pixel neighbors that is already known to belong to the
3579
component. That is, to be added to the connected component, a color/brightness of the pixel should
3580
be close enough to:
3581
- Color/brightness of one of its neighbors that already belong to the connected component in case
3582
of a floating range.
3583
- Color/brightness of the seed point in case of a fixed range.
3584
3585
Use these functions to either mark a connected component with the specified color in-place, or build
3586
a mask and then extract the contour, or copy the region to another image, and so on.
3587
3588
@param image Input/output 1- or 3-channel, 8-bit, or floating-point image. It is modified by the
3589
function unless the #FLOODFILL_MASK_ONLY flag is set in the second variant of the function. See
3590
the details below.
3591
@param mask Operation mask that should be a single-channel 8-bit image, 2 pixels wider and 2 pixels
3592
taller than image. If an empty Mat is passed it will be created automatically. Since this is both an
3593
input and output parameter, you must take responsibility of initializing it.
3594
Flood-filling cannot go across non-zero pixels in the input mask. For example,
3595
an edge detector output can be used as a mask to stop filling at edges. On output, pixels in the
3596
mask corresponding to filled pixels in the image are set to 1 or to the specified value in flags
3597
as described below. Additionally, the function fills the border of the mask with ones to simplify
3598
internal processing. It is therefore possible to use the same mask in multiple calls to the function
3599
to make sure the filled areas do not overlap.
3600
@param seedPoint Starting point.
3601
@param newVal New value of the repainted domain pixels.
3602
@param loDiff Maximal lower brightness/color difference between the currently observed pixel and
3603
one of its neighbors belonging to the component, or a seed pixel being added to the component.
3604
@param upDiff Maximal upper brightness/color difference between the currently observed pixel and
3605
one of its neighbors belonging to the component, or a seed pixel being added to the component.
3606
@param rect Optional output parameter set by the function to the minimum bounding rectangle of the
3607
repainted domain.
3608
@param flags Operation flags. The first 8 bits contain a connectivity value. The default value of
3609
4 means that only the four nearest neighbor pixels (those that share an edge) are considered. A
3610
connectivity value of 8 means that the eight nearest neighbor pixels (those that share a corner)
3611
will be considered. The next 8 bits (8-16) contain a value between 1 and 255 with which to fill
3612
the mask (the default value is 1). For example, 4 | ( 255 \<\< 8 ) will consider 4 nearest
3613
neighbours and fill the mask with a value of 255. The following additional options occupy higher
3614
bits and therefore may be further combined with the connectivity and mask fill values using
3615
bit-wise or (|), see #FloodFillFlags.
3616
3617
@note Since the mask is larger than the filled image, a pixel \f$(x, y)\f$ in image corresponds to the
3618
pixel \f$(x+1, y+1)\f$ in the mask .
3619
3620
@sa findContours
3621
 */
3622
CV_EXPORTS_W int floodFill( InputOutputArray image, InputOutputArray mask,
3623
                            Point seedPoint, Scalar newVal, CV_OUT Rect* rect=0,
3624
                            Scalar loDiff = Scalar(), Scalar upDiff = Scalar(),
3625
                            int flags = 4 );
3626
3627
/** @example samples/cpp/ffilldemo.cpp
3628
An example using the FloodFill technique
3629
*/
3630
3631
/** @overload
3632
3633
variant without `mask` parameter
3634
*/
3635
CV_EXPORTS int floodFill( InputOutputArray image,
3636
                          Point seedPoint, Scalar newVal, CV_OUT Rect* rect = 0,
3637
                          Scalar loDiff = Scalar(), Scalar upDiff = Scalar(),
3638
                          int flags = 4 );
3639
3640
//! Performs linear blending of two images:
3641
//! \f[ \texttt{dst}(i,j) = \texttt{weights1}(i,j)*\texttt{src1}(i,j) + \texttt{weights2}(i,j)*\texttt{src2}(i,j) \f]
3642
//! @param src1 It has a type of CV_8UC(n) or CV_32FC(n), where n is a positive integer.
3643
//! @param src2 It has the same type and size as src1.
3644
//! @param weights1 It has a type of CV_32FC1 and the same size with src1.
3645
//! @param weights2 It has a type of CV_32FC1 and the same size with src1.
3646
//! @param dst It is created if it does not have the same size and type with src1.
3647
CV_EXPORTS_W void blendLinear(InputArray src1, InputArray src2, InputArray weights1, InputArray weights2, OutputArray dst);
3648
3649
//! @} imgproc_misc
3650
3651
//! @addtogroup imgproc_color_conversions
3652
//! @{
3653
3654
/** @brief Converts an image from one color space to another.
3655
3656
The function converts an input image from one color space to another. In case of a transformation
3657
to-from RGB color space, the order of the channels should be specified explicitly (RGB or BGR). Note
3658
that the default color format in OpenCV is often referred to as RGB but it is actually BGR (the
3659
bytes are reversed). So the first byte in a standard (24-bit) color image will be an 8-bit Blue
3660
component, the second byte will be Green, and the third byte will be Red. The fourth, fifth, and
3661
sixth bytes would then be the second pixel (Blue, then Green, then Red), and so on.
3662
3663
The conventional ranges for R, G, and B channel values are:
3664
-   0 to 255 for CV_8U images
3665
-   0 to 65535 for CV_16U images
3666
-   0 to 1 for CV_32F images
3667
3668
In case of linear transformations, the range does not matter. But in case of a non-linear
3669
transformation, an input RGB image should be normalized to the proper value range to get the correct
3670
results, for example, for RGB \f$\rightarrow\f$ L\*u\*v\* transformation. For example, if you have a
3671
32-bit floating-point image directly converted from an 8-bit image without any scaling, then it will
3672
have the 0..255 value range instead of 0..1 assumed by the function. So, before calling #cvtColor ,
3673
you need first to scale the image down:
3674
@code
3675
    img *= 1./255;
3676
    cvtColor(img, img, COLOR_BGR2Luv);
3677
@endcode
3678
If you use #cvtColor with 8-bit images, the conversion will have some information lost. For many
3679
applications, this will not be noticeable but it is recommended to use 32-bit images in applications
3680
that need the full range of colors or that convert an image before an operation and then convert
3681
back.
3682
3683
If conversion adds the alpha channel, its value will set to the maximum of corresponding channel
3684
range: 255 for CV_8U, 65535 for CV_16U, 1 for CV_32F.
3685
3686
@param src input image: 8-bit unsigned, 16-bit unsigned ( CV_16UC... ), or single-precision
3687
floating-point.
3688
@param dst output image of the same size and depth as src.
3689
@param code color space conversion code (see #ColorConversionCodes).
3690
@param dstCn number of channels in the destination image; if the parameter is 0, the number of the
3691
channels is derived automatically from src and code.
3692
3693
@see @ref imgproc_color_conversions
3694
 */
3695
CV_EXPORTS_W void cvtColor( InputArray src, OutputArray dst, int code, int dstCn = 0 );
3696
3697
/** @brief Converts an image from one color space to another where the source image is
3698
stored in two planes.
3699
3700
This function only supports YUV420 to RGB conversion as of now.
3701
3702
@param src1: 8-bit image (#CV_8U) of the Y plane.
3703
@param src2: image containing interleaved U/V plane.
3704
@param dst: output image.
3705
@param code: Specifies the type of conversion. It can take any of the following values:
3706
- #COLOR_YUV2BGR_NV12
3707
- #COLOR_YUV2RGB_NV12
3708
- #COLOR_YUV2BGRA_NV12
3709
- #COLOR_YUV2RGBA_NV12
3710
- #COLOR_YUV2BGR_NV21
3711
- #COLOR_YUV2RGB_NV21
3712
- #COLOR_YUV2BGRA_NV21
3713
- #COLOR_YUV2RGBA_NV21
3714
*/
3715
CV_EXPORTS_W void cvtColorTwoPlane( InputArray src1, InputArray src2, OutputArray dst, int code );
3716
3717
/** @brief main function for all demosaicing processes
3718
3719
@param src input image: 8-bit unsigned or 16-bit unsigned.
3720
@param dst output image of the same size and depth as src.
3721
@param code Color space conversion code (see the description below).
3722
@param dstCn number of channels in the destination image; if the parameter is 0, the number of the
3723
channels is derived automatically from src and code.
3724
3725
The function can do the following transformations:
3726
3727
-   Demosaicing using bilinear interpolation
3728
3729
    #COLOR_BayerBG2BGR , #COLOR_BayerGB2BGR , #COLOR_BayerRG2BGR , #COLOR_BayerGR2BGR
3730
3731
    #COLOR_BayerBG2GRAY , #COLOR_BayerGB2GRAY , #COLOR_BayerRG2GRAY , #COLOR_BayerGR2GRAY
3732
3733
-   Demosaicing using Variable Number of Gradients.
3734
3735
    #COLOR_BayerBG2BGR_VNG , #COLOR_BayerGB2BGR_VNG , #COLOR_BayerRG2BGR_VNG , #COLOR_BayerGR2BGR_VNG
3736
3737
-   Edge-Aware Demosaicing.
3738
3739
    #COLOR_BayerBG2BGR_EA , #COLOR_BayerGB2BGR_EA , #COLOR_BayerRG2BGR_EA , #COLOR_BayerGR2BGR_EA
3740
3741
-   Demosaicing with alpha channel
3742
3743
    #COLOR_BayerBG2BGRA , #COLOR_BayerGB2BGRA , #COLOR_BayerRG2BGRA , #COLOR_BayerGR2BGRA
3744
3745
@sa cvtColor
3746
*/
3747
CV_EXPORTS_W void demosaicing(InputArray src, OutputArray dst, int code, int dstCn = 0);
3748
3749
//! @} imgproc_color_conversions
3750
3751
//! @addtogroup imgproc_shape
3752
//! @{
3753
3754
/** @brief Calculates all of the moments up to the third order of a polygon or rasterized shape.
3755
3756
The function computes moments, up to the 3rd order, of a vector shape or a rasterized shape. The
3757
results are returned in the structure cv::Moments.
3758
3759
@param array Raster image (single-channel, 8-bit or floating-point 2D array) or an array (
3760
\f$1 \times N\f$ or \f$N \times 1\f$ ) of 2D points (Point or Point2f ).
3761
@param binaryImage If it is true, all non-zero image pixels are treated as 1's. The parameter is
3762
used for images only.
3763
@returns moments.
3764
3765
@note Only applicable to contour moments calculations from Python bindings: Note that the numpy
3766
type for the input array should be either np.int32 or np.float32.
3767
3768
@sa  contourArea, arcLength
3769
 */
3770
CV_EXPORTS_W Moments moments( InputArray array, bool binaryImage = false );
3771
3772
/** @brief Calculates seven Hu invariants.
3773
3774
The function calculates seven Hu invariants (introduced in @cite Hu62; see also
3775
<http://en.wikipedia.org/wiki/Image_moment>) defined as:
3776
3777
\f[\begin{array}{l} hu[0]= \eta _{20}+ \eta _{02} \\ hu[1]=( \eta _{20}- \eta _{02})^{2}+4 \eta _{11}^{2} \\ hu[2]=( \eta _{30}-3 \eta _{12})^{2}+ (3 \eta _{21}- \eta _{03})^{2} \\ hu[3]=( \eta _{30}+ \eta _{12})^{2}+ ( \eta _{21}+ \eta _{03})^{2} \\ hu[4]=( \eta _{30}-3 \eta _{12})( \eta _{30}+ \eta _{12})[( \eta _{30}+ \eta _{12})^{2}-3( \eta _{21}+ \eta _{03})^{2}]+(3 \eta _{21}- \eta _{03})( \eta _{21}+ \eta _{03})[3( \eta _{30}+ \eta _{12})^{2}-( \eta _{21}+ \eta _{03})^{2}] \\ hu[5]=( \eta _{20}- \eta _{02})[( \eta _{30}+ \eta _{12})^{2}- ( \eta _{21}+ \eta _{03})^{2}]+4 \eta _{11}( \eta _{30}+ \eta _{12})( \eta _{21}+ \eta _{03}) \\ hu[6]=(3 \eta _{21}- \eta _{03})( \eta _{21}+ \eta _{03})[3( \eta _{30}+ \eta _{12})^{2}-( \eta _{21}+ \eta _{03})^{2}]-( \eta _{30}-3 \eta _{12})( \eta _{21}+ \eta _{03})[3( \eta _{30}+ \eta _{12})^{2}-( \eta _{21}+ \eta _{03})^{2}] \\ \end{array}\f]
3778
3779
where \f$\eta_{ji}\f$ stands for \f$\texttt{Moments::nu}_{ji}\f$ .
3780
3781
These values are proved to be invariants to the image scale, rotation, and reflection except the
3782
seventh one, whose sign is changed by reflection. This invariance is proved with the assumption of
3783
infinite image resolution. In case of raster images, the computed Hu invariants for the original and
3784
transformed images are a bit different.
3785
3786
@param moments Input moments computed with moments .
3787
@param hu Output Hu invariants.
3788
3789
@sa matchShapes
3790
 */
3791
CV_EXPORTS void HuMoments( const Moments& moments, double hu[7] );
3792
3793
/** @overload */
3794
CV_EXPORTS_W void HuMoments( const Moments& m, OutputArray hu );
3795
3796
//! @} imgproc_shape
3797
3798
//! @addtogroup imgproc_object
3799
//! @{
3800
3801
//! type of the template matching operation
3802
enum TemplateMatchModes {
3803
    TM_SQDIFF        = 0, /*!< \f[R(x,y)= \sum _{x',y'} (T(x',y')-I(x+x',y+y'))^2\f]
3804
                               with mask:
3805
                               \f[R(x,y)= \sum _{x',y'} \left( (T(x',y')-I(x+x',y+y')) \cdot
3806
                                  M(x',y') \right)^2\f] */
3807
    TM_SQDIFF_NORMED = 1, /*!< \f[R(x,y)= \frac{\sum_{x',y'} (T(x',y')-I(x+x',y+y'))^2}{\sqrt{\sum_{
3808
                                  x',y'}T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}\f]
3809
                               with mask:
3810
                               \f[R(x,y)= \frac{\sum _{x',y'} \left( (T(x',y')-I(x+x',y+y')) \cdot
3811
                                  M(x',y') \right)^2}{\sqrt{\sum_{x',y'} \left( T(x',y') \cdot
3812
                                  M(x',y') \right)^2 \cdot \sum_{x',y'} \left( I(x+x',y+y') \cdot
3813
                                  M(x',y') \right)^2}}\f] */
3814
    TM_CCORR         = 2, /*!< \f[R(x,y)= \sum _{x',y'} (T(x',y') \cdot I(x+x',y+y'))\f]
3815
                               with mask:
3816
                               \f[R(x,y)= \sum _{x',y'} (T(x',y') \cdot I(x+x',y+y') \cdot M(x',y')
3817
                                  ^2)\f] */
3818
    TM_CCORR_NORMED  = 3, /*!< \f[R(x,y)= \frac{\sum_{x',y'} (T(x',y') \cdot I(x+x',y+y'))}{\sqrt{
3819
                                  \sum_{x',y'}T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}\f]
3820
                               with mask:
3821
                               \f[R(x,y)= \frac{\sum_{x',y'} (T(x',y') \cdot I(x+x',y+y') \cdot
3822
                                  M(x',y')^2)}{\sqrt{\sum_{x',y'} \left( T(x',y') \cdot M(x',y')
3823
                                  \right)^2 \cdot \sum_{x',y'} \left( I(x+x',y+y') \cdot M(x',y')
3824
                                  \right)^2}}\f] */
3825
    TM_CCOEFF        = 4, /*!< \f[R(x,y)= \sum _{x',y'} (T'(x',y') \cdot I'(x+x',y+y'))\f]
3826
                               where
3827
                               \f[\begin{array}{l} T'(x',y')=T(x',y') - 1/(w \cdot h) \cdot \sum _{
3828
                                  x'',y''} T(x'',y'') \\ I'(x+x',y+y')=I(x+x',y+y') - 1/(w \cdot h)
3829
                                  \cdot \sum _{x'',y''} I(x+x'',y+y'') \end{array}\f]
3830
                               with mask:
3831
                               \f[\begin{array}{l} T'(x',y')=M(x',y') \cdot \left( T(x',y') -
3832
                                  \frac{1}{\sum _{x'',y''} M(x'',y'')} \cdot \sum _{x'',y''}
3833
                                  (T(x'',y'') \cdot M(x'',y'')) \right) \\ I'(x+x',y+y')=M(x',y')
3834
                                  \cdot \left( I(x+x',y+y') - \frac{1}{\sum _{x'',y''} M(x'',y'')}
3835
                                  \cdot \sum _{x'',y''} (I(x+x'',y+y'') \cdot M(x'',y'')) \right)
3836
                                  \end{array} \f] */
3837
    TM_CCOEFF_NORMED = 5  /*!< \f[R(x,y)= \frac{ \sum_{x',y'} (T'(x',y') \cdot I'(x+x',y+y')) }{
3838
                                  \sqrt{\sum_{x',y'}T'(x',y')^2 \cdot \sum_{x',y'} I'(x+x',y+y')^2}
3839
                                  }\f] */
3840
};
3841
3842
/** @example samples/cpp/tutorial_code/Histograms_Matching/MatchTemplate_Demo.cpp
3843
An example using Template Matching algorithm
3844
*/
3845
3846
/** @brief Compares a template against overlapped image regions.
3847
3848
The function slides through image , compares the overlapped patches of size \f$w \times h\f$ against
3849
templ using the specified method and stores the comparison results in result . #TemplateMatchModes
3850
describes the formulae for the available comparison methods ( \f$I\f$ denotes image, \f$T\f$
3851
template, \f$R\f$ result, \f$M\f$ the optional mask ). The summation is done over template and/or
3852
the image patch: \f$x' = 0...w-1, y' = 0...h-1\f$
3853
3854
After the function finishes the comparison, the best matches can be found as global minimums (when
3855
#TM_SQDIFF was used) or maximums (when #TM_CCORR or #TM_CCOEFF was used) using the
3856
#minMaxLoc function. In case of a color image, template summation in the numerator and each sum in
3857
the denominator is done over all of the channels and separate mean values are used for each channel.
3858
That is, the function can take a color template and a color image. The result will still be a
3859
single-channel image, which is easier to analyze.
3860
3861
@param image Image where the search is running. It must be 8-bit or 32-bit floating-point.
3862
@param templ Searched template. It must be not greater than the source image and have the same
3863
data type.
3864
@param result Map of comparison results. It must be single-channel 32-bit floating-point. If image
3865
is \f$W \times H\f$ and templ is \f$w \times h\f$ , then result is \f$(W-w+1) \times (H-h+1)\f$ .
3866
@param method Parameter specifying the comparison method, see #TemplateMatchModes
3867
@param mask Optional mask. It must have the same size as templ. It must either have the same number
3868
            of channels as template or only one channel, which is then used for all template and
3869
            image channels. If the data type is #CV_8U, the mask is interpreted as a binary mask,
3870
            meaning only elements where mask is nonzero are used and are kept unchanged independent
3871
            of the actual mask value (weight equals 1). For data tpye #CV_32F, the mask values are
3872
            used as weights. The exact formulas are documented in #TemplateMatchModes.
3873
 */
3874
CV_EXPORTS_W void matchTemplate( InputArray image, InputArray templ,
3875
                                 OutputArray result, int method, InputArray mask = noArray() );
3876
3877
//! @}
3878
3879
//! @addtogroup imgproc_shape
3880
//! @{
3881
3882
/** @example samples/cpp/connected_components.cpp
3883
This program demonstrates connected components and use of the trackbar
3884
*/
3885
3886
/** @brief computes the connected components labeled image of boolean image
3887
3888
image with 4 or 8 way connectivity - returns N, the total number of labels [0, N-1] where 0
3889
represents the background label. ltype specifies the output label image type, an important
3890
consideration based on the total number of labels or alternatively the total number of pixels in
3891
the source image. ccltype specifies the connected components labeling algorithm to use, currently
3892
Bolelli (Spaghetti) @cite Bolelli2019, Grana (BBDT) @cite Grana2010 and Wu's (SAUF) @cite Wu2009 algorithms
3893
are supported, see the #ConnectedComponentsAlgorithmsTypes for details. Note that SAUF algorithm forces
3894
a row major ordering of labels while Spaghetti and BBDT do not.
3895
This function uses parallel version of the algorithms if at least one allowed
3896
parallel framework is enabled and if the rows of the image are at least twice the number returned by #getNumberOfCPUs.
3897
3898
@param image the 8-bit single-channel image to be labeled
3899
@param labels destination labeled image
3900
@param connectivity 8 or 4 for 8-way or 4-way connectivity respectively
3901
@param ltype output image label type. Currently CV_32S and CV_16U are supported.
3902
@param ccltype connected components algorithm type (see the #ConnectedComponentsAlgorithmsTypes).
3903
*/
3904
CV_EXPORTS_AS(connectedComponentsWithAlgorithm) int connectedComponents(InputArray image, OutputArray labels,
3905
                                                                        int connectivity, int ltype, int ccltype);
3906
3907
3908
/** @overload
3909
3910
@param image the 8-bit single-channel image to be labeled
3911
@param labels destination labeled image
3912
@param connectivity 8 or 4 for 8-way or 4-way connectivity respectively
3913
@param ltype output image label type. Currently CV_32S and CV_16U are supported.
3914
*/
3915
CV_EXPORTS_W int connectedComponents(InputArray image, OutputArray labels,
3916
                                     int connectivity = 8, int ltype = CV_32S);
3917
3918
3919
/** @brief computes the connected components labeled image of boolean image and also produces a statistics output for each label
3920
3921
image with 4 or 8 way connectivity - returns N, the total number of labels [0, N-1] where 0
3922
represents the background label. ltype specifies the output label image type, an important
3923
consideration based on the total number of labels or alternatively the total number of pixels in
3924
the source image. ccltype specifies the connected components labeling algorithm to use, currently
3925
Bolelli (Spaghetti) @cite Bolelli2019, Grana (BBDT) @cite Grana2010 and Wu's (SAUF) @cite Wu2009 algorithms
3926
are supported, see the #ConnectedComponentsAlgorithmsTypes for details. Note that SAUF algorithm forces
3927
a row major ordering of labels while Spaghetti and BBDT do not.
3928
This function uses parallel version of the algorithms (statistics included) if at least one allowed
3929
parallel framework is enabled and if the rows of the image are at least twice the number returned by #getNumberOfCPUs.
3930
3931
@param image the 8-bit single-channel image to be labeled
3932
@param labels destination labeled image
3933
@param stats statistics output for each label, including the background label.
3934
Statistics are accessed via stats(label, COLUMN) where COLUMN is one of
3935
#ConnectedComponentsTypes, selecting the statistic. The data type is CV_32S.
3936
@param centroids centroid output for each label, including the background label. Centroids are
3937
accessed via centroids(label, 0) for x and centroids(label, 1) for y. The data type CV_64F.
3938
@param connectivity 8 or 4 for 8-way or 4-way connectivity respectively
3939
@param ltype output image label type. Currently CV_32S and CV_16U are supported.
3940
@param ccltype connected components algorithm type (see #ConnectedComponentsAlgorithmsTypes).
3941
*/
3942
CV_EXPORTS_AS(connectedComponentsWithStatsWithAlgorithm) int connectedComponentsWithStats(InputArray image, OutputArray labels,
3943
                                                                                          OutputArray stats, OutputArray centroids,
3944
                                                                                          int connectivity, int ltype, int ccltype);
3945
3946
/** @overload
3947
@param image the 8-bit single-channel image to be labeled
3948
@param labels destination labeled image
3949
@param stats statistics output for each label, including the background label.
3950
Statistics are accessed via stats(label, COLUMN) where COLUMN is one of
3951
#ConnectedComponentsTypes, selecting the statistic. The data type is CV_32S.
3952
@param centroids centroid output for each label, including the background label. Centroids are
3953
accessed via centroids(label, 0) for x and centroids(label, 1) for y. The data type CV_64F.
3954
@param connectivity 8 or 4 for 8-way or 4-way connectivity respectively
3955
@param ltype output image label type. Currently CV_32S and CV_16U are supported.
3956
*/
3957
CV_EXPORTS_W int connectedComponentsWithStats(InputArray image, OutputArray labels,
3958
                                              OutputArray stats, OutputArray centroids,
3959
                                              int connectivity = 8, int ltype = CV_32S);
3960
3961
3962
/** @brief Finds contours in a binary image.
3963
3964
The function retrieves contours from the binary image using the algorithm @cite Suzuki85 . The contours
3965
are a useful tool for shape analysis and object detection and recognition. See squares.cpp in the
3966
OpenCV sample directory.
3967
@note Since opencv 3.2 source image is not modified by this function.
3968
3969
@param image Source, an 8-bit single-channel image. Non-zero pixels are treated as 1's. Zero
3970
pixels remain 0's, so the image is treated as binary . You can use #compare, #inRange, #threshold ,
3971
#adaptiveThreshold, #Canny, and others to create a binary image out of a grayscale or color one.
3972
If mode equals to #RETR_CCOMP or #RETR_FLOODFILL, the input can also be a 32-bit integer image of labels (CV_32SC1).
3973
@param contours Detected contours. Each contour is stored as a vector of points (e.g.
3974
std::vector<std::vector<cv::Point> >).
3975
@param hierarchy Optional output vector (e.g. std::vector<cv::Vec4i>), containing information about the image topology. It has
3976
as many elements as the number of contours. For each i-th contour contours[i], the elements
3977
hierarchy[i][0] , hierarchy[i][1] , hierarchy[i][2] , and hierarchy[i][3] are set to 0-based indices
3978
in contours of the next and previous contours at the same hierarchical level, the first child
3979
contour and the parent contour, respectively. If for the contour i there are no next, previous,
3980
parent, or nested contours, the corresponding elements of hierarchy[i] will be negative.
3981
@note In Python, hierarchy is nested inside a top level array. Use hierarchy[0][i] to access hierarchical elements of i-th contour.
3982
@param mode Contour retrieval mode, see #RetrievalModes
3983
@param method Contour approximation method, see #ContourApproximationModes
3984
@param offset Optional offset by which every contour point is shifted. This is useful if the
3985
contours are extracted from the image ROI and then they should be analyzed in the whole image
3986
context.
3987
 */
3988
CV_EXPORTS_W void findContours( InputArray image, OutputArrayOfArrays contours,
3989
                              OutputArray hierarchy, int mode,
3990
                              int method, Point offset = Point());
3991
3992
/** @overload */
3993
CV_EXPORTS void findContours( InputArray image, OutputArrayOfArrays contours,
3994
                              int mode, int method, Point offset = Point());
3995
3996
/** @example samples/cpp/squares.cpp
3997
A program using pyramid scaling, Canny, contours and contour simplification to find
3998
squares in a list of images (pic1-6.png). Returns sequence of squares detected on the image.
3999
*/
4000
4001
/** @example samples/tapi/squares.cpp
4002
A program using pyramid scaling, Canny, contours and contour simplification to find
4003
squares in the input image.
4004
*/
4005
4006
/** @brief Approximates a polygonal curve(s) with the specified precision.
4007
4008
The function cv::approxPolyDP approximates a curve or a polygon with another curve/polygon with less
4009
vertices so that the distance between them is less or equal to the specified precision. It uses the
4010
Douglas-Peucker algorithm <http://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm>
4011
4012
@param curve Input vector of a 2D point stored in std::vector or Mat
4013
@param approxCurve Result of the approximation. The type should match the type of the input curve.
4014
@param epsilon Parameter specifying the approximation accuracy. This is the maximum distance
4015
between the original curve and its approximation.
4016
@param closed If true, the approximated curve is closed (its first and last vertices are
4017
connected). Otherwise, it is not closed.
4018
 */
4019
CV_EXPORTS_W void approxPolyDP( InputArray curve,
4020
                                OutputArray approxCurve,
4021
                                double epsilon, bool closed );
4022
4023
/** @brief Calculates a contour perimeter or a curve length.
4024
4025
The function computes a curve length or a closed contour perimeter.
4026
4027
@param curve Input vector of 2D points, stored in std::vector or Mat.
4028
@param closed Flag indicating whether the curve is closed or not.
4029
 */
4030
CV_EXPORTS_W double arcLength( InputArray curve, bool closed );
4031
4032
/** @brief Calculates the up-right bounding rectangle of a point set or non-zero pixels of gray-scale image.
4033
4034
The function calculates and returns the minimal up-right bounding rectangle for the specified point set or
4035
non-zero pixels of gray-scale image.
4036
4037
@param array Input gray-scale image or 2D point set, stored in std::vector or Mat.
4038
 */
4039
CV_EXPORTS_W Rect boundingRect( InputArray array );
4040
4041
/** @brief Calculates a contour area.
4042
4043
The function computes a contour area. Similarly to moments , the area is computed using the Green
4044
formula. Thus, the returned area and the number of non-zero pixels, if you draw the contour using
4045
#drawContours or #fillPoly , can be different. Also, the function will most certainly give a wrong
4046
results for contours with self-intersections.
4047
4048
Example:
4049
@code
4050
    vector<Point> contour;
4051
    contour.push_back(Point2f(0, 0));
4052
    contour.push_back(Point2f(10, 0));
4053
    contour.push_back(Point2f(10, 10));
4054
    contour.push_back(Point2f(5, 4));
4055
4056
    double area0 = contourArea(contour);
4057
    vector<Point> approx;
4058
    approxPolyDP(contour, approx, 5, true);
4059
    double area1 = contourArea(approx);
4060
4061
    cout << "area0 =" << area0 << endl <<
4062
            "area1 =" << area1 << endl <<
4063
            "approx poly vertices" << approx.size() << endl;
4064
@endcode
4065
@param contour Input vector of 2D points (contour vertices), stored in std::vector or Mat.
4066
@param oriented Oriented area flag. If it is true, the function returns a signed area value,
4067
depending on the contour orientation (clockwise or counter-clockwise). Using this feature you can
4068
determine orientation of a contour by taking the sign of an area. By default, the parameter is
4069
false, which means that the absolute value is returned.
4070
 */
4071
CV_EXPORTS_W double contourArea( InputArray contour, bool oriented = false );
4072
4073
/** @brief Finds a rotated rectangle of the minimum area enclosing the input 2D point set.
4074
4075
The function calculates and returns the minimum-area bounding rectangle (possibly rotated) for a
4076
specified point set. Developer should keep in mind that the returned RotatedRect can contain negative
4077
indices when data is close to the containing Mat element boundary.
4078
4079
@param points Input vector of 2D points, stored in std::vector\<\> or Mat
4080
 */
4081
CV_EXPORTS_W RotatedRect minAreaRect( InputArray points );
4082
4083
/** @brief Finds the four vertices of a rotated rect. Useful to draw the rotated rectangle.
4084
4085
The function finds the four vertices of a rotated rectangle. This function is useful to draw the
4086
rectangle. In C++, instead of using this function, you can directly use RotatedRect::points method. Please
4087
visit the @ref tutorial_bounding_rotated_ellipses "tutorial on Creating Bounding rotated boxes and ellipses for contours" for more information.
4088
4089
@param box The input rotated rectangle. It may be the output of @ref minAreaRect.
4090
@param points The output array of four vertices of rectangles.
4091
 */
4092
CV_EXPORTS_W void boxPoints(RotatedRect box, OutputArray points);
4093
4094
/** @brief Finds a circle of the minimum area enclosing a 2D point set.
4095
4096
The function finds the minimal enclosing circle of a 2D point set using an iterative algorithm.
4097
4098
@param points Input vector of 2D points, stored in std::vector\<\> or Mat
4099
@param center Output center of the circle.
4100
@param radius Output radius of the circle.
4101
 */
4102
CV_EXPORTS_W void minEnclosingCircle( InputArray points,
4103
                                      CV_OUT Point2f& center, CV_OUT float& radius );
4104
4105
/** @example samples/cpp/minarea.cpp
4106
*/
4107
4108
/** @brief Finds a triangle of minimum area enclosing a 2D point set and returns its area.
4109
4110
The function finds a triangle of minimum area enclosing the given set of 2D points and returns its
4111
area. The output for a given 2D point set is shown in the image below. 2D points are depicted in
4112
*red* and the enclosing triangle in *yellow*.
4113
4114
![Sample output of the minimum enclosing triangle function](pics/minenclosingtriangle.png)
4115
4116
The implementation of the algorithm is based on O'Rourke's @cite ORourke86 and Klee and Laskowski's
4117
@cite KleeLaskowski85 papers. O'Rourke provides a \f$\theta(n)\f$ algorithm for finding the minimal
4118
enclosing triangle of a 2D convex polygon with n vertices. Since the #minEnclosingTriangle function
4119
takes a 2D point set as input an additional preprocessing step of computing the convex hull of the
4120
2D point set is required. The complexity of the #convexHull function is \f$O(n log(n))\f$ which is higher
4121
than \f$\theta(n)\f$. Thus the overall complexity of the function is \f$O(n log(n))\f$.
4122
4123
@param points Input vector of 2D points with depth CV_32S or CV_32F, stored in std::vector\<\> or Mat
4124
@param triangle Output vector of three 2D points defining the vertices of the triangle. The depth
4125
of the OutputArray must be CV_32F.
4126
 */
4127
CV_EXPORTS_W double minEnclosingTriangle( InputArray points, CV_OUT OutputArray triangle );
4128
4129
/** @brief Compares two shapes.
4130
4131
The function compares two shapes. All three implemented methods use the Hu invariants (see #HuMoments)
4132
4133
@param contour1 First contour or grayscale image.
4134
@param contour2 Second contour or grayscale image.
4135
@param method Comparison method, see #ShapeMatchModes
4136
@param parameter Method-specific parameter (not supported now).
4137
 */
4138
CV_EXPORTS_W double matchShapes( InputArray contour1, InputArray contour2,
4139
                                 int method, double parameter );
4140
4141
/** @example samples/cpp/convexhull.cpp
4142
An example using the convexHull functionality
4143
*/
4144
4145
/** @brief Finds the convex hull of a point set.
4146
4147
The function cv::convexHull finds the convex hull of a 2D point set using the Sklansky's algorithm @cite Sklansky82
4148
that has *O(N logN)* complexity in the current implementation.
4149
4150
@param points Input 2D point set, stored in std::vector or Mat.
4151
@param hull Output convex hull. It is either an integer vector of indices or vector of points. In
4152
the first case, the hull elements are 0-based indices of the convex hull points in the original
4153
array (since the set of convex hull points is a subset of the original point set). In the second
4154
case, hull elements are the convex hull points themselves.
4155
@param clockwise Orientation flag. If it is true, the output convex hull is oriented clockwise.
4156
Otherwise, it is oriented counter-clockwise. The assumed coordinate system has its X axis pointing
4157
to the right, and its Y axis pointing upwards.
4158
@param returnPoints Operation flag. In case of a matrix, when the flag is true, the function
4159
returns convex hull points. Otherwise, it returns indices of the convex hull points. When the
4160
output array is std::vector, the flag is ignored, and the output depends on the type of the
4161
vector: std::vector\<int\> implies returnPoints=false, std::vector\<Point\> implies
4162
returnPoints=true.
4163
4164
@note `points` and `hull` should be different arrays, inplace processing isn't supported.
4165
4166
Check @ref tutorial_hull "the corresponding tutorial" for more details.
4167
4168
useful links:
4169
4170
https://www.learnopencv.com/convex-hull-using-opencv-in-python-and-c/
4171
 */
4172
CV_EXPORTS_W void convexHull( InputArray points, OutputArray hull,
4173
                              bool clockwise = false, bool returnPoints = true );
4174
4175
/** @brief Finds the convexity defects of a contour.
4176
4177
The figure below displays convexity defects of a hand contour:
4178
4179
![image](pics/defects.png)
4180
4181
@param contour Input contour.
4182
@param convexhull Convex hull obtained using convexHull that should contain indices of the contour
4183
points that make the hull.
4184
@param convexityDefects The output vector of convexity defects. In C++ and the new Python/Java
4185
interface each convexity defect is represented as 4-element integer vector (a.k.a. #Vec4i):
4186
(start_index, end_index, farthest_pt_index, fixpt_depth), where indices are 0-based indices
4187
in the original contour of the convexity defect beginning, end and the farthest point, and
4188
fixpt_depth is fixed-point approximation (with 8 fractional bits) of the distance between the
4189
farthest contour point and the hull. That is, to get the floating-point value of the depth will be
4190
fixpt_depth/256.0.
4191
 */
4192
CV_EXPORTS_W void convexityDefects( InputArray contour, InputArray convexhull, OutputArray convexityDefects );
4193
4194
/** @brief Tests a contour convexity.
4195
4196
The function tests whether the input contour is convex or not. The contour must be simple, that is,
4197
without self-intersections. Otherwise, the function output is undefined.
4198
4199
@param contour Input vector of 2D points, stored in std::vector\<\> or Mat
4200
 */
4201
CV_EXPORTS_W bool isContourConvex( InputArray contour );
4202
4203
/** @example samples/cpp/intersectExample.cpp
4204
Examples of how intersectConvexConvex works
4205
*/
4206
4207
/** @brief Finds intersection of two convex polygons
4208
4209
@param p1 First polygon
4210
@param p2 Second polygon
4211
@param p12 Output polygon describing the intersecting area
4212
@param handleNested When true, an intersection is found if one of the polygons is fully enclosed in the other.
4213
When false, no intersection is found. If the polygons share a side or the vertex of one polygon lies on an edge
4214
of the other, they are not considered nested and an intersection will be found regardless of the value of handleNested.
4215
4216
@returns Absolute value of area of intersecting polygon
4217
4218
@note intersectConvexConvex doesn't confirm that both polygons are convex and will return invalid results if they aren't.
4219
 */
4220
CV_EXPORTS_W float intersectConvexConvex( InputArray p1, InputArray p2,
4221
                                          OutputArray p12, bool handleNested = true );
4222
4223
/** @example samples/cpp/fitellipse.cpp
4224
An example using the fitEllipse technique
4225
*/
4226
4227
/** @brief Fits an ellipse around a set of 2D points.
4228
4229
The function calculates the ellipse that fits (in a least-squares sense) a set of 2D points best of
4230
all. It returns the rotated rectangle in which the ellipse is inscribed. The first algorithm described by @cite Fitzgibbon95
4231
is used. Developer should keep in mind that it is possible that the returned
4232
ellipse/rotatedRect data contains negative indices, due to the data points being close to the
4233
border of the containing Mat element.
4234
4235
@param points Input 2D point set, stored in std::vector\<\> or Mat
4236
 */
4237
CV_EXPORTS_W RotatedRect fitEllipse( InputArray points );
4238
4239
/** @brief Fits an ellipse around a set of 2D points.
4240
4241
 The function calculates the ellipse that fits a set of 2D points.
4242
 It returns the rotated rectangle in which the ellipse is inscribed.
4243
 The Approximate Mean Square (AMS) proposed by @cite Taubin1991 is used.
4244
4245
 For an ellipse, this basis set is \f$ \chi= \left(x^2, x y, y^2, x, y, 1\right) \f$,
4246
 which is a set of six free coefficients \f$ A^T=\left\{A_{\text{xx}},A_{\text{xy}},A_{\text{yy}},A_x,A_y,A_0\right\} \f$.
4247
 However, to specify an ellipse, all that is needed is five numbers; the major and minor axes lengths \f$ (a,b) \f$,
4248
 the position \f$ (x_0,y_0) \f$, and the orientation \f$ \theta \f$. This is because the basis set includes lines,
4249
 quadratics, parabolic and hyperbolic functions as well as elliptical functions as possible fits.
4250
 If the fit is found to be a parabolic or hyperbolic function then the standard #fitEllipse method is used.
4251
 The AMS method restricts the fit to parabolic, hyperbolic and elliptical curves
4252
 by imposing the condition that \f$ A^T ( D_x^T D_x  +   D_y^T D_y) A = 1 \f$ where
4253
 the matrices \f$ Dx \f$ and \f$ Dy \f$ are the partial derivatives of the design matrix \f$ D \f$ with
4254
 respect to x and y. The matrices are formed row by row applying the following to
4255
 each of the points in the set:
4256
 \f{align*}{
4257
 D(i,:)&=\left\{x_i^2, x_i y_i, y_i^2, x_i, y_i, 1\right\} &
4258
 D_x(i,:)&=\left\{2 x_i,y_i,0,1,0,0\right\} &
4259
 D_y(i,:)&=\left\{0,x_i,2 y_i,0,1,0\right\}
4260
 \f}
4261
 The AMS method minimizes the cost function
4262
 \f{equation*}{
4263
 \epsilon ^2=\frac{ A^T D^T D A }{ A^T (D_x^T D_x +  D_y^T D_y) A^T }
4264
 \f}
4265
4266
 The minimum cost is found by solving the generalized eigenvalue problem.
4267
4268
 \f{equation*}{
4269
 D^T D A = \lambda  \left( D_x^T D_x +  D_y^T D_y\right) A
4270
 \f}
4271
4272
 @param points Input 2D point set, stored in std::vector\<\> or Mat
4273
 */
4274
CV_EXPORTS_W RotatedRect fitEllipseAMS( InputArray points );
4275
4276
4277
/** @brief Fits an ellipse around a set of 2D points.
4278
4279
 The function calculates the ellipse that fits a set of 2D points.
4280
 It returns the rotated rectangle in which the ellipse is inscribed.
4281
 The Direct least square (Direct) method by @cite Fitzgibbon1999 is used.
4282
4283
 For an ellipse, this basis set is \f$ \chi= \left(x^2, x y, y^2, x, y, 1\right) \f$,
4284
 which is a set of six free coefficients \f$ A^T=\left\{A_{\text{xx}},A_{\text{xy}},A_{\text{yy}},A_x,A_y,A_0\right\} \f$.
4285
 However, to specify an ellipse, all that is needed is five numbers; the major and minor axes lengths \f$ (a,b) \f$,
4286
 the position \f$ (x_0,y_0) \f$, and the orientation \f$ \theta \f$. This is because the basis set includes lines,
4287
 quadratics, parabolic and hyperbolic functions as well as elliptical functions as possible fits.
4288
 The Direct method confines the fit to ellipses by ensuring that \f$ 4 A_{xx} A_{yy}- A_{xy}^2 > 0 \f$.
4289
 The condition imposed is that \f$ 4 A_{xx} A_{yy}- A_{xy}^2=1 \f$ which satisfies the inequality
4290
 and as the coefficients can be arbitrarily scaled is not overly restrictive.
4291
4292
 \f{equation*}{
4293
 \epsilon ^2= A^T D^T D A \quad \text{with} \quad A^T C A =1 \quad \text{and} \quad C=\left(\begin{matrix}
4294
 0 & 0  & 2  & 0  & 0  &  0  \\
4295
 0 & -1  & 0  & 0  & 0  &  0 \\
4296
 2 & 0  & 0  & 0  & 0  &  0 \\
4297
 0 & 0  & 0  & 0  & 0  &  0 \\
4298
 0 & 0  & 0  & 0  & 0  &  0 \\
4299
 0 & 0  & 0  & 0  & 0  &  0
4300
 \end{matrix} \right)
4301
 \f}
4302
4303
 The minimum cost is found by solving the generalized eigenvalue problem.
4304
4305
 \f{equation*}{
4306
 D^T D A = \lambda  \left( C\right) A
4307
 \f}
4308
4309
 The system produces only one positive eigenvalue \f$ \lambda\f$ which is chosen as the solution
4310
 with its eigenvector \f$\mathbf{u}\f$. These are used to find the coefficients
4311
4312
 \f{equation*}{
4313
 A = \sqrt{\frac{1}{\mathbf{u}^T C \mathbf{u}}}  \mathbf{u}
4314
 \f}
4315
 The scaling factor guarantees that  \f$A^T C A =1\f$.
4316
4317
 @param points Input 2D point set, stored in std::vector\<\> or Mat
4318
 */
4319
CV_EXPORTS_W RotatedRect fitEllipseDirect( InputArray points );
4320
4321
/** @brief Fits a line to a 2D or 3D point set.
4322
4323
The function fitLine fits a line to a 2D or 3D point set by minimizing \f$\sum_i \rho(r_i)\f$ where
4324
\f$r_i\f$ is a distance between the \f$i^{th}\f$ point, the line and \f$\rho(r)\f$ is a distance function, one
4325
of the following:
4326
-  DIST_L2
4327
\f[\rho (r) = r^2/2  \quad \text{(the simplest and the fastest least-squares method)}\f]
4328
- DIST_L1
4329
\f[\rho (r) = r\f]
4330
- DIST_L12
4331
\f[\rho (r) = 2  \cdot ( \sqrt{1 + \frac{r^2}{2}} - 1)\f]
4332
- DIST_FAIR
4333
\f[\rho \left (r \right ) = C^2  \cdot \left (  \frac{r}{C} -  \log{\left(1 + \frac{r}{C}\right)} \right )  \quad \text{where} \quad C=1.3998\f]
4334
- DIST_WELSCH
4335
\f[\rho \left (r \right ) =  \frac{C^2}{2} \cdot \left ( 1 -  \exp{\left(-\left(\frac{r}{C}\right)^2\right)} \right )  \quad \text{where} \quad C=2.9846\f]
4336
- DIST_HUBER
4337
\f[\rho (r) =  \fork{r^2/2}{if \(r < C\)}{C \cdot (r-C/2)}{otherwise} \quad \text{where} \quad C=1.345\f]
4338
4339
The algorithm is based on the M-estimator ( <http://en.wikipedia.org/wiki/M-estimator> ) technique
4340
that iteratively fits the line using the weighted least-squares algorithm. After each iteration the
4341
weights \f$w_i\f$ are adjusted to be inversely proportional to \f$\rho(r_i)\f$ .
4342
4343
@param points Input vector of 2D or 3D points, stored in std::vector\<\> or Mat.
4344
@param line Output line parameters. In case of 2D fitting, it should be a vector of 4 elements
4345
(like Vec4f) - (vx, vy, x0, y0), where (vx, vy) is a normalized vector collinear to the line and
4346
(x0, y0) is a point on the line. In case of 3D fitting, it should be a vector of 6 elements (like
4347
Vec6f) - (vx, vy, vz, x0, y0, z0), where (vx, vy, vz) is a normalized vector collinear to the line
4348
and (x0, y0, z0) is a point on the line.
4349
@param distType Distance used by the M-estimator, see #DistanceTypes
4350
@param param Numerical parameter ( C ) for some types of distances. If it is 0, an optimal value
4351
is chosen.
4352
@param reps Sufficient accuracy for the radius (distance between the coordinate origin and the line).
4353
@param aeps Sufficient accuracy for the angle. 0.01 would be a good default value for reps and aeps.
4354
 */
4355
CV_EXPORTS_W void fitLine( InputArray points, OutputArray line, int distType,
4356
                           double param, double reps, double aeps );
4357
4358
/** @brief Performs a point-in-contour test.
4359
4360
The function determines whether the point is inside a contour, outside, or lies on an edge (or
4361
coincides with a vertex). It returns positive (inside), negative (outside), or zero (on an edge)
4362
value, correspondingly. When measureDist=false , the return value is +1, -1, and 0, respectively.
4363
Otherwise, the return value is a signed distance between the point and the nearest contour edge.
4364
4365
See below a sample output of the function where each image pixel is tested against the contour:
4366
4367
![sample output](pics/pointpolygon.png)
4368
4369
@param contour Input contour.
4370
@param pt Point tested against the contour.
4371
@param measureDist If true, the function estimates the signed distance from the point to the
4372
nearest contour edge. Otherwise, the function only checks if the point is inside a contour or not.
4373
 */
4374
CV_EXPORTS_W double pointPolygonTest( InputArray contour, Point2f pt, bool measureDist );
4375
4376
/** @brief Finds out if there is any intersection between two rotated rectangles.
4377
4378
If there is then the vertices of the intersecting region are returned as well.
4379
4380
Below are some examples of intersection configurations. The hatched pattern indicates the
4381
intersecting region and the red vertices are returned by the function.
4382
4383
![intersection examples](pics/intersection.png)
4384
4385
@param rect1 First rectangle
4386
@param rect2 Second rectangle
4387
@param intersectingRegion The output array of the vertices of the intersecting region. It returns
4388
at most 8 vertices. Stored as std::vector\<cv::Point2f\> or cv::Mat as Mx1 of type CV_32FC2.
4389
@returns One of #RectanglesIntersectTypes
4390
 */
4391
CV_EXPORTS_W int rotatedRectangleIntersection( const RotatedRect& rect1, const RotatedRect& rect2, OutputArray intersectingRegion  );
4392
4393
/** @brief Creates a smart pointer to a cv::GeneralizedHoughBallard class and initializes it.
4394
*/
4395
CV_EXPORTS_W Ptr<GeneralizedHoughBallard> createGeneralizedHoughBallard();
4396
4397
/** @brief Creates a smart pointer to a cv::GeneralizedHoughGuil class and initializes it.
4398
*/
4399
CV_EXPORTS_W Ptr<GeneralizedHoughGuil> createGeneralizedHoughGuil();
4400
4401
//! @} imgproc_shape
4402
4403
//! @addtogroup imgproc_colormap
4404
//! @{
4405
4406
//! GNU Octave/MATLAB equivalent colormaps
4407
enum ColormapTypes
4408
{
4409
    COLORMAP_AUTUMN = 0, //!< ![autumn](pics/colormaps/colorscale_autumn.jpg)
4410
    COLORMAP_BONE = 1, //!< ![bone](pics/colormaps/colorscale_bone.jpg)
4411
    COLORMAP_JET = 2, //!< ![jet](pics/colormaps/colorscale_jet.jpg)
4412
    COLORMAP_WINTER = 3, //!< ![winter](pics/colormaps/colorscale_winter.jpg)
4413
    COLORMAP_RAINBOW = 4, //!< ![rainbow](pics/colormaps/colorscale_rainbow.jpg)
4414
    COLORMAP_OCEAN = 5, //!< ![ocean](pics/colormaps/colorscale_ocean.jpg)
4415
    COLORMAP_SUMMER = 6, //!< ![summer](pics/colormaps/colorscale_summer.jpg)
4416
    COLORMAP_SPRING = 7, //!< ![spring](pics/colormaps/colorscale_spring.jpg)
4417
    COLORMAP_COOL = 8, //!< ![cool](pics/colormaps/colorscale_cool.jpg)
4418
    COLORMAP_HSV = 9, //!< ![HSV](pics/colormaps/colorscale_hsv.jpg)
4419
    COLORMAP_PINK = 10, //!< ![pink](pics/colormaps/colorscale_pink.jpg)
4420
    COLORMAP_HOT = 11, //!< ![hot](pics/colormaps/colorscale_hot.jpg)
4421
    COLORMAP_PARULA = 12, //!< ![parula](pics/colormaps/colorscale_parula.jpg)
4422
    COLORMAP_MAGMA = 13, //!< ![magma](pics/colormaps/colorscale_magma.jpg)
4423
    COLORMAP_INFERNO = 14, //!< ![inferno](pics/colormaps/colorscale_inferno.jpg)
4424
    COLORMAP_PLASMA = 15, //!< ![plasma](pics/colormaps/colorscale_plasma.jpg)
4425
    COLORMAP_VIRIDIS = 16, //!< ![viridis](pics/colormaps/colorscale_viridis.jpg)
4426
    COLORMAP_CIVIDIS = 17, //!< ![cividis](pics/colormaps/colorscale_cividis.jpg)
4427
    COLORMAP_TWILIGHT = 18, //!< ![twilight](pics/colormaps/colorscale_twilight.jpg)
4428
    COLORMAP_TWILIGHT_SHIFTED = 19, //!< ![twilight shifted](pics/colormaps/colorscale_twilight_shifted.jpg)
4429
    COLORMAP_TURBO = 20, //!< ![turbo](pics/colormaps/colorscale_turbo.jpg)
4430
    COLORMAP_DEEPGREEN = 21  //!< ![deepgreen](pics/colormaps/colorscale_deepgreen.jpg)
4431
};
4432
4433
/** @example samples/cpp/falsecolor.cpp
4434
An example using applyColorMap function
4435
*/
4436
4437
/** @brief Applies a GNU Octave/MATLAB equivalent colormap on a given image.
4438
4439
@param src The source image, grayscale or colored of type CV_8UC1 or CV_8UC3.
4440
@param dst The result is the colormapped source image. Note: Mat::create is called on dst.
4441
@param colormap The colormap to apply, see #ColormapTypes
4442
*/
4443
CV_EXPORTS_W void applyColorMap(InputArray src, OutputArray dst, int colormap);
4444
4445
/** @brief Applies a user colormap on a given image.
4446
4447
@param src The source image, grayscale or colored of type CV_8UC1 or CV_8UC3.
4448
@param dst The result is the colormapped source image. Note: Mat::create is called on dst.
4449
@param userColor The colormap to apply of type CV_8UC1 or CV_8UC3 and size 256
4450
*/
4451
CV_EXPORTS_W void applyColorMap(InputArray src, OutputArray dst, InputArray userColor);
4452
4453
//! @} imgproc_colormap
4454
4455
//! @addtogroup imgproc_draw
4456
//! @{
4457
4458
4459
/** OpenCV color channel order is BGR[A] */
4460
#define CV_RGB(r, g, b)  cv::Scalar((b), (g), (r), 0)
4461
4462
/** @brief Draws a line segment connecting two points.
4463
4464
The function line draws the line segment between pt1 and pt2 points in the image. The line is
4465
clipped by the image boundaries. For non-antialiased lines with integer coordinates, the 8-connected
4466
or 4-connected Bresenham algorithm is used. Thick lines are drawn with rounding endings. Antialiased
4467
lines are drawn using Gaussian filtering.
4468
4469
@param img Image.
4470
@param pt1 First point of the line segment.
4471
@param pt2 Second point of the line segment.
4472
@param color Line color.
4473
@param thickness Line thickness.
4474
@param lineType Type of the line. See #LineTypes.
4475
@param shift Number of fractional bits in the point coordinates.
4476
 */
4477
CV_EXPORTS_W void line(InputOutputArray img, Point pt1, Point pt2, const Scalar& color,
4478
                     int thickness = 1, int lineType = LINE_8, int shift = 0);
4479
4480
/** @brief Draws an arrow segment pointing from the first point to the second one.
4481
4482
The function cv::arrowedLine draws an arrow between pt1 and pt2 points in the image. See also #line.
4483
4484
@param img Image.
4485
@param pt1 The point the arrow starts from.
4486
@param pt2 The point the arrow points to.
4487
@param color Line color.
4488
@param thickness Line thickness.
4489
@param line_type Type of the line. See #LineTypes
4490
@param shift Number of fractional bits in the point coordinates.
4491
@param tipLength The length of the arrow tip in relation to the arrow length
4492
 */
4493
CV_EXPORTS_W void arrowedLine(InputOutputArray img, Point pt1, Point pt2, const Scalar& color,
4494
                     int thickness=1, int line_type=8, int shift=0, double tipLength=0.1);
4495
4496
/** @brief Draws a simple, thick, or filled up-right rectangle.
4497
4498
The function cv::rectangle draws a rectangle outline or a filled rectangle whose two opposite corners
4499
are pt1 and pt2.
4500
4501
@param img Image.
4502
@param pt1 Vertex of the rectangle.
4503
@param pt2 Vertex of the rectangle opposite to pt1 .
4504
@param color Rectangle color or brightness (grayscale image).
4505
@param thickness Thickness of lines that make up the rectangle. Negative values, like #FILLED,
4506
mean that the function has to draw a filled rectangle.
4507
@param lineType Type of the line. See #LineTypes
4508
@param shift Number of fractional bits in the point coordinates.
4509
 */
4510
CV_EXPORTS_W void rectangle(InputOutputArray img, Point pt1, Point pt2,
4511
                          const Scalar& color, int thickness = 1,
4512
                          int lineType = LINE_8, int shift = 0);
4513
4514
/** @overload
4515
4516
use `rec` parameter as alternative specification of the drawn rectangle: `r.tl() and
4517
r.br()-Point(1,1)` are opposite corners
4518
*/
4519
CV_EXPORTS_W void rectangle(InputOutputArray img, Rect rec,
4520
                          const Scalar& color, int thickness = 1,
4521
                          int lineType = LINE_8, int shift = 0);
4522
4523
/** @example samples/cpp/tutorial_code/ImgProc/basic_drawing/Drawing_2.cpp
4524
An example using drawing functions
4525
*/
4526
4527
/** @brief Draws a circle.
4528
4529
The function cv::circle draws a simple or filled circle with a given center and radius.
4530
@param img Image where the circle is drawn.
4531
@param center Center of the circle.
4532
@param radius Radius of the circle.
4533
@param color Circle color.
4534
@param thickness Thickness of the circle outline, if positive. Negative values, like #FILLED,
4535
mean that a filled circle is to be drawn.
4536
@param lineType Type of the circle boundary. See #LineTypes
4537
@param shift Number of fractional bits in the coordinates of the center and in the radius value.
4538
 */
4539
CV_EXPORTS_W void circle(InputOutputArray img, Point center, int radius,
4540
                       const Scalar& color, int thickness = 1,
4541
                       int lineType = LINE_8, int shift = 0);
4542
4543
/** @brief Draws a simple or thick elliptic arc or fills an ellipse sector.
4544
4545
The function cv::ellipse with more parameters draws an ellipse outline, a filled ellipse, an elliptic
4546
arc, or a filled ellipse sector. The drawing code uses general parametric form.
4547
A piecewise-linear curve is used to approximate the elliptic arc
4548
boundary. If you need more control of the ellipse rendering, you can retrieve the curve using
4549
#ellipse2Poly and then render it with #polylines or fill it with #fillPoly. If you use the first
4550
variant of the function and want to draw the whole ellipse, not an arc, pass `startAngle=0` and
4551
`endAngle=360`. If `startAngle` is greater than `endAngle`, they are swapped. The figure below explains
4552
the meaning of the parameters to draw the blue arc.
4553
4554
![Parameters of Elliptic Arc](pics/ellipse.svg)
4555
4556
@param img Image.
4557
@param center Center of the ellipse.
4558
@param axes Half of the size of the ellipse main axes.
4559
@param angle Ellipse rotation angle in degrees.
4560
@param startAngle Starting angle of the elliptic arc in degrees.
4561
@param endAngle Ending angle of the elliptic arc in degrees.
4562
@param color Ellipse color.
4563
@param thickness Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that
4564
a filled ellipse sector is to be drawn.
4565
@param lineType Type of the ellipse boundary. See #LineTypes
4566
@param shift Number of fractional bits in the coordinates of the center and values of axes.
4567
 */
4568
CV_EXPORTS_W void ellipse(InputOutputArray img, Point center, Size axes,
4569
                        double angle, double startAngle, double endAngle,
4570
                        const Scalar& color, int thickness = 1,
4571
                        int lineType = LINE_8, int shift = 0);
4572
4573
/** @overload
4574
@param img Image.
4575
@param box Alternative ellipse representation via RotatedRect. This means that the function draws
4576
an ellipse inscribed in the rotated rectangle.
4577
@param color Ellipse color.
4578
@param thickness Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that
4579
a filled ellipse sector is to be drawn.
4580
@param lineType Type of the ellipse boundary. See #LineTypes
4581
*/
4582
CV_EXPORTS_W void ellipse(InputOutputArray img, const RotatedRect& box, const Scalar& color,
4583
                        int thickness = 1, int lineType = LINE_8);
4584
4585
/* ----------------------------------------------------------------------------------------- */
4586
/* ADDING A SET OF PREDEFINED MARKERS WHICH COULD BE USED TO HIGHLIGHT POSITIONS IN AN IMAGE */
4587
/* ----------------------------------------------------------------------------------------- */
4588
4589
/** @brief Draws a marker on a predefined position in an image.
4590
4591
The function cv::drawMarker draws a marker on a given position in the image. For the moment several
4592
marker types are supported, see #MarkerTypes for more information.
4593
4594
@param img Image.
4595
@param position The point where the crosshair is positioned.
4596
@param color Line color.
4597
@param markerType The specific type of marker you want to use, see #MarkerTypes
4598
@param thickness Line thickness.
4599
@param line_type Type of the line, See #LineTypes
4600
@param markerSize The length of the marker axis [default = 20 pixels]
4601
 */
4602
CV_EXPORTS_W void drawMarker(InputOutputArray img, Point position, const Scalar& color,
4603
                             int markerType = MARKER_CROSS, int markerSize=20, int thickness=1,
4604
                             int line_type=8);
4605
4606
/* ----------------------------------------------------------------------------------------- */
4607
/* END OF MARKER SECTION */
4608
/* ----------------------------------------------------------------------------------------- */
4609
4610
/** @brief Fills a convex polygon.
4611
4612
The function cv::fillConvexPoly draws a filled convex polygon. This function is much faster than the
4613
function #fillPoly . It can fill not only convex polygons but any monotonic polygon without
4614
self-intersections, that is, a polygon whose contour intersects every horizontal line (scan line)
4615
twice at the most (though, its top-most and/or the bottom edge could be horizontal).
4616
4617
@param img Image.
4618
@param points Polygon vertices.
4619
@param color Polygon color.
4620
@param lineType Type of the polygon boundaries. See #LineTypes
4621
@param shift Number of fractional bits in the vertex coordinates.
4622
 */
4623
CV_EXPORTS_W void fillConvexPoly(InputOutputArray img, InputArray points,
4624
                                 const Scalar& color, int lineType = LINE_8,
4625
                                 int shift = 0);
4626
4627
/** @overload */
4628
CV_EXPORTS void fillConvexPoly(InputOutputArray img, const Point* pts, int npts,
4629
                               const Scalar& color, int lineType = LINE_8,
4630
                               int shift = 0);
4631
4632
/** @example samples/cpp/tutorial_code/ImgProc/basic_drawing/Drawing_1.cpp
4633
An example using drawing functions
4634
Check @ref tutorial_random_generator_and_text "the corresponding tutorial" for more details
4635
*/
4636
4637
/** @brief Fills the area bounded by one or more polygons.
4638
4639
The function cv::fillPoly fills an area bounded by several polygonal contours. The function can fill
4640
complex areas, for example, areas with holes, contours with self-intersections (some of their
4641
parts), and so forth.
4642
4643
@param img Image.
4644
@param pts Array of polygons where each polygon is represented as an array of points.
4645
@param color Polygon color.
4646
@param lineType Type of the polygon boundaries. See #LineTypes
4647
@param shift Number of fractional bits in the vertex coordinates.
4648
@param offset Optional offset of all points of the contours.
4649
 */
4650
CV_EXPORTS_W void fillPoly(InputOutputArray img, InputArrayOfArrays pts,
4651
                           const Scalar& color, int lineType = LINE_8, int shift = 0,
4652
                           Point offset = Point() );
4653
4654
/** @overload */
4655
CV_EXPORTS void fillPoly(InputOutputArray img, const Point** pts,
4656
                         const int* npts, int ncontours,
4657
                         const Scalar& color, int lineType = LINE_8, int shift = 0,
4658
                         Point offset = Point() );
4659
4660
/** @brief Draws several polygonal curves.
4661
4662
@param img Image.
4663
@param pts Array of polygonal curves.
4664
@param isClosed Flag indicating whether the drawn polylines are closed or not. If they are closed,
4665
the function draws a line from the last vertex of each curve to its first vertex.
4666
@param color Polyline color.
4667
@param thickness Thickness of the polyline edges.
4668
@param lineType Type of the line segments. See #LineTypes
4669
@param shift Number of fractional bits in the vertex coordinates.
4670
4671
The function cv::polylines draws one or more polygonal curves.
4672
 */
4673
CV_EXPORTS_W void polylines(InputOutputArray img, InputArrayOfArrays pts,
4674
                            bool isClosed, const Scalar& color,
4675
                            int thickness = 1, int lineType = LINE_8, int shift = 0 );
4676
4677
/** @overload */
4678
CV_EXPORTS void polylines(InputOutputArray img, const Point* const* pts, const int* npts,
4679
                          int ncontours, bool isClosed, const Scalar& color,
4680
                          int thickness = 1, int lineType = LINE_8, int shift = 0 );
4681
4682
/** @example samples/cpp/contours2.cpp
4683
An example program illustrates the use of cv::findContours and cv::drawContours
4684
\image html WindowsQtContoursOutput.png "Screenshot of the program"
4685
*/
4686
4687
/** @example samples/cpp/segment_objects.cpp
4688
An example using drawContours to clean up a background segmentation result
4689
*/
4690
4691
/** @brief Draws contours outlines or filled contours.
4692
4693
The function draws contour outlines in the image if \f$\texttt{thickness} \ge 0\f$ or fills the area
4694
bounded by the contours if \f$\texttt{thickness}<0\f$ . The example below shows how to retrieve
4695
connected components from the binary image and label them: :
4696
@include snippets/imgproc_drawContours.cpp
4697
4698
@param image Destination image.
4699
@param contours All the input contours. Each contour is stored as a point vector.
4700
@param contourIdx Parameter indicating a contour to draw. If it is negative, all the contours are drawn.
4701
@param color Color of the contours.
4702
@param thickness Thickness of lines the contours are drawn with. If it is negative (for example,
4703
thickness=#FILLED ), the contour interiors are drawn.
4704
@param lineType Line connectivity. See #LineTypes
4705
@param hierarchy Optional information about hierarchy. It is only needed if you want to draw only
4706
some of the contours (see maxLevel ).
4707
@param maxLevel Maximal level for drawn contours. If it is 0, only the specified contour is drawn.
4708
If it is 1, the function draws the contour(s) and all the nested contours. If it is 2, the function
4709
draws the contours, all the nested contours, all the nested-to-nested contours, and so on. This
4710
parameter is only taken into account when there is hierarchy available.
4711
@param offset Optional contour shift parameter. Shift all the drawn contours by the specified
4712
\f$\texttt{offset}=(dx,dy)\f$ .
4713
@note When thickness=#FILLED, the function is designed to handle connected components with holes correctly
4714
even when no hierarchy data is provided. This is done by analyzing all the outlines together
4715
using even-odd rule. This may give incorrect results if you have a joint collection of separately retrieved
4716
contours. In order to solve this problem, you need to call #drawContours separately for each sub-group
4717
of contours, or iterate over the collection using contourIdx parameter.
4718
 */
4719
CV_EXPORTS_W void drawContours( InputOutputArray image, InputArrayOfArrays contours,
4720
                              int contourIdx, const Scalar& color,
4721
                              int thickness = 1, int lineType = LINE_8,
4722
                              InputArray hierarchy = noArray(),
4723
                              int maxLevel = INT_MAX, Point offset = Point() );
4724
4725
/** @brief Clips the line against the image rectangle.
4726
4727
The function cv::clipLine calculates a part of the line segment that is entirely within the specified
4728
rectangle. It returns false if the line segment is completely outside the rectangle. Otherwise,
4729
it returns true .
4730
@param imgSize Image size. The image rectangle is Rect(0, 0, imgSize.width, imgSize.height) .
4731
@param pt1 First line point.
4732
@param pt2 Second line point.
4733
 */
4734
CV_EXPORTS bool clipLine(Size imgSize, CV_IN_OUT Point& pt1, CV_IN_OUT Point& pt2);
4735
4736
/** @overload
4737
@param imgSize Image size. The image rectangle is Rect(0, 0, imgSize.width, imgSize.height) .
4738
@param pt1 First line point.
4739
@param pt2 Second line point.
4740
*/
4741
CV_EXPORTS bool clipLine(Size2l imgSize, CV_IN_OUT Point2l& pt1, CV_IN_OUT Point2l& pt2);
4742
4743
/** @overload
4744
@param imgRect Image rectangle.
4745
@param pt1 First line point.
4746
@param pt2 Second line point.
4747
*/
4748
CV_EXPORTS_W bool clipLine(Rect imgRect, CV_OUT CV_IN_OUT Point& pt1, CV_OUT CV_IN_OUT Point& pt2);
4749
4750
/** @brief Approximates an elliptic arc with a polyline.
4751
4752
The function ellipse2Poly computes the vertices of a polyline that approximates the specified
4753
elliptic arc. It is used by #ellipse. If `arcStart` is greater than `arcEnd`, they are swapped.
4754
4755
@param center Center of the arc.
4756
@param axes Half of the size of the ellipse main axes. See #ellipse for details.
4757
@param angle Rotation angle of the ellipse in degrees. See #ellipse for details.
4758
@param arcStart Starting angle of the elliptic arc in degrees.
4759
@param arcEnd Ending angle of the elliptic arc in degrees.
4760
@param delta Angle between the subsequent polyline vertices. It defines the approximation
4761
accuracy.
4762
@param pts Output vector of polyline vertices.
4763
 */
4764
CV_EXPORTS_W void ellipse2Poly( Point center, Size axes, int angle,
4765
                                int arcStart, int arcEnd, int delta,
4766
                                CV_OUT std::vector<Point>& pts );
4767
4768
/** @overload
4769
@param center Center of the arc.
4770
@param axes Half of the size of the ellipse main axes. See #ellipse for details.
4771
@param angle Rotation angle of the ellipse in degrees. See #ellipse for details.
4772
@param arcStart Starting angle of the elliptic arc in degrees.
4773
@param arcEnd Ending angle of the elliptic arc in degrees.
4774
@param delta Angle between the subsequent polyline vertices. It defines the approximation accuracy.
4775
@param pts Output vector of polyline vertices.
4776
*/
4777
CV_EXPORTS void ellipse2Poly(Point2d center, Size2d axes, int angle,
4778
                             int arcStart, int arcEnd, int delta,
4779
                             CV_OUT std::vector<Point2d>& pts);
4780
4781
/** @brief Draws a text string.
4782
4783
The function cv::putText renders the specified text string in the image. Symbols that cannot be rendered
4784
using the specified font are replaced by question marks. See #getTextSize for a text rendering code
4785
example.
4786
4787
@param img Image.
4788
@param text Text string to be drawn.
4789
@param org Bottom-left corner of the text string in the image.
4790
@param fontFace Font type, see #HersheyFonts.
4791
@param fontScale Font scale factor that is multiplied by the font-specific base size.
4792
@param color Text color.
4793
@param thickness Thickness of the lines used to draw a text.
4794
@param lineType Line type. See #LineTypes
4795
@param bottomLeftOrigin When true, the image data origin is at the bottom-left corner. Otherwise,
4796
it is at the top-left corner.
4797
 */
4798
CV_EXPORTS_W void putText( InputOutputArray img, const String& text, Point org,
4799
                         int fontFace, double fontScale, Scalar color,
4800
                         int thickness = 1, int lineType = LINE_8,
4801
                         bool bottomLeftOrigin = false );
4802
4803
/** @brief Calculates the width and height of a text string.
4804
4805
The function cv::getTextSize calculates and returns the size of a box that contains the specified text.
4806
That is, the following code renders some text, the tight box surrounding it, and the baseline: :
4807
@code
4808
    String text = "Funny text inside the box";
4809
    int fontFace = FONT_HERSHEY_SCRIPT_SIMPLEX;
4810
    double fontScale = 2;
4811
    int thickness = 3;
4812
4813
    Mat img(600, 800, CV_8UC3, Scalar::all(0));
4814
4815
    int baseline=0;
4816
    Size textSize = getTextSize(text, fontFace,
4817
                                fontScale, thickness, &baseline);
4818
    baseline += thickness;
4819
4820
    // center the text
4821
    Point textOrg((img.cols - textSize.width)/2,
4822
                  (img.rows + textSize.height)/2);
4823
4824
    // draw the box
4825
    rectangle(img, textOrg + Point(0, baseline),
4826
              textOrg + Point(textSize.width, -textSize.height),
4827
              Scalar(0,0,255));
4828
    // ... and the baseline first
4829
    line(img, textOrg + Point(0, thickness),
4830
         textOrg + Point(textSize.width, thickness),
4831
         Scalar(0, 0, 255));
4832
4833
    // then put the text itself
4834
    putText(img, text, textOrg, fontFace, fontScale,
4835
            Scalar::all(255), thickness, 8);
4836
@endcode
4837
4838
@param text Input text string.
4839
@param fontFace Font to use, see #HersheyFonts.
4840
@param fontScale Font scale factor that is multiplied by the font-specific base size.
4841
@param thickness Thickness of lines used to render the text. See #putText for details.
4842
@param[out] baseLine y-coordinate of the baseline relative to the bottom-most text
4843
point.
4844
@return The size of a box that contains the specified text.
4845
4846
@see putText
4847
 */
4848
CV_EXPORTS_W Size getTextSize(const String& text, int fontFace,
4849
                            double fontScale, int thickness,
4850
                            CV_OUT int* baseLine);
4851
4852
4853
/** @brief Calculates the font-specific size to use to achieve a given height in pixels.
4854
4855
@param fontFace Font to use, see cv::HersheyFonts.
4856
@param pixelHeight Pixel height to compute the fontScale for
4857
@param thickness Thickness of lines used to render the text.See putText for details.
4858
@return The fontSize to use for cv::putText
4859
4860
@see cv::putText
4861
*/
4862
CV_EXPORTS_W double getFontScaleFromHeight(const int fontFace,
4863
                                           const int pixelHeight,
4864
                                           const int thickness = 1);
4865
4866
/** @brief Class for iterating over all pixels on a raster line segment.
4867
4868
The class LineIterator is used to get each pixel of a raster line connecting
4869
two specified points.
4870
It can be treated as a versatile implementation of the Bresenham algorithm
4871
where you can stop at each pixel and do some extra processing, for
4872
example, grab pixel values along the line or draw a line with an effect
4873
(for example, with XOR operation).
4874
4875
The number of pixels along the line is stored in LineIterator::count.
4876
The method LineIterator::pos returns the current position in the image:
4877
4878
@code{.cpp}
4879
// grabs pixels along the line (pt1, pt2)
4880
// from 8-bit 3-channel image to the buffer
4881
LineIterator it(img, pt1, pt2, 8);
4882
LineIterator it2 = it;
4883
vector<Vec3b> buf(it.count);
4884
4885
for(int i = 0; i < it.count; i++, ++it)
4886
    buf[i] = *(const Vec3b*)*it;
4887
4888
// alternative way of iterating through the line
4889
for(int i = 0; i < it2.count; i++, ++it2)
4890
{
4891
    Vec3b val = img.at<Vec3b>(it2.pos());
4892
    CV_Assert(buf[i] == val);
4893
}
4894
@endcode
4895
*/
4896
class CV_EXPORTS LineIterator
4897
{
4898
public:
4899
    /** @brief Initializes iterator object for the given line and image.
4900
4901
    The returned iterator can be used to traverse all pixels on a line that
4902
    connects the given two points.
4903
    The line will be clipped on the image boundaries.
4904
4905
    @param img Underlying image.
4906
    @param pt1 First endpoint of the line.
4907
    @param pt2 The other endpoint of the line.
4908
    @param connectivity Pixel connectivity of the iterator. Valid values are 4 (iterator can move
4909
    up, down, left and right) and 8 (iterator can also move diagonally).
4910
    @param leftToRight If true, the line is traversed from the leftmost endpoint to the rightmost
4911
    endpoint. Otherwise, the line is traversed from \p pt1 to \p pt2.
4912
    */
4913
    LineIterator( const Mat& img, Point pt1, Point pt2,
4914
                  int connectivity = 8, bool leftToRight = false )
4915
    {
4916
        init(&img, Rect(0, 0, img.cols, img.rows), pt1, pt2, connectivity, leftToRight);
4917
        ptmode = false;
4918
    }
4919
    LineIterator( Point pt1, Point pt2,
4920
                  int connectivity = 8, bool leftToRight = false )
4921
0
    {
4922
0
        init(0, Rect(std::min(pt1.x, pt2.x),
4923
0
                     std::min(pt1.y, pt2.y),
4924
0
                     std::max(pt1.x, pt2.x) - std::min(pt1.x, pt2.x) + 1,
4925
0
                     std::max(pt1.y, pt2.y) - std::min(pt1.y, pt2.y) + 1),
4926
0
             pt1, pt2, connectivity, leftToRight);
4927
0
        ptmode = true;
4928
0
    }
4929
    LineIterator( Size boundingAreaSize, Point pt1, Point pt2,
4930
                  int connectivity = 8, bool leftToRight = false )
4931
0
    {
4932
0
        init(0, Rect(0, 0, boundingAreaSize.width, boundingAreaSize.height),
4933
0
             pt1, pt2, connectivity, leftToRight);
4934
0
        ptmode = true;
4935
0
    }
4936
    LineIterator( Rect boundingAreaRect, Point pt1, Point pt2,
4937
                  int connectivity = 8, bool leftToRight = false )
4938
0
    {
4939
0
        init(0, boundingAreaRect, pt1, pt2, connectivity, leftToRight);
4940
0
        ptmode = true;
4941
0
    }
4942
    void init(const Mat* img, Rect boundingAreaRect, Point pt1, Point pt2, int connectivity, bool leftToRight);
4943
4944
    /** @brief Returns pointer to the current pixel.
4945
    */
4946
    uchar* operator *();
4947
4948
    /** @brief Moves iterator to the next pixel on the line.
4949
4950
    This is the prefix version (++it).
4951
    */
4952
    LineIterator& operator ++();
4953
4954
    /** @brief Moves iterator to the next pixel on the line.
4955
4956
    This is the postfix version (it++).
4957
    */
4958
    LineIterator operator ++(int);
4959
4960
    /** @brief Returns coordinates of the current pixel.
4961
    */
4962
    Point pos() const;
4963
4964
    uchar* ptr;
4965
    const uchar* ptr0;
4966
    int step, elemSize;
4967
    int err, count;
4968
    int minusDelta, plusDelta;
4969
    int minusStep, plusStep;
4970
    int minusShift, plusShift;
4971
    Point p;
4972
    bool ptmode;
4973
};
4974
4975
//! @cond IGNORED
4976
4977
// === LineIterator implementation ===
4978
4979
inline
4980
uchar* LineIterator::operator *()
4981
{
4982
    return ptmode ? 0 : ptr;
4983
}
4984
4985
inline
4986
LineIterator& LineIterator::operator ++()
4987
{
4988
    int mask = err < 0 ? -1 : 0;
4989
    err += minusDelta + (plusDelta & mask);
4990
    if(!ptmode)
4991
    {
4992
        ptr += minusStep + (plusStep & mask);
4993
    }
4994
    else
4995
    {
4996
        p.x += minusShift + (plusShift & mask);
4997
        p.y += minusStep + (plusStep & mask);
4998
    }
4999
    return *this;
5000
}
5001
5002
inline
5003
LineIterator LineIterator::operator ++(int)
5004
0
{
5005
0
    LineIterator it = *this;
5006
0
    ++(*this);
5007
0
    return it;
5008
0
}
5009
5010
inline
5011
Point LineIterator::pos() const
5012
0
{
5013
0
    if(!ptmode)
5014
0
    {
5015
0
        size_t offset = (size_t)(ptr - ptr0);
5016
0
        int y = (int)(offset/step);
5017
0
        int x = (int)((offset - (size_t)y*step)/elemSize);
5018
0
        return Point(x, y);
5019
0
    }
5020
0
    return p;
5021
0
}
5022
5023
//! @endcond
5024
5025
//! @} imgproc_draw
5026
5027
//! @} imgproc
5028
5029
} // cv
5030
5031
5032
#include "./imgproc/segmentation.hpp"
5033
5034
5035
#endif