Coverage Report

Created: 2025-06-12 06:52

/work/install-coverage/include/opencv4/opencv2/calib3d.hpp
Line
Count
Source (jump to first uncovered line)
1
/*M///////////////////////////////////////////////////////////////////////////////////////
2
//
3
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4
//
5
//  By downloading, copying, installing or using the software you agree to this license.
6
//  If you do not agree to this license, do not download, install,
7
//  copy or use the software.
8
//
9
//
10
//                          License Agreement
11
//                For Open Source Computer Vision Library
12
//
13
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
16
// Third party copyrights are property of their respective owners.
17
//
18
// Redistribution and use in source and binary forms, with or without modification,
19
// are permitted provided that the following conditions are met:
20
//
21
//   * Redistribution's of source code must retain the above copyright notice,
22
//     this list of conditions and the following disclaimer.
23
//
24
//   * Redistribution's in binary form must reproduce the above copyright notice,
25
//     this list of conditions and the following disclaimer in the documentation
26
//     and/or other materials provided with the distribution.
27
//
28
//   * The name of the copyright holders may not be used to endorse or promote products
29
//     derived from this software without specific prior written permission.
30
//
31
// This software is provided by the copyright holders and contributors "as is" and
32
// any express or implied warranties, including, but not limited to, the implied
33
// warranties of merchantability and fitness for a particular purpose are disclaimed.
34
// In no event shall the Intel Corporation or contributors be liable for any direct,
35
// indirect, incidental, special, exemplary, or consequential damages
36
// (including, but not limited to, procurement of substitute goods or services;
37
// loss of use, data, or profits; or business interruption) however caused
38
// and on any theory of liability, whether in contract, strict liability,
39
// or tort (including negligence or otherwise) arising in any way out of
40
// the use of this software, even if advised of the possibility of such damage.
41
//
42
//M*/
43
44
#ifndef OPENCV_CALIB3D_HPP
45
#define OPENCV_CALIB3D_HPP
46
47
#include "opencv2/core.hpp"
48
#include "opencv2/core/types.hpp"
49
#include "opencv2/features2d.hpp"
50
#include "opencv2/core/affine.hpp"
51
#include "opencv2/core/utils/logger.hpp"
52
53
/**
54
  @defgroup calib3d Camera Calibration and 3D Reconstruction
55
56
The functions in this section use a so-called pinhole camera model. The view of a scene
57
is obtained by projecting a scene's 3D point \f$P_w\f$ into the image plane using a perspective
58
transformation which forms the corresponding pixel \f$p\f$. Both \f$P_w\f$ and \f$p\f$ are
59
represented in homogeneous coordinates, i.e. as 3D and 2D homogeneous vector respectively. You will
60
find a brief introduction to projective geometry, homogeneous vectors and homogeneous
61
transformations at the end of this section's introduction. For more succinct notation, we often drop
62
the 'homogeneous' and say vector instead of homogeneous vector.
63
64
The distortion-free projective transformation given by a  pinhole camera model is shown below.
65
66
\f[s \; p = A \begin{bmatrix} R|t \end{bmatrix} P_w,\f]
67
68
where \f$P_w\f$ is a 3D point expressed with respect to the world coordinate system,
69
\f$p\f$ is a 2D pixel in the image plane, \f$A\f$ is the camera intrinsic matrix,
70
\f$R\f$ and \f$t\f$ are the rotation and translation that describe the change of coordinates from
71
world to camera coordinate systems (or camera frame) and \f$s\f$ is the projective transformation's
72
arbitrary scaling and not part of the camera model.
73
74
The camera intrinsic matrix \f$A\f$ (notation used as in @cite Zhang2000 and also generally notated
75
as \f$K\f$) projects 3D points given in the camera coordinate system to 2D pixel coordinates, i.e.
76
77
\f[p = A P_c.\f]
78
79
The camera intrinsic matrix \f$A\f$ is composed of the focal lengths \f$f_x\f$ and \f$f_y\f$, which are
80
expressed in pixel units, and the principal point \f$(c_x, c_y)\f$, that is usually close to the
81
image center:
82
83
\f[A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1},\f]
84
85
and thus
86
87
\f[s \vecthree{u}{v}{1} = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1} \vecthree{X_c}{Y_c}{Z_c}.\f]
88
89
The matrix of intrinsic parameters does not depend on the scene viewed. So, once estimated, it can
90
be re-used as long as the focal length is fixed (in case of a zoom lens). Thus, if an image from the
91
camera is scaled by a factor, all of these parameters need to be scaled (multiplied/divided,
92
respectively) by the same factor.
93
94
The joint rotation-translation matrix \f$[R|t]\f$ is the matrix product of a projective
95
transformation and a homogeneous transformation. The 3-by-4 projective transformation maps 3D points
96
represented in camera coordinates to 2D points in the image plane and represented in normalized
97
camera coordinates \f$x' = X_c / Z_c\f$ and \f$y' = Y_c / Z_c\f$:
98
99
\f[Z_c \begin{bmatrix}
100
x' \\
101
y' \\
102
1
103
\end{bmatrix} = \begin{bmatrix}
104
1 & 0 & 0 & 0 \\
105
0 & 1 & 0 & 0 \\
106
0 & 0 & 1 & 0
107
\end{bmatrix}
108
\begin{bmatrix}
109
X_c \\
110
Y_c \\
111
Z_c \\
112
1
113
\end{bmatrix}.\f]
114
115
The homogeneous transformation is encoded by the extrinsic parameters \f$R\f$ and \f$t\f$ and
116
represents the change of basis from world coordinate system \f$w\f$ to the camera coordinate sytem
117
\f$c\f$. Thus, given the representation of the point \f$P\f$ in world coordinates, \f$P_w\f$, we
118
obtain \f$P\f$'s representation in the camera coordinate system, \f$P_c\f$, by
119
120
\f[P_c = \begin{bmatrix}
121
R & t \\
122
0 & 1
123
\end{bmatrix} P_w,\f]
124
125
This homogeneous transformation is composed out of \f$R\f$, a 3-by-3 rotation matrix, and \f$t\f$, a
126
3-by-1 translation vector:
127
128
\f[\begin{bmatrix}
129
R & t \\
130
0 & 1
131
\end{bmatrix} = \begin{bmatrix}
132
r_{11} & r_{12} & r_{13} & t_x \\
133
r_{21} & r_{22} & r_{23} & t_y \\
134
r_{31} & r_{32} & r_{33} & t_z \\
135
0 & 0 & 0 & 1
136
\end{bmatrix},
137
\f]
138
139
and therefore
140
141
\f[\begin{bmatrix}
142
X_c \\
143
Y_c \\
144
Z_c \\
145
1
146
\end{bmatrix} = \begin{bmatrix}
147
r_{11} & r_{12} & r_{13} & t_x \\
148
r_{21} & r_{22} & r_{23} & t_y \\
149
r_{31} & r_{32} & r_{33} & t_z \\
150
0 & 0 & 0 & 1
151
\end{bmatrix}
152
\begin{bmatrix}
153
X_w \\
154
Y_w \\
155
Z_w \\
156
1
157
\end{bmatrix}.\f]
158
159
Combining the projective transformation and the homogeneous transformation, we obtain the projective
160
transformation that maps 3D points in world coordinates into 2D points in the image plane and in
161
normalized camera coordinates:
162
163
\f[Z_c \begin{bmatrix}
164
x' \\
165
y' \\
166
1
167
\end{bmatrix} = \begin{bmatrix} R|t \end{bmatrix} \begin{bmatrix}
168
X_w \\
169
Y_w \\
170
Z_w \\
171
1
172
\end{bmatrix} = \begin{bmatrix}
173
r_{11} & r_{12} & r_{13} & t_x \\
174
r_{21} & r_{22} & r_{23} & t_y \\
175
r_{31} & r_{32} & r_{33} & t_z
176
\end{bmatrix}
177
\begin{bmatrix}
178
X_w \\
179
Y_w \\
180
Z_w \\
181
1
182
\end{bmatrix},\f]
183
184
with \f$x' = X_c / Z_c\f$ and \f$y' = Y_c / Z_c\f$. Putting the equations for instrincs and extrinsics together, we can write out
185
\f$s \; p = A \begin{bmatrix} R|t \end{bmatrix} P_w\f$ as
186
187
\f[s \vecthree{u}{v}{1} = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}
188
\begin{bmatrix}
189
r_{11} & r_{12} & r_{13} & t_x \\
190
r_{21} & r_{22} & r_{23} & t_y \\
191
r_{31} & r_{32} & r_{33} & t_z
192
\end{bmatrix}
193
\begin{bmatrix}
194
X_w \\
195
Y_w \\
196
Z_w \\
197
1
198
\end{bmatrix}.\f]
199
200
If \f$Z_c \ne 0\f$, the transformation above is equivalent to the following,
201
202
\f[\begin{bmatrix}
203
u \\
204
v
205
\end{bmatrix} = \begin{bmatrix}
206
f_x X_c/Z_c + c_x \\
207
f_y Y_c/Z_c + c_y
208
\end{bmatrix}\f]
209
210
with
211
212
\f[\vecthree{X_c}{Y_c}{Z_c} = \begin{bmatrix}
213
R|t
214
\end{bmatrix} \begin{bmatrix}
215
X_w \\
216
Y_w \\
217
Z_w \\
218
1
219
\end{bmatrix}.\f]
220
221
The following figure illustrates the pinhole camera model.
222
223
![Pinhole camera model](pics/pinhole_camera_model.png)
224
225
Real lenses usually have some distortion, mostly radial distortion, and slight tangential distortion.
226
So, the above model is extended as:
227
228
\f[\begin{bmatrix}
229
u \\
230
v
231
\end{bmatrix} = \begin{bmatrix}
232
f_x x'' + c_x \\
233
f_y y'' + c_y
234
\end{bmatrix}\f]
235
236
where
237
238
\f[\begin{bmatrix}
239
x'' \\
240
y''
241
\end{bmatrix} = \begin{bmatrix}
242
x' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} + 2 p_1 x' y' + p_2(r^2 + 2 x'^2) + s_1 r^2 + s_2 r^4 \\
243
y' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} + p_1 (r^2 + 2 y'^2) + 2 p_2 x' y' + s_3 r^2 + s_4 r^4 \\
244
\end{bmatrix}\f]
245
246
with
247
248
\f[r^2 = x'^2 + y'^2\f]
249
250
and
251
252
\f[\begin{bmatrix}
253
x'\\
254
y'
255
\end{bmatrix} = \begin{bmatrix}
256
X_c/Z_c \\
257
Y_c/Z_c
258
\end{bmatrix},\f]
259
260
if \f$Z_c \ne 0\f$.
261
262
The distortion parameters are the radial coefficients \f$k_1\f$, \f$k_2\f$, \f$k_3\f$, \f$k_4\f$, \f$k_5\f$, and \f$k_6\f$
263
,\f$p_1\f$ and \f$p_2\f$ are the tangential distortion coefficients, and \f$s_1\f$, \f$s_2\f$, \f$s_3\f$, and \f$s_4\f$,
264
are the thin prism distortion coefficients. Higher-order coefficients are not considered in OpenCV.
265
266
The next figures show two common types of radial distortion: barrel distortion
267
(\f$ 1 + k_1 r^2 + k_2 r^4 + k_3 r^6 \f$ monotonically decreasing)
268
and pincushion distortion (\f$ 1 + k_1 r^2 + k_2 r^4 + k_3 r^6 \f$ monotonically increasing).
269
Radial distortion is always monotonic for real lenses,
270
and if the estimator produces a non-monotonic result,
271
this should be considered a calibration failure.
272
More generally, radial distortion must be monotonic and the distortion function must be bijective.
273
A failed estimation result may look deceptively good near the image center
274
but will work poorly in e.g. AR/SFM applications.
275
The optimization method used in OpenCV camera calibration does not include these constraints as
276
the framework does not support the required integer programming and polynomial inequalities.
277
See [issue #15992](https://github.com/opencv/opencv/issues/15992) for additional information.
278
279
![](pics/distortion_examples.png)
280
![](pics/distortion_examples2.png)
281
282
In some cases, the image sensor may be tilted in order to focus an oblique plane in front of the
283
camera (Scheimpflug principle). This can be useful for particle image velocimetry (PIV) or
284
triangulation with a laser fan. The tilt causes a perspective distortion of \f$x''\f$ and
285
\f$y''\f$. This distortion can be modeled in the following way, see e.g. @cite Louhichi07.
286
287
\f[\begin{bmatrix}
288
u \\
289
v
290
\end{bmatrix} = \begin{bmatrix}
291
f_x x''' + c_x \\
292
f_y y''' + c_y
293
\end{bmatrix},\f]
294
295
where
296
297
\f[s\vecthree{x'''}{y'''}{1} =
298
\vecthreethree{R_{33}(\tau_x, \tau_y)}{0}{-R_{13}(\tau_x, \tau_y)}
299
{0}{R_{33}(\tau_x, \tau_y)}{-R_{23}(\tau_x, \tau_y)}
300
{0}{0}{1} R(\tau_x, \tau_y) \vecthree{x''}{y''}{1}\f]
301
302
and the matrix \f$R(\tau_x, \tau_y)\f$ is defined by two rotations with angular parameter
303
\f$\tau_x\f$ and \f$\tau_y\f$, respectively,
304
305
\f[
306
R(\tau_x, \tau_y) =
307
\vecthreethree{\cos(\tau_y)}{0}{-\sin(\tau_y)}{0}{1}{0}{\sin(\tau_y)}{0}{\cos(\tau_y)}
308
\vecthreethree{1}{0}{0}{0}{\cos(\tau_x)}{\sin(\tau_x)}{0}{-\sin(\tau_x)}{\cos(\tau_x)} =
309
\vecthreethree{\cos(\tau_y)}{\sin(\tau_y)\sin(\tau_x)}{-\sin(\tau_y)\cos(\tau_x)}
310
{0}{\cos(\tau_x)}{\sin(\tau_x)}
311
{\sin(\tau_y)}{-\cos(\tau_y)\sin(\tau_x)}{\cos(\tau_y)\cos(\tau_x)}.
312
\f]
313
314
In the functions below the coefficients are passed or returned as
315
316
\f[(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f]
317
318
vector. That is, if the vector contains four elements, it means that \f$k_3=0\f$ . The distortion
319
coefficients do not depend on the scene viewed. Thus, they also belong to the intrinsic camera
320
parameters. And they remain the same regardless of the captured image resolution. If, for example, a
321
camera has been calibrated on images of 320 x 240 resolution, absolutely the same distortion
322
coefficients can be used for 640 x 480 images from the same camera while \f$f_x\f$, \f$f_y\f$,
323
\f$c_x\f$, and \f$c_y\f$ need to be scaled appropriately.
324
325
The functions below use the above model to do the following:
326
327
-   Project 3D points to the image plane given intrinsic and extrinsic parameters.
328
-   Compute extrinsic parameters given intrinsic parameters, a few 3D points, and their
329
projections.
330
-   Estimate intrinsic and extrinsic camera parameters from several views of a known calibration
331
pattern (every view is described by several 3D-2D point correspondences).
332
-   Estimate the relative position and orientation of the stereo camera "heads" and compute the
333
*rectification* transformation that makes the camera optical axes parallel.
334
335
<B> Homogeneous Coordinates </B><br>
336
Homogeneous Coordinates are a system of coordinates that are used in projective geometry. Their use
337
allows to represent points at infinity by finite coordinates and simplifies formulas when compared
338
to the cartesian counterparts, e.g. they have the advantage that affine transformations can be
339
expressed as linear homogeneous transformation.
340
341
One obtains the homogeneous vector \f$P_h\f$ by appending a 1 along an n-dimensional cartesian
342
vector \f$P\f$ e.g. for a 3D cartesian vector the mapping \f$P \rightarrow P_h\f$ is:
343
344
\f[\begin{bmatrix}
345
X \\
346
Y \\
347
Z
348
\end{bmatrix} \rightarrow \begin{bmatrix}
349
X \\
350
Y \\
351
Z \\
352
1
353
\end{bmatrix}.\f]
354
355
For the inverse mapping \f$P_h \rightarrow P\f$, one divides all elements of the homogeneous vector
356
by its last element, e.g. for a 3D homogeneous vector one gets its 2D cartesian counterpart by:
357
358
\f[\begin{bmatrix}
359
X \\
360
Y \\
361
W
362
\end{bmatrix} \rightarrow \begin{bmatrix}
363
X / W \\
364
Y / W
365
\end{bmatrix},\f]
366
367
if \f$W \ne 0\f$.
368
369
Due to this mapping, all multiples \f$k P_h\f$, for \f$k \ne 0\f$, of a homogeneous point represent
370
the same point \f$P_h\f$. An intuitive understanding of this property is that under a projective
371
transformation, all multiples of \f$P_h\f$ are mapped to the same point. This is the physical
372
observation one does for pinhole cameras, as all points along a ray through the camera's pinhole are
373
projected to the same image point, e.g. all points along the red ray in the image of the pinhole
374
camera model above would be mapped to the same image coordinate. This property is also the source
375
for the scale ambiguity s in the equation of the pinhole camera model.
376
377
As mentioned, by using homogeneous coordinates we can express any change of basis parameterized by
378
\f$R\f$ and \f$t\f$ as a linear transformation, e.g. for the change of basis from coordinate system
379
0 to coordinate system 1 becomes:
380
381
\f[P_1 = R P_0 + t \rightarrow P_{h_1} = \begin{bmatrix}
382
R & t \\
383
0 & 1
384
\end{bmatrix} P_{h_0}.\f]
385
386
<B> Homogeneous Transformations, Object frame / Camera frame </B><br>
387
Change of basis or computing the 3D coordinates from one frame to another frame can be achieved easily using
388
the following notation:
389
390
\f[
391
\mathbf{X}_c = \hspace{0.2em}
392
{}^{c}\mathbf{T}_o \hspace{0.2em} \mathbf{X}_o
393
\f]
394
395
\f[
396
\begin{bmatrix}
397
X_c \\
398
Y_c \\
399
Z_c \\
400
1
401
\end{bmatrix} =
402
\begin{bmatrix}
403
{}^{c}\mathbf{R}_o & {}^{c}\mathbf{t}_o \\
404
0_{1 \times 3} & 1
405
\end{bmatrix}
406
\begin{bmatrix}
407
X_o \\
408
Y_o \\
409
Z_o \\
410
1
411
\end{bmatrix}
412
\f]
413
414
For a 3D points (\f$ \mathbf{X}_o \f$) expressed in the object frame, the homogeneous transformation matrix
415
\f$ {}^{c}\mathbf{T}_o \f$ allows computing the corresponding coordinate (\f$ \mathbf{X}_c \f$) in the camera frame.
416
This transformation matrix is composed of a 3x3 rotation matrix \f$ {}^{c}\mathbf{R}_o \f$ and a 3x1 translation vector
417
\f$ {}^{c}\mathbf{t}_o \f$.
418
The 3x1 translation vector \f$ {}^{c}\mathbf{t}_o \f$ is the position of the object frame in the camera frame and the
419
3x3 rotation matrix \f$ {}^{c}\mathbf{R}_o \f$ the orientation of the object frame in the camera frame.
420
421
With this simple notation, it is easy to chain the transformations. For instance, to compute the 3D coordinates of a point
422
expressed in the object frame in the world frame can be done with:
423
424
\f[
425
\mathbf{X}_w = \hspace{0.2em}
426
{}^{w}\mathbf{T}_c \hspace{0.2em} {}^{c}\mathbf{T}_o \hspace{0.2em}
427
\mathbf{X}_o =
428
{}^{w}\mathbf{T}_o \hspace{0.2em} \mathbf{X}_o
429
\f]
430
431
Similarly, computing the inverse transformation can be done with:
432
433
\f[
434
\mathbf{X}_o = \hspace{0.2em}
435
{}^{o}\mathbf{T}_c \hspace{0.2em} \mathbf{X}_c =
436
\left( {}^{c}\mathbf{T}_o \right)^{-1} \hspace{0.2em} \mathbf{X}_c
437
\f]
438
439
The inverse of an homogeneous transformation matrix is then:
440
441
\f[
442
{}^{o}\mathbf{T}_c = \left( {}^{c}\mathbf{T}_o \right)^{-1} =
443
\begin{bmatrix}
444
{}^{c}\mathbf{R}^{\top}_o & - \hspace{0.2em} {}^{c}\mathbf{R}^{\top}_o \hspace{0.2em} {}^{c}\mathbf{t}_o \\
445
0_{1 \times 3} & 1
446
\end{bmatrix}
447
\f]
448
449
One can note that the inverse of a 3x3 rotation matrix is directly its matrix transpose.
450
451
![Perspective projection, from object to camera frame](pics/pinhole_homogeneous_transformation.png)
452
453
This figure summarizes the whole process. The object pose returned for instance by the @ref solvePnP function
454
or pose from fiducial marker detection is this \f$ {}^{c}\mathbf{T}_o \f$ transformation.
455
456
The camera intrinsic matrix \f$ \mathbf{K} \f$ allows projecting the 3D point expressed in the camera frame onto the image plane
457
assuming a perspective projection model (pinhole camera model). Image coordinates extracted from classical image processing functions
458
assume a (u,v) top-left coordinates frame.
459
460
\note
461
- for an online video course on this topic, see for instance:
462
  - ["3.3.1. Homogeneous Transformation Matrices", Modern Robotics, Kevin M. Lynch and Frank C. Park](https://modernrobotics.northwestern.edu/nu-gm-book-resource/3-3-1-homogeneous-transformation-matrices/)
463
- the 3x3 rotation matrix is composed of 9 values but describes a 3 dof transformation
464
- some additional properties of the 3x3 rotation matrix are:
465
  - \f$ \mathrm{det} \left( \mathbf{R} \right) = 1 \f$
466
  - \f$ \mathbf{R} \mathbf{R}^{\top} = \mathbf{R}^{\top} \mathbf{R} = \mathrm{I}_{3 \times 3} \f$
467
  - interpolating rotation can be done using the [Slerp (spherical linear interpolation)](https://en.wikipedia.org/wiki/Slerp) method
468
- quick conversions between the different rotation formalisms can be done using this [online tool](https://www.andre-gaschler.com/rotationconverter/)
469
470
<B> Intrinsic parameters from camera lens specifications </B><br>
471
When dealing with industrial cameras, the camera intrinsic matrix or more precisely \f$ \left(f_x, f_y \right) \f$
472
can be deduced, approximated from the camera specifications:
473
474
\f[
475
f_x = \frac{f_{\text{mm}}}{\text{pixel_size_in_mm}} = \frac{f_{\text{mm}}}{\text{sensor_size_in_mm} / \text{nb_pixels}}
476
\f]
477
478
In a same way, the physical focal length can be deduced from the angular field of view:
479
480
\f[
481
f_{\text{mm}} = \frac{\text{sensor_size_in_mm}}{2 \times \tan{\frac{\text{fov}}{2}}}
482
\f]
483
484
This latter conversion can be useful when using a rendering software to mimic a physical camera device.
485
486
<B> Additional references, notes </B><br>
487
@note
488
    -   Many functions in this module take a camera intrinsic matrix as an input parameter. Although all
489
        functions assume the same structure of this parameter, they may name it differently. The
490
        parameter's description, however, will be clear in that a camera intrinsic matrix with the structure
491
        shown above is required.
492
    -   A calibration sample for 3 cameras in a horizontal position can be found at
493
        opencv_source_code/samples/cpp/3calibration.cpp
494
    -   A calibration sample based on a sequence of images can be found at
495
        opencv_source_code/samples/cpp/calibration.cpp
496
    -   A calibration sample in order to do 3D reconstruction can be found at
497
        opencv_source_code/samples/cpp/build3dmodel.cpp
498
    -   A calibration example on stereo calibration can be found at
499
        opencv_source_code/samples/cpp/stereo_calib.cpp
500
    -   A calibration example on stereo matching can be found at
501
        opencv_source_code/samples/cpp/stereo_match.cpp
502
    -   (Python) A camera calibration sample can be found at
503
        opencv_source_code/samples/python/calibrate.py
504
505
  @{
506
    @defgroup calib3d_fisheye Fisheye camera model
507
508
    Definitions: Let P be a point in 3D of coordinates X in the world reference frame (stored in the
509
    matrix X) The coordinate vector of P in the camera reference frame is:
510
511
    \f[Xc = R X + T\f]
512
513
    where R is the rotation matrix corresponding to the rotation vector om: R = rodrigues(om); call x, y
514
    and z the 3 coordinates of Xc:
515
516
    \f[\begin{array}{l} x = Xc_1 \\ y = Xc_2 \\ z = Xc_3 \end{array} \f]
517
518
    The pinhole projection coordinates of P is [a; b] where
519
520
    \f[\begin{array}{l} a = x / z \ and \ b = y / z \\ r^2 = a^2 + b^2 \\ \theta = atan(r) \end{array} \f]
521
522
    Fisheye distortion:
523
524
    \f[\theta_d = \theta (1 + k_1 \theta^2 + k_2 \theta^4 + k_3 \theta^6 + k_4 \theta^8)\f]
525
526
    The distorted point coordinates are [x'; y'] where
527
528
    \f[\begin{array}{l} x' = (\theta_d / r) a \\ y' = (\theta_d / r) b \end{array} \f]
529
530
    Finally, conversion into pixel coordinates: The final pixel coordinates vector [u; v] where:
531
532
    \f[\begin{array}{l} u = f_x (x' + \alpha y') + c_x \\
533
    v = f_y y' + c_y \end{array} \f]
534
535
    Summary:
536
    Generic camera model @cite Kannala2006 with perspective projection and without distortion correction
537
538
  @}
539
 */
540
541
namespace cv
542
{
543
544
//! @addtogroup calib3d
545
//! @{
546
547
//! type of the robust estimation algorithm
548
enum { LMEDS  = 4,  //!< least-median of squares algorithm
549
       RANSAC = 8,  //!< RANSAC algorithm
550
       RHO    = 16, //!< RHO algorithm
551
       USAC_DEFAULT  = 32, //!< USAC algorithm, default settings
552
       USAC_PARALLEL = 33, //!< USAC, parallel version
553
       USAC_FM_8PTS = 34,  //!< USAC, fundamental matrix 8 points
554
       USAC_FAST = 35,     //!< USAC, fast settings
555
       USAC_ACCURATE = 36, //!< USAC, accurate settings
556
       USAC_PROSAC = 37,   //!< USAC, sorted points, runs PROSAC
557
       USAC_MAGSAC = 38    //!< USAC, runs MAGSAC++
558
     };
559
560
enum SolvePnPMethod {
561
    SOLVEPNP_ITERATIVE   = 0, //!< Pose refinement using non-linear Levenberg-Marquardt minimization scheme @cite Madsen04 @cite Eade13 \n
562
                              //!< Initial solution for non-planar "objectPoints" needs at least 6 points and uses the DLT algorithm. \n
563
                              //!< Initial solution for planar "objectPoints" needs at least 4 points and uses pose from homography decomposition.
564
    SOLVEPNP_EPNP        = 1, //!< EPnP: Efficient Perspective-n-Point Camera Pose Estimation @cite lepetit2009epnp
565
    SOLVEPNP_P3P         = 2, //!< Complete Solution Classification for the Perspective-Three-Point Problem @cite gao2003complete
566
    SOLVEPNP_DLS         = 3, //!< **Broken implementation. Using this flag will fallback to EPnP.** \n
567
                              //!< A Direct Least-Squares (DLS) Method for PnP @cite hesch2011direct
568
    SOLVEPNP_UPNP        = 4, //!< **Broken implementation. Using this flag will fallback to EPnP.** \n
569
                              //!< Exhaustive Linearization for Robust Camera Pose and Focal Length Estimation @cite penate2013exhaustive
570
    SOLVEPNP_AP3P        = 5, //!< An Efficient Algebraic Solution to the Perspective-Three-Point Problem @cite Ke17
571
    SOLVEPNP_IPPE        = 6, //!< Infinitesimal Plane-Based Pose Estimation @cite Collins14 \n
572
                              //!< Object points must be coplanar.
573
    SOLVEPNP_IPPE_SQUARE = 7, //!< Infinitesimal Plane-Based Pose Estimation @cite Collins14 \n
574
                              //!< This is a special case suitable for marker pose estimation.\n
575
                              //!< 4 coplanar object points must be defined in the following order:
576
                              //!<   - point 0: [-squareLength / 2,  squareLength / 2, 0]
577
                              //!<   - point 1: [ squareLength / 2,  squareLength / 2, 0]
578
                              //!<   - point 2: [ squareLength / 2, -squareLength / 2, 0]
579
                              //!<   - point 3: [-squareLength / 2, -squareLength / 2, 0]
580
    SOLVEPNP_SQPNP       = 8, //!< SQPnP: A Consistently Fast and Globally OptimalSolution to the Perspective-n-Point Problem @cite Terzakis2020SQPnP
581
#ifndef CV_DOXYGEN
582
    SOLVEPNP_MAX_COUNT        //!< Used for count
583
#endif
584
};
585
586
enum { CALIB_CB_ADAPTIVE_THRESH = 1,
587
       CALIB_CB_NORMALIZE_IMAGE = 2,
588
       CALIB_CB_FILTER_QUADS    = 4,
589
       CALIB_CB_FAST_CHECK      = 8,
590
       CALIB_CB_EXHAUSTIVE      = 16,
591
       CALIB_CB_ACCURACY        = 32,
592
       CALIB_CB_LARGER          = 64,
593
       CALIB_CB_MARKER          = 128,
594
       CALIB_CB_PLAIN           = 256
595
     };
596
597
enum { CALIB_CB_SYMMETRIC_GRID  = 1,
598
       CALIB_CB_ASYMMETRIC_GRID = 2,
599
       CALIB_CB_CLUSTERING      = 4
600
     };
601
602
enum { CALIB_NINTRINSIC          = 18,
603
       CALIB_USE_INTRINSIC_GUESS = 0x00001,
604
       CALIB_FIX_ASPECT_RATIO    = 0x00002,
605
       CALIB_FIX_PRINCIPAL_POINT = 0x00004,
606
       CALIB_ZERO_TANGENT_DIST   = 0x00008,
607
       CALIB_FIX_FOCAL_LENGTH    = 0x00010,
608
       CALIB_FIX_K1              = 0x00020,
609
       CALIB_FIX_K2              = 0x00040,
610
       CALIB_FIX_K3              = 0x00080,
611
       CALIB_FIX_K4              = 0x00800,
612
       CALIB_FIX_K5              = 0x01000,
613
       CALIB_FIX_K6              = 0x02000,
614
       CALIB_RATIONAL_MODEL      = 0x04000,
615
       CALIB_THIN_PRISM_MODEL    = 0x08000,
616
       CALIB_FIX_S1_S2_S3_S4     = 0x10000,
617
       CALIB_TILTED_MODEL        = 0x40000,
618
       CALIB_FIX_TAUX_TAUY       = 0x80000,
619
       CALIB_USE_QR              = 0x100000, //!< use QR instead of SVD decomposition for solving. Faster but potentially less precise
620
       CALIB_FIX_TANGENT_DIST    = 0x200000,
621
       // only for stereo
622
       CALIB_FIX_INTRINSIC       = 0x00100,
623
       CALIB_SAME_FOCAL_LENGTH   = 0x00200,
624
       // for stereo rectification
625
       CALIB_ZERO_DISPARITY      = 0x00400,
626
       CALIB_USE_LU              = (1 << 17), //!< use LU instead of SVD decomposition for solving. much faster but potentially less precise
627
       CALIB_USE_EXTRINSIC_GUESS = (1 << 22)  //!< for stereoCalibrate
628
     };
629
630
//! the algorithm for finding fundamental matrix
631
enum { FM_7POINT = 1, //!< 7-point algorithm
632
       FM_8POINT = 2, //!< 8-point algorithm
633
       FM_LMEDS  = 4, //!< least-median algorithm. 7-point algorithm is used.
634
       FM_RANSAC = 8  //!< RANSAC algorithm. It needs at least 15 points. 7-point algorithm is used.
635
     };
636
637
enum HandEyeCalibrationMethod
638
{
639
    CALIB_HAND_EYE_TSAI         = 0, //!< A New Technique for Fully Autonomous and Efficient 3D Robotics Hand/Eye Calibration @cite Tsai89
640
    CALIB_HAND_EYE_PARK         = 1, //!< Robot Sensor Calibration: Solving AX = XB on the Euclidean Group @cite Park94
641
    CALIB_HAND_EYE_HORAUD       = 2, //!< Hand-eye Calibration @cite Horaud95
642
    CALIB_HAND_EYE_ANDREFF      = 3, //!< On-line Hand-Eye Calibration @cite Andreff99
643
    CALIB_HAND_EYE_DANIILIDIS   = 4  //!< Hand-Eye Calibration Using Dual Quaternions @cite Daniilidis98
644
};
645
646
enum RobotWorldHandEyeCalibrationMethod
647
{
648
    CALIB_ROBOT_WORLD_HAND_EYE_SHAH = 0, //!< Solving the robot-world/hand-eye calibration problem using the kronecker product @cite Shah2013SolvingTR
649
    CALIB_ROBOT_WORLD_HAND_EYE_LI   = 1  //!< Simultaneous robot-world and hand-eye calibration using dual-quaternions and kronecker product @cite Li2010SimultaneousRA
650
};
651
652
enum SamplingMethod { SAMPLING_UNIFORM=0, SAMPLING_PROGRESSIVE_NAPSAC=1, SAMPLING_NAPSAC=2,
653
        SAMPLING_PROSAC=3 };
654
enum LocalOptimMethod {LOCAL_OPTIM_NULL=0, LOCAL_OPTIM_INNER_LO=1, LOCAL_OPTIM_INNER_AND_ITER_LO=2,
655
        LOCAL_OPTIM_GC=3, LOCAL_OPTIM_SIGMA=4};
656
enum ScoreMethod {SCORE_METHOD_RANSAC=0, SCORE_METHOD_MSAC=1, SCORE_METHOD_MAGSAC=2, SCORE_METHOD_LMEDS=3};
657
enum NeighborSearchMethod { NEIGH_FLANN_KNN=0, NEIGH_GRID=1, NEIGH_FLANN_RADIUS=2 };
658
enum PolishingMethod { NONE_POLISHER=0, LSQ_POLISHER=1, MAGSAC=2, COV_POLISHER=3 };
659
660
struct CV_EXPORTS_W_SIMPLE UsacParams
661
{ // in alphabetical order
662
    CV_WRAP UsacParams();
663
    CV_PROP_RW double confidence;
664
    CV_PROP_RW bool isParallel;
665
    CV_PROP_RW int loIterations;
666
    CV_PROP_RW LocalOptimMethod loMethod;
667
    CV_PROP_RW int loSampleSize;
668
    CV_PROP_RW int maxIterations;
669
    CV_PROP_RW NeighborSearchMethod neighborsSearch;
670
    CV_PROP_RW int randomGeneratorState;
671
    CV_PROP_RW SamplingMethod sampler;
672
    CV_PROP_RW ScoreMethod score;
673
    CV_PROP_RW double threshold;
674
    CV_PROP_RW PolishingMethod final_polisher;
675
    CV_PROP_RW int final_polisher_iterations;
676
};
677
678
/** @brief Converts a rotation matrix to a rotation vector or vice versa.
679
680
@param src Input rotation vector (3x1 or 1x3) or rotation matrix (3x3).
681
@param dst Output rotation matrix (3x3) or rotation vector (3x1 or 1x3), respectively.
682
@param jacobian Optional output Jacobian matrix, 3x9 or 9x3, which is a matrix of partial
683
derivatives of the output array components with respect to the input array components.
684
685
\f[\begin{array}{l} \theta \leftarrow norm(r) \\ r  \leftarrow r/ \theta \\ R =  \cos(\theta) I + (1- \cos{\theta} ) r r^T +  \sin(\theta) \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} \end{array}\f]
686
687
Inverse transformation can be also done easily, since
688
689
\f[\sin ( \theta ) \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} = \frac{R - R^T}{2}\f]
690
691
A rotation vector is a convenient and most compact representation of a rotation matrix (since any
692
rotation matrix has just 3 degrees of freedom). The representation is used in the global 3D geometry
693
optimization procedures like @ref calibrateCamera, @ref stereoCalibrate, or @ref solvePnP .
694
695
@note More information about the computation of the derivative of a 3D rotation matrix with respect to its exponential coordinate
696
can be found in:
697
    - A Compact Formula for the Derivative of a 3-D Rotation in Exponential Coordinates, Guillermo Gallego, Anthony J. Yezzi @cite Gallego2014ACF
698
699
@note Useful information on SE(3) and Lie Groups can be found in:
700
    - A tutorial on SE(3) transformation parameterizations and on-manifold optimization, Jose-Luis Blanco @cite blanco2010tutorial
701
    - Lie Groups for 2D and 3D Transformation, Ethan Eade @cite Eade17
702
    - A micro Lie theory for state estimation in robotics, Joan Solà, Jérémie Deray, Dinesh Atchuthan @cite Sol2018AML
703
 */
704
CV_EXPORTS_W void Rodrigues( InputArray src, OutputArray dst, OutputArray jacobian = noArray() );
705
706
707
708
/** Levenberg-Marquardt solver. Starting with the specified vector of parameters it
709
    optimizes the target vector criteria "err"
710
    (finds local minima of each target vector component absolute value).
711
712
    When needed, it calls user-provided callback.
713
*/
714
class CV_EXPORTS LMSolver : public Algorithm
715
{
716
public:
717
    class CV_EXPORTS Callback
718
    {
719
    public:
720
0
        virtual ~Callback() {}
721
        /**
722
         computes error and Jacobian for the specified vector of parameters
723
724
         @param param the current vector of parameters
725
         @param err output vector of errors: err_i = actual_f_i - ideal_f_i
726
         @param J output Jacobian: J_ij = d(ideal_f_i)/d(param_j)
727
728
         when J=noArray(), it means that it does not need to be computed.
729
         Dimensionality of error vector and param vector can be different.
730
         The callback should explicitly allocate (with "create" method) each output array
731
         (unless it's noArray()).
732
        */
733
        virtual bool compute(InputArray param, OutputArray err, OutputArray J) const = 0;
734
    };
735
736
    /**
737
       Runs Levenberg-Marquardt algorithm using the passed vector of parameters as the start point.
738
       The final vector of parameters (whether the algorithm converged or not) is stored at the same
739
       vector. The method returns the number of iterations used. If it's equal to the previously specified
740
       maxIters, there is a big chance the algorithm did not converge.
741
742
       @param param initial/final vector of parameters.
743
744
       Note that the dimensionality of parameter space is defined by the size of param vector,
745
       and the dimensionality of optimized criteria is defined by the size of err vector
746
       computed by the callback.
747
    */
748
    virtual int run(InputOutputArray param) const = 0;
749
750
    /**
751
       Sets the maximum number of iterations
752
       @param maxIters the number of iterations
753
    */
754
    virtual void setMaxIters(int maxIters) = 0;
755
    /**
756
       Retrieves the current maximum number of iterations
757
    */
758
    virtual int getMaxIters() const = 0;
759
760
    /**
761
       Creates Levenberg-Marquard solver
762
763
       @param cb callback
764
       @param maxIters maximum number of iterations that can be further
765
         modified using setMaxIters() method.
766
    */
767
    static Ptr<LMSolver> create(const Ptr<LMSolver::Callback>& cb, int maxIters);
768
    static Ptr<LMSolver> create(const Ptr<LMSolver::Callback>& cb, int maxIters, double eps);
769
};
770
771
772
773
/** @example samples/cpp/tutorial_code/features2D/Homography/pose_from_homography.cpp
774
An example program about pose estimation from coplanar points
775
776
Check @ref tutorial_homography "the corresponding tutorial" for more details
777
*/
778
779
/** @brief Finds a perspective transformation between two planes.
780
781
@param srcPoints Coordinates of the points in the original plane, a matrix of the type CV_32FC2
782
or vector\<Point2f\> .
783
@param dstPoints Coordinates of the points in the target plane, a matrix of the type CV_32FC2 or
784
a vector\<Point2f\> .
785
@param method Method used to compute a homography matrix. The following methods are possible:
786
-   **0** - a regular method using all the points, i.e., the least squares method
787
-   @ref RANSAC - RANSAC-based robust method
788
-   @ref LMEDS - Least-Median robust method
789
-   @ref RHO - PROSAC-based robust method
790
@param ransacReprojThreshold Maximum allowed reprojection error to treat a point pair as an inlier
791
(used in the RANSAC and RHO methods only). That is, if
792
\f[\| \texttt{dstPoints} _i -  \texttt{convertPointsHomogeneous} ( \texttt{H} \cdot \texttt{srcPoints} _i) \|_2  >  \texttt{ransacReprojThreshold}\f]
793
then the point \f$i\f$ is considered as an outlier. If srcPoints and dstPoints are measured in pixels,
794
it usually makes sense to set this parameter somewhere in the range of 1 to 10.
795
@param mask Optional output mask set by a robust method ( RANSAC or LMeDS ). Note that the input
796
mask values are ignored.
797
@param maxIters The maximum number of RANSAC iterations.
798
@param confidence Confidence level, between 0 and 1.
799
800
The function finds and returns the perspective transformation \f$H\f$ between the source and the
801
destination planes:
802
803
\f[s_i  \vecthree{x'_i}{y'_i}{1} \sim H  \vecthree{x_i}{y_i}{1}\f]
804
805
so that the back-projection error
806
807
\f[\sum _i \left ( x'_i- \frac{h_{11} x_i + h_{12} y_i + h_{13}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2+ \left ( y'_i- \frac{h_{21} x_i + h_{22} y_i + h_{23}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2\f]
808
809
is minimized. If the parameter method is set to the default value 0, the function uses all the point
810
pairs to compute an initial homography estimate with a simple least-squares scheme.
811
812
However, if not all of the point pairs ( \f$srcPoints_i\f$, \f$dstPoints_i\f$ ) fit the rigid perspective
813
transformation (that is, there are some outliers), this initial estimate will be poor. In this case,
814
you can use one of the three robust methods. The methods RANSAC, LMeDS and RHO try many different
815
random subsets of the corresponding point pairs (of four pairs each, collinear pairs are discarded), estimate the homography matrix
816
using this subset and a simple least-squares algorithm, and then compute the quality/goodness of the
817
computed homography (which is the number of inliers for RANSAC or the least median re-projection error for
818
LMeDS). The best subset is then used to produce the initial estimate of the homography matrix and
819
the mask of inliers/outliers.
820
821
Regardless of the method, robust or not, the computed homography matrix is refined further (using
822
inliers only in case of a robust method) with the Levenberg-Marquardt method to reduce the
823
re-projection error even more.
824
825
The methods RANSAC and RHO can handle practically any ratio of outliers but need a threshold to
826
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
827
correctly only when there are more than 50% of inliers. Finally, if there are no outliers and the
828
noise is rather small, use the default method (method=0).
829
830
The function is used to find initial intrinsic and extrinsic matrices. Homography matrix is
831
determined up to a scale. If \f$h_{33}\f$ is non-zero, the matrix is normalized so that \f$h_{33}=1\f$.
832
@note Whenever an \f$H\f$ matrix cannot be estimated, an empty one will be returned.
833
834
@sa
835
getAffineTransform, estimateAffine2D, estimateAffinePartial2D, getPerspectiveTransform, warpPerspective,
836
perspectiveTransform
837
 */
838
CV_EXPORTS_W Mat findHomography( InputArray srcPoints, InputArray dstPoints,
839
                                 int method = 0, double ransacReprojThreshold = 3,
840
                                 OutputArray mask=noArray(), const int maxIters = 2000,
841
                                 const double confidence = 0.995);
842
843
/** @overload */
844
CV_EXPORTS Mat findHomography( InputArray srcPoints, InputArray dstPoints,
845
                               OutputArray mask, int method = 0, double ransacReprojThreshold = 3 );
846
847
848
CV_EXPORTS_W Mat findHomography(InputArray srcPoints, InputArray dstPoints, OutputArray mask,
849
                   const UsacParams &params);
850
851
/** @brief Computes an RQ decomposition of 3x3 matrices.
852
853
@param src 3x3 input matrix.
854
@param mtxR Output 3x3 upper-triangular matrix.
855
@param mtxQ Output 3x3 orthogonal matrix.
856
@param Qx Optional output 3x3 rotation matrix around x-axis.
857
@param Qy Optional output 3x3 rotation matrix around y-axis.
858
@param Qz Optional output 3x3 rotation matrix around z-axis.
859
860
The function computes a RQ decomposition using the given rotations. This function is used in
861
#decomposeProjectionMatrix to decompose the left 3x3 submatrix of a projection matrix into a camera
862
and a rotation matrix.
863
864
It optionally returns three rotation matrices, one for each axis, and the three Euler angles in
865
degrees (as the return value) that could be used in OpenGL. Note, there is always more than one
866
sequence of rotations about the three principal axes that results in the same orientation of an
867
object, e.g. see @cite Slabaugh . Returned three rotation matrices and corresponding three Euler angles
868
are only one of the possible solutions.
869
 */
870
CV_EXPORTS_W Vec3d RQDecomp3x3( InputArray src, OutputArray mtxR, OutputArray mtxQ,
871
                                OutputArray Qx = noArray(),
872
                                OutputArray Qy = noArray(),
873
                                OutputArray Qz = noArray());
874
875
/** @brief Decomposes a projection matrix into a rotation matrix and a camera intrinsic matrix.
876
877
@param projMatrix 3x4 input projection matrix P.
878
@param cameraMatrix Output 3x3 camera intrinsic matrix \f$\cameramatrix{A}\f$.
879
@param rotMatrix Output 3x3 external rotation matrix R.
880
@param transVect Output 4x1 translation vector T.
881
@param rotMatrixX Optional 3x3 rotation matrix around x-axis.
882
@param rotMatrixY Optional 3x3 rotation matrix around y-axis.
883
@param rotMatrixZ Optional 3x3 rotation matrix around z-axis.
884
@param eulerAngles Optional three-element vector containing three Euler angles of rotation in
885
degrees.
886
887
The function computes a decomposition of a projection matrix into a calibration and a rotation
888
matrix and the position of a camera.
889
890
It optionally returns three rotation matrices, one for each axis, and three Euler angles that could
891
be used in OpenGL. Note, there is always more than one sequence of rotations about the three
892
principal axes that results in the same orientation of an object, e.g. see @cite Slabaugh . Returned
893
three rotation matrices and corresponding three Euler angles are only one of the possible solutions.
894
895
The function is based on #RQDecomp3x3 .
896
 */
897
CV_EXPORTS_W void decomposeProjectionMatrix( InputArray projMatrix, OutputArray cameraMatrix,
898
                                             OutputArray rotMatrix, OutputArray transVect,
899
                                             OutputArray rotMatrixX = noArray(),
900
                                             OutputArray rotMatrixY = noArray(),
901
                                             OutputArray rotMatrixZ = noArray(),
902
                                             OutputArray eulerAngles =noArray() );
903
904
/** @brief Computes partial derivatives of the matrix product for each multiplied matrix.
905
906
@param A First multiplied matrix.
907
@param B Second multiplied matrix.
908
@param dABdA First output derivative matrix d(A\*B)/dA of size
909
\f$\texttt{A.rows*B.cols} \times {A.rows*A.cols}\f$ .
910
@param dABdB Second output derivative matrix d(A\*B)/dB of size
911
\f$\texttt{A.rows*B.cols} \times {B.rows*B.cols}\f$ .
912
913
The function computes partial derivatives of the elements of the matrix product \f$A*B\f$ with regard to
914
the elements of each of the two input matrices. The function is used to compute the Jacobian
915
matrices in #stereoCalibrate but can also be used in any other similar optimization function.
916
 */
917
CV_EXPORTS_W void matMulDeriv( InputArray A, InputArray B, OutputArray dABdA, OutputArray dABdB );
918
919
/** @brief Combines two rotation-and-shift transformations.
920
921
@param rvec1 First rotation vector.
922
@param tvec1 First translation vector.
923
@param rvec2 Second rotation vector.
924
@param tvec2 Second translation vector.
925
@param rvec3 Output rotation vector of the superposition.
926
@param tvec3 Output translation vector of the superposition.
927
@param dr3dr1 Optional output derivative of rvec3 with regard to rvec1
928
@param dr3dt1 Optional output derivative of rvec3 with regard to tvec1
929
@param dr3dr2 Optional output derivative of rvec3 with regard to rvec2
930
@param dr3dt2 Optional output derivative of rvec3 with regard to tvec2
931
@param dt3dr1 Optional output derivative of tvec3 with regard to rvec1
932
@param dt3dt1 Optional output derivative of tvec3 with regard to tvec1
933
@param dt3dr2 Optional output derivative of tvec3 with regard to rvec2
934
@param dt3dt2 Optional output derivative of tvec3 with regard to tvec2
935
936
The functions compute:
937
938
\f[\begin{array}{l} \texttt{rvec3} =  \mathrm{rodrigues} ^{-1} \left ( \mathrm{rodrigues} ( \texttt{rvec2} )  \cdot \mathrm{rodrigues} ( \texttt{rvec1} ) \right )  \\ \texttt{tvec3} =  \mathrm{rodrigues} ( \texttt{rvec2} )  \cdot \texttt{tvec1} +  \texttt{tvec2} \end{array} ,\f]
939
940
where \f$\mathrm{rodrigues}\f$ denotes a rotation vector to a rotation matrix transformation, and
941
\f$\mathrm{rodrigues}^{-1}\f$ denotes the inverse transformation. See #Rodrigues for details.
942
943
Also, the functions can compute the derivatives of the output vectors with regards to the input
944
vectors (see #matMulDeriv ). The functions are used inside #stereoCalibrate but can also be used in
945
your own code where Levenberg-Marquardt or another gradient-based solver is used to optimize a
946
function that contains a matrix multiplication.
947
 */
948
CV_EXPORTS_W void composeRT( InputArray rvec1, InputArray tvec1,
949
                             InputArray rvec2, InputArray tvec2,
950
                             OutputArray rvec3, OutputArray tvec3,
951
                             OutputArray dr3dr1 = noArray(), OutputArray dr3dt1 = noArray(),
952
                             OutputArray dr3dr2 = noArray(), OutputArray dr3dt2 = noArray(),
953
                             OutputArray dt3dr1 = noArray(), OutputArray dt3dt1 = noArray(),
954
                             OutputArray dt3dr2 = noArray(), OutputArray dt3dt2 = noArray() );
955
956
/** @brief Projects 3D points to an image plane.
957
958
@param objectPoints Array of object points expressed wrt. the world coordinate frame. A 3xN/Nx3
959
1-channel or 1xN/Nx1 3-channel (or vector\<Point3f\> ), where N is the number of points in the view.
960
@param rvec The rotation vector (@ref Rodrigues) that, together with tvec, performs a change of
961
basis from world to camera coordinate system, see @ref calibrateCamera for details.
962
@param tvec The translation vector, see parameter description above.
963
@param cameraMatrix Camera intrinsic matrix \f$\cameramatrix{A}\f$ .
964
@param distCoeffs Input vector of distortion coefficients
965
\f$\distcoeffs\f$ . If the vector is empty, the zero distortion coefficients are assumed.
966
@param imagePoints Output array of image points, 1xN/Nx1 2-channel, or
967
vector\<Point2f\> .
968
@param jacobian Optional output 2Nx(10+\<numDistCoeffs\>) jacobian matrix of derivatives of image
969
points with respect to components of the rotation vector, translation vector, focal lengths,
970
coordinates of the principal point and the distortion coefficients. In the old interface different
971
components of the jacobian are returned via different output parameters.
972
@param aspectRatio Optional "fixed aspect ratio" parameter. If the parameter is not 0, the
973
function assumes that the aspect ratio (\f$f_x / f_y\f$) is fixed and correspondingly adjusts the
974
jacobian matrix.
975
976
The function computes the 2D projections of 3D points to the image plane, given intrinsic and
977
extrinsic camera parameters. Optionally, the function computes Jacobians -matrices of partial
978
derivatives of image points coordinates (as functions of all the input parameters) with respect to
979
the particular parameters, intrinsic and/or extrinsic. The Jacobians are used during the global
980
optimization in @ref calibrateCamera, @ref solvePnP, and @ref stereoCalibrate. The function itself
981
can also be used to compute a re-projection error, given the current intrinsic and extrinsic
982
parameters.
983
984
@note By setting rvec = tvec = \f$[0, 0, 0]\f$, or by setting cameraMatrix to a 3x3 identity matrix,
985
or by passing zero distortion coefficients, one can get various useful partial cases of the
986
function. This means, one can compute the distorted coordinates for a sparse set of points or apply
987
a perspective transformation (and also compute the derivatives) in the ideal zero-distortion setup.
988
 */
989
CV_EXPORTS_W void projectPoints( InputArray objectPoints,
990
                                 InputArray rvec, InputArray tvec,
991
                                 InputArray cameraMatrix, InputArray distCoeffs,
992
                                 OutputArray imagePoints,
993
                                 OutputArray jacobian = noArray(),
994
                                 double aspectRatio = 0 );
995
996
/** @example samples/cpp/tutorial_code/features2D/Homography/homography_from_camera_displacement.cpp
997
An example program about homography from the camera displacement
998
999
Check @ref tutorial_homography "the corresponding tutorial" for more details
1000
*/
1001
1002
/** @brief Finds an object pose from 3D-2D point correspondences.
1003
1004
@see @ref calib3d_solvePnP
1005
1006
This function returns the rotation and the translation vectors that transform a 3D point expressed in the object
1007
coordinate frame to the camera coordinate frame, using different methods:
1008
- P3P methods (@ref SOLVEPNP_P3P, @ref SOLVEPNP_AP3P): need 4 input points to return a unique solution.
1009
- @ref SOLVEPNP_IPPE Input points must be >= 4 and object points must be coplanar.
1010
- @ref SOLVEPNP_IPPE_SQUARE Special case suitable for marker pose estimation.
1011
Number of input points must be 4. Object points must be defined in the following order:
1012
  - point 0: [-squareLength / 2,  squareLength / 2, 0]
1013
  - point 1: [ squareLength / 2,  squareLength / 2, 0]
1014
  - point 2: [ squareLength / 2, -squareLength / 2, 0]
1015
  - point 3: [-squareLength / 2, -squareLength / 2, 0]
1016
- for all the other flags, number of input points must be >= 4 and object points can be in any configuration.
1017
1018
@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or
1019
1xN/Nx1 3-channel, where N is the number of points. vector\<Point3d\> can be also passed here.
1020
@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
1021
where N is the number of points. vector\<Point2d\> can be also passed here.
1022
@param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ .
1023
@param distCoeffs Input vector of distortion coefficients
1024
\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are
1025
assumed.
1026
@param rvec Output rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from
1027
the model coordinate system to the camera coordinate system.
1028
@param tvec Output translation vector.
1029
@param useExtrinsicGuess Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses
1030
the provided rvec and tvec values as initial approximations of the rotation and translation
1031
vectors, respectively, and further optimizes them.
1032
@param flags Method for solving a PnP problem: see @ref calib3d_solvePnP_flags
1033
1034
More information about Perspective-n-Points is described in @ref calib3d_solvePnP
1035
1036
@note
1037
   -   An example of how to use solvePnP for planar augmented reality can be found at
1038
        opencv_source_code/samples/python/plane_ar.py
1039
   -   If you are using Python:
1040
        - Numpy array slices won't work as input because solvePnP requires contiguous
1041
        arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of
1042
        modules/calib3d/src/solvepnp.cpp version 2.4.9)
1043
        - The P3P algorithm requires image points to be in an array of shape (N,1,2) due
1044
        to its calling of #undistortPoints (around line 75 of modules/calib3d/src/solvepnp.cpp version 2.4.9)
1045
        which requires 2-channel information.
1046
        - Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of
1047
        it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints =
1048
        np.ascontiguousarray(D[:,:2]).reshape((N,1,2))
1049
   -   The methods @ref SOLVEPNP_DLS and @ref SOLVEPNP_UPNP cannot be used as the current implementations are
1050
       unstable and sometimes give completely wrong results. If you pass one of these two
1051
       flags, @ref SOLVEPNP_EPNP method will be used instead.
1052
   -   The minimum number of points is 4 in the general case. In the case of @ref SOLVEPNP_P3P and @ref SOLVEPNP_AP3P
1053
       methods, it is required to use exactly 4 points (the first 3 points are used to estimate all the solutions
1054
       of the P3P problem, the last one is used to retain the best solution that minimizes the reprojection error).
1055
   -   With @ref SOLVEPNP_ITERATIVE method and `useExtrinsicGuess=true`, the minimum number of points is 3 (3 points
1056
       are sufficient to compute a pose but there are up to 4 solutions). The initial solution should be close to the
1057
       global solution to converge.
1058
   -   With @ref SOLVEPNP_IPPE input points must be >= 4 and object points must be coplanar.
1059
   -   With @ref SOLVEPNP_IPPE_SQUARE this is a special case suitable for marker pose estimation.
1060
       Number of input points must be 4. Object points must be defined in the following order:
1061
         - point 0: [-squareLength / 2,  squareLength / 2, 0]
1062
         - point 1: [ squareLength / 2,  squareLength / 2, 0]
1063
         - point 2: [ squareLength / 2, -squareLength / 2, 0]
1064
         - point 3: [-squareLength / 2, -squareLength / 2, 0]
1065
    -  With @ref SOLVEPNP_SQPNP input points must be >= 3
1066
 */
1067
CV_EXPORTS_W bool solvePnP( InputArray objectPoints, InputArray imagePoints,
1068
                            InputArray cameraMatrix, InputArray distCoeffs,
1069
                            OutputArray rvec, OutputArray tvec,
1070
                            bool useExtrinsicGuess = false, int flags = SOLVEPNP_ITERATIVE );
1071
1072
/** @brief Finds an object pose from 3D-2D point correspondences using the RANSAC scheme.
1073
1074
@see @ref calib3d_solvePnP
1075
1076
@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or
1077
1xN/Nx1 3-channel, where N is the number of points. vector\<Point3d\> can be also passed here.
1078
@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
1079
where N is the number of points. vector\<Point2d\> can be also passed here.
1080
@param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ .
1081
@param distCoeffs Input vector of distortion coefficients
1082
\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are
1083
assumed.
1084
@param rvec Output rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from
1085
the model coordinate system to the camera coordinate system.
1086
@param tvec Output translation vector.
1087
@param useExtrinsicGuess Parameter used for @ref SOLVEPNP_ITERATIVE. If true (1), the function uses
1088
the provided rvec and tvec values as initial approximations of the rotation and translation
1089
vectors, respectively, and further optimizes them.
1090
@param iterationsCount Number of iterations.
1091
@param reprojectionError Inlier threshold value used by the RANSAC procedure. The parameter value
1092
is the maximum allowed distance between the observed and computed point projections to consider it
1093
an inlier.
1094
@param confidence The probability that the algorithm produces a useful result.
1095
@param inliers Output vector that contains indices of inliers in objectPoints and imagePoints .
1096
@param flags Method for solving a PnP problem (see @ref solvePnP ).
1097
1098
The function estimates an object pose given a set of object points, their corresponding image
1099
projections, as well as the camera intrinsic matrix and the distortion coefficients. This function finds such
1100
a pose that minimizes reprojection error, that is, the sum of squared distances between the observed
1101
projections imagePoints and the projected (using @ref projectPoints ) objectPoints. The use of RANSAC
1102
makes the function resistant to outliers.
1103
1104
@note
1105
   -   An example of how to use solvePNPRansac for object detection can be found at
1106
        opencv_source_code/samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/
1107
   -   The default method used to estimate the camera pose for the Minimal Sample Sets step
1108
       is #SOLVEPNP_EPNP. Exceptions are:
1109
         - if you choose #SOLVEPNP_P3P or #SOLVEPNP_AP3P, these methods will be used.
1110
         - if the number of input points is equal to 4, #SOLVEPNP_P3P is used.
1111
   -   The method used to estimate the camera pose using all the inliers is defined by the
1112
       flags parameters unless it is equal to #SOLVEPNP_P3P or #SOLVEPNP_AP3P. In this case,
1113
       the method #SOLVEPNP_EPNP will be used instead.
1114
 */
1115
CV_EXPORTS_W bool solvePnPRansac( InputArray objectPoints, InputArray imagePoints,
1116
                                  InputArray cameraMatrix, InputArray distCoeffs,
1117
                                  OutputArray rvec, OutputArray tvec,
1118
                                  bool useExtrinsicGuess = false, int iterationsCount = 100,
1119
                                  float reprojectionError = 8.0, double confidence = 0.99,
1120
                                  OutputArray inliers = noArray(), int flags = SOLVEPNP_ITERATIVE );
1121
1122
1123
/*
1124
Finds rotation and translation vector.
1125
If cameraMatrix is given then run P3P. Otherwise run linear P6P and output cameraMatrix too.
1126
*/
1127
CV_EXPORTS_W bool solvePnPRansac( InputArray objectPoints, InputArray imagePoints,
1128
                     InputOutputArray cameraMatrix, InputArray distCoeffs,
1129
                     OutputArray rvec, OutputArray tvec, OutputArray inliers,
1130
                     const UsacParams &params=UsacParams());
1131
1132
/** @brief Finds an object pose from 3 3D-2D point correspondences.
1133
1134
@see @ref calib3d_solvePnP
1135
1136
@param objectPoints Array of object points in the object coordinate space, 3x3 1-channel or
1137
1x3/3x1 3-channel. vector\<Point3f\> can be also passed here.
1138
@param imagePoints Array of corresponding image points, 3x2 1-channel or 1x3/3x1 2-channel.
1139
 vector\<Point2f\> can be also passed here.
1140
@param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ .
1141
@param distCoeffs Input vector of distortion coefficients
1142
\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are
1143
assumed.
1144
@param rvecs Output rotation vectors (see @ref Rodrigues ) that, together with tvecs, brings points from
1145
the model coordinate system to the camera coordinate system. A P3P problem has up to 4 solutions.
1146
@param tvecs Output translation vectors.
1147
@param flags Method for solving a P3P problem:
1148
-   @ref SOLVEPNP_P3P Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang
1149
"Complete Solution Classification for the Perspective-Three-Point Problem" (@cite gao2003complete).
1150
-   @ref SOLVEPNP_AP3P Method is based on the paper of T. Ke and S. Roumeliotis.
1151
"An Efficient Algebraic Solution to the Perspective-Three-Point Problem" (@cite Ke17).
1152
1153
The function estimates the object pose given 3 object points, their corresponding image
1154
projections, as well as the camera intrinsic matrix and the distortion coefficients.
1155
1156
@note
1157
The solutions are sorted by reprojection errors (lowest to highest).
1158
 */
1159
CV_EXPORTS_W int solveP3P( InputArray objectPoints, InputArray imagePoints,
1160
                           InputArray cameraMatrix, InputArray distCoeffs,
1161
                           OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
1162
                           int flags );
1163
1164
/** @brief Refine a pose (the translation and the rotation that transform a 3D point expressed in the object coordinate frame
1165
to the camera coordinate frame) from a 3D-2D point correspondences and starting from an initial solution.
1166
1167
@see @ref calib3d_solvePnP
1168
1169
@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or 1xN/Nx1 3-channel,
1170
where N is the number of points. vector\<Point3d\> can also be passed here.
1171
@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
1172
where N is the number of points. vector\<Point2d\> can also be passed here.
1173
@param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ .
1174
@param distCoeffs Input vector of distortion coefficients
1175
\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are
1176
assumed.
1177
@param rvec Input/Output rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from
1178
the model coordinate system to the camera coordinate system. Input values are used as an initial solution.
1179
@param tvec Input/Output translation vector. Input values are used as an initial solution.
1180
@param criteria Criteria when to stop the Levenberg-Marquard iterative algorithm.
1181
1182
The function refines the object pose given at least 3 object points, their corresponding image
1183
projections, an initial solution for the rotation and translation vector,
1184
as well as the camera intrinsic matrix and the distortion coefficients.
1185
The function minimizes the projection error with respect to the rotation and the translation vectors, according
1186
to a Levenberg-Marquardt iterative minimization @cite Madsen04 @cite Eade13 process.
1187
 */
1188
CV_EXPORTS_W void solvePnPRefineLM( InputArray objectPoints, InputArray imagePoints,
1189
                                    InputArray cameraMatrix, InputArray distCoeffs,
1190
                                    InputOutputArray rvec, InputOutputArray tvec,
1191
                                    TermCriteria criteria = TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 20, FLT_EPSILON));
1192
1193
/** @brief Refine a pose (the translation and the rotation that transform a 3D point expressed in the object coordinate frame
1194
to the camera coordinate frame) from a 3D-2D point correspondences and starting from an initial solution.
1195
1196
@see @ref calib3d_solvePnP
1197
1198
@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or 1xN/Nx1 3-channel,
1199
where N is the number of points. vector\<Point3d\> can also be passed here.
1200
@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
1201
where N is the number of points. vector\<Point2d\> can also be passed here.
1202
@param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ .
1203
@param distCoeffs Input vector of distortion coefficients
1204
\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are
1205
assumed.
1206
@param rvec Input/Output rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from
1207
the model coordinate system to the camera coordinate system. Input values are used as an initial solution.
1208
@param tvec Input/Output translation vector. Input values are used as an initial solution.
1209
@param criteria Criteria when to stop the Levenberg-Marquard iterative algorithm.
1210
@param VVSlambda Gain for the virtual visual servoing control law, equivalent to the \f$\alpha\f$
1211
gain in the Damped Gauss-Newton formulation.
1212
1213
The function refines the object pose given at least 3 object points, their corresponding image
1214
projections, an initial solution for the rotation and translation vector,
1215
as well as the camera intrinsic matrix and the distortion coefficients.
1216
The function minimizes the projection error with respect to the rotation and the translation vectors, using a
1217
virtual visual servoing (VVS) @cite Chaumette06 @cite Marchand16 scheme.
1218
 */
1219
CV_EXPORTS_W void solvePnPRefineVVS( InputArray objectPoints, InputArray imagePoints,
1220
                                     InputArray cameraMatrix, InputArray distCoeffs,
1221
                                     InputOutputArray rvec, InputOutputArray tvec,
1222
                                     TermCriteria criteria = TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 20, FLT_EPSILON),
1223
                                     double VVSlambda = 1);
1224
1225
/** @brief Finds an object pose from 3D-2D point correspondences.
1226
1227
@see @ref calib3d_solvePnP
1228
1229
This function returns a list of all the possible solutions (a solution is a <rotation vector, translation vector>
1230
couple), depending on the number of input points and the chosen method:
1231
- P3P methods (@ref SOLVEPNP_P3P, @ref SOLVEPNP_AP3P): 3 or 4 input points. Number of returned solutions can be between 0 and 4 with 3 input points.
1232
- @ref SOLVEPNP_IPPE Input points must be >= 4 and object points must be coplanar. Returns 2 solutions.
1233
- @ref SOLVEPNP_IPPE_SQUARE Special case suitable for marker pose estimation.
1234
Number of input points must be 4 and 2 solutions are returned. Object points must be defined in the following order:
1235
  - point 0: [-squareLength / 2,  squareLength / 2, 0]
1236
  - point 1: [ squareLength / 2,  squareLength / 2, 0]
1237
  - point 2: [ squareLength / 2, -squareLength / 2, 0]
1238
  - point 3: [-squareLength / 2, -squareLength / 2, 0]
1239
- for all the other flags, number of input points must be >= 4 and object points can be in any configuration.
1240
Only 1 solution is returned.
1241
1242
@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or
1243
1xN/Nx1 3-channel, where N is the number of points. vector\<Point3d\> can be also passed here.
1244
@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
1245
where N is the number of points. vector\<Point2d\> can be also passed here.
1246
@param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ .
1247
@param distCoeffs Input vector of distortion coefficients
1248
\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are
1249
assumed.
1250
@param rvecs Vector of output rotation vectors (see @ref Rodrigues ) that, together with tvecs, brings points from
1251
the model coordinate system to the camera coordinate system.
1252
@param tvecs Vector of output translation vectors.
1253
@param useExtrinsicGuess Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses
1254
the provided rvec and tvec values as initial approximations of the rotation and translation
1255
vectors, respectively, and further optimizes them.
1256
@param flags Method for solving a PnP problem: see @ref calib3d_solvePnP_flags
1257
@param rvec Rotation vector used to initialize an iterative PnP refinement algorithm, when flag is @ref SOLVEPNP_ITERATIVE
1258
and useExtrinsicGuess is set to true.
1259
@param tvec Translation vector used to initialize an iterative PnP refinement algorithm, when flag is @ref SOLVEPNP_ITERATIVE
1260
and useExtrinsicGuess is set to true.
1261
@param reprojectionError Optional vector of reprojection error, that is the RMS error
1262
(\f$ \text{RMSE} = \sqrt{\frac{\sum_{i}^{N} \left ( \hat{y_i} - y_i \right )^2}{N}} \f$) between the input image points
1263
and the 3D object points projected with the estimated pose.
1264
1265
More information is described in @ref calib3d_solvePnP
1266
1267
@note
1268
   -   An example of how to use solvePnP for planar augmented reality can be found at
1269
        opencv_source_code/samples/python/plane_ar.py
1270
   -   If you are using Python:
1271
        - Numpy array slices won't work as input because solvePnP requires contiguous
1272
        arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of
1273
        modules/calib3d/src/solvepnp.cpp version 2.4.9)
1274
        - The P3P algorithm requires image points to be in an array of shape (N,1,2) due
1275
        to its calling of #undistortPoints (around line 75 of modules/calib3d/src/solvepnp.cpp version 2.4.9)
1276
        which requires 2-channel information.
1277
        - Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of
1278
        it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints =
1279
        np.ascontiguousarray(D[:,:2]).reshape((N,1,2))
1280
   -   The methods @ref SOLVEPNP_DLS and @ref SOLVEPNP_UPNP cannot be used as the current implementations are
1281
       unstable and sometimes give completely wrong results. If you pass one of these two
1282
       flags, @ref SOLVEPNP_EPNP method will be used instead.
1283
   -   The minimum number of points is 4 in the general case. In the case of @ref SOLVEPNP_P3P and @ref SOLVEPNP_AP3P
1284
       methods, it is required to use exactly 4 points (the first 3 points are used to estimate all the solutions
1285
       of the P3P problem, the last one is used to retain the best solution that minimizes the reprojection error).
1286
   -   With @ref SOLVEPNP_ITERATIVE method and `useExtrinsicGuess=true`, the minimum number of points is 3 (3 points
1287
       are sufficient to compute a pose but there are up to 4 solutions). The initial solution should be close to the
1288
       global solution to converge.
1289
   -   With @ref SOLVEPNP_IPPE input points must be >= 4 and object points must be coplanar.
1290
   -   With @ref SOLVEPNP_IPPE_SQUARE this is a special case suitable for marker pose estimation.
1291
       Number of input points must be 4. Object points must be defined in the following order:
1292
         - point 0: [-squareLength / 2,  squareLength / 2, 0]
1293
         - point 1: [ squareLength / 2,  squareLength / 2, 0]
1294
         - point 2: [ squareLength / 2, -squareLength / 2, 0]
1295
         - point 3: [-squareLength / 2, -squareLength / 2, 0]
1296
 */
1297
CV_EXPORTS_W int solvePnPGeneric( InputArray objectPoints, InputArray imagePoints,
1298
                                  InputArray cameraMatrix, InputArray distCoeffs,
1299
                                  OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
1300
                                  bool useExtrinsicGuess = false, SolvePnPMethod flags = SOLVEPNP_ITERATIVE,
1301
                                  InputArray rvec = noArray(), InputArray tvec = noArray(),
1302
                                  OutputArray reprojectionError = noArray() );
1303
1304
/** @brief Finds an initial camera intrinsic matrix from 3D-2D point correspondences.
1305
1306
@param objectPoints Vector of vectors of the calibration pattern points in the calibration pattern
1307
coordinate space. In the old interface all the per-view vectors are concatenated. See
1308
#calibrateCamera for details.
1309
@param imagePoints Vector of vectors of the projections of the calibration pattern points. In the
1310
old interface all the per-view vectors are concatenated.
1311
@param imageSize Image size in pixels used to initialize the principal point.
1312
@param aspectRatio If it is zero or negative, both \f$f_x\f$ and \f$f_y\f$ are estimated independently.
1313
Otherwise, \f$f_x = f_y \cdot \texttt{aspectRatio}\f$ .
1314
1315
The function estimates and returns an initial camera intrinsic matrix for the camera calibration process.
1316
Currently, the function only supports planar calibration patterns, which are patterns where each
1317
object point has z-coordinate =0.
1318
 */
1319
CV_EXPORTS_W Mat initCameraMatrix2D( InputArrayOfArrays objectPoints,
1320
                                     InputArrayOfArrays imagePoints,
1321
                                     Size imageSize, double aspectRatio = 1.0 );
1322
1323
/** @brief Finds the positions of internal corners of the chessboard.
1324
1325
@param image Source chessboard view. It must be an 8-bit grayscale or color image.
1326
@param patternSize Number of inner corners per a chessboard row and column
1327
( patternSize = cv::Size(points_per_row,points_per_colum) = cv::Size(columns,rows) ).
1328
@param corners Output array of detected corners.
1329
@param flags Various operation flags that can be zero or a combination of the following values:
1330
-   @ref CALIB_CB_ADAPTIVE_THRESH Use adaptive thresholding to convert the image to black
1331
and white, rather than a fixed threshold level (computed from the average image brightness).
1332
-   @ref CALIB_CB_NORMALIZE_IMAGE Normalize the image gamma with #equalizeHist before
1333
applying fixed or adaptive thresholding.
1334
-   @ref CALIB_CB_FILTER_QUADS Use additional criteria (like contour area, perimeter,
1335
square-like shape) to filter out false quads extracted at the contour retrieval stage.
1336
-   @ref CALIB_CB_FAST_CHECK Run a fast check on the image that looks for chessboard corners,
1337
and shortcut the call if none is found. This can drastically speed up the call in the
1338
degenerate condition when no chessboard is observed.
1339
-   @ref CALIB_CB_PLAIN All other flags are ignored. The input image is taken as is.
1340
No image processing is done to improve to find the checkerboard. This has the effect of speeding up the
1341
execution of the function but could lead to not recognizing the checkerboard if the image
1342
is not previously binarized in the appropriate manner.
1343
1344
The function attempts to determine whether the input image is a view of the chessboard pattern and
1345
locate the internal chessboard corners. The function returns a non-zero value if all of the corners
1346
are found and they are placed in a certain order (row by row, left to right in every row).
1347
Otherwise, if the function fails to find all the corners or reorder them, it returns 0. For example,
1348
a regular chessboard has 8 x 8 squares and 7 x 7 internal corners, that is, points where the black
1349
squares touch each other. The detected coordinates are approximate, and to determine their positions
1350
more accurately, the function calls #cornerSubPix. You also may use the function #cornerSubPix with
1351
different parameters if returned coordinates are not accurate enough.
1352
1353
Sample usage of detecting and drawing chessboard corners: :
1354
@code
1355
    Size patternsize(8,6); //interior number of corners
1356
    Mat gray = ....; //source image
1357
    vector<Point2f> corners; //this will be filled by the detected corners
1358
1359
    //CALIB_CB_FAST_CHECK saves a lot of time on images
1360
    //that do not contain any chessboard corners
1361
    bool patternfound = findChessboardCorners(gray, patternsize, corners,
1362
            CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE
1363
            + CALIB_CB_FAST_CHECK);
1364
1365
    if(patternfound)
1366
      cornerSubPix(gray, corners, Size(11, 11), Size(-1, -1),
1367
        TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 30, 0.1));
1368
1369
    drawChessboardCorners(img, patternsize, Mat(corners), patternfound);
1370
@endcode
1371
@note The function requires white space (like a square-thick border, the wider the better) around
1372
the board to make the detection more robust in various environments. Otherwise, if there is no
1373
border and the background is dark, the outer black squares cannot be segmented properly and so the
1374
square grouping and ordering algorithm fails.
1375
1376
Use gen_pattern.py (@ref tutorial_camera_calibration_pattern) to create checkerboard.
1377
 */
1378
CV_EXPORTS_W bool findChessboardCorners( InputArray image, Size patternSize, OutputArray corners,
1379
                                         int flags = CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE );
1380
1381
/*
1382
   Checks whether the image contains chessboard of the specific size or not.
1383
   If yes, nonzero value is returned.
1384
*/
1385
CV_EXPORTS_W bool checkChessboard(InputArray img, Size size);
1386
1387
/** @brief Finds the positions of internal corners of the chessboard using a sector based approach.
1388
1389
@param image Source chessboard view. It must be an 8-bit grayscale or color image.
1390
@param patternSize Number of inner corners per a chessboard row and column
1391
( patternSize = cv::Size(points_per_row,points_per_colum) = cv::Size(columns,rows) ).
1392
@param corners Output array of detected corners.
1393
@param flags Various operation flags that can be zero or a combination of the following values:
1394
-   @ref CALIB_CB_NORMALIZE_IMAGE Normalize the image gamma with equalizeHist before detection.
1395
-   @ref CALIB_CB_EXHAUSTIVE Run an exhaustive search to improve detection rate.
1396
-   @ref CALIB_CB_ACCURACY Up sample input image to improve sub-pixel accuracy due to aliasing effects.
1397
-   @ref CALIB_CB_LARGER The detected pattern is allowed to be larger than patternSize (see description).
1398
-   @ref CALIB_CB_MARKER The detected pattern must have a marker (see description).
1399
This should be used if an accurate camera calibration is required.
1400
@param meta Optional output arrray of detected corners (CV_8UC1 and size = cv::Size(columns,rows)).
1401
Each entry stands for one corner of the pattern and can have one of the following values:
1402
-   0 = no meta data attached
1403
-   1 = left-top corner of a black cell
1404
-   2 = left-top corner of a white cell
1405
-   3 = left-top corner of a black cell with a white marker dot
1406
-   4 = left-top corner of a white cell with a black marker dot (pattern origin in case of markers otherwise first corner)
1407
1408
The function is analog to #findChessboardCorners but uses a localized radon
1409
transformation approximated by box filters being more robust to all sort of
1410
noise, faster on larger images and is able to directly return the sub-pixel
1411
position of the internal chessboard corners. The Method is based on the paper
1412
@cite duda2018 "Accurate Detection and Localization of Checkerboard Corners for
1413
Calibration" demonstrating that the returned sub-pixel positions are more
1414
accurate than the one returned by cornerSubPix allowing a precise camera
1415
calibration for demanding applications.
1416
1417
In the case, the flags @ref CALIB_CB_LARGER or @ref CALIB_CB_MARKER are given,
1418
the result can be recovered from the optional meta array. Both flags are
1419
helpful to use calibration patterns exceeding the field of view of the camera.
1420
These oversized patterns allow more accurate calibrations as corners can be
1421
utilized, which are as close as possible to the image borders.  For a
1422
consistent coordinate system across all images, the optional marker (see image
1423
below) can be used to move the origin of the board to the location where the
1424
black circle is located.
1425
1426
@note The function requires a white boarder with roughly the same width as one
1427
of the checkerboard fields around the whole board to improve the detection in
1428
various environments. In addition, because of the localized radon
1429
transformation it is beneficial to use round corners for the field corners
1430
which are located on the outside of the board. The following figure illustrates
1431
a sample checkerboard optimized for the detection. However, any other checkerboard
1432
can be used as well.
1433
1434
Use gen_pattern.py (@ref tutorial_camera_calibration_pattern) to create checkerboard.
1435
![Checkerboard](pics/checkerboard_radon.png)
1436
 */
1437
CV_EXPORTS_AS(findChessboardCornersSBWithMeta)
1438
bool findChessboardCornersSB(InputArray image,Size patternSize, OutputArray corners,
1439
                             int flags,OutputArray meta);
1440
/** @overload */
1441
CV_EXPORTS_W inline
1442
bool findChessboardCornersSB(InputArray image, Size patternSize, OutputArray corners,
1443
                             int flags = 0)
1444
0
{
1445
0
    return findChessboardCornersSB(image, patternSize, corners, flags, noArray());
1446
0
}
1447
1448
/** @brief Estimates the sharpness of a detected chessboard.
1449
1450
Image sharpness, as well as brightness, are a critical parameter for accuracte
1451
camera calibration. For accessing these parameters for filtering out
1452
problematic calibraiton images, this method calculates edge profiles by traveling from
1453
black to white chessboard cell centers. Based on this, the number of pixels is
1454
calculated required to transit from black to white. This width of the
1455
transition area is a good indication of how sharp the chessboard is imaged
1456
and should be below ~3.0 pixels.
1457
1458
@param image Gray image used to find chessboard corners
1459
@param patternSize Size of a found chessboard pattern
1460
@param corners Corners found by #findChessboardCornersSB
1461
@param rise_distance Rise distance 0.8 means 10% ... 90% of the final signal strength
1462
@param vertical By default edge responses for horizontal lines are calculated
1463
@param sharpness Optional output array with a sharpness value for calculated edge responses (see description)
1464
1465
The optional sharpness array is of type CV_32FC1 and has for each calculated
1466
profile one row with the following five entries:
1467
* 0 = x coordinate of the underlying edge in the image
1468
* 1 = y coordinate of the underlying edge in the image
1469
* 2 = width of the transition area (sharpness)
1470
* 3 = signal strength in the black cell (min brightness)
1471
* 4 = signal strength in the white cell (max brightness)
1472
1473
@return Scalar(average sharpness, average min brightness, average max brightness,0)
1474
*/
1475
CV_EXPORTS_W Scalar estimateChessboardSharpness(InputArray image, Size patternSize, InputArray corners,
1476
                                                float rise_distance=0.8F,bool vertical=false,
1477
                                                OutputArray sharpness=noArray());
1478
1479
1480
//! finds subpixel-accurate positions of the chessboard corners
1481
CV_EXPORTS_W bool find4QuadCornerSubpix( InputArray img, InputOutputArray corners, Size region_size );
1482
1483
/** @brief Renders the detected chessboard corners.
1484
1485
@param image Destination image. It must be an 8-bit color image.
1486
@param patternSize Number of inner corners per a chessboard row and column
1487
(patternSize = cv::Size(points_per_row,points_per_column)).
1488
@param corners Array of detected corners, the output of #findChessboardCorners.
1489
@param patternWasFound Parameter indicating whether the complete board was found or not. The
1490
return value of #findChessboardCorners should be passed here.
1491
1492
The function draws individual chessboard corners detected either as red circles if the board was not
1493
found, or as colored corners connected with lines if the board was found.
1494
 */
1495
CV_EXPORTS_W void drawChessboardCorners( InputOutputArray image, Size patternSize,
1496
                                         InputArray corners, bool patternWasFound );
1497
1498
/** @brief Draw axes of the world/object coordinate system from pose estimation. @sa solvePnP
1499
1500
@param image Input/output image. It must have 1 or 3 channels. The number of channels is not altered.
1501
@param cameraMatrix Input 3x3 floating-point matrix of camera intrinsic parameters.
1502
\f$\cameramatrix{A}\f$
1503
@param distCoeffs Input vector of distortion coefficients
1504
\f$\distcoeffs\f$. If the vector is empty, the zero distortion coefficients are assumed.
1505
@param rvec Rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from
1506
the model coordinate system to the camera coordinate system.
1507
@param tvec Translation vector.
1508
@param length Length of the painted axes in the same unit than tvec (usually in meters).
1509
@param thickness Line thickness of the painted axes.
1510
1511
This function draws the axes of the world/object coordinate system w.r.t. to the camera frame.
1512
OX is drawn in red, OY in green and OZ in blue.
1513
 */
1514
CV_EXPORTS_W void drawFrameAxes(InputOutputArray image, InputArray cameraMatrix, InputArray distCoeffs,
1515
                                InputArray rvec, InputArray tvec, float length, int thickness=3);
1516
1517
struct CV_EXPORTS_W_SIMPLE CirclesGridFinderParameters
1518
{
1519
    CV_WRAP CirclesGridFinderParameters();
1520
    CV_PROP_RW cv::Size2f densityNeighborhoodSize;
1521
    CV_PROP_RW float minDensity;
1522
    CV_PROP_RW int kmeansAttempts;
1523
    CV_PROP_RW int minDistanceToAddKeypoint;
1524
    CV_PROP_RW int keypointScale;
1525
    CV_PROP_RW float minGraphConfidence;
1526
    CV_PROP_RW float vertexGain;
1527
    CV_PROP_RW float vertexPenalty;
1528
    CV_PROP_RW float existingVertexGain;
1529
    CV_PROP_RW float edgeGain;
1530
    CV_PROP_RW float edgePenalty;
1531
    CV_PROP_RW float convexHullFactor;
1532
    CV_PROP_RW float minRNGEdgeSwitchDist;
1533
1534
    enum GridType
1535
    {
1536
      SYMMETRIC_GRID, ASYMMETRIC_GRID
1537
    };
1538
    GridType gridType;
1539
1540
    CV_PROP_RW float squareSize; //!< Distance between two adjacent points. Used by CALIB_CB_CLUSTERING.
1541
    CV_PROP_RW float maxRectifiedDistance; //!< Max deviation from prediction. Used by CALIB_CB_CLUSTERING.
1542
};
1543
1544
#ifndef DISABLE_OPENCV_3_COMPATIBILITY
1545
typedef CirclesGridFinderParameters CirclesGridFinderParameters2;
1546
#endif
1547
1548
/** @brief Finds centers in the grid of circles.
1549
1550
@param image grid view of input circles; it must be an 8-bit grayscale or color image.
1551
@param patternSize number of circles per row and column
1552
( patternSize = Size(points_per_row, points_per_colum) ).
1553
@param centers output array of detected centers.
1554
@param flags various operation flags that can be one of the following values:
1555
-   @ref CALIB_CB_SYMMETRIC_GRID uses symmetric pattern of circles.
1556
-   @ref CALIB_CB_ASYMMETRIC_GRID uses asymmetric pattern of circles.
1557
-   @ref CALIB_CB_CLUSTERING uses a special algorithm for grid detection. It is more robust to
1558
perspective distortions but much more sensitive to background clutter.
1559
@param blobDetector feature detector that finds blobs like dark circles on light background.
1560
                    If `blobDetector` is NULL then `image` represents Point2f array of candidates.
1561
@param parameters struct for finding circles in a grid pattern.
1562
1563
The function attempts to determine whether the input image contains a grid of circles. If it is, the
1564
function locates centers of the circles. The function returns a non-zero value if all of the centers
1565
have been found and they have been placed in a certain order (row by row, left to right in every
1566
row). Otherwise, if the function fails to find all the corners or reorder them, it returns 0.
1567
1568
Sample usage of detecting and drawing the centers of circles: :
1569
@code
1570
    Size patternsize(7,7); //number of centers
1571
    Mat gray = ...; //source image
1572
    vector<Point2f> centers; //this will be filled by the detected centers
1573
1574
    bool patternfound = findCirclesGrid(gray, patternsize, centers);
1575
1576
    drawChessboardCorners(img, patternsize, Mat(centers), patternfound);
1577
@endcode
1578
@note The function requires white space (like a square-thick border, the wider the better) around
1579
the board to make the detection more robust in various environments.
1580
 */
1581
CV_EXPORTS_W bool findCirclesGrid( InputArray image, Size patternSize,
1582
                                   OutputArray centers, int flags,
1583
                                   const Ptr<FeatureDetector> &blobDetector,
1584
                                   const CirclesGridFinderParameters& parameters);
1585
1586
/** @overload */
1587
CV_EXPORTS_W bool findCirclesGrid( InputArray image, Size patternSize,
1588
                                   OutputArray centers, int flags = CALIB_CB_SYMMETRIC_GRID,
1589
                                   const Ptr<FeatureDetector> &blobDetector = SimpleBlobDetector::create());
1590
1591
/** @brief Finds the camera intrinsic and extrinsic parameters from several views of a calibration
1592
pattern.
1593
1594
@param objectPoints In the new interface it is a vector of vectors of calibration pattern points in
1595
the calibration pattern coordinate space (e.g. std::vector<std::vector<cv::Vec3f>>). The outer
1596
vector contains as many elements as the number of pattern views. If the same calibration pattern
1597
is shown in each view and it is fully visible, all the vectors will be the same. Although, it is
1598
possible to use partially occluded patterns or even different patterns in different views. Then,
1599
the vectors will be different. Although the points are 3D, they all lie in the calibration pattern's
1600
XY coordinate plane (thus 0 in the Z-coordinate), if the used calibration pattern is a planar rig.
1601
In the old interface all the vectors of object points from different views are concatenated
1602
together.
1603
@param imagePoints In the new interface it is a vector of vectors of the projections of calibration
1604
pattern points (e.g. std::vector<std::vector<cv::Vec2f>>). imagePoints.size() and
1605
objectPoints.size(), and imagePoints[i].size() and objectPoints[i].size() for each i, must be equal,
1606
respectively. In the old interface all the vectors of object points from different views are
1607
concatenated together.
1608
@param imageSize Size of the image used only to initialize the camera intrinsic matrix.
1609
@param cameraMatrix Input/output 3x3 floating-point camera intrinsic matrix
1610
\f$\cameramatrix{A}\f$ . If @ref CALIB_USE_INTRINSIC_GUESS
1611
and/or @ref CALIB_FIX_ASPECT_RATIO, @ref CALIB_FIX_PRINCIPAL_POINT or @ref CALIB_FIX_FOCAL_LENGTH
1612
are specified, some or all of fx, fy, cx, cy must be initialized before calling the function.
1613
@param distCoeffs Input/output vector of distortion coefficients
1614
\f$\distcoeffs\f$.
1615
@param rvecs Output vector of rotation vectors (@ref Rodrigues ) estimated for each pattern view
1616
(e.g. std::vector<cv::Mat>>). That is, each i-th rotation vector together with the corresponding
1617
i-th translation vector (see the next output parameter description) brings the calibration pattern
1618
from the object coordinate space (in which object points are specified) to the camera coordinate
1619
space. In more technical terms, the tuple of the i-th rotation and translation vector performs
1620
a change of basis from object coordinate space to camera coordinate space. Due to its duality, this
1621
tuple is equivalent to the position of the calibration pattern with respect to the camera coordinate
1622
space.
1623
@param tvecs Output vector of translation vectors estimated for each pattern view, see parameter
1624
describtion above.
1625
@param stdDeviationsIntrinsics Output vector of standard deviations estimated for intrinsic
1626
parameters. Order of deviations values:
1627
\f$(f_x, f_y, c_x, c_y, k_1, k_2, p_1, p_2, k_3, k_4, k_5, k_6 , s_1, s_2, s_3,
1628
 s_4, \tau_x, \tau_y)\f$ If one of parameters is not estimated, it's deviation is equals to zero.
1629
@param stdDeviationsExtrinsics Output vector of standard deviations estimated for extrinsic
1630
parameters. Order of deviations values: \f$(R_0, T_0, \dotsc , R_{M - 1}, T_{M - 1})\f$ where M is
1631
the number of pattern views. \f$R_i, T_i\f$ are concatenated 1x3 vectors.
1632
 @param perViewErrors Output vector of the RMS re-projection error estimated for each pattern view.
1633
@param flags Different flags that may be zero or a combination of the following values:
1634
-   @ref CALIB_USE_INTRINSIC_GUESS cameraMatrix contains valid initial values of
1635
fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
1636
center ( imageSize is used), and focal distances are computed in a least-squares fashion.
1637
Note, that if intrinsic parameters are known, there is no need to use this function just to
1638
estimate extrinsic parameters. Use @ref solvePnP instead.
1639
-   @ref CALIB_FIX_PRINCIPAL_POINT The principal point is not changed during the global
1640
optimization. It stays at the center or at a different location specified when
1641
 @ref CALIB_USE_INTRINSIC_GUESS is set too.
1642
-   @ref CALIB_FIX_ASPECT_RATIO The functions consider only fy as a free parameter. The
1643
ratio fx/fy stays the same as in the input cameraMatrix . When
1644
 @ref CALIB_USE_INTRINSIC_GUESS is not set, the actual input values of fx and fy are
1645
ignored, only their ratio is computed and used further.
1646
-   @ref CALIB_ZERO_TANGENT_DIST Tangential distortion coefficients \f$(p_1, p_2)\f$ are set
1647
to zeros and stay zero.
1648
-   @ref CALIB_FIX_FOCAL_LENGTH The focal length is not changed during the global optimization if
1649
 @ref CALIB_USE_INTRINSIC_GUESS is set.
1650
-   @ref CALIB_FIX_K1,..., @ref CALIB_FIX_K6 The corresponding radial distortion
1651
coefficient is not changed during the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is
1652
set, the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
1653
-   @ref CALIB_RATIONAL_MODEL Coefficients k4, k5, and k6 are enabled. To provide the
1654
backward compatibility, this extra flag should be explicitly specified to make the
1655
calibration function use the rational model and return 8 coefficients or more.
1656
-   @ref CALIB_THIN_PRISM_MODEL Coefficients s1, s2, s3 and s4 are enabled. To provide the
1657
backward compatibility, this extra flag should be explicitly specified to make the
1658
calibration function use the thin prism model and return 12 coefficients or more.
1659
-   @ref CALIB_FIX_S1_S2_S3_S4 The thin prism distortion coefficients are not changed during
1660
the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
1661
supplied distCoeffs matrix is used. Otherwise, it is set to 0.
1662
-   @ref CALIB_TILTED_MODEL Coefficients tauX and tauY are enabled. To provide the
1663
backward compatibility, this extra flag should be explicitly specified to make the
1664
calibration function use the tilted sensor model and return 14 coefficients.
1665
-   @ref CALIB_FIX_TAUX_TAUY The coefficients of the tilted sensor model are not changed during
1666
the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
1667
supplied distCoeffs matrix is used. Otherwise, it is set to 0.
1668
@param criteria Termination criteria for the iterative optimization algorithm.
1669
1670
@return the overall RMS re-projection error.
1671
1672
The function estimates the intrinsic camera parameters and extrinsic parameters for each of the
1673
views. The algorithm is based on @cite Zhang2000 and @cite BouguetMCT . The coordinates of 3D object
1674
points and their corresponding 2D projections in each view must be specified. That may be achieved
1675
by using an object with known geometry and easily detectable feature points. Such an object is
1676
called a calibration rig or calibration pattern, and OpenCV has built-in support for a chessboard as
1677
a calibration rig (see @ref findChessboardCorners). Currently, initialization of intrinsic
1678
parameters (when @ref CALIB_USE_INTRINSIC_GUESS is not set) is only implemented for planar calibration
1679
patterns (where Z-coordinates of the object points must be all zeros). 3D calibration rigs can also
1680
be used as long as initial cameraMatrix is provided.
1681
1682
The algorithm performs the following steps:
1683
1684
-   Compute the initial intrinsic parameters (the option only available for planar calibration
1685
    patterns) or read them from the input parameters. The distortion coefficients are all set to
1686
    zeros initially unless some of CALIB_FIX_K? are specified.
1687
1688
-   Estimate the initial camera pose as if the intrinsic parameters have been already known. This is
1689
    done using @ref solvePnP .
1690
1691
-   Run the global Levenberg-Marquardt optimization algorithm to minimize the reprojection error,
1692
    that is, the total sum of squared distances between the observed feature points imagePoints and
1693
    the projected (using the current estimates for camera parameters and the poses) object points
1694
    objectPoints. See @ref projectPoints for details.
1695
1696
@note
1697
    If you use a non-square (i.e. non-N-by-N) grid and @ref findChessboardCorners for calibration,
1698
    and @ref calibrateCamera returns bad values (zero distortion coefficients, \f$c_x\f$ and
1699
    \f$c_y\f$ very far from the image center, and/or large differences between \f$f_x\f$ and
1700
    \f$f_y\f$ (ratios of 10:1 or more)), then you are probably using patternSize=cvSize(rows,cols)
1701
    instead of using patternSize=cvSize(cols,rows) in @ref findChessboardCorners.
1702
1703
@note
1704
    The function may throw exceptions, if unsupported combination of parameters is provided or
1705
    the system is underconstrained.
1706
1707
@sa
1708
   calibrateCameraRO, findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate,
1709
   undistort
1710
 */
1711
CV_EXPORTS_AS(calibrateCameraExtended) double calibrateCamera( InputArrayOfArrays objectPoints,
1712
                                     InputArrayOfArrays imagePoints, Size imageSize,
1713
                                     InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
1714
                                     OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
1715
                                     OutputArray stdDeviationsIntrinsics,
1716
                                     OutputArray stdDeviationsExtrinsics,
1717
                                     OutputArray perViewErrors,
1718
                                     int flags = 0, TermCriteria criteria = TermCriteria(
1719
                                        TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) );
1720
1721
/** @overload */
1722
CV_EXPORTS_W double calibrateCamera( InputArrayOfArrays objectPoints,
1723
                                     InputArrayOfArrays imagePoints, Size imageSize,
1724
                                     InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
1725
                                     OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
1726
                                     int flags = 0, TermCriteria criteria = TermCriteria(
1727
                                        TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) );
1728
1729
/** @brief Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern.
1730
1731
This function is an extension of #calibrateCamera with the method of releasing object which was
1732
proposed in @cite strobl2011iccv. In many common cases with inaccurate, unmeasured, roughly planar
1733
targets (calibration plates), this method can dramatically improve the precision of the estimated
1734
camera parameters. Both the object-releasing method and standard method are supported by this
1735
function. Use the parameter **iFixedPoint** for method selection. In the internal implementation,
1736
#calibrateCamera is a wrapper for this function.
1737
1738
@param objectPoints Vector of vectors of calibration pattern points in the calibration pattern
1739
coordinate space. See #calibrateCamera for details. If the method of releasing object to be used,
1740
the identical calibration board must be used in each view and it must be fully visible, and all
1741
objectPoints[i] must be the same and all points should be roughly close to a plane. **The calibration
1742
target has to be rigid, or at least static if the camera (rather than the calibration target) is
1743
shifted for grabbing images.**
1744
@param imagePoints Vector of vectors of the projections of calibration pattern points. See
1745
#calibrateCamera for details.
1746
@param imageSize Size of the image used only to initialize the intrinsic camera matrix.
1747
@param iFixedPoint The index of the 3D object point in objectPoints[0] to be fixed. It also acts as
1748
a switch for calibration method selection. If object-releasing method to be used, pass in the
1749
parameter in the range of [1, objectPoints[0].size()-2], otherwise a value out of this range will
1750
make standard calibration method selected. Usually the top-right corner point of the calibration
1751
board grid is recommended to be fixed when object-releasing method being utilized. According to
1752
\cite strobl2011iccv, two other points are also fixed. In this implementation, objectPoints[0].front
1753
and objectPoints[0].back.z are used. With object-releasing method, accurate rvecs, tvecs and
1754
newObjPoints are only possible if coordinates of these three fixed points are accurate enough.
1755
@param cameraMatrix Output 3x3 floating-point camera matrix. See #calibrateCamera for details.
1756
@param distCoeffs Output vector of distortion coefficients. See #calibrateCamera for details.
1757
@param rvecs Output vector of rotation vectors estimated for each pattern view. See #calibrateCamera
1758
for details.
1759
@param tvecs Output vector of translation vectors estimated for each pattern view.
1760
@param newObjPoints The updated output vector of calibration pattern points. The coordinates might
1761
be scaled based on three fixed points. The returned coordinates are accurate only if the above
1762
mentioned three fixed points are accurate. If not needed, noArray() can be passed in. This parameter
1763
is ignored with standard calibration method.
1764
@param stdDeviationsIntrinsics Output vector of standard deviations estimated for intrinsic parameters.
1765
See #calibrateCamera for details.
1766
@param stdDeviationsExtrinsics Output vector of standard deviations estimated for extrinsic parameters.
1767
See #calibrateCamera for details.
1768
@param stdDeviationsObjPoints Output vector of standard deviations estimated for refined coordinates
1769
of calibration pattern points. It has the same size and order as objectPoints[0] vector. This
1770
parameter is ignored with standard calibration method.
1771
 @param perViewErrors Output vector of the RMS re-projection error estimated for each pattern view.
1772
@param flags Different flags that may be zero or a combination of some predefined values. See
1773
#calibrateCamera for details. If the method of releasing object is used, the calibration time may
1774
be much longer. CALIB_USE_QR or CALIB_USE_LU could be used for faster calibration with potentially
1775
less precise and less stable in some rare cases.
1776
@param criteria Termination criteria for the iterative optimization algorithm.
1777
1778
@return the overall RMS re-projection error.
1779
1780
The function estimates the intrinsic camera parameters and extrinsic parameters for each of the
1781
views. The algorithm is based on @cite Zhang2000, @cite BouguetMCT and @cite strobl2011iccv. See
1782
#calibrateCamera for other detailed explanations.
1783
@sa
1784
   calibrateCamera, findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate, undistort
1785
 */
1786
CV_EXPORTS_AS(calibrateCameraROExtended) double calibrateCameraRO( InputArrayOfArrays objectPoints,
1787
                                     InputArrayOfArrays imagePoints, Size imageSize, int iFixedPoint,
1788
                                     InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
1789
                                     OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
1790
                                     OutputArray newObjPoints,
1791
                                     OutputArray stdDeviationsIntrinsics,
1792
                                     OutputArray stdDeviationsExtrinsics,
1793
                                     OutputArray stdDeviationsObjPoints,
1794
                                     OutputArray perViewErrors,
1795
                                     int flags = 0, TermCriteria criteria = TermCriteria(
1796
                                        TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) );
1797
1798
/** @overload */
1799
CV_EXPORTS_W double calibrateCameraRO( InputArrayOfArrays objectPoints,
1800
                                     InputArrayOfArrays imagePoints, Size imageSize, int iFixedPoint,
1801
                                     InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
1802
                                     OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
1803
                                     OutputArray newObjPoints,
1804
                                     int flags = 0, TermCriteria criteria = TermCriteria(
1805
                                        TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) );
1806
1807
/** @brief Computes useful camera characteristics from the camera intrinsic matrix.
1808
1809
@param cameraMatrix Input camera intrinsic matrix that can be estimated by #calibrateCamera or
1810
#stereoCalibrate .
1811
@param imageSize Input image size in pixels.
1812
@param apertureWidth Physical width in mm of the sensor.
1813
@param apertureHeight Physical height in mm of the sensor.
1814
@param fovx Output field of view in degrees along the horizontal sensor axis.
1815
@param fovy Output field of view in degrees along the vertical sensor axis.
1816
@param focalLength Focal length of the lens in mm.
1817
@param principalPoint Principal point in mm.
1818
@param aspectRatio \f$f_y/f_x\f$
1819
1820
The function computes various useful camera characteristics from the previously estimated camera
1821
matrix.
1822
1823
@note
1824
   Do keep in mind that the unity measure 'mm' stands for whatever unit of measure one chooses for
1825
    the chessboard pitch (it can thus be any value).
1826
 */
1827
CV_EXPORTS_W void calibrationMatrixValues( InputArray cameraMatrix, Size imageSize,
1828
                                           double apertureWidth, double apertureHeight,
1829
                                           CV_OUT double& fovx, CV_OUT double& fovy,
1830
                                           CV_OUT double& focalLength, CV_OUT Point2d& principalPoint,
1831
                                           CV_OUT double& aspectRatio );
1832
1833
/** @brief Calibrates a stereo camera set up. This function finds the intrinsic parameters
1834
for each of the two cameras and the extrinsic parameters between the two cameras.
1835
1836
@param objectPoints Vector of vectors of the calibration pattern points. The same structure as
1837
in @ref calibrateCamera. For each pattern view, both cameras need to see the same object
1838
points. Therefore, objectPoints.size(), imagePoints1.size(), and imagePoints2.size() need to be
1839
equal as well as objectPoints[i].size(), imagePoints1[i].size(), and imagePoints2[i].size() need to
1840
be equal for each i.
1841
@param imagePoints1 Vector of vectors of the projections of the calibration pattern points,
1842
observed by the first camera. The same structure as in @ref calibrateCamera.
1843
@param imagePoints2 Vector of vectors of the projections of the calibration pattern points,
1844
observed by the second camera. The same structure as in @ref calibrateCamera.
1845
@param cameraMatrix1 Input/output camera intrinsic matrix for the first camera, the same as in
1846
@ref calibrateCamera. Furthermore, for the stereo case, additional flags may be used, see below.
1847
@param distCoeffs1 Input/output vector of distortion coefficients, the same as in
1848
@ref calibrateCamera.
1849
@param cameraMatrix2 Input/output second camera intrinsic matrix for the second camera. See description for
1850
cameraMatrix1.
1851
@param distCoeffs2 Input/output lens distortion coefficients for the second camera. See
1852
description for distCoeffs1.
1853
@param imageSize Size of the image used only to initialize the camera intrinsic matrices.
1854
@param R Output rotation matrix. Together with the translation vector T, this matrix brings
1855
points given in the first camera's coordinate system to points in the second camera's
1856
coordinate system. In more technical terms, the tuple of R and T performs a change of basis
1857
from the first camera's coordinate system to the second camera's coordinate system. Due to its
1858
duality, this tuple is equivalent to the position of the first camera with respect to the
1859
second camera coordinate system.
1860
@param T Output translation vector, see description above.
1861
@param E Output essential matrix.
1862
@param F Output fundamental matrix.
1863
@param rvecs Output vector of rotation vectors ( @ref Rodrigues ) estimated for each pattern view in the
1864
coordinate system of the first camera of the stereo pair (e.g. std::vector<cv::Mat>). More in detail, each
1865
i-th rotation vector together with the corresponding i-th translation vector (see the next output parameter
1866
description) brings the calibration pattern from the object coordinate space (in which object points are
1867
specified) to the camera coordinate space of the first camera of the stereo pair. In more technical terms,
1868
the tuple of the i-th rotation and translation vector performs a change of basis from object coordinate space
1869
to camera coordinate space of the first camera of the stereo pair.
1870
@param tvecs Output vector of translation vectors estimated for each pattern view, see parameter description
1871
of previous output parameter ( rvecs ).
1872
@param perViewErrors Output vector of the RMS re-projection error estimated for each pattern view.
1873
@param flags Different flags that may be zero or a combination of the following values:
1874
-   @ref CALIB_FIX_INTRINSIC Fix cameraMatrix? and distCoeffs? so that only R, T, E, and F
1875
matrices are estimated.
1876
-   @ref CALIB_USE_INTRINSIC_GUESS Optimize some or all of the intrinsic parameters
1877
according to the specified flags. Initial values are provided by the user.
1878
-   @ref CALIB_USE_EXTRINSIC_GUESS R and T contain valid initial values that are optimized further.
1879
Otherwise R and T are initialized to the median value of the pattern views (each dimension separately).
1880
-   @ref CALIB_FIX_PRINCIPAL_POINT Fix the principal points during the optimization.
1881
-   @ref CALIB_FIX_FOCAL_LENGTH Fix \f$f^{(j)}_x\f$ and \f$f^{(j)}_y\f$ .
1882
-   @ref CALIB_FIX_ASPECT_RATIO Optimize \f$f^{(j)}_y\f$ . Fix the ratio \f$f^{(j)}_x/f^{(j)}_y\f$
1883
.
1884
-   @ref CALIB_SAME_FOCAL_LENGTH Enforce \f$f^{(0)}_x=f^{(1)}_x\f$ and \f$f^{(0)}_y=f^{(1)}_y\f$ .
1885
-   @ref CALIB_ZERO_TANGENT_DIST Set tangential distortion coefficients for each camera to
1886
zeros and fix there.
1887
-   @ref CALIB_FIX_K1,..., @ref CALIB_FIX_K6 Do not change the corresponding radial
1888
distortion coefficient during the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set,
1889
the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
1890
-   @ref CALIB_RATIONAL_MODEL Enable coefficients k4, k5, and k6. To provide the backward
1891
compatibility, this extra flag should be explicitly specified to make the calibration
1892
function use the rational model and return 8 coefficients. If the flag is not set, the
1893
function computes and returns only 5 distortion coefficients.
1894
-   @ref CALIB_THIN_PRISM_MODEL Coefficients s1, s2, s3 and s4 are enabled. To provide the
1895
backward compatibility, this extra flag should be explicitly specified to make the
1896
calibration function use the thin prism model and return 12 coefficients. If the flag is not
1897
set, the function computes and returns only 5 distortion coefficients.
1898
-   @ref CALIB_FIX_S1_S2_S3_S4 The thin prism distortion coefficients are not changed during
1899
the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
1900
supplied distCoeffs matrix is used. Otherwise, it is set to 0.
1901
-   @ref CALIB_TILTED_MODEL Coefficients tauX and tauY are enabled. To provide the
1902
backward compatibility, this extra flag should be explicitly specified to make the
1903
calibration function use the tilted sensor model and return 14 coefficients. If the flag is not
1904
set, the function computes and returns only 5 distortion coefficients.
1905
-   @ref CALIB_FIX_TAUX_TAUY The coefficients of the tilted sensor model are not changed during
1906
the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
1907
supplied distCoeffs matrix is used. Otherwise, it is set to 0.
1908
@param criteria Termination criteria for the iterative optimization algorithm.
1909
1910
The function estimates the transformation between two cameras making a stereo pair. If one computes
1911
the poses of an object relative to the first camera and to the second camera,
1912
( \f$R_1\f$,\f$T_1\f$ ) and (\f$R_2\f$,\f$T_2\f$), respectively, for a stereo camera where the
1913
relative position and orientation between the two cameras are fixed, then those poses definitely
1914
relate to each other. This means, if the relative position and orientation (\f$R\f$,\f$T\f$) of the
1915
two cameras is known, it is possible to compute (\f$R_2\f$,\f$T_2\f$) when (\f$R_1\f$,\f$T_1\f$) is
1916
given. This is what the described function does. It computes (\f$R\f$,\f$T\f$) such that:
1917
1918
\f[R_2=R R_1\f]
1919
\f[T_2=R T_1 + T.\f]
1920
1921
Therefore, one can compute the coordinate representation of a 3D point for the second camera's
1922
coordinate system when given the point's coordinate representation in the first camera's coordinate
1923
system:
1924
1925
\f[\begin{bmatrix}
1926
X_2 \\
1927
Y_2 \\
1928
Z_2 \\
1929
1
1930
\end{bmatrix} = \begin{bmatrix}
1931
R & T \\
1932
0 & 1
1933
\end{bmatrix} \begin{bmatrix}
1934
X_1 \\
1935
Y_1 \\
1936
Z_1 \\
1937
1
1938
\end{bmatrix}.\f]
1939
1940
1941
Optionally, it computes the essential matrix E:
1942
1943
\f[E= \vecthreethree{0}{-T_2}{T_1}{T_2}{0}{-T_0}{-T_1}{T_0}{0} R\f]
1944
1945
where \f$T_i\f$ are components of the translation vector \f$T\f$ : \f$T=[T_0, T_1, T_2]^T\f$ .
1946
And the function can also compute the fundamental matrix F:
1947
1948
\f[F = cameraMatrix2^{-T}\cdot E \cdot cameraMatrix1^{-1}\f]
1949
1950
Besides the stereo-related information, the function can also perform a full calibration of each of
1951
the two cameras. However, due to the high dimensionality of the parameter space and noise in the
1952
input data, the function can diverge from the correct solution. If the intrinsic parameters can be
1953
estimated with high accuracy for each of the cameras individually (for example, using
1954
#calibrateCamera ), you are recommended to do so and then pass @ref CALIB_FIX_INTRINSIC flag to the
1955
function along with the computed intrinsic parameters. Otherwise, if all the parameters are
1956
estimated at once, it makes sense to restrict some parameters, for example, pass
1957
 @ref CALIB_SAME_FOCAL_LENGTH and @ref CALIB_ZERO_TANGENT_DIST flags, which is usually a
1958
reasonable assumption.
1959
1960
Similarly to #calibrateCamera, the function minimizes the total re-projection error for all the
1961
points in all the available views from both cameras. The function returns the final value of the
1962
re-projection error.
1963
 */
1964
CV_EXPORTS_AS(stereoCalibrateExtended) double stereoCalibrate( InputArrayOfArrays objectPoints,
1965
                                     InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
1966
                                     InputOutputArray cameraMatrix1, InputOutputArray distCoeffs1,
1967
                                     InputOutputArray cameraMatrix2, InputOutputArray distCoeffs2,
1968
                                     Size imageSize, InputOutputArray R, InputOutputArray T, OutputArray E, OutputArray F,
1969
                                     OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, OutputArray perViewErrors, int flags = CALIB_FIX_INTRINSIC,
1970
                                     TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6) );
1971
1972
/// @overload
1973
CV_EXPORTS_W double stereoCalibrate( InputArrayOfArrays objectPoints,
1974
                                     InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
1975
                                     InputOutputArray cameraMatrix1, InputOutputArray distCoeffs1,
1976
                                     InputOutputArray cameraMatrix2, InputOutputArray distCoeffs2,
1977
                                     Size imageSize, OutputArray R,OutputArray T, OutputArray E, OutputArray F,
1978
                                     int flags = CALIB_FIX_INTRINSIC,
1979
                                     TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6) );
1980
1981
/// @overload
1982
CV_EXPORTS_W double stereoCalibrate( InputArrayOfArrays objectPoints,
1983
                                     InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
1984
                                     InputOutputArray cameraMatrix1, InputOutputArray distCoeffs1,
1985
                                     InputOutputArray cameraMatrix2, InputOutputArray distCoeffs2,
1986
                                     Size imageSize, InputOutputArray R, InputOutputArray T, OutputArray E, OutputArray F,
1987
                                     OutputArray perViewErrors, int flags = CALIB_FIX_INTRINSIC,
1988
                                     TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6) );
1989
1990
/** @brief Computes rectification transforms for each head of a calibrated stereo camera.
1991
1992
@param cameraMatrix1 First camera intrinsic matrix.
1993
@param distCoeffs1 First camera distortion parameters.
1994
@param cameraMatrix2 Second camera intrinsic matrix.
1995
@param distCoeffs2 Second camera distortion parameters.
1996
@param imageSize Size of the image used for stereo calibration.
1997
@param R Rotation matrix from the coordinate system of the first camera to the second camera,
1998
see @ref stereoCalibrate.
1999
@param T Translation vector from the coordinate system of the first camera to the second camera,
2000
see @ref stereoCalibrate.
2001
@param R1 Output 3x3 rectification transform (rotation matrix) for the first camera. This matrix
2002
brings points given in the unrectified first camera's coordinate system to points in the rectified
2003
first camera's coordinate system. In more technical terms, it performs a change of basis from the
2004
unrectified first camera's coordinate system to the rectified first camera's coordinate system.
2005
@param R2 Output 3x3 rectification transform (rotation matrix) for the second camera. This matrix
2006
brings points given in the unrectified second camera's coordinate system to points in the rectified
2007
second camera's coordinate system. In more technical terms, it performs a change of basis from the
2008
unrectified second camera's coordinate system to the rectified second camera's coordinate system.
2009
@param P1 Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
2010
camera, i.e. it projects points given in the rectified first camera coordinate system into the
2011
rectified first camera's image.
2012
@param P2 Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
2013
camera, i.e. it projects points given in the rectified first camera coordinate system into the
2014
rectified second camera's image.
2015
@param Q Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see @ref reprojectImageTo3D).
2016
@param flags Operation flags that may be zero or @ref CALIB_ZERO_DISPARITY . If the flag is set,
2017
the function makes the principal points of each camera have the same pixel coordinates in the
2018
rectified views. And if the flag is not set, the function may still shift the images in the
2019
horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
2020
useful image area.
2021
@param alpha Free scaling parameter. If it is -1 or absent, the function performs the default
2022
scaling. Otherwise, the parameter should be between 0 and 1. alpha=0 means that the rectified
2023
images are zoomed and shifted so that only valid pixels are visible (no black areas after
2024
rectification). alpha=1 means that the rectified image is decimated and shifted so that all the
2025
pixels from the original images from the cameras are retained in the rectified images (no source
2026
image pixels are lost). Any intermediate value yields an intermediate result between
2027
those two extreme cases.
2028
@param newImageSize New image resolution after rectification. The same size should be passed to
2029
#initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
2030
is passed (default), it is set to the original imageSize . Setting it to a larger value can help you
2031
preserve details in the original image, especially when there is a big radial distortion.
2032
@param validPixROI1 Optional output rectangles inside the rectified images where all the pixels
2033
are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
2034
(see the picture below).
2035
@param validPixROI2 Optional output rectangles inside the rectified images where all the pixels
2036
are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
2037
(see the picture below).
2038
2039
The function computes the rotation matrices for each camera that (virtually) make both camera image
2040
planes the same plane. Consequently, this makes all the epipolar lines parallel and thus simplifies
2041
the dense stereo correspondence problem. The function takes the matrices computed by #stereoCalibrate
2042
as input. As output, it provides two rotation matrices and also two projection matrices in the new
2043
coordinates. The function distinguishes the following two cases:
2044
2045
-   **Horizontal stereo**: the first and the second camera views are shifted relative to each other
2046
    mainly along the x-axis (with possible small vertical shift). In the rectified images, the
2047
    corresponding epipolar lines in the left and right cameras are horizontal and have the same
2048
    y-coordinate. P1 and P2 look like:
2049
2050
    \f[\texttt{P1} = \begin{bmatrix}
2051
                        f & 0 & cx_1 & 0 \\
2052
                        0 & f & cy & 0 \\
2053
                        0 & 0 & 1 & 0
2054
                     \end{bmatrix}\f]
2055
2056
    \f[\texttt{P2} = \begin{bmatrix}
2057
                        f & 0 & cx_2 & T_x \cdot f \\
2058
                        0 & f & cy & 0 \\
2059
                        0 & 0 & 1 & 0
2060
                     \end{bmatrix} ,\f]
2061
2062
    \f[\texttt{Q} = \begin{bmatrix}
2063
                        1 & 0 & 0 & -cx_1 \\
2064
                        0 & 1 & 0 & -cy \\
2065
                        0 & 0 & 0 & f \\
2066
                        0 & 0 & -\frac{1}{T_x} & \frac{cx_1 - cx_2}{T_x}
2067
                    \end{bmatrix} \f]
2068
2069
    where \f$T_x\f$ is a horizontal shift between the cameras and \f$cx_1=cx_2\f$ if
2070
    @ref CALIB_ZERO_DISPARITY is set.
2071
2072
-   **Vertical stereo**: the first and the second camera views are shifted relative to each other
2073
    mainly in the vertical direction (and probably a bit in the horizontal direction too). The epipolar
2074
    lines in the rectified images are vertical and have the same x-coordinate. P1 and P2 look like:
2075
2076
    \f[\texttt{P1} = \begin{bmatrix}
2077
                        f & 0 & cx & 0 \\
2078
                        0 & f & cy_1 & 0 \\
2079
                        0 & 0 & 1 & 0
2080
                     \end{bmatrix}\f]
2081
2082
    \f[\texttt{P2} = \begin{bmatrix}
2083
                        f & 0 & cx & 0 \\
2084
                        0 & f & cy_2 & T_y \cdot f \\
2085
                        0 & 0 & 1 & 0
2086
                     \end{bmatrix},\f]
2087
2088
    \f[\texttt{Q} = \begin{bmatrix}
2089
                        1 & 0 & 0 & -cx \\
2090
                        0 & 1 & 0 & -cy_1 \\
2091
                        0 & 0 & 0 & f \\
2092
                        0 & 0 & -\frac{1}{T_y} & \frac{cy_1 - cy_2}{T_y}
2093
                    \end{bmatrix} \f]
2094
2095
    where \f$T_y\f$ is a vertical shift between the cameras and \f$cy_1=cy_2\f$ if
2096
    @ref CALIB_ZERO_DISPARITY is set.
2097
2098
As you can see, the first three columns of P1 and P2 will effectively be the new "rectified" camera
2099
matrices. The matrices, together with R1 and R2 , can then be passed to #initUndistortRectifyMap to
2100
initialize the rectification map for each camera.
2101
2102
See below the screenshot from the stereo_calib.cpp sample. Some red horizontal lines pass through
2103
the corresponding image regions. This means that the images are well rectified, which is what most
2104
stereo correspondence algorithms rely on. The green rectangles are roi1 and roi2 . You see that
2105
their interiors are all valid pixels.
2106
2107
![image](pics/stereo_undistort.jpg)
2108
 */
2109
CV_EXPORTS_W void stereoRectify( InputArray cameraMatrix1, InputArray distCoeffs1,
2110
                                 InputArray cameraMatrix2, InputArray distCoeffs2,
2111
                                 Size imageSize, InputArray R, InputArray T,
2112
                                 OutputArray R1, OutputArray R2,
2113
                                 OutputArray P1, OutputArray P2,
2114
                                 OutputArray Q, int flags = CALIB_ZERO_DISPARITY,
2115
                                 double alpha = -1, Size newImageSize = Size(),
2116
                                 CV_OUT Rect* validPixROI1 = 0, CV_OUT Rect* validPixROI2 = 0 );
2117
2118
/** @brief Computes a rectification transform for an uncalibrated stereo camera.
2119
2120
@param points1 Array of feature points in the first image.
2121
@param points2 The corresponding points in the second image. The same formats as in
2122
#findFundamentalMat are supported.
2123
@param F Input fundamental matrix. It can be computed from the same set of point pairs using
2124
#findFundamentalMat .
2125
@param imgSize Size of the image.
2126
@param H1 Output rectification homography matrix for the first image.
2127
@param H2 Output rectification homography matrix for the second image.
2128
@param threshold Optional threshold used to filter out the outliers. If the parameter is greater
2129
than zero, all the point pairs that do not comply with the epipolar geometry (that is, the points
2130
for which \f$|\texttt{points2[i]}^T \cdot \texttt{F} \cdot \texttt{points1[i]}|>\texttt{threshold}\f$ )
2131
are rejected prior to computing the homographies. Otherwise, all the points are considered inliers.
2132
2133
The function computes the rectification transformations without knowing intrinsic parameters of the
2134
cameras and their relative position in the space, which explains the suffix "uncalibrated". Another
2135
related difference from #stereoRectify is that the function outputs not the rectification
2136
transformations in the object (3D) space, but the planar perspective transformations encoded by the
2137
homography matrices H1 and H2 . The function implements the algorithm @cite Hartley99 .
2138
2139
@note
2140
   While the algorithm does not need to know the intrinsic parameters of the cameras, it heavily
2141
    depends on the epipolar geometry. Therefore, if the camera lenses have a significant distortion,
2142
    it would be better to correct it before computing the fundamental matrix and calling this
2143
    function. For example, distortion coefficients can be estimated for each head of stereo camera
2144
    separately by using #calibrateCamera . Then, the images can be corrected using #undistort , or
2145
    just the point coordinates can be corrected with #undistortPoints .
2146
 */
2147
CV_EXPORTS_W bool stereoRectifyUncalibrated( InputArray points1, InputArray points2,
2148
                                             InputArray F, Size imgSize,
2149
                                             OutputArray H1, OutputArray H2,
2150
                                             double threshold = 5 );
2151
2152
//! computes the rectification transformations for 3-head camera, where all the heads are on the same line.
2153
CV_EXPORTS_W float rectify3Collinear( InputArray cameraMatrix1, InputArray distCoeffs1,
2154
                                      InputArray cameraMatrix2, InputArray distCoeffs2,
2155
                                      InputArray cameraMatrix3, InputArray distCoeffs3,
2156
                                      InputArrayOfArrays imgpt1, InputArrayOfArrays imgpt3,
2157
                                      Size imageSize, InputArray R12, InputArray T12,
2158
                                      InputArray R13, InputArray T13,
2159
                                      OutputArray R1, OutputArray R2, OutputArray R3,
2160
                                      OutputArray P1, OutputArray P2, OutputArray P3,
2161
                                      OutputArray Q, double alpha, Size newImgSize,
2162
                                      CV_OUT Rect* roi1, CV_OUT Rect* roi2, int flags );
2163
2164
/** @brief Returns the new camera intrinsic matrix based on the free scaling parameter.
2165
2166
@param cameraMatrix Input camera intrinsic matrix.
2167
@param distCoeffs Input vector of distortion coefficients
2168
\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are
2169
assumed.
2170
@param imageSize Original image size.
2171
@param alpha Free scaling parameter between 0 (when all the pixels in the undistorted image are
2172
valid) and 1 (when all the source image pixels are retained in the undistorted image). See
2173
#stereoRectify for details.
2174
@param newImgSize Image size after rectification. By default, it is set to imageSize .
2175
@param validPixROI Optional output rectangle that outlines all-good-pixels region in the
2176
undistorted image. See roi1, roi2 description in #stereoRectify .
2177
@param centerPrincipalPoint Optional flag that indicates whether in the new camera intrinsic matrix the
2178
principal point should be at the image center or not. By default, the principal point is chosen to
2179
best fit a subset of the source image (determined by alpha) to the corrected image.
2180
@return new_camera_matrix Output new camera intrinsic matrix.
2181
2182
The function computes and returns the optimal new camera intrinsic matrix based on the free scaling parameter.
2183
By varying this parameter, you may retrieve only sensible pixels alpha=0 , keep all the original
2184
image pixels if there is valuable information in the corners alpha=1 , or get something in between.
2185
When alpha\>0 , the undistorted result is likely to have some black pixels corresponding to
2186
"virtual" pixels outside of the captured distorted image. The original camera intrinsic matrix, distortion
2187
coefficients, the computed new camera intrinsic matrix, and newImageSize should be passed to
2188
#initUndistortRectifyMap to produce the maps for #remap .
2189
 */
2190
CV_EXPORTS_W Mat getOptimalNewCameraMatrix( InputArray cameraMatrix, InputArray distCoeffs,
2191
                                            Size imageSize, double alpha, Size newImgSize = Size(),
2192
                                            CV_OUT Rect* validPixROI = 0,
2193
                                            bool centerPrincipalPoint = false);
2194
2195
/** @brief Computes Hand-Eye calibration: \f$_{}^{g}\textrm{T}_c\f$
2196
2197
@param[in] R_gripper2base Rotation part extracted from the homogeneous matrix that transforms a point
2198
expressed in the gripper frame to the robot base frame (\f$_{}^{b}\textrm{T}_g\f$).
2199
This is a vector (`vector<Mat>`) that contains the rotation, `(3x3)` rotation matrices or `(3x1)` rotation vectors,
2200
for all the transformations from gripper frame to robot base frame.
2201
@param[in] t_gripper2base Translation part extracted from the homogeneous matrix that transforms a point
2202
expressed in the gripper frame to the robot base frame (\f$_{}^{b}\textrm{T}_g\f$).
2203
This is a vector (`vector<Mat>`) that contains the `(3x1)` translation vectors for all the transformations
2204
from gripper frame to robot base frame.
2205
@param[in] R_target2cam Rotation part extracted from the homogeneous matrix that transforms a point
2206
expressed in the target frame to the camera frame (\f$_{}^{c}\textrm{T}_t\f$).
2207
This is a vector (`vector<Mat>`) that contains the rotation, `(3x3)` rotation matrices or `(3x1)` rotation vectors,
2208
for all the transformations from calibration target frame to camera frame.
2209
@param[in] t_target2cam Rotation part extracted from the homogeneous matrix that transforms a point
2210
expressed in the target frame to the camera frame (\f$_{}^{c}\textrm{T}_t\f$).
2211
This is a vector (`vector<Mat>`) that contains the `(3x1)` translation vectors for all the transformations
2212
from calibration target frame to camera frame.
2213
@param[out] R_cam2gripper Estimated `(3x3)` rotation part extracted from the homogeneous matrix that transforms a point
2214
expressed in the camera frame to the gripper frame (\f$_{}^{g}\textrm{T}_c\f$).
2215
@param[out] t_cam2gripper Estimated `(3x1)` translation part extracted from the homogeneous matrix that transforms a point
2216
expressed in the camera frame to the gripper frame (\f$_{}^{g}\textrm{T}_c\f$).
2217
@param[in] method One of the implemented Hand-Eye calibration method, see cv::HandEyeCalibrationMethod
2218
2219
The function performs the Hand-Eye calibration using various methods. One approach consists in estimating the
2220
rotation then the translation (separable solutions) and the following methods are implemented:
2221
  - R. Tsai, R. Lenz A New Technique for Fully Autonomous and Efficient 3D Robotics Hand/EyeCalibration \cite Tsai89
2222
  - F. Park, B. Martin Robot Sensor Calibration: Solving AX = XB on the Euclidean Group \cite Park94
2223
  - R. Horaud, F. Dornaika Hand-Eye Calibration \cite Horaud95
2224
2225
Another approach consists in estimating simultaneously the rotation and the translation (simultaneous solutions),
2226
with the following implemented methods:
2227
  - N. Andreff, R. Horaud, B. Espiau On-line Hand-Eye Calibration \cite Andreff99
2228
  - K. Daniilidis Hand-Eye Calibration Using Dual Quaternions \cite Daniilidis98
2229
2230
The following picture describes the Hand-Eye calibration problem where the transformation between a camera ("eye")
2231
mounted on a robot gripper ("hand") has to be estimated. This configuration is called eye-in-hand.
2232
2233
The eye-to-hand configuration consists in a static camera observing a calibration pattern mounted on the robot
2234
end-effector. The transformation from the camera to the robot base frame can then be estimated by inputting
2235
the suitable transformations to the function, see below.
2236
2237
![](pics/hand-eye_figure.png)
2238
2239
The calibration procedure is the following:
2240
  - a static calibration pattern is used to estimate the transformation between the target frame
2241
  and the camera frame
2242
  - the robot gripper is moved in order to acquire several poses
2243
  - for each pose, the homogeneous transformation between the gripper frame and the robot base frame is recorded using for
2244
  instance the robot kinematics
2245
\f[
2246
    \begin{bmatrix}
2247
    X_b\\
2248
    Y_b\\
2249
    Z_b\\
2250
    1
2251
    \end{bmatrix}
2252
    =
2253
    \begin{bmatrix}
2254
    _{}^{b}\textrm{R}_g & _{}^{b}\textrm{t}_g \\
2255
    0_{1 \times 3} & 1
2256
    \end{bmatrix}
2257
    \begin{bmatrix}
2258
    X_g\\
2259
    Y_g\\
2260
    Z_g\\
2261
    1
2262
    \end{bmatrix}
2263
\f]
2264
  - for each pose, the homogeneous transformation between the calibration target frame and the camera frame is recorded using
2265
  for instance a pose estimation method (PnP) from 2D-3D point correspondences
2266
\f[
2267
    \begin{bmatrix}
2268
    X_c\\
2269
    Y_c\\
2270
    Z_c\\
2271
    1
2272
    \end{bmatrix}
2273
    =
2274
    \begin{bmatrix}
2275
    _{}^{c}\textrm{R}_t & _{}^{c}\textrm{t}_t \\
2276
    0_{1 \times 3} & 1
2277
    \end{bmatrix}
2278
    \begin{bmatrix}
2279
    X_t\\
2280
    Y_t\\
2281
    Z_t\\
2282
    1
2283
    \end{bmatrix}
2284
\f]
2285
2286
The Hand-Eye calibration procedure returns the following homogeneous transformation
2287
\f[
2288
    \begin{bmatrix}
2289
    X_g\\
2290
    Y_g\\
2291
    Z_g\\
2292
    1
2293
    \end{bmatrix}
2294
    =
2295
    \begin{bmatrix}
2296
    _{}^{g}\textrm{R}_c & _{}^{g}\textrm{t}_c \\
2297
    0_{1 \times 3} & 1
2298
    \end{bmatrix}
2299
    \begin{bmatrix}
2300
    X_c\\
2301
    Y_c\\
2302
    Z_c\\
2303
    1
2304
    \end{bmatrix}
2305
\f]
2306
2307
This problem is also known as solving the \f$\mathbf{A}\mathbf{X}=\mathbf{X}\mathbf{B}\f$ equation:
2308
  - for an eye-in-hand configuration
2309
\f[
2310
    \begin{align*}
2311
    ^{b}{\textrm{T}_g}^{(1)} \hspace{0.2em} ^{g}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(1)} &=
2312
    \hspace{0.1em} ^{b}{\textrm{T}_g}^{(2)} \hspace{0.2em} ^{g}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(2)} \\
2313
2314
    (^{b}{\textrm{T}_g}^{(2)})^{-1} \hspace{0.2em} ^{b}{\textrm{T}_g}^{(1)} \hspace{0.2em} ^{g}\textrm{T}_c &=
2315
    \hspace{0.1em} ^{g}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(2)} (^{c}{\textrm{T}_t}^{(1)})^{-1} \\
2316
2317
    \textrm{A}_i \textrm{X} &= \textrm{X} \textrm{B}_i \\
2318
    \end{align*}
2319
\f]
2320
2321
  - for an eye-to-hand configuration
2322
\f[
2323
    \begin{align*}
2324
    ^{g}{\textrm{T}_b}^{(1)} \hspace{0.2em} ^{b}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(1)} &=
2325
    \hspace{0.1em} ^{g}{\textrm{T}_b}^{(2)} \hspace{0.2em} ^{b}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(2)} \\
2326
2327
    (^{g}{\textrm{T}_b}^{(2)})^{-1} \hspace{0.2em} ^{g}{\textrm{T}_b}^{(1)} \hspace{0.2em} ^{b}\textrm{T}_c &=
2328
    \hspace{0.1em} ^{b}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(2)} (^{c}{\textrm{T}_t}^{(1)})^{-1} \\
2329
2330
    \textrm{A}_i \textrm{X} &= \textrm{X} \textrm{B}_i \\
2331
    \end{align*}
2332
\f]
2333
2334
\note
2335
Additional information can be found on this [website](http://campar.in.tum.de/Chair/HandEyeCalibration).
2336
\note
2337
A minimum of 2 motions with non parallel rotation axes are necessary to determine the hand-eye transformation.
2338
So at least 3 different poses are required, but it is strongly recommended to use many more poses.
2339
2340
 */
2341
CV_EXPORTS_W void calibrateHandEye( InputArrayOfArrays R_gripper2base, InputArrayOfArrays t_gripper2base,
2342
                                    InputArrayOfArrays R_target2cam, InputArrayOfArrays t_target2cam,
2343
                                    OutputArray R_cam2gripper, OutputArray t_cam2gripper,
2344
                                    HandEyeCalibrationMethod method=CALIB_HAND_EYE_TSAI );
2345
2346
/** @brief Computes Robot-World/Hand-Eye calibration: \f$_{}^{w}\textrm{T}_b\f$ and \f$_{}^{c}\textrm{T}_g\f$
2347
2348
@param[in] R_world2cam Rotation part extracted from the homogeneous matrix that transforms a point
2349
expressed in the world frame to the camera frame (\f$_{}^{c}\textrm{T}_w\f$).
2350
This is a vector (`vector<Mat>`) that contains the rotation, `(3x3)` rotation matrices or `(3x1)` rotation vectors,
2351
for all the transformations from world frame to the camera frame.
2352
@param[in] t_world2cam Translation part extracted from the homogeneous matrix that transforms a point
2353
expressed in the world frame to the camera frame (\f$_{}^{c}\textrm{T}_w\f$).
2354
This is a vector (`vector<Mat>`) that contains the `(3x1)` translation vectors for all the transformations
2355
from world frame to the camera frame.
2356
@param[in] R_base2gripper Rotation part extracted from the homogeneous matrix that transforms a point
2357
expressed in the robot base frame to the gripper frame (\f$_{}^{g}\textrm{T}_b\f$).
2358
This is a vector (`vector<Mat>`) that contains the rotation, `(3x3)` rotation matrices or `(3x1)` rotation vectors,
2359
for all the transformations from robot base frame to the gripper frame.
2360
@param[in] t_base2gripper Rotation part extracted from the homogeneous matrix that transforms a point
2361
expressed in the robot base frame to the gripper frame (\f$_{}^{g}\textrm{T}_b\f$).
2362
This is a vector (`vector<Mat>`) that contains the `(3x1)` translation vectors for all the transformations
2363
from robot base frame to the gripper frame.
2364
@param[out] R_base2world Estimated `(3x3)` rotation part extracted from the homogeneous matrix that transforms a point
2365
expressed in the robot base frame to the world frame (\f$_{}^{w}\textrm{T}_b\f$).
2366
@param[out] t_base2world Estimated `(3x1)` translation part extracted from the homogeneous matrix that transforms a point
2367
expressed in the robot base frame to the world frame (\f$_{}^{w}\textrm{T}_b\f$).
2368
@param[out] R_gripper2cam Estimated `(3x3)` rotation part extracted from the homogeneous matrix that transforms a point
2369
expressed in the gripper frame to the camera frame (\f$_{}^{c}\textrm{T}_g\f$).
2370
@param[out] t_gripper2cam Estimated `(3x1)` translation part extracted from the homogeneous matrix that transforms a point
2371
expressed in the gripper frame to the camera frame (\f$_{}^{c}\textrm{T}_g\f$).
2372
@param[in] method One of the implemented Robot-World/Hand-Eye calibration method, see cv::RobotWorldHandEyeCalibrationMethod
2373
2374
The function performs the Robot-World/Hand-Eye calibration using various methods. One approach consists in estimating the
2375
rotation then the translation (separable solutions):
2376
  - M. Shah, Solving the robot-world/hand-eye calibration problem using the kronecker product \cite Shah2013SolvingTR
2377
2378
Another approach consists in estimating simultaneously the rotation and the translation (simultaneous solutions),
2379
with the following implemented method:
2380
  - A. Li, L. Wang, and D. Wu, Simultaneous robot-world and hand-eye calibration using dual-quaternions and kronecker product \cite Li2010SimultaneousRA
2381
2382
The following picture describes the Robot-World/Hand-Eye calibration problem where the transformations between a robot and a world frame
2383
and between a robot gripper ("hand") and a camera ("eye") mounted at the robot end-effector have to be estimated.
2384
2385
![](pics/robot-world_hand-eye_figure.png)
2386
2387
The calibration procedure is the following:
2388
  - a static calibration pattern is used to estimate the transformation between the target frame
2389
  and the camera frame
2390
  - the robot gripper is moved in order to acquire several poses
2391
  - for each pose, the homogeneous transformation between the gripper frame and the robot base frame is recorded using for
2392
  instance the robot kinematics
2393
\f[
2394
    \begin{bmatrix}
2395
    X_g\\
2396
    Y_g\\
2397
    Z_g\\
2398
    1
2399
    \end{bmatrix}
2400
    =
2401
    \begin{bmatrix}
2402
    _{}^{g}\textrm{R}_b & _{}^{g}\textrm{t}_b \\
2403
    0_{1 \times 3} & 1
2404
    \end{bmatrix}
2405
    \begin{bmatrix}
2406
    X_b\\
2407
    Y_b\\
2408
    Z_b\\
2409
    1
2410
    \end{bmatrix}
2411
\f]
2412
  - for each pose, the homogeneous transformation between the calibration target frame (the world frame) and the camera frame is recorded using
2413
  for instance a pose estimation method (PnP) from 2D-3D point correspondences
2414
\f[
2415
    \begin{bmatrix}
2416
    X_c\\
2417
    Y_c\\
2418
    Z_c\\
2419
    1
2420
    \end{bmatrix}
2421
    =
2422
    \begin{bmatrix}
2423
    _{}^{c}\textrm{R}_w & _{}^{c}\textrm{t}_w \\
2424
    0_{1 \times 3} & 1
2425
    \end{bmatrix}
2426
    \begin{bmatrix}
2427
    X_w\\
2428
    Y_w\\
2429
    Z_w\\
2430
    1
2431
    \end{bmatrix}
2432
\f]
2433
2434
The Robot-World/Hand-Eye calibration procedure returns the following homogeneous transformations
2435
\f[
2436
    \begin{bmatrix}
2437
    X_w\\
2438
    Y_w\\
2439
    Z_w\\
2440
    1
2441
    \end{bmatrix}
2442
    =
2443
    \begin{bmatrix}
2444
    _{}^{w}\textrm{R}_b & _{}^{w}\textrm{t}_b \\
2445
    0_{1 \times 3} & 1
2446
    \end{bmatrix}
2447
    \begin{bmatrix}
2448
    X_b\\
2449
    Y_b\\
2450
    Z_b\\
2451
    1
2452
    \end{bmatrix}
2453
\f]
2454
\f[
2455
    \begin{bmatrix}
2456
    X_c\\
2457
    Y_c\\
2458
    Z_c\\
2459
    1
2460
    \end{bmatrix}
2461
    =
2462
    \begin{bmatrix}
2463
    _{}^{c}\textrm{R}_g & _{}^{c}\textrm{t}_g \\
2464
    0_{1 \times 3} & 1
2465
    \end{bmatrix}
2466
    \begin{bmatrix}
2467
    X_g\\
2468
    Y_g\\
2469
    Z_g\\
2470
    1
2471
    \end{bmatrix}
2472
\f]
2473
2474
This problem is also known as solving the \f$\mathbf{A}\mathbf{X}=\mathbf{Z}\mathbf{B}\f$ equation, with:
2475
  - \f$\mathbf{A} \Leftrightarrow \hspace{0.1em} _{}^{c}\textrm{T}_w\f$
2476
  - \f$\mathbf{X} \Leftrightarrow \hspace{0.1em} _{}^{w}\textrm{T}_b\f$
2477
  - \f$\mathbf{Z} \Leftrightarrow \hspace{0.1em} _{}^{c}\textrm{T}_g\f$
2478
  - \f$\mathbf{B} \Leftrightarrow \hspace{0.1em} _{}^{g}\textrm{T}_b\f$
2479
2480
\note
2481
At least 3 measurements are required (input vectors size must be greater or equal to 3).
2482
2483
 */
2484
CV_EXPORTS_W void calibrateRobotWorldHandEye( InputArrayOfArrays R_world2cam, InputArrayOfArrays t_world2cam,
2485
                                              InputArrayOfArrays R_base2gripper, InputArrayOfArrays t_base2gripper,
2486
                                              OutputArray R_base2world, OutputArray t_base2world,
2487
                                              OutputArray R_gripper2cam, OutputArray t_gripper2cam,
2488
                                              RobotWorldHandEyeCalibrationMethod method=CALIB_ROBOT_WORLD_HAND_EYE_SHAH );
2489
2490
/** @brief Converts points from Euclidean to homogeneous space.
2491
2492
@param src Input vector of N-dimensional points.
2493
@param dst Output vector of N+1-dimensional points.
2494
2495
The function converts points from Euclidean to homogeneous space by appending 1's to the tuple of
2496
point coordinates. That is, each point (x1, x2, ..., xn) is converted to (x1, x2, ..., xn, 1).
2497
 */
2498
CV_EXPORTS_W void convertPointsToHomogeneous( InputArray src, OutputArray dst );
2499
2500
/** @brief Converts points from homogeneous to Euclidean space.
2501
2502
@param src Input vector of N-dimensional points.
2503
@param dst Output vector of N-1-dimensional points.
2504
2505
The function converts points homogeneous to Euclidean space using perspective projection. That is,
2506
each point (x1, x2, ... x(n-1), xn) is converted to (x1/xn, x2/xn, ..., x(n-1)/xn). When xn=0, the
2507
output point coordinates will be (0,0,0,...).
2508
 */
2509
CV_EXPORTS_W void convertPointsFromHomogeneous( InputArray src, OutputArray dst );
2510
2511
/** @brief Converts points to/from homogeneous coordinates.
2512
2513
@param src Input array or vector of 2D, 3D, or 4D points.
2514
@param dst Output vector of 2D, 3D, or 4D points.
2515
2516
The function converts 2D or 3D points from/to homogeneous coordinates by calling either
2517
#convertPointsToHomogeneous or #convertPointsFromHomogeneous.
2518
2519
@note The function is obsolete. Use one of the previous two functions instead.
2520
 */
2521
CV_EXPORTS void convertPointsHomogeneous( InputArray src, OutputArray dst );
2522
2523
/** @brief Calculates a fundamental matrix from the corresponding points in two images.
2524
2525
@param points1 Array of N points from the first image. The point coordinates should be
2526
floating-point (single or double precision).
2527
@param points2 Array of the second image points of the same size and format as points1 .
2528
@param method Method for computing a fundamental matrix.
2529
-   @ref FM_7POINT for a 7-point algorithm. \f$N = 7\f$
2530
-   @ref FM_8POINT for an 8-point algorithm. \f$N \ge 8\f$
2531
-   @ref FM_RANSAC for the RANSAC algorithm. \f$N \ge 8\f$
2532
-   @ref FM_LMEDS for the LMedS algorithm. \f$N \ge 8\f$
2533
@param ransacReprojThreshold Parameter used only for RANSAC. It is the maximum distance from a point to an epipolar
2534
line in pixels, beyond which the point is considered an outlier and is not used for computing the
2535
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
2536
point localization, image resolution, and the image noise.
2537
@param confidence Parameter used for the RANSAC and LMedS methods only. It specifies a desirable level
2538
of confidence (probability) that the estimated matrix is correct.
2539
@param[out] mask optional output mask
2540
@param maxIters The maximum number of robust method iterations.
2541
2542
The epipolar geometry is described by the following equation:
2543
2544
\f[[p_2; 1]^T F [p_1; 1] = 0\f]
2545
2546
where \f$F\f$ is a fundamental matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the
2547
second images, respectively.
2548
2549
The function calculates the fundamental matrix using one of four methods listed above and returns
2550
the found fundamental matrix. Normally just one matrix is found. But in case of the 7-point
2551
algorithm, the function may return up to 3 solutions ( \f$9 \times 3\f$ matrix that stores all 3
2552
matrices sequentially).
2553
2554
The calculated fundamental matrix may be passed further to #computeCorrespondEpilines that finds the
2555
epipolar lines corresponding to the specified points. It can also be passed to
2556
#stereoRectifyUncalibrated to compute the rectification transformation. :
2557
@code
2558
    // Example. Estimation of fundamental matrix using the RANSAC algorithm
2559
    int point_count = 100;
2560
    vector<Point2f> points1(point_count);
2561
    vector<Point2f> points2(point_count);
2562
2563
    // initialize the points here ...
2564
    for( int i = 0; i < point_count; i++ )
2565
    {
2566
        points1[i] = ...;
2567
        points2[i] = ...;
2568
    }
2569
2570
    Mat fundamental_matrix =
2571
     findFundamentalMat(points1, points2, FM_RANSAC, 3, 0.99);
2572
@endcode
2573
 */
2574
CV_EXPORTS_W Mat findFundamentalMat( InputArray points1, InputArray points2,
2575
                                     int method, double ransacReprojThreshold, double confidence,
2576
                                     int maxIters, OutputArray mask = noArray() );
2577
2578
/** @overload */
2579
CV_EXPORTS_W Mat findFundamentalMat( InputArray points1, InputArray points2,
2580
                                     int method = FM_RANSAC,
2581
                                     double ransacReprojThreshold = 3., double confidence = 0.99,
2582
                                     OutputArray mask = noArray() );
2583
2584
/** @overload */
2585
CV_EXPORTS Mat findFundamentalMat( InputArray points1, InputArray points2,
2586
                                   OutputArray mask, int method = FM_RANSAC,
2587
                                   double ransacReprojThreshold = 3., double confidence = 0.99 );
2588
2589
2590
CV_EXPORTS_W Mat findFundamentalMat( InputArray points1, InputArray points2,
2591
                        OutputArray mask, const UsacParams &params);
2592
2593
/** @brief Calculates an essential matrix from the corresponding points in two images.
2594
2595
@param points1 Array of N (N \>= 5) 2D points from the first image. The point coordinates should
2596
be floating-point (single or double precision).
2597
@param points2 Array of the second image points of the same size and format as points1.
2598
@param cameraMatrix Camera intrinsic matrix \f$\cameramatrix{A}\f$ .
2599
Note that this function assumes that points1 and points2 are feature points from cameras with the
2600
same camera intrinsic matrix. If this assumption does not hold for your use case, use another
2601
function overload or #undistortPoints with `P = cv::NoArray()` for both cameras to transform image
2602
points to normalized image coordinates, which are valid for the identity camera intrinsic matrix.
2603
When passing these coordinates, pass the identity matrix for this parameter.
2604
@param method Method for computing an essential matrix.
2605
-   @ref RANSAC for the RANSAC algorithm.
2606
-   @ref LMEDS for the LMedS algorithm.
2607
@param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
2608
confidence (probability) that the estimated matrix is correct.
2609
@param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
2610
line in pixels, beyond which the point is considered an outlier and is not used for computing the
2611
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
2612
point localization, image resolution, and the image noise.
2613
@param mask Output array of N elements, every element of which is set to 0 for outliers and to 1
2614
for the other points. The array is computed only in the RANSAC and LMedS methods.
2615
@param maxIters The maximum number of robust method iterations.
2616
2617
This function estimates essential matrix based on the five-point algorithm solver in @cite Nister03 .
2618
@cite SteweniusCFS is also a related. The epipolar geometry is described by the following equation:
2619
2620
\f[[p_2; 1]^T K^{-T} E K^{-1} [p_1; 1] = 0\f]
2621
2622
where \f$E\f$ is an essential matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the
2623
second images, respectively. The result of this function may be passed further to
2624
#decomposeEssentialMat or #recoverPose to recover the relative pose between cameras.
2625
 */
2626
CV_EXPORTS_W
2627
Mat findEssentialMat(
2628
    InputArray points1, InputArray points2,
2629
    InputArray cameraMatrix, int method = RANSAC,
2630
    double prob = 0.999, double threshold = 1.0,
2631
    int maxIters = 1000, OutputArray mask = noArray()
2632
);
2633
2634
/** @overload */
2635
CV_EXPORTS
2636
Mat findEssentialMat(
2637
    InputArray points1, InputArray points2,
2638
    InputArray cameraMatrix, int method,
2639
    double prob, double threshold,
2640
    OutputArray mask
2641
);  // TODO remove from OpenCV 5.0
2642
2643
/** @overload
2644
@param points1 Array of N (N \>= 5) 2D points from the first image. The point coordinates should
2645
be floating-point (single or double precision).
2646
@param points2 Array of the second image points of the same size and format as points1 .
2647
@param focal focal length of the camera. Note that this function assumes that points1 and points2
2648
are feature points from cameras with same focal length and principal point.
2649
@param pp principal point of the camera.
2650
@param method Method for computing a fundamental matrix.
2651
-   @ref RANSAC for the RANSAC algorithm.
2652
-   @ref LMEDS for the LMedS algorithm.
2653
@param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
2654
line in pixels, beyond which the point is considered an outlier and is not used for computing the
2655
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
2656
point localization, image resolution, and the image noise.
2657
@param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
2658
confidence (probability) that the estimated matrix is correct.
2659
@param mask Output array of N elements, every element of which is set to 0 for outliers and to 1
2660
for the other points. The array is computed only in the RANSAC and LMedS methods.
2661
@param maxIters The maximum number of robust method iterations.
2662
2663
This function differs from the one above that it computes camera intrinsic matrix from focal length and
2664
principal point:
2665
2666
\f[A =
2667
\begin{bmatrix}
2668
f & 0 & x_{pp}  \\
2669
0 & f & y_{pp}  \\
2670
0 & 0 & 1
2671
\end{bmatrix}\f]
2672
 */
2673
CV_EXPORTS_W
2674
Mat findEssentialMat(
2675
    InputArray points1, InputArray points2,
2676
    double focal = 1.0, Point2d pp = Point2d(0, 0),
2677
    int method = RANSAC, double prob = 0.999,
2678
    double threshold = 1.0, int maxIters = 1000,
2679
    OutputArray mask = noArray()
2680
);
2681
2682
/** @overload */
2683
CV_EXPORTS
2684
Mat findEssentialMat(
2685
    InputArray points1, InputArray points2,
2686
    double focal, Point2d pp,
2687
    int method, double prob,
2688
    double threshold, OutputArray mask
2689
);  // TODO remove from OpenCV 5.0
2690
2691
/** @brief Calculates an essential matrix from the corresponding points in two images from potentially two different cameras.
2692
2693
@param points1 Array of N (N \>= 5) 2D points from the first image. The point coordinates should
2694
be floating-point (single or double precision).
2695
@param points2 Array of the second image points of the same size and format as points1.
2696
@param cameraMatrix1 Camera matrix for the first camera \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
2697
@param cameraMatrix2 Camera matrix for the second camera \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
2698
@param distCoeffs1 Input vector of distortion coefficients for the first camera
2699
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
2700
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
2701
@param distCoeffs2 Input vector of distortion coefficients for the second camera
2702
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
2703
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
2704
@param method Method for computing an essential matrix.
2705
-   @ref RANSAC for the RANSAC algorithm.
2706
-   @ref LMEDS for the LMedS algorithm.
2707
@param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
2708
confidence (probability) that the estimated matrix is correct.
2709
@param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
2710
line in pixels, beyond which the point is considered an outlier and is not used for computing the
2711
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
2712
point localization, image resolution, and the image noise.
2713
@param mask Output array of N elements, every element of which is set to 0 for outliers and to 1
2714
for the other points. The array is computed only in the RANSAC and LMedS methods.
2715
2716
This function estimates essential matrix based on the five-point algorithm solver in @cite Nister03 .
2717
@cite SteweniusCFS is also a related. The epipolar geometry is described by the following equation:
2718
2719
\f[[p_2; 1]^T K^{-T} E K^{-1} [p_1; 1] = 0\f]
2720
2721
where \f$E\f$ is an essential matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the
2722
second images, respectively. The result of this function may be passed further to
2723
#decomposeEssentialMat or  #recoverPose to recover the relative pose between cameras.
2724
 */
2725
CV_EXPORTS_W Mat findEssentialMat( InputArray points1, InputArray points2,
2726
                                 InputArray cameraMatrix1, InputArray distCoeffs1,
2727
                                 InputArray cameraMatrix2, InputArray distCoeffs2,
2728
                                 int method = RANSAC,
2729
                                 double prob = 0.999, double threshold = 1.0,
2730
                                 OutputArray mask = noArray() );
2731
2732
2733
CV_EXPORTS_W Mat findEssentialMat( InputArray points1, InputArray points2,
2734
                      InputArray cameraMatrix1, InputArray cameraMatrix2,
2735
                      InputArray dist_coeff1, InputArray dist_coeff2, OutputArray mask,
2736
                      const UsacParams &params);
2737
2738
/** @brief Decompose an essential matrix to possible rotations and translation.
2739
2740
@param E The input essential matrix.
2741
@param R1 One possible rotation matrix.
2742
@param R2 Another possible rotation matrix.
2743
@param t One possible translation.
2744
2745
This function decomposes the essential matrix E using svd decomposition @cite HartleyZ00. In
2746
general, four possible poses exist for the decomposition of E. They are \f$[R_1, t]\f$,
2747
\f$[R_1, -t]\f$, \f$[R_2, t]\f$, \f$[R_2, -t]\f$.
2748
2749
If E gives the epipolar constraint \f$[p_2; 1]^T A^{-T} E A^{-1} [p_1; 1] = 0\f$ between the image
2750
points \f$p_1\f$ in the first image and \f$p_2\f$ in second image, then any of the tuples
2751
\f$[R_1, t]\f$, \f$[R_1, -t]\f$, \f$[R_2, t]\f$, \f$[R_2, -t]\f$ is a change of basis from the first
2752
camera's coordinate system to the second camera's coordinate system. However, by decomposing E, one
2753
can only get the direction of the translation. For this reason, the translation t is returned with
2754
unit length.
2755
 */
2756
CV_EXPORTS_W void decomposeEssentialMat( InputArray E, OutputArray R1, OutputArray R2, OutputArray t );
2757
2758
/** @brief Recovers the relative camera rotation and the translation from corresponding points in two images from two different cameras, using cheirality check. Returns the number of
2759
inliers that pass the check.
2760
2761
@param points1 Array of N 2D points from the first image. The point coordinates should be
2762
floating-point (single or double precision).
2763
@param points2 Array of the second image points of the same size and format as points1 .
2764
@param cameraMatrix1 Input/output camera matrix for the first camera, the same as in
2765
@ref calibrateCamera. Furthermore, for the stereo case, additional flags may be used, see below.
2766
@param distCoeffs1 Input/output vector of distortion coefficients, the same as in
2767
@ref calibrateCamera.
2768
@param cameraMatrix2 Input/output camera matrix for the first camera, the same as in
2769
@ref calibrateCamera. Furthermore, for the stereo case, additional flags may be used, see below.
2770
@param distCoeffs2 Input/output vector of distortion coefficients, the same as in
2771
@ref calibrateCamera.
2772
@param E The output essential matrix.
2773
@param R Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
2774
that performs a change of basis from the first camera's coordinate system to the second camera's
2775
coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
2776
described below.
2777
@param t Output translation vector. This vector is obtained by @ref decomposeEssentialMat and
2778
therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
2779
length.
2780
@param method Method for computing an essential matrix.
2781
-   @ref RANSAC for the RANSAC algorithm.
2782
-   @ref LMEDS for the LMedS algorithm.
2783
@param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
2784
confidence (probability) that the estimated matrix is correct.
2785
@param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
2786
line in pixels, beyond which the point is considered an outlier and is not used for computing the
2787
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
2788
point localization, image resolution, and the image noise.
2789
@param mask Input/output mask for inliers in points1 and points2. If it is not empty, then it marks
2790
inliers in points1 and points2 for then given essential matrix E. Only these inliers will be used to
2791
recover pose. In the output mask only inliers which pass the cheirality check.
2792
2793
This function decomposes an essential matrix using @ref decomposeEssentialMat and then verifies
2794
possible pose hypotheses by doing cheirality check. The cheirality check means that the
2795
triangulated 3D points should have positive depth. Some details can be found in @cite Nister03.
2796
2797
This function can be used to process the output E and mask from @ref findEssentialMat. In this
2798
scenario, points1 and points2 are the same input for findEssentialMat.:
2799
@code
2800
    // Example. Estimation of fundamental matrix using the RANSAC algorithm
2801
    int point_count = 100;
2802
    vector<Point2f> points1(point_count);
2803
    vector<Point2f> points2(point_count);
2804
2805
    // initialize the points here ...
2806
    for( int i = 0; i < point_count; i++ )
2807
    {
2808
        points1[i] = ...;
2809
        points2[i] = ...;
2810
    }
2811
2812
    // Input: camera calibration of both cameras, for example using intrinsic chessboard calibration.
2813
    Mat cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2;
2814
2815
    // Output: Essential matrix, relative rotation and relative translation.
2816
    Mat E, R, t, mask;
2817
2818
    recoverPose(points1, points2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, E, R, t, mask);
2819
@endcode
2820
 */
2821
CV_EXPORTS_W int recoverPose( InputArray points1, InputArray points2,
2822
                            InputArray cameraMatrix1, InputArray distCoeffs1,
2823
                            InputArray cameraMatrix2, InputArray distCoeffs2,
2824
                            OutputArray E, OutputArray R, OutputArray t,
2825
                            int method = cv::RANSAC, double prob = 0.999, double threshold = 1.0,
2826
                            InputOutputArray mask = noArray());
2827
2828
/** @brief Recovers the relative camera rotation and the translation from an estimated essential
2829
matrix and the corresponding points in two images, using chirality check. Returns the number of
2830
inliers that pass the check.
2831
2832
@param E The input essential matrix.
2833
@param points1 Array of N 2D points from the first image. The point coordinates should be
2834
floating-point (single or double precision).
2835
@param points2 Array of the second image points of the same size and format as points1 .
2836
@param cameraMatrix Camera intrinsic matrix \f$\cameramatrix{A}\f$ .
2837
Note that this function assumes that points1 and points2 are feature points from cameras with the
2838
same camera intrinsic matrix.
2839
@param R Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
2840
that performs a change of basis from the first camera's coordinate system to the second camera's
2841
coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
2842
described below.
2843
@param t Output translation vector. This vector is obtained by @ref decomposeEssentialMat and
2844
therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
2845
length.
2846
@param mask Input/output mask for inliers in points1 and points2. If it is not empty, then it marks
2847
inliers in points1 and points2 for the given essential matrix E. Only these inliers will be used to
2848
recover pose. In the output mask only inliers which pass the chirality check.
2849
2850
This function decomposes an essential matrix using @ref decomposeEssentialMat and then verifies
2851
possible pose hypotheses by doing chirality check. The chirality check means that the
2852
triangulated 3D points should have positive depth. Some details can be found in @cite Nister03.
2853
2854
This function can be used to process the output E and mask from @ref findEssentialMat. In this
2855
scenario, points1 and points2 are the same input for #findEssentialMat :
2856
@code
2857
    // Example. Estimation of fundamental matrix using the RANSAC algorithm
2858
    int point_count = 100;
2859
    vector<Point2f> points1(point_count);
2860
    vector<Point2f> points2(point_count);
2861
2862
    // initialize the points here ...
2863
    for( int i = 0; i < point_count; i++ )
2864
    {
2865
        points1[i] = ...;
2866
        points2[i] = ...;
2867
    }
2868
2869
    // cametra matrix with both focal lengths = 1, and principal point = (0, 0)
2870
    Mat cameraMatrix = Mat::eye(3, 3, CV_64F);
2871
2872
    Mat E, R, t, mask;
2873
2874
    E = findEssentialMat(points1, points2, cameraMatrix, RANSAC, 0.999, 1.0, mask);
2875
    recoverPose(E, points1, points2, cameraMatrix, R, t, mask);
2876
@endcode
2877
 */
2878
CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2,
2879
                            InputArray cameraMatrix, OutputArray R, OutputArray t,
2880
                            InputOutputArray mask = noArray() );
2881
2882
/** @overload
2883
@param E The input essential matrix.
2884
@param points1 Array of N 2D points from the first image. The point coordinates should be
2885
floating-point (single or double precision).
2886
@param points2 Array of the second image points of the same size and format as points1 .
2887
@param R Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
2888
that performs a change of basis from the first camera's coordinate system to the second camera's
2889
coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
2890
description below.
2891
@param t Output translation vector. This vector is obtained by @ref decomposeEssentialMat and
2892
therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
2893
length.
2894
@param focal Focal length of the camera. Note that this function assumes that points1 and points2
2895
are feature points from cameras with same focal length and principal point.
2896
@param pp principal point of the camera.
2897
@param mask Input/output mask for inliers in points1 and points2. If it is not empty, then it marks
2898
inliers in points1 and points2 for the given essential matrix E. Only these inliers will be used to
2899
recover pose. In the output mask only inliers which pass the chirality check.
2900
2901
This function differs from the one above that it computes camera intrinsic matrix from focal length and
2902
principal point:
2903
2904
\f[A =
2905
\begin{bmatrix}
2906
f & 0 & x_{pp}  \\
2907
0 & f & y_{pp}  \\
2908
0 & 0 & 1
2909
\end{bmatrix}\f]
2910
 */
2911
CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2,
2912
                            OutputArray R, OutputArray t,
2913
                            double focal = 1.0, Point2d pp = Point2d(0, 0),
2914
                            InputOutputArray mask = noArray() );
2915
2916
/** @overload
2917
@param E The input essential matrix.
2918
@param points1 Array of N 2D points from the first image. The point coordinates should be
2919
floating-point (single or double precision).
2920
@param points2 Array of the second image points of the same size and format as points1.
2921
@param cameraMatrix Camera intrinsic matrix \f$\cameramatrix{A}\f$ .
2922
Note that this function assumes that points1 and points2 are feature points from cameras with the
2923
same camera intrinsic matrix.
2924
@param R Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
2925
that performs a change of basis from the first camera's coordinate system to the second camera's
2926
coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
2927
description below.
2928
@param t Output translation vector. This vector is obtained by @ref decomposeEssentialMat and
2929
therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
2930
length.
2931
@param distanceThresh threshold distance which is used to filter out far away points (i.e. infinite
2932
points).
2933
@param mask Input/output mask for inliers in points1 and points2. If it is not empty, then it marks
2934
inliers in points1 and points2 for the given essential matrix E. Only these inliers will be used to
2935
recover pose. In the output mask only inliers which pass the chirality check.
2936
@param triangulatedPoints 3D points which were reconstructed by triangulation.
2937
2938
This function differs from the one above that it outputs the triangulated 3D point that are used for
2939
the chirality check.
2940
 */
2941
CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2,
2942
                            InputArray cameraMatrix, OutputArray R, OutputArray t, double distanceThresh, InputOutputArray mask = noArray(),
2943
                            OutputArray triangulatedPoints = noArray());
2944
2945
/** @brief For points in an image of a stereo pair, computes the corresponding epilines in the other image.
2946
2947
@param points Input points. \f$N \times 1\f$ or \f$1 \times N\f$ matrix of type CV_32FC2 or
2948
vector\<Point2f\> .
2949
@param whichImage Index of the image (1 or 2) that contains the points .
2950
@param F Fundamental matrix that can be estimated using #findFundamentalMat or #stereoRectify .
2951
@param lines Output vector of the epipolar lines corresponding to the points in the other image.
2952
Each line \f$ax + by + c=0\f$ is encoded by 3 numbers \f$(a, b, c)\f$ .
2953
2954
For every point in one of the two images of a stereo pair, the function finds the equation of the
2955
corresponding epipolar line in the other image.
2956
2957
From the fundamental matrix definition (see #findFundamentalMat ), line \f$l^{(2)}_i\f$ in the second
2958
image for the point \f$p^{(1)}_i\f$ in the first image (when whichImage=1 ) is computed as:
2959
2960
\f[l^{(2)}_i = F p^{(1)}_i\f]
2961
2962
And vice versa, when whichImage=2, \f$l^{(1)}_i\f$ is computed from \f$p^{(2)}_i\f$ as:
2963
2964
\f[l^{(1)}_i = F^T p^{(2)}_i\f]
2965
2966
Line coefficients are defined up to a scale. They are normalized so that \f$a_i^2+b_i^2=1\f$ .
2967
 */
2968
CV_EXPORTS_W void computeCorrespondEpilines( InputArray points, int whichImage,
2969
                                             InputArray F, OutputArray lines );
2970
2971
/** @brief This function reconstructs 3-dimensional points (in homogeneous coordinates) by using
2972
their observations with a stereo camera.
2973
2974
@param projMatr1 3x4 projection matrix of the first camera, i.e. this matrix projects 3D points
2975
given in the world's coordinate system into the first image.
2976
@param projMatr2 3x4 projection matrix of the second camera, i.e. this matrix projects 3D points
2977
given in the world's coordinate system into the second image.
2978
@param projPoints1 2xN array of feature points in the first image. In the case of the c++ version,
2979
it can be also a vector of feature points or two-channel matrix of size 1xN or Nx1.
2980
@param projPoints2 2xN array of corresponding points in the second image. In the case of the c++
2981
version, it can be also a vector of feature points or two-channel matrix of size 1xN or Nx1.
2982
@param points4D 4xN array of reconstructed points in homogeneous coordinates. These points are
2983
returned in the world's coordinate system.
2984
2985
@note
2986
   Keep in mind that all input data should be of float type in order for this function to work.
2987
2988
@note
2989
   If the projection matrices from @ref stereoRectify are used, then the returned points are
2990
   represented in the first camera's rectified coordinate system.
2991
2992
@sa
2993
   reprojectImageTo3D
2994
 */
2995
CV_EXPORTS_W void triangulatePoints( InputArray projMatr1, InputArray projMatr2,
2996
                                     InputArray projPoints1, InputArray projPoints2,
2997
                                     OutputArray points4D );
2998
2999
/** @brief Refines coordinates of corresponding points.
3000
3001
@param F 3x3 fundamental matrix.
3002
@param points1 1xN array containing the first set of points.
3003
@param points2 1xN array containing the second set of points.
3004
@param newPoints1 The optimized points1.
3005
@param newPoints2 The optimized points2.
3006
3007
The function implements the Optimal Triangulation Method (see Multiple View Geometry @cite HartleyZ00 for details).
3008
For each given point correspondence points1[i] \<-\> points2[i], and a fundamental matrix F, it
3009
computes the corrected correspondences newPoints1[i] \<-\> newPoints2[i] that minimize the geometric
3010
error \f$d(points1[i], newPoints1[i])^2 + d(points2[i],newPoints2[i])^2\f$ (where \f$d(a,b)\f$ is the
3011
geometric distance between points \f$a\f$ and \f$b\f$ ) subject to the epipolar constraint
3012
\f$newPoints2^T \cdot F \cdot newPoints1 = 0\f$ .
3013
 */
3014
CV_EXPORTS_W void correctMatches( InputArray F, InputArray points1, InputArray points2,
3015
                                  OutputArray newPoints1, OutputArray newPoints2 );
3016
3017
/** @brief Filters off small noise blobs (speckles) in the disparity map
3018
3019
@param img The input 16-bit signed disparity image
3020
@param newVal The disparity value used to paint-off the speckles
3021
@param maxSpeckleSize The maximum speckle size to consider it a speckle. Larger blobs are not
3022
affected by the algorithm
3023
@param maxDiff Maximum difference between neighbor disparity pixels to put them into the same
3024
blob. Note that since StereoBM, StereoSGBM and may be other algorithms return a fixed-point
3025
disparity map, where disparity values are multiplied by 16, this scale factor should be taken into
3026
account when specifying this parameter value.
3027
@param buf The optional temporary buffer to avoid memory allocation within the function.
3028
 */
3029
CV_EXPORTS_W void filterSpeckles( InputOutputArray img, double newVal,
3030
                                  int maxSpeckleSize, double maxDiff,
3031
                                  InputOutputArray buf = noArray() );
3032
3033
//! computes valid disparity ROI from the valid ROIs of the rectified images (that are returned by #stereoRectify)
3034
CV_EXPORTS_W Rect getValidDisparityROI( Rect roi1, Rect roi2,
3035
                                        int minDisparity, int numberOfDisparities,
3036
                                        int blockSize );
3037
3038
//! validates disparity using the left-right check. The matrix "cost" should be computed by the stereo correspondence algorithm
3039
CV_EXPORTS_W void validateDisparity( InputOutputArray disparity, InputArray cost,
3040
                                     int minDisparity, int numberOfDisparities,
3041
                                     int disp12MaxDisp = 1 );
3042
3043
/** @brief Reprojects a disparity image to 3D space.
3044
3045
@param disparity Input single-channel 8-bit unsigned, 16-bit signed, 32-bit signed or 32-bit
3046
floating-point disparity image. The values of 8-bit / 16-bit signed formats are assumed to have no
3047
fractional bits. If the disparity is 16-bit signed format, as computed by @ref StereoBM or
3048
@ref StereoSGBM and maybe other algorithms, it should be divided by 16 (and scaled to float) before
3049
being used here.
3050
@param _3dImage Output 3-channel floating-point image of the same size as disparity. Each element of
3051
_3dImage(x,y) contains 3D coordinates of the point (x,y) computed from the disparity map. If one
3052
uses Q obtained by @ref stereoRectify, then the returned points are represented in the first
3053
camera's rectified coordinate system.
3054
@param Q \f$4 \times 4\f$ perspective transformation matrix that can be obtained with
3055
@ref stereoRectify.
3056
@param handleMissingValues Indicates, whether the function should handle missing values (i.e.
3057
points where the disparity was not computed). If handleMissingValues=true, then pixels with the
3058
minimal disparity that corresponds to the outliers (see StereoMatcher::compute ) are transformed
3059
to 3D points with a very large Z value (currently set to 10000).
3060
@param ddepth The optional output array depth. If it is -1, the output image will have CV_32F
3061
depth. ddepth can also be set to CV_16S, CV_32S or CV_32F.
3062
3063
The function transforms a single-channel disparity map to a 3-channel image representing a 3D
3064
surface. That is, for each pixel (x,y) and the corresponding disparity d=disparity(x,y) , it
3065
computes:
3066
3067
\f[\begin{bmatrix}
3068
X \\
3069
Y \\
3070
Z \\
3071
W
3072
\end{bmatrix} = Q \begin{bmatrix}
3073
x \\
3074
y \\
3075
\texttt{disparity} (x,y) \\
3076
1
3077
\end{bmatrix}.\f]
3078
3079
@sa
3080
   To reproject a sparse set of points {(x,y,d),...} to 3D space, use perspectiveTransform.
3081
 */
3082
CV_EXPORTS_W void reprojectImageTo3D( InputArray disparity,
3083
                                      OutputArray _3dImage, InputArray Q,
3084
                                      bool handleMissingValues = false,
3085
                                      int ddepth = -1 );
3086
3087
/** @brief Calculates the Sampson Distance between two points.
3088
3089
The function cv::sampsonDistance calculates and returns the first order approximation of the geometric error as:
3090
\f[
3091
sd( \texttt{pt1} , \texttt{pt2} )=
3092
\frac{(\texttt{pt2}^t \cdot \texttt{F} \cdot \texttt{pt1})^2}
3093
{((\texttt{F} \cdot \texttt{pt1})(0))^2 +
3094
((\texttt{F} \cdot \texttt{pt1})(1))^2 +
3095
((\texttt{F}^t \cdot \texttt{pt2})(0))^2 +
3096
((\texttt{F}^t \cdot \texttt{pt2})(1))^2}
3097
\f]
3098
The fundamental matrix may be calculated using the #findFundamentalMat function. See @cite HartleyZ00 11.4.3 for details.
3099
@param pt1 first homogeneous 2d point
3100
@param pt2 second homogeneous 2d point
3101
@param F fundamental matrix
3102
@return The computed Sampson distance.
3103
*/
3104
CV_EXPORTS_W double sampsonDistance(InputArray pt1, InputArray pt2, InputArray F);
3105
3106
/** @brief Computes an optimal affine transformation between two 3D point sets.
3107
3108
It computes
3109
\f[
3110
\begin{bmatrix}
3111
x\\
3112
y\\
3113
z\\
3114
\end{bmatrix}
3115
=
3116
\begin{bmatrix}
3117
a_{11} & a_{12} & a_{13}\\
3118
a_{21} & a_{22} & a_{23}\\
3119
a_{31} & a_{32} & a_{33}\\
3120
\end{bmatrix}
3121
\begin{bmatrix}
3122
X\\
3123
Y\\
3124
Z\\
3125
\end{bmatrix}
3126
+
3127
\begin{bmatrix}
3128
b_1\\
3129
b_2\\
3130
b_3\\
3131
\end{bmatrix}
3132
\f]
3133
3134
@param src First input 3D point set containing \f$(X,Y,Z)\f$.
3135
@param dst Second input 3D point set containing \f$(x,y,z)\f$.
3136
@param out Output 3D affine transformation matrix \f$3 \times 4\f$ of the form
3137
\f[
3138
\begin{bmatrix}
3139
a_{11} & a_{12} & a_{13} & b_1\\
3140
a_{21} & a_{22} & a_{23} & b_2\\
3141
a_{31} & a_{32} & a_{33} & b_3\\
3142
\end{bmatrix}
3143
\f]
3144
@param inliers Output vector indicating which points are inliers (1-inlier, 0-outlier).
3145
@param ransacThreshold Maximum reprojection error in the RANSAC algorithm to consider a point as
3146
an inlier.
3147
@param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
3148
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
3149
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
3150
3151
The function estimates an optimal 3D affine transformation between two 3D point sets using the
3152
RANSAC algorithm.
3153
 */
3154
CV_EXPORTS_W  int estimateAffine3D(InputArray src, InputArray dst,
3155
                                   OutputArray out, OutputArray inliers,
3156
                                   double ransacThreshold = 3, double confidence = 0.99);
3157
3158
/** @brief Computes an optimal affine transformation between two 3D point sets.
3159
3160
It computes \f$R,s,t\f$ minimizing \f$\sum{i} dst_i - c \cdot R \cdot src_i \f$
3161
where \f$R\f$ is a 3x3 rotation matrix, \f$t\f$ is a 3x1 translation vector and \f$s\f$ is a
3162
scalar size value. This is an implementation of the algorithm by Umeyama \cite umeyama1991least .
3163
The estimated affine transform has a homogeneous scale which is a subclass of affine
3164
transformations with 7 degrees of freedom. The paired point sets need to comprise at least 3
3165
points each.
3166
3167
@param src First input 3D point set.
3168
@param dst Second input 3D point set.
3169
@param scale If null is passed, the scale parameter c will be assumed to be 1.0.
3170
Else the pointed-to variable will be set to the optimal scale.
3171
@param force_rotation If true, the returned rotation will never be a reflection.
3172
This might be unwanted, e.g. when optimizing a transform between a right- and a
3173
left-handed coordinate system.
3174
@return 3D affine transformation matrix \f$3 \times 4\f$ of the form
3175
\f[T =
3176
\begin{bmatrix}
3177
R & t\\
3178
\end{bmatrix}
3179
\f]
3180
3181
 */
3182
CV_EXPORTS_W   cv::Mat estimateAffine3D(InputArray src, InputArray dst,
3183
                                        CV_OUT double* scale = nullptr, bool force_rotation = true);
3184
3185
/** @brief Computes an optimal translation between two 3D point sets.
3186
 *
3187
 * It computes
3188
 * \f[
3189
 * \begin{bmatrix}
3190
 * x\\
3191
 * y\\
3192
 * z\\
3193
 * \end{bmatrix}
3194
 * =
3195
 * \begin{bmatrix}
3196
 * X\\
3197
 * Y\\
3198
 * Z\\
3199
 * \end{bmatrix}
3200
 * +
3201
 * \begin{bmatrix}
3202
 * b_1\\
3203
 * b_2\\
3204
 * b_3\\
3205
 * \end{bmatrix}
3206
 * \f]
3207
 *
3208
 * @param src First input 3D point set containing \f$(X,Y,Z)\f$.
3209
 * @param dst Second input 3D point set containing \f$(x,y,z)\f$.
3210
 * @param out Output 3D translation vector \f$3 \times 1\f$ of the form
3211
 * \f[
3212
 * \begin{bmatrix}
3213
 * b_1 \\
3214
 * b_2 \\
3215
 * b_3 \\
3216
 * \end{bmatrix}
3217
 * \f]
3218
 * @param inliers Output vector indicating which points are inliers (1-inlier, 0-outlier).
3219
 * @param ransacThreshold Maximum reprojection error in the RANSAC algorithm to consider a point as
3220
 * an inlier.
3221
 * @param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
3222
 * between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
3223
 * significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
3224
 *
3225
 * The function estimates an optimal 3D translation between two 3D point sets using the
3226
 * RANSAC algorithm.
3227
 *  */
3228
CV_EXPORTS_W  int estimateTranslation3D(InputArray src, InputArray dst,
3229
                                        OutputArray out, OutputArray inliers,
3230
                                        double ransacThreshold = 3, double confidence = 0.99);
3231
3232
/** @brief Computes an optimal affine transformation between two 2D point sets.
3233
3234
It computes
3235
\f[
3236
\begin{bmatrix}
3237
x\\
3238
y\\
3239
\end{bmatrix}
3240
=
3241
\begin{bmatrix}
3242
a_{11} & a_{12}\\
3243
a_{21} & a_{22}\\
3244
\end{bmatrix}
3245
\begin{bmatrix}
3246
X\\
3247
Y\\
3248
\end{bmatrix}
3249
+
3250
\begin{bmatrix}
3251
b_1\\
3252
b_2\\
3253
\end{bmatrix}
3254
\f]
3255
3256
@param from First input 2D point set containing \f$(X,Y)\f$.
3257
@param to Second input 2D point set containing \f$(x,y)\f$.
3258
@param inliers Output vector indicating which points are inliers (1-inlier, 0-outlier).
3259
@param method Robust method used to compute transformation. The following methods are possible:
3260
-   @ref RANSAC - RANSAC-based robust method
3261
-   @ref LMEDS - Least-Median robust method
3262
RANSAC is the default method.
3263
@param ransacReprojThreshold Maximum reprojection error in the RANSAC algorithm to consider
3264
a point as an inlier. Applies only to RANSAC.
3265
@param maxIters The maximum number of robust method iterations.
3266
@param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
3267
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
3268
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
3269
@param refineIters Maximum number of iterations of refining algorithm (Levenberg-Marquardt).
3270
Passing 0 will disable refining, so the output matrix will be output of robust method.
3271
3272
@return Output 2D affine transformation matrix \f$2 \times 3\f$ or empty matrix if transformation
3273
could not be estimated. The returned matrix has the following form:
3274
\f[
3275
\begin{bmatrix}
3276
a_{11} & a_{12} & b_1\\
3277
a_{21} & a_{22} & b_2\\
3278
\end{bmatrix}
3279
\f]
3280
3281
The function estimates an optimal 2D affine transformation between two 2D point sets using the
3282
selected robust algorithm.
3283
3284
The computed transformation is then refined further (using only inliers) with the
3285
Levenberg-Marquardt method to reduce the re-projection error even more.
3286
3287
@note
3288
The RANSAC method can handle practically any ratio of outliers but needs a threshold to
3289
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
3290
correctly only when there are more than 50% of inliers.
3291
3292
@sa estimateAffinePartial2D, getAffineTransform
3293
*/
3294
CV_EXPORTS_W cv::Mat estimateAffine2D(InputArray from, InputArray to, OutputArray inliers = noArray(),
3295
                                  int method = RANSAC, double ransacReprojThreshold = 3,
3296
                                  size_t maxIters = 2000, double confidence = 0.99,
3297
                                  size_t refineIters = 10);
3298
3299
3300
CV_EXPORTS_W cv::Mat estimateAffine2D(InputArray pts1, InputArray pts2, OutputArray inliers,
3301
                     const UsacParams &params);
3302
3303
/** @brief Computes an optimal limited affine transformation with 4 degrees of freedom between
3304
two 2D point sets.
3305
3306
@param from First input 2D point set.
3307
@param to Second input 2D point set.
3308
@param inliers Output vector indicating which points are inliers.
3309
@param method Robust method used to compute transformation. The following methods are possible:
3310
-   @ref RANSAC - RANSAC-based robust method
3311
-   @ref LMEDS - Least-Median robust method
3312
RANSAC is the default method.
3313
@param ransacReprojThreshold Maximum reprojection error in the RANSAC algorithm to consider
3314
a point as an inlier. Applies only to RANSAC.
3315
@param maxIters The maximum number of robust method iterations.
3316
@param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
3317
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
3318
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
3319
@param refineIters Maximum number of iterations of refining algorithm (Levenberg-Marquardt).
3320
Passing 0 will disable refining, so the output matrix will be output of robust method.
3321
3322
@return Output 2D affine transformation (4 degrees of freedom) matrix \f$2 \times 3\f$ or
3323
empty matrix if transformation could not be estimated.
3324
3325
The function estimates an optimal 2D affine transformation with 4 degrees of freedom limited to
3326
combinations of translation, rotation, and uniform scaling. Uses the selected algorithm for robust
3327
estimation.
3328
3329
The computed transformation is then refined further (using only inliers) with the
3330
Levenberg-Marquardt method to reduce the re-projection error even more.
3331
3332
Estimated transformation matrix is:
3333
\f[ \begin{bmatrix} \cos(\theta) \cdot s & -\sin(\theta) \cdot s & t_x \\
3334
                \sin(\theta) \cdot s & \cos(\theta) \cdot s & t_y
3335
\end{bmatrix} \f]
3336
Where \f$ \theta \f$ is the rotation angle, \f$ s \f$ the scaling factor and \f$ t_x, t_y \f$ are
3337
translations in \f$ x, y \f$ axes respectively.
3338
3339
@note
3340
The RANSAC method can handle practically any ratio of outliers but need a threshold to
3341
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
3342
correctly only when there are more than 50% of inliers.
3343
3344
@sa estimateAffine2D, getAffineTransform
3345
*/
3346
CV_EXPORTS_W cv::Mat estimateAffinePartial2D(InputArray from, InputArray to, OutputArray inliers = noArray(),
3347
                                  int method = RANSAC, double ransacReprojThreshold = 3,
3348
                                  size_t maxIters = 2000, double confidence = 0.99,
3349
                                  size_t refineIters = 10);
3350
3351
/** @example samples/cpp/tutorial_code/features2D/Homography/decompose_homography.cpp
3352
An example program with homography decomposition.
3353
3354
Check @ref tutorial_homography "the corresponding tutorial" for more details.
3355
*/
3356
3357
/** @brief Decompose a homography matrix to rotation(s), translation(s) and plane normal(s).
3358
3359
@param H The input homography matrix between two images.
3360
@param K The input camera intrinsic matrix.
3361
@param rotations Array of rotation matrices.
3362
@param translations Array of translation matrices.
3363
@param normals Array of plane normal matrices.
3364
3365
This function extracts relative camera motion between two views of a planar object and returns up to
3366
four mathematical solution tuples of rotation, translation, and plane normal. The decomposition of
3367
the homography matrix H is described in detail in @cite Malis2007.
3368
3369
If the homography H, induced by the plane, gives the constraint
3370
\f[s_i \vecthree{x'_i}{y'_i}{1} \sim H \vecthree{x_i}{y_i}{1}\f] on the source image points
3371
\f$p_i\f$ and the destination image points \f$p'_i\f$, then the tuple of rotations[k] and
3372
translations[k] is a change of basis from the source camera's coordinate system to the destination
3373
camera's coordinate system. However, by decomposing H, one can only get the translation normalized
3374
by the (typically unknown) depth of the scene, i.e. its direction but with normalized length.
3375
3376
If point correspondences are available, at least two solutions may further be invalidated, by
3377
applying positive depth constraint, i.e. all points must be in front of the camera.
3378
 */
3379
CV_EXPORTS_W int decomposeHomographyMat(InputArray H,
3380
                                        InputArray K,
3381
                                        OutputArrayOfArrays rotations,
3382
                                        OutputArrayOfArrays translations,
3383
                                        OutputArrayOfArrays normals);
3384
3385
/** @brief Filters homography decompositions based on additional information.
3386
3387
@param rotations Vector of rotation matrices.
3388
@param normals Vector of plane normal matrices.
3389
@param beforePoints Vector of (rectified) visible reference points before the homography is applied
3390
@param afterPoints Vector of (rectified) visible reference points after the homography is applied
3391
@param possibleSolutions Vector of int indices representing the viable solution set after filtering
3392
@param pointsMask optional Mat/Vector of 8u type representing the mask for the inliers as given by the #findHomography function
3393
3394
This function is intended to filter the output of the #decomposeHomographyMat based on additional
3395
information as described in @cite Malis2007 . The summary of the method: the #decomposeHomographyMat function
3396
returns 2 unique solutions and their "opposites" for a total of 4 solutions. If we have access to the
3397
sets of points visible in the camera frame before and after the homography transformation is applied,
3398
we can determine which are the true potential solutions and which are the opposites by verifying which
3399
homographies are consistent with all visible reference points being in front of the camera. The inputs
3400
are left unchanged; the filtered solution set is returned as indices into the existing one.
3401
3402
*/
3403
CV_EXPORTS_W void filterHomographyDecompByVisibleRefpoints(InputArrayOfArrays rotations,
3404
                                                           InputArrayOfArrays normals,
3405
                                                           InputArray beforePoints,
3406
                                                           InputArray afterPoints,
3407
                                                           OutputArray possibleSolutions,
3408
                                                           InputArray pointsMask = noArray());
3409
3410
/** @brief The base class for stereo correspondence algorithms.
3411
 */
3412
class CV_EXPORTS_W StereoMatcher : public Algorithm
3413
{
3414
public:
3415
    enum { DISP_SHIFT = 4,
3416
           DISP_SCALE = (1 << DISP_SHIFT)
3417
         };
3418
3419
    /** @brief Computes disparity map for the specified stereo pair
3420
3421
    @param left Left 8-bit single-channel image.
3422
    @param right Right image of the same size and the same type as the left one.
3423
    @param disparity Output disparity map. It has the same size as the input images. Some algorithms,
3424
    like StereoBM or StereoSGBM compute 16-bit fixed-point disparity map (where each disparity value
3425
    has 4 fractional bits), whereas other algorithms output 32-bit floating-point disparity map.
3426
     */
3427
    CV_WRAP virtual void compute( InputArray left, InputArray right,
3428
                                  OutputArray disparity ) = 0;
3429
3430
    CV_WRAP virtual int getMinDisparity() const = 0;
3431
    CV_WRAP virtual void setMinDisparity(int minDisparity) = 0;
3432
3433
    CV_WRAP virtual int getNumDisparities() const = 0;
3434
    CV_WRAP virtual void setNumDisparities(int numDisparities) = 0;
3435
3436
    CV_WRAP virtual int getBlockSize() const = 0;
3437
    CV_WRAP virtual void setBlockSize(int blockSize) = 0;
3438
3439
    CV_WRAP virtual int getSpeckleWindowSize() const = 0;
3440
    CV_WRAP virtual void setSpeckleWindowSize(int speckleWindowSize) = 0;
3441
3442
    CV_WRAP virtual int getSpeckleRange() const = 0;
3443
    CV_WRAP virtual void setSpeckleRange(int speckleRange) = 0;
3444
3445
    CV_WRAP virtual int getDisp12MaxDiff() const = 0;
3446
    CV_WRAP virtual void setDisp12MaxDiff(int disp12MaxDiff) = 0;
3447
};
3448
3449
3450
/**
3451
 * @brief Class for computing stereo correspondence using the block matching algorithm, introduced and contributed to OpenCV by K. Konolige.
3452
 * @details This class implements a block matching algorithm for stereo correspondence, which is used to compute disparity maps from stereo image pairs. It provides methods to fine-tune parameters such as pre-filtering, texture thresholds, uniqueness ratios, and regions of interest (ROIs) to optimize performance and accuracy.
3453
 */
3454
class CV_EXPORTS_W StereoBM : public StereoMatcher
3455
{
3456
public:
3457
    /**
3458
     * @brief Pre-filter types for the stereo matching algorithm.
3459
     * @details These constants define the type of pre-filtering applied to the images before computing the disparity map.
3460
     * - PREFILTER_NORMALIZED_RESPONSE: Uses normalized response for pre-filtering.
3461
     * - PREFILTER_XSOBEL: Uses the X-Sobel operator for pre-filtering.
3462
     */
3463
    enum {
3464
        PREFILTER_NORMALIZED_RESPONSE = 0,  ///< Normalized response pre-filter
3465
        PREFILTER_XSOBEL              = 1   ///< X-Sobel pre-filter
3466
    };
3467
3468
    /**
3469
     * @brief Gets the type of pre-filtering currently used in the algorithm.
3470
     * @return The current pre-filter type: 0 for PREFILTER_NORMALIZED_RESPONSE or 1 for PREFILTER_XSOBEL.
3471
     */
3472
    CV_WRAP virtual int getPreFilterType() const = 0;
3473
3474
    /**
3475
     * @brief Sets the type of pre-filtering used in the algorithm.
3476
     * @param preFilterType The type of pre-filter to use. Possible values are:
3477
     * - PREFILTER_NORMALIZED_RESPONSE (0): Uses normalized response for pre-filtering.
3478
     * - PREFILTER_XSOBEL (1): Uses the X-Sobel operator for pre-filtering.
3479
     * @details The pre-filter type affects how the images are prepared before computing the disparity map. Different pre-filtering methods can enhance specific image features or reduce noise, influencing the quality of the disparity map.
3480
     */
3481
    CV_WRAP virtual void setPreFilterType(int preFilterType) = 0;
3482
3483
    /**
3484
     * @brief Gets the current size of the pre-filter kernel.
3485
     * @return The current pre-filter size.
3486
     */
3487
    CV_WRAP virtual int getPreFilterSize() const = 0;
3488
3489
    /**
3490
     * @brief Sets the size of the pre-filter kernel.
3491
     * @param preFilterSize The size of the pre-filter kernel. Must be an odd integer, typically between 5 and 255.
3492
     * @details The pre-filter size determines the spatial extent of the pre-filtering operation, which prepares the images for disparity computation by normalizing brightness and enhancing texture. Larger sizes reduce noise but may blur details, while smaller sizes preserve details but are more susceptible to noise.
3493
     */
3494
    CV_WRAP virtual void setPreFilterSize(int preFilterSize) = 0;
3495
3496
    /**
3497
     * @brief Gets the current truncation value for prefiltered pixels.
3498
     * @return The current pre-filter cap value.
3499
     */
3500
    CV_WRAP virtual int getPreFilterCap() const = 0;
3501
3502
    /**
3503
     * @brief Sets the truncation value for prefiltered pixels.
3504
     * @param preFilterCap The truncation value. Typically in the range [1, 63].
3505
     * @details This value caps the output of the pre-filter to [-preFilterCap, preFilterCap], helping to reduce the impact of noise and outliers in the pre-filtered image.
3506
     */
3507
    CV_WRAP virtual void setPreFilterCap(int preFilterCap) = 0;
3508
3509
    /**
3510
     * @brief Gets the current texture threshold value.
3511
     * @return The current texture threshold.
3512
     */
3513
    CV_WRAP virtual int getTextureThreshold() const = 0;
3514
3515
    /**
3516
     * @brief Sets the threshold for filtering low-texture regions.
3517
     * @param textureThreshold The threshold value. Must be non-negative.
3518
     * @details This parameter filters out regions with low texture, where establishing correspondences is difficult, thus reducing noise in the disparity map. Higher values filter more aggressively but may discard valid information.
3519
     */
3520
    CV_WRAP virtual void setTextureThreshold(int textureThreshold) = 0;
3521
3522
    /**
3523
     * @brief Gets the current uniqueness ratio value.
3524
     * @return The current uniqueness ratio.
3525
     */
3526
    CV_WRAP virtual int getUniquenessRatio() const = 0;
3527
3528
    /**
3529
     * @brief Sets the uniqueness ratio for filtering ambiguous matches.
3530
     * @param uniquenessRatio The uniqueness ratio value. Typically in the range [5, 15], but can be from 0 to 100.
3531
     * @details This parameter ensures that the best match is sufficiently better than the next best match, reducing false positives. Higher values are stricter but may filter out valid matches in difficult regions.
3532
     */
3533
    CV_WRAP virtual void setUniquenessRatio(int uniquenessRatio) = 0;
3534
3535
    /**
3536
     * @brief Gets the current size of the smaller block used for texture check.
3537
     * @return The current smaller block size.
3538
     */
3539
    CV_WRAP virtual int getSmallerBlockSize() const = 0;
3540
3541
    /**
3542
     * @brief Sets the size of the smaller block used for texture check.
3543
     * @param blockSize The size of the smaller block. Must be an odd integer between 5 and 255.
3544
     * @details This parameter determines the size of the block used to compute texture variance. Smaller blocks capture finer details but are more sensitive to noise, while larger blocks are more robust but may miss fine details.
3545
     */
3546
    CV_WRAP virtual void setSmallerBlockSize(int blockSize) = 0;
3547
3548
    /**
3549
     * @brief Gets the current Region of Interest (ROI) for the left image.
3550
     * @return The current ROI for the left image.
3551
     */
3552
    CV_WRAP virtual Rect getROI1() const = 0;
3553
3554
    /**
3555
     * @brief Sets the Region of Interest (ROI) for the left image.
3556
     * @param roi1 The ROI rectangle for the left image.
3557
     * @details By setting the ROI, the stereo matching computation is limited to the specified region, improving performance and potentially accuracy by focusing on relevant parts of the image.
3558
     */
3559
    CV_WRAP virtual void setROI1(Rect roi1) = 0;
3560
3561
    /**
3562
     * @brief Gets the current Region of Interest (ROI) for the right image.
3563
     * @return The current ROI for the right image.
3564
     */
3565
    CV_WRAP virtual Rect getROI2() const = 0;
3566
3567
    /**
3568
     * @brief Sets the Region of Interest (ROI) for the right image.
3569
     * @param roi2 The ROI rectangle for the right image.
3570
     * @details Similar to setROI1, this limits the computation to the specified region in the right image.
3571
     */
3572
    CV_WRAP virtual void setROI2(Rect roi2) = 0;
3573
3574
    /**
3575
     * @brief Creates StereoBM object
3576
     * @param numDisparities The disparity search range. For each pixel, the algorithm will find the best disparity from 0 (default minimum disparity) to numDisparities. The search range can be shifted by changing the minimum disparity.
3577
     * @param blockSize The linear size of the blocks compared by the algorithm. The size should be odd (as the block is centered at the current pixel). Larger block size implies smoother, though less accurate disparity map. Smaller block size gives more detailed disparity map, but there is a higher chance for the algorithm to find a wrong correspondence.
3578
     * @return A pointer to the created StereoBM object.
3579
     * @details The function creates a StereoBM object. You can then call StereoBM::compute() to compute disparity for a specific stereo pair.
3580
     */
3581
    CV_WRAP static Ptr<StereoBM> create(int numDisparities = 0, int blockSize = 21);
3582
};
3583
3584
/** @brief The class implements the modified H. Hirschmuller algorithm @cite HH08 that differs from the original
3585
one as follows:
3586
3587
-   By default, the algorithm is single-pass, which means that you consider only 5 directions
3588
instead of 8. Set mode=StereoSGBM::MODE_HH in createStereoSGBM to run the full variant of the
3589
algorithm but beware that it may consume a lot of memory.
3590
-   The algorithm matches blocks, not individual pixels. Though, setting blockSize=1 reduces the
3591
blocks to single pixels.
3592
-   Mutual information cost function is not implemented. Instead, a simpler Birchfield-Tomasi
3593
sub-pixel metric from @cite BT98 is used. Though, the color images are supported as well.
3594
-   Some pre- and post- processing steps from K. Konolige algorithm StereoBM are included, for
3595
example: pre-filtering (StereoBM::PREFILTER_XSOBEL type) and post-filtering (uniqueness
3596
check, quadratic interpolation and speckle filtering).
3597
3598
@note
3599
   -   (Python) An example illustrating the use of the StereoSGBM matching algorithm can be found
3600
        at opencv_source_code/samples/python/stereo_match.py
3601
 */
3602
class CV_EXPORTS_W StereoSGBM : public StereoMatcher
3603
{
3604
public:
3605
    enum
3606
    {
3607
        MODE_SGBM = 0,
3608
        MODE_HH   = 1,
3609
        MODE_SGBM_3WAY = 2,
3610
        MODE_HH4  = 3
3611
    };
3612
3613
    CV_WRAP virtual int getPreFilterCap() const = 0;
3614
    CV_WRAP virtual void setPreFilterCap(int preFilterCap) = 0;
3615
3616
    CV_WRAP virtual int getUniquenessRatio() const = 0;
3617
    CV_WRAP virtual void setUniquenessRatio(int uniquenessRatio) = 0;
3618
3619
    CV_WRAP virtual int getP1() const = 0;
3620
    CV_WRAP virtual void setP1(int P1) = 0;
3621
3622
    CV_WRAP virtual int getP2() const = 0;
3623
    CV_WRAP virtual void setP2(int P2) = 0;
3624
3625
    CV_WRAP virtual int getMode() const = 0;
3626
    CV_WRAP virtual void setMode(int mode) = 0;
3627
3628
    /** @brief Creates StereoSGBM object
3629
3630
    @param minDisparity Minimum possible disparity value. Normally, it is zero but sometimes
3631
    rectification algorithms can shift images, so this parameter needs to be adjusted accordingly.
3632
    @param numDisparities Maximum disparity minus minimum disparity. The value is always greater than
3633
    zero. In the current implementation, this parameter must be divisible by 16.
3634
    @param blockSize Matched block size. It must be an odd number \>=1 . Normally, it should be
3635
    somewhere in the 3..11 range.
3636
    @param P1 The first parameter controlling the disparity smoothness. See below.
3637
    @param P2 The second parameter controlling the disparity smoothness. The larger the values are,
3638
    the smoother the disparity is. P1 is the penalty on the disparity change by plus or minus 1
3639
    between neighbor pixels. P2 is the penalty on the disparity change by more than 1 between neighbor
3640
    pixels. The algorithm requires P2 \> P1 . See stereo_match.cpp sample where some reasonably good
3641
    P1 and P2 values are shown (like 8\*number_of_image_channels\*blockSize\*blockSize and
3642
    32\*number_of_image_channels\*blockSize\*blockSize , respectively).
3643
    @param disp12MaxDiff Maximum allowed difference (in integer pixel units) in the left-right
3644
    disparity check. Set it to a non-positive value to disable the check.
3645
    @param preFilterCap Truncation value for the prefiltered image pixels. The algorithm first
3646
    computes x-derivative at each pixel and clips its value by [-preFilterCap, preFilterCap] interval.
3647
    The result values are passed to the Birchfield-Tomasi pixel cost function.
3648
    @param uniquenessRatio Margin in percentage by which the best (minimum) computed cost function
3649
    value should "win" the second best value to consider the found match correct. Normally, a value
3650
    within the 5-15 range is good enough.
3651
    @param speckleWindowSize Maximum size of smooth disparity regions to consider their noise speckles
3652
    and invalidate. Set it to 0 to disable speckle filtering. Otherwise, set it somewhere in the
3653
    50-200 range.
3654
    @param speckleRange Maximum disparity variation within each connected component. If you do speckle
3655
    filtering, set the parameter to a positive value, it will be implicitly multiplied by 16.
3656
    Normally, 1 or 2 is good enough.
3657
    @param mode Set it to StereoSGBM::MODE_HH to run the full-scale two-pass dynamic programming
3658
    algorithm. It will consume O(W\*H\*numDisparities) bytes, which is large for 640x480 stereo and
3659
    huge for HD-size pictures. By default, it is set to false .
3660
3661
    The first constructor initializes StereoSGBM with all the default parameters. So, you only have to
3662
    set StereoSGBM::numDisparities at minimum. The second constructor enables you to set each parameter
3663
    to a custom value.
3664
     */
3665
    CV_WRAP static Ptr<StereoSGBM> create(int minDisparity = 0, int numDisparities = 16, int blockSize = 3,
3666
                                          int P1 = 0, int P2 = 0, int disp12MaxDiff = 0,
3667
                                          int preFilterCap = 0, int uniquenessRatio = 0,
3668
                                          int speckleWindowSize = 0, int speckleRange = 0,
3669
                                          int mode = StereoSGBM::MODE_SGBM);
3670
};
3671
3672
3673
//! cv::undistort mode
3674
enum UndistortTypes
3675
{
3676
    PROJ_SPHERICAL_ORTHO  = 0,
3677
    PROJ_SPHERICAL_EQRECT = 1
3678
};
3679
3680
/** @brief Transforms an image to compensate for lens distortion.
3681
3682
The function transforms an image to compensate radial and tangential lens distortion.
3683
3684
The function is simply a combination of #initUndistortRectifyMap (with unity R ) and #remap
3685
(with bilinear interpolation). See the former function for details of the transformation being
3686
performed.
3687
3688
Those pixels in the destination image, for which there is no correspondent pixels in the source
3689
image, are filled with zeros (black color).
3690
3691
A particular subset of the source image that will be visible in the corrected image can be regulated
3692
by newCameraMatrix. You can use #getOptimalNewCameraMatrix to compute the appropriate
3693
newCameraMatrix depending on your requirements.
3694
3695
The camera matrix and the distortion parameters can be determined using #calibrateCamera. If
3696
the resolution of images is different from the resolution used at the calibration stage, \f$f_x,
3697
f_y, c_x\f$ and \f$c_y\f$ need to be scaled accordingly, while the distortion coefficients remain
3698
the same.
3699
3700
@param src Input (distorted) image.
3701
@param dst Output (corrected) image that has the same size and type as src .
3702
@param cameraMatrix Input camera matrix \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
3703
@param distCoeffs Input vector of distortion coefficients
3704
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
3705
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
3706
@param newCameraMatrix Camera matrix of the distorted image. By default, it is the same as
3707
cameraMatrix but you may additionally scale and shift the result by using a different matrix.
3708
 */
3709
CV_EXPORTS_W void undistort( InputArray src, OutputArray dst,
3710
                             InputArray cameraMatrix,
3711
                             InputArray distCoeffs,
3712
                             InputArray newCameraMatrix = noArray() );
3713
3714
/** @brief Computes the undistortion and rectification transformation map.
3715
3716
The function computes the joint undistortion and rectification transformation and represents the
3717
result in the form of maps for #remap. The undistorted image looks like original, as if it is
3718
captured with a camera using the camera matrix =newCameraMatrix and zero distortion. In case of a
3719
monocular camera, newCameraMatrix is usually equal to cameraMatrix, or it can be computed by
3720
#getOptimalNewCameraMatrix for a better control over scaling. In case of a stereo camera,
3721
newCameraMatrix is normally set to P1 or P2 computed by #stereoRectify .
3722
3723
Also, this new camera is oriented differently in the coordinate space, according to R. That, for
3724
example, helps to align two heads of a stereo camera so that the epipolar lines on both images
3725
become horizontal and have the same y- coordinate (in case of a horizontally aligned stereo camera).
3726
3727
The function actually builds the maps for the inverse mapping algorithm that is used by #remap. That
3728
is, for each pixel \f$(u, v)\f$ in the destination (corrected and rectified) image, the function
3729
computes the corresponding coordinates in the source image (that is, in the original image from
3730
camera). The following process is applied:
3731
\f[
3732
\begin{array}{l}
3733
x  \leftarrow (u - {c'}_x)/{f'}_x  \\
3734
y  \leftarrow (v - {c'}_y)/{f'}_y  \\
3735
{[X\,Y\,W]} ^T  \leftarrow R^{-1}*[x \, y \, 1]^T  \\
3736
x'  \leftarrow X/W  \\
3737
y'  \leftarrow Y/W  \\
3738
r^2  \leftarrow x'^2 + y'^2 \\
3739
x''  \leftarrow x' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6}
3740
+ 2p_1 x' y' + p_2(r^2 + 2 x'^2)  + s_1 r^2 + s_2 r^4\\
3741
y''  \leftarrow y' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6}
3742
+ p_1 (r^2 + 2 y'^2) + 2 p_2 x' y' + s_3 r^2 + s_4 r^4 \\
3743
s\vecthree{x'''}{y'''}{1} =
3744
\vecthreethree{R_{33}(\tau_x, \tau_y)}{0}{-R_{13}((\tau_x, \tau_y)}
3745
{0}{R_{33}(\tau_x, \tau_y)}{-R_{23}(\tau_x, \tau_y)}
3746
{0}{0}{1} R(\tau_x, \tau_y) \vecthree{x''}{y''}{1}\\
3747
map_x(u,v)  \leftarrow x''' f_x + c_x  \\
3748
map_y(u,v)  \leftarrow y''' f_y + c_y
3749
\end{array}
3750
\f]
3751
where \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
3752
are the distortion coefficients.
3753
3754
In case of a stereo camera, this function is called twice: once for each camera head, after
3755
#stereoRectify, which in its turn is called after #stereoCalibrate. But if the stereo camera
3756
was not calibrated, it is still possible to compute the rectification transformations directly from
3757
the fundamental matrix using #stereoRectifyUncalibrated. For each camera, the function computes
3758
homography H as the rectification transformation in a pixel domain, not a rotation matrix R in 3D
3759
space. R can be computed from H as
3760
\f[\texttt{R} = \texttt{cameraMatrix} ^{-1} \cdot \texttt{H} \cdot \texttt{cameraMatrix}\f]
3761
where cameraMatrix can be chosen arbitrarily.
3762
3763
@param cameraMatrix Input camera matrix \f$A=\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
3764
@param distCoeffs Input vector of distortion coefficients
3765
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
3766
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
3767
@param R Optional rectification transformation in the object space (3x3 matrix). R1 or R2 ,
3768
computed by #stereoRectify can be passed here. If the matrix is empty, the identity transformation
3769
is assumed. In #initUndistortRectifyMap R assumed to be an identity matrix.
3770
@param newCameraMatrix New camera matrix \f$A'=\vecthreethree{f_x'}{0}{c_x'}{0}{f_y'}{c_y'}{0}{0}{1}\f$.
3771
@param size Undistorted image size.
3772
@param m1type Type of the first output map that can be CV_32FC1, CV_32FC2 or CV_16SC2, see #convertMaps
3773
@param map1 The first output map.
3774
@param map2 The second output map.
3775
 */
3776
CV_EXPORTS_W
3777
void initUndistortRectifyMap(InputArray cameraMatrix, InputArray distCoeffs,
3778
                             InputArray R, InputArray newCameraMatrix,
3779
                             Size size, int m1type, OutputArray map1, OutputArray map2);
3780
3781
/** @brief Computes the projection and inverse-rectification transformation map. In essense, this is the inverse of
3782
#initUndistortRectifyMap to accomodate stereo-rectification of projectors ('inverse-cameras') in projector-camera pairs.
3783
3784
The function computes the joint projection and inverse rectification transformation and represents the
3785
result in the form of maps for #remap. The projected image looks like a distorted version of the original which,
3786
once projected by a projector, should visually match the original. In case of a monocular camera, newCameraMatrix
3787
is usually equal to cameraMatrix, or it can be computed by
3788
#getOptimalNewCameraMatrix for a better control over scaling. In case of a projector-camera pair,
3789
newCameraMatrix is normally set to P1 or P2 computed by #stereoRectify .
3790
3791
The projector is oriented differently in the coordinate space, according to R. In case of projector-camera pairs,
3792
this helps align the projector (in the same manner as #initUndistortRectifyMap for the camera) to create a stereo-rectified pair. This
3793
allows epipolar lines on both images to become horizontal and have the same y-coordinate (in case of a horizontally aligned projector-camera pair).
3794
3795
The function builds the maps for the inverse mapping algorithm that is used by #remap. That
3796
is, for each pixel \f$(u, v)\f$ in the destination (projected and inverse-rectified) image, the function
3797
computes the corresponding coordinates in the source image (that is, in the original digital image). The following process is applied:
3798
3799
\f[
3800
\begin{array}{l}
3801
\text{newCameraMatrix}\\
3802
x  \leftarrow (u - {c'}_x)/{f'}_x  \\
3803
y  \leftarrow (v - {c'}_y)/{f'}_y  \\
3804
3805
\\\text{Undistortion}
3806
\\\scriptsize{\textit{though equation shown is for radial undistortion, function implements cv::undistortPoints()}}\\
3807
r^2  \leftarrow x^2 + y^2 \\
3808
\theta \leftarrow \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6}\\
3809
x' \leftarrow \frac{x}{\theta} \\
3810
y'  \leftarrow \frac{y}{\theta} \\
3811
3812
\\\text{Rectification}\\
3813
{[X\,Y\,W]} ^T  \leftarrow R*[x' \, y' \, 1]^T  \\
3814
x''  \leftarrow X/W  \\
3815
y''  \leftarrow Y/W  \\
3816
3817
\\\text{cameraMatrix}\\
3818
map_x(u,v)  \leftarrow x'' f_x + c_x  \\
3819
map_y(u,v)  \leftarrow y'' f_y + c_y
3820
\end{array}
3821
\f]
3822
where \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
3823
are the distortion coefficients vector distCoeffs.
3824
3825
In case of a stereo-rectified projector-camera pair, this function is called for the projector while #initUndistortRectifyMap is called for the camera head.
3826
This is done after #stereoRectify, which in turn is called after #stereoCalibrate. If the projector-camera pair
3827
is not calibrated, it is still possible to compute the rectification transformations directly from
3828
the fundamental matrix using #stereoRectifyUncalibrated. For the projector and camera, the function computes
3829
homography H as the rectification transformation in a pixel domain, not a rotation matrix R in 3D
3830
space. R can be computed from H as
3831
\f[\texttt{R} = \texttt{cameraMatrix} ^{-1} \cdot \texttt{H} \cdot \texttt{cameraMatrix}\f]
3832
where cameraMatrix can be chosen arbitrarily.
3833
3834
@param cameraMatrix Input camera matrix \f$A=\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
3835
@param distCoeffs Input vector of distortion coefficients
3836
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
3837
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
3838
@param R Optional rectification transformation in the object space (3x3 matrix). R1 or R2,
3839
computed by #stereoRectify can be passed here. If the matrix is empty, the identity transformation
3840
is assumed.
3841
@param newCameraMatrix New camera matrix \f$A'=\vecthreethree{f_x'}{0}{c_x'}{0}{f_y'}{c_y'}{0}{0}{1}\f$.
3842
@param size Distorted image size.
3843
@param m1type Type of the first output map. Can be CV_32FC1, CV_32FC2 or CV_16SC2, see #convertMaps
3844
@param map1 The first output map for #remap.
3845
@param map2 The second output map for #remap.
3846
 */
3847
CV_EXPORTS_W
3848
void initInverseRectificationMap( InputArray cameraMatrix, InputArray distCoeffs,
3849
                           InputArray R, InputArray newCameraMatrix,
3850
                           const Size& size, int m1type, OutputArray map1, OutputArray map2 );
3851
3852
//! initializes maps for #remap for wide-angle
3853
CV_EXPORTS
3854
float initWideAngleProjMap(InputArray cameraMatrix, InputArray distCoeffs,
3855
                           Size imageSize, int destImageWidth,
3856
                           int m1type, OutputArray map1, OutputArray map2,
3857
                           enum UndistortTypes projType = PROJ_SPHERICAL_EQRECT, double alpha = 0);
3858
static inline
3859
float initWideAngleProjMap(InputArray cameraMatrix, InputArray distCoeffs,
3860
                           Size imageSize, int destImageWidth,
3861
                           int m1type, OutputArray map1, OutputArray map2,
3862
                           int projType, double alpha = 0)
3863
0
{
3864
0
    return initWideAngleProjMap(cameraMatrix, distCoeffs, imageSize, destImageWidth,
3865
0
                                m1type, map1, map2, (UndistortTypes)projType, alpha);
3866
0
}
Unexecuted instantiation: generateusergallerycollage_fuzzer.cc:cv::initWideAngleProjMap(cv::_InputArray const&, cv::_InputArray const&, cv::Size_<int>, int, int, cv::_OutputArray const&, cv::_OutputArray const&, int, double)
Unexecuted instantiation: imread_fuzzer.cc:cv::initWideAngleProjMap(cv::_InputArray const&, cv::_InputArray const&, cv::Size_<int>, int, int, cv::_OutputArray const&, cv::_OutputArray const&, int, double)
Unexecuted instantiation: imdecode_fuzzer.cc:cv::initWideAngleProjMap(cv::_InputArray const&, cv::_InputArray const&, cv::Size_<int>, int, int, cv::_OutputArray const&, cv::_OutputArray const&, int, double)
Unexecuted instantiation: filestorage_read_string_fuzzer.cc:cv::initWideAngleProjMap(cv::_InputArray const&, cv::_InputArray const&, cv::Size_<int>, int, int, cv::_OutputArray const&, cv::_OutputArray const&, int, double)
Unexecuted instantiation: filestorage_read_file_fuzzer.cc:cv::initWideAngleProjMap(cv::_InputArray const&, cv::_InputArray const&, cv::Size_<int>, int, int, cv::_OutputArray const&, cv::_OutputArray const&, int, double)
Unexecuted instantiation: core_fuzzer.cc:cv::initWideAngleProjMap(cv::_InputArray const&, cv::_InputArray const&, cv::Size_<int>, int, int, cv::_OutputArray const&, cv::_OutputArray const&, int, double)
Unexecuted instantiation: imencode_fuzzer.cc:cv::initWideAngleProjMap(cv::_InputArray const&, cv::_InputArray const&, cv::Size_<int>, int, int, cv::_OutputArray const&, cv::_OutputArray const&, int, double)
Unexecuted instantiation: filestorage_read_filename_fuzzer.cc:cv::initWideAngleProjMap(cv::_InputArray const&, cv::_InputArray const&, cv::Size_<int>, int, int, cv::_OutputArray const&, cv::_OutputArray const&, int, double)
3867
3868
/** @brief Returns the default new camera matrix.
3869
3870
The function returns the camera matrix that is either an exact copy of the input cameraMatrix (when
3871
centerPrinicipalPoint=false ), or the modified one (when centerPrincipalPoint=true).
3872
3873
In the latter case, the new camera matrix will be:
3874
3875
\f[\begin{bmatrix} f_x && 0 && ( \texttt{imgSize.width} -1)*0.5  \\ 0 && f_y && ( \texttt{imgSize.height} -1)*0.5  \\ 0 && 0 && 1 \end{bmatrix} ,\f]
3876
3877
where \f$f_x\f$ and \f$f_y\f$ are \f$(0,0)\f$ and \f$(1,1)\f$ elements of cameraMatrix, respectively.
3878
3879
By default, the undistortion functions in OpenCV (see #initUndistortRectifyMap, #undistort) do not
3880
move the principal point. However, when you work with stereo, it is important to move the principal
3881
points in both views to the same y-coordinate (which is required by most of stereo correspondence
3882
algorithms), and may be to the same x-coordinate too. So, you can form the new camera matrix for
3883
each view where the principal points are located at the center.
3884
3885
@param cameraMatrix Input camera matrix.
3886
@param imgsize Camera view image size in pixels.
3887
@param centerPrincipalPoint Location of the principal point in the new camera matrix. The
3888
parameter indicates whether this location should be at the image center or not.
3889
 */
3890
CV_EXPORTS_W
3891
Mat getDefaultNewCameraMatrix(InputArray cameraMatrix, Size imgsize = Size(),
3892
                              bool centerPrincipalPoint = false);
3893
3894
/** @brief Computes the ideal point coordinates from the observed point coordinates.
3895
3896
The function is similar to #undistort and #initUndistortRectifyMap but it operates on a
3897
sparse set of points instead of a raster image. Also the function performs a reverse transformation
3898
to  #projectPoints. In case of a 3D object, it does not reconstruct its 3D coordinates, but for a
3899
planar object, it does, up to a translation vector, if the proper R is specified.
3900
3901
For each observed point coordinate \f$(u, v)\f$ the function computes:
3902
\f[
3903
\begin{array}{l}
3904
x^{"}  \leftarrow (u - c_x)/f_x  \\
3905
y^{"}  \leftarrow (v - c_y)/f_y  \\
3906
(x',y') = undistort(x^{"},y^{"}, \texttt{distCoeffs}) \\
3907
{[X\,Y\,W]} ^T  \leftarrow R*[x' \, y' \, 1]^T  \\
3908
x  \leftarrow X/W  \\
3909
y  \leftarrow Y/W  \\
3910
\text{only performed if P is specified:} \\
3911
u'  \leftarrow x {f'}_x + {c'}_x  \\
3912
v'  \leftarrow y {f'}_y + {c'}_y
3913
\end{array}
3914
\f]
3915
3916
where *undistort* is an approximate iterative algorithm that estimates the normalized original
3917
point coordinates out of the normalized distorted point coordinates ("normalized" means that the
3918
coordinates do not depend on the camera matrix).
3919
3920
The function can be used for both a stereo camera head or a monocular camera (when R is empty).
3921
@param src Observed point coordinates, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel (CV_32FC2 or CV_64FC2) (or
3922
vector\<Point2f\> ).
3923
@param dst Output ideal point coordinates (1xN/Nx1 2-channel or vector\<Point2f\> ) after undistortion and reverse perspective
3924
transformation. If matrix P is identity or omitted, dst will contain normalized point coordinates.
3925
@param cameraMatrix Camera matrix \f$\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
3926
@param distCoeffs Input vector of distortion coefficients
3927
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
3928
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
3929
@param R Rectification transformation in the object space (3x3 matrix). R1 or R2 computed by
3930
#stereoRectify can be passed here. If the matrix is empty, the identity transformation is used.
3931
@param P New camera matrix (3x3) or new projection matrix (3x4) \f$\begin{bmatrix} {f'}_x & 0 & {c'}_x & t_x \\ 0 & {f'}_y & {c'}_y & t_y \\ 0 & 0 & 1 & t_z \end{bmatrix}\f$. P1 or P2 computed by
3932
#stereoRectify can be passed here. If the matrix is empty, the identity new camera matrix is used.
3933
 */
3934
CV_EXPORTS_W
3935
void undistortPoints(InputArray src, OutputArray dst,
3936
                     InputArray cameraMatrix, InputArray distCoeffs,
3937
                     InputArray R = noArray(), InputArray P = noArray());
3938
/** @overload
3939
    @note Default version of #undistortPoints does 5 iterations to compute undistorted points.
3940
 */
3941
CV_EXPORTS_AS(undistortPointsIter)
3942
void undistortPoints(InputArray src, OutputArray dst,
3943
                     InputArray cameraMatrix, InputArray distCoeffs,
3944
                     InputArray R, InputArray P, TermCriteria criteria);
3945
3946
/**
3947
 * @brief Compute undistorted image points position
3948
 *
3949
 * @param src Observed points position, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel (CV_32FC2 or
3950
CV_64FC2) (or vector\<Point2f\> ).
3951
 * @param dst Output undistorted points position (1xN/Nx1 2-channel or vector\<Point2f\> ).
3952
 * @param cameraMatrix Camera matrix \f$\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
3953
 * @param distCoeffs Distortion coefficients
3954
 */
3955
CV_EXPORTS_W
3956
void undistortImagePoints(InputArray src, OutputArray dst, InputArray cameraMatrix,
3957
                          InputArray distCoeffs,
3958
                          TermCriteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5,
3959
                                                      0.01));
3960
3961
//! @} calib3d
3962
3963
/** @brief The methods in this namespace use a so-called fisheye camera model.
3964
  @ingroup calib3d_fisheye
3965
*/
3966
namespace fisheye
3967
{
3968
//! @addtogroup calib3d_fisheye
3969
//! @{
3970
3971
    enum{
3972
        CALIB_USE_INTRINSIC_GUESS   = 1 << 0,
3973
        CALIB_RECOMPUTE_EXTRINSIC   = 1 << 1,
3974
        CALIB_CHECK_COND            = 1 << 2,
3975
        CALIB_FIX_SKEW              = 1 << 3,
3976
        CALIB_FIX_K1                = 1 << 4,
3977
        CALIB_FIX_K2                = 1 << 5,
3978
        CALIB_FIX_K3                = 1 << 6,
3979
        CALIB_FIX_K4                = 1 << 7,
3980
        CALIB_FIX_INTRINSIC         = 1 << 8,
3981
        CALIB_FIX_PRINCIPAL_POINT   = 1 << 9,
3982
        CALIB_ZERO_DISPARITY        = 1 << 10,
3983
        CALIB_FIX_FOCAL_LENGTH      = 1 << 11
3984
    };
3985
3986
    /** @brief Projects points using fisheye model
3987
3988
    @param objectPoints Array of object points, 1xN/Nx1 3-channel (or vector\<Point3f\> ), where N is
3989
    the number of points in the view.
3990
    @param imagePoints Output array of image points, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel, or
3991
    vector\<Point2f\>.
3992
    @param affine
3993
    @param K Camera intrinsic matrix \f$\cameramatrix{K}\f$.
3994
    @param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.
3995
    @param alpha The skew coefficient.
3996
    @param jacobian Optional output 2Nx15 jacobian matrix of derivatives of image points with respect
3997
    to components of the focal lengths, coordinates of the principal point, distortion coefficients,
3998
    rotation vector, translation vector, and the skew. In the old interface different components of
3999
    the jacobian are returned via different output parameters.
4000
4001
    The function computes projections of 3D points to the image plane given intrinsic and extrinsic
4002
    camera parameters. Optionally, the function computes Jacobians - matrices of partial derivatives of
4003
    image points coordinates (as functions of all the input parameters) with respect to the particular
4004
    parameters, intrinsic and/or extrinsic.
4005
     */
4006
    CV_EXPORTS void projectPoints(InputArray objectPoints, OutputArray imagePoints, const Affine3d& affine,
4007
        InputArray K, InputArray D, double alpha = 0, OutputArray jacobian = noArray());
4008
4009
    /** @overload */
4010
    CV_EXPORTS_W void projectPoints(InputArray objectPoints, OutputArray imagePoints, InputArray rvec, InputArray tvec,
4011
        InputArray K, InputArray D, double alpha = 0, OutputArray jacobian = noArray());
4012
4013
    /** @brief Distorts 2D points using fisheye model.
4014
4015
    @param undistorted Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is
4016
    the number of points in the view.
4017
    @param K Camera intrinsic matrix \f$\cameramatrix{K}\f$.
4018
    @param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.
4019
    @param alpha The skew coefficient.
4020
    @param distorted Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> .
4021
4022
    Note that the function assumes the camera intrinsic matrix of the undistorted points to be identity.
4023
    This means if you want to distort image points you have to multiply them with \f$K^{-1}\f$ or
4024
    use another function overload.
4025
     */
4026
    CV_EXPORTS_W void distortPoints(InputArray undistorted, OutputArray distorted, InputArray K, InputArray D, double alpha = 0);
4027
4028
    /** @overload
4029
    Overload of distortPoints function to handle cases when undistorted points are obtained with non-identity
4030
    camera matrix, e.g. output of #estimateNewCameraMatrixForUndistortRectify.
4031
    @param undistorted Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is
4032
    the number of points in the view.
4033
    @param Kundistorted Camera intrinsic matrix used as new camera matrix for undistortion.
4034
    @param K Camera intrinsic matrix \f$\cameramatrix{K}\f$.
4035
    @param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.
4036
    @param alpha The skew coefficient.
4037
    @param distorted Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> .
4038
    @sa estimateNewCameraMatrixForUndistortRectify
4039
    */
4040
    CV_EXPORTS_W void distortPoints(InputArray undistorted, OutputArray distorted, InputArray Kundistorted, InputArray K, InputArray D, double alpha = 0);
4041
4042
    /** @brief Undistorts 2D points using fisheye model
4043
4044
    @param distorted Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is the
4045
    number of points in the view.
4046
    @param K Camera intrinsic matrix \f$\cameramatrix{K}\f$.
4047
    @param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.
4048
    @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
4049
    1-channel or 1x1 3-channel
4050
    @param P New camera intrinsic matrix (3x3) or new projection matrix (3x4)
4051
    @param criteria Termination criteria
4052
    @param undistorted Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> .
4053
     */
4054
    CV_EXPORTS_W void undistortPoints(InputArray distorted, OutputArray undistorted,
4055
        InputArray K, InputArray D, InputArray R = noArray(), InputArray P  = noArray(),
4056
                TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 10, 1e-8));
4057
4058
    /** @brief Computes undistortion and rectification maps for image transform by #remap. If D is empty zero
4059
    distortion is used, if R or P is empty identity matrixes are used.
4060
4061
    @param K Camera intrinsic matrix \f$\cameramatrix{K}\f$.
4062
    @param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.
4063
    @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
4064
    1-channel or 1x1 3-channel
4065
    @param P New camera intrinsic matrix (3x3) or new projection matrix (3x4)
4066
    @param size Undistorted image size.
4067
    @param m1type Type of the first output map that can be CV_32FC1 or CV_16SC2 . See #convertMaps
4068
    for details.
4069
    @param map1 The first output map.
4070
    @param map2 The second output map.
4071
     */
4072
    CV_EXPORTS_W void initUndistortRectifyMap(InputArray K, InputArray D, InputArray R, InputArray P,
4073
        const cv::Size& size, int m1type, OutputArray map1, OutputArray map2);
4074
4075
    /** @brief Transforms an image to compensate for fisheye lens distortion.
4076
4077
    @param distorted image with fisheye lens distortion.
4078
    @param undistorted Output image with compensated fisheye lens distortion.
4079
    @param K Camera intrinsic matrix \f$\cameramatrix{K}\f$.
4080
    @param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.
4081
    @param Knew Camera intrinsic matrix of the distorted image. By default, it is the identity matrix but you
4082
    may additionally scale and shift the result by using a different matrix.
4083
    @param new_size the new size
4084
4085
    The function transforms an image to compensate radial and tangential lens distortion.
4086
4087
    The function is simply a combination of #fisheye::initUndistortRectifyMap (with unity R ) and #remap
4088
    (with bilinear interpolation). See the former function for details of the transformation being
4089
    performed.
4090
4091
    See below the results of undistortImage.
4092
       -   a\) result of undistort of perspective camera model (all possible coefficients (k_1, k_2, k_3,
4093
            k_4, k_5, k_6) of distortion were optimized under calibration)
4094
        -   b\) result of #fisheye::undistortImage of fisheye camera model (all possible coefficients (k_1, k_2,
4095
            k_3, k_4) of fisheye distortion were optimized under calibration)
4096
        -   c\) original image was captured with fisheye lens
4097
4098
    Pictures a) and b) almost the same. But if we consider points of image located far from the center
4099
    of image, we can notice that on image a) these points are distorted.
4100
4101
    ![image](pics/fisheye_undistorted.jpg)
4102
     */
4103
    CV_EXPORTS_W void undistortImage(InputArray distorted, OutputArray undistorted,
4104
        InputArray K, InputArray D, InputArray Knew = cv::noArray(), const Size& new_size = Size());
4105
4106
    /** @brief Estimates new camera intrinsic matrix for undistortion or rectification.
4107
4108
    @param K Camera intrinsic matrix \f$\cameramatrix{K}\f$.
4109
    @param image_size Size of the image
4110
    @param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.
4111
    @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
4112
    1-channel or 1x1 3-channel
4113
    @param P New camera intrinsic matrix (3x3) or new projection matrix (3x4)
4114
    @param balance Sets the new focal length in range between the min focal length and the max focal
4115
    length. Balance is in range of [0, 1].
4116
    @param new_size the new size
4117
    @param fov_scale Divisor for new focal length.
4118
     */
4119
    CV_EXPORTS_W void estimateNewCameraMatrixForUndistortRectify(InputArray K, InputArray D, const Size &image_size, InputArray R,
4120
        OutputArray P, double balance = 0.0, const Size& new_size = Size(), double fov_scale = 1.0);
4121
4122
    /** @brief Performs camera calibration
4123
4124
    @param objectPoints vector of vectors of calibration pattern points in the calibration pattern
4125
    coordinate space.
4126
    @param imagePoints vector of vectors of the projections of calibration pattern points.
4127
    imagePoints.size() and objectPoints.size() and imagePoints[i].size() must be equal to
4128
    objectPoints[i].size() for each i.
4129
    @param image_size Size of the image used only to initialize the camera intrinsic matrix.
4130
    @param K Output 3x3 floating-point camera intrinsic matrix
4131
    \f$\cameramatrix{A}\f$ . If
4132
    @ref fisheye::CALIB_USE_INTRINSIC_GUESS is specified, some or all of fx, fy, cx, cy must be
4133
    initialized before calling the function.
4134
    @param D Output vector of distortion coefficients \f$\distcoeffsfisheye\f$.
4135
    @param rvecs Output vector of rotation vectors (see @ref Rodrigues ) estimated for each pattern view.
4136
    That is, each k-th rotation vector together with the corresponding k-th translation vector (see
4137
    the next output parameter description) brings the calibration pattern from the model coordinate
4138
    space (in which object points are specified) to the world coordinate space, that is, a real
4139
    position of the calibration pattern in the k-th pattern view (k=0.. *M* -1).
4140
    @param tvecs Output vector of translation vectors estimated for each pattern view.
4141
    @param flags Different flags that may be zero or a combination of the following values:
4142
    -    @ref fisheye::CALIB_USE_INTRINSIC_GUESS  cameraMatrix contains valid initial values of
4143
    fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
4144
    center ( imageSize is used), and focal distances are computed in a least-squares fashion.
4145
    -    @ref fisheye::CALIB_RECOMPUTE_EXTRINSIC  Extrinsic will be recomputed after each iteration
4146
    of intrinsic optimization.
4147
    -    @ref fisheye::CALIB_CHECK_COND  The functions will check validity of condition number.
4148
    -    @ref fisheye::CALIB_FIX_SKEW  Skew coefficient (alpha) is set to zero and stay zero.
4149
    -    @ref fisheye::CALIB_FIX_K1,..., @ref fisheye::CALIB_FIX_K4 Selected distortion coefficients
4150
    are set to zeros and stay zero.
4151
    -    @ref fisheye::CALIB_FIX_PRINCIPAL_POINT  The principal point is not changed during the global
4152
optimization. It stays at the center or at a different location specified when @ref fisheye::CALIB_USE_INTRINSIC_GUESS is set too.
4153
    -    @ref fisheye::CALIB_FIX_FOCAL_LENGTH The focal length is not changed during the global
4154
optimization. It is the \f$max(width,height)/\pi\f$ or the provided \f$f_x\f$, \f$f_y\f$ when @ref fisheye::CALIB_USE_INTRINSIC_GUESS is set too.
4155
    @param criteria Termination criteria for the iterative optimization algorithm.
4156
     */
4157
    CV_EXPORTS_W double calibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, const Size& image_size,
4158
        InputOutputArray K, InputOutputArray D, OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, int flags = 0,
4159
            TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON));
4160
4161
    /** @brief Stereo rectification for fisheye camera model
4162
4163
    @param K1 First camera intrinsic matrix.
4164
    @param D1 First camera distortion parameters.
4165
    @param K2 Second camera intrinsic matrix.
4166
    @param D2 Second camera distortion parameters.
4167
    @param imageSize Size of the image used for stereo calibration.
4168
    @param R Rotation matrix between the coordinate systems of the first and the second
4169
    cameras.
4170
    @param tvec Translation vector between coordinate systems of the cameras.
4171
    @param R1 Output 3x3 rectification transform (rotation matrix) for the first camera.
4172
    @param R2 Output 3x3 rectification transform (rotation matrix) for the second camera.
4173
    @param P1 Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
4174
    camera.
4175
    @param P2 Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
4176
    camera.
4177
    @param Q Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see #reprojectImageTo3D ).
4178
    @param flags Operation flags that may be zero or @ref fisheye::CALIB_ZERO_DISPARITY . If the flag is set,
4179
    the function makes the principal points of each camera have the same pixel coordinates in the
4180
    rectified views. And if the flag is not set, the function may still shift the images in the
4181
    horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
4182
    useful image area.
4183
    @param newImageSize New image resolution after rectification. The same size should be passed to
4184
    #initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
4185
    is passed (default), it is set to the original imageSize . Setting it to larger value can help you
4186
    preserve details in the original image, especially when there is a big radial distortion.
4187
    @param balance Sets the new focal length in range between the min focal length and the max focal
4188
    length. Balance is in range of [0, 1].
4189
    @param fov_scale Divisor for new focal length.
4190
     */
4191
    CV_EXPORTS_W void stereoRectify(InputArray K1, InputArray D1, InputArray K2, InputArray D2, const Size &imageSize, InputArray R, InputArray tvec,
4192
        OutputArray R1, OutputArray R2, OutputArray P1, OutputArray P2, OutputArray Q, int flags, const Size &newImageSize = Size(),
4193
        double balance = 0.0, double fov_scale = 1.0);
4194
4195
    /** @brief Performs stereo calibration
4196
4197
    @param objectPoints Vector of vectors of the calibration pattern points.
4198
    @param imagePoints1 Vector of vectors of the projections of the calibration pattern points,
4199
    observed by the first camera.
4200
    @param imagePoints2 Vector of vectors of the projections of the calibration pattern points,
4201
    observed by the second camera.
4202
    @param K1 Input/output first camera intrinsic matrix:
4203
    \f$\vecthreethree{f_x^{(j)}}{0}{c_x^{(j)}}{0}{f_y^{(j)}}{c_y^{(j)}}{0}{0}{1}\f$ , \f$j = 0,\, 1\f$ . If
4204
    any of @ref fisheye::CALIB_USE_INTRINSIC_GUESS , @ref fisheye::CALIB_FIX_INTRINSIC are specified,
4205
    some or all of the matrix components must be initialized.
4206
    @param D1 Input/output vector of distortion coefficients \f$\distcoeffsfisheye\f$ of 4 elements.
4207
    @param K2 Input/output second camera intrinsic matrix. The parameter is similar to K1 .
4208
    @param D2 Input/output lens distortion coefficients for the second camera. The parameter is
4209
    similar to D1 .
4210
    @param imageSize Size of the image used only to initialize camera intrinsic matrix.
4211
    @param R Output rotation matrix between the 1st and the 2nd camera coordinate systems.
4212
    @param T Output translation vector between the coordinate systems of the cameras.
4213
    @param rvecs Output vector of rotation vectors ( @ref Rodrigues ) estimated for each pattern view in the
4214
    coordinate system of the first camera of the stereo pair (e.g. std::vector<cv::Mat>). More in detail, each
4215
    i-th rotation vector together with the corresponding i-th translation vector (see the next output parameter
4216
    description) brings the calibration pattern from the object coordinate space (in which object points are
4217
    specified) to the camera coordinate space of the first camera of the stereo pair. In more technical terms,
4218
    the tuple of the i-th rotation and translation vector performs a change of basis from object coordinate space
4219
    to camera coordinate space of the first camera of the stereo pair.
4220
    @param tvecs Output vector of translation vectors estimated for each pattern view, see parameter description
4221
    of previous output parameter ( rvecs ).
4222
    @param flags Different flags that may be zero or a combination of the following values:
4223
    -    @ref fisheye::CALIB_FIX_INTRINSIC  Fix K1, K2? and D1, D2? so that only R, T matrices
4224
    are estimated.
4225
    -    @ref fisheye::CALIB_USE_INTRINSIC_GUESS  K1, K2 contains valid initial values of
4226
    fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
4227
    center (imageSize is used), and focal distances are computed in a least-squares fashion.
4228
    -    @ref fisheye::CALIB_RECOMPUTE_EXTRINSIC  Extrinsic will be recomputed after each iteration
4229
    of intrinsic optimization.
4230
    -    @ref fisheye::CALIB_CHECK_COND  The functions will check validity of condition number.
4231
    -    @ref fisheye::CALIB_FIX_SKEW  Skew coefficient (alpha) is set to zero and stay zero.
4232
    -   @ref fisheye::CALIB_FIX_K1,..., @ref fisheye::CALIB_FIX_K4 Selected distortion coefficients are set to zeros and stay
4233
    zero.
4234
    @param criteria Termination criteria for the iterative optimization algorithm.
4235
     */
4236
    CV_EXPORTS_W double stereoCalibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
4237
                                  InputOutputArray K1, InputOutputArray D1, InputOutputArray K2, InputOutputArray D2, Size imageSize,
4238
                                  OutputArray R, OutputArray T, OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, int flags = fisheye::CALIB_FIX_INTRINSIC,
4239
                                  TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON));
4240
4241
    /// @overload
4242
    CV_EXPORTS_W double stereoCalibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
4243
                                  InputOutputArray K1, InputOutputArray D1, InputOutputArray K2, InputOutputArray D2, Size imageSize,
4244
                                  OutputArray R, OutputArray T, int flags = fisheye::CALIB_FIX_INTRINSIC,
4245
                                  TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON));
4246
4247
    /**
4248
    @brief Finds an object pose from 3D-2D point correspondences for fisheye camera moodel.
4249
4250
    @param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or
4251
    1xN/Nx1 3-channel, where N is the number of points. vector\<Point3d\> can be also passed here.
4252
    @param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
4253
    where N is the number of points. vector\<Point2d\> can be also passed here.
4254
    @param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ .
4255
    @param distCoeffs Input vector of distortion coefficients (4x1/1x4).
4256
    @param rvec Output rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from
4257
    the model coordinate system to the camera coordinate system.
4258
    @param tvec Output translation vector.
4259
    @param useExtrinsicGuess Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses
4260
    the provided rvec and tvec values as initial approximations of the rotation and translation
4261
    vectors, respectively, and further optimizes them.
4262
    @param flags Method for solving a PnP problem: see @ref calib3d_solvePnP_flags
4263
    @param criteria Termination criteria for internal undistortPoints call.
4264
    The function interally undistorts points with @ref undistortPoints and call @ref cv::solvePnP,
4265
    thus the input are very similar. More information about Perspective-n-Points is described in @ref calib3d_solvePnP
4266
    for more information.
4267
    */
4268
    CV_EXPORTS_W bool solvePnP( InputArray objectPoints, InputArray imagePoints,
4269
                                InputArray cameraMatrix, InputArray distCoeffs,
4270
                                OutputArray rvec, OutputArray tvec,
4271
                                bool useExtrinsicGuess = false, int flags = SOLVEPNP_ITERATIVE,
4272
                                TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 10, 1e-8)
4273
                              );
4274
4275
    /**
4276
    @brief Finds an object pose from 3D-2D point correspondences using the RANSAC scheme for fisheye camera moodel.
4277
4278
    @param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or
4279
    1xN/Nx1 3-channel, where N is the number of points. vector\<Point3d\> can be also passed here.
4280
    @param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
4281
    where N is the number of points. vector\<Point2d\> can be also passed here.
4282
    @param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ .
4283
    @param distCoeffs Input vector of distortion coefficients (4x1/1x4).
4284
    @param rvec Output rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from
4285
    the model coordinate system to the camera coordinate system.
4286
    @param tvec Output translation vector.
4287
    @param useExtrinsicGuess Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses
4288
    the provided rvec and tvec values as initial approximations of the rotation and translation
4289
    vectors, respectively, and further optimizes them.
4290
    @param iterationsCount Number of iterations.
4291
    @param reprojectionError Inlier threshold value used by the RANSAC procedure. The parameter value
4292
    is the maximum allowed distance between the observed and computed point projections to consider it
4293
    an inlier.
4294
    @param confidence The probability that the algorithm produces a useful result.
4295
    @param inliers Output vector that contains indices of inliers in objectPoints and imagePoints .
4296
    @param flags Method for solving a PnP problem: see @ref calib3d_solvePnP_flags
4297
    This function returns the rotation and the translation vectors that transform a 3D point expressed in the object
4298
    coordinate frame to the camera coordinate frame, using different methods:
4299
    - P3P methods (@ref SOLVEPNP_P3P, @ref SOLVEPNP_AP3P): need 4 input points to return a unique solution.
4300
    - @ref SOLVEPNP_IPPE Input points must be >= 4 and object points must be coplanar.
4301
    - @ref SOLVEPNP_IPPE_SQUARE Special case suitable for marker pose estimation.
4302
    Number of input points must be 4. Object points must be defined in the following order:
4303
    - point 0: [-squareLength / 2,  squareLength / 2, 0]
4304
    - point 1: [ squareLength / 2,  squareLength / 2, 0]
4305
    - point 2: [ squareLength / 2, -squareLength / 2, 0]
4306
    - point 3: [-squareLength / 2, -squareLength / 2, 0]
4307
    - for all the other flags, number of input points must be >= 4 and object points can be in any configuration.
4308
    @param criteria Termination criteria for internal undistortPoints call.
4309
    The function interally undistorts points with @ref undistortPoints and call @ref cv::solvePnP,
4310
    thus the input are very similar. More information about Perspective-n-Points is described in @ref calib3d_solvePnP
4311
    for more information.
4312
    */
4313
    CV_EXPORTS_W bool solvePnPRansac( InputArray objectPoints, InputArray imagePoints,
4314
                                      InputArray cameraMatrix, InputArray distCoeffs,
4315
                                      OutputArray rvec, OutputArray tvec,
4316
                                      bool useExtrinsicGuess = false, int iterationsCount = 100,
4317
                                      float reprojectionError = 8.0, double confidence = 0.99,
4318
                                      OutputArray inliers = noArray(), int flags = SOLVEPNP_ITERATIVE,
4319
                                      TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 10, 1e-8)
4320
                                    );
4321
4322
//! @} calib3d_fisheye
4323
} // end namespace fisheye
4324
4325
} //end namespace cv
4326
4327
#if 0 //def __cplusplus
4328
//////////////////////////////////////////////////////////////////////////////////////////
4329
class CV_EXPORTS CvLevMarq
4330
{
4331
public:
4332
    CvLevMarq();
4333
    CvLevMarq( int nparams, int nerrs, CvTermCriteria criteria=
4334
              cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON),
4335
              bool completeSymmFlag=false );
4336
    ~CvLevMarq();
4337
    void init( int nparams, int nerrs, CvTermCriteria criteria=
4338
              cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON),
4339
              bool completeSymmFlag=false );
4340
    bool update( const CvMat*& param, CvMat*& J, CvMat*& err );
4341
    bool updateAlt( const CvMat*& param, CvMat*& JtJ, CvMat*& JtErr, double*& errNorm );
4342
4343
    void clear();
4344
    void step();
4345
    enum { DONE=0, STARTED=1, CALC_J=2, CHECK_ERR=3 };
4346
4347
    cv::Ptr<CvMat> mask;
4348
    cv::Ptr<CvMat> prevParam;
4349
    cv::Ptr<CvMat> param;
4350
    cv::Ptr<CvMat> J;
4351
    cv::Ptr<CvMat> err;
4352
    cv::Ptr<CvMat> JtJ;
4353
    cv::Ptr<CvMat> JtJN;
4354
    cv::Ptr<CvMat> JtErr;
4355
    cv::Ptr<CvMat> JtJV;
4356
    cv::Ptr<CvMat> JtJW;
4357
    double prevErrNorm, errNorm;
4358
    int lambdaLg10;
4359
    CvTermCriteria criteria;
4360
    int state;
4361
    int iters;
4362
    bool completeSymmFlag;
4363
    int solveMethod;
4364
};
4365
#endif
4366
4367
#endif