/work/install-coverage/include/opencv4/opencv2/imgproc.hpp
Line | Count | Source (jump to first uncovered line) |
1 | | /*M/////////////////////////////////////////////////////////////////////////////////////// |
2 | | // |
3 | | // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
4 | | // |
5 | | // By downloading, copying, installing or using the software you agree to this license. |
6 | | // If you do not agree to this license, do not download, install, |
7 | | // copy or use the software. |
8 | | // |
9 | | // |
10 | | // License Agreement |
11 | | // For Open Source Computer Vision Library |
12 | | // |
13 | | // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
14 | | // Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
15 | | // Third party copyrights are property of their respective owners. |
16 | | // |
17 | | // Redistribution and use in source and binary forms, with or without modification, |
18 | | // are permitted provided that the following conditions are met: |
19 | | // |
20 | | // * Redistribution's of source code must retain the above copyright notice, |
21 | | // this list of conditions and the following disclaimer. |
22 | | // |
23 | | // * Redistribution's in binary form must reproduce the above copyright notice, |
24 | | // this list of conditions and the following disclaimer in the documentation |
25 | | // and/or other materials provided with the distribution. |
26 | | // |
27 | | // * The name of the copyright holders may not be used to endorse or promote products |
28 | | // derived from this software without specific prior written permission. |
29 | | // |
30 | | // This software is provided by the copyright holders and contributors "as is" and |
31 | | // any express or implied warranties, including, but not limited to, the implied |
32 | | // warranties of merchantability and fitness for a particular purpose are disclaimed. |
33 | | // In no event shall the Intel Corporation or contributors be liable for any direct, |
34 | | // indirect, incidental, special, exemplary, or consequential damages |
35 | | // (including, but not limited to, procurement of substitute goods or services; |
36 | | // loss of use, data, or profits; or business interruption) however caused |
37 | | // and on any theory of liability, whether in contract, strict liability, |
38 | | // or tort (including negligence or otherwise) arising in any way out of |
39 | | // the use of this software, even if advised of the possibility of such damage. |
40 | | // |
41 | | //M*/ |
42 | | |
43 | | #ifndef OPENCV_IMGPROC_HPP |
44 | | #define OPENCV_IMGPROC_HPP |
45 | | |
46 | | #include "opencv2/core.hpp" |
47 | | |
48 | | /** |
49 | | @defgroup imgproc Image Processing |
50 | | |
51 | | This module includes image-processing functions. |
52 | | |
53 | | @{ |
54 | | @defgroup imgproc_filter Image Filtering |
55 | | |
56 | | Functions and classes described in this section are used to perform various linear or non-linear |
57 | | filtering operations on 2D images (represented as Mat's). It means that for each pixel location |
58 | | \f$(x,y)\f$ in the source image (normally, rectangular), its neighborhood is considered and used to |
59 | | compute the response. In case of a linear filter, it is a weighted sum of pixel values. In case of |
60 | | morphological operations, it is the minimum or maximum values, and so on. The computed response is |
61 | | stored in the destination image at the same location \f$(x,y)\f$. It means that the output image |
62 | | will be of the same size as the input image. Normally, the functions support multi-channel arrays, |
63 | | in which case every channel is processed independently. Therefore, the output image will also have |
64 | | the same number of channels as the input one. |
65 | | |
66 | | Another common feature of the functions and classes described in this section is that, unlike |
67 | | simple arithmetic functions, they need to extrapolate values of some non-existing pixels. For |
68 | | example, if you want to smooth an image using a Gaussian \f$3 \times 3\f$ filter, then, when |
69 | | processing the left-most pixels in each row, you need pixels to the left of them, that is, outside |
70 | | of the image. You can let these pixels be the same as the left-most image pixels ("replicated |
71 | | border" extrapolation method), or assume that all the non-existing pixels are zeros ("constant |
72 | | border" extrapolation method), and so on. OpenCV enables you to specify the extrapolation method. |
73 | | For details, see #BorderTypes |
74 | | |
75 | | @anchor filter_depths |
76 | | ### Depth combinations |
77 | | Input depth (src.depth()) | Output depth (ddepth) |
78 | | --------------------------|---------------------- |
79 | | CV_8U | -1/CV_16S/CV_32F/CV_64F |
80 | | CV_16U/CV_16S | -1/CV_32F/CV_64F |
81 | | CV_32F | -1/CV_32F |
82 | | CV_64F | -1/CV_64F |
83 | | |
84 | | @note when ddepth=-1, the output image will have the same depth as the source. |
85 | | |
86 | | @note if you need double floating-point accuracy and using single floating-point input data |
87 | | (CV_32F input and CV_64F output depth combination), you can use @ref Mat.convertTo to convert |
88 | | the input data to the desired precision. |
89 | | |
90 | | @defgroup imgproc_transform Geometric Image Transformations |
91 | | |
92 | | The functions in this section perform various geometrical transformations of 2D images. They do not |
93 | | change the image content but deform the pixel grid and map this deformed grid to the destination |
94 | | image. In fact, to avoid sampling artifacts, the mapping is done in the reverse order, from |
95 | | destination to the source. That is, for each pixel \f$(x, y)\f$ of the destination image, the |
96 | | functions compute coordinates of the corresponding "donor" pixel in the source image and copy the |
97 | | pixel value: |
98 | | |
99 | | \f[\texttt{dst} (x,y)= \texttt{src} (f_x(x,y), f_y(x,y))\f] |
100 | | |
101 | | In case when you specify the forward mapping \f$\left<g_x, g_y\right>: \texttt{src} \rightarrow |
102 | | \texttt{dst}\f$, the OpenCV functions first compute the corresponding inverse mapping |
103 | | \f$\left<f_x, f_y\right>: \texttt{dst} \rightarrow \texttt{src}\f$ and then use the above formula. |
104 | | |
105 | | The actual implementations of the geometrical transformations, from the most generic remap and to |
106 | | the simplest and the fastest resize, need to solve two main problems with the above formula: |
107 | | |
108 | | - Extrapolation of non-existing pixels. Similarly to the filtering functions described in the |
109 | | previous section, for some \f$(x,y)\f$, either one of \f$f_x(x,y)\f$, or \f$f_y(x,y)\f$, or both |
110 | | of them may fall outside of the image. In this case, an extrapolation method needs to be used. |
111 | | OpenCV provides the same selection of extrapolation methods as in the filtering functions. In |
112 | | addition, it provides the method #BORDER_TRANSPARENT. This means that the corresponding pixels in |
113 | | the destination image will not be modified at all. |
114 | | |
115 | | - Interpolation of pixel values. Usually \f$f_x(x,y)\f$ and \f$f_y(x,y)\f$ are floating-point |
116 | | numbers. This means that \f$\left<f_x, f_y\right>\f$ can be either an affine or perspective |
117 | | transformation, or radial lens distortion correction, and so on. So, a pixel value at fractional |
118 | | coordinates needs to be retrieved. In the simplest case, the coordinates can be just rounded to the |
119 | | nearest integer coordinates and the corresponding pixel can be used. This is called a |
120 | | nearest-neighbor interpolation. However, a better result can be achieved by using more |
121 | | sophisticated [interpolation methods](http://en.wikipedia.org/wiki/Multivariate_interpolation) , |
122 | | where a polynomial function is fit into some neighborhood of the computed pixel \f$(f_x(x,y), |
123 | | f_y(x,y))\f$, and then the value of the polynomial at \f$(f_x(x,y), f_y(x,y))\f$ is taken as the |
124 | | interpolated pixel value. In OpenCV, you can choose between several interpolation methods. See |
125 | | #resize for details. |
126 | | |
127 | | @note The geometrical transformations do not work with `CV_8S` or `CV_32S` images. |
128 | | |
129 | | @defgroup imgproc_misc Miscellaneous Image Transformations |
130 | | @defgroup imgproc_draw Drawing Functions |
131 | | |
132 | | Drawing functions work with matrices/images of arbitrary depth. The boundaries of the shapes can be |
133 | | rendered with antialiasing (implemented only for 8-bit images for now). All the functions include |
134 | | the parameter color that uses an RGB value (that may be constructed with the Scalar constructor ) |
135 | | for color images and brightness for grayscale images. For color images, the channel ordering is |
136 | | normally *Blue, Green, Red*. This is what imshow, imread, and imwrite expect. So, if you form a |
137 | | color using the Scalar constructor, it should look like: |
138 | | |
139 | | \f[\texttt{Scalar} (blue \_ component, green \_ component, red \_ component[, alpha \_ component])\f] |
140 | | |
141 | | If you are using your own image rendering and I/O functions, you can use any channel ordering. The |
142 | | drawing functions process each channel independently and do not depend on the channel order or even |
143 | | on the used color space. The whole image can be converted from BGR to RGB or to a different color |
144 | | space using cvtColor . |
145 | | |
146 | | If a drawn figure is partially or completely outside the image, the drawing functions clip it. Also, |
147 | | many drawing functions can handle pixel coordinates specified with sub-pixel accuracy. This means |
148 | | that the coordinates can be passed as fixed-point numbers encoded as integers. The number of |
149 | | fractional bits is specified by the shift parameter and the real point coordinates are calculated as |
150 | | \f$\texttt{Point}(x,y)\rightarrow\texttt{Point2f}(x*2^{-shift},y*2^{-shift})\f$ . This feature is |
151 | | especially effective when rendering antialiased shapes. |
152 | | |
153 | | @note The functions do not support alpha-transparency when the target image is 4-channel. In this |
154 | | case, the color[3] is simply copied to the repainted pixels. Thus, if you want to paint |
155 | | semi-transparent shapes, you can paint them in a separate buffer and then blend it with the main |
156 | | image. |
157 | | |
158 | | @defgroup imgproc_color_conversions Color Space Conversions |
159 | | @defgroup imgproc_colormap ColorMaps in OpenCV |
160 | | |
161 | | The human perception isn't built for observing fine changes in grayscale images. Human eyes are more |
162 | | sensitive to observing changes between colors, so you often need to recolor your grayscale images to |
163 | | get a clue about them. OpenCV now comes with various colormaps to enhance the visualization in your |
164 | | computer vision application. |
165 | | |
166 | | In OpenCV you only need applyColorMap to apply a colormap on a given image. The following sample |
167 | | code reads the path to an image from command line, applies a Jet colormap on it and shows the |
168 | | result: |
169 | | |
170 | | @include snippets/imgproc_applyColorMap.cpp |
171 | | |
172 | | @see #ColormapTypes |
173 | | |
174 | | @defgroup imgproc_subdiv2d Planar Subdivision |
175 | | |
176 | | The Subdiv2D class described in this section is used to perform various planar subdivision on |
177 | | a set of 2D points (represented as vector of Point2f). OpenCV subdivides a plane into triangles |
178 | | using the Delaunay's algorithm, which corresponds to the dual graph of the Voronoi diagram. |
179 | | In the figure below, the Delaunay's triangulation is marked with black lines and the Voronoi |
180 | | diagram with red lines. |
181 | | |
182 | |  |
183 | | |
184 | | The subdivisions can be used for the 3D piece-wise transformation of a plane, morphing, fast |
185 | | location of points on the plane, building special graphs (such as NNG,RNG), and so forth. |
186 | | |
187 | | @defgroup imgproc_hist Histograms |
188 | | @defgroup imgproc_shape Structural Analysis and Shape Descriptors |
189 | | @defgroup imgproc_motion Motion Analysis and Object Tracking |
190 | | @defgroup imgproc_feature Feature Detection |
191 | | @defgroup imgproc_object Object Detection |
192 | | @defgroup imgproc_segmentation Image Segmentation |
193 | | @defgroup imgproc_c C API |
194 | | @defgroup imgproc_hal Hardware Acceleration Layer |
195 | | @{ |
196 | | @defgroup imgproc_hal_functions Functions |
197 | | @defgroup imgproc_hal_interface Interface |
198 | | @} |
199 | | @} |
200 | | */ |
201 | | |
202 | | namespace cv |
203 | | { |
204 | | |
205 | | /** @addtogroup imgproc |
206 | | @{ |
207 | | */ |
208 | | |
209 | | //! @addtogroup imgproc_filter |
210 | | //! @{ |
211 | | |
212 | | enum SpecialFilter { |
213 | | FILTER_SCHARR = -1 |
214 | | }; |
215 | | |
216 | | //! type of morphological operation |
217 | | enum MorphTypes{ |
218 | | MORPH_ERODE = 0, //!< see #erode |
219 | | MORPH_DILATE = 1, //!< see #dilate |
220 | | MORPH_OPEN = 2, //!< an opening operation |
221 | | //!< \f[\texttt{dst} = \mathrm{open} ( \texttt{src} , \texttt{element} )= \mathrm{dilate} ( \mathrm{erode} ( \texttt{src} , \texttt{element} ))\f] |
222 | | MORPH_CLOSE = 3, //!< a closing operation |
223 | | //!< \f[\texttt{dst} = \mathrm{close} ( \texttt{src} , \texttt{element} )= \mathrm{erode} ( \mathrm{dilate} ( \texttt{src} , \texttt{element} ))\f] |
224 | | MORPH_GRADIENT = 4, //!< a morphological gradient |
225 | | //!< \f[\texttt{dst} = \mathrm{morph\_grad} ( \texttt{src} , \texttt{element} )= \mathrm{dilate} ( \texttt{src} , \texttt{element} )- \mathrm{erode} ( \texttt{src} , \texttt{element} )\f] |
226 | | MORPH_TOPHAT = 5, //!< "top hat" |
227 | | //!< \f[\texttt{dst} = \mathrm{tophat} ( \texttt{src} , \texttt{element} )= \texttt{src} - \mathrm{open} ( \texttt{src} , \texttt{element} )\f] |
228 | | MORPH_BLACKHAT = 6, //!< "black hat" |
229 | | //!< \f[\texttt{dst} = \mathrm{blackhat} ( \texttt{src} , \texttt{element} )= \mathrm{close} ( \texttt{src} , \texttt{element} )- \texttt{src}\f] |
230 | | MORPH_HITMISS = 7 //!< "hit or miss" |
231 | | //!< .- Only supported for CV_8UC1 binary images. A tutorial can be found in the documentation |
232 | | }; |
233 | | |
234 | | //! shape of the structuring element |
235 | | enum MorphShapes { |
236 | | MORPH_RECT = 0, //!< a rectangular structuring element: \f[E_{ij}=1\f] |
237 | | MORPH_CROSS = 1, //!< a cross-shaped structuring element: |
238 | | //!< \f[E_{ij} = \begin{cases} 1 & \texttt{if } {i=\texttt{anchor.y } {or } {j=\texttt{anchor.x}}} \\0 & \texttt{otherwise} \end{cases}\f] |
239 | | MORPH_ELLIPSE = 2 //!< an elliptic structuring element, that is, a filled ellipse inscribed |
240 | | //!< into the rectangle Rect(0, 0, esize.width, 0.esize.height) |
241 | | }; |
242 | | |
243 | | //! @} imgproc_filter |
244 | | |
245 | | //! @addtogroup imgproc_transform |
246 | | //! @{ |
247 | | |
248 | | //! interpolation algorithm |
249 | | enum InterpolationFlags{ |
250 | | /** nearest neighbor interpolation */ |
251 | | INTER_NEAREST = 0, |
252 | | /** bilinear interpolation */ |
253 | | INTER_LINEAR = 1, |
254 | | /** bicubic interpolation */ |
255 | | INTER_CUBIC = 2, |
256 | | /** resampling using pixel area relation. It may be a preferred method for image decimation, as |
257 | | it gives moire'-free results. But when the image is zoomed, it is similar to the INTER_NEAREST |
258 | | method. */ |
259 | | INTER_AREA = 3, |
260 | | /** Lanczos interpolation over 8x8 neighborhood */ |
261 | | INTER_LANCZOS4 = 4, |
262 | | /** Bit exact bilinear interpolation */ |
263 | | INTER_LINEAR_EXACT = 5, |
264 | | /** Bit exact nearest neighbor interpolation. This will produce same results as |
265 | | the nearest neighbor method in PIL, scikit-image or Matlab. */ |
266 | | INTER_NEAREST_EXACT = 6, |
267 | | /** mask for interpolation codes */ |
268 | | INTER_MAX = 7, |
269 | | /** flag, fills all of the destination image pixels. If some of them correspond to outliers in the |
270 | | source image, they are set to zero */ |
271 | | WARP_FILL_OUTLIERS = 8, |
272 | | /** flag, inverse transformation |
273 | | |
274 | | For example, #linearPolar or #logPolar transforms: |
275 | | - flag is __not__ set: \f$dst( \rho , \phi ) = src(x,y)\f$ |
276 | | - flag is set: \f$dst(x,y) = src( \rho , \phi )\f$ |
277 | | */ |
278 | | WARP_INVERSE_MAP = 16 |
279 | | }; |
280 | | |
281 | | /** \brief Specify the polar mapping mode |
282 | | @sa warpPolar |
283 | | */ |
284 | | enum WarpPolarMode |
285 | | { |
286 | | WARP_POLAR_LINEAR = 0, ///< Remaps an image to/from polar space. |
287 | | WARP_POLAR_LOG = 256 ///< Remaps an image to/from semilog-polar space. |
288 | | }; |
289 | | |
290 | | enum InterpolationMasks { |
291 | | INTER_BITS = 5, |
292 | | INTER_BITS2 = INTER_BITS * 2, |
293 | | INTER_TAB_SIZE = 1 << INTER_BITS, |
294 | | INTER_TAB_SIZE2 = INTER_TAB_SIZE * INTER_TAB_SIZE |
295 | | }; |
296 | | |
297 | | //! @} imgproc_transform |
298 | | |
299 | | //! @addtogroup imgproc_misc |
300 | | //! @{ |
301 | | |
302 | | //! Distance types for Distance Transform and M-estimators |
303 | | //! @see distanceTransform, fitLine |
304 | | enum DistanceTypes { |
305 | | DIST_USER = -1, //!< User defined distance |
306 | | DIST_L1 = 1, //!< distance = |x1-x2| + |y1-y2| |
307 | | DIST_L2 = 2, //!< the simple euclidean distance |
308 | | DIST_C = 3, //!< distance = max(|x1-x2|,|y1-y2|) |
309 | | DIST_L12 = 4, //!< L1-L2 metric: distance = 2(sqrt(1+x*x/2) - 1)) |
310 | | DIST_FAIR = 5, //!< distance = c^2(|x|/c-log(1+|x|/c)), c = 1.3998 |
311 | | DIST_WELSCH = 6, //!< distance = c^2/2(1-exp(-(x/c)^2)), c = 2.9846 |
312 | | DIST_HUBER = 7 //!< distance = |x|<c ? x^2/2 : c(|x|-c/2), c=1.345 |
313 | | }; |
314 | | |
315 | | //! Mask size for distance transform |
316 | | enum DistanceTransformMasks { |
317 | | DIST_MASK_3 = 3, //!< mask=3 |
318 | | DIST_MASK_5 = 5, //!< mask=5 |
319 | | DIST_MASK_PRECISE = 0 //!< |
320 | | }; |
321 | | |
322 | | //! type of the threshold operation |
323 | | //!  |
324 | | enum ThresholdTypes { |
325 | | THRESH_BINARY = 0, //!< \f[\texttt{dst} (x,y) = \fork{\texttt{maxval}}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{0}{otherwise}\f] |
326 | | THRESH_BINARY_INV = 1, //!< \f[\texttt{dst} (x,y) = \fork{0}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{\texttt{maxval}}{otherwise}\f] |
327 | | THRESH_TRUNC = 2, //!< \f[\texttt{dst} (x,y) = \fork{\texttt{threshold}}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{\texttt{src}(x,y)}{otherwise}\f] |
328 | | THRESH_TOZERO = 3, //!< \f[\texttt{dst} (x,y) = \fork{\texttt{src}(x,y)}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{0}{otherwise}\f] |
329 | | THRESH_TOZERO_INV = 4, //!< \f[\texttt{dst} (x,y) = \fork{0}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{\texttt{src}(x,y)}{otherwise}\f] |
330 | | THRESH_MASK = 7, |
331 | | THRESH_OTSU = 8, //!< flag, use Otsu algorithm to choose the optimal threshold value |
332 | | THRESH_TRIANGLE = 16 //!< flag, use Triangle algorithm to choose the optimal threshold value |
333 | | }; |
334 | | |
335 | | //! adaptive threshold algorithm |
336 | | //! @see adaptiveThreshold |
337 | | enum AdaptiveThresholdTypes { |
338 | | /** the threshold value \f$T(x,y)\f$ is a mean of the \f$\texttt{blockSize} \times |
339 | | \texttt{blockSize}\f$ neighborhood of \f$(x, y)\f$ minus C */ |
340 | | ADAPTIVE_THRESH_MEAN_C = 0, |
341 | | /** the threshold value \f$T(x, y)\f$ is a weighted sum (cross-correlation with a Gaussian |
342 | | window) of the \f$\texttt{blockSize} \times \texttt{blockSize}\f$ neighborhood of \f$(x, y)\f$ |
343 | | minus C . The default sigma (standard deviation) is used for the specified blockSize . See |
344 | | #getGaussianKernel*/ |
345 | | ADAPTIVE_THRESH_GAUSSIAN_C = 1 |
346 | | }; |
347 | | |
348 | | //! class of the pixel in GrabCut algorithm |
349 | | enum GrabCutClasses { |
350 | | GC_BGD = 0, //!< an obvious background pixels |
351 | | GC_FGD = 1, //!< an obvious foreground (object) pixel |
352 | | GC_PR_BGD = 2, //!< a possible background pixel |
353 | | GC_PR_FGD = 3 //!< a possible foreground pixel |
354 | | }; |
355 | | |
356 | | //! GrabCut algorithm flags |
357 | | enum GrabCutModes { |
358 | | /** The function initializes the state and the mask using the provided rectangle. After that it |
359 | | runs iterCount iterations of the algorithm. */ |
360 | | GC_INIT_WITH_RECT = 0, |
361 | | /** The function initializes the state using the provided mask. Note that GC_INIT_WITH_RECT |
362 | | and GC_INIT_WITH_MASK can be combined. Then, all the pixels outside of the ROI are |
363 | | automatically initialized with GC_BGD .*/ |
364 | | GC_INIT_WITH_MASK = 1, |
365 | | /** The value means that the algorithm should just resume. */ |
366 | | GC_EVAL = 2, |
367 | | /** The value means that the algorithm should just run the grabCut algorithm (a single iteration) with the fixed model */ |
368 | | GC_EVAL_FREEZE_MODEL = 3 |
369 | | }; |
370 | | |
371 | | //! distanceTransform algorithm flags |
372 | | enum DistanceTransformLabelTypes { |
373 | | /** each connected component of zeros in src (as well as all the non-zero pixels closest to the |
374 | | connected component) will be assigned the same label */ |
375 | | DIST_LABEL_CCOMP = 0, |
376 | | /** each zero pixel (and all the non-zero pixels closest to it) gets its own label. */ |
377 | | DIST_LABEL_PIXEL = 1 |
378 | | }; |
379 | | |
380 | | //! floodfill algorithm flags |
381 | | enum FloodFillFlags { |
382 | | /** If set, the difference between the current pixel and seed pixel is considered. Otherwise, |
383 | | the difference between neighbor pixels is considered (that is, the range is floating). */ |
384 | | FLOODFILL_FIXED_RANGE = 1 << 16, |
385 | | /** If set, the function does not change the image ( newVal is ignored), and only fills the |
386 | | mask with the value specified in bits 8-16 of flags as described above. This option only make |
387 | | sense in function variants that have the mask parameter. */ |
388 | | FLOODFILL_MASK_ONLY = 1 << 17 |
389 | | }; |
390 | | |
391 | | //! @} imgproc_misc |
392 | | |
393 | | //! @addtogroup imgproc_shape |
394 | | //! @{ |
395 | | |
396 | | //! connected components statistics |
397 | | enum ConnectedComponentsTypes { |
398 | | CC_STAT_LEFT = 0, //!< The leftmost (x) coordinate which is the inclusive start of the bounding |
399 | | //!< box in the horizontal direction. |
400 | | CC_STAT_TOP = 1, //!< The topmost (y) coordinate which is the inclusive start of the bounding |
401 | | //!< box in the vertical direction. |
402 | | CC_STAT_WIDTH = 2, //!< The horizontal size of the bounding box |
403 | | CC_STAT_HEIGHT = 3, //!< The vertical size of the bounding box |
404 | | CC_STAT_AREA = 4, //!< The total area (in pixels) of the connected component |
405 | | #ifndef CV_DOXYGEN |
406 | | CC_STAT_MAX = 5 //!< Max enumeration value. Used internally only for memory allocation |
407 | | #endif |
408 | | }; |
409 | | |
410 | | //! connected components algorithm |
411 | | enum ConnectedComponentsAlgorithmsTypes { |
412 | | CCL_DEFAULT = -1, //!< Spaghetti @cite Bolelli2019 algorithm for 8-way connectivity, Spaghetti4C @cite Bolelli2021 algorithm for 4-way connectivity. |
413 | | CCL_WU = 0, //!< SAUF @cite Wu2009 algorithm for 8-way connectivity, SAUF algorithm for 4-way connectivity. The parallel implementation described in @cite Bolelli2017 is available for SAUF. |
414 | | CCL_GRANA = 1, //!< BBDT @cite Grana2010 algorithm for 8-way connectivity, SAUF algorithm for 4-way connectivity. The parallel implementation described in @cite Bolelli2017 is available for both BBDT and SAUF. |
415 | | CCL_BOLELLI = 2, //!< Spaghetti @cite Bolelli2019 algorithm for 8-way connectivity, Spaghetti4C @cite Bolelli2021 algorithm for 4-way connectivity. The parallel implementation described in @cite Bolelli2017 is available for both Spaghetti and Spaghetti4C. |
416 | | CCL_SAUF = 3, //!< Same as CCL_WU. It is preferable to use the flag with the name of the algorithm (CCL_SAUF) rather than the one with the name of the first author (CCL_WU). |
417 | | CCL_BBDT = 4, //!< Same as CCL_GRANA. It is preferable to use the flag with the name of the algorithm (CCL_BBDT) rather than the one with the name of the first author (CCL_GRANA). |
418 | | CCL_SPAGHETTI = 5, //!< Same as CCL_BOLELLI. It is preferable to use the flag with the name of the algorithm (CCL_SPAGHETTI) rather than the one with the name of the first author (CCL_BOLELLI). |
419 | | }; |
420 | | |
421 | | //! mode of the contour retrieval algorithm |
422 | | enum RetrievalModes { |
423 | | /** retrieves only the extreme outer contours. It sets `hierarchy[i][2]=hierarchy[i][3]=-1` for |
424 | | all the contours. */ |
425 | | RETR_EXTERNAL = 0, |
426 | | /** retrieves all of the contours without establishing any hierarchical relationships. */ |
427 | | RETR_LIST = 1, |
428 | | /** retrieves all of the contours and organizes them into a two-level hierarchy. At the top |
429 | | level, there are external boundaries of the components. At the second level, there are |
430 | | boundaries of the holes. If there is another contour inside a hole of a connected component, it |
431 | | is still put at the top level. */ |
432 | | RETR_CCOMP = 2, |
433 | | /** retrieves all of the contours and reconstructs a full hierarchy of nested contours.*/ |
434 | | RETR_TREE = 3, |
435 | | RETR_FLOODFILL = 4 //!< |
436 | | }; |
437 | | |
438 | | //! the contour approximation algorithm |
439 | | enum ContourApproximationModes { |
440 | | /** stores absolutely all the contour points. That is, any 2 subsequent points (x1,y1) and |
441 | | (x2,y2) of the contour will be either horizontal, vertical or diagonal neighbors, that is, |
442 | | max(abs(x1-x2),abs(y2-y1))==1. */ |
443 | | CHAIN_APPROX_NONE = 1, |
444 | | /** compresses horizontal, vertical, and diagonal segments and leaves only their end points. |
445 | | For example, an up-right rectangular contour is encoded with 4 points. */ |
446 | | CHAIN_APPROX_SIMPLE = 2, |
447 | | /** applies one of the flavors of the Teh-Chin chain approximation algorithm @cite TehChin89 */ |
448 | | CHAIN_APPROX_TC89_L1 = 3, |
449 | | /** applies one of the flavors of the Teh-Chin chain approximation algorithm @cite TehChin89 */ |
450 | | CHAIN_APPROX_TC89_KCOS = 4 |
451 | | }; |
452 | | |
453 | | /** @brief Shape matching methods |
454 | | |
455 | | \f$A\f$ denotes object1,\f$B\f$ denotes object2 |
456 | | |
457 | | \f$\begin{array}{l} m^A_i = \mathrm{sign} (h^A_i) \cdot \log{h^A_i} \\ m^B_i = \mathrm{sign} (h^B_i) \cdot \log{h^B_i} \end{array}\f$ |
458 | | |
459 | | and \f$h^A_i, h^B_i\f$ are the Hu moments of \f$A\f$ and \f$B\f$ , respectively. |
460 | | */ |
461 | | enum ShapeMatchModes { |
462 | | CONTOURS_MATCH_I1 =1, //!< \f[I_1(A,B) = \sum _{i=1...7} \left | \frac{1}{m^A_i} - \frac{1}{m^B_i} \right |\f] |
463 | | CONTOURS_MATCH_I2 =2, //!< \f[I_2(A,B) = \sum _{i=1...7} \left | m^A_i - m^B_i \right |\f] |
464 | | CONTOURS_MATCH_I3 =3 //!< \f[I_3(A,B) = \max _{i=1...7} \frac{ \left| m^A_i - m^B_i \right| }{ \left| m^A_i \right| }\f] |
465 | | }; |
466 | | |
467 | | //! @} imgproc_shape |
468 | | |
469 | | //! @addtogroup imgproc_feature |
470 | | //! @{ |
471 | | |
472 | | //! Variants of a Hough transform |
473 | | enum HoughModes { |
474 | | |
475 | | /** classical or standard Hough transform. Every line is represented by two floating-point |
476 | | numbers \f$(\rho, \theta)\f$ , where \f$\rho\f$ is a distance between (0,0) point and the line, |
477 | | and \f$\theta\f$ is the angle between x-axis and the normal to the line. Thus, the matrix must |
478 | | be (the created sequence will be) of CV_32FC2 type */ |
479 | | HOUGH_STANDARD = 0, |
480 | | /** probabilistic Hough transform (more efficient in case if the picture contains a few long |
481 | | linear segments). It returns line segments rather than the whole line. Each segment is |
482 | | represented by starting and ending points, and the matrix must be (the created sequence will |
483 | | be) of the CV_32SC4 type. */ |
484 | | HOUGH_PROBABILISTIC = 1, |
485 | | /** multi-scale variant of the classical Hough transform. The lines are encoded the same way as |
486 | | HOUGH_STANDARD. */ |
487 | | HOUGH_MULTI_SCALE = 2, |
488 | | HOUGH_GRADIENT = 3, //!< basically *21HT*, described in @cite Yuen90 |
489 | | HOUGH_GRADIENT_ALT = 4, //!< variation of HOUGH_GRADIENT to get better accuracy |
490 | | }; |
491 | | |
492 | | //! Variants of Line Segment %Detector |
493 | | enum LineSegmentDetectorModes { |
494 | | LSD_REFINE_NONE = 0, //!< No refinement applied |
495 | | LSD_REFINE_STD = 1, //!< Standard refinement is applied. E.g. breaking arches into smaller straighter line approximations. |
496 | | LSD_REFINE_ADV = 2 //!< Advanced refinement. Number of false alarms is calculated, lines are |
497 | | //!< refined through increase of precision, decrement in size, etc. |
498 | | }; |
499 | | |
500 | | //! @} imgproc_feature |
501 | | |
502 | | /** Histogram comparison methods |
503 | | @ingroup imgproc_hist |
504 | | */ |
505 | | enum HistCompMethods { |
506 | | /** Correlation |
507 | | \f[d(H_1,H_2) = \frac{\sum_I (H_1(I) - \bar{H_1}) (H_2(I) - \bar{H_2})}{\sqrt{\sum_I(H_1(I) - \bar{H_1})^2 \sum_I(H_2(I) - \bar{H_2})^2}}\f] |
508 | | where |
509 | | \f[\bar{H_k} = \frac{1}{N} \sum _J H_k(J)\f] |
510 | | and \f$N\f$ is a total number of histogram bins. */ |
511 | | HISTCMP_CORREL = 0, |
512 | | /** Chi-Square |
513 | | \f[d(H_1,H_2) = \sum _I \frac{\left(H_1(I)-H_2(I)\right)^2}{H_1(I)}\f] */ |
514 | | HISTCMP_CHISQR = 1, |
515 | | /** Intersection |
516 | | \f[d(H_1,H_2) = \sum _I \min (H_1(I), H_2(I))\f] */ |
517 | | HISTCMP_INTERSECT = 2, |
518 | | /** Bhattacharyya distance |
519 | | (In fact, OpenCV computes Hellinger distance, which is related to Bhattacharyya coefficient.) |
520 | | \f[d(H_1,H_2) = \sqrt{1 - \frac{1}{\sqrt{\bar{H_1} \bar{H_2} N^2}} \sum_I \sqrt{H_1(I) \cdot H_2(I)}}\f] */ |
521 | | HISTCMP_BHATTACHARYYA = 3, |
522 | | HISTCMP_HELLINGER = HISTCMP_BHATTACHARYYA, //!< Synonym for HISTCMP_BHATTACHARYYA |
523 | | /** Alternative Chi-Square |
524 | | \f[d(H_1,H_2) = 2 * \sum _I \frac{\left(H_1(I)-H_2(I)\right)^2}{H_1(I)+H_2(I)}\f] |
525 | | This alternative formula is regularly used for texture comparison. See e.g. @cite Puzicha1997 */ |
526 | | HISTCMP_CHISQR_ALT = 4, |
527 | | /** Kullback-Leibler divergence |
528 | | \f[d(H_1,H_2) = \sum _I H_1(I) \log \left(\frac{H_1(I)}{H_2(I)}\right)\f] */ |
529 | | HISTCMP_KL_DIV = 5 |
530 | | }; |
531 | | |
532 | | /** the color conversion codes |
533 | | @see @ref imgproc_color_conversions |
534 | | @ingroup imgproc_color_conversions |
535 | | */ |
536 | | enum ColorConversionCodes { |
537 | | COLOR_BGR2BGRA = 0, //!< add alpha channel to RGB or BGR image |
538 | | COLOR_RGB2RGBA = COLOR_BGR2BGRA, |
539 | | |
540 | | COLOR_BGRA2BGR = 1, //!< remove alpha channel from RGB or BGR image |
541 | | COLOR_RGBA2RGB = COLOR_BGRA2BGR, |
542 | | |
543 | | COLOR_BGR2RGBA = 2, //!< convert between RGB and BGR color spaces (with or without alpha channel) |
544 | | COLOR_RGB2BGRA = COLOR_BGR2RGBA, |
545 | | |
546 | | COLOR_RGBA2BGR = 3, |
547 | | COLOR_BGRA2RGB = COLOR_RGBA2BGR, |
548 | | |
549 | | COLOR_BGR2RGB = 4, |
550 | | COLOR_RGB2BGR = COLOR_BGR2RGB, |
551 | | |
552 | | COLOR_BGRA2RGBA = 5, |
553 | | COLOR_RGBA2BGRA = COLOR_BGRA2RGBA, |
554 | | |
555 | | COLOR_BGR2GRAY = 6, //!< convert between RGB/BGR and grayscale, @ref color_convert_rgb_gray "color conversions" |
556 | | COLOR_RGB2GRAY = 7, |
557 | | COLOR_GRAY2BGR = 8, |
558 | | COLOR_GRAY2RGB = COLOR_GRAY2BGR, |
559 | | COLOR_GRAY2BGRA = 9, |
560 | | COLOR_GRAY2RGBA = COLOR_GRAY2BGRA, |
561 | | COLOR_BGRA2GRAY = 10, |
562 | | COLOR_RGBA2GRAY = 11, |
563 | | |
564 | | COLOR_BGR2BGR565 = 12, //!< convert between RGB/BGR and BGR565 (16-bit images) |
565 | | COLOR_RGB2BGR565 = 13, |
566 | | COLOR_BGR5652BGR = 14, |
567 | | COLOR_BGR5652RGB = 15, |
568 | | COLOR_BGRA2BGR565 = 16, |
569 | | COLOR_RGBA2BGR565 = 17, |
570 | | COLOR_BGR5652BGRA = 18, |
571 | | COLOR_BGR5652RGBA = 19, |
572 | | |
573 | | COLOR_GRAY2BGR565 = 20, //!< convert between grayscale to BGR565 (16-bit images) |
574 | | COLOR_BGR5652GRAY = 21, |
575 | | |
576 | | COLOR_BGR2BGR555 = 22, //!< convert between RGB/BGR and BGR555 (16-bit images) |
577 | | COLOR_RGB2BGR555 = 23, |
578 | | COLOR_BGR5552BGR = 24, |
579 | | COLOR_BGR5552RGB = 25, |
580 | | COLOR_BGRA2BGR555 = 26, |
581 | | COLOR_RGBA2BGR555 = 27, |
582 | | COLOR_BGR5552BGRA = 28, |
583 | | COLOR_BGR5552RGBA = 29, |
584 | | |
585 | | COLOR_GRAY2BGR555 = 30, //!< convert between grayscale and BGR555 (16-bit images) |
586 | | COLOR_BGR5552GRAY = 31, |
587 | | |
588 | | COLOR_BGR2XYZ = 32, //!< convert RGB/BGR to CIE XYZ, @ref color_convert_rgb_xyz "color conversions" |
589 | | COLOR_RGB2XYZ = 33, |
590 | | COLOR_XYZ2BGR = 34, |
591 | | COLOR_XYZ2RGB = 35, |
592 | | |
593 | | COLOR_BGR2YCrCb = 36, //!< convert RGB/BGR to luma-chroma (aka YCC), @ref color_convert_rgb_ycrcb "color conversions" |
594 | | COLOR_RGB2YCrCb = 37, |
595 | | COLOR_YCrCb2BGR = 38, |
596 | | COLOR_YCrCb2RGB = 39, |
597 | | |
598 | | COLOR_BGR2HSV = 40, //!< convert RGB/BGR to HSV (hue saturation value) with H range 0..180 if 8 bit image, @ref color_convert_rgb_hsv "color conversions" |
599 | | COLOR_RGB2HSV = 41, |
600 | | |
601 | | COLOR_BGR2Lab = 44, //!< convert RGB/BGR to CIE Lab, @ref color_convert_rgb_lab "color conversions" |
602 | | COLOR_RGB2Lab = 45, |
603 | | |
604 | | COLOR_BGR2Luv = 50, //!< convert RGB/BGR to CIE Luv, @ref color_convert_rgb_luv "color conversions" |
605 | | COLOR_RGB2Luv = 51, |
606 | | COLOR_BGR2HLS = 52, //!< convert RGB/BGR to HLS (hue lightness saturation) with H range 0..180 if 8 bit image, @ref color_convert_rgb_hls "color conversions" |
607 | | COLOR_RGB2HLS = 53, |
608 | | |
609 | | COLOR_HSV2BGR = 54, //!< backward conversions HSV to RGB/BGR with H range 0..180 if 8 bit image |
610 | | COLOR_HSV2RGB = 55, |
611 | | |
612 | | COLOR_Lab2BGR = 56, |
613 | | COLOR_Lab2RGB = 57, |
614 | | COLOR_Luv2BGR = 58, |
615 | | COLOR_Luv2RGB = 59, |
616 | | COLOR_HLS2BGR = 60, //!< backward conversions HLS to RGB/BGR with H range 0..180 if 8 bit image |
617 | | COLOR_HLS2RGB = 61, |
618 | | |
619 | | COLOR_BGR2HSV_FULL = 66, //!< convert RGB/BGR to HSV (hue saturation value) with H range 0..255 if 8 bit image, @ref color_convert_rgb_hsv "color conversions" |
620 | | COLOR_RGB2HSV_FULL = 67, |
621 | | COLOR_BGR2HLS_FULL = 68, //!< convert RGB/BGR to HLS (hue lightness saturation) with H range 0..255 if 8 bit image, @ref color_convert_rgb_hls "color conversions" |
622 | | COLOR_RGB2HLS_FULL = 69, |
623 | | |
624 | | COLOR_HSV2BGR_FULL = 70, //!< backward conversions HSV to RGB/BGR with H range 0..255 if 8 bit image |
625 | | COLOR_HSV2RGB_FULL = 71, |
626 | | COLOR_HLS2BGR_FULL = 72, //!< backward conversions HLS to RGB/BGR with H range 0..255 if 8 bit image |
627 | | COLOR_HLS2RGB_FULL = 73, |
628 | | |
629 | | COLOR_LBGR2Lab = 74, |
630 | | COLOR_LRGB2Lab = 75, |
631 | | COLOR_LBGR2Luv = 76, |
632 | | COLOR_LRGB2Luv = 77, |
633 | | |
634 | | COLOR_Lab2LBGR = 78, |
635 | | COLOR_Lab2LRGB = 79, |
636 | | COLOR_Luv2LBGR = 80, |
637 | | COLOR_Luv2LRGB = 81, |
638 | | |
639 | | COLOR_BGR2YUV = 82, //!< convert between RGB/BGR and YUV |
640 | | COLOR_RGB2YUV = 83, |
641 | | COLOR_YUV2BGR = 84, |
642 | | COLOR_YUV2RGB = 85, |
643 | | |
644 | | //! YUV 4:2:0 family to RGB |
645 | | COLOR_YUV2RGB_NV12 = 90, |
646 | | COLOR_YUV2BGR_NV12 = 91, |
647 | | COLOR_YUV2RGB_NV21 = 92, |
648 | | COLOR_YUV2BGR_NV21 = 93, |
649 | | COLOR_YUV420sp2RGB = COLOR_YUV2RGB_NV21, |
650 | | COLOR_YUV420sp2BGR = COLOR_YUV2BGR_NV21, |
651 | | |
652 | | COLOR_YUV2RGBA_NV12 = 94, |
653 | | COLOR_YUV2BGRA_NV12 = 95, |
654 | | COLOR_YUV2RGBA_NV21 = 96, |
655 | | COLOR_YUV2BGRA_NV21 = 97, |
656 | | COLOR_YUV420sp2RGBA = COLOR_YUV2RGBA_NV21, |
657 | | COLOR_YUV420sp2BGRA = COLOR_YUV2BGRA_NV21, |
658 | | |
659 | | COLOR_YUV2RGB_YV12 = 98, |
660 | | COLOR_YUV2BGR_YV12 = 99, |
661 | | COLOR_YUV2RGB_IYUV = 100, |
662 | | COLOR_YUV2BGR_IYUV = 101, |
663 | | COLOR_YUV2RGB_I420 = COLOR_YUV2RGB_IYUV, |
664 | | COLOR_YUV2BGR_I420 = COLOR_YUV2BGR_IYUV, |
665 | | COLOR_YUV420p2RGB = COLOR_YUV2RGB_YV12, |
666 | | COLOR_YUV420p2BGR = COLOR_YUV2BGR_YV12, |
667 | | |
668 | | COLOR_YUV2RGBA_YV12 = 102, |
669 | | COLOR_YUV2BGRA_YV12 = 103, |
670 | | COLOR_YUV2RGBA_IYUV = 104, |
671 | | COLOR_YUV2BGRA_IYUV = 105, |
672 | | COLOR_YUV2RGBA_I420 = COLOR_YUV2RGBA_IYUV, |
673 | | COLOR_YUV2BGRA_I420 = COLOR_YUV2BGRA_IYUV, |
674 | | COLOR_YUV420p2RGBA = COLOR_YUV2RGBA_YV12, |
675 | | COLOR_YUV420p2BGRA = COLOR_YUV2BGRA_YV12, |
676 | | |
677 | | COLOR_YUV2GRAY_420 = 106, |
678 | | COLOR_YUV2GRAY_NV21 = COLOR_YUV2GRAY_420, |
679 | | COLOR_YUV2GRAY_NV12 = COLOR_YUV2GRAY_420, |
680 | | COLOR_YUV2GRAY_YV12 = COLOR_YUV2GRAY_420, |
681 | | COLOR_YUV2GRAY_IYUV = COLOR_YUV2GRAY_420, |
682 | | COLOR_YUV2GRAY_I420 = COLOR_YUV2GRAY_420, |
683 | | COLOR_YUV420sp2GRAY = COLOR_YUV2GRAY_420, |
684 | | COLOR_YUV420p2GRAY = COLOR_YUV2GRAY_420, |
685 | | |
686 | | //! YUV 4:2:2 family to RGB |
687 | | COLOR_YUV2RGB_UYVY = 107, |
688 | | COLOR_YUV2BGR_UYVY = 108, |
689 | | //COLOR_YUV2RGB_VYUY = 109, |
690 | | //COLOR_YUV2BGR_VYUY = 110, |
691 | | COLOR_YUV2RGB_Y422 = COLOR_YUV2RGB_UYVY, |
692 | | COLOR_YUV2BGR_Y422 = COLOR_YUV2BGR_UYVY, |
693 | | COLOR_YUV2RGB_UYNV = COLOR_YUV2RGB_UYVY, |
694 | | COLOR_YUV2BGR_UYNV = COLOR_YUV2BGR_UYVY, |
695 | | |
696 | | COLOR_YUV2RGBA_UYVY = 111, |
697 | | COLOR_YUV2BGRA_UYVY = 112, |
698 | | //COLOR_YUV2RGBA_VYUY = 113, |
699 | | //COLOR_YUV2BGRA_VYUY = 114, |
700 | | COLOR_YUV2RGBA_Y422 = COLOR_YUV2RGBA_UYVY, |
701 | | COLOR_YUV2BGRA_Y422 = COLOR_YUV2BGRA_UYVY, |
702 | | COLOR_YUV2RGBA_UYNV = COLOR_YUV2RGBA_UYVY, |
703 | | COLOR_YUV2BGRA_UYNV = COLOR_YUV2BGRA_UYVY, |
704 | | |
705 | | COLOR_YUV2RGB_YUY2 = 115, |
706 | | COLOR_YUV2BGR_YUY2 = 116, |
707 | | COLOR_YUV2RGB_YVYU = 117, |
708 | | COLOR_YUV2BGR_YVYU = 118, |
709 | | COLOR_YUV2RGB_YUYV = COLOR_YUV2RGB_YUY2, |
710 | | COLOR_YUV2BGR_YUYV = COLOR_YUV2BGR_YUY2, |
711 | | COLOR_YUV2RGB_YUNV = COLOR_YUV2RGB_YUY2, |
712 | | COLOR_YUV2BGR_YUNV = COLOR_YUV2BGR_YUY2, |
713 | | |
714 | | COLOR_YUV2RGBA_YUY2 = 119, |
715 | | COLOR_YUV2BGRA_YUY2 = 120, |
716 | | COLOR_YUV2RGBA_YVYU = 121, |
717 | | COLOR_YUV2BGRA_YVYU = 122, |
718 | | COLOR_YUV2RGBA_YUYV = COLOR_YUV2RGBA_YUY2, |
719 | | COLOR_YUV2BGRA_YUYV = COLOR_YUV2BGRA_YUY2, |
720 | | COLOR_YUV2RGBA_YUNV = COLOR_YUV2RGBA_YUY2, |
721 | | COLOR_YUV2BGRA_YUNV = COLOR_YUV2BGRA_YUY2, |
722 | | |
723 | | COLOR_YUV2GRAY_UYVY = 123, |
724 | | COLOR_YUV2GRAY_YUY2 = 124, |
725 | | //CV_YUV2GRAY_VYUY = CV_YUV2GRAY_UYVY, |
726 | | COLOR_YUV2GRAY_Y422 = COLOR_YUV2GRAY_UYVY, |
727 | | COLOR_YUV2GRAY_UYNV = COLOR_YUV2GRAY_UYVY, |
728 | | COLOR_YUV2GRAY_YVYU = COLOR_YUV2GRAY_YUY2, |
729 | | COLOR_YUV2GRAY_YUYV = COLOR_YUV2GRAY_YUY2, |
730 | | COLOR_YUV2GRAY_YUNV = COLOR_YUV2GRAY_YUY2, |
731 | | |
732 | | //! alpha premultiplication |
733 | | COLOR_RGBA2mRGBA = 125, |
734 | | COLOR_mRGBA2RGBA = 126, |
735 | | |
736 | | //! RGB to YUV 4:2:0 family |
737 | | COLOR_RGB2YUV_I420 = 127, |
738 | | COLOR_BGR2YUV_I420 = 128, |
739 | | COLOR_RGB2YUV_IYUV = COLOR_RGB2YUV_I420, |
740 | | COLOR_BGR2YUV_IYUV = COLOR_BGR2YUV_I420, |
741 | | |
742 | | COLOR_RGBA2YUV_I420 = 129, |
743 | | COLOR_BGRA2YUV_I420 = 130, |
744 | | COLOR_RGBA2YUV_IYUV = COLOR_RGBA2YUV_I420, |
745 | | COLOR_BGRA2YUV_IYUV = COLOR_BGRA2YUV_I420, |
746 | | COLOR_RGB2YUV_YV12 = 131, |
747 | | COLOR_BGR2YUV_YV12 = 132, |
748 | | COLOR_RGBA2YUV_YV12 = 133, |
749 | | COLOR_BGRA2YUV_YV12 = 134, |
750 | | |
751 | | //! Demosaicing, see @ref color_convert_bayer "color conversions" for additional information |
752 | | COLOR_BayerBG2BGR = 46, //!< equivalent to RGGB Bayer pattern |
753 | | COLOR_BayerGB2BGR = 47, //!< equivalent to GRBG Bayer pattern |
754 | | COLOR_BayerRG2BGR = 48, //!< equivalent to BGGR Bayer pattern |
755 | | COLOR_BayerGR2BGR = 49, //!< equivalent to GBRG Bayer pattern |
756 | | |
757 | | COLOR_BayerRGGB2BGR = COLOR_BayerBG2BGR, |
758 | | COLOR_BayerGRBG2BGR = COLOR_BayerGB2BGR, |
759 | | COLOR_BayerBGGR2BGR = COLOR_BayerRG2BGR, |
760 | | COLOR_BayerGBRG2BGR = COLOR_BayerGR2BGR, |
761 | | |
762 | | COLOR_BayerRGGB2RGB = COLOR_BayerBGGR2BGR, |
763 | | COLOR_BayerGRBG2RGB = COLOR_BayerGBRG2BGR, |
764 | | COLOR_BayerBGGR2RGB = COLOR_BayerRGGB2BGR, |
765 | | COLOR_BayerGBRG2RGB = COLOR_BayerGRBG2BGR, |
766 | | |
767 | | COLOR_BayerBG2RGB = COLOR_BayerRG2BGR, //!< equivalent to RGGB Bayer pattern |
768 | | COLOR_BayerGB2RGB = COLOR_BayerGR2BGR, //!< equivalent to GRBG Bayer pattern |
769 | | COLOR_BayerRG2RGB = COLOR_BayerBG2BGR, //!< equivalent to BGGR Bayer pattern |
770 | | COLOR_BayerGR2RGB = COLOR_BayerGB2BGR, //!< equivalent to GBRG Bayer pattern |
771 | | |
772 | | COLOR_BayerBG2GRAY = 86, //!< equivalent to RGGB Bayer pattern |
773 | | COLOR_BayerGB2GRAY = 87, //!< equivalent to GRBG Bayer pattern |
774 | | COLOR_BayerRG2GRAY = 88, //!< equivalent to BGGR Bayer pattern |
775 | | COLOR_BayerGR2GRAY = 89, //!< equivalent to GBRG Bayer pattern |
776 | | |
777 | | COLOR_BayerRGGB2GRAY = COLOR_BayerBG2GRAY, |
778 | | COLOR_BayerGRBG2GRAY = COLOR_BayerGB2GRAY, |
779 | | COLOR_BayerBGGR2GRAY = COLOR_BayerRG2GRAY, |
780 | | COLOR_BayerGBRG2GRAY = COLOR_BayerGR2GRAY, |
781 | | |
782 | | //! Demosaicing using Variable Number of Gradients |
783 | | COLOR_BayerBG2BGR_VNG = 62, //!< equivalent to RGGB Bayer pattern |
784 | | COLOR_BayerGB2BGR_VNG = 63, //!< equivalent to GRBG Bayer pattern |
785 | | COLOR_BayerRG2BGR_VNG = 64, //!< equivalent to BGGR Bayer pattern |
786 | | COLOR_BayerGR2BGR_VNG = 65, //!< equivalent to GBRG Bayer pattern |
787 | | |
788 | | COLOR_BayerRGGB2BGR_VNG = COLOR_BayerBG2BGR_VNG, |
789 | | COLOR_BayerGRBG2BGR_VNG = COLOR_BayerGB2BGR_VNG, |
790 | | COLOR_BayerBGGR2BGR_VNG = COLOR_BayerRG2BGR_VNG, |
791 | | COLOR_BayerGBRG2BGR_VNG = COLOR_BayerGR2BGR_VNG, |
792 | | |
793 | | COLOR_BayerRGGB2RGB_VNG = COLOR_BayerBGGR2BGR_VNG, |
794 | | COLOR_BayerGRBG2RGB_VNG = COLOR_BayerGBRG2BGR_VNG, |
795 | | COLOR_BayerBGGR2RGB_VNG = COLOR_BayerRGGB2BGR_VNG, |
796 | | COLOR_BayerGBRG2RGB_VNG = COLOR_BayerGRBG2BGR_VNG, |
797 | | |
798 | | COLOR_BayerBG2RGB_VNG = COLOR_BayerRG2BGR_VNG, //!< equivalent to RGGB Bayer pattern |
799 | | COLOR_BayerGB2RGB_VNG = COLOR_BayerGR2BGR_VNG, //!< equivalent to GRBG Bayer pattern |
800 | | COLOR_BayerRG2RGB_VNG = COLOR_BayerBG2BGR_VNG, //!< equivalent to BGGR Bayer pattern |
801 | | COLOR_BayerGR2RGB_VNG = COLOR_BayerGB2BGR_VNG, //!< equivalent to GBRG Bayer pattern |
802 | | |
803 | | //! Edge-Aware Demosaicing |
804 | | COLOR_BayerBG2BGR_EA = 135, //!< equivalent to RGGB Bayer pattern |
805 | | COLOR_BayerGB2BGR_EA = 136, //!< equivalent to GRBG Bayer pattern |
806 | | COLOR_BayerRG2BGR_EA = 137, //!< equivalent to BGGR Bayer pattern |
807 | | COLOR_BayerGR2BGR_EA = 138, //!< equivalent to GBRG Bayer pattern |
808 | | |
809 | | COLOR_BayerRGGB2BGR_EA = COLOR_BayerBG2BGR_EA, |
810 | | COLOR_BayerGRBG2BGR_EA = COLOR_BayerGB2BGR_EA, |
811 | | COLOR_BayerBGGR2BGR_EA = COLOR_BayerRG2BGR_EA, |
812 | | COLOR_BayerGBRG2BGR_EA = COLOR_BayerGR2BGR_EA, |
813 | | |
814 | | COLOR_BayerRGGB2RGB_EA = COLOR_BayerBGGR2BGR_EA, |
815 | | COLOR_BayerGRBG2RGB_EA = COLOR_BayerGBRG2BGR_EA, |
816 | | COLOR_BayerBGGR2RGB_EA = COLOR_BayerRGGB2BGR_EA, |
817 | | COLOR_BayerGBRG2RGB_EA = COLOR_BayerGRBG2BGR_EA, |
818 | | |
819 | | COLOR_BayerBG2RGB_EA = COLOR_BayerRG2BGR_EA, //!< equivalent to RGGB Bayer pattern |
820 | | COLOR_BayerGB2RGB_EA = COLOR_BayerGR2BGR_EA, //!< equivalent to GRBG Bayer pattern |
821 | | COLOR_BayerRG2RGB_EA = COLOR_BayerBG2BGR_EA, //!< equivalent to BGGR Bayer pattern |
822 | | COLOR_BayerGR2RGB_EA = COLOR_BayerGB2BGR_EA, //!< equivalent to GBRG Bayer pattern |
823 | | |
824 | | //! Demosaicing with alpha channel |
825 | | COLOR_BayerBG2BGRA = 139, //!< equivalent to RGGB Bayer pattern |
826 | | COLOR_BayerGB2BGRA = 140, //!< equivalent to GRBG Bayer pattern |
827 | | COLOR_BayerRG2BGRA = 141, //!< equivalent to BGGR Bayer pattern |
828 | | COLOR_BayerGR2BGRA = 142, //!< equivalent to GBRG Bayer pattern |
829 | | |
830 | | COLOR_BayerRGGB2BGRA = COLOR_BayerBG2BGRA, |
831 | | COLOR_BayerGRBG2BGRA = COLOR_BayerGB2BGRA, |
832 | | COLOR_BayerBGGR2BGRA = COLOR_BayerRG2BGRA, |
833 | | COLOR_BayerGBRG2BGRA = COLOR_BayerGR2BGRA, |
834 | | |
835 | | COLOR_BayerRGGB2RGBA = COLOR_BayerBGGR2BGRA, |
836 | | COLOR_BayerGRBG2RGBA = COLOR_BayerGBRG2BGRA, |
837 | | COLOR_BayerBGGR2RGBA = COLOR_BayerRGGB2BGRA, |
838 | | COLOR_BayerGBRG2RGBA = COLOR_BayerGRBG2BGRA, |
839 | | |
840 | | COLOR_BayerBG2RGBA = COLOR_BayerRG2BGRA, //!< equivalent to RGGB Bayer pattern |
841 | | COLOR_BayerGB2RGBA = COLOR_BayerGR2BGRA, //!< equivalent to GRBG Bayer pattern |
842 | | COLOR_BayerRG2RGBA = COLOR_BayerBG2BGRA, //!< equivalent to BGGR Bayer pattern |
843 | | COLOR_BayerGR2RGBA = COLOR_BayerGB2BGRA, //!< equivalent to GBRG Bayer pattern |
844 | | |
845 | | COLOR_COLORCVT_MAX = 143 |
846 | | }; |
847 | | |
848 | | //! @addtogroup imgproc_shape |
849 | | //! @{ |
850 | | |
851 | | //! types of intersection between rectangles |
852 | | enum RectanglesIntersectTypes { |
853 | | INTERSECT_NONE = 0, //!< No intersection |
854 | | INTERSECT_PARTIAL = 1, //!< There is a partial intersection |
855 | | INTERSECT_FULL = 2 //!< One of the rectangle is fully enclosed in the other |
856 | | }; |
857 | | |
858 | | /** types of line |
859 | | @ingroup imgproc_draw |
860 | | */ |
861 | | enum LineTypes { |
862 | | FILLED = -1, |
863 | | LINE_4 = 4, //!< 4-connected line |
864 | | LINE_8 = 8, //!< 8-connected line |
865 | | LINE_AA = 16 //!< antialiased line |
866 | | }; |
867 | | |
868 | | /** Only a subset of Hershey fonts <https://en.wikipedia.org/wiki/Hershey_fonts> are supported |
869 | | @ingroup imgproc_draw |
870 | | */ |
871 | | enum HersheyFonts { |
872 | | FONT_HERSHEY_SIMPLEX = 0, //!< normal size sans-serif font |
873 | | FONT_HERSHEY_PLAIN = 1, //!< small size sans-serif font |
874 | | FONT_HERSHEY_DUPLEX = 2, //!< normal size sans-serif font (more complex than FONT_HERSHEY_SIMPLEX) |
875 | | FONT_HERSHEY_COMPLEX = 3, //!< normal size serif font |
876 | | FONT_HERSHEY_TRIPLEX = 4, //!< normal size serif font (more complex than FONT_HERSHEY_COMPLEX) |
877 | | FONT_HERSHEY_COMPLEX_SMALL = 5, //!< smaller version of FONT_HERSHEY_COMPLEX |
878 | | FONT_HERSHEY_SCRIPT_SIMPLEX = 6, //!< hand-writing style font |
879 | | FONT_HERSHEY_SCRIPT_COMPLEX = 7, //!< more complex variant of FONT_HERSHEY_SCRIPT_SIMPLEX |
880 | | FONT_ITALIC = 16 //!< flag for italic font |
881 | | }; |
882 | | |
883 | | /** Possible set of marker types used for the cv::drawMarker function |
884 | | @ingroup imgproc_draw |
885 | | */ |
886 | | enum MarkerTypes |
887 | | { |
888 | | MARKER_CROSS = 0, //!< A crosshair marker shape |
889 | | MARKER_TILTED_CROSS = 1, //!< A 45 degree tilted crosshair marker shape |
890 | | MARKER_STAR = 2, //!< A star marker shape, combination of cross and tilted cross |
891 | | MARKER_DIAMOND = 3, //!< A diamond marker shape |
892 | | MARKER_SQUARE = 4, //!< A square marker shape |
893 | | MARKER_TRIANGLE_UP = 5, //!< An upwards pointing triangle marker shape |
894 | | MARKER_TRIANGLE_DOWN = 6 //!< A downwards pointing triangle marker shape |
895 | | }; |
896 | | |
897 | | /** @brief finds arbitrary template in the grayscale image using Generalized Hough Transform |
898 | | */ |
899 | | class CV_EXPORTS_W GeneralizedHough : public Algorithm |
900 | | { |
901 | | public: |
902 | | //! set template to search |
903 | | CV_WRAP virtual void setTemplate(InputArray templ, Point templCenter = Point(-1, -1)) = 0; |
904 | | CV_WRAP virtual void setTemplate(InputArray edges, InputArray dx, InputArray dy, Point templCenter = Point(-1, -1)) = 0; |
905 | | |
906 | | //! find template on image |
907 | | CV_WRAP virtual void detect(InputArray image, OutputArray positions, OutputArray votes = noArray()) = 0; |
908 | | CV_WRAP virtual void detect(InputArray edges, InputArray dx, InputArray dy, OutputArray positions, OutputArray votes = noArray()) = 0; |
909 | | |
910 | | //! Canny low threshold. |
911 | | CV_WRAP virtual void setCannyLowThresh(int cannyLowThresh) = 0; |
912 | | CV_WRAP virtual int getCannyLowThresh() const = 0; |
913 | | |
914 | | //! Canny high threshold. |
915 | | CV_WRAP virtual void setCannyHighThresh(int cannyHighThresh) = 0; |
916 | | CV_WRAP virtual int getCannyHighThresh() const = 0; |
917 | | |
918 | | //! Minimum distance between the centers of the detected objects. |
919 | | CV_WRAP virtual void setMinDist(double minDist) = 0; |
920 | | CV_WRAP virtual double getMinDist() const = 0; |
921 | | |
922 | | //! Inverse ratio of the accumulator resolution to the image resolution. |
923 | | CV_WRAP virtual void setDp(double dp) = 0; |
924 | | CV_WRAP virtual double getDp() const = 0; |
925 | | |
926 | | //! Maximal size of inner buffers. |
927 | | CV_WRAP virtual void setMaxBufferSize(int maxBufferSize) = 0; |
928 | | CV_WRAP virtual int getMaxBufferSize() const = 0; |
929 | | }; |
930 | | |
931 | | /** @brief finds arbitrary template in the grayscale image using Generalized Hough Transform |
932 | | |
933 | | Detects position only without translation and rotation @cite Ballard1981 . |
934 | | */ |
935 | | class CV_EXPORTS_W GeneralizedHoughBallard : public GeneralizedHough |
936 | | { |
937 | | public: |
938 | | //! R-Table levels. |
939 | | CV_WRAP virtual void setLevels(int levels) = 0; |
940 | | CV_WRAP virtual int getLevels() const = 0; |
941 | | |
942 | | //! The accumulator threshold for the template centers at the detection stage. The smaller it is, the more false positions may be detected. |
943 | | CV_WRAP virtual void setVotesThreshold(int votesThreshold) = 0; |
944 | | CV_WRAP virtual int getVotesThreshold() const = 0; |
945 | | }; |
946 | | |
947 | | /** @brief finds arbitrary template in the grayscale image using Generalized Hough Transform |
948 | | |
949 | | Detects position, translation and rotation @cite Guil1999 . |
950 | | */ |
951 | | class CV_EXPORTS_W GeneralizedHoughGuil : public GeneralizedHough |
952 | | { |
953 | | public: |
954 | | //! Angle difference in degrees between two points in feature. |
955 | | CV_WRAP virtual void setXi(double xi) = 0; |
956 | | CV_WRAP virtual double getXi() const = 0; |
957 | | |
958 | | //! Feature table levels. |
959 | | CV_WRAP virtual void setLevels(int levels) = 0; |
960 | | CV_WRAP virtual int getLevels() const = 0; |
961 | | |
962 | | //! Maximal difference between angles that treated as equal. |
963 | | CV_WRAP virtual void setAngleEpsilon(double angleEpsilon) = 0; |
964 | | CV_WRAP virtual double getAngleEpsilon() const = 0; |
965 | | |
966 | | //! Minimal rotation angle to detect in degrees. |
967 | | CV_WRAP virtual void setMinAngle(double minAngle) = 0; |
968 | | CV_WRAP virtual double getMinAngle() const = 0; |
969 | | |
970 | | //! Maximal rotation angle to detect in degrees. |
971 | | CV_WRAP virtual void setMaxAngle(double maxAngle) = 0; |
972 | | CV_WRAP virtual double getMaxAngle() const = 0; |
973 | | |
974 | | //! Angle step in degrees. |
975 | | CV_WRAP virtual void setAngleStep(double angleStep) = 0; |
976 | | CV_WRAP virtual double getAngleStep() const = 0; |
977 | | |
978 | | //! Angle votes threshold. |
979 | | CV_WRAP virtual void setAngleThresh(int angleThresh) = 0; |
980 | | CV_WRAP virtual int getAngleThresh() const = 0; |
981 | | |
982 | | //! Minimal scale to detect. |
983 | | CV_WRAP virtual void setMinScale(double minScale) = 0; |
984 | | CV_WRAP virtual double getMinScale() const = 0; |
985 | | |
986 | | //! Maximal scale to detect. |
987 | | CV_WRAP virtual void setMaxScale(double maxScale) = 0; |
988 | | CV_WRAP virtual double getMaxScale() const = 0; |
989 | | |
990 | | //! Scale step. |
991 | | CV_WRAP virtual void setScaleStep(double scaleStep) = 0; |
992 | | CV_WRAP virtual double getScaleStep() const = 0; |
993 | | |
994 | | //! Scale votes threshold. |
995 | | CV_WRAP virtual void setScaleThresh(int scaleThresh) = 0; |
996 | | CV_WRAP virtual int getScaleThresh() const = 0; |
997 | | |
998 | | //! Position votes threshold. |
999 | | CV_WRAP virtual void setPosThresh(int posThresh) = 0; |
1000 | | CV_WRAP virtual int getPosThresh() const = 0; |
1001 | | }; |
1002 | | |
1003 | | //! @} imgproc_shape |
1004 | | |
1005 | | //! @addtogroup imgproc_hist |
1006 | | //! @{ |
1007 | | |
1008 | | /** @brief Base class for Contrast Limited Adaptive Histogram Equalization. |
1009 | | */ |
1010 | | class CV_EXPORTS_W CLAHE : public Algorithm |
1011 | | { |
1012 | | public: |
1013 | | /** @brief Equalizes the histogram of a grayscale image using Contrast Limited Adaptive Histogram Equalization. |
1014 | | |
1015 | | @param src Source image of type CV_8UC1 or CV_16UC1. |
1016 | | @param dst Destination image. |
1017 | | */ |
1018 | | CV_WRAP virtual void apply(InputArray src, OutputArray dst) = 0; |
1019 | | |
1020 | | /** @brief Sets threshold for contrast limiting. |
1021 | | |
1022 | | @param clipLimit threshold value. |
1023 | | */ |
1024 | | CV_WRAP virtual void setClipLimit(double clipLimit) = 0; |
1025 | | |
1026 | | //! Returns threshold value for contrast limiting. |
1027 | | CV_WRAP virtual double getClipLimit() const = 0; |
1028 | | |
1029 | | /** @brief Sets size of grid for histogram equalization. Input image will be divided into |
1030 | | equally sized rectangular tiles. |
1031 | | |
1032 | | @param tileGridSize defines the number of tiles in row and column. |
1033 | | */ |
1034 | | CV_WRAP virtual void setTilesGridSize(Size tileGridSize) = 0; |
1035 | | |
1036 | | //!@brief Returns Size defines the number of tiles in row and column. |
1037 | | CV_WRAP virtual Size getTilesGridSize() const = 0; |
1038 | | |
1039 | | CV_WRAP virtual void collectGarbage() = 0; |
1040 | | }; |
1041 | | |
1042 | | //! @} imgproc_hist |
1043 | | |
1044 | | //! @addtogroup imgproc_subdiv2d |
1045 | | //! @{ |
1046 | | |
1047 | | class CV_EXPORTS_W Subdiv2D |
1048 | | { |
1049 | | public: |
1050 | | /** Subdiv2D point location cases */ |
1051 | | enum { PTLOC_ERROR = -2, //!< Point location error |
1052 | | PTLOC_OUTSIDE_RECT = -1, //!< Point outside the subdivision bounding rect |
1053 | | PTLOC_INSIDE = 0, //!< Point inside some facet |
1054 | | PTLOC_VERTEX = 1, //!< Point coincides with one of the subdivision vertices |
1055 | | PTLOC_ON_EDGE = 2 //!< Point on some edge |
1056 | | }; |
1057 | | |
1058 | | /** Subdiv2D edge type navigation (see: getEdge()) */ |
1059 | | enum { NEXT_AROUND_ORG = 0x00, |
1060 | | NEXT_AROUND_DST = 0x22, |
1061 | | PREV_AROUND_ORG = 0x11, |
1062 | | PREV_AROUND_DST = 0x33, |
1063 | | NEXT_AROUND_LEFT = 0x13, |
1064 | | NEXT_AROUND_RIGHT = 0x31, |
1065 | | PREV_AROUND_LEFT = 0x20, |
1066 | | PREV_AROUND_RIGHT = 0x02 |
1067 | | }; |
1068 | | |
1069 | | /** creates an empty Subdiv2D object. |
1070 | | To create a new empty Delaunay subdivision you need to use the #initDelaunay function. |
1071 | | */ |
1072 | | CV_WRAP Subdiv2D(); |
1073 | | |
1074 | | /** @overload |
1075 | | |
1076 | | @param rect Rectangle that includes all of the 2D points that are to be added to the subdivision. |
1077 | | |
1078 | | The function creates an empty Delaunay subdivision where 2D points can be added using the function |
1079 | | insert() . All of the points to be added must be within the specified rectangle, otherwise a runtime |
1080 | | error is raised. |
1081 | | */ |
1082 | | CV_WRAP Subdiv2D(Rect rect); |
1083 | | |
1084 | | /** @brief Creates a new empty Delaunay subdivision |
1085 | | |
1086 | | @param rect Rectangle that includes all of the 2D points that are to be added to the subdivision. |
1087 | | |
1088 | | */ |
1089 | | CV_WRAP void initDelaunay(Rect rect); |
1090 | | |
1091 | | /** @brief Insert a single point into a Delaunay triangulation. |
1092 | | |
1093 | | @param pt Point to insert. |
1094 | | |
1095 | | The function inserts a single point into a subdivision and modifies the subdivision topology |
1096 | | appropriately. If a point with the same coordinates exists already, no new point is added. |
1097 | | @returns the ID of the point. |
1098 | | |
1099 | | @note If the point is outside of the triangulation specified rect a runtime error is raised. |
1100 | | */ |
1101 | | CV_WRAP int insert(Point2f pt); |
1102 | | |
1103 | | /** @brief Insert multiple points into a Delaunay triangulation. |
1104 | | |
1105 | | @param ptvec Points to insert. |
1106 | | |
1107 | | The function inserts a vector of points into a subdivision and modifies the subdivision topology |
1108 | | appropriately. |
1109 | | */ |
1110 | | CV_WRAP void insert(const std::vector<Point2f>& ptvec); |
1111 | | |
1112 | | /** @brief Returns the location of a point within a Delaunay triangulation. |
1113 | | |
1114 | | @param pt Point to locate. |
1115 | | @param edge Output edge that the point belongs to or is located to the right of it. |
1116 | | @param vertex Optional output vertex the input point coincides with. |
1117 | | |
1118 | | The function locates the input point within the subdivision and gives one of the triangle edges |
1119 | | or vertices. |
1120 | | |
1121 | | @returns an integer which specify one of the following five cases for point location: |
1122 | | - The point falls into some facet. The function returns #PTLOC_INSIDE and edge will contain one of |
1123 | | edges of the facet. |
1124 | | - The point falls onto the edge. The function returns #PTLOC_ON_EDGE and edge will contain this edge. |
1125 | | - The point coincides with one of the subdivision vertices. The function returns #PTLOC_VERTEX and |
1126 | | vertex will contain a pointer to the vertex. |
1127 | | - The point is outside the subdivision reference rectangle. The function returns #PTLOC_OUTSIDE_RECT |
1128 | | and no pointers are filled. |
1129 | | - One of input arguments is invalid. A runtime error is raised or, if silent or "parent" error |
1130 | | processing mode is selected, #PTLOC_ERROR is returned. |
1131 | | */ |
1132 | | CV_WRAP int locate(Point2f pt, CV_OUT int& edge, CV_OUT int& vertex); |
1133 | | |
1134 | | /** @brief Finds the subdivision vertex closest to the given point. |
1135 | | |
1136 | | @param pt Input point. |
1137 | | @param nearestPt Output subdivision vertex point. |
1138 | | |
1139 | | The function is another function that locates the input point within the subdivision. It finds the |
1140 | | subdivision vertex that is the closest to the input point. It is not necessarily one of vertices |
1141 | | of the facet containing the input point, though the facet (located using locate() ) is used as a |
1142 | | starting point. |
1143 | | |
1144 | | @returns vertex ID. |
1145 | | */ |
1146 | | CV_WRAP int findNearest(Point2f pt, CV_OUT Point2f* nearestPt = 0); |
1147 | | |
1148 | | /** @brief Returns a list of all edges. |
1149 | | |
1150 | | @param edgeList Output vector. |
1151 | | |
1152 | | The function gives each edge as a 4 numbers vector, where each two are one of the edge |
1153 | | vertices. i.e. org_x = v[0], org_y = v[1], dst_x = v[2], dst_y = v[3]. |
1154 | | */ |
1155 | | CV_WRAP void getEdgeList(CV_OUT std::vector<Vec4f>& edgeList) const; |
1156 | | |
1157 | | /** @brief Returns a list of the leading edge ID connected to each triangle. |
1158 | | |
1159 | | @param leadingEdgeList Output vector. |
1160 | | |
1161 | | The function gives one edge ID for each triangle. |
1162 | | */ |
1163 | | CV_WRAP void getLeadingEdgeList(CV_OUT std::vector<int>& leadingEdgeList) const; |
1164 | | |
1165 | | /** @brief Returns a list of all triangles. |
1166 | | |
1167 | | @param triangleList Output vector. |
1168 | | |
1169 | | The function gives each triangle as a 6 numbers vector, where each two are one of the triangle |
1170 | | vertices. i.e. p1_x = v[0], p1_y = v[1], p2_x = v[2], p2_y = v[3], p3_x = v[4], p3_y = v[5]. |
1171 | | */ |
1172 | | CV_WRAP void getTriangleList(CV_OUT std::vector<Vec6f>& triangleList) const; |
1173 | | |
1174 | | /** @brief Returns a list of all Voronoi facets. |
1175 | | |
1176 | | @param idx Vector of vertices IDs to consider. For all vertices you can pass empty vector. |
1177 | | @param facetList Output vector of the Voronoi facets. |
1178 | | @param facetCenters Output vector of the Voronoi facets center points. |
1179 | | |
1180 | | */ |
1181 | | CV_WRAP void getVoronoiFacetList(const std::vector<int>& idx, CV_OUT std::vector<std::vector<Point2f> >& facetList, |
1182 | | CV_OUT std::vector<Point2f>& facetCenters); |
1183 | | |
1184 | | /** @brief Returns vertex location from vertex ID. |
1185 | | |
1186 | | @param vertex vertex ID. |
1187 | | @param firstEdge Optional. The first edge ID which is connected to the vertex. |
1188 | | @returns vertex (x,y) |
1189 | | |
1190 | | */ |
1191 | | CV_WRAP Point2f getVertex(int vertex, CV_OUT int* firstEdge = 0) const; |
1192 | | |
1193 | | /** @brief Returns one of the edges related to the given edge. |
1194 | | |
1195 | | @param edge Subdivision edge ID. |
1196 | | @param nextEdgeType Parameter specifying which of the related edges to return. |
1197 | | The following values are possible: |
1198 | | - NEXT_AROUND_ORG next around the edge origin ( eOnext on the picture below if e is the input edge) |
1199 | | - NEXT_AROUND_DST next around the edge vertex ( eDnext ) |
1200 | | - PREV_AROUND_ORG previous around the edge origin (reversed eRnext ) |
1201 | | - PREV_AROUND_DST previous around the edge destination (reversed eLnext ) |
1202 | | - NEXT_AROUND_LEFT next around the left facet ( eLnext ) |
1203 | | - NEXT_AROUND_RIGHT next around the right facet ( eRnext ) |
1204 | | - PREV_AROUND_LEFT previous around the left facet (reversed eOnext ) |
1205 | | - PREV_AROUND_RIGHT previous around the right facet (reversed eDnext ) |
1206 | | |
1207 | |  |
1208 | | |
1209 | | @returns edge ID related to the input edge. |
1210 | | */ |
1211 | | CV_WRAP int getEdge( int edge, int nextEdgeType ) const; |
1212 | | |
1213 | | /** @brief Returns next edge around the edge origin. |
1214 | | |
1215 | | @param edge Subdivision edge ID. |
1216 | | |
1217 | | @returns an integer which is next edge ID around the edge origin: eOnext on the |
1218 | | picture above if e is the input edge). |
1219 | | */ |
1220 | | CV_WRAP int nextEdge(int edge) const; |
1221 | | |
1222 | | /** @brief Returns another edge of the same quad-edge. |
1223 | | |
1224 | | @param edge Subdivision edge ID. |
1225 | | @param rotate Parameter specifying which of the edges of the same quad-edge as the input |
1226 | | one to return. The following values are possible: |
1227 | | - 0 - the input edge ( e on the picture below if e is the input edge) |
1228 | | - 1 - the rotated edge ( eRot ) |
1229 | | - 2 - the reversed edge (reversed e (in green)) |
1230 | | - 3 - the reversed rotated edge (reversed eRot (in green)) |
1231 | | |
1232 | | @returns one of the edges ID of the same quad-edge as the input edge. |
1233 | | */ |
1234 | | CV_WRAP int rotateEdge(int edge, int rotate) const; |
1235 | | CV_WRAP int symEdge(int edge) const; |
1236 | | |
1237 | | /** @brief Returns the edge origin. |
1238 | | |
1239 | | @param edge Subdivision edge ID. |
1240 | | @param orgpt Output vertex location. |
1241 | | |
1242 | | @returns vertex ID. |
1243 | | */ |
1244 | | CV_WRAP int edgeOrg(int edge, CV_OUT Point2f* orgpt = 0) const; |
1245 | | |
1246 | | /** @brief Returns the edge destination. |
1247 | | |
1248 | | @param edge Subdivision edge ID. |
1249 | | @param dstpt Output vertex location. |
1250 | | |
1251 | | @returns vertex ID. |
1252 | | */ |
1253 | | CV_WRAP int edgeDst(int edge, CV_OUT Point2f* dstpt = 0) const; |
1254 | | |
1255 | | protected: |
1256 | | int newEdge(); |
1257 | | void deleteEdge(int edge); |
1258 | | int newPoint(Point2f pt, bool isvirtual, int firstEdge = 0); |
1259 | | void deletePoint(int vtx); |
1260 | | void setEdgePoints( int edge, int orgPt, int dstPt ); |
1261 | | void splice( int edgeA, int edgeB ); |
1262 | | int connectEdges( int edgeA, int edgeB ); |
1263 | | void swapEdges( int edge ); |
1264 | | int isRightOf(Point2f pt, int edge) const; |
1265 | | void calcVoronoi(); |
1266 | | void clearVoronoi(); |
1267 | | void checkSubdiv() const; |
1268 | | |
1269 | | struct CV_EXPORTS Vertex |
1270 | | { |
1271 | | Vertex(); |
1272 | | Vertex(Point2f pt, bool isvirtual, int firstEdge=0); |
1273 | | bool isvirtual() const; |
1274 | | bool isfree() const; |
1275 | | |
1276 | | int firstEdge; |
1277 | | int type; |
1278 | | Point2f pt; |
1279 | | }; |
1280 | | |
1281 | | struct CV_EXPORTS QuadEdge |
1282 | | { |
1283 | | QuadEdge(); |
1284 | | QuadEdge(int edgeidx); |
1285 | | bool isfree() const; |
1286 | | |
1287 | | int next[4]; |
1288 | | int pt[4]; |
1289 | | }; |
1290 | | |
1291 | | //! All of the vertices |
1292 | | std::vector<Vertex> vtx; |
1293 | | //! All of the edges |
1294 | | std::vector<QuadEdge> qedges; |
1295 | | int freeQEdge; |
1296 | | int freePoint; |
1297 | | bool validGeometry; |
1298 | | |
1299 | | int recentEdge; |
1300 | | //! Top left corner of the bounding rect |
1301 | | Point2f topLeft; |
1302 | | //! Bottom right corner of the bounding rect |
1303 | | Point2f bottomRight; |
1304 | | }; |
1305 | | |
1306 | | //! @} imgproc_subdiv2d |
1307 | | |
1308 | | //! @addtogroup imgproc_feature |
1309 | | //! @{ |
1310 | | |
1311 | | /** @example samples/cpp/lsd_lines.cpp |
1312 | | An example using the LineSegmentDetector |
1313 | | \image html building_lsd.png "Sample output image" width=434 height=300 |
1314 | | */ |
1315 | | |
1316 | | /** @brief Line segment detector class |
1317 | | |
1318 | | following the algorithm described at @cite Rafael12 . |
1319 | | |
1320 | | @note Implementation has been removed from OpenCV version 3.4.6 to 3.4.15 and version 4.1.0 to 4.5.3 due original code license conflict. |
1321 | | restored again after [Computation of a NFA](https://github.com/rafael-grompone-von-gioi/binomial_nfa) code published under the MIT license. |
1322 | | */ |
1323 | | class CV_EXPORTS_W LineSegmentDetector : public Algorithm |
1324 | | { |
1325 | | public: |
1326 | | |
1327 | | /** @brief Finds lines in the input image. |
1328 | | |
1329 | | This is the output of the default parameters of the algorithm on the above shown image. |
1330 | | |
1331 | |  |
1332 | | |
1333 | | @param image A grayscale (CV_8UC1) input image. If only a roi needs to be selected, use: |
1334 | | `lsd_ptr-\>detect(image(roi), lines, ...); lines += Scalar(roi.x, roi.y, roi.x, roi.y);` |
1335 | | @param lines A vector of Vec4f elements specifying the beginning and ending point of a line. Where |
1336 | | Vec4f is (x1, y1, x2, y2), point 1 is the start, point 2 - end. Returned lines are strictly |
1337 | | oriented depending on the gradient. |
1338 | | @param width Vector of widths of the regions, where the lines are found. E.g. Width of line. |
1339 | | @param prec Vector of precisions with which the lines are found. |
1340 | | @param nfa Vector containing number of false alarms in the line region, with precision of 10%. The |
1341 | | bigger the value, logarithmically better the detection. |
1342 | | - -1 corresponds to 10 mean false alarms |
1343 | | - 0 corresponds to 1 mean false alarm |
1344 | | - 1 corresponds to 0.1 mean false alarms |
1345 | | This vector will be calculated only when the objects type is #LSD_REFINE_ADV. |
1346 | | */ |
1347 | | CV_WRAP virtual void detect(InputArray image, OutputArray lines, |
1348 | | OutputArray width = noArray(), OutputArray prec = noArray(), |
1349 | | OutputArray nfa = noArray()) = 0; |
1350 | | |
1351 | | /** @brief Draws the line segments on a given image. |
1352 | | @param image The image, where the lines will be drawn. Should be bigger or equal to the image, |
1353 | | where the lines were found. |
1354 | | @param lines A vector of the lines that needed to be drawn. |
1355 | | */ |
1356 | | CV_WRAP virtual void drawSegments(InputOutputArray image, InputArray lines) = 0; |
1357 | | |
1358 | | /** @brief Draws two groups of lines in blue and red, counting the non overlapping (mismatching) pixels. |
1359 | | |
1360 | | @param size The size of the image, where lines1 and lines2 were found. |
1361 | | @param lines1 The first group of lines that needs to be drawn. It is visualized in blue color. |
1362 | | @param lines2 The second group of lines. They visualized in red color. |
1363 | | @param image Optional image, where the lines will be drawn. The image should be color(3-channel) |
1364 | | in order for lines1 and lines2 to be drawn in the above mentioned colors. |
1365 | | */ |
1366 | | CV_WRAP virtual int compareSegments(const Size& size, InputArray lines1, InputArray lines2, InputOutputArray image = noArray()) = 0; |
1367 | | |
1368 | 0 | virtual ~LineSegmentDetector() { } |
1369 | | }; |
1370 | | |
1371 | | /** @brief Creates a smart pointer to a LineSegmentDetector object and initializes it. |
1372 | | |
1373 | | The LineSegmentDetector algorithm is defined using the standard values. Only advanced users may want |
1374 | | to edit those, as to tailor it for their own application. |
1375 | | |
1376 | | @param refine The way found lines will be refined, see #LineSegmentDetectorModes |
1377 | | @param scale The scale of the image that will be used to find the lines. Range (0..1]. |
1378 | | @param sigma_scale Sigma for Gaussian filter. It is computed as sigma = sigma_scale/scale. |
1379 | | @param quant Bound to the quantization error on the gradient norm. |
1380 | | @param ang_th Gradient angle tolerance in degrees. |
1381 | | @param log_eps Detection threshold: -log10(NFA) \> log_eps. Used only when advance refinement is chosen. |
1382 | | @param density_th Minimal density of aligned region points in the enclosing rectangle. |
1383 | | @param n_bins Number of bins in pseudo-ordering of gradient modulus. |
1384 | | */ |
1385 | | CV_EXPORTS_W Ptr<LineSegmentDetector> createLineSegmentDetector( |
1386 | | int refine = LSD_REFINE_STD, double scale = 0.8, |
1387 | | double sigma_scale = 0.6, double quant = 2.0, double ang_th = 22.5, |
1388 | | double log_eps = 0, double density_th = 0.7, int n_bins = 1024); |
1389 | | |
1390 | | //! @} imgproc_feature |
1391 | | |
1392 | | //! @addtogroup imgproc_filter |
1393 | | //! @{ |
1394 | | |
1395 | | /** @brief Returns Gaussian filter coefficients. |
1396 | | |
1397 | | The function computes and returns the \f$\texttt{ksize} \times 1\f$ matrix of Gaussian filter |
1398 | | coefficients: |
1399 | | |
1400 | | \f[G_i= \alpha *e^{-(i-( \texttt{ksize} -1)/2)^2/(2* \texttt{sigma}^2)},\f] |
1401 | | |
1402 | | where \f$i=0..\texttt{ksize}-1\f$ and \f$\alpha\f$ is the scale factor chosen so that \f$\sum_i G_i=1\f$. |
1403 | | |
1404 | | Two of such generated kernels can be passed to sepFilter2D. Those functions automatically recognize |
1405 | | smoothing kernels (a symmetrical kernel with sum of weights equal to 1) and handle them accordingly. |
1406 | | You may also use the higher-level GaussianBlur. |
1407 | | @param ksize Aperture size. It should be odd ( \f$\texttt{ksize} \mod 2 = 1\f$ ) and positive. |
1408 | | @param sigma Gaussian standard deviation. If it is non-positive, it is computed from ksize as |
1409 | | `sigma = 0.3*((ksize-1)*0.5 - 1) + 0.8`. |
1410 | | @param ktype Type of filter coefficients. It can be CV_32F or CV_64F . |
1411 | | @sa sepFilter2D, getDerivKernels, getStructuringElement, GaussianBlur |
1412 | | */ |
1413 | | CV_EXPORTS_W Mat getGaussianKernel( int ksize, double sigma, int ktype = CV_64F ); |
1414 | | |
1415 | | /** @brief Returns filter coefficients for computing spatial image derivatives. |
1416 | | |
1417 | | The function computes and returns the filter coefficients for spatial image derivatives. When |
1418 | | `ksize=FILTER_SCHARR`, the Scharr \f$3 \times 3\f$ kernels are generated (see #Scharr). Otherwise, Sobel |
1419 | | kernels are generated (see #Sobel). The filters are normally passed to #sepFilter2D or to |
1420 | | |
1421 | | @param kx Output matrix of row filter coefficients. It has the type ktype . |
1422 | | @param ky Output matrix of column filter coefficients. It has the type ktype . |
1423 | | @param dx Derivative order in respect of x. |
1424 | | @param dy Derivative order in respect of y. |
1425 | | @param ksize Aperture size. It can be FILTER_SCHARR, 1, 3, 5, or 7. |
1426 | | @param normalize Flag indicating whether to normalize (scale down) the filter coefficients or not. |
1427 | | Theoretically, the coefficients should have the denominator \f$=2^{ksize*2-dx-dy-2}\f$. If you are |
1428 | | going to filter floating-point images, you are likely to use the normalized kernels. But if you |
1429 | | compute derivatives of an 8-bit image, store the results in a 16-bit image, and wish to preserve |
1430 | | all the fractional bits, you may want to set normalize=false . |
1431 | | @param ktype Type of filter coefficients. It can be CV_32f or CV_64F . |
1432 | | */ |
1433 | | CV_EXPORTS_W void getDerivKernels( OutputArray kx, OutputArray ky, |
1434 | | int dx, int dy, int ksize, |
1435 | | bool normalize = false, int ktype = CV_32F ); |
1436 | | |
1437 | | /** @brief Returns Gabor filter coefficients. |
1438 | | |
1439 | | For more details about gabor filter equations and parameters, see: [Gabor |
1440 | | Filter](http://en.wikipedia.org/wiki/Gabor_filter). |
1441 | | |
1442 | | @param ksize Size of the filter returned. |
1443 | | @param sigma Standard deviation of the gaussian envelope. |
1444 | | @param theta Orientation of the normal to the parallel stripes of a Gabor function. |
1445 | | @param lambd Wavelength of the sinusoidal factor. |
1446 | | @param gamma Spatial aspect ratio. |
1447 | | @param psi Phase offset. |
1448 | | @param ktype Type of filter coefficients. It can be CV_32F or CV_64F . |
1449 | | */ |
1450 | | CV_EXPORTS_W Mat getGaborKernel( Size ksize, double sigma, double theta, double lambd, |
1451 | | double gamma, double psi = CV_PI*0.5, int ktype = CV_64F ); |
1452 | | |
1453 | | //! returns "magic" border value for erosion and dilation. It is automatically transformed to Scalar::all(-DBL_MAX) for dilation. |
1454 | 0 | static inline Scalar morphologyDefaultBorderValue() { return Scalar::all(DBL_MAX); } Unexecuted instantiation: core_fuzzer.cc:cv::morphologyDefaultBorderValue() Unexecuted instantiation: filestorage_read_file_fuzzer.cc:cv::morphologyDefaultBorderValue() Unexecuted instantiation: imdecode_fuzzer.cc:cv::morphologyDefaultBorderValue() Unexecuted instantiation: filestorage_read_string_fuzzer.cc:cv::morphologyDefaultBorderValue() Unexecuted instantiation: imencode_fuzzer.cc:cv::morphologyDefaultBorderValue() Unexecuted instantiation: filestorage_read_filename_fuzzer.cc:cv::morphologyDefaultBorderValue() Unexecuted instantiation: generateusergallerycollage_fuzzer.cc:cv::morphologyDefaultBorderValue() Unexecuted instantiation: imread_fuzzer.cc:cv::morphologyDefaultBorderValue() |
1455 | | |
1456 | | /** @brief Returns a structuring element of the specified size and shape for morphological operations. |
1457 | | |
1458 | | The function constructs and returns the structuring element that can be further passed to #erode, |
1459 | | #dilate or #morphologyEx. But you can also construct an arbitrary binary mask yourself and use it as |
1460 | | the structuring element. |
1461 | | |
1462 | | @param shape Element shape that could be one of #MorphShapes |
1463 | | @param ksize Size of the structuring element. |
1464 | | @param anchor Anchor position within the element. The default value \f$(-1, -1)\f$ means that the |
1465 | | anchor is at the center. Note that only the shape of a cross-shaped element depends on the anchor |
1466 | | position. In other cases the anchor just regulates how much the result of the morphological |
1467 | | operation is shifted. |
1468 | | */ |
1469 | | CV_EXPORTS_W Mat getStructuringElement(int shape, Size ksize, Point anchor = Point(-1,-1)); |
1470 | | |
1471 | | /** @example samples/cpp/tutorial_code/ImgProc/Smoothing/Smoothing.cpp |
1472 | | Sample code for simple filters |
1473 | |  |
1474 | | Check @ref tutorial_gausian_median_blur_bilateral_filter "the corresponding tutorial" for more details |
1475 | | */ |
1476 | | |
1477 | | /** @brief Blurs an image using the median filter. |
1478 | | |
1479 | | The function smoothes an image using the median filter with the \f$\texttt{ksize} \times |
1480 | | \texttt{ksize}\f$ aperture. Each channel of a multi-channel image is processed independently. |
1481 | | In-place operation is supported. |
1482 | | |
1483 | | @note The median filter uses #BORDER_REPLICATE internally to cope with border pixels, see #BorderTypes |
1484 | | |
1485 | | @param src input 1-, 3-, or 4-channel image; when ksize is 3 or 5, the image depth should be |
1486 | | CV_8U, CV_16U, or CV_32F, for larger aperture sizes, it can only be CV_8U. |
1487 | | @param dst destination array of the same size and type as src. |
1488 | | @param ksize aperture linear size; it must be odd and greater than 1, for example: 3, 5, 7 ... |
1489 | | @sa bilateralFilter, blur, boxFilter, GaussianBlur |
1490 | | */ |
1491 | | CV_EXPORTS_W void medianBlur( InputArray src, OutputArray dst, int ksize ); |
1492 | | |
1493 | | /** @brief Blurs an image using a Gaussian filter. |
1494 | | |
1495 | | The function convolves the source image with the specified Gaussian kernel. In-place filtering is |
1496 | | supported. |
1497 | | |
1498 | | @param src input image; the image can have any number of channels, which are processed |
1499 | | independently, but the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F. |
1500 | | @param dst output image of the same size and type as src. |
1501 | | @param ksize Gaussian kernel size. ksize.width and ksize.height can differ but they both must be |
1502 | | positive and odd. Or, they can be zero's and then they are computed from sigma. |
1503 | | @param sigmaX Gaussian kernel standard deviation in X direction. |
1504 | | @param sigmaY Gaussian kernel standard deviation in Y direction; if sigmaY is zero, it is set to be |
1505 | | equal to sigmaX, if both sigmas are zeros, they are computed from ksize.width and ksize.height, |
1506 | | respectively (see #getGaussianKernel for details); to fully control the result regardless of |
1507 | | possible future modifications of all this semantics, it is recommended to specify all of ksize, |
1508 | | sigmaX, and sigmaY. |
1509 | | @param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported. |
1510 | | |
1511 | | @sa sepFilter2D, filter2D, blur, boxFilter, bilateralFilter, medianBlur |
1512 | | */ |
1513 | | CV_EXPORTS_W void GaussianBlur( InputArray src, OutputArray dst, Size ksize, |
1514 | | double sigmaX, double sigmaY = 0, |
1515 | | int borderType = BORDER_DEFAULT ); |
1516 | | |
1517 | | /** @brief Applies the bilateral filter to an image. |
1518 | | |
1519 | | The function applies bilateral filtering to the input image, as described in |
1520 | | http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html |
1521 | | bilateralFilter can reduce unwanted noise very well while keeping edges fairly sharp. However, it is |
1522 | | very slow compared to most filters. |
1523 | | |
1524 | | _Sigma values_: For simplicity, you can set the 2 sigma values to be the same. If they are small (\< |
1525 | | 10), the filter will not have much effect, whereas if they are large (\> 150), they will have a very |
1526 | | strong effect, making the image look "cartoonish". |
1527 | | |
1528 | | _Filter size_: Large filters (d \> 5) are very slow, so it is recommended to use d=5 for real-time |
1529 | | applications, and perhaps d=9 for offline applications that need heavy noise filtering. |
1530 | | |
1531 | | This filter does not work inplace. |
1532 | | @param src Source 8-bit or floating-point, 1-channel or 3-channel image. |
1533 | | @param dst Destination image of the same size and type as src . |
1534 | | @param d Diameter of each pixel neighborhood that is used during filtering. If it is non-positive, |
1535 | | it is computed from sigmaSpace. |
1536 | | @param sigmaColor Filter sigma in the color space. A larger value of the parameter means that |
1537 | | farther colors within the pixel neighborhood (see sigmaSpace) will be mixed together, resulting |
1538 | | in larger areas of semi-equal color. |
1539 | | @param sigmaSpace Filter sigma in the coordinate space. A larger value of the parameter means that |
1540 | | farther pixels will influence each other as long as their colors are close enough (see sigmaColor |
1541 | | ). When d\>0, it specifies the neighborhood size regardless of sigmaSpace. Otherwise, d is |
1542 | | proportional to sigmaSpace. |
1543 | | @param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes |
1544 | | */ |
1545 | | CV_EXPORTS_W void bilateralFilter( InputArray src, OutputArray dst, int d, |
1546 | | double sigmaColor, double sigmaSpace, |
1547 | | int borderType = BORDER_DEFAULT ); |
1548 | | |
1549 | | /** @brief Blurs an image using the box filter. |
1550 | | |
1551 | | The function smooths an image using the kernel: |
1552 | | |
1553 | | \f[\texttt{K} = \alpha \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \hdotsfor{6} \\ 1 & 1 & 1 & \cdots & 1 & 1 \end{bmatrix}\f] |
1554 | | |
1555 | | where |
1556 | | |
1557 | | \f[\alpha = \begin{cases} \frac{1}{\texttt{ksize.width*ksize.height}} & \texttt{when } \texttt{normalize=true} \\1 & \texttt{otherwise}\end{cases}\f] |
1558 | | |
1559 | | Unnormalized box filter is useful for computing various integral characteristics over each pixel |
1560 | | neighborhood, such as covariance matrices of image derivatives (used in dense optical flow |
1561 | | algorithms, and so on). If you need to compute pixel sums over variable-size windows, use #integral. |
1562 | | |
1563 | | @param src input image. |
1564 | | @param dst output image of the same size and type as src. |
1565 | | @param ddepth the output image depth (-1 to use src.depth()). |
1566 | | @param ksize blurring kernel size. |
1567 | | @param anchor anchor point; default value Point(-1,-1) means that the anchor is at the kernel |
1568 | | center. |
1569 | | @param normalize flag, specifying whether the kernel is normalized by its area or not. |
1570 | | @param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes. #BORDER_WRAP is not supported. |
1571 | | @sa blur, bilateralFilter, GaussianBlur, medianBlur, integral |
1572 | | */ |
1573 | | CV_EXPORTS_W void boxFilter( InputArray src, OutputArray dst, int ddepth, |
1574 | | Size ksize, Point anchor = Point(-1,-1), |
1575 | | bool normalize = true, |
1576 | | int borderType = BORDER_DEFAULT ); |
1577 | | |
1578 | | /** @brief Calculates the normalized sum of squares of the pixel values overlapping the filter. |
1579 | | |
1580 | | For every pixel \f$ (x, y) \f$ in the source image, the function calculates the sum of squares of those neighboring |
1581 | | pixel values which overlap the filter placed over the pixel \f$ (x, y) \f$. |
1582 | | |
1583 | | The unnormalized square box filter can be useful in computing local image statistics such as the local |
1584 | | variance and standard deviation around the neighborhood of a pixel. |
1585 | | |
1586 | | @param src input image |
1587 | | @param dst output image of the same size and type as src |
1588 | | @param ddepth the output image depth (-1 to use src.depth()) |
1589 | | @param ksize kernel size |
1590 | | @param anchor kernel anchor point. The default value of Point(-1, -1) denotes that the anchor is at the kernel |
1591 | | center. |
1592 | | @param normalize flag, specifying whether the kernel is to be normalized by it's area or not. |
1593 | | @param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes. #BORDER_WRAP is not supported. |
1594 | | @sa boxFilter |
1595 | | */ |
1596 | | CV_EXPORTS_W void sqrBoxFilter( InputArray src, OutputArray dst, int ddepth, |
1597 | | Size ksize, Point anchor = Point(-1, -1), |
1598 | | bool normalize = true, |
1599 | | int borderType = BORDER_DEFAULT ); |
1600 | | |
1601 | | /** @brief Blurs an image using the normalized box filter. |
1602 | | |
1603 | | The function smooths an image using the kernel: |
1604 | | |
1605 | | \f[\texttt{K} = \frac{1}{\texttt{ksize.width*ksize.height}} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \hdotsfor{6} \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \end{bmatrix}\f] |
1606 | | |
1607 | | The call `blur(src, dst, ksize, anchor, borderType)` is equivalent to `boxFilter(src, dst, src.type(), ksize, |
1608 | | anchor, true, borderType)`. |
1609 | | |
1610 | | @param src input image; it can have any number of channels, which are processed independently, but |
1611 | | the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F. |
1612 | | @param dst output image of the same size and type as src. |
1613 | | @param ksize blurring kernel size. |
1614 | | @param anchor anchor point; default value Point(-1,-1) means that the anchor is at the kernel |
1615 | | center. |
1616 | | @param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes. #BORDER_WRAP is not supported. |
1617 | | @sa boxFilter, bilateralFilter, GaussianBlur, medianBlur |
1618 | | */ |
1619 | | CV_EXPORTS_W void blur( InputArray src, OutputArray dst, |
1620 | | Size ksize, Point anchor = Point(-1,-1), |
1621 | | int borderType = BORDER_DEFAULT ); |
1622 | | |
1623 | | /** @brief Blurs an image using the stackBlur. |
1624 | | |
1625 | | The function applies and stackBlur to an image. |
1626 | | stackBlur can generate similar results as Gaussian blur, and the time consumption does not increase with the increase of kernel size. |
1627 | | It creates a kind of moving stack of colors whilst scanning through the image. Thereby it just has to add one new block of color to the right side |
1628 | | of the stack and remove the leftmost color. The remaining colors on the topmost layer of the stack are either added on or reduced by one, |
1629 | | depending on if they are on the right or on the left side of the stack. The only supported borderType is BORDER_REPLICATE. |
1630 | | Original paper was proposed by Mario Klingemann, which can be found http://underdestruction.com/2004/02/25/stackblur-2004. |
1631 | | |
1632 | | @param src input image. The number of channels can be arbitrary, but the depth should be one of |
1633 | | CV_8U, CV_16U, CV_16S or CV_32F. |
1634 | | @param dst output image of the same size and type as src. |
1635 | | @param ksize stack-blurring kernel size. The ksize.width and ksize.height can differ but they both must be |
1636 | | positive and odd. |
1637 | | */ |
1638 | | CV_EXPORTS_W void stackBlur(InputArray src, OutputArray dst, Size ksize); |
1639 | | |
1640 | | /** @brief Convolves an image with the kernel. |
1641 | | |
1642 | | The function applies an arbitrary linear filter to an image. In-place operation is supported. When |
1643 | | the aperture is partially outside the image, the function interpolates outlier pixel values |
1644 | | according to the specified border mode. |
1645 | | |
1646 | | The function does actually compute correlation, not the convolution: |
1647 | | |
1648 | | \f[\texttt{dst} (x,y) = \sum _{ \substack{0\leq x' < \texttt{kernel.cols}\\{0\leq y' < \texttt{kernel.rows}}}} \texttt{kernel} (x',y')* \texttt{src} (x+x'- \texttt{anchor.x} ,y+y'- \texttt{anchor.y} )\f] |
1649 | | |
1650 | | That is, the kernel is not mirrored around the anchor point. If you need a real convolution, flip |
1651 | | the kernel using #flip and set the new anchor to `(kernel.cols - anchor.x - 1, kernel.rows - |
1652 | | anchor.y - 1)`. |
1653 | | |
1654 | | The function uses the DFT-based algorithm in case of sufficiently large kernels (~`11 x 11` or |
1655 | | larger) and the direct algorithm for small kernels. |
1656 | | |
1657 | | @param src input image. |
1658 | | @param dst output image of the same size and the same number of channels as src. |
1659 | | @param ddepth desired depth of the destination image, see @ref filter_depths "combinations" |
1660 | | @param kernel convolution kernel (or rather a correlation kernel), a single-channel floating point |
1661 | | matrix; if you want to apply different kernels to different channels, split the image into |
1662 | | separate color planes using split and process them individually. |
1663 | | @param anchor anchor of the kernel that indicates the relative position of a filtered point within |
1664 | | the kernel; the anchor should lie within the kernel; default value (-1,-1) means that the anchor |
1665 | | is at the kernel center. |
1666 | | @param delta optional value added to the filtered pixels before storing them in dst. |
1667 | | @param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported. |
1668 | | @sa sepFilter2D, dft, matchTemplate |
1669 | | */ |
1670 | | CV_EXPORTS_W void filter2D( InputArray src, OutputArray dst, int ddepth, |
1671 | | InputArray kernel, Point anchor = Point(-1,-1), |
1672 | | double delta = 0, int borderType = BORDER_DEFAULT ); |
1673 | | |
1674 | | /** @brief Applies a separable linear filter to an image. |
1675 | | |
1676 | | The function applies a separable linear filter to the image. That is, first, every row of src is |
1677 | | filtered with the 1D kernel kernelX. Then, every column of the result is filtered with the 1D |
1678 | | kernel kernelY. The final result shifted by delta is stored in dst . |
1679 | | |
1680 | | @param src Source image. |
1681 | | @param dst Destination image of the same size and the same number of channels as src . |
1682 | | @param ddepth Destination image depth, see @ref filter_depths "combinations" |
1683 | | @param kernelX Coefficients for filtering each row. |
1684 | | @param kernelY Coefficients for filtering each column. |
1685 | | @param anchor Anchor position within the kernel. The default value \f$(-1,-1)\f$ means that the anchor |
1686 | | is at the kernel center. |
1687 | | @param delta Value added to the filtered results before storing them. |
1688 | | @param borderType Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported. |
1689 | | @sa filter2D, Sobel, GaussianBlur, boxFilter, blur |
1690 | | */ |
1691 | | CV_EXPORTS_W void sepFilter2D( InputArray src, OutputArray dst, int ddepth, |
1692 | | InputArray kernelX, InputArray kernelY, |
1693 | | Point anchor = Point(-1,-1), |
1694 | | double delta = 0, int borderType = BORDER_DEFAULT ); |
1695 | | |
1696 | | /** @example samples/cpp/tutorial_code/ImgTrans/Sobel_Demo.cpp |
1697 | | Sample code using Sobel and/or Scharr OpenCV functions to make a simple Edge Detector |
1698 | |  |
1699 | | Check @ref tutorial_sobel_derivatives "the corresponding tutorial" for more details |
1700 | | */ |
1701 | | |
1702 | | /** @brief Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator. |
1703 | | |
1704 | | In all cases except one, the \f$\texttt{ksize} \times \texttt{ksize}\f$ separable kernel is used to |
1705 | | calculate the derivative. When \f$\texttt{ksize = 1}\f$, the \f$3 \times 1\f$ or \f$1 \times 3\f$ |
1706 | | kernel is used (that is, no Gaussian smoothing is done). `ksize = 1` can only be used for the first |
1707 | | or the second x- or y- derivatives. |
1708 | | |
1709 | | There is also the special value `ksize = #FILTER_SCHARR (-1)` that corresponds to the \f$3\times3\f$ Scharr |
1710 | | filter that may give more accurate results than the \f$3\times3\f$ Sobel. The Scharr aperture is |
1711 | | |
1712 | | \f[\vecthreethree{-3}{0}{3}{-10}{0}{10}{-3}{0}{3}\f] |
1713 | | |
1714 | | for the x-derivative, or transposed for the y-derivative. |
1715 | | |
1716 | | The function calculates an image derivative by convolving the image with the appropriate kernel: |
1717 | | |
1718 | | \f[\texttt{dst} = \frac{\partial^{xorder+yorder} \texttt{src}}{\partial x^{xorder} \partial y^{yorder}}\f] |
1719 | | |
1720 | | The Sobel operators combine Gaussian smoothing and differentiation, so the result is more or less |
1721 | | resistant to the noise. Most often, the function is called with ( xorder = 1, yorder = 0, ksize = 3) |
1722 | | or ( xorder = 0, yorder = 1, ksize = 3) to calculate the first x- or y- image derivative. The first |
1723 | | case corresponds to a kernel of: |
1724 | | |
1725 | | \f[\vecthreethree{-1}{0}{1}{-2}{0}{2}{-1}{0}{1}\f] |
1726 | | |
1727 | | The second case corresponds to a kernel of: |
1728 | | |
1729 | | \f[\vecthreethree{-1}{-2}{-1}{0}{0}{0}{1}{2}{1}\f] |
1730 | | |
1731 | | @param src input image. |
1732 | | @param dst output image of the same size and the same number of channels as src . |
1733 | | @param ddepth output image depth, see @ref filter_depths "combinations"; in the case of |
1734 | | 8-bit input images it will result in truncated derivatives. |
1735 | | @param dx order of the derivative x. |
1736 | | @param dy order of the derivative y. |
1737 | | @param ksize size of the extended Sobel kernel; it must be 1, 3, 5, or 7. |
1738 | | @param scale optional scale factor for the computed derivative values; by default, no scaling is |
1739 | | applied (see #getDerivKernels for details). |
1740 | | @param delta optional delta value that is added to the results prior to storing them in dst. |
1741 | | @param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported. |
1742 | | @sa Scharr, Laplacian, sepFilter2D, filter2D, GaussianBlur, cartToPolar |
1743 | | */ |
1744 | | CV_EXPORTS_W void Sobel( InputArray src, OutputArray dst, int ddepth, |
1745 | | int dx, int dy, int ksize = 3, |
1746 | | double scale = 1, double delta = 0, |
1747 | | int borderType = BORDER_DEFAULT ); |
1748 | | |
1749 | | /** @brief Calculates the first order image derivative in both x and y using a Sobel operator |
1750 | | |
1751 | | Equivalent to calling: |
1752 | | |
1753 | | @code |
1754 | | Sobel( src, dx, CV_16SC1, 1, 0, 3 ); |
1755 | | Sobel( src, dy, CV_16SC1, 0, 1, 3 ); |
1756 | | @endcode |
1757 | | |
1758 | | @param src input image. |
1759 | | @param dx output image with first-order derivative in x. |
1760 | | @param dy output image with first-order derivative in y. |
1761 | | @param ksize size of Sobel kernel. It must be 3. |
1762 | | @param borderType pixel extrapolation method, see #BorderTypes. |
1763 | | Only #BORDER_DEFAULT=#BORDER_REFLECT_101 and #BORDER_REPLICATE are supported. |
1764 | | |
1765 | | @sa Sobel |
1766 | | */ |
1767 | | |
1768 | | CV_EXPORTS_W void spatialGradient( InputArray src, OutputArray dx, |
1769 | | OutputArray dy, int ksize = 3, |
1770 | | int borderType = BORDER_DEFAULT ); |
1771 | | |
1772 | | /** @brief Calculates the first x- or y- image derivative using Scharr operator. |
1773 | | |
1774 | | The function computes the first x- or y- spatial image derivative using the Scharr operator. The |
1775 | | call |
1776 | | |
1777 | | \f[\texttt{Scharr(src, dst, ddepth, dx, dy, scale, delta, borderType)}\f] |
1778 | | |
1779 | | is equivalent to |
1780 | | |
1781 | | \f[\texttt{Sobel(src, dst, ddepth, dx, dy, FILTER_SCHARR, scale, delta, borderType)} .\f] |
1782 | | |
1783 | | @param src input image. |
1784 | | @param dst output image of the same size and the same number of channels as src. |
1785 | | @param ddepth output image depth, see @ref filter_depths "combinations" |
1786 | | @param dx order of the derivative x. |
1787 | | @param dy order of the derivative y. |
1788 | | @param scale optional scale factor for the computed derivative values; by default, no scaling is |
1789 | | applied (see #getDerivKernels for details). |
1790 | | @param delta optional delta value that is added to the results prior to storing them in dst. |
1791 | | @param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported. |
1792 | | @sa cartToPolar |
1793 | | */ |
1794 | | CV_EXPORTS_W void Scharr( InputArray src, OutputArray dst, int ddepth, |
1795 | | int dx, int dy, double scale = 1, double delta = 0, |
1796 | | int borderType = BORDER_DEFAULT ); |
1797 | | |
1798 | | /** @example samples/cpp/laplace.cpp |
1799 | | An example using Laplace transformations for edge detection |
1800 | | */ |
1801 | | |
1802 | | /** @brief Calculates the Laplacian of an image. |
1803 | | |
1804 | | The function calculates the Laplacian of the source image by adding up the second x and y |
1805 | | derivatives calculated using the Sobel operator: |
1806 | | |
1807 | | \f[\texttt{dst} = \Delta \texttt{src} = \frac{\partial^2 \texttt{src}}{\partial x^2} + \frac{\partial^2 \texttt{src}}{\partial y^2}\f] |
1808 | | |
1809 | | This is done when `ksize > 1`. When `ksize == 1`, the Laplacian is computed by filtering the image |
1810 | | with the following \f$3 \times 3\f$ aperture: |
1811 | | |
1812 | | \f[\vecthreethree {0}{1}{0}{1}{-4}{1}{0}{1}{0}\f] |
1813 | | |
1814 | | @param src Source image. |
1815 | | @param dst Destination image of the same size and the same number of channels as src . |
1816 | | @param ddepth Desired depth of the destination image, see @ref filter_depths "combinations". |
1817 | | @param ksize Aperture size used to compute the second-derivative filters. See #getDerivKernels for |
1818 | | details. The size must be positive and odd. |
1819 | | @param scale Optional scale factor for the computed Laplacian values. By default, no scaling is |
1820 | | applied. See #getDerivKernels for details. |
1821 | | @param delta Optional delta value that is added to the results prior to storing them in dst . |
1822 | | @param borderType Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported. |
1823 | | @sa Sobel, Scharr |
1824 | | */ |
1825 | | CV_EXPORTS_W void Laplacian( InputArray src, OutputArray dst, int ddepth, |
1826 | | int ksize = 1, double scale = 1, double delta = 0, |
1827 | | int borderType = BORDER_DEFAULT ); |
1828 | | |
1829 | | //! @} imgproc_filter |
1830 | | |
1831 | | //! @addtogroup imgproc_feature |
1832 | | //! @{ |
1833 | | |
1834 | | /** @example samples/cpp/edge.cpp |
1835 | | This program demonstrates usage of the Canny edge detector |
1836 | | |
1837 | | Check @ref tutorial_canny_detector "the corresponding tutorial" for more details |
1838 | | */ |
1839 | | |
1840 | | /** @brief Finds edges in an image using the Canny algorithm @cite Canny86 . |
1841 | | |
1842 | | The function finds edges in the input image and marks them in the output map edges using the |
1843 | | Canny algorithm. The smallest value between threshold1 and threshold2 is used for edge linking. The |
1844 | | largest value is used to find initial segments of strong edges. See |
1845 | | <http://en.wikipedia.org/wiki/Canny_edge_detector> |
1846 | | |
1847 | | @param image 8-bit input image. |
1848 | | @param edges output edge map; single channels 8-bit image, which has the same size as image . |
1849 | | @param threshold1 first threshold for the hysteresis procedure. |
1850 | | @param threshold2 second threshold for the hysteresis procedure. |
1851 | | @param apertureSize aperture size for the Sobel operator. |
1852 | | @param L2gradient a flag, indicating whether a more accurate \f$L_2\f$ norm |
1853 | | \f$=\sqrt{(dI/dx)^2 + (dI/dy)^2}\f$ should be used to calculate the image gradient magnitude ( |
1854 | | L2gradient=true ), or whether the default \f$L_1\f$ norm \f$=|dI/dx|+|dI/dy|\f$ is enough ( |
1855 | | L2gradient=false ). |
1856 | | */ |
1857 | | CV_EXPORTS_W void Canny( InputArray image, OutputArray edges, |
1858 | | double threshold1, double threshold2, |
1859 | | int apertureSize = 3, bool L2gradient = false ); |
1860 | | |
1861 | | /** \overload |
1862 | | |
1863 | | Finds edges in an image using the Canny algorithm with custom image gradient. |
1864 | | |
1865 | | @param dx 16-bit x derivative of input image (CV_16SC1 or CV_16SC3). |
1866 | | @param dy 16-bit y derivative of input image (same type as dx). |
1867 | | @param edges output edge map; single channels 8-bit image, which has the same size as image . |
1868 | | @param threshold1 first threshold for the hysteresis procedure. |
1869 | | @param threshold2 second threshold for the hysteresis procedure. |
1870 | | @param L2gradient a flag, indicating whether a more accurate \f$L_2\f$ norm |
1871 | | \f$=\sqrt{(dI/dx)^2 + (dI/dy)^2}\f$ should be used to calculate the image gradient magnitude ( |
1872 | | L2gradient=true ), or whether the default \f$L_1\f$ norm \f$=|dI/dx|+|dI/dy|\f$ is enough ( |
1873 | | L2gradient=false ). |
1874 | | */ |
1875 | | CV_EXPORTS_W void Canny( InputArray dx, InputArray dy, |
1876 | | OutputArray edges, |
1877 | | double threshold1, double threshold2, |
1878 | | bool L2gradient = false ); |
1879 | | |
1880 | | /** @brief Calculates the minimal eigenvalue of gradient matrices for corner detection. |
1881 | | |
1882 | | The function is similar to cornerEigenValsAndVecs but it calculates and stores only the minimal |
1883 | | eigenvalue of the covariance matrix of derivatives, that is, \f$\min(\lambda_1, \lambda_2)\f$ in terms |
1884 | | of the formulae in the cornerEigenValsAndVecs description. |
1885 | | |
1886 | | @param src Input single-channel 8-bit or floating-point image. |
1887 | | @param dst Image to store the minimal eigenvalues. It has the type CV_32FC1 and the same size as |
1888 | | src . |
1889 | | @param blockSize Neighborhood size (see the details on #cornerEigenValsAndVecs ). |
1890 | | @param ksize Aperture parameter for the Sobel operator. |
1891 | | @param borderType Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported. |
1892 | | */ |
1893 | | CV_EXPORTS_W void cornerMinEigenVal( InputArray src, OutputArray dst, |
1894 | | int blockSize, int ksize = 3, |
1895 | | int borderType = BORDER_DEFAULT ); |
1896 | | |
1897 | | /** @brief Harris corner detector. |
1898 | | |
1899 | | The function runs the Harris corner detector on the image. Similarly to cornerMinEigenVal and |
1900 | | cornerEigenValsAndVecs , for each pixel \f$(x, y)\f$ it calculates a \f$2\times2\f$ gradient covariance |
1901 | | matrix \f$M^{(x,y)}\f$ over a \f$\texttt{blockSize} \times \texttt{blockSize}\f$ neighborhood. Then, it |
1902 | | computes the following characteristic: |
1903 | | |
1904 | | \f[\texttt{dst} (x,y) = \mathrm{det} M^{(x,y)} - k \cdot \left ( \mathrm{tr} M^{(x,y)} \right )^2\f] |
1905 | | |
1906 | | Corners in the image can be found as the local maxima of this response map. |
1907 | | |
1908 | | @param src Input single-channel 8-bit or floating-point image. |
1909 | | @param dst Image to store the Harris detector responses. It has the type CV_32FC1 and the same |
1910 | | size as src . |
1911 | | @param blockSize Neighborhood size (see the details on #cornerEigenValsAndVecs ). |
1912 | | @param ksize Aperture parameter for the Sobel operator. |
1913 | | @param k Harris detector free parameter. See the formula above. |
1914 | | @param borderType Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported. |
1915 | | */ |
1916 | | CV_EXPORTS_W void cornerHarris( InputArray src, OutputArray dst, int blockSize, |
1917 | | int ksize, double k, |
1918 | | int borderType = BORDER_DEFAULT ); |
1919 | | |
1920 | | /** @brief Calculates eigenvalues and eigenvectors of image blocks for corner detection. |
1921 | | |
1922 | | For every pixel \f$p\f$ , the function cornerEigenValsAndVecs considers a blockSize \f$\times\f$ blockSize |
1923 | | neighborhood \f$S(p)\f$ . It calculates the covariation matrix of derivatives over the neighborhood as: |
1924 | | |
1925 | | \f[M = \begin{bmatrix} \sum _{S(p)}(dI/dx)^2 & \sum _{S(p)}dI/dx dI/dy \\ \sum _{S(p)}dI/dx dI/dy & \sum _{S(p)}(dI/dy)^2 \end{bmatrix}\f] |
1926 | | |
1927 | | where the derivatives are computed using the Sobel operator. |
1928 | | |
1929 | | After that, it finds eigenvectors and eigenvalues of \f$M\f$ and stores them in the destination image as |
1930 | | \f$(\lambda_1, \lambda_2, x_1, y_1, x_2, y_2)\f$ where |
1931 | | |
1932 | | - \f$\lambda_1, \lambda_2\f$ are the non-sorted eigenvalues of \f$M\f$ |
1933 | | - \f$x_1, y_1\f$ are the eigenvectors corresponding to \f$\lambda_1\f$ |
1934 | | - \f$x_2, y_2\f$ are the eigenvectors corresponding to \f$\lambda_2\f$ |
1935 | | |
1936 | | The output of the function can be used for robust edge or corner detection. |
1937 | | |
1938 | | @param src Input single-channel 8-bit or floating-point image. |
1939 | | @param dst Image to store the results. It has the same size as src and the type CV_32FC(6) . |
1940 | | @param blockSize Neighborhood size (see details below). |
1941 | | @param ksize Aperture parameter for the Sobel operator. |
1942 | | @param borderType Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported. |
1943 | | |
1944 | | @sa cornerMinEigenVal, cornerHarris, preCornerDetect |
1945 | | */ |
1946 | | CV_EXPORTS_W void cornerEigenValsAndVecs( InputArray src, OutputArray dst, |
1947 | | int blockSize, int ksize, |
1948 | | int borderType = BORDER_DEFAULT ); |
1949 | | |
1950 | | /** @brief Calculates a feature map for corner detection. |
1951 | | |
1952 | | The function calculates the complex spatial derivative-based function of the source image |
1953 | | |
1954 | | \f[\texttt{dst} = (D_x \texttt{src} )^2 \cdot D_{yy} \texttt{src} + (D_y \texttt{src} )^2 \cdot D_{xx} \texttt{src} - 2 D_x \texttt{src} \cdot D_y \texttt{src} \cdot D_{xy} \texttt{src}\f] |
1955 | | |
1956 | | where \f$D_x\f$,\f$D_y\f$ are the first image derivatives, \f$D_{xx}\f$,\f$D_{yy}\f$ are the second image |
1957 | | derivatives, and \f$D_{xy}\f$ is the mixed derivative. |
1958 | | |
1959 | | The corners can be found as local maximums of the functions, as shown below: |
1960 | | @code |
1961 | | Mat corners, dilated_corners; |
1962 | | preCornerDetect(image, corners, 3); |
1963 | | // dilation with 3x3 rectangular structuring element |
1964 | | dilate(corners, dilated_corners, Mat(), 1); |
1965 | | Mat corner_mask = corners == dilated_corners; |
1966 | | @endcode |
1967 | | |
1968 | | @param src Source single-channel 8-bit of floating-point image. |
1969 | | @param dst Output image that has the type CV_32F and the same size as src . |
1970 | | @param ksize %Aperture size of the Sobel . |
1971 | | @param borderType Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported. |
1972 | | */ |
1973 | | CV_EXPORTS_W void preCornerDetect( InputArray src, OutputArray dst, int ksize, |
1974 | | int borderType = BORDER_DEFAULT ); |
1975 | | |
1976 | | /** @brief Refines the corner locations. |
1977 | | |
1978 | | The function iterates to find the sub-pixel accurate location of corners or radial saddle |
1979 | | points as described in @cite forstner1987fast, and as shown on the figure below. |
1980 | | |
1981 | |  |
1982 | | |
1983 | | Sub-pixel accurate corner locator is based on the observation that every vector from the center \f$q\f$ |
1984 | | to a point \f$p\f$ located within a neighborhood of \f$q\f$ is orthogonal to the image gradient at \f$p\f$ |
1985 | | subject to image and measurement noise. Consider the expression: |
1986 | | |
1987 | | \f[\epsilon _i = {DI_{p_i}}^T \cdot (q - p_i)\f] |
1988 | | |
1989 | | where \f${DI_{p_i}}\f$ is an image gradient at one of the points \f$p_i\f$ in a neighborhood of \f$q\f$ . The |
1990 | | value of \f$q\f$ is to be found so that \f$\epsilon_i\f$ is minimized. A system of equations may be set up |
1991 | | with \f$\epsilon_i\f$ set to zero: |
1992 | | |
1993 | | \f[\sum _i(DI_{p_i} \cdot {DI_{p_i}}^T) \cdot q - \sum _i(DI_{p_i} \cdot {DI_{p_i}}^T \cdot p_i)\f] |
1994 | | |
1995 | | where the gradients are summed within a neighborhood ("search window") of \f$q\f$ . Calling the first |
1996 | | gradient term \f$G\f$ and the second gradient term \f$b\f$ gives: |
1997 | | |
1998 | | \f[q = G^{-1} \cdot b\f] |
1999 | | |
2000 | | The algorithm sets the center of the neighborhood window at this new center \f$q\f$ and then iterates |
2001 | | until the center stays within a set threshold. |
2002 | | |
2003 | | @param image Input single-channel, 8-bit or float image. |
2004 | | @param corners Initial coordinates of the input corners and refined coordinates provided for |
2005 | | output. |
2006 | | @param winSize Half of the side length of the search window. For example, if winSize=Size(5,5) , |
2007 | | then a \f$(5*2+1) \times (5*2+1) = 11 \times 11\f$ search window is used. |
2008 | | @param zeroZone Half of the size of the dead region in the middle of the search zone over which |
2009 | | the summation in the formula below is not done. It is used sometimes to avoid possible |
2010 | | singularities of the autocorrelation matrix. The value of (-1,-1) indicates that there is no such |
2011 | | a size. |
2012 | | @param criteria Criteria for termination of the iterative process of corner refinement. That is, |
2013 | | the process of corner position refinement stops either after criteria.maxCount iterations or when |
2014 | | the corner position moves by less than criteria.epsilon on some iteration. |
2015 | | */ |
2016 | | CV_EXPORTS_W void cornerSubPix( InputArray image, InputOutputArray corners, |
2017 | | Size winSize, Size zeroZone, |
2018 | | TermCriteria criteria ); |
2019 | | |
2020 | | /** @brief Determines strong corners on an image. |
2021 | | |
2022 | | The function finds the most prominent corners in the image or in the specified image region, as |
2023 | | described in @cite Shi94 |
2024 | | |
2025 | | - Function calculates the corner quality measure at every source image pixel using the |
2026 | | #cornerMinEigenVal or #cornerHarris . |
2027 | | - Function performs a non-maximum suppression (the local maximums in *3 x 3* neighborhood are |
2028 | | retained). |
2029 | | - The corners with the minimal eigenvalue less than |
2030 | | \f$\texttt{qualityLevel} \cdot \max_{x,y} qualityMeasureMap(x,y)\f$ are rejected. |
2031 | | - The remaining corners are sorted by the quality measure in the descending order. |
2032 | | - Function throws away each corner for which there is a stronger corner at a distance less than |
2033 | | maxDistance. |
2034 | | |
2035 | | The function can be used to initialize a point-based tracker of an object. |
2036 | | |
2037 | | @note If the function is called with different values A and B of the parameter qualityLevel , and |
2038 | | A \> B, the vector of returned corners with qualityLevel=A will be the prefix of the output vector |
2039 | | with qualityLevel=B . |
2040 | | |
2041 | | @param image Input 8-bit or floating-point 32-bit, single-channel image. |
2042 | | @param corners Output vector of detected corners. |
2043 | | @param maxCorners Maximum number of corners to return. If there are more corners than are found, |
2044 | | the strongest of them is returned. `maxCorners <= 0` implies that no limit on the maximum is set |
2045 | | and all detected corners are returned. |
2046 | | @param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The |
2047 | | parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue |
2048 | | (see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the |
2049 | | quality measure less than the product are rejected. For example, if the best corner has the |
2050 | | quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure |
2051 | | less than 15 are rejected. |
2052 | | @param minDistance Minimum possible Euclidean distance between the returned corners. |
2053 | | @param mask Optional region of interest. If the image is not empty (it needs to have the type |
2054 | | CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected. |
2055 | | @param blockSize Size of an average block for computing a derivative covariation matrix over each |
2056 | | pixel neighborhood. See cornerEigenValsAndVecs . |
2057 | | @param useHarrisDetector Parameter indicating whether to use a Harris detector (see #cornerHarris) |
2058 | | or #cornerMinEigenVal. |
2059 | | @param k Free parameter of the Harris detector. |
2060 | | |
2061 | | @sa cornerMinEigenVal, cornerHarris, calcOpticalFlowPyrLK, estimateRigidTransform, |
2062 | | */ |
2063 | | |
2064 | | CV_EXPORTS_W void goodFeaturesToTrack( InputArray image, OutputArray corners, |
2065 | | int maxCorners, double qualityLevel, double minDistance, |
2066 | | InputArray mask = noArray(), int blockSize = 3, |
2067 | | bool useHarrisDetector = false, double k = 0.04 ); |
2068 | | |
2069 | | CV_EXPORTS_W void goodFeaturesToTrack( InputArray image, OutputArray corners, |
2070 | | int maxCorners, double qualityLevel, double minDistance, |
2071 | | InputArray mask, int blockSize, |
2072 | | int gradientSize, bool useHarrisDetector = false, |
2073 | | double k = 0.04 ); |
2074 | | |
2075 | | /** @brief Same as above, but returns also quality measure of the detected corners. |
2076 | | |
2077 | | @param image Input 8-bit or floating-point 32-bit, single-channel image. |
2078 | | @param corners Output vector of detected corners. |
2079 | | @param maxCorners Maximum number of corners to return. If there are more corners than are found, |
2080 | | the strongest of them is returned. `maxCorners <= 0` implies that no limit on the maximum is set |
2081 | | and all detected corners are returned. |
2082 | | @param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The |
2083 | | parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue |
2084 | | (see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the |
2085 | | quality measure less than the product are rejected. For example, if the best corner has the |
2086 | | quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure |
2087 | | less than 15 are rejected. |
2088 | | @param minDistance Minimum possible Euclidean distance between the returned corners. |
2089 | | @param mask Region of interest. If the image is not empty (it needs to have the type |
2090 | | CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected. |
2091 | | @param cornersQuality Output vector of quality measure of the detected corners. |
2092 | | @param blockSize Size of an average block for computing a derivative covariation matrix over each |
2093 | | pixel neighborhood. See cornerEigenValsAndVecs . |
2094 | | @param gradientSize Aperture parameter for the Sobel operator used for derivatives computation. |
2095 | | See cornerEigenValsAndVecs . |
2096 | | @param useHarrisDetector Parameter indicating whether to use a Harris detector (see #cornerHarris) |
2097 | | or #cornerMinEigenVal. |
2098 | | @param k Free parameter of the Harris detector. |
2099 | | */ |
2100 | | CV_EXPORTS CV_WRAP_AS(goodFeaturesToTrackWithQuality) void goodFeaturesToTrack( |
2101 | | InputArray image, OutputArray corners, |
2102 | | int maxCorners, double qualityLevel, double minDistance, |
2103 | | InputArray mask, OutputArray cornersQuality, int blockSize = 3, |
2104 | | int gradientSize = 3, bool useHarrisDetector = false, double k = 0.04); |
2105 | | |
2106 | | /** @example samples/cpp/tutorial_code/ImgTrans/houghlines.cpp |
2107 | | An example using the Hough line detector |
2108 | |   |
2109 | | */ |
2110 | | |
2111 | | /** @brief Finds lines in a binary image using the standard Hough transform. |
2112 | | |
2113 | | The function implements the standard or standard multi-scale Hough transform algorithm for line |
2114 | | detection. See <http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm> for a good explanation of Hough |
2115 | | transform. |
2116 | | |
2117 | | @param image 8-bit, single-channel binary source image. The image may be modified by the function. |
2118 | | @param lines Output vector of lines. Each line is represented by a 2 or 3 element vector |
2119 | | \f$(\rho, \theta)\f$ or \f$(\rho, \theta, \textrm{votes})\f$, where \f$\rho\f$ is the distance from |
2120 | | the coordinate origin \f$(0,0)\f$ (top-left corner of the image), \f$\theta\f$ is the line rotation |
2121 | | angle in radians ( \f$0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}\f$ ), and |
2122 | | \f$\textrm{votes}\f$ is the value of accumulator. |
2123 | | @param rho Distance resolution of the accumulator in pixels. |
2124 | | @param theta Angle resolution of the accumulator in radians. |
2125 | | @param threshold %Accumulator threshold parameter. Only those lines are returned that get enough |
2126 | | votes ( \f$>\texttt{threshold}\f$ ). |
2127 | | @param srn For the multi-scale Hough transform, it is a divisor for the distance resolution rho. |
2128 | | The coarse accumulator distance resolution is rho and the accurate accumulator resolution is |
2129 | | rho/srn. If both srn=0 and stn=0, the classical Hough transform is used. Otherwise, both these |
2130 | | parameters should be positive. |
2131 | | @param stn For the multi-scale Hough transform, it is a divisor for the distance resolution theta. |
2132 | | @param min_theta For standard and multi-scale Hough transform, minimum angle to check for lines. |
2133 | | Must fall between 0 and max_theta. |
2134 | | @param max_theta For standard and multi-scale Hough transform, an upper bound for the angle. |
2135 | | Must fall between min_theta and CV_PI. The actual maximum angle in the accumulator may be slightly |
2136 | | less than max_theta, depending on the parameters min_theta and theta. |
2137 | | */ |
2138 | | CV_EXPORTS_W void HoughLines( InputArray image, OutputArray lines, |
2139 | | double rho, double theta, int threshold, |
2140 | | double srn = 0, double stn = 0, |
2141 | | double min_theta = 0, double max_theta = CV_PI ); |
2142 | | |
2143 | | /** @brief Finds line segments in a binary image using the probabilistic Hough transform. |
2144 | | |
2145 | | The function implements the probabilistic Hough transform algorithm for line detection, described |
2146 | | in @cite Matas00 |
2147 | | |
2148 | | See the line detection example below: |
2149 | | @include snippets/imgproc_HoughLinesP.cpp |
2150 | | This is a sample picture the function parameters have been tuned for: |
2151 | | |
2152 | |  |
2153 | | |
2154 | | And this is the output of the above program in case of the probabilistic Hough transform: |
2155 | | |
2156 | |  |
2157 | | |
2158 | | @param image 8-bit, single-channel binary source image. The image may be modified by the function. |
2159 | | @param lines Output vector of lines. Each line is represented by a 4-element vector |
2160 | | \f$(x_1, y_1, x_2, y_2)\f$ , where \f$(x_1,y_1)\f$ and \f$(x_2, y_2)\f$ are the ending points of each detected |
2161 | | line segment. |
2162 | | @param rho Distance resolution of the accumulator in pixels. |
2163 | | @param theta Angle resolution of the accumulator in radians. |
2164 | | @param threshold %Accumulator threshold parameter. Only those lines are returned that get enough |
2165 | | votes ( \f$>\texttt{threshold}\f$ ). |
2166 | | @param minLineLength Minimum line length. Line segments shorter than that are rejected. |
2167 | | @param maxLineGap Maximum allowed gap between points on the same line to link them. |
2168 | | |
2169 | | @sa LineSegmentDetector |
2170 | | */ |
2171 | | CV_EXPORTS_W void HoughLinesP( InputArray image, OutputArray lines, |
2172 | | double rho, double theta, int threshold, |
2173 | | double minLineLength = 0, double maxLineGap = 0 ); |
2174 | | |
2175 | | /** @brief Finds lines in a set of points using the standard Hough transform. |
2176 | | |
2177 | | The function finds lines in a set of points using a modification of the Hough transform. |
2178 | | @include snippets/imgproc_HoughLinesPointSet.cpp |
2179 | | @param point Input vector of points. Each vector must be encoded as a Point vector \f$(x,y)\f$. Type must be CV_32FC2 or CV_32SC2. |
2180 | | @param lines Output vector of found lines. Each vector is encoded as a vector<Vec3d> \f$(votes, rho, theta)\f$. |
2181 | | The larger the value of 'votes', the higher the reliability of the Hough line. |
2182 | | @param lines_max Max count of Hough lines. |
2183 | | @param threshold %Accumulator threshold parameter. Only those lines are returned that get enough |
2184 | | votes ( \f$>\texttt{threshold}\f$ ). |
2185 | | @param min_rho Minimum value for \f$\rho\f$ for the accumulator (Note: \f$\rho\f$ can be negative. The absolute value \f$|\rho|\f$ is the distance of a line to the origin.). |
2186 | | @param max_rho Maximum value for \f$\rho\f$ for the accumulator. |
2187 | | @param rho_step Distance resolution of the accumulator. |
2188 | | @param min_theta Minimum angle value of the accumulator in radians. |
2189 | | @param max_theta Upper bound for the angle value of the accumulator in radians. The actual maximum |
2190 | | angle may be slightly less than max_theta, depending on the parameters min_theta and theta_step. |
2191 | | @param theta_step Angle resolution of the accumulator in radians. |
2192 | | */ |
2193 | | CV_EXPORTS_W void HoughLinesPointSet( InputArray point, OutputArray lines, int lines_max, int threshold, |
2194 | | double min_rho, double max_rho, double rho_step, |
2195 | | double min_theta, double max_theta, double theta_step ); |
2196 | | |
2197 | | /** @example samples/cpp/tutorial_code/ImgTrans/houghcircles.cpp |
2198 | | An example using the Hough circle detector |
2199 | | */ |
2200 | | |
2201 | | /** @brief Finds circles in a grayscale image using the Hough transform. |
2202 | | |
2203 | | The function finds circles in a grayscale image using a modification of the Hough transform. |
2204 | | |
2205 | | Example: : |
2206 | | @include snippets/imgproc_HoughLinesCircles.cpp |
2207 | | |
2208 | | @note Usually the function detects the centers of circles well. However, it may fail to find correct |
2209 | | radii. You can assist to the function by specifying the radius range ( minRadius and maxRadius ) if |
2210 | | you know it. Or, in the case of #HOUGH_GRADIENT method you may set maxRadius to a negative number |
2211 | | to return centers only without radius search, and find the correct radius using an additional procedure. |
2212 | | |
2213 | | It also helps to smooth image a bit unless it's already soft. For example, |
2214 | | GaussianBlur() with 7x7 kernel and 1.5x1.5 sigma or similar blurring may help. |
2215 | | |
2216 | | @param image 8-bit, single-channel, grayscale input image. |
2217 | | @param circles Output vector of found circles. Each vector is encoded as 3 or 4 element |
2218 | | floating-point vector \f$(x, y, radius)\f$ or \f$(x, y, radius, votes)\f$ . |
2219 | | @param method Detection method, see #HoughModes. The available methods are #HOUGH_GRADIENT and #HOUGH_GRADIENT_ALT. |
2220 | | @param dp Inverse ratio of the accumulator resolution to the image resolution. For example, if |
2221 | | dp=1 , the accumulator has the same resolution as the input image. If dp=2 , the accumulator has |
2222 | | half as big width and height. For #HOUGH_GRADIENT_ALT the recommended value is dp=1.5, |
2223 | | unless some small very circles need to be detected. |
2224 | | @param minDist Minimum distance between the centers of the detected circles. If the parameter is |
2225 | | too small, multiple neighbor circles may be falsely detected in addition to a true one. If it is |
2226 | | too large, some circles may be missed. |
2227 | | @param param1 First method-specific parameter. In case of #HOUGH_GRADIENT and #HOUGH_GRADIENT_ALT, |
2228 | | it is the higher threshold of the two passed to the Canny edge detector (the lower one is twice smaller). |
2229 | | Note that #HOUGH_GRADIENT_ALT uses #Scharr algorithm to compute image derivatives, so the threshold value |
2230 | | shough normally be higher, such as 300 or normally exposed and contrasty images. |
2231 | | @param param2 Second method-specific parameter. In case of #HOUGH_GRADIENT, it is the |
2232 | | accumulator threshold for the circle centers at the detection stage. The smaller it is, the more |
2233 | | false circles may be detected. Circles, corresponding to the larger accumulator values, will be |
2234 | | returned first. In the case of #HOUGH_GRADIENT_ALT algorithm, this is the circle "perfectness" measure. |
2235 | | The closer it to 1, the better shaped circles algorithm selects. In most cases 0.9 should be fine. |
2236 | | If you want get better detection of small circles, you may decrease it to 0.85, 0.8 or even less. |
2237 | | But then also try to limit the search range [minRadius, maxRadius] to avoid many false circles. |
2238 | | @param minRadius Minimum circle radius. |
2239 | | @param maxRadius Maximum circle radius. If <= 0, uses the maximum image dimension. If < 0, #HOUGH_GRADIENT returns |
2240 | | centers without finding the radius. #HOUGH_GRADIENT_ALT always computes circle radiuses. |
2241 | | |
2242 | | @sa fitEllipse, minEnclosingCircle |
2243 | | */ |
2244 | | CV_EXPORTS_W void HoughCircles( InputArray image, OutputArray circles, |
2245 | | int method, double dp, double minDist, |
2246 | | double param1 = 100, double param2 = 100, |
2247 | | int minRadius = 0, int maxRadius = 0 ); |
2248 | | |
2249 | | //! @} imgproc_feature |
2250 | | |
2251 | | //! @addtogroup imgproc_filter |
2252 | | //! @{ |
2253 | | |
2254 | | /** @example samples/cpp/tutorial_code/ImgProc/Morphology_2.cpp |
2255 | | Advanced morphology Transformations sample code |
2256 | |  |
2257 | | Check @ref tutorial_opening_closing_hats "the corresponding tutorial" for more details |
2258 | | */ |
2259 | | |
2260 | | /** @brief Erodes an image by using a specific structuring element. |
2261 | | |
2262 | | The function erodes the source image using the specified structuring element that determines the |
2263 | | shape of a pixel neighborhood over which the minimum is taken: |
2264 | | |
2265 | | \f[\texttt{dst} (x,y) = \min _{(x',y'): \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\f] |
2266 | | |
2267 | | The function supports the in-place mode. Erosion can be applied several ( iterations ) times. In |
2268 | | case of multi-channel images, each channel is processed independently. |
2269 | | |
2270 | | @param src input image; the number of channels can be arbitrary, but the depth should be one of |
2271 | | CV_8U, CV_16U, CV_16S, CV_32F or CV_64F. |
2272 | | @param dst output image of the same size and type as src. |
2273 | | @param kernel structuring element used for erosion; if `element=Mat()`, a `3 x 3` rectangular |
2274 | | structuring element is used. Kernel can be created using #getStructuringElement. |
2275 | | @param anchor position of the anchor within the element; default value (-1, -1) means that the |
2276 | | anchor is at the element center. |
2277 | | @param iterations number of times erosion is applied. |
2278 | | @param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported. |
2279 | | @param borderValue border value in case of a constant border |
2280 | | @sa dilate, morphologyEx, getStructuringElement |
2281 | | */ |
2282 | | CV_EXPORTS_W void erode( InputArray src, OutputArray dst, InputArray kernel, |
2283 | | Point anchor = Point(-1,-1), int iterations = 1, |
2284 | | int borderType = BORDER_CONSTANT, |
2285 | | const Scalar& borderValue = morphologyDefaultBorderValue() ); |
2286 | | |
2287 | | /** @example samples/cpp/tutorial_code/ImgProc/Morphology_1.cpp |
2288 | | Erosion and Dilation sample code |
2289 | |  |
2290 | | Check @ref tutorial_erosion_dilatation "the corresponding tutorial" for more details |
2291 | | */ |
2292 | | |
2293 | | /** @brief Dilates an image by using a specific structuring element. |
2294 | | |
2295 | | The function dilates the source image using the specified structuring element that determines the |
2296 | | shape of a pixel neighborhood over which the maximum is taken: |
2297 | | \f[\texttt{dst} (x,y) = \max _{(x',y'): \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\f] |
2298 | | |
2299 | | The function supports the in-place mode. Dilation can be applied several ( iterations ) times. In |
2300 | | case of multi-channel images, each channel is processed independently. |
2301 | | |
2302 | | @param src input image; the number of channels can be arbitrary, but the depth should be one of |
2303 | | CV_8U, CV_16U, CV_16S, CV_32F or CV_64F. |
2304 | | @param dst output image of the same size and type as src. |
2305 | | @param kernel structuring element used for dilation; if element=Mat(), a 3 x 3 rectangular |
2306 | | structuring element is used. Kernel can be created using #getStructuringElement |
2307 | | @param anchor position of the anchor within the element; default value (-1, -1) means that the |
2308 | | anchor is at the element center. |
2309 | | @param iterations number of times dilation is applied. |
2310 | | @param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not suported. |
2311 | | @param borderValue border value in case of a constant border |
2312 | | @sa erode, morphologyEx, getStructuringElement |
2313 | | */ |
2314 | | CV_EXPORTS_W void dilate( InputArray src, OutputArray dst, InputArray kernel, |
2315 | | Point anchor = Point(-1,-1), int iterations = 1, |
2316 | | int borderType = BORDER_CONSTANT, |
2317 | | const Scalar& borderValue = morphologyDefaultBorderValue() ); |
2318 | | |
2319 | | /** @brief Performs advanced morphological transformations. |
2320 | | |
2321 | | The function cv::morphologyEx can perform advanced morphological transformations using an erosion and dilation as |
2322 | | basic operations. |
2323 | | |
2324 | | Any of the operations can be done in-place. In case of multi-channel images, each channel is |
2325 | | processed independently. |
2326 | | |
2327 | | @param src Source image. The number of channels can be arbitrary. The depth should be one of |
2328 | | CV_8U, CV_16U, CV_16S, CV_32F or CV_64F. |
2329 | | @param dst Destination image of the same size and type as source image. |
2330 | | @param op Type of a morphological operation, see #MorphTypes |
2331 | | @param kernel Structuring element. It can be created using #getStructuringElement. |
2332 | | @param anchor Anchor position with the kernel. Negative values mean that the anchor is at the |
2333 | | kernel center. |
2334 | | @param iterations Number of times erosion and dilation are applied. |
2335 | | @param borderType Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported. |
2336 | | @param borderValue Border value in case of a constant border. The default value has a special |
2337 | | meaning. |
2338 | | @sa dilate, erode, getStructuringElement |
2339 | | @note The number of iterations is the number of times erosion or dilatation operation will be applied. |
2340 | | For instance, an opening operation (#MORPH_OPEN) with two iterations is equivalent to apply |
2341 | | successively: erode -> erode -> dilate -> dilate (and not erode -> dilate -> erode -> dilate). |
2342 | | */ |
2343 | | CV_EXPORTS_W void morphologyEx( InputArray src, OutputArray dst, |
2344 | | int op, InputArray kernel, |
2345 | | Point anchor = Point(-1,-1), int iterations = 1, |
2346 | | int borderType = BORDER_CONSTANT, |
2347 | | const Scalar& borderValue = morphologyDefaultBorderValue() ); |
2348 | | |
2349 | | //! @} imgproc_filter |
2350 | | |
2351 | | //! @addtogroup imgproc_transform |
2352 | | //! @{ |
2353 | | |
2354 | | /** @brief Resizes an image. |
2355 | | |
2356 | | The function resize resizes the image src down to or up to the specified size. Note that the |
2357 | | initial dst type or size are not taken into account. Instead, the size and type are derived from |
2358 | | the `src`,`dsize`,`fx`, and `fy`. If you want to resize src so that it fits the pre-created dst, |
2359 | | you may call the function as follows: |
2360 | | @code |
2361 | | // explicitly specify dsize=dst.size(); fx and fy will be computed from that. |
2362 | | resize(src, dst, dst.size(), 0, 0, interpolation); |
2363 | | @endcode |
2364 | | If you want to decimate the image by factor of 2 in each direction, you can call the function this |
2365 | | way: |
2366 | | @code |
2367 | | // specify fx and fy and let the function compute the destination image size. |
2368 | | resize(src, dst, Size(), 0.5, 0.5, interpolation); |
2369 | | @endcode |
2370 | | To shrink an image, it will generally look best with #INTER_AREA interpolation, whereas to |
2371 | | enlarge an image, it will generally look best with #INTER_CUBIC (slow) or #INTER_LINEAR |
2372 | | (faster but still looks OK). |
2373 | | |
2374 | | @param src input image. |
2375 | | @param dst output image; it has the size dsize (when it is non-zero) or the size computed from |
2376 | | src.size(), fx, and fy; the type of dst is the same as of src. |
2377 | | @param dsize output image size; if it equals zero (`None` in Python), it is computed as: |
2378 | | \f[\texttt{dsize = Size(round(fx*src.cols), round(fy*src.rows))}\f] |
2379 | | Either dsize or both fx and fy must be non-zero. |
2380 | | @param fx scale factor along the horizontal axis; when it equals 0, it is computed as |
2381 | | \f[\texttt{(double)dsize.width/src.cols}\f] |
2382 | | @param fy scale factor along the vertical axis; when it equals 0, it is computed as |
2383 | | \f[\texttt{(double)dsize.height/src.rows}\f] |
2384 | | @param interpolation interpolation method, see #InterpolationFlags |
2385 | | |
2386 | | @sa warpAffine, warpPerspective, remap |
2387 | | */ |
2388 | | CV_EXPORTS_W void resize( InputArray src, OutputArray dst, |
2389 | | Size dsize, double fx = 0, double fy = 0, |
2390 | | int interpolation = INTER_LINEAR ); |
2391 | | |
2392 | | /** @brief Applies an affine transformation to an image. |
2393 | | |
2394 | | The function warpAffine transforms the source image using the specified matrix: |
2395 | | |
2396 | | \f[\texttt{dst} (x,y) = \texttt{src} ( \texttt{M} _{11} x + \texttt{M} _{12} y + \texttt{M} _{13}, \texttt{M} _{21} x + \texttt{M} _{22} y + \texttt{M} _{23})\f] |
2397 | | |
2398 | | when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted |
2399 | | with #invertAffineTransform and then put in the formula above instead of M. The function cannot |
2400 | | operate in-place. |
2401 | | |
2402 | | @param src input image. |
2403 | | @param dst output image that has the size dsize and the same type as src . |
2404 | | @param M \f$2\times 3\f$ transformation matrix. |
2405 | | @param dsize size of the output image. |
2406 | | @param flags combination of interpolation methods (see #InterpolationFlags) and the optional |
2407 | | flag #WARP_INVERSE_MAP that means that M is the inverse transformation ( |
2408 | | \f$\texttt{dst}\rightarrow\texttt{src}\f$ ). |
2409 | | @param borderMode pixel extrapolation method (see #BorderTypes); when |
2410 | | borderMode=#BORDER_TRANSPARENT, it means that the pixels in the destination image corresponding to |
2411 | | the "outliers" in the source image are not modified by the function. |
2412 | | @param borderValue value used in case of a constant border; by default, it is 0. |
2413 | | |
2414 | | @sa warpPerspective, resize, remap, getRectSubPix, transform |
2415 | | */ |
2416 | | CV_EXPORTS_W void warpAffine( InputArray src, OutputArray dst, |
2417 | | InputArray M, Size dsize, |
2418 | | int flags = INTER_LINEAR, |
2419 | | int borderMode = BORDER_CONSTANT, |
2420 | | const Scalar& borderValue = Scalar()); |
2421 | | |
2422 | | /** @example samples/cpp/warpPerspective_demo.cpp |
2423 | | An example program shows using cv::getPerspectiveTransform and cv::warpPerspective for image warping |
2424 | | */ |
2425 | | |
2426 | | /** @brief Applies a perspective transformation to an image. |
2427 | | |
2428 | | The function warpPerspective transforms the source image using the specified matrix: |
2429 | | |
2430 | | \f[\texttt{dst} (x,y) = \texttt{src} \left ( \frac{M_{11} x + M_{12} y + M_{13}}{M_{31} x + M_{32} y + M_{33}} , |
2431 | | \frac{M_{21} x + M_{22} y + M_{23}}{M_{31} x + M_{32} y + M_{33}} \right )\f] |
2432 | | |
2433 | | when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted with invert |
2434 | | and then put in the formula above instead of M. The function cannot operate in-place. |
2435 | | |
2436 | | @param src input image. |
2437 | | @param dst output image that has the size dsize and the same type as src . |
2438 | | @param M \f$3\times 3\f$ transformation matrix. |
2439 | | @param dsize size of the output image. |
2440 | | @param flags combination of interpolation methods (#INTER_LINEAR or #INTER_NEAREST) and the |
2441 | | optional flag #WARP_INVERSE_MAP, that sets M as the inverse transformation ( |
2442 | | \f$\texttt{dst}\rightarrow\texttt{src}\f$ ). |
2443 | | @param borderMode pixel extrapolation method (#BORDER_CONSTANT or #BORDER_REPLICATE). |
2444 | | @param borderValue value used in case of a constant border; by default, it equals 0. |
2445 | | |
2446 | | @sa warpAffine, resize, remap, getRectSubPix, perspectiveTransform |
2447 | | */ |
2448 | | CV_EXPORTS_W void warpPerspective( InputArray src, OutputArray dst, |
2449 | | InputArray M, Size dsize, |
2450 | | int flags = INTER_LINEAR, |
2451 | | int borderMode = BORDER_CONSTANT, |
2452 | | const Scalar& borderValue = Scalar()); |
2453 | | |
2454 | | /** @brief Applies a generic geometrical transformation to an image. |
2455 | | |
2456 | | The function remap transforms the source image using the specified map: |
2457 | | |
2458 | | \f[\texttt{dst} (x,y) = \texttt{src} (map_x(x,y),map_y(x,y))\f] |
2459 | | |
2460 | | where values of pixels with non-integer coordinates are computed using one of available |
2461 | | interpolation methods. \f$map_x\f$ and \f$map_y\f$ can be encoded as separate floating-point maps |
2462 | | in \f$map_1\f$ and \f$map_2\f$ respectively, or interleaved floating-point maps of \f$(x,y)\f$ in |
2463 | | \f$map_1\f$, or fixed-point maps created by using #convertMaps. The reason you might want to |
2464 | | convert from floating to fixed-point representations of a map is that they can yield much faster |
2465 | | (\~2x) remapping operations. In the converted case, \f$map_1\f$ contains pairs (cvFloor(x), |
2466 | | cvFloor(y)) and \f$map_2\f$ contains indices in a table of interpolation coefficients. |
2467 | | |
2468 | | This function cannot operate in-place. |
2469 | | |
2470 | | @param src Source image. |
2471 | | @param dst Destination image. It has the same size as map1 and the same type as src . |
2472 | | @param map1 The first map of either (x,y) points or just x values having the type CV_16SC2 , |
2473 | | CV_32FC1, or CV_32FC2. See #convertMaps for details on converting a floating point |
2474 | | representation to fixed-point for speed. |
2475 | | @param map2 The second map of y values having the type CV_16UC1, CV_32FC1, or none (empty map |
2476 | | if map1 is (x,y) points), respectively. |
2477 | | @param interpolation Interpolation method (see #InterpolationFlags). The methods #INTER_AREA |
2478 | | and #INTER_LINEAR_EXACT are not supported by this function. |
2479 | | @param borderMode Pixel extrapolation method (see #BorderTypes). When |
2480 | | borderMode=#BORDER_TRANSPARENT, it means that the pixels in the destination image that |
2481 | | corresponds to the "outliers" in the source image are not modified by the function. |
2482 | | @param borderValue Value used in case of a constant border. By default, it is 0. |
2483 | | @note |
2484 | | Due to current implementation limitations the size of an input and output images should be less than 32767x32767. |
2485 | | */ |
2486 | | CV_EXPORTS_W void remap( InputArray src, OutputArray dst, |
2487 | | InputArray map1, InputArray map2, |
2488 | | int interpolation, int borderMode = BORDER_CONSTANT, |
2489 | | const Scalar& borderValue = Scalar()); |
2490 | | |
2491 | | /** @brief Converts image transformation maps from one representation to another. |
2492 | | |
2493 | | The function converts a pair of maps for remap from one representation to another. The following |
2494 | | options ( (map1.type(), map2.type()) \f$\rightarrow\f$ (dstmap1.type(), dstmap2.type()) ) are |
2495 | | supported: |
2496 | | |
2497 | | - \f$\texttt{(CV_32FC1, CV_32FC1)} \rightarrow \texttt{(CV_16SC2, CV_16UC1)}\f$. This is the |
2498 | | most frequently used conversion operation, in which the original floating-point maps (see #remap) |
2499 | | are converted to a more compact and much faster fixed-point representation. The first output array |
2500 | | contains the rounded coordinates and the second array (created only when nninterpolation=false ) |
2501 | | contains indices in the interpolation tables. |
2502 | | |
2503 | | - \f$\texttt{(CV_32FC2)} \rightarrow \texttt{(CV_16SC2, CV_16UC1)}\f$. The same as above but |
2504 | | the original maps are stored in one 2-channel matrix. |
2505 | | |
2506 | | - Reverse conversion. Obviously, the reconstructed floating-point maps will not be exactly the same |
2507 | | as the originals. |
2508 | | |
2509 | | @param map1 The first input map of type CV_16SC2, CV_32FC1, or CV_32FC2 . |
2510 | | @param map2 The second input map of type CV_16UC1, CV_32FC1, or none (empty matrix), |
2511 | | respectively. |
2512 | | @param dstmap1 The first output map that has the type dstmap1type and the same size as src . |
2513 | | @param dstmap2 The second output map. |
2514 | | @param dstmap1type Type of the first output map that should be CV_16SC2, CV_32FC1, or |
2515 | | CV_32FC2 . |
2516 | | @param nninterpolation Flag indicating whether the fixed-point maps are used for the |
2517 | | nearest-neighbor or for a more complex interpolation. |
2518 | | |
2519 | | @sa remap, undistort, initUndistortRectifyMap |
2520 | | */ |
2521 | | CV_EXPORTS_W void convertMaps( InputArray map1, InputArray map2, |
2522 | | OutputArray dstmap1, OutputArray dstmap2, |
2523 | | int dstmap1type, bool nninterpolation = false ); |
2524 | | |
2525 | | /** @brief Calculates an affine matrix of 2D rotation. |
2526 | | |
2527 | | The function calculates the following matrix: |
2528 | | |
2529 | | \f[\begin{bmatrix} \alpha & \beta & (1- \alpha ) \cdot \texttt{center.x} - \beta \cdot \texttt{center.y} \\ - \beta & \alpha & \beta \cdot \texttt{center.x} + (1- \alpha ) \cdot \texttt{center.y} \end{bmatrix}\f] |
2530 | | |
2531 | | where |
2532 | | |
2533 | | \f[\begin{array}{l} \alpha = \texttt{scale} \cdot \cos \texttt{angle} , \\ \beta = \texttt{scale} \cdot \sin \texttt{angle} \end{array}\f] |
2534 | | |
2535 | | The transformation maps the rotation center to itself. If this is not the target, adjust the shift. |
2536 | | |
2537 | | @param center Center of the rotation in the source image. |
2538 | | @param angle Rotation angle in degrees. Positive values mean counter-clockwise rotation (the |
2539 | | coordinate origin is assumed to be the top-left corner). |
2540 | | @param scale Isotropic scale factor. |
2541 | | |
2542 | | @sa getAffineTransform, warpAffine, transform |
2543 | | */ |
2544 | | CV_EXPORTS_W Mat getRotationMatrix2D(Point2f center, double angle, double scale); |
2545 | | |
2546 | | /** @sa getRotationMatrix2D */ |
2547 | | CV_EXPORTS Matx23d getRotationMatrix2D_(Point2f center, double angle, double scale); |
2548 | | |
2549 | | inline |
2550 | | Mat getRotationMatrix2D(Point2f center, double angle, double scale) |
2551 | 0 | { |
2552 | 0 | return Mat(getRotationMatrix2D_(center, angle, scale), true); |
2553 | 0 | } |
2554 | | |
2555 | | /** @brief Calculates an affine transform from three pairs of the corresponding points. |
2556 | | |
2557 | | The function calculates the \f$2 \times 3\f$ matrix of an affine transform so that: |
2558 | | |
2559 | | \f[\begin{bmatrix} x'_i \\ y'_i \end{bmatrix} = \texttt{map_matrix} \cdot \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}\f] |
2560 | | |
2561 | | where |
2562 | | |
2563 | | \f[dst(i)=(x'_i,y'_i), src(i)=(x_i, y_i), i=0,1,2\f] |
2564 | | |
2565 | | @param src Coordinates of triangle vertices in the source image. |
2566 | | @param dst Coordinates of the corresponding triangle vertices in the destination image. |
2567 | | |
2568 | | @sa warpAffine, transform |
2569 | | */ |
2570 | | CV_EXPORTS Mat getAffineTransform( const Point2f src[], const Point2f dst[] ); |
2571 | | |
2572 | | /** @brief Inverts an affine transformation. |
2573 | | |
2574 | | The function computes an inverse affine transformation represented by \f$2 \times 3\f$ matrix M: |
2575 | | |
2576 | | \f[\begin{bmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \end{bmatrix}\f] |
2577 | | |
2578 | | The result is also a \f$2 \times 3\f$ matrix of the same type as M. |
2579 | | |
2580 | | @param M Original affine transformation. |
2581 | | @param iM Output reverse affine transformation. |
2582 | | */ |
2583 | | CV_EXPORTS_W void invertAffineTransform( InputArray M, OutputArray iM ); |
2584 | | |
2585 | | /** @brief Calculates a perspective transform from four pairs of the corresponding points. |
2586 | | |
2587 | | The function calculates the \f$3 \times 3\f$ matrix of a perspective transform so that: |
2588 | | |
2589 | | \f[\begin{bmatrix} t_i x'_i \\ t_i y'_i \\ t_i \end{bmatrix} = \texttt{map_matrix} \cdot \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}\f] |
2590 | | |
2591 | | where |
2592 | | |
2593 | | \f[dst(i)=(x'_i,y'_i), src(i)=(x_i, y_i), i=0,1,2,3\f] |
2594 | | |
2595 | | @param src Coordinates of quadrangle vertices in the source image. |
2596 | | @param dst Coordinates of the corresponding quadrangle vertices in the destination image. |
2597 | | @param solveMethod method passed to cv::solve (#DecompTypes) |
2598 | | |
2599 | | @sa findHomography, warpPerspective, perspectiveTransform |
2600 | | */ |
2601 | | CV_EXPORTS_W Mat getPerspectiveTransform(InputArray src, InputArray dst, int solveMethod = DECOMP_LU); |
2602 | | |
2603 | | /** @overload */ |
2604 | | CV_EXPORTS Mat getPerspectiveTransform(const Point2f src[], const Point2f dst[], int solveMethod = DECOMP_LU); |
2605 | | |
2606 | | |
2607 | | CV_EXPORTS_W Mat getAffineTransform( InputArray src, InputArray dst ); |
2608 | | |
2609 | | /** @brief Retrieves a pixel rectangle from an image with sub-pixel accuracy. |
2610 | | |
2611 | | The function getRectSubPix extracts pixels from src: |
2612 | | |
2613 | | \f[patch(x, y) = src(x + \texttt{center.x} - ( \texttt{dst.cols} -1)*0.5, y + \texttt{center.y} - ( \texttt{dst.rows} -1)*0.5)\f] |
2614 | | |
2615 | | where the values of the pixels at non-integer coordinates are retrieved using bilinear |
2616 | | interpolation. Every channel of multi-channel images is processed independently. Also |
2617 | | the image should be a single channel or three channel image. While the center of the |
2618 | | rectangle must be inside the image, parts of the rectangle may be outside. |
2619 | | |
2620 | | @param image Source image. |
2621 | | @param patchSize Size of the extracted patch. |
2622 | | @param center Floating point coordinates of the center of the extracted rectangle within the |
2623 | | source image. The center must be inside the image. |
2624 | | @param patch Extracted patch that has the size patchSize and the same number of channels as src . |
2625 | | @param patchType Depth of the extracted pixels. By default, they have the same depth as src . |
2626 | | |
2627 | | @sa warpAffine, warpPerspective |
2628 | | */ |
2629 | | CV_EXPORTS_W void getRectSubPix( InputArray image, Size patchSize, |
2630 | | Point2f center, OutputArray patch, int patchType = -1 ); |
2631 | | |
2632 | | /** @example samples/cpp/polar_transforms.cpp |
2633 | | An example using the cv::linearPolar and cv::logPolar operations |
2634 | | */ |
2635 | | |
2636 | | /** @brief Remaps an image to semilog-polar coordinates space. |
2637 | | |
2638 | | @deprecated This function produces same result as cv::warpPolar(src, dst, src.size(), center, maxRadius, flags+WARP_POLAR_LOG); |
2639 | | |
2640 | | @internal |
2641 | | Transform the source image using the following transformation (See @ref polar_remaps_reference_image "Polar remaps reference image d)"): |
2642 | | \f[\begin{array}{l} |
2643 | | dst( \rho , \phi ) = src(x,y) \\ |
2644 | | dst.size() \leftarrow src.size() |
2645 | | \end{array}\f] |
2646 | | |
2647 | | where |
2648 | | \f[\begin{array}{l} |
2649 | | I = (dx,dy) = (x - center.x,y - center.y) \\ |
2650 | | \rho = M \cdot log_e(\texttt{magnitude} (I)) ,\\ |
2651 | | \phi = Kangle \cdot \texttt{angle} (I) \\ |
2652 | | \end{array}\f] |
2653 | | |
2654 | | and |
2655 | | \f[\begin{array}{l} |
2656 | | M = src.cols / log_e(maxRadius) \\ |
2657 | | Kangle = src.rows / 2\Pi \\ |
2658 | | \end{array}\f] |
2659 | | |
2660 | | The function emulates the human "foveal" vision and can be used for fast scale and |
2661 | | rotation-invariant template matching, for object tracking and so forth. |
2662 | | @param src Source image |
2663 | | @param dst Destination image. It will have same size and type as src. |
2664 | | @param center The transformation center; where the output precision is maximal |
2665 | | @param M Magnitude scale parameter. It determines the radius of the bounding circle to transform too. |
2666 | | @param flags A combination of interpolation methods, see #InterpolationFlags |
2667 | | |
2668 | | @note |
2669 | | - The function can not operate in-place. |
2670 | | - To calculate magnitude and angle in degrees #cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees. |
2671 | | |
2672 | | @sa cv::linearPolar |
2673 | | @endinternal |
2674 | | */ |
2675 | | CV_EXPORTS_W void logPolar( InputArray src, OutputArray dst, |
2676 | | Point2f center, double M, int flags ); |
2677 | | |
2678 | | /** @brief Remaps an image to polar coordinates space. |
2679 | | |
2680 | | @deprecated This function produces same result as cv::warpPolar(src, dst, src.size(), center, maxRadius, flags) |
2681 | | |
2682 | | @internal |
2683 | | Transform the source image using the following transformation (See @ref polar_remaps_reference_image "Polar remaps reference image c)"): |
2684 | | \f[\begin{array}{l} |
2685 | | dst( \rho , \phi ) = src(x,y) \\ |
2686 | | dst.size() \leftarrow src.size() |
2687 | | \end{array}\f] |
2688 | | |
2689 | | where |
2690 | | \f[\begin{array}{l} |
2691 | | I = (dx,dy) = (x - center.x,y - center.y) \\ |
2692 | | \rho = Kmag \cdot \texttt{magnitude} (I) ,\\ |
2693 | | \phi = angle \cdot \texttt{angle} (I) |
2694 | | \end{array}\f] |
2695 | | |
2696 | | and |
2697 | | \f[\begin{array}{l} |
2698 | | Kx = src.cols / maxRadius \\ |
2699 | | Ky = src.rows / 2\Pi |
2700 | | \end{array}\f] |
2701 | | |
2702 | | |
2703 | | @param src Source image |
2704 | | @param dst Destination image. It will have same size and type as src. |
2705 | | @param center The transformation center; |
2706 | | @param maxRadius The radius of the bounding circle to transform. It determines the inverse magnitude scale parameter too. |
2707 | | @param flags A combination of interpolation methods, see #InterpolationFlags |
2708 | | |
2709 | | @note |
2710 | | - The function can not operate in-place. |
2711 | | - To calculate magnitude and angle in degrees #cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees. |
2712 | | |
2713 | | @sa cv::logPolar |
2714 | | @endinternal |
2715 | | */ |
2716 | | CV_EXPORTS_W void linearPolar( InputArray src, OutputArray dst, |
2717 | | Point2f center, double maxRadius, int flags ); |
2718 | | |
2719 | | |
2720 | | /** \brief Remaps an image to polar or semilog-polar coordinates space |
2721 | | |
2722 | | @anchor polar_remaps_reference_image |
2723 | |  |
2724 | | |
2725 | | Transform the source image using the following transformation: |
2726 | | \f[ |
2727 | | dst(\rho , \phi ) = src(x,y) |
2728 | | \f] |
2729 | | |
2730 | | where |
2731 | | \f[ |
2732 | | \begin{array}{l} |
2733 | | \vec{I} = (x - center.x, \;y - center.y) \\ |
2734 | | \phi = Kangle \cdot \texttt{angle} (\vec{I}) \\ |
2735 | | \rho = \left\{\begin{matrix} |
2736 | | Klin \cdot \texttt{magnitude} (\vec{I}) & default \\ |
2737 | | Klog \cdot log_e(\texttt{magnitude} (\vec{I})) & if \; semilog \\ |
2738 | | \end{matrix}\right. |
2739 | | \end{array} |
2740 | | \f] |
2741 | | |
2742 | | and |
2743 | | \f[ |
2744 | | \begin{array}{l} |
2745 | | Kangle = dsize.height / 2\Pi \\ |
2746 | | Klin = dsize.width / maxRadius \\ |
2747 | | Klog = dsize.width / log_e(maxRadius) \\ |
2748 | | \end{array} |
2749 | | \f] |
2750 | | |
2751 | | |
2752 | | \par Linear vs semilog mapping |
2753 | | |
2754 | | Polar mapping can be linear or semi-log. Add one of #WarpPolarMode to `flags` to specify the polar mapping mode. |
2755 | | |
2756 | | Linear is the default mode. |
2757 | | |
2758 | | The semilog mapping emulates the human "foveal" vision that permit very high acuity on the line of sight (central vision) |
2759 | | in contrast to peripheral vision where acuity is minor. |
2760 | | |
2761 | | \par Option on `dsize`: |
2762 | | |
2763 | | - if both values in `dsize <=0 ` (default), |
2764 | | the destination image will have (almost) same area of source bounding circle: |
2765 | | \f[\begin{array}{l} |
2766 | | dsize.area \leftarrow (maxRadius^2 \cdot \Pi) \\ |
2767 | | dsize.width = \texttt{cvRound}(maxRadius) \\ |
2768 | | dsize.height = \texttt{cvRound}(maxRadius \cdot \Pi) \\ |
2769 | | \end{array}\f] |
2770 | | |
2771 | | |
2772 | | - if only `dsize.height <= 0`, |
2773 | | the destination image area will be proportional to the bounding circle area but scaled by `Kx * Kx`: |
2774 | | \f[\begin{array}{l} |
2775 | | dsize.height = \texttt{cvRound}(dsize.width \cdot \Pi) \\ |
2776 | | \end{array} |
2777 | | \f] |
2778 | | |
2779 | | - if both values in `dsize > 0 `, |
2780 | | the destination image will have the given size therefore the area of the bounding circle will be scaled to `dsize`. |
2781 | | |
2782 | | |
2783 | | \par Reverse mapping |
2784 | | |
2785 | | You can get reverse mapping adding #WARP_INVERSE_MAP to `flags` |
2786 | | \snippet polar_transforms.cpp InverseMap |
2787 | | |
2788 | | In addiction, to calculate the original coordinate from a polar mapped coordinate \f$(rho, phi)->(x, y)\f$: |
2789 | | \snippet polar_transforms.cpp InverseCoordinate |
2790 | | |
2791 | | @param src Source image. |
2792 | | @param dst Destination image. It will have same type as src. |
2793 | | @param dsize The destination image size (see description for valid options). |
2794 | | @param center The transformation center. |
2795 | | @param maxRadius The radius of the bounding circle to transform. It determines the inverse magnitude scale parameter too. |
2796 | | @param flags A combination of interpolation methods, #InterpolationFlags + #WarpPolarMode. |
2797 | | - Add #WARP_POLAR_LINEAR to select linear polar mapping (default) |
2798 | | - Add #WARP_POLAR_LOG to select semilog polar mapping |
2799 | | - Add #WARP_INVERSE_MAP for reverse mapping. |
2800 | | @note |
2801 | | - The function can not operate in-place. |
2802 | | - To calculate magnitude and angle in degrees #cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees. |
2803 | | - This function uses #remap. Due to current implementation limitations the size of an input and output images should be less than 32767x32767. |
2804 | | |
2805 | | @sa cv::remap |
2806 | | */ |
2807 | | CV_EXPORTS_W void warpPolar(InputArray src, OutputArray dst, Size dsize, |
2808 | | Point2f center, double maxRadius, int flags); |
2809 | | |
2810 | | |
2811 | | //! @} imgproc_transform |
2812 | | |
2813 | | //! @addtogroup imgproc_misc |
2814 | | //! @{ |
2815 | | |
2816 | | /** @brief Calculates the integral of an image. |
2817 | | |
2818 | | The function calculates one or more integral images for the source image as follows: |
2819 | | |
2820 | | \f[\texttt{sum} (X,Y) = \sum _{x<X,y<Y} \texttt{image} (x,y)\f] |
2821 | | |
2822 | | \f[\texttt{sqsum} (X,Y) = \sum _{x<X,y<Y} \texttt{image} (x,y)^2\f] |
2823 | | |
2824 | | \f[\texttt{tilted} (X,Y) = \sum _{y<Y,abs(x-X+1) \leq Y-y-1} \texttt{image} (x,y)\f] |
2825 | | |
2826 | | Using these integral images, you can calculate sum, mean, and standard deviation over a specific |
2827 | | up-right or rotated rectangular region of the image in a constant time, for example: |
2828 | | |
2829 | | \f[\sum _{x_1 \leq x < x_2, \, y_1 \leq y < y_2} \texttt{image} (x,y) = \texttt{sum} (x_2,y_2)- \texttt{sum} (x_1,y_2)- \texttt{sum} (x_2,y_1)+ \texttt{sum} (x_1,y_1)\f] |
2830 | | |
2831 | | It makes possible to do a fast blurring or fast block correlation with a variable window size, for |
2832 | | example. In case of multi-channel images, sums for each channel are accumulated independently. |
2833 | | |
2834 | | As a practical example, the next figure shows the calculation of the integral of a straight |
2835 | | rectangle Rect(4,4,3,2) and of a tilted rectangle Rect(5,1,2,3) . The selected pixels in the |
2836 | | original image are shown, as well as the relative pixels in the integral images sum and tilted . |
2837 | | |
2838 | |  |
2839 | | |
2840 | | @param src input image as \f$W \times H\f$, 8-bit or floating-point (32f or 64f). |
2841 | | @param sum integral image as \f$(W+1)\times (H+1)\f$ , 32-bit integer or floating-point (32f or 64f). |
2842 | | @param sqsum integral image for squared pixel values; it is \f$(W+1)\times (H+1)\f$, double-precision |
2843 | | floating-point (64f) array. |
2844 | | @param tilted integral for the image rotated by 45 degrees; it is \f$(W+1)\times (H+1)\f$ array with |
2845 | | the same data type as sum. |
2846 | | @param sdepth desired depth of the integral and the tilted integral images, CV_32S, CV_32F, or |
2847 | | CV_64F. |
2848 | | @param sqdepth desired depth of the integral image of squared pixel values, CV_32F or CV_64F. |
2849 | | */ |
2850 | | CV_EXPORTS_AS(integral3) void integral( InputArray src, OutputArray sum, |
2851 | | OutputArray sqsum, OutputArray tilted, |
2852 | | int sdepth = -1, int sqdepth = -1 ); |
2853 | | |
2854 | | /** @overload */ |
2855 | | CV_EXPORTS_W void integral( InputArray src, OutputArray sum, int sdepth = -1 ); |
2856 | | |
2857 | | /** @overload */ |
2858 | | CV_EXPORTS_AS(integral2) void integral( InputArray src, OutputArray sum, |
2859 | | OutputArray sqsum, int sdepth = -1, int sqdepth = -1 ); |
2860 | | |
2861 | | //! @} imgproc_misc |
2862 | | |
2863 | | //! @addtogroup imgproc_motion |
2864 | | //! @{ |
2865 | | |
2866 | | /** @brief Adds an image to the accumulator image. |
2867 | | |
2868 | | The function adds src or some of its elements to dst : |
2869 | | |
2870 | | \f[\texttt{dst} (x,y) \leftarrow \texttt{dst} (x,y) + \texttt{src} (x,y) \quad \text{if} \quad \texttt{mask} (x,y) \ne 0\f] |
2871 | | |
2872 | | The function supports multi-channel images. Each channel is processed independently. |
2873 | | |
2874 | | The function cv::accumulate can be used, for example, to collect statistics of a scene background |
2875 | | viewed by a still camera and for the further foreground-background segmentation. |
2876 | | |
2877 | | @param src Input image of type CV_8UC(n), CV_16UC(n), CV_32FC(n) or CV_64FC(n), where n is a positive integer. |
2878 | | @param dst %Accumulator image with the same number of channels as input image, and a depth of CV_32F or CV_64F. |
2879 | | @param mask Optional operation mask. |
2880 | | |
2881 | | @sa accumulateSquare, accumulateProduct, accumulateWeighted |
2882 | | */ |
2883 | | CV_EXPORTS_W void accumulate( InputArray src, InputOutputArray dst, |
2884 | | InputArray mask = noArray() ); |
2885 | | |
2886 | | /** @brief Adds the square of a source image to the accumulator image. |
2887 | | |
2888 | | The function adds the input image src or its selected region, raised to a power of 2, to the |
2889 | | accumulator dst : |
2890 | | |
2891 | | \f[\texttt{dst} (x,y) \leftarrow \texttt{dst} (x,y) + \texttt{src} (x,y)^2 \quad \text{if} \quad \texttt{mask} (x,y) \ne 0\f] |
2892 | | |
2893 | | The function supports multi-channel images. Each channel is processed independently. |
2894 | | |
2895 | | @param src Input image as 1- or 3-channel, 8-bit or 32-bit floating point. |
2896 | | @param dst %Accumulator image with the same number of channels as input image, 32-bit or 64-bit |
2897 | | floating-point. |
2898 | | @param mask Optional operation mask. |
2899 | | |
2900 | | @sa accumulateSquare, accumulateProduct, accumulateWeighted |
2901 | | */ |
2902 | | CV_EXPORTS_W void accumulateSquare( InputArray src, InputOutputArray dst, |
2903 | | InputArray mask = noArray() ); |
2904 | | |
2905 | | /** @brief Adds the per-element product of two input images to the accumulator image. |
2906 | | |
2907 | | The function adds the product of two images or their selected regions to the accumulator dst : |
2908 | | |
2909 | | \f[\texttt{dst} (x,y) \leftarrow \texttt{dst} (x,y) + \texttt{src1} (x,y) \cdot \texttt{src2} (x,y) \quad \text{if} \quad \texttt{mask} (x,y) \ne 0\f] |
2910 | | |
2911 | | The function supports multi-channel images. Each channel is processed independently. |
2912 | | |
2913 | | @param src1 First input image, 1- or 3-channel, 8-bit or 32-bit floating point. |
2914 | | @param src2 Second input image of the same type and the same size as src1 . |
2915 | | @param dst %Accumulator image with the same number of channels as input images, 32-bit or 64-bit |
2916 | | floating-point. |
2917 | | @param mask Optional operation mask. |
2918 | | |
2919 | | @sa accumulate, accumulateSquare, accumulateWeighted |
2920 | | */ |
2921 | | CV_EXPORTS_W void accumulateProduct( InputArray src1, InputArray src2, |
2922 | | InputOutputArray dst, InputArray mask=noArray() ); |
2923 | | |
2924 | | /** @brief Updates a running average. |
2925 | | |
2926 | | The function calculates the weighted sum of the input image src and the accumulator dst so that dst |
2927 | | becomes a running average of a frame sequence: |
2928 | | |
2929 | | \f[\texttt{dst} (x,y) \leftarrow (1- \texttt{alpha} ) \cdot \texttt{dst} (x,y) + \texttt{alpha} \cdot \texttt{src} (x,y) \quad \text{if} \quad \texttt{mask} (x,y) \ne 0\f] |
2930 | | |
2931 | | That is, alpha regulates the update speed (how fast the accumulator "forgets" about earlier images). |
2932 | | The function supports multi-channel images. Each channel is processed independently. |
2933 | | |
2934 | | @param src Input image as 1- or 3-channel, 8-bit or 32-bit floating point. |
2935 | | @param dst %Accumulator image with the same number of channels as input image, 32-bit or 64-bit |
2936 | | floating-point. |
2937 | | @param alpha Weight of the input image. |
2938 | | @param mask Optional operation mask. |
2939 | | |
2940 | | @sa accumulate, accumulateSquare, accumulateProduct |
2941 | | */ |
2942 | | CV_EXPORTS_W void accumulateWeighted( InputArray src, InputOutputArray dst, |
2943 | | double alpha, InputArray mask = noArray() ); |
2944 | | |
2945 | | /** @brief The function is used to detect translational shifts that occur between two images. |
2946 | | |
2947 | | The operation takes advantage of the Fourier shift theorem for detecting the translational shift in |
2948 | | the frequency domain. It can be used for fast image registration as well as motion estimation. For |
2949 | | more information please see <http://en.wikipedia.org/wiki/Phase_correlation> |
2950 | | |
2951 | | Calculates the cross-power spectrum of two supplied source arrays. The arrays are padded if needed |
2952 | | with getOptimalDFTSize. |
2953 | | |
2954 | | The function performs the following equations: |
2955 | | - First it applies a Hanning window (see <http://en.wikipedia.org/wiki/Hann_function>) to each |
2956 | | image to remove possible edge effects. This window is cached until the array size changes to speed |
2957 | | up processing time. |
2958 | | - Next it computes the forward DFTs of each source array: |
2959 | | \f[\mathbf{G}_a = \mathcal{F}\{src_1\}, \; \mathbf{G}_b = \mathcal{F}\{src_2\}\f] |
2960 | | where \f$\mathcal{F}\f$ is the forward DFT. |
2961 | | - It then computes the cross-power spectrum of each frequency domain array: |
2962 | | \f[R = \frac{ \mathbf{G}_a \mathbf{G}_b^*}{|\mathbf{G}_a \mathbf{G}_b^*|}\f] |
2963 | | - Next the cross-correlation is converted back into the time domain via the inverse DFT: |
2964 | | \f[r = \mathcal{F}^{-1}\{R\}\f] |
2965 | | - Finally, it computes the peak location and computes a 5x5 weighted centroid around the peak to |
2966 | | achieve sub-pixel accuracy. |
2967 | | \f[(\Delta x, \Delta y) = \texttt{weightedCentroid} \{\arg \max_{(x, y)}\{r\}\}\f] |
2968 | | - If non-zero, the response parameter is computed as the sum of the elements of r within the 5x5 |
2969 | | centroid around the peak location. It is normalized to a maximum of 1 (meaning there is a single |
2970 | | peak) and will be smaller when there are multiple peaks. |
2971 | | |
2972 | | @param src1 Source floating point array (CV_32FC1 or CV_64FC1) |
2973 | | @param src2 Source floating point array (CV_32FC1 or CV_64FC1) |
2974 | | @param window Floating point array with windowing coefficients to reduce edge effects (optional). |
2975 | | @param response Signal power within the 5x5 centroid around the peak, between 0 and 1 (optional). |
2976 | | @returns detected phase shift (sub-pixel) between the two arrays. |
2977 | | |
2978 | | @sa dft, getOptimalDFTSize, idft, mulSpectrums createHanningWindow |
2979 | | */ |
2980 | | CV_EXPORTS_W Point2d phaseCorrelate(InputArray src1, InputArray src2, |
2981 | | InputArray window = noArray(), CV_OUT double* response = 0); |
2982 | | |
2983 | | /** @brief This function computes a Hanning window coefficients in two dimensions. |
2984 | | |
2985 | | See (http://en.wikipedia.org/wiki/Hann_function) and (http://en.wikipedia.org/wiki/Window_function) |
2986 | | for more information. |
2987 | | |
2988 | | An example is shown below: |
2989 | | @code |
2990 | | // create hanning window of size 100x100 and type CV_32F |
2991 | | Mat hann; |
2992 | | createHanningWindow(hann, Size(100, 100), CV_32F); |
2993 | | @endcode |
2994 | | @param dst Destination array to place Hann coefficients in |
2995 | | @param winSize The window size specifications (both width and height must be > 1) |
2996 | | @param type Created array type |
2997 | | */ |
2998 | | CV_EXPORTS_W void createHanningWindow(OutputArray dst, Size winSize, int type); |
2999 | | |
3000 | | /** @brief Performs the per-element division of the first Fourier spectrum by the second Fourier spectrum. |
3001 | | |
3002 | | The function cv::divSpectrums performs the per-element division of the first array by the second array. |
3003 | | The arrays are CCS-packed or complex matrices that are results of a real or complex Fourier transform. |
3004 | | |
3005 | | @param a first input array. |
3006 | | @param b second input array of the same size and type as src1 . |
3007 | | @param c output array of the same size and type as src1 . |
3008 | | @param flags operation flags; currently, the only supported flag is cv::DFT_ROWS, which indicates that |
3009 | | each row of src1 and src2 is an independent 1D Fourier spectrum. If you do not want to use this flag, then simply add a `0` as value. |
3010 | | @param conjB optional flag that conjugates the second input array before the multiplication (true) |
3011 | | or not (false). |
3012 | | */ |
3013 | | CV_EXPORTS_W void divSpectrums(InputArray a, InputArray b, OutputArray c, |
3014 | | int flags, bool conjB = false); |
3015 | | |
3016 | | //! @} imgproc_motion |
3017 | | |
3018 | | //! @addtogroup imgproc_misc |
3019 | | //! @{ |
3020 | | |
3021 | | /** @brief Applies a fixed-level threshold to each array element. |
3022 | | |
3023 | | The function applies fixed-level thresholding to a multiple-channel array. The function is typically |
3024 | | used to get a bi-level (binary) image out of a grayscale image ( #compare could be also used for |
3025 | | this purpose) or for removing a noise, that is, filtering out pixels with too small or too large |
3026 | | values. There are several types of thresholding supported by the function. They are determined by |
3027 | | type parameter. |
3028 | | |
3029 | | Also, the special values #THRESH_OTSU or #THRESH_TRIANGLE may be combined with one of the |
3030 | | above values. In these cases, the function determines the optimal threshold value using the Otsu's |
3031 | | or Triangle algorithm and uses it instead of the specified thresh. |
3032 | | |
3033 | | @note Currently, the Otsu's and Triangle methods are implemented only for 8-bit single-channel images. |
3034 | | |
3035 | | @param src input array (multiple-channel, 8-bit or 32-bit floating point). |
3036 | | @param dst output array of the same size and type and the same number of channels as src. |
3037 | | @param thresh threshold value. |
3038 | | @param maxval maximum value to use with the #THRESH_BINARY and #THRESH_BINARY_INV thresholding |
3039 | | types. |
3040 | | @param type thresholding type (see #ThresholdTypes). |
3041 | | @return the computed threshold value if Otsu's or Triangle methods used. |
3042 | | |
3043 | | @sa adaptiveThreshold, findContours, compare, min, max |
3044 | | */ |
3045 | | CV_EXPORTS_W double threshold( InputArray src, OutputArray dst, |
3046 | | double thresh, double maxval, int type ); |
3047 | | |
3048 | | |
3049 | | /** @brief Applies an adaptive threshold to an array. |
3050 | | |
3051 | | The function transforms a grayscale image to a binary image according to the formulae: |
3052 | | - **THRESH_BINARY** |
3053 | | \f[dst(x,y) = \fork{\texttt{maxValue}}{if \(src(x,y) > T(x,y)\)}{0}{otherwise}\f] |
3054 | | - **THRESH_BINARY_INV** |
3055 | | \f[dst(x,y) = \fork{0}{if \(src(x,y) > T(x,y)\)}{\texttt{maxValue}}{otherwise}\f] |
3056 | | where \f$T(x,y)\f$ is a threshold calculated individually for each pixel (see adaptiveMethod parameter). |
3057 | | |
3058 | | The function can process the image in-place. |
3059 | | |
3060 | | @param src Source 8-bit single-channel image. |
3061 | | @param dst Destination image of the same size and the same type as src. |
3062 | | @param maxValue Non-zero value assigned to the pixels for which the condition is satisfied |
3063 | | @param adaptiveMethod Adaptive thresholding algorithm to use, see #AdaptiveThresholdTypes. |
3064 | | The #BORDER_REPLICATE | #BORDER_ISOLATED is used to process boundaries. |
3065 | | @param thresholdType Thresholding type that must be either #THRESH_BINARY or #THRESH_BINARY_INV, |
3066 | | see #ThresholdTypes. |
3067 | | @param blockSize Size of a pixel neighborhood that is used to calculate a threshold value for the |
3068 | | pixel: 3, 5, 7, and so on. |
3069 | | @param C Constant subtracted from the mean or weighted mean (see the details below). Normally, it |
3070 | | is positive but may be zero or negative as well. |
3071 | | |
3072 | | @sa threshold, blur, GaussianBlur |
3073 | | */ |
3074 | | CV_EXPORTS_W void adaptiveThreshold( InputArray src, OutputArray dst, |
3075 | | double maxValue, int adaptiveMethod, |
3076 | | int thresholdType, int blockSize, double C ); |
3077 | | |
3078 | | //! @} imgproc_misc |
3079 | | |
3080 | | //! @addtogroup imgproc_filter |
3081 | | //! @{ |
3082 | | |
3083 | | /** @example samples/cpp/tutorial_code/ImgProc/Pyramids/Pyramids.cpp |
3084 | | An example using pyrDown and pyrUp functions |
3085 | | */ |
3086 | | |
3087 | | /** @brief Blurs an image and downsamples it. |
3088 | | |
3089 | | By default, size of the output image is computed as `Size((src.cols+1)/2, (src.rows+1)/2)`, but in |
3090 | | any case, the following conditions should be satisfied: |
3091 | | |
3092 | | \f[\begin{array}{l} | \texttt{dstsize.width} *2-src.cols| \leq 2 \\ | \texttt{dstsize.height} *2-src.rows| \leq 2 \end{array}\f] |
3093 | | |
3094 | | The function performs the downsampling step of the Gaussian pyramid construction. First, it |
3095 | | convolves the source image with the kernel: |
3096 | | |
3097 | | \f[\frac{1}{256} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix}\f] |
3098 | | |
3099 | | Then, it downsamples the image by rejecting even rows and columns. |
3100 | | |
3101 | | @param src input image. |
3102 | | @param dst output image; it has the specified size and the same type as src. |
3103 | | @param dstsize size of the output image. |
3104 | | @param borderType Pixel extrapolation method, see #BorderTypes (#BORDER_CONSTANT isn't supported) |
3105 | | */ |
3106 | | CV_EXPORTS_W void pyrDown( InputArray src, OutputArray dst, |
3107 | | const Size& dstsize = Size(), int borderType = BORDER_DEFAULT ); |
3108 | | |
3109 | | /** @brief Upsamples an image and then blurs it. |
3110 | | |
3111 | | By default, size of the output image is computed as `Size(src.cols\*2, (src.rows\*2)`, but in any |
3112 | | case, the following conditions should be satisfied: |
3113 | | |
3114 | | \f[\begin{array}{l} | \texttt{dstsize.width} -src.cols*2| \leq ( \texttt{dstsize.width} \mod 2) \\ | \texttt{dstsize.height} -src.rows*2| \leq ( \texttt{dstsize.height} \mod 2) \end{array}\f] |
3115 | | |
3116 | | The function performs the upsampling step of the Gaussian pyramid construction, though it can |
3117 | | actually be used to construct the Laplacian pyramid. First, it upsamples the source image by |
3118 | | injecting even zero rows and columns and then convolves the result with the same kernel as in |
3119 | | pyrDown multiplied by 4. |
3120 | | |
3121 | | @param src input image. |
3122 | | @param dst output image. It has the specified size and the same type as src . |
3123 | | @param dstsize size of the output image. |
3124 | | @param borderType Pixel extrapolation method, see #BorderTypes (only #BORDER_DEFAULT is supported) |
3125 | | */ |
3126 | | CV_EXPORTS_W void pyrUp( InputArray src, OutputArray dst, |
3127 | | const Size& dstsize = Size(), int borderType = BORDER_DEFAULT ); |
3128 | | |
3129 | | /** @brief Constructs the Gaussian pyramid for an image. |
3130 | | |
3131 | | The function constructs a vector of images and builds the Gaussian pyramid by recursively applying |
3132 | | pyrDown to the previously built pyramid layers, starting from `dst[0]==src`. |
3133 | | |
3134 | | @param src Source image. Check pyrDown for the list of supported types. |
3135 | | @param dst Destination vector of maxlevel+1 images of the same type as src. dst[0] will be the |
3136 | | same as src. dst[1] is the next pyramid layer, a smoothed and down-sized src, and so on. |
3137 | | @param maxlevel 0-based index of the last (the smallest) pyramid layer. It must be non-negative. |
3138 | | @param borderType Pixel extrapolation method, see #BorderTypes (#BORDER_CONSTANT isn't supported) |
3139 | | */ |
3140 | | CV_EXPORTS void buildPyramid( InputArray src, OutputArrayOfArrays dst, |
3141 | | int maxlevel, int borderType = BORDER_DEFAULT ); |
3142 | | |
3143 | | //! @} imgproc_filter |
3144 | | |
3145 | | //! @addtogroup imgproc_hist |
3146 | | //! @{ |
3147 | | |
3148 | | /** @example samples/cpp/demhist.cpp |
3149 | | An example for creating histograms of an image |
3150 | | */ |
3151 | | |
3152 | | /** @brief Calculates a histogram of a set of arrays. |
3153 | | |
3154 | | The function cv::calcHist calculates the histogram of one or more arrays. The elements of a tuple used |
3155 | | to increment a histogram bin are taken from the corresponding input arrays at the same location. The |
3156 | | sample below shows how to compute a 2D Hue-Saturation histogram for a color image. : |
3157 | | @include snippets/imgproc_calcHist.cpp |
3158 | | |
3159 | | @param images Source arrays. They all should have the same depth, CV_8U, CV_16U or CV_32F , and the same |
3160 | | size. Each of them can have an arbitrary number of channels. |
3161 | | @param nimages Number of source images. |
3162 | | @param channels List of the dims channels used to compute the histogram. The first array channels |
3163 | | are numerated from 0 to images[0].channels()-1 , the second array channels are counted from |
3164 | | images[0].channels() to images[0].channels() + images[1].channels()-1, and so on. |
3165 | | @param mask Optional mask. If the matrix is not empty, it must be an 8-bit array of the same size |
3166 | | as images[i] . The non-zero mask elements mark the array elements counted in the histogram. |
3167 | | @param hist Output histogram, which is a dense or sparse dims -dimensional array. |
3168 | | @param dims Histogram dimensionality that must be positive and not greater than CV_MAX_DIMS |
3169 | | (equal to 32 in the current OpenCV version). |
3170 | | @param histSize Array of histogram sizes in each dimension. |
3171 | | @param ranges Array of the dims arrays of the histogram bin boundaries in each dimension. When the |
3172 | | histogram is uniform ( uniform =true), then for each dimension i it is enough to specify the lower |
3173 | | (inclusive) boundary \f$L_0\f$ of the 0-th histogram bin and the upper (exclusive) boundary |
3174 | | \f$U_{\texttt{histSize}[i]-1}\f$ for the last histogram bin histSize[i]-1 . That is, in case of a |
3175 | | uniform histogram each of ranges[i] is an array of 2 elements. When the histogram is not uniform ( |
3176 | | uniform=false ), then each of ranges[i] contains histSize[i]+1 elements: |
3177 | | \f$L_0, U_0=L_1, U_1=L_2, ..., U_{\texttt{histSize[i]}-2}=L_{\texttt{histSize[i]}-1}, U_{\texttt{histSize[i]}-1}\f$ |
3178 | | . The array elements, that are not between \f$L_0\f$ and \f$U_{\texttt{histSize[i]}-1}\f$ , are not |
3179 | | counted in the histogram. |
3180 | | @param uniform Flag indicating whether the histogram is uniform or not (see above). |
3181 | | @param accumulate Accumulation flag. If it is set, the histogram is not cleared in the beginning |
3182 | | when it is allocated. This feature enables you to compute a single histogram from several sets of |
3183 | | arrays, or to update the histogram in time. |
3184 | | */ |
3185 | | CV_EXPORTS void calcHist( const Mat* images, int nimages, |
3186 | | const int* channels, InputArray mask, |
3187 | | OutputArray hist, int dims, const int* histSize, |
3188 | | const float** ranges, bool uniform = true, bool accumulate = false ); |
3189 | | |
3190 | | /** @overload |
3191 | | |
3192 | | this variant uses %SparseMat for output |
3193 | | */ |
3194 | | CV_EXPORTS void calcHist( const Mat* images, int nimages, |
3195 | | const int* channels, InputArray mask, |
3196 | | SparseMat& hist, int dims, |
3197 | | const int* histSize, const float** ranges, |
3198 | | bool uniform = true, bool accumulate = false ); |
3199 | | |
3200 | | /** @overload |
3201 | | |
3202 | | this variant supports only uniform histograms. |
3203 | | |
3204 | | ranges argument is either empty vector or a flattened vector of histSize.size()*2 elements |
3205 | | (histSize.size() element pairs). The first and second elements of each pair specify the lower and |
3206 | | upper boundaries. |
3207 | | */ |
3208 | | CV_EXPORTS_W void calcHist( InputArrayOfArrays images, |
3209 | | const std::vector<int>& channels, |
3210 | | InputArray mask, OutputArray hist, |
3211 | | const std::vector<int>& histSize, |
3212 | | const std::vector<float>& ranges, |
3213 | | bool accumulate = false ); |
3214 | | |
3215 | | /** @brief Calculates the back projection of a histogram. |
3216 | | |
3217 | | The function cv::calcBackProject calculates the back project of the histogram. That is, similarly to |
3218 | | #calcHist , at each location (x, y) the function collects the values from the selected channels |
3219 | | in the input images and finds the corresponding histogram bin. But instead of incrementing it, the |
3220 | | function reads the bin value, scales it by scale , and stores in backProject(x,y) . In terms of |
3221 | | statistics, the function computes probability of each element value in respect with the empirical |
3222 | | probability distribution represented by the histogram. See how, for example, you can find and track |
3223 | | a bright-colored object in a scene: |
3224 | | |
3225 | | - Before tracking, show the object to the camera so that it covers almost the whole frame. |
3226 | | Calculate a hue histogram. The histogram may have strong maximums, corresponding to the dominant |
3227 | | colors in the object. |
3228 | | |
3229 | | - When tracking, calculate a back projection of a hue plane of each input video frame using that |
3230 | | pre-computed histogram. Threshold the back projection to suppress weak colors. It may also make |
3231 | | sense to suppress pixels with non-sufficient color saturation and too dark or too bright pixels. |
3232 | | |
3233 | | - Find connected components in the resulting picture and choose, for example, the largest |
3234 | | component. |
3235 | | |
3236 | | This is an approximate algorithm of the CamShift color object tracker. |
3237 | | |
3238 | | @param images Source arrays. They all should have the same depth, CV_8U, CV_16U or CV_32F , and the same |
3239 | | size. Each of them can have an arbitrary number of channels. |
3240 | | @param nimages Number of source images. |
3241 | | @param channels The list of channels used to compute the back projection. The number of channels |
3242 | | must match the histogram dimensionality. The first array channels are numerated from 0 to |
3243 | | images[0].channels()-1 , the second array channels are counted from images[0].channels() to |
3244 | | images[0].channels() + images[1].channels()-1, and so on. |
3245 | | @param hist Input histogram that can be dense or sparse. |
3246 | | @param backProject Destination back projection array that is a single-channel array of the same |
3247 | | size and depth as images[0] . |
3248 | | @param ranges Array of arrays of the histogram bin boundaries in each dimension. See #calcHist . |
3249 | | @param scale Optional scale factor for the output back projection. |
3250 | | @param uniform Flag indicating whether the histogram is uniform or not (see above). |
3251 | | |
3252 | | @sa calcHist, compareHist |
3253 | | */ |
3254 | | CV_EXPORTS void calcBackProject( const Mat* images, int nimages, |
3255 | | const int* channels, InputArray hist, |
3256 | | OutputArray backProject, const float** ranges, |
3257 | | double scale = 1, bool uniform = true ); |
3258 | | |
3259 | | /** @overload */ |
3260 | | CV_EXPORTS void calcBackProject( const Mat* images, int nimages, |
3261 | | const int* channels, const SparseMat& hist, |
3262 | | OutputArray backProject, const float** ranges, |
3263 | | double scale = 1, bool uniform = true ); |
3264 | | |
3265 | | /** @overload */ |
3266 | | CV_EXPORTS_W void calcBackProject( InputArrayOfArrays images, const std::vector<int>& channels, |
3267 | | InputArray hist, OutputArray dst, |
3268 | | const std::vector<float>& ranges, |
3269 | | double scale ); |
3270 | | |
3271 | | /** @brief Compares two histograms. |
3272 | | |
3273 | | The function cv::compareHist compares two dense or two sparse histograms using the specified method. |
3274 | | |
3275 | | The function returns \f$d(H_1, H_2)\f$ . |
3276 | | |
3277 | | While the function works well with 1-, 2-, 3-dimensional dense histograms, it may not be suitable |
3278 | | for high-dimensional sparse histograms. In such histograms, because of aliasing and sampling |
3279 | | problems, the coordinates of non-zero histogram bins can slightly shift. To compare such histograms |
3280 | | or more general sparse configurations of weighted points, consider using the #EMD function. |
3281 | | |
3282 | | @param H1 First compared histogram. |
3283 | | @param H2 Second compared histogram of the same size as H1 . |
3284 | | @param method Comparison method, see #HistCompMethods |
3285 | | */ |
3286 | | CV_EXPORTS_W double compareHist( InputArray H1, InputArray H2, int method ); |
3287 | | |
3288 | | /** @overload */ |
3289 | | CV_EXPORTS double compareHist( const SparseMat& H1, const SparseMat& H2, int method ); |
3290 | | |
3291 | | /** @brief Equalizes the histogram of a grayscale image. |
3292 | | |
3293 | | The function equalizes the histogram of the input image using the following algorithm: |
3294 | | |
3295 | | - Calculate the histogram \f$H\f$ for src . |
3296 | | - Normalize the histogram so that the sum of histogram bins is 255. |
3297 | | - Compute the integral of the histogram: |
3298 | | \f[H'_i = \sum _{0 \le j < i} H(j)\f] |
3299 | | - Transform the image using \f$H'\f$ as a look-up table: \f$\texttt{dst}(x,y) = H'(\texttt{src}(x,y))\f$ |
3300 | | |
3301 | | The algorithm normalizes the brightness and increases the contrast of the image. |
3302 | | |
3303 | | @param src Source 8-bit single channel image. |
3304 | | @param dst Destination image of the same size and type as src . |
3305 | | */ |
3306 | | CV_EXPORTS_W void equalizeHist( InputArray src, OutputArray dst ); |
3307 | | |
3308 | | /** @brief Creates a smart pointer to a cv::CLAHE class and initializes it. |
3309 | | |
3310 | | @param clipLimit Threshold for contrast limiting. |
3311 | | @param tileGridSize Size of grid for histogram equalization. Input image will be divided into |
3312 | | equally sized rectangular tiles. tileGridSize defines the number of tiles in row and column. |
3313 | | */ |
3314 | | CV_EXPORTS_W Ptr<CLAHE> createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8)); |
3315 | | |
3316 | | /** @brief Computes the "minimal work" distance between two weighted point configurations. |
3317 | | |
3318 | | The function computes the earth mover distance and/or a lower boundary of the distance between the |
3319 | | two weighted point configurations. One of the applications described in @cite RubnerSept98, |
3320 | | @cite Rubner2000 is multi-dimensional histogram comparison for image retrieval. EMD is a transportation |
3321 | | problem that is solved using some modification of a simplex algorithm, thus the complexity is |
3322 | | exponential in the worst case, though, on average it is much faster. In the case of a real metric |
3323 | | the lower boundary can be calculated even faster (using linear-time algorithm) and it can be used |
3324 | | to determine roughly whether the two signatures are far enough so that they cannot relate to the |
3325 | | same object. |
3326 | | |
3327 | | @param signature1 First signature, a \f$\texttt{size1}\times \texttt{dims}+1\f$ floating-point matrix. |
3328 | | Each row stores the point weight followed by the point coordinates. The matrix is allowed to have |
3329 | | a single column (weights only) if the user-defined cost matrix is used. The weights must be |
3330 | | non-negative and have at least one non-zero value. |
3331 | | @param signature2 Second signature of the same format as signature1 , though the number of rows |
3332 | | may be different. The total weights may be different. In this case an extra "dummy" point is added |
3333 | | to either signature1 or signature2. The weights must be non-negative and have at least one non-zero |
3334 | | value. |
3335 | | @param distType Used metric. See #DistanceTypes. |
3336 | | @param cost User-defined \f$\texttt{size1}\times \texttt{size2}\f$ cost matrix. Also, if a cost matrix |
3337 | | is used, lower boundary lowerBound cannot be calculated because it needs a metric function. |
3338 | | @param lowerBound Optional input/output parameter: lower boundary of a distance between the two |
3339 | | signatures that is a distance between mass centers. The lower boundary may not be calculated if |
3340 | | the user-defined cost matrix is used, the total weights of point configurations are not equal, or |
3341 | | if the signatures consist of weights only (the signature matrices have a single column). You |
3342 | | **must** initialize \*lowerBound . If the calculated distance between mass centers is greater or |
3343 | | equal to \*lowerBound (it means that the signatures are far enough), the function does not |
3344 | | calculate EMD. In any case \*lowerBound is set to the calculated distance between mass centers on |
3345 | | return. Thus, if you want to calculate both distance between mass centers and EMD, \*lowerBound |
3346 | | should be set to 0. |
3347 | | @param flow Resultant \f$\texttt{size1} \times \texttt{size2}\f$ flow matrix: \f$\texttt{flow}_{i,j}\f$ is |
3348 | | a flow from \f$i\f$ -th point of signature1 to \f$j\f$ -th point of signature2 . |
3349 | | */ |
3350 | | CV_EXPORTS float EMD( InputArray signature1, InputArray signature2, |
3351 | | int distType, InputArray cost=noArray(), |
3352 | | float* lowerBound = 0, OutputArray flow = noArray() ); |
3353 | | |
3354 | | CV_EXPORTS_AS(EMD) float wrapperEMD( InputArray signature1, InputArray signature2, |
3355 | | int distType, InputArray cost=noArray(), |
3356 | | CV_IN_OUT Ptr<float> lowerBound = Ptr<float>(), OutputArray flow = noArray() ); |
3357 | | |
3358 | | //! @} imgproc_hist |
3359 | | |
3360 | | //! @addtogroup imgproc_segmentation |
3361 | | //! @{ |
3362 | | |
3363 | | /** @example samples/cpp/watershed.cpp |
3364 | | An example using the watershed algorithm |
3365 | | */ |
3366 | | |
3367 | | /** @brief Performs a marker-based image segmentation using the watershed algorithm. |
3368 | | |
3369 | | The function implements one of the variants of watershed, non-parametric marker-based segmentation |
3370 | | algorithm, described in @cite Meyer92 . |
3371 | | |
3372 | | Before passing the image to the function, you have to roughly outline the desired regions in the |
3373 | | image markers with positive (\>0) indices. So, every region is represented as one or more connected |
3374 | | components with the pixel values 1, 2, 3, and so on. Such markers can be retrieved from a binary |
3375 | | mask using #findContours and #drawContours (see the watershed.cpp demo). The markers are "seeds" of |
3376 | | the future image regions. All the other pixels in markers , whose relation to the outlined regions |
3377 | | is not known and should be defined by the algorithm, should be set to 0's. In the function output, |
3378 | | each pixel in markers is set to a value of the "seed" components or to -1 at boundaries between the |
3379 | | regions. |
3380 | | |
3381 | | @note Any two neighbor connected components are not necessarily separated by a watershed boundary |
3382 | | (-1's pixels); for example, they can touch each other in the initial marker image passed to the |
3383 | | function. |
3384 | | |
3385 | | @param image Input 8-bit 3-channel image. |
3386 | | @param markers Input/output 32-bit single-channel image (map) of markers. It should have the same |
3387 | | size as image . |
3388 | | |
3389 | | @sa findContours |
3390 | | */ |
3391 | | CV_EXPORTS_W void watershed( InputArray image, InputOutputArray markers ); |
3392 | | |
3393 | | //! @} imgproc_segmentation |
3394 | | |
3395 | | //! @addtogroup imgproc_filter |
3396 | | //! @{ |
3397 | | |
3398 | | /** @brief Performs initial step of meanshift segmentation of an image. |
3399 | | |
3400 | | The function implements the filtering stage of meanshift segmentation, that is, the output of the |
3401 | | function is the filtered "posterized" image with color gradients and fine-grain texture flattened. |
3402 | | At every pixel (X,Y) of the input image (or down-sized input image, see below) the function executes |
3403 | | meanshift iterations, that is, the pixel (X,Y) neighborhood in the joint space-color hyperspace is |
3404 | | considered: |
3405 | | |
3406 | | \f[(x,y): X- \texttt{sp} \le x \le X+ \texttt{sp} , Y- \texttt{sp} \le y \le Y+ \texttt{sp} , ||(R,G,B)-(r,g,b)|| \le \texttt{sr}\f] |
3407 | | |
3408 | | where (R,G,B) and (r,g,b) are the vectors of color components at (X,Y) and (x,y), respectively |
3409 | | (though, the algorithm does not depend on the color space used, so any 3-component color space can |
3410 | | be used instead). Over the neighborhood the average spatial value (X',Y') and average color vector |
3411 | | (R',G',B') are found and they act as the neighborhood center on the next iteration: |
3412 | | |
3413 | | \f[(X,Y)~(X',Y'), (R,G,B)~(R',G',B').\f] |
3414 | | |
3415 | | After the iterations over, the color components of the initial pixel (that is, the pixel from where |
3416 | | the iterations started) are set to the final value (average color at the last iteration): |
3417 | | |
3418 | | \f[I(X,Y) <- (R*,G*,B*)\f] |
3419 | | |
3420 | | When maxLevel \> 0, the gaussian pyramid of maxLevel+1 levels is built, and the above procedure is |
3421 | | run on the smallest layer first. After that, the results are propagated to the larger layer and the |
3422 | | iterations are run again only on those pixels where the layer colors differ by more than sr from the |
3423 | | lower-resolution layer of the pyramid. That makes boundaries of color regions sharper. Note that the |
3424 | | results will be actually different from the ones obtained by running the meanshift procedure on the |
3425 | | whole original image (i.e. when maxLevel==0). |
3426 | | |
3427 | | @param src The source 8-bit, 3-channel image. |
3428 | | @param dst The destination image of the same format and the same size as the source. |
3429 | | @param sp The spatial window radius. |
3430 | | @param sr The color window radius. |
3431 | | @param maxLevel Maximum level of the pyramid for the segmentation. |
3432 | | @param termcrit Termination criteria: when to stop meanshift iterations. |
3433 | | */ |
3434 | | CV_EXPORTS_W void pyrMeanShiftFiltering( InputArray src, OutputArray dst, |
3435 | | double sp, double sr, int maxLevel = 1, |
3436 | | TermCriteria termcrit=TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS,5,1) ); |
3437 | | |
3438 | | //! @} |
3439 | | |
3440 | | //! @addtogroup imgproc_segmentation |
3441 | | //! @{ |
3442 | | |
3443 | | /** @example samples/cpp/grabcut.cpp |
3444 | | An example using the GrabCut algorithm |
3445 | |  |
3446 | | */ |
3447 | | |
3448 | | /** @brief Runs the GrabCut algorithm. |
3449 | | |
3450 | | The function implements the [GrabCut image segmentation algorithm](http://en.wikipedia.org/wiki/GrabCut). |
3451 | | |
3452 | | @param img Input 8-bit 3-channel image. |
3453 | | @param mask Input/output 8-bit single-channel mask. The mask is initialized by the function when |
3454 | | mode is set to #GC_INIT_WITH_RECT. Its elements may have one of the #GrabCutClasses. |
3455 | | @param rect ROI containing a segmented object. The pixels outside of the ROI are marked as |
3456 | | "obvious background". The parameter is only used when mode==#GC_INIT_WITH_RECT . |
3457 | | @param bgdModel Temporary array for the background model. Do not modify it while you are |
3458 | | processing the same image. |
3459 | | @param fgdModel Temporary arrays for the foreground model. Do not modify it while you are |
3460 | | processing the same image. |
3461 | | @param iterCount Number of iterations the algorithm should make before returning the result. Note |
3462 | | that the result can be refined with further calls with mode==#GC_INIT_WITH_MASK or |
3463 | | mode==GC_EVAL . |
3464 | | @param mode Operation mode that could be one of the #GrabCutModes |
3465 | | */ |
3466 | | CV_EXPORTS_W void grabCut( InputArray img, InputOutputArray mask, Rect rect, |
3467 | | InputOutputArray bgdModel, InputOutputArray fgdModel, |
3468 | | int iterCount, int mode = GC_EVAL ); |
3469 | | |
3470 | | //! @} imgproc_segmentation |
3471 | | |
3472 | | //! @addtogroup imgproc_misc |
3473 | | //! @{ |
3474 | | |
3475 | | /** @example samples/cpp/distrans.cpp |
3476 | | An example on using the distance transform |
3477 | | */ |
3478 | | |
3479 | | /** @brief Calculates the distance to the closest zero pixel for each pixel of the source image. |
3480 | | |
3481 | | The function cv::distanceTransform calculates the approximate or precise distance from every binary |
3482 | | image pixel to the nearest zero pixel. For zero image pixels, the distance will obviously be zero. |
3483 | | |
3484 | | When maskSize == #DIST_MASK_PRECISE and distanceType == #DIST_L2 , the function runs the |
3485 | | algorithm described in @cite Felzenszwalb04 . This algorithm is parallelized with the TBB library. |
3486 | | |
3487 | | In other cases, the algorithm @cite Borgefors86 is used. This means that for a pixel the function |
3488 | | finds the shortest path to the nearest zero pixel consisting of basic shifts: horizontal, vertical, |
3489 | | diagonal, or knight's move (the latest is available for a \f$5\times 5\f$ mask). The overall |
3490 | | distance is calculated as a sum of these basic distances. Since the distance function should be |
3491 | | symmetric, all of the horizontal and vertical shifts must have the same cost (denoted as a ), all |
3492 | | the diagonal shifts must have the same cost (denoted as `b`), and all knight's moves must have the |
3493 | | same cost (denoted as `c`). For the #DIST_C and #DIST_L1 types, the distance is calculated |
3494 | | precisely, whereas for #DIST_L2 (Euclidean distance) the distance can be calculated only with a |
3495 | | relative error (a \f$5\times 5\f$ mask gives more accurate results). For `a`,`b`, and `c`, OpenCV |
3496 | | uses the values suggested in the original paper: |
3497 | | - DIST_L1: `a = 1, b = 2` |
3498 | | - DIST_L2: |
3499 | | - `3 x 3`: `a=0.955, b=1.3693` |
3500 | | - `5 x 5`: `a=1, b=1.4, c=2.1969` |
3501 | | - DIST_C: `a = 1, b = 1` |
3502 | | |
3503 | | Typically, for a fast, coarse distance estimation #DIST_L2, a \f$3\times 3\f$ mask is used. For a |
3504 | | more accurate distance estimation #DIST_L2, a \f$5\times 5\f$ mask or the precise algorithm is used. |
3505 | | Note that both the precise and the approximate algorithms are linear on the number of pixels. |
3506 | | |
3507 | | This variant of the function does not only compute the minimum distance for each pixel \f$(x, y)\f$ |
3508 | | but also identifies the nearest connected component consisting of zero pixels |
3509 | | (labelType==#DIST_LABEL_CCOMP) or the nearest zero pixel (labelType==#DIST_LABEL_PIXEL). Index of the |
3510 | | component/pixel is stored in `labels(x, y)`. When labelType==#DIST_LABEL_CCOMP, the function |
3511 | | automatically finds connected components of zero pixels in the input image and marks them with |
3512 | | distinct labels. When labelType==#DIST_LABEL_PIXEL, the function scans through the input image and |
3513 | | marks all the zero pixels with distinct labels. |
3514 | | |
3515 | | In this mode, the complexity is still linear. That is, the function provides a very fast way to |
3516 | | compute the Voronoi diagram for a binary image. Currently, the second variant can use only the |
3517 | | approximate distance transform algorithm, i.e. maskSize=#DIST_MASK_PRECISE is not supported |
3518 | | yet. |
3519 | | |
3520 | | @param src 8-bit, single-channel (binary) source image. |
3521 | | @param dst Output image with calculated distances. It is a 8-bit or 32-bit floating-point, |
3522 | | single-channel image of the same size as src. |
3523 | | @param labels Output 2D array of labels (the discrete Voronoi diagram). It has the type |
3524 | | CV_32SC1 and the same size as src. |
3525 | | @param distanceType Type of distance, see #DistanceTypes |
3526 | | @param maskSize Size of the distance transform mask, see #DistanceTransformMasks. |
3527 | | #DIST_MASK_PRECISE is not supported by this variant. In case of the #DIST_L1 or #DIST_C distance type, |
3528 | | the parameter is forced to 3 because a \f$3\times 3\f$ mask gives the same result as \f$5\times |
3529 | | 5\f$ or any larger aperture. |
3530 | | @param labelType Type of the label array to build, see #DistanceTransformLabelTypes. |
3531 | | */ |
3532 | | CV_EXPORTS_AS(distanceTransformWithLabels) void distanceTransform( InputArray src, OutputArray dst, |
3533 | | OutputArray labels, int distanceType, int maskSize, |
3534 | | int labelType = DIST_LABEL_CCOMP ); |
3535 | | |
3536 | | /** @overload |
3537 | | @param src 8-bit, single-channel (binary) source image. |
3538 | | @param dst Output image with calculated distances. It is a 8-bit or 32-bit floating-point, |
3539 | | single-channel image of the same size as src . |
3540 | | @param distanceType Type of distance, see #DistanceTypes |
3541 | | @param maskSize Size of the distance transform mask, see #DistanceTransformMasks. In case of the |
3542 | | #DIST_L1 or #DIST_C distance type, the parameter is forced to 3 because a \f$3\times 3\f$ mask gives |
3543 | | the same result as \f$5\times 5\f$ or any larger aperture. |
3544 | | @param dstType Type of output image. It can be CV_8U or CV_32F. Type CV_8U can be used only for |
3545 | | the first variant of the function and distanceType == #DIST_L1. |
3546 | | */ |
3547 | | CV_EXPORTS_W void distanceTransform( InputArray src, OutputArray dst, |
3548 | | int distanceType, int maskSize, int dstType=CV_32F); |
3549 | | |
3550 | | /** @brief Fills a connected component with the given color. |
3551 | | |
3552 | | The function cv::floodFill fills a connected component starting from the seed point with the specified |
3553 | | color. The connectivity is determined by the color/brightness closeness of the neighbor pixels. The |
3554 | | pixel at \f$(x,y)\f$ is considered to belong to the repainted domain if: |
3555 | | |
3556 | | - in case of a grayscale image and floating range |
3557 | | \f[\texttt{src} (x',y')- \texttt{loDiff} \leq \texttt{src} (x,y) \leq \texttt{src} (x',y')+ \texttt{upDiff}\f] |
3558 | | |
3559 | | |
3560 | | - in case of a grayscale image and fixed range |
3561 | | \f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)- \texttt{loDiff} \leq \texttt{src} (x,y) \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)+ \texttt{upDiff}\f] |
3562 | | |
3563 | | |
3564 | | - in case of a color image and floating range |
3565 | | \f[\texttt{src} (x',y')_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} (x',y')_r+ \texttt{upDiff} _r,\f] |
3566 | | \f[\texttt{src} (x',y')_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} (x',y')_g+ \texttt{upDiff} _g\f] |
3567 | | and |
3568 | | \f[\texttt{src} (x',y')_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} (x',y')_b+ \texttt{upDiff} _b\f] |
3569 | | |
3570 | | |
3571 | | - in case of a color image and fixed range |
3572 | | \f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r+ \texttt{upDiff} _r,\f] |
3573 | | \f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g+ \texttt{upDiff} _g\f] |
3574 | | and |
3575 | | \f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b+ \texttt{upDiff} _b\f] |
3576 | | |
3577 | | |
3578 | | where \f$src(x',y')\f$ is the value of one of pixel neighbors that is already known to belong to the |
3579 | | component. That is, to be added to the connected component, a color/brightness of the pixel should |
3580 | | be close enough to: |
3581 | | - Color/brightness of one of its neighbors that already belong to the connected component in case |
3582 | | of a floating range. |
3583 | | - Color/brightness of the seed point in case of a fixed range. |
3584 | | |
3585 | | Use these functions to either mark a connected component with the specified color in-place, or build |
3586 | | a mask and then extract the contour, or copy the region to another image, and so on. |
3587 | | |
3588 | | @param image Input/output 1- or 3-channel, 8-bit, or floating-point image. It is modified by the |
3589 | | function unless the #FLOODFILL_MASK_ONLY flag is set in the second variant of the function. See |
3590 | | the details below. |
3591 | | @param mask Operation mask that should be a single-channel 8-bit image, 2 pixels wider and 2 pixels |
3592 | | taller than image. If an empty Mat is passed it will be created automatically. Since this is both an |
3593 | | input and output parameter, you must take responsibility of initializing it. |
3594 | | Flood-filling cannot go across non-zero pixels in the input mask. For example, |
3595 | | an edge detector output can be used as a mask to stop filling at edges. On output, pixels in the |
3596 | | mask corresponding to filled pixels in the image are set to 1 or to the specified value in flags |
3597 | | as described below. Additionally, the function fills the border of the mask with ones to simplify |
3598 | | internal processing. It is therefore possible to use the same mask in multiple calls to the function |
3599 | | to make sure the filled areas do not overlap. |
3600 | | @param seedPoint Starting point. |
3601 | | @param newVal New value of the repainted domain pixels. |
3602 | | @param loDiff Maximal lower brightness/color difference between the currently observed pixel and |
3603 | | one of its neighbors belonging to the component, or a seed pixel being added to the component. |
3604 | | @param upDiff Maximal upper brightness/color difference between the currently observed pixel and |
3605 | | one of its neighbors belonging to the component, or a seed pixel being added to the component. |
3606 | | @param rect Optional output parameter set by the function to the minimum bounding rectangle of the |
3607 | | repainted domain. |
3608 | | @param flags Operation flags. The first 8 bits contain a connectivity value. The default value of |
3609 | | 4 means that only the four nearest neighbor pixels (those that share an edge) are considered. A |
3610 | | connectivity value of 8 means that the eight nearest neighbor pixels (those that share a corner) |
3611 | | will be considered. The next 8 bits (8-16) contain a value between 1 and 255 with which to fill |
3612 | | the mask (the default value is 1). For example, 4 | ( 255 \<\< 8 ) will consider 4 nearest |
3613 | | neighbours and fill the mask with a value of 255. The following additional options occupy higher |
3614 | | bits and therefore may be further combined with the connectivity and mask fill values using |
3615 | | bit-wise or (|), see #FloodFillFlags. |
3616 | | |
3617 | | @note Since the mask is larger than the filled image, a pixel \f$(x, y)\f$ in image corresponds to the |
3618 | | pixel \f$(x+1, y+1)\f$ in the mask . |
3619 | | |
3620 | | @sa findContours |
3621 | | */ |
3622 | | CV_EXPORTS_W int floodFill( InputOutputArray image, InputOutputArray mask, |
3623 | | Point seedPoint, Scalar newVal, CV_OUT Rect* rect=0, |
3624 | | Scalar loDiff = Scalar(), Scalar upDiff = Scalar(), |
3625 | | int flags = 4 ); |
3626 | | |
3627 | | /** @example samples/cpp/ffilldemo.cpp |
3628 | | An example using the FloodFill technique |
3629 | | */ |
3630 | | |
3631 | | /** @overload |
3632 | | |
3633 | | variant without `mask` parameter |
3634 | | */ |
3635 | | CV_EXPORTS int floodFill( InputOutputArray image, |
3636 | | Point seedPoint, Scalar newVal, CV_OUT Rect* rect = 0, |
3637 | | Scalar loDiff = Scalar(), Scalar upDiff = Scalar(), |
3638 | | int flags = 4 ); |
3639 | | |
3640 | | //! Performs linear blending of two images: |
3641 | | //! \f[ \texttt{dst}(i,j) = \texttt{weights1}(i,j)*\texttt{src1}(i,j) + \texttt{weights2}(i,j)*\texttt{src2}(i,j) \f] |
3642 | | //! @param src1 It has a type of CV_8UC(n) or CV_32FC(n), where n is a positive integer. |
3643 | | //! @param src2 It has the same type and size as src1. |
3644 | | //! @param weights1 It has a type of CV_32FC1 and the same size with src1. |
3645 | | //! @param weights2 It has a type of CV_32FC1 and the same size with src1. |
3646 | | //! @param dst It is created if it does not have the same size and type with src1. |
3647 | | CV_EXPORTS_W void blendLinear(InputArray src1, InputArray src2, InputArray weights1, InputArray weights2, OutputArray dst); |
3648 | | |
3649 | | //! @} imgproc_misc |
3650 | | |
3651 | | //! @addtogroup imgproc_color_conversions |
3652 | | //! @{ |
3653 | | |
3654 | | /** @brief Converts an image from one color space to another. |
3655 | | |
3656 | | The function converts an input image from one color space to another. In case of a transformation |
3657 | | to-from RGB color space, the order of the channels should be specified explicitly (RGB or BGR). Note |
3658 | | that the default color format in OpenCV is often referred to as RGB but it is actually BGR (the |
3659 | | bytes are reversed). So the first byte in a standard (24-bit) color image will be an 8-bit Blue |
3660 | | component, the second byte will be Green, and the third byte will be Red. The fourth, fifth, and |
3661 | | sixth bytes would then be the second pixel (Blue, then Green, then Red), and so on. |
3662 | | |
3663 | | The conventional ranges for R, G, and B channel values are: |
3664 | | - 0 to 255 for CV_8U images |
3665 | | - 0 to 65535 for CV_16U images |
3666 | | - 0 to 1 for CV_32F images |
3667 | | |
3668 | | In case of linear transformations, the range does not matter. But in case of a non-linear |
3669 | | transformation, an input RGB image should be normalized to the proper value range to get the correct |
3670 | | results, for example, for RGB \f$\rightarrow\f$ L\*u\*v\* transformation. For example, if you have a |
3671 | | 32-bit floating-point image directly converted from an 8-bit image without any scaling, then it will |
3672 | | have the 0..255 value range instead of 0..1 assumed by the function. So, before calling #cvtColor , |
3673 | | you need first to scale the image down: |
3674 | | @code |
3675 | | img *= 1./255; |
3676 | | cvtColor(img, img, COLOR_BGR2Luv); |
3677 | | @endcode |
3678 | | If you use #cvtColor with 8-bit images, the conversion will have some information lost. For many |
3679 | | applications, this will not be noticeable but it is recommended to use 32-bit images in applications |
3680 | | that need the full range of colors or that convert an image before an operation and then convert |
3681 | | back. |
3682 | | |
3683 | | If conversion adds the alpha channel, its value will set to the maximum of corresponding channel |
3684 | | range: 255 for CV_8U, 65535 for CV_16U, 1 for CV_32F. |
3685 | | |
3686 | | @param src input image: 8-bit unsigned, 16-bit unsigned ( CV_16UC... ), or single-precision |
3687 | | floating-point. |
3688 | | @param dst output image of the same size and depth as src. |
3689 | | @param code color space conversion code (see #ColorConversionCodes). |
3690 | | @param dstCn number of channels in the destination image; if the parameter is 0, the number of the |
3691 | | channels is derived automatically from src and code. |
3692 | | |
3693 | | @see @ref imgproc_color_conversions |
3694 | | */ |
3695 | | CV_EXPORTS_W void cvtColor( InputArray src, OutputArray dst, int code, int dstCn = 0 ); |
3696 | | |
3697 | | /** @brief Converts an image from one color space to another where the source image is |
3698 | | stored in two planes. |
3699 | | |
3700 | | This function only supports YUV420 to RGB conversion as of now. |
3701 | | |
3702 | | @param src1: 8-bit image (#CV_8U) of the Y plane. |
3703 | | @param src2: image containing interleaved U/V plane. |
3704 | | @param dst: output image. |
3705 | | @param code: Specifies the type of conversion. It can take any of the following values: |
3706 | | - #COLOR_YUV2BGR_NV12 |
3707 | | - #COLOR_YUV2RGB_NV12 |
3708 | | - #COLOR_YUV2BGRA_NV12 |
3709 | | - #COLOR_YUV2RGBA_NV12 |
3710 | | - #COLOR_YUV2BGR_NV21 |
3711 | | - #COLOR_YUV2RGB_NV21 |
3712 | | - #COLOR_YUV2BGRA_NV21 |
3713 | | - #COLOR_YUV2RGBA_NV21 |
3714 | | */ |
3715 | | CV_EXPORTS_W void cvtColorTwoPlane( InputArray src1, InputArray src2, OutputArray dst, int code ); |
3716 | | |
3717 | | /** @brief main function for all demosaicing processes |
3718 | | |
3719 | | @param src input image: 8-bit unsigned or 16-bit unsigned. |
3720 | | @param dst output image of the same size and depth as src. |
3721 | | @param code Color space conversion code (see the description below). |
3722 | | @param dstCn number of channels in the destination image; if the parameter is 0, the number of the |
3723 | | channels is derived automatically from src and code. |
3724 | | |
3725 | | The function can do the following transformations: |
3726 | | |
3727 | | - Demosaicing using bilinear interpolation |
3728 | | |
3729 | | #COLOR_BayerBG2BGR , #COLOR_BayerGB2BGR , #COLOR_BayerRG2BGR , #COLOR_BayerGR2BGR |
3730 | | |
3731 | | #COLOR_BayerBG2GRAY , #COLOR_BayerGB2GRAY , #COLOR_BayerRG2GRAY , #COLOR_BayerGR2GRAY |
3732 | | |
3733 | | - Demosaicing using Variable Number of Gradients. |
3734 | | |
3735 | | #COLOR_BayerBG2BGR_VNG , #COLOR_BayerGB2BGR_VNG , #COLOR_BayerRG2BGR_VNG , #COLOR_BayerGR2BGR_VNG |
3736 | | |
3737 | | - Edge-Aware Demosaicing. |
3738 | | |
3739 | | #COLOR_BayerBG2BGR_EA , #COLOR_BayerGB2BGR_EA , #COLOR_BayerRG2BGR_EA , #COLOR_BayerGR2BGR_EA |
3740 | | |
3741 | | - Demosaicing with alpha channel |
3742 | | |
3743 | | #COLOR_BayerBG2BGRA , #COLOR_BayerGB2BGRA , #COLOR_BayerRG2BGRA , #COLOR_BayerGR2BGRA |
3744 | | |
3745 | | @sa cvtColor |
3746 | | */ |
3747 | | CV_EXPORTS_W void demosaicing(InputArray src, OutputArray dst, int code, int dstCn = 0); |
3748 | | |
3749 | | //! @} imgproc_color_conversions |
3750 | | |
3751 | | //! @addtogroup imgproc_shape |
3752 | | //! @{ |
3753 | | |
3754 | | /** @brief Calculates all of the moments up to the third order of a polygon or rasterized shape. |
3755 | | |
3756 | | The function computes moments, up to the 3rd order, of a vector shape or a rasterized shape. The |
3757 | | results are returned in the structure cv::Moments. |
3758 | | |
3759 | | @param array Raster image (single-channel, 8-bit or floating-point 2D array) or an array ( |
3760 | | \f$1 \times N\f$ or \f$N \times 1\f$ ) of 2D points (Point or Point2f ). |
3761 | | @param binaryImage If it is true, all non-zero image pixels are treated as 1's. The parameter is |
3762 | | used for images only. |
3763 | | @returns moments. |
3764 | | |
3765 | | @note Only applicable to contour moments calculations from Python bindings: Note that the numpy |
3766 | | type for the input array should be either np.int32 or np.float32. |
3767 | | |
3768 | | @sa contourArea, arcLength |
3769 | | */ |
3770 | | CV_EXPORTS_W Moments moments( InputArray array, bool binaryImage = false ); |
3771 | | |
3772 | | /** @brief Calculates seven Hu invariants. |
3773 | | |
3774 | | The function calculates seven Hu invariants (introduced in @cite Hu62; see also |
3775 | | <http://en.wikipedia.org/wiki/Image_moment>) defined as: |
3776 | | |
3777 | | \f[\begin{array}{l} hu[0]= \eta _{20}+ \eta _{02} \\ hu[1]=( \eta _{20}- \eta _{02})^{2}+4 \eta _{11}^{2} \\ hu[2]=( \eta _{30}-3 \eta _{12})^{2}+ (3 \eta _{21}- \eta _{03})^{2} \\ hu[3]=( \eta _{30}+ \eta _{12})^{2}+ ( \eta _{21}+ \eta _{03})^{2} \\ hu[4]=( \eta _{30}-3 \eta _{12})( \eta _{30}+ \eta _{12})[( \eta _{30}+ \eta _{12})^{2}-3( \eta _{21}+ \eta _{03})^{2}]+(3 \eta _{21}- \eta _{03})( \eta _{21}+ \eta _{03})[3( \eta _{30}+ \eta _{12})^{2}-( \eta _{21}+ \eta _{03})^{2}] \\ hu[5]=( \eta _{20}- \eta _{02})[( \eta _{30}+ \eta _{12})^{2}- ( \eta _{21}+ \eta _{03})^{2}]+4 \eta _{11}( \eta _{30}+ \eta _{12})( \eta _{21}+ \eta _{03}) \\ hu[6]=(3 \eta _{21}- \eta _{03})( \eta _{21}+ \eta _{03})[3( \eta _{30}+ \eta _{12})^{2}-( \eta _{21}+ \eta _{03})^{2}]-( \eta _{30}-3 \eta _{12})( \eta _{21}+ \eta _{03})[3( \eta _{30}+ \eta _{12})^{2}-( \eta _{21}+ \eta _{03})^{2}] \\ \end{array}\f] |
3778 | | |
3779 | | where \f$\eta_{ji}\f$ stands for \f$\texttt{Moments::nu}_{ji}\f$ . |
3780 | | |
3781 | | These values are proved to be invariants to the image scale, rotation, and reflection except the |
3782 | | seventh one, whose sign is changed by reflection. This invariance is proved with the assumption of |
3783 | | infinite image resolution. In case of raster images, the computed Hu invariants for the original and |
3784 | | transformed images are a bit different. |
3785 | | |
3786 | | @param moments Input moments computed with moments . |
3787 | | @param hu Output Hu invariants. |
3788 | | |
3789 | | @sa matchShapes |
3790 | | */ |
3791 | | CV_EXPORTS void HuMoments( const Moments& moments, double hu[7] ); |
3792 | | |
3793 | | /** @overload */ |
3794 | | CV_EXPORTS_W void HuMoments( const Moments& m, OutputArray hu ); |
3795 | | |
3796 | | //! @} imgproc_shape |
3797 | | |
3798 | | //! @addtogroup imgproc_object |
3799 | | //! @{ |
3800 | | |
3801 | | //! type of the template matching operation |
3802 | | enum TemplateMatchModes { |
3803 | | TM_SQDIFF = 0, /*!< \f[R(x,y)= \sum _{x',y'} (T(x',y')-I(x+x',y+y'))^2\f] |
3804 | | with mask: |
3805 | | \f[R(x,y)= \sum _{x',y'} \left( (T(x',y')-I(x+x',y+y')) \cdot |
3806 | | M(x',y') \right)^2\f] */ |
3807 | | TM_SQDIFF_NORMED = 1, /*!< \f[R(x,y)= \frac{\sum_{x',y'} (T(x',y')-I(x+x',y+y'))^2}{\sqrt{\sum_{ |
3808 | | x',y'}T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}\f] |
3809 | | with mask: |
3810 | | \f[R(x,y)= \frac{\sum _{x',y'} \left( (T(x',y')-I(x+x',y+y')) \cdot |
3811 | | M(x',y') \right)^2}{\sqrt{\sum_{x',y'} \left( T(x',y') \cdot |
3812 | | M(x',y') \right)^2 \cdot \sum_{x',y'} \left( I(x+x',y+y') \cdot |
3813 | | M(x',y') \right)^2}}\f] */ |
3814 | | TM_CCORR = 2, /*!< \f[R(x,y)= \sum _{x',y'} (T(x',y') \cdot I(x+x',y+y'))\f] |
3815 | | with mask: |
3816 | | \f[R(x,y)= \sum _{x',y'} (T(x',y') \cdot I(x+x',y+y') \cdot M(x',y') |
3817 | | ^2)\f] */ |
3818 | | TM_CCORR_NORMED = 3, /*!< \f[R(x,y)= \frac{\sum_{x',y'} (T(x',y') \cdot I(x+x',y+y'))}{\sqrt{ |
3819 | | \sum_{x',y'}T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}\f] |
3820 | | with mask: |
3821 | | \f[R(x,y)= \frac{\sum_{x',y'} (T(x',y') \cdot I(x+x',y+y') \cdot |
3822 | | M(x',y')^2)}{\sqrt{\sum_{x',y'} \left( T(x',y') \cdot M(x',y') |
3823 | | \right)^2 \cdot \sum_{x',y'} \left( I(x+x',y+y') \cdot M(x',y') |
3824 | | \right)^2}}\f] */ |
3825 | | TM_CCOEFF = 4, /*!< \f[R(x,y)= \sum _{x',y'} (T'(x',y') \cdot I'(x+x',y+y'))\f] |
3826 | | where |
3827 | | \f[\begin{array}{l} T'(x',y')=T(x',y') - 1/(w \cdot h) \cdot \sum _{ |
3828 | | x'',y''} T(x'',y'') \\ I'(x+x',y+y')=I(x+x',y+y') - 1/(w \cdot h) |
3829 | | \cdot \sum _{x'',y''} I(x+x'',y+y'') \end{array}\f] |
3830 | | with mask: |
3831 | | \f[\begin{array}{l} T'(x',y')=M(x',y') \cdot \left( T(x',y') - |
3832 | | \frac{1}{\sum _{x'',y''} M(x'',y'')} \cdot \sum _{x'',y''} |
3833 | | (T(x'',y'') \cdot M(x'',y'')) \right) \\ I'(x+x',y+y')=M(x',y') |
3834 | | \cdot \left( I(x+x',y+y') - \frac{1}{\sum _{x'',y''} M(x'',y'')} |
3835 | | \cdot \sum _{x'',y''} (I(x+x'',y+y'') \cdot M(x'',y'')) \right) |
3836 | | \end{array} \f] */ |
3837 | | TM_CCOEFF_NORMED = 5 /*!< \f[R(x,y)= \frac{ \sum_{x',y'} (T'(x',y') \cdot I'(x+x',y+y')) }{ |
3838 | | \sqrt{\sum_{x',y'}T'(x',y')^2 \cdot \sum_{x',y'} I'(x+x',y+y')^2} |
3839 | | }\f] */ |
3840 | | }; |
3841 | | |
3842 | | /** @example samples/cpp/tutorial_code/Histograms_Matching/MatchTemplate_Demo.cpp |
3843 | | An example using Template Matching algorithm |
3844 | | */ |
3845 | | |
3846 | | /** @brief Compares a template against overlapped image regions. |
3847 | | |
3848 | | The function slides through image , compares the overlapped patches of size \f$w \times h\f$ against |
3849 | | templ using the specified method and stores the comparison results in result . #TemplateMatchModes |
3850 | | describes the formulae for the available comparison methods ( \f$I\f$ denotes image, \f$T\f$ |
3851 | | template, \f$R\f$ result, \f$M\f$ the optional mask ). The summation is done over template and/or |
3852 | | the image patch: \f$x' = 0...w-1, y' = 0...h-1\f$ |
3853 | | |
3854 | | After the function finishes the comparison, the best matches can be found as global minimums (when |
3855 | | #TM_SQDIFF was used) or maximums (when #TM_CCORR or #TM_CCOEFF was used) using the |
3856 | | #minMaxLoc function. In case of a color image, template summation in the numerator and each sum in |
3857 | | the denominator is done over all of the channels and separate mean values are used for each channel. |
3858 | | That is, the function can take a color template and a color image. The result will still be a |
3859 | | single-channel image, which is easier to analyze. |
3860 | | |
3861 | | @param image Image where the search is running. It must be 8-bit or 32-bit floating-point. |
3862 | | @param templ Searched template. It must be not greater than the source image and have the same |
3863 | | data type. |
3864 | | @param result Map of comparison results. It must be single-channel 32-bit floating-point. If image |
3865 | | is \f$W \times H\f$ and templ is \f$w \times h\f$ , then result is \f$(W-w+1) \times (H-h+1)\f$ . |
3866 | | @param method Parameter specifying the comparison method, see #TemplateMatchModes |
3867 | | @param mask Optional mask. It must have the same size as templ. It must either have the same number |
3868 | | of channels as template or only one channel, which is then used for all template and |
3869 | | image channels. If the data type is #CV_8U, the mask is interpreted as a binary mask, |
3870 | | meaning only elements where mask is nonzero are used and are kept unchanged independent |
3871 | | of the actual mask value (weight equals 1). For data tpye #CV_32F, the mask values are |
3872 | | used as weights. The exact formulas are documented in #TemplateMatchModes. |
3873 | | */ |
3874 | | CV_EXPORTS_W void matchTemplate( InputArray image, InputArray templ, |
3875 | | OutputArray result, int method, InputArray mask = noArray() ); |
3876 | | |
3877 | | //! @} |
3878 | | |
3879 | | //! @addtogroup imgproc_shape |
3880 | | //! @{ |
3881 | | |
3882 | | /** @example samples/cpp/connected_components.cpp |
3883 | | This program demonstrates connected components and use of the trackbar |
3884 | | */ |
3885 | | |
3886 | | /** @brief computes the connected components labeled image of boolean image |
3887 | | |
3888 | | image with 4 or 8 way connectivity - returns N, the total number of labels [0, N-1] where 0 |
3889 | | represents the background label. ltype specifies the output label image type, an important |
3890 | | consideration based on the total number of labels or alternatively the total number of pixels in |
3891 | | the source image. ccltype specifies the connected components labeling algorithm to use, currently |
3892 | | Bolelli (Spaghetti) @cite Bolelli2019, Grana (BBDT) @cite Grana2010 and Wu's (SAUF) @cite Wu2009 algorithms |
3893 | | are supported, see the #ConnectedComponentsAlgorithmsTypes for details. Note that SAUF algorithm forces |
3894 | | a row major ordering of labels while Spaghetti and BBDT do not. |
3895 | | This function uses parallel version of the algorithms if at least one allowed |
3896 | | parallel framework is enabled and if the rows of the image are at least twice the number returned by #getNumberOfCPUs. |
3897 | | |
3898 | | @param image the 8-bit single-channel image to be labeled |
3899 | | @param labels destination labeled image |
3900 | | @param connectivity 8 or 4 for 8-way or 4-way connectivity respectively |
3901 | | @param ltype output image label type. Currently CV_32S and CV_16U are supported. |
3902 | | @param ccltype connected components algorithm type (see the #ConnectedComponentsAlgorithmsTypes). |
3903 | | */ |
3904 | | CV_EXPORTS_AS(connectedComponentsWithAlgorithm) int connectedComponents(InputArray image, OutputArray labels, |
3905 | | int connectivity, int ltype, int ccltype); |
3906 | | |
3907 | | |
3908 | | /** @overload |
3909 | | |
3910 | | @param image the 8-bit single-channel image to be labeled |
3911 | | @param labels destination labeled image |
3912 | | @param connectivity 8 or 4 for 8-way or 4-way connectivity respectively |
3913 | | @param ltype output image label type. Currently CV_32S and CV_16U are supported. |
3914 | | */ |
3915 | | CV_EXPORTS_W int connectedComponents(InputArray image, OutputArray labels, |
3916 | | int connectivity = 8, int ltype = CV_32S); |
3917 | | |
3918 | | |
3919 | | /** @brief computes the connected components labeled image of boolean image and also produces a statistics output for each label |
3920 | | |
3921 | | image with 4 or 8 way connectivity - returns N, the total number of labels [0, N-1] where 0 |
3922 | | represents the background label. ltype specifies the output label image type, an important |
3923 | | consideration based on the total number of labels or alternatively the total number of pixels in |
3924 | | the source image. ccltype specifies the connected components labeling algorithm to use, currently |
3925 | | Bolelli (Spaghetti) @cite Bolelli2019, Grana (BBDT) @cite Grana2010 and Wu's (SAUF) @cite Wu2009 algorithms |
3926 | | are supported, see the #ConnectedComponentsAlgorithmsTypes for details. Note that SAUF algorithm forces |
3927 | | a row major ordering of labels while Spaghetti and BBDT do not. |
3928 | | This function uses parallel version of the algorithms (statistics included) if at least one allowed |
3929 | | parallel framework is enabled and if the rows of the image are at least twice the number returned by #getNumberOfCPUs. |
3930 | | |
3931 | | @param image the 8-bit single-channel image to be labeled |
3932 | | @param labels destination labeled image |
3933 | | @param stats statistics output for each label, including the background label. |
3934 | | Statistics are accessed via stats(label, COLUMN) where COLUMN is one of |
3935 | | #ConnectedComponentsTypes, selecting the statistic. The data type is CV_32S. |
3936 | | @param centroids centroid output for each label, including the background label. Centroids are |
3937 | | accessed via centroids(label, 0) for x and centroids(label, 1) for y. The data type CV_64F. |
3938 | | @param connectivity 8 or 4 for 8-way or 4-way connectivity respectively |
3939 | | @param ltype output image label type. Currently CV_32S and CV_16U are supported. |
3940 | | @param ccltype connected components algorithm type (see #ConnectedComponentsAlgorithmsTypes). |
3941 | | */ |
3942 | | CV_EXPORTS_AS(connectedComponentsWithStatsWithAlgorithm) int connectedComponentsWithStats(InputArray image, OutputArray labels, |
3943 | | OutputArray stats, OutputArray centroids, |
3944 | | int connectivity, int ltype, int ccltype); |
3945 | | |
3946 | | /** @overload |
3947 | | @param image the 8-bit single-channel image to be labeled |
3948 | | @param labels destination labeled image |
3949 | | @param stats statistics output for each label, including the background label. |
3950 | | Statistics are accessed via stats(label, COLUMN) where COLUMN is one of |
3951 | | #ConnectedComponentsTypes, selecting the statistic. The data type is CV_32S. |
3952 | | @param centroids centroid output for each label, including the background label. Centroids are |
3953 | | accessed via centroids(label, 0) for x and centroids(label, 1) for y. The data type CV_64F. |
3954 | | @param connectivity 8 or 4 for 8-way or 4-way connectivity respectively |
3955 | | @param ltype output image label type. Currently CV_32S and CV_16U are supported. |
3956 | | */ |
3957 | | CV_EXPORTS_W int connectedComponentsWithStats(InputArray image, OutputArray labels, |
3958 | | OutputArray stats, OutputArray centroids, |
3959 | | int connectivity = 8, int ltype = CV_32S); |
3960 | | |
3961 | | |
3962 | | /** @brief Finds contours in a binary image. |
3963 | | |
3964 | | The function retrieves contours from the binary image using the algorithm @cite Suzuki85 . The contours |
3965 | | are a useful tool for shape analysis and object detection and recognition. See squares.cpp in the |
3966 | | OpenCV sample directory. |
3967 | | @note Since opencv 3.2 source image is not modified by this function. |
3968 | | |
3969 | | @param image Source, an 8-bit single-channel image. Non-zero pixels are treated as 1's. Zero |
3970 | | pixels remain 0's, so the image is treated as binary . You can use #compare, #inRange, #threshold , |
3971 | | #adaptiveThreshold, #Canny, and others to create a binary image out of a grayscale or color one. |
3972 | | If mode equals to #RETR_CCOMP or #RETR_FLOODFILL, the input can also be a 32-bit integer image of labels (CV_32SC1). |
3973 | | @param contours Detected contours. Each contour is stored as a vector of points (e.g. |
3974 | | std::vector<std::vector<cv::Point> >). |
3975 | | @param hierarchy Optional output vector (e.g. std::vector<cv::Vec4i>), containing information about the image topology. It has |
3976 | | as many elements as the number of contours. For each i-th contour contours[i], the elements |
3977 | | hierarchy[i][0] , hierarchy[i][1] , hierarchy[i][2] , and hierarchy[i][3] are set to 0-based indices |
3978 | | in contours of the next and previous contours at the same hierarchical level, the first child |
3979 | | contour and the parent contour, respectively. If for the contour i there are no next, previous, |
3980 | | parent, or nested contours, the corresponding elements of hierarchy[i] will be negative. |
3981 | | @note In Python, hierarchy is nested inside a top level array. Use hierarchy[0][i] to access hierarchical elements of i-th contour. |
3982 | | @param mode Contour retrieval mode, see #RetrievalModes |
3983 | | @param method Contour approximation method, see #ContourApproximationModes |
3984 | | @param offset Optional offset by which every contour point is shifted. This is useful if the |
3985 | | contours are extracted from the image ROI and then they should be analyzed in the whole image |
3986 | | context. |
3987 | | */ |
3988 | | CV_EXPORTS_W void findContours( InputArray image, OutputArrayOfArrays contours, |
3989 | | OutputArray hierarchy, int mode, |
3990 | | int method, Point offset = Point()); |
3991 | | |
3992 | | /** @overload */ |
3993 | | CV_EXPORTS void findContours( InputArray image, OutputArrayOfArrays contours, |
3994 | | int mode, int method, Point offset = Point()); |
3995 | | |
3996 | | /** @example samples/cpp/squares.cpp |
3997 | | A program using pyramid scaling, Canny, contours and contour simplification to find |
3998 | | squares in a list of images (pic1-6.png). Returns sequence of squares detected on the image. |
3999 | | */ |
4000 | | |
4001 | | /** @example samples/tapi/squares.cpp |
4002 | | A program using pyramid scaling, Canny, contours and contour simplification to find |
4003 | | squares in the input image. |
4004 | | */ |
4005 | | |
4006 | | /** @brief Approximates a polygonal curve(s) with the specified precision. |
4007 | | |
4008 | | The function cv::approxPolyDP approximates a curve or a polygon with another curve/polygon with less |
4009 | | vertices so that the distance between them is less or equal to the specified precision. It uses the |
4010 | | Douglas-Peucker algorithm <http://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm> |
4011 | | |
4012 | | @param curve Input vector of a 2D point stored in std::vector or Mat |
4013 | | @param approxCurve Result of the approximation. The type should match the type of the input curve. |
4014 | | @param epsilon Parameter specifying the approximation accuracy. This is the maximum distance |
4015 | | between the original curve and its approximation. |
4016 | | @param closed If true, the approximated curve is closed (its first and last vertices are |
4017 | | connected). Otherwise, it is not closed. |
4018 | | */ |
4019 | | CV_EXPORTS_W void approxPolyDP( InputArray curve, |
4020 | | OutputArray approxCurve, |
4021 | | double epsilon, bool closed ); |
4022 | | |
4023 | | /** @brief Calculates a contour perimeter or a curve length. |
4024 | | |
4025 | | The function computes a curve length or a closed contour perimeter. |
4026 | | |
4027 | | @param curve Input vector of 2D points, stored in std::vector or Mat. |
4028 | | @param closed Flag indicating whether the curve is closed or not. |
4029 | | */ |
4030 | | CV_EXPORTS_W double arcLength( InputArray curve, bool closed ); |
4031 | | |
4032 | | /** @brief Calculates the up-right bounding rectangle of a point set or non-zero pixels of gray-scale image. |
4033 | | |
4034 | | The function calculates and returns the minimal up-right bounding rectangle for the specified point set or |
4035 | | non-zero pixels of gray-scale image. |
4036 | | |
4037 | | @param array Input gray-scale image or 2D point set, stored in std::vector or Mat. |
4038 | | */ |
4039 | | CV_EXPORTS_W Rect boundingRect( InputArray array ); |
4040 | | |
4041 | | /** @brief Calculates a contour area. |
4042 | | |
4043 | | The function computes a contour area. Similarly to moments , the area is computed using the Green |
4044 | | formula. Thus, the returned area and the number of non-zero pixels, if you draw the contour using |
4045 | | #drawContours or #fillPoly , can be different. Also, the function will most certainly give a wrong |
4046 | | results for contours with self-intersections. |
4047 | | |
4048 | | Example: |
4049 | | @code |
4050 | | vector<Point> contour; |
4051 | | contour.push_back(Point2f(0, 0)); |
4052 | | contour.push_back(Point2f(10, 0)); |
4053 | | contour.push_back(Point2f(10, 10)); |
4054 | | contour.push_back(Point2f(5, 4)); |
4055 | | |
4056 | | double area0 = contourArea(contour); |
4057 | | vector<Point> approx; |
4058 | | approxPolyDP(contour, approx, 5, true); |
4059 | | double area1 = contourArea(approx); |
4060 | | |
4061 | | cout << "area0 =" << area0 << endl << |
4062 | | "area1 =" << area1 << endl << |
4063 | | "approx poly vertices" << approx.size() << endl; |
4064 | | @endcode |
4065 | | @param contour Input vector of 2D points (contour vertices), stored in std::vector or Mat. |
4066 | | @param oriented Oriented area flag. If it is true, the function returns a signed area value, |
4067 | | depending on the contour orientation (clockwise or counter-clockwise). Using this feature you can |
4068 | | determine orientation of a contour by taking the sign of an area. By default, the parameter is |
4069 | | false, which means that the absolute value is returned. |
4070 | | */ |
4071 | | CV_EXPORTS_W double contourArea( InputArray contour, bool oriented = false ); |
4072 | | |
4073 | | /** @brief Finds a rotated rectangle of the minimum area enclosing the input 2D point set. |
4074 | | |
4075 | | The function calculates and returns the minimum-area bounding rectangle (possibly rotated) for a |
4076 | | specified point set. Developer should keep in mind that the returned RotatedRect can contain negative |
4077 | | indices when data is close to the containing Mat element boundary. |
4078 | | |
4079 | | @param points Input vector of 2D points, stored in std::vector\<\> or Mat |
4080 | | */ |
4081 | | CV_EXPORTS_W RotatedRect minAreaRect( InputArray points ); |
4082 | | |
4083 | | /** @brief Finds the four vertices of a rotated rect. Useful to draw the rotated rectangle. |
4084 | | |
4085 | | The function finds the four vertices of a rotated rectangle. This function is useful to draw the |
4086 | | rectangle. In C++, instead of using this function, you can directly use RotatedRect::points method. Please |
4087 | | visit the @ref tutorial_bounding_rotated_ellipses "tutorial on Creating Bounding rotated boxes and ellipses for contours" for more information. |
4088 | | |
4089 | | @param box The input rotated rectangle. It may be the output of @ref minAreaRect. |
4090 | | @param points The output array of four vertices of rectangles. |
4091 | | */ |
4092 | | CV_EXPORTS_W void boxPoints(RotatedRect box, OutputArray points); |
4093 | | |
4094 | | /** @brief Finds a circle of the minimum area enclosing a 2D point set. |
4095 | | |
4096 | | The function finds the minimal enclosing circle of a 2D point set using an iterative algorithm. |
4097 | | |
4098 | | @param points Input vector of 2D points, stored in std::vector\<\> or Mat |
4099 | | @param center Output center of the circle. |
4100 | | @param radius Output radius of the circle. |
4101 | | */ |
4102 | | CV_EXPORTS_W void minEnclosingCircle( InputArray points, |
4103 | | CV_OUT Point2f& center, CV_OUT float& radius ); |
4104 | | |
4105 | | /** @example samples/cpp/minarea.cpp |
4106 | | */ |
4107 | | |
4108 | | /** @brief Finds a triangle of minimum area enclosing a 2D point set and returns its area. |
4109 | | |
4110 | | The function finds a triangle of minimum area enclosing the given set of 2D points and returns its |
4111 | | area. The output for a given 2D point set is shown in the image below. 2D points are depicted in |
4112 | | *red* and the enclosing triangle in *yellow*. |
4113 | | |
4114 | |  |
4115 | | |
4116 | | The implementation of the algorithm is based on O'Rourke's @cite ORourke86 and Klee and Laskowski's |
4117 | | @cite KleeLaskowski85 papers. O'Rourke provides a \f$\theta(n)\f$ algorithm for finding the minimal |
4118 | | enclosing triangle of a 2D convex polygon with n vertices. Since the #minEnclosingTriangle function |
4119 | | takes a 2D point set as input an additional preprocessing step of computing the convex hull of the |
4120 | | 2D point set is required. The complexity of the #convexHull function is \f$O(n log(n))\f$ which is higher |
4121 | | than \f$\theta(n)\f$. Thus the overall complexity of the function is \f$O(n log(n))\f$. |
4122 | | |
4123 | | @param points Input vector of 2D points with depth CV_32S or CV_32F, stored in std::vector\<\> or Mat |
4124 | | @param triangle Output vector of three 2D points defining the vertices of the triangle. The depth |
4125 | | of the OutputArray must be CV_32F. |
4126 | | */ |
4127 | | CV_EXPORTS_W double minEnclosingTriangle( InputArray points, CV_OUT OutputArray triangle ); |
4128 | | |
4129 | | /** @brief Compares two shapes. |
4130 | | |
4131 | | The function compares two shapes. All three implemented methods use the Hu invariants (see #HuMoments) |
4132 | | |
4133 | | @param contour1 First contour or grayscale image. |
4134 | | @param contour2 Second contour or grayscale image. |
4135 | | @param method Comparison method, see #ShapeMatchModes |
4136 | | @param parameter Method-specific parameter (not supported now). |
4137 | | */ |
4138 | | CV_EXPORTS_W double matchShapes( InputArray contour1, InputArray contour2, |
4139 | | int method, double parameter ); |
4140 | | |
4141 | | /** @example samples/cpp/convexhull.cpp |
4142 | | An example using the convexHull functionality |
4143 | | */ |
4144 | | |
4145 | | /** @brief Finds the convex hull of a point set. |
4146 | | |
4147 | | The function cv::convexHull finds the convex hull of a 2D point set using the Sklansky's algorithm @cite Sklansky82 |
4148 | | that has *O(N logN)* complexity in the current implementation. |
4149 | | |
4150 | | @param points Input 2D point set, stored in std::vector or Mat. |
4151 | | @param hull Output convex hull. It is either an integer vector of indices or vector of points. In |
4152 | | the first case, the hull elements are 0-based indices of the convex hull points in the original |
4153 | | array (since the set of convex hull points is a subset of the original point set). In the second |
4154 | | case, hull elements are the convex hull points themselves. |
4155 | | @param clockwise Orientation flag. If it is true, the output convex hull is oriented clockwise. |
4156 | | Otherwise, it is oriented counter-clockwise. The assumed coordinate system has its X axis pointing |
4157 | | to the right, and its Y axis pointing upwards. |
4158 | | @param returnPoints Operation flag. In case of a matrix, when the flag is true, the function |
4159 | | returns convex hull points. Otherwise, it returns indices of the convex hull points. When the |
4160 | | output array is std::vector, the flag is ignored, and the output depends on the type of the |
4161 | | vector: std::vector\<int\> implies returnPoints=false, std::vector\<Point\> implies |
4162 | | returnPoints=true. |
4163 | | |
4164 | | @note `points` and `hull` should be different arrays, inplace processing isn't supported. |
4165 | | |
4166 | | Check @ref tutorial_hull "the corresponding tutorial" for more details. |
4167 | | |
4168 | | useful links: |
4169 | | |
4170 | | https://www.learnopencv.com/convex-hull-using-opencv-in-python-and-c/ |
4171 | | */ |
4172 | | CV_EXPORTS_W void convexHull( InputArray points, OutputArray hull, |
4173 | | bool clockwise = false, bool returnPoints = true ); |
4174 | | |
4175 | | /** @brief Finds the convexity defects of a contour. |
4176 | | |
4177 | | The figure below displays convexity defects of a hand contour: |
4178 | | |
4179 | |  |
4180 | | |
4181 | | @param contour Input contour. |
4182 | | @param convexhull Convex hull obtained using convexHull that should contain indices of the contour |
4183 | | points that make the hull. |
4184 | | @param convexityDefects The output vector of convexity defects. In C++ and the new Python/Java |
4185 | | interface each convexity defect is represented as 4-element integer vector (a.k.a. #Vec4i): |
4186 | | (start_index, end_index, farthest_pt_index, fixpt_depth), where indices are 0-based indices |
4187 | | in the original contour of the convexity defect beginning, end and the farthest point, and |
4188 | | fixpt_depth is fixed-point approximation (with 8 fractional bits) of the distance between the |
4189 | | farthest contour point and the hull. That is, to get the floating-point value of the depth will be |
4190 | | fixpt_depth/256.0. |
4191 | | */ |
4192 | | CV_EXPORTS_W void convexityDefects( InputArray contour, InputArray convexhull, OutputArray convexityDefects ); |
4193 | | |
4194 | | /** @brief Tests a contour convexity. |
4195 | | |
4196 | | The function tests whether the input contour is convex or not. The contour must be simple, that is, |
4197 | | without self-intersections. Otherwise, the function output is undefined. |
4198 | | |
4199 | | @param contour Input vector of 2D points, stored in std::vector\<\> or Mat |
4200 | | */ |
4201 | | CV_EXPORTS_W bool isContourConvex( InputArray contour ); |
4202 | | |
4203 | | /** @example samples/cpp/intersectExample.cpp |
4204 | | Examples of how intersectConvexConvex works |
4205 | | */ |
4206 | | |
4207 | | /** @brief Finds intersection of two convex polygons |
4208 | | |
4209 | | @param p1 First polygon |
4210 | | @param p2 Second polygon |
4211 | | @param p12 Output polygon describing the intersecting area |
4212 | | @param handleNested When true, an intersection is found if one of the polygons is fully enclosed in the other. |
4213 | | When false, no intersection is found. If the polygons share a side or the vertex of one polygon lies on an edge |
4214 | | of the other, they are not considered nested and an intersection will be found regardless of the value of handleNested. |
4215 | | |
4216 | | @returns Absolute value of area of intersecting polygon |
4217 | | |
4218 | | @note intersectConvexConvex doesn't confirm that both polygons are convex and will return invalid results if they aren't. |
4219 | | */ |
4220 | | CV_EXPORTS_W float intersectConvexConvex( InputArray p1, InputArray p2, |
4221 | | OutputArray p12, bool handleNested = true ); |
4222 | | |
4223 | | /** @example samples/cpp/fitellipse.cpp |
4224 | | An example using the fitEllipse technique |
4225 | | */ |
4226 | | |
4227 | | /** @brief Fits an ellipse around a set of 2D points. |
4228 | | |
4229 | | The function calculates the ellipse that fits (in a least-squares sense) a set of 2D points best of |
4230 | | all. It returns the rotated rectangle in which the ellipse is inscribed. The first algorithm described by @cite Fitzgibbon95 |
4231 | | is used. Developer should keep in mind that it is possible that the returned |
4232 | | ellipse/rotatedRect data contains negative indices, due to the data points being close to the |
4233 | | border of the containing Mat element. |
4234 | | |
4235 | | @param points Input 2D point set, stored in std::vector\<\> or Mat |
4236 | | */ |
4237 | | CV_EXPORTS_W RotatedRect fitEllipse( InputArray points ); |
4238 | | |
4239 | | /** @brief Fits an ellipse around a set of 2D points. |
4240 | | |
4241 | | The function calculates the ellipse that fits a set of 2D points. |
4242 | | It returns the rotated rectangle in which the ellipse is inscribed. |
4243 | | The Approximate Mean Square (AMS) proposed by @cite Taubin1991 is used. |
4244 | | |
4245 | | For an ellipse, this basis set is \f$ \chi= \left(x^2, x y, y^2, x, y, 1\right) \f$, |
4246 | | which is a set of six free coefficients \f$ A^T=\left\{A_{\text{xx}},A_{\text{xy}},A_{\text{yy}},A_x,A_y,A_0\right\} \f$. |
4247 | | However, to specify an ellipse, all that is needed is five numbers; the major and minor axes lengths \f$ (a,b) \f$, |
4248 | | the position \f$ (x_0,y_0) \f$, and the orientation \f$ \theta \f$. This is because the basis set includes lines, |
4249 | | quadratics, parabolic and hyperbolic functions as well as elliptical functions as possible fits. |
4250 | | If the fit is found to be a parabolic or hyperbolic function then the standard #fitEllipse method is used. |
4251 | | The AMS method restricts the fit to parabolic, hyperbolic and elliptical curves |
4252 | | by imposing the condition that \f$ A^T ( D_x^T D_x + D_y^T D_y) A = 1 \f$ where |
4253 | | the matrices \f$ Dx \f$ and \f$ Dy \f$ are the partial derivatives of the design matrix \f$ D \f$ with |
4254 | | respect to x and y. The matrices are formed row by row applying the following to |
4255 | | each of the points in the set: |
4256 | | \f{align*}{ |
4257 | | D(i,:)&=\left\{x_i^2, x_i y_i, y_i^2, x_i, y_i, 1\right\} & |
4258 | | D_x(i,:)&=\left\{2 x_i,y_i,0,1,0,0\right\} & |
4259 | | D_y(i,:)&=\left\{0,x_i,2 y_i,0,1,0\right\} |
4260 | | \f} |
4261 | | The AMS method minimizes the cost function |
4262 | | \f{equation*}{ |
4263 | | \epsilon ^2=\frac{ A^T D^T D A }{ A^T (D_x^T D_x + D_y^T D_y) A^T } |
4264 | | \f} |
4265 | | |
4266 | | The minimum cost is found by solving the generalized eigenvalue problem. |
4267 | | |
4268 | | \f{equation*}{ |
4269 | | D^T D A = \lambda \left( D_x^T D_x + D_y^T D_y\right) A |
4270 | | \f} |
4271 | | |
4272 | | @param points Input 2D point set, stored in std::vector\<\> or Mat |
4273 | | */ |
4274 | | CV_EXPORTS_W RotatedRect fitEllipseAMS( InputArray points ); |
4275 | | |
4276 | | |
4277 | | /** @brief Fits an ellipse around a set of 2D points. |
4278 | | |
4279 | | The function calculates the ellipse that fits a set of 2D points. |
4280 | | It returns the rotated rectangle in which the ellipse is inscribed. |
4281 | | The Direct least square (Direct) method by @cite Fitzgibbon1999 is used. |
4282 | | |
4283 | | For an ellipse, this basis set is \f$ \chi= \left(x^2, x y, y^2, x, y, 1\right) \f$, |
4284 | | which is a set of six free coefficients \f$ A^T=\left\{A_{\text{xx}},A_{\text{xy}},A_{\text{yy}},A_x,A_y,A_0\right\} \f$. |
4285 | | However, to specify an ellipse, all that is needed is five numbers; the major and minor axes lengths \f$ (a,b) \f$, |
4286 | | the position \f$ (x_0,y_0) \f$, and the orientation \f$ \theta \f$. This is because the basis set includes lines, |
4287 | | quadratics, parabolic and hyperbolic functions as well as elliptical functions as possible fits. |
4288 | | The Direct method confines the fit to ellipses by ensuring that \f$ 4 A_{xx} A_{yy}- A_{xy}^2 > 0 \f$. |
4289 | | The condition imposed is that \f$ 4 A_{xx} A_{yy}- A_{xy}^2=1 \f$ which satisfies the inequality |
4290 | | and as the coefficients can be arbitrarily scaled is not overly restrictive. |
4291 | | |
4292 | | \f{equation*}{ |
4293 | | \epsilon ^2= A^T D^T D A \quad \text{with} \quad A^T C A =1 \quad \text{and} \quad C=\left(\begin{matrix} |
4294 | | 0 & 0 & 2 & 0 & 0 & 0 \\ |
4295 | | 0 & -1 & 0 & 0 & 0 & 0 \\ |
4296 | | 2 & 0 & 0 & 0 & 0 & 0 \\ |
4297 | | 0 & 0 & 0 & 0 & 0 & 0 \\ |
4298 | | 0 & 0 & 0 & 0 & 0 & 0 \\ |
4299 | | 0 & 0 & 0 & 0 & 0 & 0 |
4300 | | \end{matrix} \right) |
4301 | | \f} |
4302 | | |
4303 | | The minimum cost is found by solving the generalized eigenvalue problem. |
4304 | | |
4305 | | \f{equation*}{ |
4306 | | D^T D A = \lambda \left( C\right) A |
4307 | | \f} |
4308 | | |
4309 | | The system produces only one positive eigenvalue \f$ \lambda\f$ which is chosen as the solution |
4310 | | with its eigenvector \f$\mathbf{u}\f$. These are used to find the coefficients |
4311 | | |
4312 | | \f{equation*}{ |
4313 | | A = \sqrt{\frac{1}{\mathbf{u}^T C \mathbf{u}}} \mathbf{u} |
4314 | | \f} |
4315 | | The scaling factor guarantees that \f$A^T C A =1\f$. |
4316 | | |
4317 | | @param points Input 2D point set, stored in std::vector\<\> or Mat |
4318 | | */ |
4319 | | CV_EXPORTS_W RotatedRect fitEllipseDirect( InputArray points ); |
4320 | | |
4321 | | /** @brief Fits a line to a 2D or 3D point set. |
4322 | | |
4323 | | The function fitLine fits a line to a 2D or 3D point set by minimizing \f$\sum_i \rho(r_i)\f$ where |
4324 | | \f$r_i\f$ is a distance between the \f$i^{th}\f$ point, the line and \f$\rho(r)\f$ is a distance function, one |
4325 | | of the following: |
4326 | | - DIST_L2 |
4327 | | \f[\rho (r) = r^2/2 \quad \text{(the simplest and the fastest least-squares method)}\f] |
4328 | | - DIST_L1 |
4329 | | \f[\rho (r) = r\f] |
4330 | | - DIST_L12 |
4331 | | \f[\rho (r) = 2 \cdot ( \sqrt{1 + \frac{r^2}{2}} - 1)\f] |
4332 | | - DIST_FAIR |
4333 | | \f[\rho \left (r \right ) = C^2 \cdot \left ( \frac{r}{C} - \log{\left(1 + \frac{r}{C}\right)} \right ) \quad \text{where} \quad C=1.3998\f] |
4334 | | - DIST_WELSCH |
4335 | | \f[\rho \left (r \right ) = \frac{C^2}{2} \cdot \left ( 1 - \exp{\left(-\left(\frac{r}{C}\right)^2\right)} \right ) \quad \text{where} \quad C=2.9846\f] |
4336 | | - DIST_HUBER |
4337 | | \f[\rho (r) = \fork{r^2/2}{if \(r < C\)}{C \cdot (r-C/2)}{otherwise} \quad \text{where} \quad C=1.345\f] |
4338 | | |
4339 | | The algorithm is based on the M-estimator ( <http://en.wikipedia.org/wiki/M-estimator> ) technique |
4340 | | that iteratively fits the line using the weighted least-squares algorithm. After each iteration the |
4341 | | weights \f$w_i\f$ are adjusted to be inversely proportional to \f$\rho(r_i)\f$ . |
4342 | | |
4343 | | @param points Input vector of 2D or 3D points, stored in std::vector\<\> or Mat. |
4344 | | @param line Output line parameters. In case of 2D fitting, it should be a vector of 4 elements |
4345 | | (like Vec4f) - (vx, vy, x0, y0), where (vx, vy) is a normalized vector collinear to the line and |
4346 | | (x0, y0) is a point on the line. In case of 3D fitting, it should be a vector of 6 elements (like |
4347 | | Vec6f) - (vx, vy, vz, x0, y0, z0), where (vx, vy, vz) is a normalized vector collinear to the line |
4348 | | and (x0, y0, z0) is a point on the line. |
4349 | | @param distType Distance used by the M-estimator, see #DistanceTypes |
4350 | | @param param Numerical parameter ( C ) for some types of distances. If it is 0, an optimal value |
4351 | | is chosen. |
4352 | | @param reps Sufficient accuracy for the radius (distance between the coordinate origin and the line). |
4353 | | @param aeps Sufficient accuracy for the angle. 0.01 would be a good default value for reps and aeps. |
4354 | | */ |
4355 | | CV_EXPORTS_W void fitLine( InputArray points, OutputArray line, int distType, |
4356 | | double param, double reps, double aeps ); |
4357 | | |
4358 | | /** @brief Performs a point-in-contour test. |
4359 | | |
4360 | | The function determines whether the point is inside a contour, outside, or lies on an edge (or |
4361 | | coincides with a vertex). It returns positive (inside), negative (outside), or zero (on an edge) |
4362 | | value, correspondingly. When measureDist=false , the return value is +1, -1, and 0, respectively. |
4363 | | Otherwise, the return value is a signed distance between the point and the nearest contour edge. |
4364 | | |
4365 | | See below a sample output of the function where each image pixel is tested against the contour: |
4366 | | |
4367 | |  |
4368 | | |
4369 | | @param contour Input contour. |
4370 | | @param pt Point tested against the contour. |
4371 | | @param measureDist If true, the function estimates the signed distance from the point to the |
4372 | | nearest contour edge. Otherwise, the function only checks if the point is inside a contour or not. |
4373 | | */ |
4374 | | CV_EXPORTS_W double pointPolygonTest( InputArray contour, Point2f pt, bool measureDist ); |
4375 | | |
4376 | | /** @brief Finds out if there is any intersection between two rotated rectangles. |
4377 | | |
4378 | | If there is then the vertices of the intersecting region are returned as well. |
4379 | | |
4380 | | Below are some examples of intersection configurations. The hatched pattern indicates the |
4381 | | intersecting region and the red vertices are returned by the function. |
4382 | | |
4383 | |  |
4384 | | |
4385 | | @param rect1 First rectangle |
4386 | | @param rect2 Second rectangle |
4387 | | @param intersectingRegion The output array of the vertices of the intersecting region. It returns |
4388 | | at most 8 vertices. Stored as std::vector\<cv::Point2f\> or cv::Mat as Mx1 of type CV_32FC2. |
4389 | | @returns One of #RectanglesIntersectTypes |
4390 | | */ |
4391 | | CV_EXPORTS_W int rotatedRectangleIntersection( const RotatedRect& rect1, const RotatedRect& rect2, OutputArray intersectingRegion ); |
4392 | | |
4393 | | /** @brief Creates a smart pointer to a cv::GeneralizedHoughBallard class and initializes it. |
4394 | | */ |
4395 | | CV_EXPORTS_W Ptr<GeneralizedHoughBallard> createGeneralizedHoughBallard(); |
4396 | | |
4397 | | /** @brief Creates a smart pointer to a cv::GeneralizedHoughGuil class and initializes it. |
4398 | | */ |
4399 | | CV_EXPORTS_W Ptr<GeneralizedHoughGuil> createGeneralizedHoughGuil(); |
4400 | | |
4401 | | //! @} imgproc_shape |
4402 | | |
4403 | | //! @addtogroup imgproc_colormap |
4404 | | //! @{ |
4405 | | |
4406 | | //! GNU Octave/MATLAB equivalent colormaps |
4407 | | enum ColormapTypes |
4408 | | { |
4409 | | COLORMAP_AUTUMN = 0, //!<  |
4410 | | COLORMAP_BONE = 1, //!<  |
4411 | | COLORMAP_JET = 2, //!<  |
4412 | | COLORMAP_WINTER = 3, //!<  |
4413 | | COLORMAP_RAINBOW = 4, //!<  |
4414 | | COLORMAP_OCEAN = 5, //!<  |
4415 | | COLORMAP_SUMMER = 6, //!<  |
4416 | | COLORMAP_SPRING = 7, //!<  |
4417 | | COLORMAP_COOL = 8, //!<  |
4418 | | COLORMAP_HSV = 9, //!<  |
4419 | | COLORMAP_PINK = 10, //!<  |
4420 | | COLORMAP_HOT = 11, //!<  |
4421 | | COLORMAP_PARULA = 12, //!<  |
4422 | | COLORMAP_MAGMA = 13, //!<  |
4423 | | COLORMAP_INFERNO = 14, //!<  |
4424 | | COLORMAP_PLASMA = 15, //!<  |
4425 | | COLORMAP_VIRIDIS = 16, //!<  |
4426 | | COLORMAP_CIVIDIS = 17, //!<  |
4427 | | COLORMAP_TWILIGHT = 18, //!<  |
4428 | | COLORMAP_TWILIGHT_SHIFTED = 19, //!<  |
4429 | | COLORMAP_TURBO = 20, //!<  |
4430 | | COLORMAP_DEEPGREEN = 21 //!<  |
4431 | | }; |
4432 | | |
4433 | | /** @example samples/cpp/falsecolor.cpp |
4434 | | An example using applyColorMap function |
4435 | | */ |
4436 | | |
4437 | | /** @brief Applies a GNU Octave/MATLAB equivalent colormap on a given image. |
4438 | | |
4439 | | @param src The source image, grayscale or colored of type CV_8UC1 or CV_8UC3. |
4440 | | @param dst The result is the colormapped source image. Note: Mat::create is called on dst. |
4441 | | @param colormap The colormap to apply, see #ColormapTypes |
4442 | | */ |
4443 | | CV_EXPORTS_W void applyColorMap(InputArray src, OutputArray dst, int colormap); |
4444 | | |
4445 | | /** @brief Applies a user colormap on a given image. |
4446 | | |
4447 | | @param src The source image, grayscale or colored of type CV_8UC1 or CV_8UC3. |
4448 | | @param dst The result is the colormapped source image. Note: Mat::create is called on dst. |
4449 | | @param userColor The colormap to apply of type CV_8UC1 or CV_8UC3 and size 256 |
4450 | | */ |
4451 | | CV_EXPORTS_W void applyColorMap(InputArray src, OutputArray dst, InputArray userColor); |
4452 | | |
4453 | | //! @} imgproc_colormap |
4454 | | |
4455 | | //! @addtogroup imgproc_draw |
4456 | | //! @{ |
4457 | | |
4458 | | |
4459 | | /** OpenCV color channel order is BGR[A] */ |
4460 | | #define CV_RGB(r, g, b) cv::Scalar((b), (g), (r), 0) |
4461 | | |
4462 | | /** @brief Draws a line segment connecting two points. |
4463 | | |
4464 | | The function line draws the line segment between pt1 and pt2 points in the image. The line is |
4465 | | clipped by the image boundaries. For non-antialiased lines with integer coordinates, the 8-connected |
4466 | | or 4-connected Bresenham algorithm is used. Thick lines are drawn with rounding endings. Antialiased |
4467 | | lines are drawn using Gaussian filtering. |
4468 | | |
4469 | | @param img Image. |
4470 | | @param pt1 First point of the line segment. |
4471 | | @param pt2 Second point of the line segment. |
4472 | | @param color Line color. |
4473 | | @param thickness Line thickness. |
4474 | | @param lineType Type of the line. See #LineTypes. |
4475 | | @param shift Number of fractional bits in the point coordinates. |
4476 | | */ |
4477 | | CV_EXPORTS_W void line(InputOutputArray img, Point pt1, Point pt2, const Scalar& color, |
4478 | | int thickness = 1, int lineType = LINE_8, int shift = 0); |
4479 | | |
4480 | | /** @brief Draws an arrow segment pointing from the first point to the second one. |
4481 | | |
4482 | | The function cv::arrowedLine draws an arrow between pt1 and pt2 points in the image. See also #line. |
4483 | | |
4484 | | @param img Image. |
4485 | | @param pt1 The point the arrow starts from. |
4486 | | @param pt2 The point the arrow points to. |
4487 | | @param color Line color. |
4488 | | @param thickness Line thickness. |
4489 | | @param line_type Type of the line. See #LineTypes |
4490 | | @param shift Number of fractional bits in the point coordinates. |
4491 | | @param tipLength The length of the arrow tip in relation to the arrow length |
4492 | | */ |
4493 | | CV_EXPORTS_W void arrowedLine(InputOutputArray img, Point pt1, Point pt2, const Scalar& color, |
4494 | | int thickness=1, int line_type=8, int shift=0, double tipLength=0.1); |
4495 | | |
4496 | | /** @brief Draws a simple, thick, or filled up-right rectangle. |
4497 | | |
4498 | | The function cv::rectangle draws a rectangle outline or a filled rectangle whose two opposite corners |
4499 | | are pt1 and pt2. |
4500 | | |
4501 | | @param img Image. |
4502 | | @param pt1 Vertex of the rectangle. |
4503 | | @param pt2 Vertex of the rectangle opposite to pt1 . |
4504 | | @param color Rectangle color or brightness (grayscale image). |
4505 | | @param thickness Thickness of lines that make up the rectangle. Negative values, like #FILLED, |
4506 | | mean that the function has to draw a filled rectangle. |
4507 | | @param lineType Type of the line. See #LineTypes |
4508 | | @param shift Number of fractional bits in the point coordinates. |
4509 | | */ |
4510 | | CV_EXPORTS_W void rectangle(InputOutputArray img, Point pt1, Point pt2, |
4511 | | const Scalar& color, int thickness = 1, |
4512 | | int lineType = LINE_8, int shift = 0); |
4513 | | |
4514 | | /** @overload |
4515 | | |
4516 | | use `rec` parameter as alternative specification of the drawn rectangle: `r.tl() and |
4517 | | r.br()-Point(1,1)` are opposite corners |
4518 | | */ |
4519 | | CV_EXPORTS_W void rectangle(InputOutputArray img, Rect rec, |
4520 | | const Scalar& color, int thickness = 1, |
4521 | | int lineType = LINE_8, int shift = 0); |
4522 | | |
4523 | | /** @example samples/cpp/tutorial_code/ImgProc/basic_drawing/Drawing_2.cpp |
4524 | | An example using drawing functions |
4525 | | */ |
4526 | | |
4527 | | /** @brief Draws a circle. |
4528 | | |
4529 | | The function cv::circle draws a simple or filled circle with a given center and radius. |
4530 | | @param img Image where the circle is drawn. |
4531 | | @param center Center of the circle. |
4532 | | @param radius Radius of the circle. |
4533 | | @param color Circle color. |
4534 | | @param thickness Thickness of the circle outline, if positive. Negative values, like #FILLED, |
4535 | | mean that a filled circle is to be drawn. |
4536 | | @param lineType Type of the circle boundary. See #LineTypes |
4537 | | @param shift Number of fractional bits in the coordinates of the center and in the radius value. |
4538 | | */ |
4539 | | CV_EXPORTS_W void circle(InputOutputArray img, Point center, int radius, |
4540 | | const Scalar& color, int thickness = 1, |
4541 | | int lineType = LINE_8, int shift = 0); |
4542 | | |
4543 | | /** @brief Draws a simple or thick elliptic arc or fills an ellipse sector. |
4544 | | |
4545 | | The function cv::ellipse with more parameters draws an ellipse outline, a filled ellipse, an elliptic |
4546 | | arc, or a filled ellipse sector. The drawing code uses general parametric form. |
4547 | | A piecewise-linear curve is used to approximate the elliptic arc |
4548 | | boundary. If you need more control of the ellipse rendering, you can retrieve the curve using |
4549 | | #ellipse2Poly and then render it with #polylines or fill it with #fillPoly. If you use the first |
4550 | | variant of the function and want to draw the whole ellipse, not an arc, pass `startAngle=0` and |
4551 | | `endAngle=360`. If `startAngle` is greater than `endAngle`, they are swapped. The figure below explains |
4552 | | the meaning of the parameters to draw the blue arc. |
4553 | | |
4554 | |  |
4555 | | |
4556 | | @param img Image. |
4557 | | @param center Center of the ellipse. |
4558 | | @param axes Half of the size of the ellipse main axes. |
4559 | | @param angle Ellipse rotation angle in degrees. |
4560 | | @param startAngle Starting angle of the elliptic arc in degrees. |
4561 | | @param endAngle Ending angle of the elliptic arc in degrees. |
4562 | | @param color Ellipse color. |
4563 | | @param thickness Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that |
4564 | | a filled ellipse sector is to be drawn. |
4565 | | @param lineType Type of the ellipse boundary. See #LineTypes |
4566 | | @param shift Number of fractional bits in the coordinates of the center and values of axes. |
4567 | | */ |
4568 | | CV_EXPORTS_W void ellipse(InputOutputArray img, Point center, Size axes, |
4569 | | double angle, double startAngle, double endAngle, |
4570 | | const Scalar& color, int thickness = 1, |
4571 | | int lineType = LINE_8, int shift = 0); |
4572 | | |
4573 | | /** @overload |
4574 | | @param img Image. |
4575 | | @param box Alternative ellipse representation via RotatedRect. This means that the function draws |
4576 | | an ellipse inscribed in the rotated rectangle. |
4577 | | @param color Ellipse color. |
4578 | | @param thickness Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that |
4579 | | a filled ellipse sector is to be drawn. |
4580 | | @param lineType Type of the ellipse boundary. See #LineTypes |
4581 | | */ |
4582 | | CV_EXPORTS_W void ellipse(InputOutputArray img, const RotatedRect& box, const Scalar& color, |
4583 | | int thickness = 1, int lineType = LINE_8); |
4584 | | |
4585 | | /* ----------------------------------------------------------------------------------------- */ |
4586 | | /* ADDING A SET OF PREDEFINED MARKERS WHICH COULD BE USED TO HIGHLIGHT POSITIONS IN AN IMAGE */ |
4587 | | /* ----------------------------------------------------------------------------------------- */ |
4588 | | |
4589 | | /** @brief Draws a marker on a predefined position in an image. |
4590 | | |
4591 | | The function cv::drawMarker draws a marker on a given position in the image. For the moment several |
4592 | | marker types are supported, see #MarkerTypes for more information. |
4593 | | |
4594 | | @param img Image. |
4595 | | @param position The point where the crosshair is positioned. |
4596 | | @param color Line color. |
4597 | | @param markerType The specific type of marker you want to use, see #MarkerTypes |
4598 | | @param thickness Line thickness. |
4599 | | @param line_type Type of the line, See #LineTypes |
4600 | | @param markerSize The length of the marker axis [default = 20 pixels] |
4601 | | */ |
4602 | | CV_EXPORTS_W void drawMarker(InputOutputArray img, Point position, const Scalar& color, |
4603 | | int markerType = MARKER_CROSS, int markerSize=20, int thickness=1, |
4604 | | int line_type=8); |
4605 | | |
4606 | | /* ----------------------------------------------------------------------------------------- */ |
4607 | | /* END OF MARKER SECTION */ |
4608 | | /* ----------------------------------------------------------------------------------------- */ |
4609 | | |
4610 | | /** @brief Fills a convex polygon. |
4611 | | |
4612 | | The function cv::fillConvexPoly draws a filled convex polygon. This function is much faster than the |
4613 | | function #fillPoly . It can fill not only convex polygons but any monotonic polygon without |
4614 | | self-intersections, that is, a polygon whose contour intersects every horizontal line (scan line) |
4615 | | twice at the most (though, its top-most and/or the bottom edge could be horizontal). |
4616 | | |
4617 | | @param img Image. |
4618 | | @param points Polygon vertices. |
4619 | | @param color Polygon color. |
4620 | | @param lineType Type of the polygon boundaries. See #LineTypes |
4621 | | @param shift Number of fractional bits in the vertex coordinates. |
4622 | | */ |
4623 | | CV_EXPORTS_W void fillConvexPoly(InputOutputArray img, InputArray points, |
4624 | | const Scalar& color, int lineType = LINE_8, |
4625 | | int shift = 0); |
4626 | | |
4627 | | /** @overload */ |
4628 | | CV_EXPORTS void fillConvexPoly(InputOutputArray img, const Point* pts, int npts, |
4629 | | const Scalar& color, int lineType = LINE_8, |
4630 | | int shift = 0); |
4631 | | |
4632 | | /** @example samples/cpp/tutorial_code/ImgProc/basic_drawing/Drawing_1.cpp |
4633 | | An example using drawing functions |
4634 | | Check @ref tutorial_random_generator_and_text "the corresponding tutorial" for more details |
4635 | | */ |
4636 | | |
4637 | | /** @brief Fills the area bounded by one or more polygons. |
4638 | | |
4639 | | The function cv::fillPoly fills an area bounded by several polygonal contours. The function can fill |
4640 | | complex areas, for example, areas with holes, contours with self-intersections (some of their |
4641 | | parts), and so forth. |
4642 | | |
4643 | | @param img Image. |
4644 | | @param pts Array of polygons where each polygon is represented as an array of points. |
4645 | | @param color Polygon color. |
4646 | | @param lineType Type of the polygon boundaries. See #LineTypes |
4647 | | @param shift Number of fractional bits in the vertex coordinates. |
4648 | | @param offset Optional offset of all points of the contours. |
4649 | | */ |
4650 | | CV_EXPORTS_W void fillPoly(InputOutputArray img, InputArrayOfArrays pts, |
4651 | | const Scalar& color, int lineType = LINE_8, int shift = 0, |
4652 | | Point offset = Point() ); |
4653 | | |
4654 | | /** @overload */ |
4655 | | CV_EXPORTS void fillPoly(InputOutputArray img, const Point** pts, |
4656 | | const int* npts, int ncontours, |
4657 | | const Scalar& color, int lineType = LINE_8, int shift = 0, |
4658 | | Point offset = Point() ); |
4659 | | |
4660 | | /** @brief Draws several polygonal curves. |
4661 | | |
4662 | | @param img Image. |
4663 | | @param pts Array of polygonal curves. |
4664 | | @param isClosed Flag indicating whether the drawn polylines are closed or not. If they are closed, |
4665 | | the function draws a line from the last vertex of each curve to its first vertex. |
4666 | | @param color Polyline color. |
4667 | | @param thickness Thickness of the polyline edges. |
4668 | | @param lineType Type of the line segments. See #LineTypes |
4669 | | @param shift Number of fractional bits in the vertex coordinates. |
4670 | | |
4671 | | The function cv::polylines draws one or more polygonal curves. |
4672 | | */ |
4673 | | CV_EXPORTS_W void polylines(InputOutputArray img, InputArrayOfArrays pts, |
4674 | | bool isClosed, const Scalar& color, |
4675 | | int thickness = 1, int lineType = LINE_8, int shift = 0 ); |
4676 | | |
4677 | | /** @overload */ |
4678 | | CV_EXPORTS void polylines(InputOutputArray img, const Point* const* pts, const int* npts, |
4679 | | int ncontours, bool isClosed, const Scalar& color, |
4680 | | int thickness = 1, int lineType = LINE_8, int shift = 0 ); |
4681 | | |
4682 | | /** @example samples/cpp/contours2.cpp |
4683 | | An example program illustrates the use of cv::findContours and cv::drawContours |
4684 | | \image html WindowsQtContoursOutput.png "Screenshot of the program" |
4685 | | */ |
4686 | | |
4687 | | /** @example samples/cpp/segment_objects.cpp |
4688 | | An example using drawContours to clean up a background segmentation result |
4689 | | */ |
4690 | | |
4691 | | /** @brief Draws contours outlines or filled contours. |
4692 | | |
4693 | | The function draws contour outlines in the image if \f$\texttt{thickness} \ge 0\f$ or fills the area |
4694 | | bounded by the contours if \f$\texttt{thickness}<0\f$ . The example below shows how to retrieve |
4695 | | connected components from the binary image and label them: : |
4696 | | @include snippets/imgproc_drawContours.cpp |
4697 | | |
4698 | | @param image Destination image. |
4699 | | @param contours All the input contours. Each contour is stored as a point vector. |
4700 | | @param contourIdx Parameter indicating a contour to draw. If it is negative, all the contours are drawn. |
4701 | | @param color Color of the contours. |
4702 | | @param thickness Thickness of lines the contours are drawn with. If it is negative (for example, |
4703 | | thickness=#FILLED ), the contour interiors are drawn. |
4704 | | @param lineType Line connectivity. See #LineTypes |
4705 | | @param hierarchy Optional information about hierarchy. It is only needed if you want to draw only |
4706 | | some of the contours (see maxLevel ). |
4707 | | @param maxLevel Maximal level for drawn contours. If it is 0, only the specified contour is drawn. |
4708 | | If it is 1, the function draws the contour(s) and all the nested contours. If it is 2, the function |
4709 | | draws the contours, all the nested contours, all the nested-to-nested contours, and so on. This |
4710 | | parameter is only taken into account when there is hierarchy available. |
4711 | | @param offset Optional contour shift parameter. Shift all the drawn contours by the specified |
4712 | | \f$\texttt{offset}=(dx,dy)\f$ . |
4713 | | @note When thickness=#FILLED, the function is designed to handle connected components with holes correctly |
4714 | | even when no hierarchy data is provided. This is done by analyzing all the outlines together |
4715 | | using even-odd rule. This may give incorrect results if you have a joint collection of separately retrieved |
4716 | | contours. In order to solve this problem, you need to call #drawContours separately for each sub-group |
4717 | | of contours, or iterate over the collection using contourIdx parameter. |
4718 | | */ |
4719 | | CV_EXPORTS_W void drawContours( InputOutputArray image, InputArrayOfArrays contours, |
4720 | | int contourIdx, const Scalar& color, |
4721 | | int thickness = 1, int lineType = LINE_8, |
4722 | | InputArray hierarchy = noArray(), |
4723 | | int maxLevel = INT_MAX, Point offset = Point() ); |
4724 | | |
4725 | | /** @brief Clips the line against the image rectangle. |
4726 | | |
4727 | | The function cv::clipLine calculates a part of the line segment that is entirely within the specified |
4728 | | rectangle. It returns false if the line segment is completely outside the rectangle. Otherwise, |
4729 | | it returns true . |
4730 | | @param imgSize Image size. The image rectangle is Rect(0, 0, imgSize.width, imgSize.height) . |
4731 | | @param pt1 First line point. |
4732 | | @param pt2 Second line point. |
4733 | | */ |
4734 | | CV_EXPORTS bool clipLine(Size imgSize, CV_IN_OUT Point& pt1, CV_IN_OUT Point& pt2); |
4735 | | |
4736 | | /** @overload |
4737 | | @param imgSize Image size. The image rectangle is Rect(0, 0, imgSize.width, imgSize.height) . |
4738 | | @param pt1 First line point. |
4739 | | @param pt2 Second line point. |
4740 | | */ |
4741 | | CV_EXPORTS bool clipLine(Size2l imgSize, CV_IN_OUT Point2l& pt1, CV_IN_OUT Point2l& pt2); |
4742 | | |
4743 | | /** @overload |
4744 | | @param imgRect Image rectangle. |
4745 | | @param pt1 First line point. |
4746 | | @param pt2 Second line point. |
4747 | | */ |
4748 | | CV_EXPORTS_W bool clipLine(Rect imgRect, CV_OUT CV_IN_OUT Point& pt1, CV_OUT CV_IN_OUT Point& pt2); |
4749 | | |
4750 | | /** @brief Approximates an elliptic arc with a polyline. |
4751 | | |
4752 | | The function ellipse2Poly computes the vertices of a polyline that approximates the specified |
4753 | | elliptic arc. It is used by #ellipse. If `arcStart` is greater than `arcEnd`, they are swapped. |
4754 | | |
4755 | | @param center Center of the arc. |
4756 | | @param axes Half of the size of the ellipse main axes. See #ellipse for details. |
4757 | | @param angle Rotation angle of the ellipse in degrees. See #ellipse for details. |
4758 | | @param arcStart Starting angle of the elliptic arc in degrees. |
4759 | | @param arcEnd Ending angle of the elliptic arc in degrees. |
4760 | | @param delta Angle between the subsequent polyline vertices. It defines the approximation |
4761 | | accuracy. |
4762 | | @param pts Output vector of polyline vertices. |
4763 | | */ |
4764 | | CV_EXPORTS_W void ellipse2Poly( Point center, Size axes, int angle, |
4765 | | int arcStart, int arcEnd, int delta, |
4766 | | CV_OUT std::vector<Point>& pts ); |
4767 | | |
4768 | | /** @overload |
4769 | | @param center Center of the arc. |
4770 | | @param axes Half of the size of the ellipse main axes. See #ellipse for details. |
4771 | | @param angle Rotation angle of the ellipse in degrees. See #ellipse for details. |
4772 | | @param arcStart Starting angle of the elliptic arc in degrees. |
4773 | | @param arcEnd Ending angle of the elliptic arc in degrees. |
4774 | | @param delta Angle between the subsequent polyline vertices. It defines the approximation accuracy. |
4775 | | @param pts Output vector of polyline vertices. |
4776 | | */ |
4777 | | CV_EXPORTS void ellipse2Poly(Point2d center, Size2d axes, int angle, |
4778 | | int arcStart, int arcEnd, int delta, |
4779 | | CV_OUT std::vector<Point2d>& pts); |
4780 | | |
4781 | | /** @brief Draws a text string. |
4782 | | |
4783 | | The function cv::putText renders the specified text string in the image. Symbols that cannot be rendered |
4784 | | using the specified font are replaced by question marks. See #getTextSize for a text rendering code |
4785 | | example. |
4786 | | |
4787 | | @param img Image. |
4788 | | @param text Text string to be drawn. |
4789 | | @param org Bottom-left corner of the text string in the image. |
4790 | | @param fontFace Font type, see #HersheyFonts. |
4791 | | @param fontScale Font scale factor that is multiplied by the font-specific base size. |
4792 | | @param color Text color. |
4793 | | @param thickness Thickness of the lines used to draw a text. |
4794 | | @param lineType Line type. See #LineTypes |
4795 | | @param bottomLeftOrigin When true, the image data origin is at the bottom-left corner. Otherwise, |
4796 | | it is at the top-left corner. |
4797 | | */ |
4798 | | CV_EXPORTS_W void putText( InputOutputArray img, const String& text, Point org, |
4799 | | int fontFace, double fontScale, Scalar color, |
4800 | | int thickness = 1, int lineType = LINE_8, |
4801 | | bool bottomLeftOrigin = false ); |
4802 | | |
4803 | | /** @brief Calculates the width and height of a text string. |
4804 | | |
4805 | | The function cv::getTextSize calculates and returns the size of a box that contains the specified text. |
4806 | | That is, the following code renders some text, the tight box surrounding it, and the baseline: : |
4807 | | @code |
4808 | | String text = "Funny text inside the box"; |
4809 | | int fontFace = FONT_HERSHEY_SCRIPT_SIMPLEX; |
4810 | | double fontScale = 2; |
4811 | | int thickness = 3; |
4812 | | |
4813 | | Mat img(600, 800, CV_8UC3, Scalar::all(0)); |
4814 | | |
4815 | | int baseline=0; |
4816 | | Size textSize = getTextSize(text, fontFace, |
4817 | | fontScale, thickness, &baseline); |
4818 | | baseline += thickness; |
4819 | | |
4820 | | // center the text |
4821 | | Point textOrg((img.cols - textSize.width)/2, |
4822 | | (img.rows + textSize.height)/2); |
4823 | | |
4824 | | // draw the box |
4825 | | rectangle(img, textOrg + Point(0, baseline), |
4826 | | textOrg + Point(textSize.width, -textSize.height), |
4827 | | Scalar(0,0,255)); |
4828 | | // ... and the baseline first |
4829 | | line(img, textOrg + Point(0, thickness), |
4830 | | textOrg + Point(textSize.width, thickness), |
4831 | | Scalar(0, 0, 255)); |
4832 | | |
4833 | | // then put the text itself |
4834 | | putText(img, text, textOrg, fontFace, fontScale, |
4835 | | Scalar::all(255), thickness, 8); |
4836 | | @endcode |
4837 | | |
4838 | | @param text Input text string. |
4839 | | @param fontFace Font to use, see #HersheyFonts. |
4840 | | @param fontScale Font scale factor that is multiplied by the font-specific base size. |
4841 | | @param thickness Thickness of lines used to render the text. See #putText for details. |
4842 | | @param[out] baseLine y-coordinate of the baseline relative to the bottom-most text |
4843 | | point. |
4844 | | @return The size of a box that contains the specified text. |
4845 | | |
4846 | | @see putText |
4847 | | */ |
4848 | | CV_EXPORTS_W Size getTextSize(const String& text, int fontFace, |
4849 | | double fontScale, int thickness, |
4850 | | CV_OUT int* baseLine); |
4851 | | |
4852 | | |
4853 | | /** @brief Calculates the font-specific size to use to achieve a given height in pixels. |
4854 | | |
4855 | | @param fontFace Font to use, see cv::HersheyFonts. |
4856 | | @param pixelHeight Pixel height to compute the fontScale for |
4857 | | @param thickness Thickness of lines used to render the text.See putText for details. |
4858 | | @return The fontSize to use for cv::putText |
4859 | | |
4860 | | @see cv::putText |
4861 | | */ |
4862 | | CV_EXPORTS_W double getFontScaleFromHeight(const int fontFace, |
4863 | | const int pixelHeight, |
4864 | | const int thickness = 1); |
4865 | | |
4866 | | /** @brief Class for iterating over all pixels on a raster line segment. |
4867 | | |
4868 | | The class LineIterator is used to get each pixel of a raster line connecting |
4869 | | two specified points. |
4870 | | It can be treated as a versatile implementation of the Bresenham algorithm |
4871 | | where you can stop at each pixel and do some extra processing, for |
4872 | | example, grab pixel values along the line or draw a line with an effect |
4873 | | (for example, with XOR operation). |
4874 | | |
4875 | | The number of pixels along the line is stored in LineIterator::count. |
4876 | | The method LineIterator::pos returns the current position in the image: |
4877 | | |
4878 | | @code{.cpp} |
4879 | | // grabs pixels along the line (pt1, pt2) |
4880 | | // from 8-bit 3-channel image to the buffer |
4881 | | LineIterator it(img, pt1, pt2, 8); |
4882 | | LineIterator it2 = it; |
4883 | | vector<Vec3b> buf(it.count); |
4884 | | |
4885 | | for(int i = 0; i < it.count; i++, ++it) |
4886 | | buf[i] = *(const Vec3b*)*it; |
4887 | | |
4888 | | // alternative way of iterating through the line |
4889 | | for(int i = 0; i < it2.count; i++, ++it2) |
4890 | | { |
4891 | | Vec3b val = img.at<Vec3b>(it2.pos()); |
4892 | | CV_Assert(buf[i] == val); |
4893 | | } |
4894 | | @endcode |
4895 | | */ |
4896 | | class CV_EXPORTS LineIterator |
4897 | | { |
4898 | | public: |
4899 | | /** @brief Initializes iterator object for the given line and image. |
4900 | | |
4901 | | The returned iterator can be used to traverse all pixels on a line that |
4902 | | connects the given two points. |
4903 | | The line will be clipped on the image boundaries. |
4904 | | |
4905 | | @param img Underlying image. |
4906 | | @param pt1 First endpoint of the line. |
4907 | | @param pt2 The other endpoint of the line. |
4908 | | @param connectivity Pixel connectivity of the iterator. Valid values are 4 (iterator can move |
4909 | | up, down, left and right) and 8 (iterator can also move diagonally). |
4910 | | @param leftToRight If true, the line is traversed from the leftmost endpoint to the rightmost |
4911 | | endpoint. Otherwise, the line is traversed from \p pt1 to \p pt2. |
4912 | | */ |
4913 | | LineIterator( const Mat& img, Point pt1, Point pt2, |
4914 | | int connectivity = 8, bool leftToRight = false ) |
4915 | | { |
4916 | | init(&img, Rect(0, 0, img.cols, img.rows), pt1, pt2, connectivity, leftToRight); |
4917 | | ptmode = false; |
4918 | | } |
4919 | | LineIterator( Point pt1, Point pt2, |
4920 | | int connectivity = 8, bool leftToRight = false ) |
4921 | 0 | { |
4922 | 0 | init(0, Rect(std::min(pt1.x, pt2.x), |
4923 | 0 | std::min(pt1.y, pt2.y), |
4924 | 0 | std::max(pt1.x, pt2.x) - std::min(pt1.x, pt2.x) + 1, |
4925 | 0 | std::max(pt1.y, pt2.y) - std::min(pt1.y, pt2.y) + 1), |
4926 | 0 | pt1, pt2, connectivity, leftToRight); |
4927 | 0 | ptmode = true; |
4928 | 0 | } |
4929 | | LineIterator( Size boundingAreaSize, Point pt1, Point pt2, |
4930 | | int connectivity = 8, bool leftToRight = false ) |
4931 | 0 | { |
4932 | 0 | init(0, Rect(0, 0, boundingAreaSize.width, boundingAreaSize.height), |
4933 | 0 | pt1, pt2, connectivity, leftToRight); |
4934 | 0 | ptmode = true; |
4935 | 0 | } |
4936 | | LineIterator( Rect boundingAreaRect, Point pt1, Point pt2, |
4937 | | int connectivity = 8, bool leftToRight = false ) |
4938 | 0 | { |
4939 | 0 | init(0, boundingAreaRect, pt1, pt2, connectivity, leftToRight); |
4940 | 0 | ptmode = true; |
4941 | 0 | } |
4942 | | void init(const Mat* img, Rect boundingAreaRect, Point pt1, Point pt2, int connectivity, bool leftToRight); |
4943 | | |
4944 | | /** @brief Returns pointer to the current pixel. |
4945 | | */ |
4946 | | uchar* operator *(); |
4947 | | |
4948 | | /** @brief Moves iterator to the next pixel on the line. |
4949 | | |
4950 | | This is the prefix version (++it). |
4951 | | */ |
4952 | | LineIterator& operator ++(); |
4953 | | |
4954 | | /** @brief Moves iterator to the next pixel on the line. |
4955 | | |
4956 | | This is the postfix version (it++). |
4957 | | */ |
4958 | | LineIterator operator ++(int); |
4959 | | |
4960 | | /** @brief Returns coordinates of the current pixel. |
4961 | | */ |
4962 | | Point pos() const; |
4963 | | |
4964 | | uchar* ptr; |
4965 | | const uchar* ptr0; |
4966 | | int step, elemSize; |
4967 | | int err, count; |
4968 | | int minusDelta, plusDelta; |
4969 | | int minusStep, plusStep; |
4970 | | int minusShift, plusShift; |
4971 | | Point p; |
4972 | | bool ptmode; |
4973 | | }; |
4974 | | |
4975 | | //! @cond IGNORED |
4976 | | |
4977 | | // === LineIterator implementation === |
4978 | | |
4979 | | inline |
4980 | | uchar* LineIterator::operator *() |
4981 | | { |
4982 | | return ptmode ? 0 : ptr; |
4983 | | } |
4984 | | |
4985 | | inline |
4986 | | LineIterator& LineIterator::operator ++() |
4987 | | { |
4988 | | int mask = err < 0 ? -1 : 0; |
4989 | | err += minusDelta + (plusDelta & mask); |
4990 | | if(!ptmode) |
4991 | | { |
4992 | | ptr += minusStep + (plusStep & mask); |
4993 | | } |
4994 | | else |
4995 | | { |
4996 | | p.x += minusShift + (plusShift & mask); |
4997 | | p.y += minusStep + (plusStep & mask); |
4998 | | } |
4999 | | return *this; |
5000 | | } |
5001 | | |
5002 | | inline |
5003 | | LineIterator LineIterator::operator ++(int) |
5004 | 0 | { |
5005 | 0 | LineIterator it = *this; |
5006 | 0 | ++(*this); |
5007 | 0 | return it; |
5008 | 0 | } |
5009 | | |
5010 | | inline |
5011 | | Point LineIterator::pos() const |
5012 | 0 | { |
5013 | 0 | if(!ptmode) |
5014 | 0 | { |
5015 | 0 | size_t offset = (size_t)(ptr - ptr0); |
5016 | 0 | int y = (int)(offset/step); |
5017 | 0 | int x = (int)((offset - (size_t)y*step)/elemSize); |
5018 | 0 | return Point(x, y); |
5019 | 0 | } |
5020 | 0 | return p; |
5021 | 0 | } |
5022 | | |
5023 | | //! @endcond |
5024 | | |
5025 | | //! @} imgproc_draw |
5026 | | |
5027 | | //! @} imgproc |
5028 | | |
5029 | | } // cv |
5030 | | |
5031 | | |
5032 | | #include "./imgproc/segmentation.hpp" |
5033 | | |
5034 | | |
5035 | | #endif |