Coverage Report

Created: 2025-06-12 06:52

/work/install-coverage/include/opencv4/opencv2/imgproc.hpp
Line
Count
Source (jump to first uncovered line)
1
/*M///////////////////////////////////////////////////////////////////////////////////////
2
//
3
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4
//
5
//  By downloading, copying, installing or using the software you agree to this license.
6
//  If you do not agree to this license, do not download, install,
7
//  copy or use the software.
8
//
9
//
10
//                           License Agreement
11
//                For Open Source Computer Vision Library
12
//
13
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15
// Third party copyrights are property of their respective owners.
16
//
17
// Redistribution and use in source and binary forms, with or without modification,
18
// are permitted provided that the following conditions are met:
19
//
20
//   * Redistribution's of source code must retain the above copyright notice,
21
//     this list of conditions and the following disclaimer.
22
//
23
//   * Redistribution's in binary form must reproduce the above copyright notice,
24
//     this list of conditions and the following disclaimer in the documentation
25
//     and/or other materials provided with the distribution.
26
//
27
//   * The name of the copyright holders may not be used to endorse or promote products
28
//     derived from this software without specific prior written permission.
29
//
30
// This software is provided by the copyright holders and contributors "as is" and
31
// any express or implied warranties, including, but not limited to, the implied
32
// warranties of merchantability and fitness for a particular purpose are disclaimed.
33
// In no event shall the Intel Corporation or contributors be liable for any direct,
34
// indirect, incidental, special, exemplary, or consequential damages
35
// (including, but not limited to, procurement of substitute goods or services;
36
// loss of use, data, or profits; or business interruption) however caused
37
// and on any theory of liability, whether in contract, strict liability,
38
// or tort (including negligence or otherwise) arising in any way out of
39
// the use of this software, even if advised of the possibility of such damage.
40
//
41
//M*/
42
43
#ifndef OPENCV_IMGPROC_HPP
44
#define OPENCV_IMGPROC_HPP
45
46
#include "opencv2/core.hpp"
47
48
/**
49
@defgroup imgproc Image Processing
50
51
This module offers a comprehensive suite of image processing functions, enabling tasks such as those listed above.
52
53
@{
54
    @defgroup imgproc_filter Image Filtering
55
56
    Functions and classes described in this section are used to perform various linear or non-linear
57
    filtering operations on 2D images (represented as Mat's). It means that for each pixel location
58
    \f$(x,y)\f$ in the source image (normally, rectangular), its neighborhood is considered and used to
59
    compute the response. In case of a linear filter, it is a weighted sum of pixel values. In case of
60
    morphological operations, it is the minimum or maximum values, and so on. The computed response is
61
    stored in the destination image at the same location \f$(x,y)\f$. It means that the output image
62
    will be of the same size as the input image. Normally, the functions support multi-channel arrays,
63
    in which case every channel is processed independently. Therefore, the output image will also have
64
    the same number of channels as the input one.
65
66
    Another common feature of the functions and classes described in this section is that, unlike
67
    simple arithmetic functions, they need to extrapolate values of some non-existing pixels. For
68
    example, if you want to smooth an image using a Gaussian \f$3 \times 3\f$ filter, then, when
69
    processing the left-most pixels in each row, you need pixels to the left of them, that is, outside
70
    of the image. You can let these pixels be the same as the left-most image pixels ("replicated
71
    border" extrapolation method), or assume that all the non-existing pixels are zeros ("constant
72
    border" extrapolation method), and so on. OpenCV enables you to specify the extrapolation method.
73
    For details, see #BorderTypes
74
75
    @anchor filter_depths
76
    ### Depth combinations
77
    Input depth (src.depth()) | Output depth (ddepth)
78
    --------------------------|----------------------
79
    CV_8U                     | -1/CV_16S/CV_32F/CV_64F
80
    CV_16U/CV_16S             | -1/CV_32F/CV_64F
81
    CV_32F                    | -1/CV_32F
82
    CV_64F                    | -1/CV_64F
83
84
    @note when ddepth=-1, the output image will have the same depth as the source.
85
86
    @note if you need double floating-point accuracy and using single floating-point input data
87
    (CV_32F input and CV_64F output depth combination), you can use @ref Mat.convertTo to convert
88
    the input data to the desired precision.
89
90
    @defgroup imgproc_transform Geometric Image Transformations
91
92
    The functions in this section perform various geometrical transformations of 2D images. They do not
93
    change the image content but deform the pixel grid and map this deformed grid to the destination
94
    image. In fact, to avoid sampling artifacts, the mapping is done in the reverse order, from
95
    destination to the source. That is, for each pixel \f$(x, y)\f$ of the destination image, the
96
    functions compute coordinates of the corresponding "donor" pixel in the source image and copy the
97
    pixel value:
98
99
    \f[\texttt{dst} (x,y)= \texttt{src} (f_x(x,y), f_y(x,y))\f]
100
101
    In case when you specify the forward mapping \f$\left<g_x, g_y\right>: \texttt{src} \rightarrow
102
    \texttt{dst}\f$, the OpenCV functions first compute the corresponding inverse mapping
103
    \f$\left<f_x, f_y\right>: \texttt{dst} \rightarrow \texttt{src}\f$ and then use the above formula.
104
105
    The actual implementations of the geometrical transformations, from the most generic remap and to
106
    the simplest and the fastest resize, need to solve two main problems with the above formula:
107
108
    - Extrapolation of non-existing pixels. Similarly to the filtering functions described in the
109
    previous section, for some \f$(x,y)\f$, either one of \f$f_x(x,y)\f$, or \f$f_y(x,y)\f$, or both
110
    of them may fall outside of the image. In this case, an extrapolation method needs to be used.
111
    OpenCV provides the same selection of extrapolation methods as in the filtering functions. In
112
    addition, it provides the method #BORDER_TRANSPARENT. This means that the corresponding pixels in
113
    the destination image will not be modified at all.
114
115
    - Interpolation of pixel values. Usually \f$f_x(x,y)\f$ and \f$f_y(x,y)\f$ are floating-point
116
    numbers. This means that \f$\left<f_x, f_y\right>\f$ can be either an affine or perspective
117
    transformation, or radial lens distortion correction, and so on. So, a pixel value at fractional
118
    coordinates needs to be retrieved. In the simplest case, the coordinates can be just rounded to the
119
    nearest integer coordinates and the corresponding pixel can be used. This is called a
120
    nearest-neighbor interpolation. However, a better result can be achieved by using more
121
    sophisticated [interpolation methods](https://en.wikipedia.org/wiki/Multivariate_interpolation) ,
122
    where a polynomial function is fit into some neighborhood of the computed pixel \f$(f_x(x,y),
123
    f_y(x,y))\f$, and then the value of the polynomial at \f$(f_x(x,y), f_y(x,y))\f$ is taken as the
124
    interpolated pixel value. In OpenCV, you can choose between several interpolation methods. See
125
    #resize for details.
126
127
    @note The geometrical transformations do not work with `CV_8S` or `CV_32S` images.
128
129
    @defgroup imgproc_misc Miscellaneous Image Transformations
130
    @defgroup imgproc_draw Drawing Functions
131
132
    Drawing functions work with matrices/images of arbitrary depth. The boundaries of the shapes can be
133
    rendered with antialiasing (implemented only for 8-bit images for now). All the functions include
134
    the parameter color that uses an RGB value (that may be constructed with the Scalar constructor )
135
    for color images and brightness for grayscale images. For color images, the channel ordering is
136
    normally *Blue, Green, Red*. This is what imshow, imread, and imwrite expect. So, if you form a
137
    color using the Scalar constructor, it should look like:
138
139
    \f[\texttt{Scalar} (blue \_ component, green \_ component, red \_ component[, alpha \_ component])\f]
140
141
    If you are using your own image rendering and I/O functions, you can use any channel ordering. The
142
    drawing functions process each channel independently and do not depend on the channel order or even
143
    on the used color space. The whole image can be converted from BGR to RGB or to a different color
144
    space using cvtColor .
145
146
    If a drawn figure is partially or completely outside the image, the drawing functions clip it. Also,
147
    many drawing functions can handle pixel coordinates specified with sub-pixel accuracy. This means
148
    that the coordinates can be passed as fixed-point numbers encoded as integers. The number of
149
    fractional bits is specified by the shift parameter and the real point coordinates are calculated as
150
    \f$\texttt{Point}(x,y)\rightarrow\texttt{Point2f}(x*2^{-shift},y*2^{-shift})\f$ . This feature is
151
    especially effective when rendering antialiased shapes.
152
153
    @note The functions do not support alpha-transparency when the target image is 4-channel. In this
154
    case, the color[3] is simply copied to the repainted pixels. Thus, if you want to paint
155
    semi-transparent shapes, you can paint them in a separate buffer and then blend it with the main
156
    image.
157
158
    @defgroup imgproc_color_conversions Color Space Conversions
159
    @defgroup imgproc_colormap ColorMaps in OpenCV
160
161
    The human perception isn't built for observing fine changes in grayscale images. Human eyes are more
162
    sensitive to observing changes between colors, so you often need to recolor your grayscale images to
163
    get a clue about them. OpenCV now comes with various colormaps to enhance the visualization in your
164
    computer vision application.
165
166
    In OpenCV you only need applyColorMap to apply a colormap on a given image. The following sample
167
    code reads the path to an image from command line, applies a Jet colormap on it and shows the
168
    result:
169
170
    @include snippets/imgproc_applyColorMap.cpp
171
172
    @see #ColormapTypes
173
174
    @defgroup imgproc_subdiv2d Planar Subdivision
175
176
    The Subdiv2D class described in this section is used to perform various planar subdivision on
177
    a set of 2D points (represented as vector of Point2f). OpenCV subdivides a plane into triangles
178
    using the Delaunay's algorithm, which corresponds to the dual graph of the Voronoi diagram.
179
    In the figure below, the Delaunay's triangulation is marked with black lines and the Voronoi
180
    diagram with red lines.
181
182
    ![Delaunay triangulation (black) and Voronoi (red)](pics/delaunay_voronoi.png)
183
184
    The subdivisions can be used for the 3D piece-wise transformation of a plane, morphing, fast
185
    location of points on the plane, building special graphs (such as NNG,RNG), and so forth.
186
187
    @defgroup imgproc_hist Histograms
188
    @defgroup imgproc_shape Structural Analysis and Shape Descriptors
189
    @defgroup imgproc_motion Motion Analysis and Object Tracking
190
    @defgroup imgproc_feature Feature Detection
191
    @defgroup imgproc_object Object Detection
192
    @defgroup imgproc_segmentation Image Segmentation
193
    @defgroup imgproc_hal Hardware Acceleration Layer
194
    @{
195
        @defgroup imgproc_hal_functions Functions
196
        @defgroup imgproc_hal_interface Interface
197
    @}
198
  @}
199
*/
200
201
namespace cv
202
{
203
204
/** @addtogroup imgproc
205
@{
206
*/
207
208
//! @addtogroup imgproc_filter
209
//! @{
210
211
enum SpecialFilter {
212
    FILTER_SCHARR = -1
213
};
214
215
//! type of morphological operation
216
enum MorphTypes{
217
    MORPH_ERODE    = 0, //!< see #erode
218
    MORPH_DILATE   = 1, //!< see #dilate
219
    MORPH_OPEN     = 2, //!< an opening operation
220
                        //!< \f[\texttt{dst} = \mathrm{open} ( \texttt{src} , \texttt{element} )= \mathrm{dilate} ( \mathrm{erode} ( \texttt{src} , \texttt{element} ))\f]
221
    MORPH_CLOSE    = 3, //!< a closing operation
222
                        //!< \f[\texttt{dst} = \mathrm{close} ( \texttt{src} , \texttt{element} )= \mathrm{erode} ( \mathrm{dilate} ( \texttt{src} , \texttt{element} ))\f]
223
    MORPH_GRADIENT = 4, //!< a morphological gradient
224
                        //!< \f[\texttt{dst} = \mathrm{morph\_grad} ( \texttt{src} , \texttt{element} )= \mathrm{dilate} ( \texttt{src} , \texttt{element} )- \mathrm{erode} ( \texttt{src} , \texttt{element} )\f]
225
    MORPH_TOPHAT   = 5, //!< "top hat"
226
                        //!< \f[\texttt{dst} = \mathrm{tophat} ( \texttt{src} , \texttt{element} )= \texttt{src} - \mathrm{open} ( \texttt{src} , \texttt{element} )\f]
227
    MORPH_BLACKHAT = 6, //!< "black hat"
228
                        //!< \f[\texttt{dst} = \mathrm{blackhat} ( \texttt{src} , \texttt{element} )= \mathrm{close} ( \texttt{src} , \texttt{element} )- \texttt{src}\f]
229
    MORPH_HITMISS  = 7  //!< "hit or miss"
230
                        //!<   .- Only supported for CV_8UC1 binary images. A tutorial can be found in the documentation
231
};
232
233
//! shape of the structuring element
234
enum MorphShapes {
235
    MORPH_RECT    = 0, //!< a rectangular structuring element:  \f[E_{ij}=1\f]
236
    MORPH_CROSS   = 1, //!< a cross-shaped structuring element:
237
                       //!< \f[E_{ij} = \begin{cases} 1 & \texttt{if } {i=\texttt{anchor.y } {or } {j=\texttt{anchor.x}}} \\0 & \texttt{otherwise} \end{cases}\f]
238
    MORPH_ELLIPSE = 2 //!< an elliptic structuring element, that is, a filled ellipse inscribed
239
                      //!< into the rectangle Rect(0, 0, esize.width, esize.height)
240
};
241
242
//! @} imgproc_filter
243
244
//! @addtogroup imgproc_transform
245
//! @{
246
247
//! interpolation algorithm
248
enum InterpolationFlags{
249
    /** nearest neighbor interpolation */
250
    INTER_NEAREST        = 0,
251
    /** bilinear interpolation */
252
    INTER_LINEAR         = 1,
253
    /** bicubic interpolation */
254
    INTER_CUBIC          = 2,
255
    /** resampling using pixel area relation. It may be a preferred method for image decimation, as
256
    it gives moire'-free results. But when the image is zoomed, it is similar to the INTER_NEAREST
257
    method. */
258
    INTER_AREA           = 3,
259
    /** Lanczos interpolation over 8x8 neighborhood */
260
    INTER_LANCZOS4       = 4,
261
    /** Bit exact bilinear interpolation */
262
    INTER_LINEAR_EXACT = 5,
263
    /** Bit exact nearest neighbor interpolation. This will produce same results as
264
    the nearest neighbor method in PIL, scikit-image or Matlab. */
265
    INTER_NEAREST_EXACT  = 6,
266
    /** mask for interpolation codes */
267
    INTER_MAX            = 7,
268
    /** flag, fills all of the destination image pixels. If some of them correspond to outliers in the
269
    source image, they are set to zero */
270
    WARP_FILL_OUTLIERS   = 8,
271
    /** flag, inverse transformation
272
273
    For example, #linearPolar or #logPolar transforms:
274
    - flag is __not__ set: \f$dst( \rho , \phi ) = src(x,y)\f$
275
    - flag is set: \f$dst(x,y) = src( \rho , \phi )\f$
276
    */
277
    WARP_INVERSE_MAP     = 16,
278
    WARP_RELATIVE_MAP    = 32
279
};
280
281
/** \brief Specify the polar mapping mode
282
@sa warpPolar
283
*/
284
enum WarpPolarMode
285
{
286
    WARP_POLAR_LINEAR = 0, ///< Remaps an image to/from polar space.
287
    WARP_POLAR_LOG = 256   ///< Remaps an image to/from semilog-polar space.
288
};
289
290
enum InterpolationMasks {
291
       INTER_BITS      = 5,
292
       INTER_BITS2     = INTER_BITS * 2,
293
       INTER_TAB_SIZE  = 1 << INTER_BITS,
294
       INTER_TAB_SIZE2 = INTER_TAB_SIZE * INTER_TAB_SIZE
295
     };
296
297
//! @} imgproc_transform
298
299
//! @addtogroup imgproc_misc
300
//! @{
301
302
//! Distance types for Distance Transform and M-estimators
303
//! @see distanceTransform, fitLine
304
enum DistanceTypes {
305
    DIST_USER    = -1,  //!< User defined distance
306
    DIST_L1      = 1,   //!< distance = |x1-x2| + |y1-y2|
307
    DIST_L2      = 2,   //!< the simple euclidean distance
308
    DIST_C       = 3,   //!< distance = max(|x1-x2|,|y1-y2|)
309
    DIST_L12     = 4,   //!< L1-L2 metric: distance = 2(sqrt(1+x*x/2) - 1))
310
    DIST_FAIR    = 5,   //!< distance = c^2(|x|/c-log(1+|x|/c)), c = 1.3998
311
    DIST_WELSCH  = 6,   //!< distance = c^2/2(1-exp(-(x/c)^2)), c = 2.9846
312
    DIST_HUBER   = 7    //!< distance = |x|<c ? x^2/2 : c(|x|-c/2), c=1.345
313
};
314
315
//! Mask size for distance transform
316
enum DistanceTransformMasks {
317
    DIST_MASK_3       = 3, //!< mask=3
318
    DIST_MASK_5       = 5, //!< mask=5
319
    DIST_MASK_PRECISE = 0  //!<
320
};
321
322
//! type of the threshold operation
323
//! ![threshold types](pics/threshold.png)
324
enum ThresholdTypes {
325
    THRESH_BINARY     = 0, //!< \f[\texttt{dst} (x,y) =  \fork{\texttt{maxval}}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{0}{otherwise}\f]
326
    THRESH_BINARY_INV = 1, //!< \f[\texttt{dst} (x,y) =  \fork{0}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{\texttt{maxval}}{otherwise}\f]
327
    THRESH_TRUNC      = 2, //!< \f[\texttt{dst} (x,y) =  \fork{\texttt{threshold}}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{\texttt{src}(x,y)}{otherwise}\f]
328
    THRESH_TOZERO     = 3, //!< \f[\texttt{dst} (x,y) =  \fork{\texttt{src}(x,y)}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{0}{otherwise}\f]
329
    THRESH_TOZERO_INV = 4, //!< \f[\texttt{dst} (x,y) =  \fork{0}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{\texttt{src}(x,y)}{otherwise}\f]
330
    THRESH_MASK       = 7,
331
    THRESH_OTSU       = 8, //!< flag, use Otsu algorithm to choose the optimal threshold value
332
    THRESH_TRIANGLE   = 16, //!< flag, use Triangle algorithm to choose the optimal threshold value
333
    THRESH_DRYRUN     = 128 //!< flag, compute threshold only (useful for OTSU/TRIANGLE) but does not actually run thresholding
334
};
335
336
//! adaptive threshold algorithm
337
//! @see adaptiveThreshold
338
enum AdaptiveThresholdTypes {
339
    /** the threshold value \f$T(x,y)\f$ is a mean of the \f$\texttt{blockSize} \times
340
    \texttt{blockSize}\f$ neighborhood of \f$(x, y)\f$ minus C */
341
    ADAPTIVE_THRESH_MEAN_C     = 0,
342
    /** the threshold value \f$T(x, y)\f$ is a weighted sum (cross-correlation with a Gaussian
343
    window) of the \f$\texttt{blockSize} \times \texttt{blockSize}\f$ neighborhood of \f$(x, y)\f$
344
    minus C . The default sigma (standard deviation) is used for the specified blockSize . See
345
    #getGaussianKernel*/
346
    ADAPTIVE_THRESH_GAUSSIAN_C = 1
347
};
348
349
//! class of the pixel in GrabCut algorithm
350
enum GrabCutClasses {
351
    GC_BGD    = 0,  //!< an obvious background pixels
352
    GC_FGD    = 1,  //!< an obvious foreground (object) pixel
353
    GC_PR_BGD = 2,  //!< a possible background pixel
354
    GC_PR_FGD = 3   //!< a possible foreground pixel
355
};
356
357
//! GrabCut algorithm flags
358
enum GrabCutModes {
359
    /** The function initializes the state and the mask using the provided rectangle. After that it
360
    runs iterCount iterations of the algorithm. */
361
    GC_INIT_WITH_RECT  = 0,
362
    /** The function initializes the state using the provided mask. Note that GC_INIT_WITH_RECT
363
    and GC_INIT_WITH_MASK can be combined. Then, all the pixels outside of the ROI are
364
    automatically initialized with GC_BGD .*/
365
    GC_INIT_WITH_MASK  = 1,
366
    /** The value means that the algorithm should just resume. */
367
    GC_EVAL            = 2,
368
    /** The value means that the algorithm should just run the grabCut algorithm (a single iteration) with the fixed model */
369
    GC_EVAL_FREEZE_MODEL = 3
370
};
371
372
//! distanceTransform algorithm flags
373
enum DistanceTransformLabelTypes {
374
    /** each connected component of zeros in src (as well as all the non-zero pixels closest to the
375
    connected component) will be assigned the same label */
376
    DIST_LABEL_CCOMP = 0,
377
    /** each zero pixel (and all the non-zero pixels closest to it) gets its own label. */
378
    DIST_LABEL_PIXEL = 1
379
};
380
381
//! floodfill algorithm flags
382
enum FloodFillFlags {
383
    /** If set, the difference between the current pixel and seed pixel is considered. Otherwise,
384
    the difference between neighbor pixels is considered (that is, the range is floating). */
385
    FLOODFILL_FIXED_RANGE = 1 << 16,
386
    /** If set, the function does not change the image ( newVal is ignored), and only fills the
387
    mask with the value specified in bits 8-16 of flags as described above. This option only make
388
    sense in function variants that have the mask parameter. */
389
    FLOODFILL_MASK_ONLY   = 1 << 17
390
};
391
392
//! @} imgproc_misc
393
394
//! @addtogroup imgproc_shape
395
//! @{
396
397
//! connected components statistics
398
enum ConnectedComponentsTypes {
399
    CC_STAT_LEFT   = 0, //!< The leftmost (x) coordinate which is the inclusive start of the bounding
400
                        //!< box in the horizontal direction.
401
    CC_STAT_TOP    = 1, //!< The topmost (y) coordinate which is the inclusive start of the bounding
402
                        //!< box in the vertical direction.
403
    CC_STAT_WIDTH  = 2, //!< The horizontal size of the bounding box
404
    CC_STAT_HEIGHT = 3, //!< The vertical size of the bounding box
405
    CC_STAT_AREA   = 4, //!< The total area (in pixels) of the connected component
406
#ifndef CV_DOXYGEN
407
    CC_STAT_MAX    = 5 //!< Max enumeration value. Used internally only for memory allocation
408
#endif
409
};
410
411
//! connected components algorithm
412
enum ConnectedComponentsAlgorithmsTypes {
413
    CCL_DEFAULT   = -1, //!< Spaghetti @cite Bolelli2019 algorithm for 8-way connectivity, Spaghetti4C @cite Bolelli2021 algorithm for 4-way connectivity.
414
    CCL_WU        = 0,  //!< SAUF @cite Wu2009 algorithm for 8-way connectivity, SAUF algorithm for 4-way connectivity. The parallel implementation described in @cite Bolelli2017 is available for SAUF.
415
    CCL_GRANA     = 1,  //!< BBDT @cite Grana2010 algorithm for 8-way connectivity, SAUF algorithm for 4-way connectivity. The parallel implementation described in @cite Bolelli2017 is available for both BBDT and SAUF.
416
    CCL_BOLELLI   = 2,  //!< Spaghetti @cite Bolelli2019 algorithm for 8-way connectivity, Spaghetti4C @cite Bolelli2021 algorithm for 4-way connectivity. The parallel implementation described in @cite Bolelli2017 is available for both Spaghetti and Spaghetti4C.
417
    CCL_SAUF      = 3,  //!< Same as CCL_WU. It is preferable to use the flag with the name of the algorithm (CCL_SAUF) rather than the one with the name of the first author (CCL_WU).
418
    CCL_BBDT      = 4,  //!< Same as CCL_GRANA. It is preferable to use the flag with the name of the algorithm (CCL_BBDT) rather than the one with the name of the first author (CCL_GRANA).
419
    CCL_SPAGHETTI = 5,  //!< Same as CCL_BOLELLI. It is preferable to use the flag with the name of the algorithm (CCL_SPAGHETTI) rather than the one with the name of the first author (CCL_BOLELLI).
420
};
421
422
//! mode of the contour retrieval algorithm
423
enum RetrievalModes {
424
    /** retrieves only the extreme outer contours. It sets `hierarchy[i][2]=hierarchy[i][3]=-1` for
425
    all the contours. */
426
    RETR_EXTERNAL  = 0,
427
    /** retrieves all of the contours without establishing any hierarchical relationships. */
428
    RETR_LIST      = 1,
429
    /** retrieves all of the contours and organizes them into a two-level hierarchy. At the top
430
    level, there are external boundaries of the components. At the second level, there are
431
    boundaries of the holes. If there is another contour inside a hole of a connected component, it
432
    is still put at the top level. */
433
    RETR_CCOMP     = 2,
434
    /** retrieves all of the contours and reconstructs a full hierarchy of nested contours.*/
435
    RETR_TREE      = 3,
436
    RETR_FLOODFILL = 4 //!<
437
};
438
439
//! the contour approximation algorithm
440
enum ContourApproximationModes {
441
    /** stores absolutely all the contour points. That is, any 2 subsequent points (x1,y1) and
442
    (x2,y2) of the contour will be either horizontal, vertical or diagonal neighbors, that is,
443
    max(abs(x1-x2),abs(y2-y1))==1. */
444
    CHAIN_APPROX_NONE      = 1,
445
    /** compresses horizontal, vertical, and diagonal segments and leaves only their end points.
446
    For example, an up-right rectangular contour is encoded with 4 points. */
447
    CHAIN_APPROX_SIMPLE    = 2,
448
    /** applies one of the flavors of the Teh-Chin chain approximation algorithm @cite TehChin89 */
449
    CHAIN_APPROX_TC89_L1   = 3,
450
    /** applies one of the flavors of the Teh-Chin chain approximation algorithm @cite TehChin89 */
451
    CHAIN_APPROX_TC89_KCOS = 4
452
};
453
454
/** @brief Shape matching methods
455
456
\f$A\f$ denotes object1,\f$B\f$ denotes object2
457
458
\f$\begin{array}{l} m^A_i =  \mathrm{sign} (h^A_i)  \cdot \log{h^A_i} \\ m^B_i =  \mathrm{sign} (h^B_i)  \cdot \log{h^B_i} \end{array}\f$
459
460
and \f$h^A_i, h^B_i\f$ are the Hu moments of \f$A\f$ and \f$B\f$ , respectively.
461
*/
462
enum ShapeMatchModes {
463
    CONTOURS_MATCH_I1  =1, //!< \f[I_1(A,B) =  \sum _{i=1...7}  \left |  \frac{1}{m^A_i} -  \frac{1}{m^B_i} \right |\f]
464
    CONTOURS_MATCH_I2  =2, //!< \f[I_2(A,B) =  \sum _{i=1...7}  \left | m^A_i - m^B_i  \right |\f]
465
    CONTOURS_MATCH_I3  =3  //!< \f[I_3(A,B) =  \max _{i=1...7}  \frac{ \left| m^A_i - m^B_i \right| }{ \left| m^A_i \right| }\f]
466
};
467
468
//! @} imgproc_shape
469
470
//! @addtogroup imgproc_feature
471
//! @{
472
473
//! Variants of a Hough transform
474
enum HoughModes {
475
476
    /** classical or standard Hough transform. Every line is represented by two floating-point
477
    numbers \f$(\rho, \theta)\f$ , where \f$\rho\f$ is a distance between (0,0) point and the line,
478
    and \f$\theta\f$ is the angle between x-axis and the normal to the line. Thus, the matrix must
479
    be (the created sequence will be) of CV_32FC2 type */
480
    HOUGH_STANDARD      = 0,
481
    /** probabilistic Hough transform (more efficient in case if the picture contains a few long
482
    linear segments). It returns line segments rather than the whole line. Each segment is
483
    represented by starting and ending points, and the matrix must be (the created sequence will
484
    be) of the CV_32SC4 type. */
485
    HOUGH_PROBABILISTIC = 1,
486
    /** multi-scale variant of the classical Hough transform. The lines are encoded the same way as
487
    HOUGH_STANDARD. */
488
    HOUGH_MULTI_SCALE   = 2,
489
    HOUGH_GRADIENT      = 3, //!< basically *21HT*, described in @cite Yuen90
490
    HOUGH_GRADIENT_ALT  = 4, //!< variation of HOUGH_GRADIENT to get better accuracy
491
};
492
493
//! Variants of Line Segment %Detector
494
enum LineSegmentDetectorModes {
495
    LSD_REFINE_NONE = 0, //!< No refinement applied
496
    LSD_REFINE_STD  = 1, //!< Standard refinement is applied. E.g. breaking arches into smaller straighter line approximations.
497
    LSD_REFINE_ADV  = 2  //!< Advanced refinement. Number of false alarms is calculated, lines are
498
                         //!< refined through increase of precision, decrement in size, etc.
499
};
500
501
//! @} imgproc_feature
502
503
/** Histogram comparison methods
504
  @ingroup imgproc_hist
505
*/
506
enum HistCompMethods {
507
    /** Correlation
508
    \f[d(H_1,H_2) =  \frac{\sum_I (H_1(I) - \bar{H_1}) (H_2(I) - \bar{H_2})}{\sqrt{\sum_I(H_1(I) - \bar{H_1})^2 \sum_I(H_2(I) - \bar{H_2})^2}}\f]
509
    where
510
    \f[\bar{H_k} =  \frac{1}{N} \sum _J H_k(J)\f]
511
    and \f$N\f$ is a total number of histogram bins. */
512
    HISTCMP_CORREL        = 0,
513
    /** Chi-Square
514
    \f[d(H_1,H_2) =  \sum _I  \frac{\left(H_1(I)-H_2(I)\right)^2}{H_1(I)}\f] */
515
    HISTCMP_CHISQR        = 1,
516
    /** Intersection
517
    \f[d(H_1,H_2) =  \sum _I  \min (H_1(I), H_2(I))\f] */
518
    HISTCMP_INTERSECT     = 2,
519
    /** Bhattacharyya distance
520
    (In fact, OpenCV computes Hellinger distance, which is related to Bhattacharyya coefficient.)
521
    \f[d(H_1,H_2) =  \sqrt{1 - \frac{1}{\sqrt{\bar{H_1} \bar{H_2} N^2}} \sum_I \sqrt{H_1(I) \cdot H_2(I)}}\f] */
522
    HISTCMP_BHATTACHARYYA = 3,
523
    HISTCMP_HELLINGER     = HISTCMP_BHATTACHARYYA, //!< Synonym for HISTCMP_BHATTACHARYYA
524
    /** Alternative Chi-Square
525
    \f[d(H_1,H_2) =  2 * \sum _I  \frac{\left(H_1(I)-H_2(I)\right)^2}{H_1(I)+H_2(I)}\f]
526
    This alternative formula is regularly used for texture comparison. See e.g. @cite Puzicha1997 */
527
    HISTCMP_CHISQR_ALT    = 4,
528
    /** Kullback-Leibler divergence
529
    \f[d(H_1,H_2) = \sum _I H_1(I) \log \left(\frac{H_1(I)}{H_2(I)}\right)\f] */
530
    HISTCMP_KL_DIV        = 5
531
};
532
533
/** the color conversion codes
534
@see @ref imgproc_color_conversions
535
@ingroup imgproc_color_conversions
536
 */
537
enum ColorConversionCodes {
538
    COLOR_BGR2BGRA     = 0, //!< add alpha channel to RGB or BGR image
539
    COLOR_RGB2RGBA     = COLOR_BGR2BGRA,
540
541
    COLOR_BGRA2BGR     = 1, //!< remove alpha channel from RGB or BGR image
542
    COLOR_RGBA2RGB     = COLOR_BGRA2BGR,
543
544
    COLOR_BGR2RGBA     = 2, //!< convert between RGB and BGR color spaces (with or without alpha channel)
545
    COLOR_RGB2BGRA     = COLOR_BGR2RGBA,
546
547
    COLOR_RGBA2BGR     = 3,
548
    COLOR_BGRA2RGB     = COLOR_RGBA2BGR,
549
550
    COLOR_BGR2RGB      = 4,
551
    COLOR_RGB2BGR      = COLOR_BGR2RGB,
552
553
    COLOR_BGRA2RGBA    = 5,
554
    COLOR_RGBA2BGRA    = COLOR_BGRA2RGBA,
555
556
    COLOR_BGR2GRAY     = 6, //!< convert between RGB/BGR and grayscale, @ref color_convert_rgb_gray "color conversions"
557
    COLOR_RGB2GRAY     = 7,
558
    COLOR_GRAY2BGR     = 8,
559
    COLOR_GRAY2RGB     = COLOR_GRAY2BGR,
560
    COLOR_GRAY2BGRA    = 9,
561
    COLOR_GRAY2RGBA    = COLOR_GRAY2BGRA,
562
    COLOR_BGRA2GRAY    = 10,
563
    COLOR_RGBA2GRAY    = 11,
564
565
    COLOR_BGR2BGR565   = 12, //!< convert between RGB/BGR and BGR565 (16-bit images)
566
    COLOR_RGB2BGR565   = 13,
567
    COLOR_BGR5652BGR   = 14,
568
    COLOR_BGR5652RGB   = 15,
569
    COLOR_BGRA2BGR565  = 16,
570
    COLOR_RGBA2BGR565  = 17,
571
    COLOR_BGR5652BGRA  = 18,
572
    COLOR_BGR5652RGBA  = 19,
573
574
    COLOR_GRAY2BGR565  = 20, //!< convert between grayscale to BGR565 (16-bit images)
575
    COLOR_BGR5652GRAY  = 21,
576
577
    COLOR_BGR2BGR555   = 22,  //!< convert between RGB/BGR and BGR555 (16-bit images)
578
    COLOR_RGB2BGR555   = 23,
579
    COLOR_BGR5552BGR   = 24,
580
    COLOR_BGR5552RGB   = 25,
581
    COLOR_BGRA2BGR555  = 26,
582
    COLOR_RGBA2BGR555  = 27,
583
    COLOR_BGR5552BGRA  = 28,
584
    COLOR_BGR5552RGBA  = 29,
585
586
    COLOR_GRAY2BGR555  = 30, //!< convert between grayscale and BGR555 (16-bit images)
587
    COLOR_BGR5552GRAY  = 31,
588
589
    COLOR_BGR2XYZ      = 32, //!< convert RGB/BGR to CIE XYZ, @ref color_convert_rgb_xyz "color conversions"
590
    COLOR_RGB2XYZ      = 33,
591
    COLOR_XYZ2BGR      = 34,
592
    COLOR_XYZ2RGB      = 35,
593
594
    COLOR_BGR2YCrCb    = 36, //!< convert RGB/BGR to luma-chroma (aka YCC), @ref color_convert_rgb_ycrcb "color conversions"
595
    COLOR_RGB2YCrCb    = 37,
596
    COLOR_YCrCb2BGR    = 38,
597
    COLOR_YCrCb2RGB    = 39,
598
599
    COLOR_BGR2HSV      = 40, //!< convert RGB/BGR to HSV (hue saturation value) with H range 0..180 if 8 bit image, @ref color_convert_rgb_hsv "color conversions"
600
    COLOR_RGB2HSV      = 41,
601
602
    COLOR_BGR2Lab      = 44, //!< convert RGB/BGR to CIE Lab, @ref color_convert_rgb_lab "color conversions"
603
    COLOR_RGB2Lab      = 45,
604
605
    COLOR_BGR2Luv      = 50, //!< convert RGB/BGR to CIE Luv, @ref color_convert_rgb_luv "color conversions"
606
    COLOR_RGB2Luv      = 51,
607
    COLOR_BGR2HLS      = 52, //!< convert RGB/BGR to HLS (hue lightness saturation) with H range 0..180 if 8 bit image, @ref color_convert_rgb_hls "color conversions"
608
    COLOR_RGB2HLS      = 53,
609
610
    COLOR_HSV2BGR      = 54, //!< backward conversions HSV to RGB/BGR with H range 0..180 if 8 bit image
611
    COLOR_HSV2RGB      = 55,
612
613
    COLOR_Lab2BGR      = 56,
614
    COLOR_Lab2RGB      = 57,
615
    COLOR_Luv2BGR      = 58,
616
    COLOR_Luv2RGB      = 59,
617
    COLOR_HLS2BGR      = 60, //!< backward conversions HLS to RGB/BGR with H range 0..180 if 8 bit image
618
    COLOR_HLS2RGB      = 61,
619
620
    COLOR_BGR2HSV_FULL = 66, //!< convert RGB/BGR to HSV (hue saturation value) with H range 0..255 if 8 bit image, @ref color_convert_rgb_hsv "color conversions"
621
    COLOR_RGB2HSV_FULL = 67,
622
    COLOR_BGR2HLS_FULL = 68, //!< convert RGB/BGR to HLS (hue lightness saturation) with H range 0..255 if 8 bit image, @ref color_convert_rgb_hls "color conversions"
623
    COLOR_RGB2HLS_FULL = 69,
624
625
    COLOR_HSV2BGR_FULL = 70, //!< backward conversions HSV to RGB/BGR with H range 0..255 if 8 bit image
626
    COLOR_HSV2RGB_FULL = 71,
627
    COLOR_HLS2BGR_FULL = 72, //!< backward conversions HLS to RGB/BGR with H range 0..255 if 8 bit image
628
    COLOR_HLS2RGB_FULL = 73,
629
630
    COLOR_LBGR2Lab     = 74,
631
    COLOR_LRGB2Lab     = 75,
632
    COLOR_LBGR2Luv     = 76,
633
    COLOR_LRGB2Luv     = 77,
634
635
    COLOR_Lab2LBGR     = 78,
636
    COLOR_Lab2LRGB     = 79,
637
    COLOR_Luv2LBGR     = 80,
638
    COLOR_Luv2LRGB     = 81,
639
640
    COLOR_BGR2YUV      = 82, //!< convert between RGB/BGR and YUV
641
    COLOR_RGB2YUV      = 83,
642
    COLOR_YUV2BGR      = 84,
643
    COLOR_YUV2RGB      = 85,
644
645
    COLOR_YUV2RGB_NV12  = 90, //!< convert between 4:2:0-subsampled YUV NV12 and RGB, two planes (in one or separate arrays): Y and U/V interleaved, see @ref color_convert_rgb_yuv_42x
646
    COLOR_YUV2BGR_NV12  = 91, //!< convert between 4:2:0-subsampled YUV NV12 and BGR, two planes (in one or separate arrays): Y and U/V interleaved, see @ref color_convert_rgb_yuv_42x
647
    COLOR_YUV2RGB_NV21  = 92, //!< convert between 4:2:0-subsampled YUV NV21 and RGB, two planes (in one or separate arrays): Y and V/U interleaved, see @ref color_convert_rgb_yuv_42x
648
    COLOR_YUV2BGR_NV21  = 93, //!< convert between 4:2:0-subsampled YUV NV21 and BGR, two planes (in one or separate arrays): Y and V/U interleaved, see @ref color_convert_rgb_yuv_42x
649
    COLOR_YUV420sp2RGB  = COLOR_YUV2RGB_NV21, //!< synonym to NV21
650
    COLOR_YUV420sp2BGR  = COLOR_YUV2BGR_NV21, //!< synonym to NV21
651
652
    COLOR_YUV2RGBA_NV12 = 94, //!< convert between 4:2:0-subsampled YUV NV12 and RGBA, two planes (in one or separate arrays): Y and U/V interleaved, see @ref color_convert_rgb_yuv_42x
653
    COLOR_YUV2BGRA_NV12 = 95, //!< convert between 4:2:0-subsampled YUV NV12 and BGRA, two planes (in one or separate arrays): Y and U/V interleaved, see @ref color_convert_rgb_yuv_42x
654
    COLOR_YUV2RGBA_NV21 = 96, //!< convert between 4:2:0-subsampled YUV NV21 and RGBA, two planes (in one or separate arrays): Y and V/U interleaved, see @ref color_convert_rgb_yuv_42x
655
    COLOR_YUV2BGRA_NV21 = 97, //!< convert between 4:2:0-subsampled YUV NV21 and BGRA, two planes (in one or separate arrays): Y and V/U interleaved, see @ref color_convert_rgb_yuv_42x
656
    COLOR_YUV420sp2RGBA = COLOR_YUV2RGBA_NV21, //!< synonym to NV21
657
    COLOR_YUV420sp2BGRA = COLOR_YUV2BGRA_NV21, //!< synonym to NV21
658
659
    COLOR_YUV2RGB_YV12  =  98, //!< convert between 4:2:0-subsampled YUV YV12 and RGB, three planes in one array: Y, V and U, see @ref color_convert_rgb_yuv_42x
660
    COLOR_YUV2BGR_YV12  =  99, //!< convert between 4:2:0-subsampled YUV YV12 and BGR, three planes in one array: Y, V and U, see @ref color_convert_rgb_yuv_42x
661
    COLOR_YUV2RGB_IYUV  = 100, //!< convert between 4:2:0-subsampled YUV IYUV and RGB, three planes in one array: Y, U and V, see @ref color_convert_rgb_yuv_42x
662
    COLOR_YUV2BGR_IYUV  = 101, //!< convert between 4:2:0-subsampled YUV IYUV and BGR, three planes in one array: Y, U and V, see @ref color_convert_rgb_yuv_42x
663
    COLOR_YUV2RGB_I420  = COLOR_YUV2RGB_IYUV, //!< synonym to IYUV
664
    COLOR_YUV2BGR_I420  = COLOR_YUV2BGR_IYUV, //!< synonym to IYUV
665
    COLOR_YUV420p2RGB   = COLOR_YUV2RGB_YV12, //!< synonym to YV12
666
    COLOR_YUV420p2BGR   = COLOR_YUV2BGR_YV12, //!< synonym to YV12
667
668
    COLOR_YUV2RGBA_YV12 = 102, //!< convert between 4:2:0-subsampled YUV YV12 and RGBA, three planes in one array: Y, V and U, see @ref color_convert_rgb_yuv_42x
669
    COLOR_YUV2BGRA_YV12 = 103, //!< convert between 4:2:0-subsampled YUV YV12 and BGRA, three planes in one array: Y, V and U, see @ref color_convert_rgb_yuv_42x
670
    COLOR_YUV2RGBA_IYUV = 104, //!< convert between 4:2:0-subsampled YUV YV12 and RGBA, three planes in one array: Y, U and V, see @ref color_convert_rgb_yuv_42x
671
    COLOR_YUV2BGRA_IYUV = 105, //!< convert between 4:2:0-subsampled YUV YV12 and BGRA, three planes in one array: Y, U and V, see @ref color_convert_rgb_yuv_42x
672
    COLOR_YUV2RGBA_I420 = COLOR_YUV2RGBA_IYUV, //!< synonym to IYUV
673
    COLOR_YUV2BGRA_I420 = COLOR_YUV2BGRA_IYUV, //!< synonym to IYUV
674
    COLOR_YUV420p2RGBA  = COLOR_YUV2RGBA_YV12, //!< synonym to YV12
675
    COLOR_YUV420p2BGRA  = COLOR_YUV2BGRA_YV12, //!< synonym to YV12
676
677
    COLOR_YUV2GRAY_420  = 106, //!< extract Y channel from YUV 4:2:0 image
678
    COLOR_YUV2GRAY_NV21 = COLOR_YUV2GRAY_420, //!< synonym to COLOR_YUV2GRAY_420
679
    COLOR_YUV2GRAY_NV12 = COLOR_YUV2GRAY_420, //!< synonym to COLOR_YUV2GRAY_420
680
    COLOR_YUV2GRAY_YV12 = COLOR_YUV2GRAY_420, //!< synonym to COLOR_YUV2GRAY_420
681
    COLOR_YUV2GRAY_IYUV = COLOR_YUV2GRAY_420, //!< synonym to COLOR_YUV2GRAY_420
682
    COLOR_YUV2GRAY_I420 = COLOR_YUV2GRAY_420, //!< synonym to COLOR_YUV2GRAY_420
683
    COLOR_YUV420sp2GRAY = COLOR_YUV2GRAY_420, //!< synonym to COLOR_YUV2GRAY_420
684
    COLOR_YUV420p2GRAY  = COLOR_YUV2GRAY_420, //!< synonym to COLOR_YUV2GRAY_420
685
686
    COLOR_YUV2RGB_UYVY = 107, //!< convert between YUV UYVY and RGB, YUV is 4:2:2-subsampled and interleaved as U/Y1/V/Y2, see @ref color_convert_rgb_yuv_42x
687
    COLOR_YUV2BGR_UYVY = 108, //!< convert between YUV UYVY and BGR, YUV is 4:2:2-subsampled and interleaved as U/Y1/V/Y2, see @ref color_convert_rgb_yuv_42x
688
    //COLOR_YUV2RGB_VYUY = 109, //!< convert between YUV VYUY and RGB, YUV is 4:2:2-subsampled and interleaved as V/Y1/U/Y2, see @ref color_convert_rgb_yuv_42x
689
    //COLOR_YUV2BGR_VYUY = 110, //!< convert between YUV VYUY and BGR, YUV is 4:2:2-subsampled and interleaved as V/Y1/U/Y2, see @ref color_convert_rgb_yuv_42x
690
    COLOR_YUV2RGB_Y422 = COLOR_YUV2RGB_UYVY, //!< synonym to UYVY
691
    COLOR_YUV2BGR_Y422 = COLOR_YUV2BGR_UYVY, //!< synonym to UYVY
692
    COLOR_YUV2RGB_UYNV = COLOR_YUV2RGB_UYVY, //!< synonym to UYVY
693
    COLOR_YUV2BGR_UYNV = COLOR_YUV2BGR_UYVY, //!< synonym to UYVY
694
695
    COLOR_YUV2RGBA_UYVY = 111, //!< convert between YUV UYVY and RGBA, YUV is 4:2:2-subsampled and interleaved as U/Y1/V/Y2, see @ref color_convert_rgb_yuv_42x
696
    COLOR_YUV2BGRA_UYVY = 112, //!< convert between YUV UYVY and BGRA, YUV is 4:2:2-subsampled and interleaved as U/Y1/V/Y2, see @ref color_convert_rgb_yuv_42x
697
    //COLOR_YUV2RGBA_VYUY = 113, //!< convert between YUV VYUY and RGBA, YUV is 4:2:2-subsampled and interleaved as V/Y1/U/Y2, see @ref color_convert_rgb_yuv_42x
698
    //COLOR_YUV2BGRA_VYUY = 114, //!< convert between YUV VYUY and BGRA, YUV is 4:2:2-subsampled and interleaved as V/Y1/U/Y2, see @ref color_convert_rgb_yuv_42x
699
    COLOR_YUV2RGBA_Y422 = COLOR_YUV2RGBA_UYVY, //!< synonym to UYVY
700
    COLOR_YUV2BGRA_Y422 = COLOR_YUV2BGRA_UYVY, //!< synonym to UYVY
701
    COLOR_YUV2RGBA_UYNV = COLOR_YUV2RGBA_UYVY, //!< synonym to UYVY
702
    COLOR_YUV2BGRA_UYNV = COLOR_YUV2BGRA_UYVY, //!< synonym to UYVY
703
704
    COLOR_YUV2RGB_YUY2 = 115, //!< convert between YUV YUY2 and RGB, YUV is 4:2:2-subsampled and interleaved as Y1/U/Y2/V, see @ref color_convert_rgb_yuv_42x
705
    COLOR_YUV2BGR_YUY2 = 116, //!< convert between YUV YUY2 and BGR, YUV is 4:2:2-subsampled and interleaved as Y1/U/Y2/V, see @ref color_convert_rgb_yuv_42x
706
    COLOR_YUV2RGB_YVYU = 117, //!< convert between YUV YVYU and RGB, YUV is 4:2:2-subsampled and interleaved as Y1/V/Y2/U, see @ref color_convert_rgb_yuv_42x
707
    COLOR_YUV2BGR_YVYU = 118, //!< convert between YUV YVYU and BGR, YUV is 4:2:2-subsampled and interleaved as Y1/V/Y2/U, see @ref color_convert_rgb_yuv_42x
708
    COLOR_YUV2RGB_YUYV = COLOR_YUV2RGB_YUY2, //!< synonym to YUY2
709
    COLOR_YUV2BGR_YUYV = COLOR_YUV2BGR_YUY2, //!< synonym to YUY2
710
    COLOR_YUV2RGB_YUNV = COLOR_YUV2RGB_YUY2, //!< synonym to YUY2
711
    COLOR_YUV2BGR_YUNV = COLOR_YUV2BGR_YUY2, //!< synonym to YUY2
712
713
    COLOR_YUV2RGBA_YUY2 = 119, //!< convert between YUV YUY2 and RGBA, YUV is 4:2:2-subsampled and interleaved as Y1/U/Y2/V, see @ref color_convert_rgb_yuv_42x
714
    COLOR_YUV2BGRA_YUY2 = 120, //!< convert between YUV YUY2 and BGRA, YUV is 4:2:2-subsampled and interleaved as Y1/U/Y2/V, see @ref color_convert_rgb_yuv_42x
715
    COLOR_YUV2RGBA_YVYU = 121, //!< convert between YUV YVYU and RGBA, YUV is 4:2:2-subsampled and interleaved as Y1/V/Y2/U, see @ref color_convert_rgb_yuv_42x
716
    COLOR_YUV2BGRA_YVYU = 122, //!< convert between YUV YVYU and BGRA, YUV is 4:2:2-subsampled and interleaved as Y1/V/Y2/U, see @ref color_convert_rgb_yuv_42x
717
    COLOR_YUV2RGBA_YUYV = COLOR_YUV2RGBA_YUY2, //!< synonym to YUY2
718
    COLOR_YUV2BGRA_YUYV = COLOR_YUV2BGRA_YUY2, //!< synonym to YUY2
719
    COLOR_YUV2RGBA_YUNV = COLOR_YUV2RGBA_YUY2, //!< synonym to YUY2
720
    COLOR_YUV2BGRA_YUNV = COLOR_YUV2BGRA_YUY2, //!< synonym to YUY2
721
722
    COLOR_YUV2GRAY_UYVY = 123, //!< extract Y channel from YUV 4:2:2 image
723
    COLOR_YUV2GRAY_YUY2 = 124, //!< extract Y channel from YUV 4:2:2 image
724
    //CV_YUV2GRAY_VYUY  = CV_YUV2GRAY_UYVY, //!< synonym to COLOR_YUV2GRAY_UYVY
725
    COLOR_YUV2GRAY_Y422 = COLOR_YUV2GRAY_UYVY, //!< synonym to COLOR_YUV2GRAY_UYVY
726
    COLOR_YUV2GRAY_UYNV = COLOR_YUV2GRAY_UYVY, //!< synonym to COLOR_YUV2GRAY_UYVY
727
    COLOR_YUV2GRAY_YVYU = COLOR_YUV2GRAY_YUY2, //!< synonym to COLOR_YUV2GRAY_YUY2
728
    COLOR_YUV2GRAY_YUYV = COLOR_YUV2GRAY_YUY2, //!< synonym to COLOR_YUV2GRAY_YUY2
729
    COLOR_YUV2GRAY_YUNV = COLOR_YUV2GRAY_YUY2, //!< synonym to COLOR_YUV2GRAY_YUY2
730
731
    //! alpha premultiplication
732
    COLOR_RGBA2mRGBA    = 125,
733
    COLOR_mRGBA2RGBA    = 126,
734
735
    COLOR_RGB2YUV_I420  = 127, //!< convert between RGB and 4:2:0-subsampled YUV I420, three planes in one array: Y, U and V, see @ref color_convert_rgb_yuv_42x
736
    COLOR_BGR2YUV_I420  = 128, //!< convert between BGR and 4:2:0-subsampled YUV I420, three planes in one array: Y, U and V, see @ref color_convert_rgb_yuv_42x
737
    COLOR_RGB2YUV_IYUV  = COLOR_RGB2YUV_I420, //!< synonym to I420
738
    COLOR_BGR2YUV_IYUV  = COLOR_BGR2YUV_I420, //!< synonym to I420
739
740
    COLOR_RGBA2YUV_I420 = 129, //!< convert between RGBA and 4:2:0-subsampled YUV I420, three planes in one array: Y, U and V, see @ref color_convert_rgb_yuv_42x
741
    COLOR_BGRA2YUV_I420 = 130, //!< convert between BGRA and 4:2:0-subsampled YUV I420, three planes in one array: Y, U and V, see @ref color_convert_rgb_yuv_42x
742
    COLOR_RGBA2YUV_IYUV = COLOR_RGBA2YUV_I420, //!< synonym to I420
743
    COLOR_BGRA2YUV_IYUV = COLOR_BGRA2YUV_I420, //!< synonym to I420
744
    COLOR_RGB2YUV_YV12  = 131, //!< convert between RGB and 4:2:0-subsampled YUV YV12, three planes in one array: Y, V and U, see @ref color_convert_rgb_yuv_42x
745
    COLOR_BGR2YUV_YV12  = 132, //!< convert between BGR and 4:2:0-subsampled YUV YV12, three planes in one array: Y, V and U, see @ref color_convert_rgb_yuv_42x
746
    COLOR_RGBA2YUV_YV12 = 133, //!< convert between RGBA and 4:2:0-subsampled YUV YV12, three planes in one array: Y, V and U, see @ref color_convert_rgb_yuv_42x
747
    COLOR_BGRA2YUV_YV12 = 134, //!< convert between BGRA and 4:2:0-subsampled YUV YV12, three planes in one array: Y, V and U, see @ref color_convert_rgb_yuv_42x
748
749
    //! Demosaicing, see @ref color_convert_bayer "color conversions" for additional information
750
    COLOR_BayerBG2BGR = 46, //!< equivalent to RGGB Bayer pattern
751
    COLOR_BayerGB2BGR = 47, //!< equivalent to GRBG Bayer pattern
752
    COLOR_BayerRG2BGR = 48, //!< equivalent to BGGR Bayer pattern
753
    COLOR_BayerGR2BGR = 49, //!< equivalent to GBRG Bayer pattern
754
755
    COLOR_BayerRGGB2BGR = COLOR_BayerBG2BGR,
756
    COLOR_BayerGRBG2BGR = COLOR_BayerGB2BGR,
757
    COLOR_BayerBGGR2BGR = COLOR_BayerRG2BGR,
758
    COLOR_BayerGBRG2BGR = COLOR_BayerGR2BGR,
759
760
    COLOR_BayerRGGB2RGB = COLOR_BayerBGGR2BGR,
761
    COLOR_BayerGRBG2RGB = COLOR_BayerGBRG2BGR,
762
    COLOR_BayerBGGR2RGB = COLOR_BayerRGGB2BGR,
763
    COLOR_BayerGBRG2RGB = COLOR_BayerGRBG2BGR,
764
765
    COLOR_BayerBG2RGB = COLOR_BayerRG2BGR, //!< equivalent to RGGB Bayer pattern
766
    COLOR_BayerGB2RGB = COLOR_BayerGR2BGR, //!< equivalent to GRBG Bayer pattern
767
    COLOR_BayerRG2RGB = COLOR_BayerBG2BGR, //!< equivalent to BGGR Bayer pattern
768
    COLOR_BayerGR2RGB = COLOR_BayerGB2BGR, //!< equivalent to GBRG Bayer pattern
769
770
    COLOR_BayerBG2GRAY = 86, //!< equivalent to RGGB Bayer pattern
771
    COLOR_BayerGB2GRAY = 87, //!< equivalent to GRBG Bayer pattern
772
    COLOR_BayerRG2GRAY = 88, //!< equivalent to BGGR Bayer pattern
773
    COLOR_BayerGR2GRAY = 89, //!< equivalent to GBRG Bayer pattern
774
775
    COLOR_BayerRGGB2GRAY = COLOR_BayerBG2GRAY,
776
    COLOR_BayerGRBG2GRAY = COLOR_BayerGB2GRAY,
777
    COLOR_BayerBGGR2GRAY = COLOR_BayerRG2GRAY,
778
    COLOR_BayerGBRG2GRAY = COLOR_BayerGR2GRAY,
779
780
    //! Demosaicing using Variable Number of Gradients
781
    COLOR_BayerBG2BGR_VNG = 62, //!< equivalent to RGGB Bayer pattern
782
    COLOR_BayerGB2BGR_VNG = 63, //!< equivalent to GRBG Bayer pattern
783
    COLOR_BayerRG2BGR_VNG = 64, //!< equivalent to BGGR Bayer pattern
784
    COLOR_BayerGR2BGR_VNG = 65, //!< equivalent to GBRG Bayer pattern
785
786
    COLOR_BayerRGGB2BGR_VNG = COLOR_BayerBG2BGR_VNG,
787
    COLOR_BayerGRBG2BGR_VNG = COLOR_BayerGB2BGR_VNG,
788
    COLOR_BayerBGGR2BGR_VNG = COLOR_BayerRG2BGR_VNG,
789
    COLOR_BayerGBRG2BGR_VNG = COLOR_BayerGR2BGR_VNG,
790
791
    COLOR_BayerRGGB2RGB_VNG = COLOR_BayerBGGR2BGR_VNG,
792
    COLOR_BayerGRBG2RGB_VNG = COLOR_BayerGBRG2BGR_VNG,
793
    COLOR_BayerBGGR2RGB_VNG = COLOR_BayerRGGB2BGR_VNG,
794
    COLOR_BayerGBRG2RGB_VNG = COLOR_BayerGRBG2BGR_VNG,
795
796
    COLOR_BayerBG2RGB_VNG = COLOR_BayerRG2BGR_VNG, //!< equivalent to RGGB Bayer pattern
797
    COLOR_BayerGB2RGB_VNG = COLOR_BayerGR2BGR_VNG, //!< equivalent to GRBG Bayer pattern
798
    COLOR_BayerRG2RGB_VNG = COLOR_BayerBG2BGR_VNG, //!< equivalent to BGGR Bayer pattern
799
    COLOR_BayerGR2RGB_VNG = COLOR_BayerGB2BGR_VNG, //!< equivalent to GBRG Bayer pattern
800
801
    //! Edge-Aware Demosaicing
802
    COLOR_BayerBG2BGR_EA  = 135, //!< equivalent to RGGB Bayer pattern
803
    COLOR_BayerGB2BGR_EA  = 136, //!< equivalent to GRBG Bayer pattern
804
    COLOR_BayerRG2BGR_EA  = 137, //!< equivalent to BGGR Bayer pattern
805
    COLOR_BayerGR2BGR_EA  = 138, //!< equivalent to GBRG Bayer pattern
806
807
    COLOR_BayerRGGB2BGR_EA  = COLOR_BayerBG2BGR_EA,
808
    COLOR_BayerGRBG2BGR_EA  = COLOR_BayerGB2BGR_EA,
809
    COLOR_BayerBGGR2BGR_EA  = COLOR_BayerRG2BGR_EA,
810
    COLOR_BayerGBRG2BGR_EA  = COLOR_BayerGR2BGR_EA,
811
812
    COLOR_BayerRGGB2RGB_EA  = COLOR_BayerBGGR2BGR_EA,
813
    COLOR_BayerGRBG2RGB_EA  = COLOR_BayerGBRG2BGR_EA,
814
    COLOR_BayerBGGR2RGB_EA  = COLOR_BayerRGGB2BGR_EA,
815
    COLOR_BayerGBRG2RGB_EA  = COLOR_BayerGRBG2BGR_EA,
816
817
    COLOR_BayerBG2RGB_EA  = COLOR_BayerRG2BGR_EA, //!< equivalent to RGGB Bayer pattern
818
    COLOR_BayerGB2RGB_EA  = COLOR_BayerGR2BGR_EA, //!< equivalent to GRBG Bayer pattern
819
    COLOR_BayerRG2RGB_EA  = COLOR_BayerBG2BGR_EA, //!< equivalent to BGGR Bayer pattern
820
    COLOR_BayerGR2RGB_EA  = COLOR_BayerGB2BGR_EA, //!< equivalent to GBRG Bayer pattern
821
822
    //! Demosaicing with alpha channel
823
    COLOR_BayerBG2BGRA = 139, //!< equivalent to RGGB Bayer pattern
824
    COLOR_BayerGB2BGRA = 140, //!< equivalent to GRBG Bayer pattern
825
    COLOR_BayerRG2BGRA = 141, //!< equivalent to BGGR Bayer pattern
826
    COLOR_BayerGR2BGRA = 142, //!< equivalent to GBRG Bayer pattern
827
828
    COLOR_BayerRGGB2BGRA = COLOR_BayerBG2BGRA,
829
    COLOR_BayerGRBG2BGRA = COLOR_BayerGB2BGRA,
830
    COLOR_BayerBGGR2BGRA = COLOR_BayerRG2BGRA,
831
    COLOR_BayerGBRG2BGRA = COLOR_BayerGR2BGRA,
832
833
    COLOR_BayerRGGB2RGBA = COLOR_BayerBGGR2BGRA,
834
    COLOR_BayerGRBG2RGBA = COLOR_BayerGBRG2BGRA,
835
    COLOR_BayerBGGR2RGBA = COLOR_BayerRGGB2BGRA,
836
    COLOR_BayerGBRG2RGBA = COLOR_BayerGRBG2BGRA,
837
838
    COLOR_BayerBG2RGBA = COLOR_BayerRG2BGRA, //!< equivalent to RGGB Bayer pattern
839
    COLOR_BayerGB2RGBA = COLOR_BayerGR2BGRA, //!< equivalent to GRBG Bayer pattern
840
    COLOR_BayerRG2RGBA = COLOR_BayerBG2BGRA, //!< equivalent to BGGR Bayer pattern
841
    COLOR_BayerGR2RGBA = COLOR_BayerGB2BGRA, //!< equivalent to GBRG Bayer pattern
842
843
    COLOR_RGB2YUV_UYVY = 143, //!< convert between RGB and YUV UYVU, YUV is 4:2:2 and interleaved as U/Y1/V/Y2, see @ref color_convert_rgb_yuv_42x
844
    COLOR_BGR2YUV_UYVY = 144, //!< convert between BGR and YUV UYVU, YUV is 4:2:2 and interleaved as U/Y1/V/Y2, see @ref color_convert_rgb_yuv_42x
845
    COLOR_RGB2YUV_Y422 = COLOR_RGB2YUV_UYVY, //!< synonym to UYVY
846
    COLOR_BGR2YUV_Y422 = COLOR_BGR2YUV_UYVY, //!< synonym to UYVY
847
    COLOR_RGB2YUV_UYNV = COLOR_RGB2YUV_UYVY, //!< synonym to UYVY
848
    COLOR_BGR2YUV_UYNV = COLOR_BGR2YUV_UYVY, //!< synonym to UYVY
849
850
    COLOR_RGBA2YUV_UYVY = 145, //!< convert between RGBA and YUV UYVU, YUV is 4:2:2 and interleaved as U/Y1/V/Y2, see @ref color_convert_rgb_yuv_42x
851
    COLOR_BGRA2YUV_UYVY = 146, //!< convert between BGRA and YUV UYVU, YUV is 4:2:2 and interleaved as U/Y1/V/Y2, see @ref color_convert_rgb_yuv_42x
852
    COLOR_RGBA2YUV_Y422 = COLOR_RGBA2YUV_UYVY, //!< synonym to UYVY
853
    COLOR_BGRA2YUV_Y422 = COLOR_BGRA2YUV_UYVY, //!< synonym to UYVY
854
    COLOR_RGBA2YUV_UYNV = COLOR_RGBA2YUV_UYVY, //!< synonym to UYVY
855
    COLOR_BGRA2YUV_UYNV = COLOR_BGRA2YUV_UYVY, //!< synonym to UYVY
856
857
    COLOR_RGB2YUV_YUY2 = 147, //!< convert between RGB and YUV YUY2, YUV is 4:2:2 and interleaved as Y1/U/Y2/V, see @ref color_convert_rgb_yuv_42x
858
    COLOR_BGR2YUV_YUY2 = 148, //!< convert between BGR and YUV YUY2, YUV is 4:2:2 and interleaved as Y1/U/Y2/V, see @ref color_convert_rgb_yuv_42x
859
    COLOR_RGB2YUV_YVYU = 149, //!< convert between RGB and YUV YVYU, YUV is 4:2:2 and interleaved as Y1/V/Y2/U, see @ref color_convert_rgb_yuv_42x
860
    COLOR_BGR2YUV_YVYU = 150, //!< convert between BGR and YUV YVYU, YUV is 4:2:2 and interleaved as Y1/V/Y2/U, see @ref color_convert_rgb_yuv_42x
861
    COLOR_RGB2YUV_YUYV = COLOR_RGB2YUV_YUY2, //!< synonym to YUY2
862
    COLOR_BGR2YUV_YUYV = COLOR_BGR2YUV_YUY2, //!< synonym to YUY2
863
    COLOR_RGB2YUV_YUNV = COLOR_RGB2YUV_YUY2, //!< synonym to YUY2
864
    COLOR_BGR2YUV_YUNV = COLOR_BGR2YUV_YUY2, //!< synonym to YUY2
865
866
    COLOR_RGBA2YUV_YUY2 = 151, //!< convert between RGBA and YUV YUY2, YUV is 4:2:2 and interleaved as Y1/U/Y2/V, see @ref color_convert_rgb_yuv_42x
867
    COLOR_BGRA2YUV_YUY2 = 152, //!< convert between BGRA and YUV YUY2, YUV is 4:2:2 and interleaved as Y1/U/Y2/V, see @ref color_convert_rgb_yuv_42x
868
    COLOR_RGBA2YUV_YVYU = 153, //!< convert between RGBA and YUV YVYU, YUV is 4:2:2 and interleaved as Y1/V/Y2/U, see @ref color_convert_rgb_yuv_42x
869
    COLOR_BGRA2YUV_YVYU = 154, //!< convert between BGRA and YUV YVYU, YUV is 4:2:2 and interleaved as Y1/V/Y2/U, see @ref color_convert_rgb_yuv_42x
870
    COLOR_RGBA2YUV_YUYV = COLOR_RGBA2YUV_YUY2, //!< synonym to YUY2
871
    COLOR_BGRA2YUV_YUYV = COLOR_BGRA2YUV_YUY2, //!< synonym to YUY2
872
    COLOR_RGBA2YUV_YUNV = COLOR_RGBA2YUV_YUY2, //!< synonym to YUY2
873
    COLOR_BGRA2YUV_YUNV = COLOR_BGRA2YUV_YUY2, //!< synonym to YUY2
874
875
    COLOR_COLORCVT_MAX  = 155
876
};
877
878
//! @addtogroup imgproc_shape
879
//! @{
880
881
//! types of intersection between rectangles
882
enum RectanglesIntersectTypes {
883
    INTERSECT_NONE = 0, //!< No intersection
884
    INTERSECT_PARTIAL  = 1, //!< There is a partial intersection
885
    INTERSECT_FULL  = 2 //!< One of the rectangle is fully enclosed in the other
886
};
887
888
/** types of line
889
@ingroup imgproc_draw
890
*/
891
enum LineTypes {
892
    FILLED  = -1,
893
    LINE_4  = 4, //!< 4-connected line
894
    LINE_8  = 8, //!< 8-connected line
895
    LINE_AA = 16 //!< antialiased line
896
};
897
898
/** Only a subset of Hershey fonts <https://en.wikipedia.org/wiki/Hershey_fonts> are supported
899
@ingroup imgproc_draw
900
*/
901
enum HersheyFonts {
902
    FONT_HERSHEY_SIMPLEX        = 0, //!< normal size sans-serif font
903
    FONT_HERSHEY_PLAIN          = 1, //!< small size sans-serif font
904
    FONT_HERSHEY_DUPLEX         = 2, //!< normal size sans-serif font (more complex than FONT_HERSHEY_SIMPLEX)
905
    FONT_HERSHEY_COMPLEX        = 3, //!< normal size serif font
906
    FONT_HERSHEY_TRIPLEX        = 4, //!< normal size serif font (more complex than FONT_HERSHEY_COMPLEX)
907
    FONT_HERSHEY_COMPLEX_SMALL  = 5, //!< smaller version of FONT_HERSHEY_COMPLEX
908
    FONT_HERSHEY_SCRIPT_SIMPLEX = 6, //!< hand-writing style font
909
    FONT_HERSHEY_SCRIPT_COMPLEX = 7, //!< more complex variant of FONT_HERSHEY_SCRIPT_SIMPLEX
910
    FONT_ITALIC                 = 16 //!< flag for italic font
911
};
912
913
/** Possible set of marker types used for the cv::drawMarker function
914
@ingroup imgproc_draw
915
*/
916
enum MarkerTypes
917
{
918
    MARKER_CROSS = 0,           //!< A crosshair marker shape
919
    MARKER_TILTED_CROSS = 1,    //!< A 45 degree tilted crosshair marker shape
920
    MARKER_STAR = 2,            //!< A star marker shape, combination of cross and tilted cross
921
    MARKER_DIAMOND = 3,         //!< A diamond marker shape
922
    MARKER_SQUARE = 4,          //!< A square marker shape
923
    MARKER_TRIANGLE_UP = 5,     //!< An upwards pointing triangle marker shape
924
    MARKER_TRIANGLE_DOWN = 6    //!< A downwards pointing triangle marker shape
925
};
926
927
/** @brief finds arbitrary template in the grayscale image using Generalized Hough Transform
928
*/
929
class CV_EXPORTS_W GeneralizedHough : public Algorithm
930
{
931
public:
932
    //! set template to search
933
    CV_WRAP virtual void setTemplate(InputArray templ, Point templCenter = Point(-1, -1)) = 0;
934
    CV_WRAP virtual void setTemplate(InputArray edges, InputArray dx, InputArray dy, Point templCenter = Point(-1, -1)) = 0;
935
936
    //! find template on image
937
    CV_WRAP virtual void detect(InputArray image, OutputArray positions, OutputArray votes = noArray()) = 0;
938
    CV_WRAP virtual void detect(InputArray edges, InputArray dx, InputArray dy, OutputArray positions, OutputArray votes = noArray()) = 0;
939
940
    //! Canny low threshold.
941
    CV_WRAP virtual void setCannyLowThresh(int cannyLowThresh) = 0;
942
    CV_WRAP virtual int getCannyLowThresh() const = 0;
943
944
    //! Canny high threshold.
945
    CV_WRAP virtual void setCannyHighThresh(int cannyHighThresh) = 0;
946
    CV_WRAP virtual int getCannyHighThresh() const = 0;
947
948
    //! Minimum distance between the centers of the detected objects.
949
    CV_WRAP virtual void setMinDist(double minDist) = 0;
950
    CV_WRAP virtual double getMinDist() const = 0;
951
952
    //! Inverse ratio of the accumulator resolution to the image resolution.
953
    CV_WRAP virtual void setDp(double dp) = 0;
954
    CV_WRAP virtual double getDp() const = 0;
955
956
    //! Maximal size of inner buffers.
957
    CV_WRAP virtual void setMaxBufferSize(int maxBufferSize) = 0;
958
    CV_WRAP virtual int getMaxBufferSize() const = 0;
959
};
960
961
/** @brief finds arbitrary template in the grayscale image using Generalized Hough Transform
962
963
Detects position only without translation and rotation @cite Ballard1981 .
964
*/
965
class CV_EXPORTS_W GeneralizedHoughBallard : public GeneralizedHough
966
{
967
public:
968
    //! R-Table levels.
969
    CV_WRAP virtual void setLevels(int levels) = 0;
970
    CV_WRAP virtual int getLevels() const = 0;
971
972
    //! The accumulator threshold for the template centers at the detection stage. The smaller it is, the more false positions may be detected.
973
    CV_WRAP virtual void setVotesThreshold(int votesThreshold) = 0;
974
    CV_WRAP virtual int getVotesThreshold() const = 0;
975
};
976
977
/** @brief finds arbitrary template in the grayscale image using Generalized Hough Transform
978
979
Detects position, translation and rotation @cite Guil1999 .
980
*/
981
class CV_EXPORTS_W GeneralizedHoughGuil : public GeneralizedHough
982
{
983
public:
984
    //! Angle difference in degrees between two points in feature.
985
    CV_WRAP virtual void setXi(double xi) = 0;
986
    CV_WRAP virtual double getXi() const = 0;
987
988
    //! Feature table levels.
989
    CV_WRAP virtual void setLevels(int levels) = 0;
990
    CV_WRAP virtual int getLevels() const = 0;
991
992
    //! Maximal difference between angles that treated as equal.
993
    CV_WRAP virtual void setAngleEpsilon(double angleEpsilon) = 0;
994
    CV_WRAP virtual double getAngleEpsilon() const = 0;
995
996
    //! Minimal rotation angle to detect in degrees.
997
    CV_WRAP virtual void setMinAngle(double minAngle) = 0;
998
    CV_WRAP virtual double getMinAngle() const = 0;
999
1000
    //! Maximal rotation angle to detect in degrees.
1001
    CV_WRAP virtual void setMaxAngle(double maxAngle) = 0;
1002
    CV_WRAP virtual double getMaxAngle() const = 0;
1003
1004
    //! Angle step in degrees.
1005
    CV_WRAP virtual void setAngleStep(double angleStep) = 0;
1006
    CV_WRAP virtual double getAngleStep() const = 0;
1007
1008
    //! Angle votes threshold.
1009
    CV_WRAP virtual void setAngleThresh(int angleThresh) = 0;
1010
    CV_WRAP virtual int getAngleThresh() const = 0;
1011
1012
    //! Minimal scale to detect.
1013
    CV_WRAP virtual void setMinScale(double minScale) = 0;
1014
    CV_WRAP virtual double getMinScale() const = 0;
1015
1016
    //! Maximal scale to detect.
1017
    CV_WRAP virtual void setMaxScale(double maxScale) = 0;
1018
    CV_WRAP virtual double getMaxScale() const = 0;
1019
1020
    //! Scale step.
1021
    CV_WRAP virtual void setScaleStep(double scaleStep) = 0;
1022
    CV_WRAP virtual double getScaleStep() const = 0;
1023
1024
    //! Scale votes threshold.
1025
    CV_WRAP virtual void setScaleThresh(int scaleThresh) = 0;
1026
    CV_WRAP virtual int getScaleThresh() const = 0;
1027
1028
    //! Position votes threshold.
1029
    CV_WRAP virtual void setPosThresh(int posThresh) = 0;
1030
    CV_WRAP virtual int getPosThresh() const = 0;
1031
};
1032
1033
//! @} imgproc_shape
1034
1035
//! @addtogroup imgproc_hist
1036
//! @{
1037
1038
/** @brief Base class for Contrast Limited Adaptive Histogram Equalization.
1039
*/
1040
class CV_EXPORTS_W CLAHE : public Algorithm
1041
{
1042
public:
1043
    /** @brief Equalizes the histogram of a grayscale image using Contrast Limited Adaptive Histogram Equalization.
1044
1045
    @param src Source image of type CV_8UC1 or CV_16UC1.
1046
    @param dst Destination image.
1047
     */
1048
    CV_WRAP virtual void apply(InputArray src, OutputArray dst) = 0;
1049
1050
    /** @brief Sets threshold for contrast limiting.
1051
1052
    @param clipLimit threshold value.
1053
    */
1054
    CV_WRAP virtual void setClipLimit(double clipLimit) = 0;
1055
1056
    //! Returns threshold value for contrast limiting.
1057
    CV_WRAP virtual double getClipLimit() const = 0;
1058
1059
    /** @brief Sets size of grid for histogram equalization. Input image will be divided into
1060
    equally sized rectangular tiles.
1061
1062
    @param tileGridSize defines the number of tiles in row and column.
1063
    */
1064
    CV_WRAP virtual void setTilesGridSize(Size tileGridSize) = 0;
1065
1066
    //!@brief Returns Size defines the number of tiles in row and column.
1067
    CV_WRAP virtual Size getTilesGridSize() const = 0;
1068
1069
    CV_WRAP virtual void collectGarbage() = 0;
1070
};
1071
1072
//! @} imgproc_hist
1073
1074
//! @addtogroup imgproc_subdiv2d
1075
//! @{
1076
1077
class CV_EXPORTS_W Subdiv2D
1078
{
1079
public:
1080
    /** Subdiv2D point location cases */
1081
    enum { PTLOC_ERROR        = -2, //!< Point location error
1082
           PTLOC_OUTSIDE_RECT = -1, //!< Point outside the subdivision bounding rect
1083
           PTLOC_INSIDE       = 0, //!< Point inside some facet
1084
           PTLOC_VERTEX       = 1, //!< Point coincides with one of the subdivision vertices
1085
           PTLOC_ON_EDGE      = 2  //!< Point on some edge
1086
         };
1087
1088
    /** Subdiv2D edge type navigation (see: getEdge()) */
1089
    enum { NEXT_AROUND_ORG   = 0x00,
1090
           NEXT_AROUND_DST   = 0x22,
1091
           PREV_AROUND_ORG   = 0x11,
1092
           PREV_AROUND_DST   = 0x33,
1093
           NEXT_AROUND_LEFT  = 0x13,
1094
           NEXT_AROUND_RIGHT = 0x31,
1095
           PREV_AROUND_LEFT  = 0x20,
1096
           PREV_AROUND_RIGHT = 0x02
1097
         };
1098
1099
    /** creates an empty Subdiv2D object.
1100
    To create a new empty Delaunay subdivision you need to use the #initDelaunay function.
1101
     */
1102
    CV_WRAP Subdiv2D();
1103
1104
    /** @overload
1105
1106
    @param rect Rectangle that includes all of the 2D points that are to be added to the subdivision.
1107
1108
    The function creates an empty Delaunay subdivision where 2D points can be added using the function
1109
    insert() . All of the points to be added must be within the specified rectangle, otherwise a runtime
1110
    error is raised.
1111
     */
1112
    CV_WRAP Subdiv2D(Rect rect);
1113
1114
    /** @brief Creates a new empty Delaunay subdivision
1115
1116
    @param rect Rectangle that includes all of the 2D points that are to be added to the subdivision.
1117
1118
     */
1119
    CV_WRAP void initDelaunay(Rect rect);
1120
1121
    /** @brief Insert a single point into a Delaunay triangulation.
1122
1123
    @param pt Point to insert.
1124
1125
    The function inserts a single point into a subdivision and modifies the subdivision topology
1126
    appropriately. If a point with the same coordinates exists already, no new point is added.
1127
    @returns the ID of the point.
1128
1129
    @note If the point is outside of the triangulation specified rect a runtime error is raised.
1130
     */
1131
    CV_WRAP int insert(Point2f pt);
1132
1133
    /** @brief Insert multiple points into a Delaunay triangulation.
1134
1135
    @param ptvec Points to insert.
1136
1137
    The function inserts a vector of points into a subdivision and modifies the subdivision topology
1138
    appropriately.
1139
     */
1140
    CV_WRAP void insert(const std::vector<Point2f>& ptvec);
1141
1142
    /** @brief Returns the location of a point within a Delaunay triangulation.
1143
1144
    @param pt Point to locate.
1145
    @param edge Output edge that the point belongs to or is located to the right of it.
1146
    @param vertex Optional output vertex the input point coincides with.
1147
1148
    The function locates the input point within the subdivision and gives one of the triangle edges
1149
    or vertices.
1150
1151
    @returns an integer which specify one of the following five cases for point location:
1152
    -  The point falls into some facet. The function returns #PTLOC_INSIDE and edge will contain one of
1153
       edges of the facet.
1154
    -  The point falls onto the edge. The function returns #PTLOC_ON_EDGE and edge will contain this edge.
1155
    -  The point coincides with one of the subdivision vertices. The function returns #PTLOC_VERTEX and
1156
       vertex will contain a pointer to the vertex.
1157
    -  The point is outside the subdivision reference rectangle. The function returns #PTLOC_OUTSIDE_RECT
1158
       and no pointers are filled.
1159
    -  One of input arguments is invalid. A runtime error is raised or, if silent or "parent" error
1160
       processing mode is selected, #PTLOC_ERROR is returned.
1161
     */
1162
    CV_WRAP int locate(Point2f pt, CV_OUT int& edge, CV_OUT int& vertex);
1163
1164
    /** @brief Finds the subdivision vertex closest to the given point.
1165
1166
    @param pt Input point.
1167
    @param nearestPt Output subdivision vertex point.
1168
1169
    The function is another function that locates the input point within the subdivision. It finds the
1170
    subdivision vertex that is the closest to the input point. It is not necessarily one of vertices
1171
    of the facet containing the input point, though the facet (located using locate() ) is used as a
1172
    starting point.
1173
1174
    @returns vertex ID.
1175
     */
1176
    CV_WRAP int findNearest(Point2f pt, CV_OUT Point2f* nearestPt = 0);
1177
1178
    /** @brief Returns a list of all edges.
1179
1180
    @param edgeList Output vector.
1181
1182
    The function gives each edge as a 4 numbers vector, where each two are one of the edge
1183
    vertices. i.e. org_x = v[0], org_y = v[1], dst_x = v[2], dst_y = v[3].
1184
     */
1185
    CV_WRAP void getEdgeList(CV_OUT std::vector<Vec4f>& edgeList) const;
1186
1187
    /** @brief Returns a list of the leading edge ID connected to each triangle.
1188
1189
    @param leadingEdgeList Output vector.
1190
1191
    The function gives one edge ID for each triangle.
1192
     */
1193
    CV_WRAP void getLeadingEdgeList(CV_OUT std::vector<int>& leadingEdgeList) const;
1194
1195
    /** @brief Returns a list of all triangles.
1196
1197
    @param triangleList Output vector.
1198
1199
    The function gives each triangle as a 6 numbers vector, where each two are one of the triangle
1200
    vertices. i.e. p1_x = v[0], p1_y = v[1], p2_x = v[2], p2_y = v[3], p3_x = v[4], p3_y = v[5].
1201
     */
1202
    CV_WRAP void getTriangleList(CV_OUT std::vector<Vec6f>& triangleList) const;
1203
1204
    /** @brief Returns a list of all Voronoi facets.
1205
1206
    @param idx Vector of vertices IDs to consider. For all vertices you can pass empty vector.
1207
    @param facetList Output vector of the Voronoi facets.
1208
    @param facetCenters Output vector of the Voronoi facets center points.
1209
1210
     */
1211
    CV_WRAP void getVoronoiFacetList(const std::vector<int>& idx, CV_OUT std::vector<std::vector<Point2f> >& facetList,
1212
                                     CV_OUT std::vector<Point2f>& facetCenters);
1213
1214
    /** @brief Returns vertex location from vertex ID.
1215
1216
    @param vertex vertex ID.
1217
    @param firstEdge Optional. The first edge ID which is connected to the vertex.
1218
    @returns vertex (x,y)
1219
1220
     */
1221
    CV_WRAP Point2f getVertex(int vertex, CV_OUT int* firstEdge = 0) const;
1222
1223
    /** @brief Returns one of the edges related to the given edge.
1224
1225
    @param edge Subdivision edge ID.
1226
    @param nextEdgeType Parameter specifying which of the related edges to return.
1227
    The following values are possible:
1228
    -   NEXT_AROUND_ORG next around the edge origin ( eOnext on the picture below if e is the input edge)
1229
    -   NEXT_AROUND_DST next around the edge vertex ( eDnext )
1230
    -   PREV_AROUND_ORG previous around the edge origin (reversed eRnext )
1231
    -   PREV_AROUND_DST previous around the edge destination (reversed eLnext )
1232
    -   NEXT_AROUND_LEFT next around the left facet ( eLnext )
1233
    -   NEXT_AROUND_RIGHT next around the right facet ( eRnext )
1234
    -   PREV_AROUND_LEFT previous around the left facet (reversed eOnext )
1235
    -   PREV_AROUND_RIGHT previous around the right facet (reversed eDnext )
1236
1237
    ![sample output](pics/quadedge.png)
1238
1239
    @returns edge ID related to the input edge.
1240
     */
1241
    CV_WRAP int getEdge( int edge, int nextEdgeType ) const;
1242
1243
    /** @brief Returns next edge around the edge origin.
1244
1245
    @param edge Subdivision edge ID.
1246
1247
    @returns an integer which is next edge ID around the edge origin: eOnext on the
1248
    picture above if e is the input edge).
1249
     */
1250
    CV_WRAP int nextEdge(int edge) const;
1251
1252
    /** @brief Returns another edge of the same quad-edge.
1253
1254
    @param edge Subdivision edge ID.
1255
    @param rotate Parameter specifying which of the edges of the same quad-edge as the input
1256
    one to return. The following values are possible:
1257
    -   0 - the input edge ( e on the picture below if e is the input edge)
1258
    -   1 - the rotated edge ( eRot )
1259
    -   2 - the reversed edge (reversed e (in green))
1260
    -   3 - the reversed rotated edge (reversed eRot (in green))
1261
1262
    @returns one of the edges ID of the same quad-edge as the input edge.
1263
     */
1264
    CV_WRAP int rotateEdge(int edge, int rotate) const;
1265
    CV_WRAP int symEdge(int edge) const;
1266
1267
    /** @brief Returns the edge origin.
1268
1269
    @param edge Subdivision edge ID.
1270
    @param orgpt Output vertex location.
1271
1272
    @returns vertex ID.
1273
     */
1274
    CV_WRAP int edgeOrg(int edge, CV_OUT Point2f* orgpt = 0) const;
1275
1276
    /** @brief Returns the edge destination.
1277
1278
    @param edge Subdivision edge ID.
1279
    @param dstpt Output vertex location.
1280
1281
    @returns vertex ID.
1282
     */
1283
    CV_WRAP int edgeDst(int edge, CV_OUT Point2f* dstpt = 0) const;
1284
1285
protected:
1286
    int newEdge();
1287
    void deleteEdge(int edge);
1288
    int newPoint(Point2f pt, bool isvirtual, int firstEdge = 0);
1289
    void deletePoint(int vtx);
1290
    void setEdgePoints( int edge, int orgPt, int dstPt );
1291
    void splice( int edgeA, int edgeB );
1292
    int connectEdges( int edgeA, int edgeB );
1293
    void swapEdges( int edge );
1294
    int isRightOf(Point2f pt, int edge) const;
1295
    void calcVoronoi();
1296
    void clearVoronoi();
1297
    void checkSubdiv() const;
1298
1299
    struct CV_EXPORTS Vertex
1300
    {
1301
        Vertex();
1302
        Vertex(Point2f pt, bool isvirtual, int firstEdge=0);
1303
        bool isvirtual() const;
1304
        bool isfree() const;
1305
1306
        int firstEdge;
1307
        int type;
1308
        Point2f pt;
1309
    };
1310
1311
    struct CV_EXPORTS QuadEdge
1312
    {
1313
        QuadEdge();
1314
        QuadEdge(int edgeidx);
1315
        bool isfree() const;
1316
1317
        int next[4];
1318
        int pt[4];
1319
    };
1320
1321
    //! All of the vertices
1322
    std::vector<Vertex> vtx;
1323
    //! All of the edges
1324
    std::vector<QuadEdge> qedges;
1325
    int freeQEdge;
1326
    int freePoint;
1327
    bool validGeometry;
1328
1329
    int recentEdge;
1330
    //! Top left corner of the bounding rect
1331
    Point2f topLeft;
1332
    //! Bottom right corner of the bounding rect
1333
    Point2f bottomRight;
1334
};
1335
1336
//! @} imgproc_subdiv2d
1337
1338
//! @addtogroup imgproc_feature
1339
//! @{
1340
1341
/** @example samples/cpp/lsd_lines.cpp
1342
An example using the LineSegmentDetector
1343
\image html building_lsd.png "Sample output image" width=434 height=300
1344
*/
1345
1346
/** @brief Line segment detector class
1347
1348
following the algorithm described at @cite Rafael12 .
1349
1350
@note Implementation has been removed from OpenCV version 3.4.6 to 3.4.15 and version 4.1.0 to 4.5.3 due original code license conflict.
1351
restored again after [Computation of a NFA](https://github.com/rafael-grompone-von-gioi/binomial_nfa) code published under the MIT license.
1352
*/
1353
class CV_EXPORTS_W LineSegmentDetector : public Algorithm
1354
{
1355
public:
1356
1357
    /** @brief Finds lines in the input image.
1358
1359
    This is the output of the default parameters of the algorithm on the above shown image.
1360
1361
    ![image](pics/building_lsd.png)
1362
1363
    @param image A grayscale (CV_8UC1) input image. If only a roi needs to be selected, use:
1364
    `lsd_ptr-\>detect(image(roi), lines, ...); lines += Scalar(roi.x, roi.y, roi.x, roi.y);`
1365
    @param lines A vector of Vec4f elements specifying the beginning and ending point of a line. Where
1366
    Vec4f is (x1, y1, x2, y2), point 1 is the start, point 2 - end. Returned lines are strictly
1367
    oriented depending on the gradient.
1368
    @param width Vector of widths of the regions, where the lines are found. E.g. Width of line.
1369
    @param prec Vector of precisions with which the lines are found.
1370
    @param nfa Vector containing number of false alarms in the line region, with precision of 10%. The
1371
    bigger the value, logarithmically better the detection.
1372
    - -1 corresponds to 10 mean false alarms
1373
    - 0 corresponds to 1 mean false alarm
1374
    - 1 corresponds to 0.1 mean false alarms
1375
    This vector will be calculated only when the objects type is #LSD_REFINE_ADV.
1376
    */
1377
    CV_WRAP virtual void detect(InputArray image, OutputArray lines,
1378
                        OutputArray width = noArray(), OutputArray prec = noArray(),
1379
                        OutputArray nfa = noArray()) = 0;
1380
1381
    /** @brief Draws the line segments on a given image.
1382
    @param image The image, where the lines will be drawn. Should be bigger or equal to the image,
1383
    where the lines were found.
1384
    @param lines A vector of the lines that needed to be drawn.
1385
     */
1386
    CV_WRAP virtual void drawSegments(InputOutputArray image, InputArray lines) = 0;
1387
1388
    /** @brief Draws two groups of lines in blue and red, counting the non overlapping (mismatching) pixels.
1389
1390
    @param size The size of the image, where lines1 and lines2 were found.
1391
    @param lines1 The first group of lines that needs to be drawn. It is visualized in blue color.
1392
    @param lines2 The second group of lines. They visualized in red color.
1393
    @param image Optional image, where the lines will be drawn. The image should be color(3-channel)
1394
    in order for lines1 and lines2 to be drawn in the above mentioned colors.
1395
     */
1396
    CV_WRAP virtual int compareSegments(const Size& size, InputArray lines1, InputArray lines2, InputOutputArray image = noArray()) = 0;
1397
1398
0
    virtual ~LineSegmentDetector() { }
1399
};
1400
1401
/** @brief Creates a smart pointer to a LineSegmentDetector object and initializes it.
1402
1403
The LineSegmentDetector algorithm is defined using the standard values. Only advanced users may want
1404
to edit those, as to tailor it for their own application.
1405
1406
@param refine The way found lines will be refined, see #LineSegmentDetectorModes
1407
@param scale The scale of the image that will be used to find the lines. Range (0..1].
1408
@param sigma_scale Sigma for Gaussian filter. It is computed as sigma = sigma_scale/scale.
1409
@param quant Bound to the quantization error on the gradient norm.
1410
@param ang_th Gradient angle tolerance in degrees.
1411
@param log_eps Detection threshold: -log10(NFA) \> log_eps. Used only when advance refinement is chosen.
1412
@param density_th Minimal density of aligned region points in the enclosing rectangle.
1413
@param n_bins Number of bins in pseudo-ordering of gradient modulus.
1414
 */
1415
CV_EXPORTS_W Ptr<LineSegmentDetector> createLineSegmentDetector(
1416
    int refine = LSD_REFINE_STD, double scale = 0.8,
1417
    double sigma_scale = 0.6, double quant = 2.0, double ang_th = 22.5,
1418
    double log_eps = 0, double density_th = 0.7, int n_bins = 1024);
1419
1420
//! @} imgproc_feature
1421
1422
//! @addtogroup imgproc_filter
1423
//! @{
1424
1425
/** @brief Returns Gaussian filter coefficients.
1426
1427
The function computes and returns the \f$\texttt{ksize} \times 1\f$ matrix of Gaussian filter
1428
coefficients:
1429
1430
\f[G_i= \alpha *e^{-(i-( \texttt{ksize} -1)/2)^2/(2* \texttt{sigma}^2)},\f]
1431
1432
where \f$i=0..\texttt{ksize}-1\f$ and \f$\alpha\f$ is the scale factor chosen so that \f$\sum_i G_i=1\f$.
1433
1434
Two of such generated kernels can be passed to sepFilter2D. Those functions automatically recognize
1435
smoothing kernels (a symmetrical kernel with sum of weights equal to 1) and handle them accordingly.
1436
You may also use the higher-level GaussianBlur.
1437
@param ksize Aperture size. It should be odd ( \f$\texttt{ksize} \mod 2 = 1\f$ ) and positive.
1438
@param sigma Gaussian standard deviation. If it is non-positive, it is computed from ksize as
1439
`sigma = 0.3*((ksize-1)*0.5 - 1) + 0.8`.
1440
@param ktype Type of filter coefficients. It can be CV_32F or CV_64F .
1441
@sa  sepFilter2D, getDerivKernels, getStructuringElement, GaussianBlur
1442
 */
1443
CV_EXPORTS_W Mat getGaussianKernel( int ksize, double sigma, int ktype = CV_64F );
1444
1445
/** @brief Returns filter coefficients for computing spatial image derivatives.
1446
1447
The function computes and returns the filter coefficients for spatial image derivatives. When
1448
`ksize=FILTER_SCHARR`, the Scharr \f$3 \times 3\f$ kernels are generated (see #Scharr). Otherwise, Sobel
1449
kernels are generated (see #Sobel). The filters are normally passed to #sepFilter2D or to
1450
1451
@param kx Output matrix of row filter coefficients. It has the type ktype .
1452
@param ky Output matrix of column filter coefficients. It has the type ktype .
1453
@param dx Derivative order in respect of x.
1454
@param dy Derivative order in respect of y.
1455
@param ksize Aperture size. It can be FILTER_SCHARR, 1, 3, 5, or 7.
1456
@param normalize Flag indicating whether to normalize (scale down) the filter coefficients or not.
1457
Theoretically, the coefficients should have the denominator \f$=2^{ksize*2-dx-dy-2}\f$. If you are
1458
going to filter floating-point images, you are likely to use the normalized kernels. But if you
1459
compute derivatives of an 8-bit image, store the results in a 16-bit image, and wish to preserve
1460
all the fractional bits, you may want to set normalize=false .
1461
@param ktype Type of filter coefficients. It can be CV_32f or CV_64F .
1462
 */
1463
CV_EXPORTS_W void getDerivKernels( OutputArray kx, OutputArray ky,
1464
                                   int dx, int dy, int ksize,
1465
                                   bool normalize = false, int ktype = CV_32F );
1466
1467
/** @brief Returns Gabor filter coefficients.
1468
1469
For more details about gabor filter equations and parameters, see: [Gabor
1470
Filter](https://en.wikipedia.org/wiki/Gabor_filter).
1471
1472
@param ksize Size of the filter returned.
1473
@param sigma Standard deviation of the gaussian envelope.
1474
@param theta Orientation of the normal to the parallel stripes of a Gabor function.
1475
@param lambd Wavelength of the sinusoidal factor.
1476
@param gamma Spatial aspect ratio.
1477
@param psi Phase offset.
1478
@param ktype Type of filter coefficients. It can be CV_32F or CV_64F .
1479
 */
1480
CV_EXPORTS_W Mat getGaborKernel( Size ksize, double sigma, double theta, double lambd,
1481
                                 double gamma, double psi = CV_PI*0.5, int ktype = CV_64F );
1482
1483
//! returns "magic" border value for erosion and dilation. It is automatically transformed to Scalar::all(-DBL_MAX) for dilation.
1484
0
static inline Scalar morphologyDefaultBorderValue() { return Scalar::all(DBL_MAX); }
Unexecuted instantiation: generateusergallerycollage_fuzzer.cc:cv::morphologyDefaultBorderValue()
Unexecuted instantiation: imread_fuzzer.cc:cv::morphologyDefaultBorderValue()
Unexecuted instantiation: imdecode_fuzzer.cc:cv::morphologyDefaultBorderValue()
Unexecuted instantiation: filestorage_read_string_fuzzer.cc:cv::morphologyDefaultBorderValue()
Unexecuted instantiation: filestorage_read_file_fuzzer.cc:cv::morphologyDefaultBorderValue()
Unexecuted instantiation: core_fuzzer.cc:cv::morphologyDefaultBorderValue()
Unexecuted instantiation: imencode_fuzzer.cc:cv::morphologyDefaultBorderValue()
Unexecuted instantiation: filestorage_read_filename_fuzzer.cc:cv::morphologyDefaultBorderValue()
1485
1486
/** @brief Returns a structuring element of the specified size and shape for morphological operations.
1487
1488
The function constructs and returns the structuring element that can be further passed to #erode,
1489
#dilate or #morphologyEx. But you can also construct an arbitrary binary mask yourself and use it as
1490
the structuring element.
1491
1492
@param shape Element shape that could be one of #MorphShapes
1493
@param ksize Size of the structuring element.
1494
@param anchor Anchor position within the element. The default value \f$(-1, -1)\f$ means that the
1495
anchor is at the center. Note that only the shape of a cross-shaped element depends on the anchor
1496
position. In other cases the anchor just regulates how much the result of the morphological
1497
operation is shifted.
1498
 */
1499
CV_EXPORTS_W Mat getStructuringElement(int shape, Size ksize, Point anchor = Point(-1,-1));
1500
1501
/** @example samples/cpp/tutorial_code/ImgProc/Smoothing/Smoothing.cpp
1502
Sample code for simple filters
1503
![Sample screenshot](Smoothing_Tutorial_Result_Median_Filter.jpg)
1504
Check @ref tutorial_gausian_median_blur_bilateral_filter "the corresponding tutorial" for more details
1505
 */
1506
1507
/** @brief Blurs an image using the median filter.
1508
1509
The function smoothes an image using the median filter with the \f$\texttt{ksize} \times
1510
\texttt{ksize}\f$ aperture. Each channel of a multi-channel image is processed independently.
1511
In-place operation is supported.
1512
1513
@note The median filter uses #BORDER_REPLICATE internally to cope with border pixels, see #BorderTypes
1514
1515
@param src input 1-, 3-, or 4-channel image; when ksize is 3 or 5, the image depth should be
1516
CV_8U, CV_16U, or CV_32F, for larger aperture sizes, it can only be CV_8U.
1517
@param dst destination array of the same size and type as src.
1518
@param ksize aperture linear size; it must be odd and greater than 1, for example: 3, 5, 7 ...
1519
@sa  bilateralFilter, blur, boxFilter, GaussianBlur
1520
 */
1521
CV_EXPORTS_W void medianBlur( InputArray src, OutputArray dst, int ksize );
1522
1523
/** @brief Blurs an image using a Gaussian filter.
1524
1525
The function convolves the source image with the specified Gaussian kernel. In-place filtering is
1526
supported.
1527
1528
@param src input image; the image can have any number of channels, which are processed
1529
independently, but the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
1530
@param dst output image of the same size and type as src.
1531
@param ksize Gaussian kernel size. ksize.width and ksize.height can differ but they both must be
1532
positive and odd. Or, they can be zero's and then they are computed from sigma.
1533
@param sigmaX Gaussian kernel standard deviation in X direction.
1534
@param sigmaY Gaussian kernel standard deviation in Y direction; if sigmaY is zero, it is set to be
1535
equal to sigmaX, if both sigmas are zeros, they are computed from ksize.width and ksize.height,
1536
respectively (see #getGaussianKernel for details); to fully control the result regardless of
1537
possible future modifications of all this semantics, it is recommended to specify all of ksize,
1538
sigmaX, and sigmaY.
1539
@param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
1540
@param hint Implementation modfication flags. See #AlgorithmHint
1541
1542
@sa  sepFilter2D, filter2D, blur, boxFilter, bilateralFilter, medianBlur
1543
 */
1544
CV_EXPORTS_W void GaussianBlur( InputArray src, OutputArray dst, Size ksize,
1545
                                double sigmaX, double sigmaY = 0,
1546
                                int borderType = BORDER_DEFAULT,
1547
                                AlgorithmHint hint = cv::ALGO_HINT_DEFAULT );
1548
1549
/** @brief Applies the bilateral filter to an image.
1550
1551
The function applies bilateral filtering to the input image, as described in
1552
https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html
1553
bilateralFilter can reduce unwanted noise very well while keeping edges fairly sharp. However, it is
1554
very slow compared to most filters.
1555
1556
_Sigma values_: For simplicity, you can set the 2 sigma values to be the same. If they are small (\<
1557
10), the filter will not have much effect, whereas if they are large (\> 150), they will have a very
1558
strong effect, making the image look "cartoonish".
1559
1560
_Filter size_: Large filters (d \> 5) are very slow, so it is recommended to use d=5 for real-time
1561
applications, and perhaps d=9 for offline applications that need heavy noise filtering.
1562
1563
This filter does not work inplace.
1564
@param src Source 8-bit or floating-point, 1-channel or 3-channel image.
1565
@param dst Destination image of the same size and type as src .
1566
@param d Diameter of each pixel neighborhood that is used during filtering. If it is non-positive,
1567
it is computed from sigmaSpace.
1568
@param sigmaColor Filter sigma in the color space. A larger value of the parameter means that
1569
farther colors within the pixel neighborhood (see sigmaSpace) will be mixed together, resulting
1570
in larger areas of semi-equal color.
1571
@param sigmaSpace Filter sigma in the coordinate space. A larger value of the parameter means that
1572
farther pixels will influence each other as long as their colors are close enough (see sigmaColor
1573
). When d\>0, it specifies the neighborhood size regardless of sigmaSpace. Otherwise, d is
1574
proportional to sigmaSpace.
1575
@param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes
1576
 */
1577
CV_EXPORTS_W void bilateralFilter( InputArray src, OutputArray dst, int d,
1578
                                   double sigmaColor, double sigmaSpace,
1579
                                   int borderType = BORDER_DEFAULT );
1580
1581
/** @brief Blurs an image using the box filter.
1582
1583
The function smooths an image using the kernel:
1584
1585
\f[\texttt{K} =  \alpha \begin{bmatrix} 1 & 1 & 1 &  \cdots & 1 & 1  \\ 1 & 1 & 1 &  \cdots & 1 & 1  \\ \hdotsfor{6} \\ 1 & 1 & 1 &  \cdots & 1 & 1 \end{bmatrix}\f]
1586
1587
where
1588
1589
\f[\alpha = \begin{cases} \frac{1}{\texttt{ksize.width*ksize.height}} & \texttt{when } \texttt{normalize=true}  \\1 & \texttt{otherwise}\end{cases}\f]
1590
1591
Unnormalized box filter is useful for computing various integral characteristics over each pixel
1592
neighborhood, such as covariance matrices of image derivatives (used in dense optical flow
1593
algorithms, and so on). If you need to compute pixel sums over variable-size windows, use #integral.
1594
1595
@param src input image.
1596
@param dst output image of the same size and type as src.
1597
@param ddepth the output image depth (-1 to use src.depth()).
1598
@param ksize blurring kernel size.
1599
@param anchor anchor point; default value Point(-1,-1) means that the anchor is at the kernel
1600
center.
1601
@param normalize flag, specifying whether the kernel is normalized by its area or not.
1602
@param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes. #BORDER_WRAP is not supported.
1603
@sa  blur, bilateralFilter, GaussianBlur, medianBlur, integral
1604
 */
1605
CV_EXPORTS_W void boxFilter( InputArray src, OutputArray dst, int ddepth,
1606
                             Size ksize, Point anchor = Point(-1,-1),
1607
                             bool normalize = true,
1608
                             int borderType = BORDER_DEFAULT );
1609
1610
/** @brief Calculates the normalized sum of squares of the pixel values overlapping the filter.
1611
1612
For every pixel \f$ (x, y) \f$ in the source image, the function calculates the sum of squares of those neighboring
1613
pixel values which overlap the filter placed over the pixel \f$ (x, y) \f$.
1614
1615
The unnormalized square box filter can be useful in computing local image statistics such as the local
1616
variance and standard deviation around the neighborhood of a pixel.
1617
1618
@param src input image
1619
@param dst output image of the same size and type as src
1620
@param ddepth the output image depth (-1 to use src.depth())
1621
@param ksize kernel size
1622
@param anchor kernel anchor point. The default value of Point(-1, -1) denotes that the anchor is at the kernel
1623
center.
1624
@param normalize flag, specifying whether the kernel is to be normalized by it's area or not.
1625
@param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes. #BORDER_WRAP is not supported.
1626
@sa boxFilter
1627
*/
1628
CV_EXPORTS_W void sqrBoxFilter( InputArray src, OutputArray dst, int ddepth,
1629
                                Size ksize, Point anchor = Point(-1, -1),
1630
                                bool normalize = true,
1631
                                int borderType = BORDER_DEFAULT );
1632
1633
/** @brief Blurs an image using the normalized box filter.
1634
1635
The function smooths an image using the kernel:
1636
1637
\f[\texttt{K} =  \frac{1}{\texttt{ksize.width*ksize.height}} \begin{bmatrix} 1 & 1 & 1 &  \cdots & 1 & 1  \\ 1 & 1 & 1 &  \cdots & 1 & 1  \\ \hdotsfor{6} \\ 1 & 1 & 1 &  \cdots & 1 & 1  \\ \end{bmatrix}\f]
1638
1639
The call `blur(src, dst, ksize, anchor, borderType)` is equivalent to `boxFilter(src, dst, src.type(), ksize,
1640
anchor, true, borderType)`.
1641
1642
@param src input image; it can have any number of channels, which are processed independently, but
1643
the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
1644
@param dst output image of the same size and type as src.
1645
@param ksize blurring kernel size.
1646
@param anchor anchor point; default value Point(-1,-1) means that the anchor is at the kernel
1647
center.
1648
@param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes. #BORDER_WRAP is not supported.
1649
@sa  boxFilter, bilateralFilter, GaussianBlur, medianBlur
1650
 */
1651
CV_EXPORTS_W void blur( InputArray src, OutputArray dst,
1652
                        Size ksize, Point anchor = Point(-1,-1),
1653
                        int borderType = BORDER_DEFAULT );
1654
1655
/** @brief Blurs an image using the stackBlur.
1656
1657
The function applies and stackBlur to an image.
1658
stackBlur can generate similar results as Gaussian blur, and the time consumption does not increase with the increase of kernel size.
1659
It creates a kind of moving stack of colors whilst scanning through the image. Thereby it just has to add one new block of color to the right side
1660
of the stack and remove the leftmost color. The remaining colors on the topmost layer of the stack are either added on or reduced by one,
1661
depending on if they are on the right or on the left side of the stack. The only supported borderType is BORDER_REPLICATE.
1662
Original paper was proposed by Mario Klingemann, which can be found https://underdestruction.com/2004/02/25/stackblur-2004.
1663
1664
@param src input image. The number of channels can be arbitrary, but the depth should be one of
1665
CV_8U, CV_16U, CV_16S or CV_32F.
1666
@param dst output image of the same size and type as src.
1667
@param ksize stack-blurring kernel size. The ksize.width and ksize.height can differ but they both must be
1668
positive and odd.
1669
*/
1670
CV_EXPORTS_W void stackBlur(InputArray src, OutputArray dst, Size ksize);
1671
1672
/** @brief Convolves an image with the kernel.
1673
1674
The function applies an arbitrary linear filter to an image. In-place operation is supported. When
1675
the aperture is partially outside the image, the function interpolates outlier pixel values
1676
according to the specified border mode.
1677
1678
The function does actually compute correlation, not the convolution:
1679
1680
\f[\texttt{dst} (x,y) =  \sum _{ \substack{0\leq x' < \texttt{kernel.cols}\\{0\leq y' < \texttt{kernel.rows}}}}  \texttt{kernel} (x',y')* \texttt{src} (x+x'- \texttt{anchor.x} ,y+y'- \texttt{anchor.y} )\f]
1681
1682
That is, the kernel is not mirrored around the anchor point. If you need a real convolution, flip
1683
the kernel using #flip and set the new anchor to `(kernel.cols - anchor.x - 1, kernel.rows -
1684
anchor.y - 1)`.
1685
1686
The function uses the DFT-based algorithm in case of sufficiently large kernels (~`11 x 11` or
1687
larger) and the direct algorithm for small kernels.
1688
1689
@param src input image.
1690
@param dst output image of the same size and the same number of channels as src.
1691
@param ddepth desired depth of the destination image, see @ref filter_depths "combinations"
1692
@param kernel convolution kernel (or rather a correlation kernel), a single-channel floating point
1693
matrix; if you want to apply different kernels to different channels, split the image into
1694
separate color planes using split and process them individually.
1695
@param anchor anchor of the kernel that indicates the relative position of a filtered point within
1696
the kernel; the anchor should lie within the kernel; default value (-1,-1) means that the anchor
1697
is at the kernel center.
1698
@param delta optional value added to the filtered pixels before storing them in dst.
1699
@param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
1700
@sa  sepFilter2D, dft, matchTemplate
1701
 */
1702
CV_EXPORTS_W void filter2D( InputArray src, OutputArray dst, int ddepth,
1703
                            InputArray kernel, Point anchor = Point(-1,-1),
1704
                            double delta = 0, int borderType = BORDER_DEFAULT );
1705
1706
/** @brief Applies a separable linear filter to an image.
1707
1708
The function applies a separable linear filter to the image. That is, first, every row of src is
1709
filtered with the 1D kernel kernelX. Then, every column of the result is filtered with the 1D
1710
kernel kernelY. The final result shifted by delta is stored in dst .
1711
1712
@param src Source image.
1713
@param dst Destination image of the same size and the same number of channels as src .
1714
@param ddepth Destination image depth, see @ref filter_depths "combinations"
1715
@param kernelX Coefficients for filtering each row.
1716
@param kernelY Coefficients for filtering each column.
1717
@param anchor Anchor position within the kernel. The default value \f$(-1,-1)\f$ means that the anchor
1718
is at the kernel center.
1719
@param delta Value added to the filtered results before storing them.
1720
@param borderType Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
1721
@sa  filter2D, Sobel, GaussianBlur, boxFilter, blur
1722
 */
1723
CV_EXPORTS_W void sepFilter2D( InputArray src, OutputArray dst, int ddepth,
1724
                               InputArray kernelX, InputArray kernelY,
1725
                               Point anchor = Point(-1,-1),
1726
                               double delta = 0, int borderType = BORDER_DEFAULT );
1727
1728
/** @example samples/cpp/tutorial_code/ImgTrans/Sobel_Demo.cpp
1729
Sample code using Sobel and/or Scharr OpenCV functions to make a simple Edge Detector
1730
![Sample screenshot](Sobel_Derivatives_Tutorial_Result.jpg)
1731
Check @ref tutorial_sobel_derivatives "the corresponding tutorial" for more details
1732
*/
1733
1734
/** @brief Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator.
1735
1736
In all cases except one, the \f$\texttt{ksize} \times \texttt{ksize}\f$ separable kernel is used to
1737
calculate the derivative. When \f$\texttt{ksize = 1}\f$, the \f$3 \times 1\f$ or \f$1 \times 3\f$
1738
kernel is used (that is, no Gaussian smoothing is done). `ksize = 1` can only be used for the first
1739
or the second x- or y- derivatives.
1740
1741
There is also the special value `ksize = #FILTER_SCHARR (-1)` that corresponds to the \f$3\times3\f$ Scharr
1742
filter that may give more accurate results than the \f$3\times3\f$ Sobel. The Scharr aperture is
1743
1744
\f[\vecthreethree{-3}{0}{3}{-10}{0}{10}{-3}{0}{3}\f]
1745
1746
for the x-derivative, or transposed for the y-derivative.
1747
1748
The function calculates an image derivative by convolving the image with the appropriate kernel:
1749
1750
\f[\texttt{dst} =  \frac{\partial^{xorder+yorder} \texttt{src}}{\partial x^{xorder} \partial y^{yorder}}\f]
1751
1752
The Sobel operators combine Gaussian smoothing and differentiation, so the result is more or less
1753
resistant to the noise. Most often, the function is called with ( xorder = 1, yorder = 0, ksize = 3)
1754
or ( xorder = 0, yorder = 1, ksize = 3) to calculate the first x- or y- image derivative. The first
1755
case corresponds to a kernel of:
1756
1757
\f[\vecthreethree{-1}{0}{1}{-2}{0}{2}{-1}{0}{1}\f]
1758
1759
The second case corresponds to a kernel of:
1760
1761
\f[\vecthreethree{-1}{-2}{-1}{0}{0}{0}{1}{2}{1}\f]
1762
1763
@param src input image.
1764
@param dst output image of the same size and the same number of channels as src .
1765
@param ddepth output image depth, see @ref filter_depths "combinations"; in the case of
1766
    8-bit input images it will result in truncated derivatives.
1767
@param dx order of the derivative x.
1768
@param dy order of the derivative y.
1769
@param ksize size of the extended Sobel kernel; it must be 1, 3, 5, or 7.
1770
@param scale optional scale factor for the computed derivative values; by default, no scaling is
1771
applied (see #getDerivKernels for details).
1772
@param delta optional delta value that is added to the results prior to storing them in dst.
1773
@param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
1774
@sa  Scharr, Laplacian, sepFilter2D, filter2D, GaussianBlur, cartToPolar
1775
 */
1776
CV_EXPORTS_W void Sobel( InputArray src, OutputArray dst, int ddepth,
1777
                         int dx, int dy, int ksize = 3,
1778
                         double scale = 1, double delta = 0,
1779
                         int borderType = BORDER_DEFAULT );
1780
1781
/** @brief Calculates the first order image derivative in both x and y using a Sobel operator
1782
1783
Equivalent to calling:
1784
1785
@code
1786
Sobel( src, dx, CV_16SC1, 1, 0, 3 );
1787
Sobel( src, dy, CV_16SC1, 0, 1, 3 );
1788
@endcode
1789
1790
@param src input image.
1791
@param dx output image with first-order derivative in x.
1792
@param dy output image with first-order derivative in y.
1793
@param ksize size of Sobel kernel. It must be 3.
1794
@param borderType pixel extrapolation method, see #BorderTypes.
1795
                  Only #BORDER_DEFAULT=#BORDER_REFLECT_101 and #BORDER_REPLICATE are supported.
1796
1797
@sa Sobel
1798
 */
1799
1800
CV_EXPORTS_W void spatialGradient( InputArray src, OutputArray dx,
1801
                                   OutputArray dy, int ksize = 3,
1802
                                   int borderType = BORDER_DEFAULT );
1803
1804
/** @brief Calculates the first x- or y- image derivative using Scharr operator.
1805
1806
The function computes the first x- or y- spatial image derivative using the Scharr operator. The
1807
call
1808
1809
\f[\texttt{Scharr(src, dst, ddepth, dx, dy, scale, delta, borderType)}\f]
1810
1811
is equivalent to
1812
1813
\f[\texttt{Sobel(src, dst, ddepth, dx, dy, FILTER_SCHARR, scale, delta, borderType)} .\f]
1814
1815
@param src input image.
1816
@param dst output image of the same size and the same number of channels as src.
1817
@param ddepth output image depth, see @ref filter_depths "combinations"
1818
@param dx order of the derivative x.
1819
@param dy order of the derivative y.
1820
@param scale optional scale factor for the computed derivative values; by default, no scaling is
1821
applied (see #getDerivKernels for details).
1822
@param delta optional delta value that is added to the results prior to storing them in dst.
1823
@param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
1824
@sa  cartToPolar
1825
 */
1826
CV_EXPORTS_W void Scharr( InputArray src, OutputArray dst, int ddepth,
1827
                          int dx, int dy, double scale = 1, double delta = 0,
1828
                          int borderType = BORDER_DEFAULT );
1829
1830
/** @example samples/cpp/laplace.cpp
1831
An example using Laplace transformations for edge detection
1832
*/
1833
1834
/** @brief Calculates the Laplacian of an image.
1835
1836
The function calculates the Laplacian of the source image by adding up the second x and y
1837
derivatives calculated using the Sobel operator:
1838
1839
\f[\texttt{dst} =  \Delta \texttt{src} =  \frac{\partial^2 \texttt{src}}{\partial x^2} +  \frac{\partial^2 \texttt{src}}{\partial y^2}\f]
1840
1841
This is done when `ksize > 1`. When `ksize == 1`, the Laplacian is computed by filtering the image
1842
with the following \f$3 \times 3\f$ aperture:
1843
1844
\f[\vecthreethree {0}{1}{0}{1}{-4}{1}{0}{1}{0}\f]
1845
1846
@param src Source image.
1847
@param dst Destination image of the same size and the same number of channels as src .
1848
@param ddepth Desired depth of the destination image, see @ref filter_depths "combinations".
1849
@param ksize Aperture size used to compute the second-derivative filters. See #getDerivKernels for
1850
details. The size must be positive and odd.
1851
@param scale Optional scale factor for the computed Laplacian values. By default, no scaling is
1852
applied. See #getDerivKernels for details.
1853
@param delta Optional delta value that is added to the results prior to storing them in dst .
1854
@param borderType Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
1855
@sa  Sobel, Scharr
1856
 */
1857
CV_EXPORTS_W void Laplacian( InputArray src, OutputArray dst, int ddepth,
1858
                             int ksize = 1, double scale = 1, double delta = 0,
1859
                             int borderType = BORDER_DEFAULT );
1860
1861
//! @} imgproc_filter
1862
1863
//! @addtogroup imgproc_feature
1864
//! @{
1865
1866
/** @example samples/cpp/edge.cpp
1867
This program demonstrates usage of the Canny edge detector
1868
1869
Check @ref tutorial_canny_detector "the corresponding tutorial" for more details
1870
*/
1871
1872
/** @brief Finds edges in an image using the Canny algorithm @cite Canny86 .
1873
1874
The function finds edges in the input image and marks them in the output map edges using the
1875
Canny algorithm. The smallest value between threshold1 and threshold2 is used for edge linking. The
1876
largest value is used to find initial segments of strong edges. See
1877
<https://en.wikipedia.org/wiki/Canny_edge_detector>
1878
1879
@param image 8-bit input image.
1880
@param edges output edge map; single channels 8-bit image, which has the same size as image .
1881
@param threshold1 first threshold for the hysteresis procedure.
1882
@param threshold2 second threshold for the hysteresis procedure.
1883
@param apertureSize aperture size for the Sobel operator.
1884
@param L2gradient a flag, indicating whether a more accurate \f$L_2\f$ norm
1885
\f$=\sqrt{(dI/dx)^2 + (dI/dy)^2}\f$ should be used to calculate the image gradient magnitude (
1886
L2gradient=true ), or whether the default \f$L_1\f$ norm \f$=|dI/dx|+|dI/dy|\f$ is enough (
1887
L2gradient=false ).
1888
 */
1889
CV_EXPORTS_W void Canny( InputArray image, OutputArray edges,
1890
                         double threshold1, double threshold2,
1891
                         int apertureSize = 3, bool L2gradient = false );
1892
1893
/** \overload
1894
1895
Finds edges in an image using the Canny algorithm with custom image gradient.
1896
1897
@param dx 16-bit x derivative of input image (CV_16SC1 or CV_16SC3).
1898
@param dy 16-bit y derivative of input image (same type as dx).
1899
@param edges output edge map; single channels 8-bit image, which has the same size as image .
1900
@param threshold1 first threshold for the hysteresis procedure.
1901
@param threshold2 second threshold for the hysteresis procedure.
1902
@param L2gradient a flag, indicating whether a more accurate \f$L_2\f$ norm
1903
\f$=\sqrt{(dI/dx)^2 + (dI/dy)^2}\f$ should be used to calculate the image gradient magnitude (
1904
L2gradient=true ), or whether the default \f$L_1\f$ norm \f$=|dI/dx|+|dI/dy|\f$ is enough (
1905
L2gradient=false ).
1906
 */
1907
CV_EXPORTS_W void Canny( InputArray dx, InputArray dy,
1908
                         OutputArray edges,
1909
                         double threshold1, double threshold2,
1910
                         bool L2gradient = false );
1911
1912
/** @brief Calculates the minimal eigenvalue of gradient matrices for corner detection.
1913
1914
The function is similar to cornerEigenValsAndVecs but it calculates and stores only the minimal
1915
eigenvalue of the covariance matrix of derivatives, that is, \f$\min(\lambda_1, \lambda_2)\f$ in terms
1916
of the formulae in the cornerEigenValsAndVecs description.
1917
1918
@param src Input single-channel 8-bit or floating-point image.
1919
@param dst Image to store the minimal eigenvalues. It has the type CV_32FC1 and the same size as
1920
src .
1921
@param blockSize Neighborhood size (see the details on #cornerEigenValsAndVecs ).
1922
@param ksize Aperture parameter for the Sobel operator.
1923
@param borderType Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported.
1924
 */
1925
CV_EXPORTS_W void cornerMinEigenVal( InputArray src, OutputArray dst,
1926
                                     int blockSize, int ksize = 3,
1927
                                     int borderType = BORDER_DEFAULT );
1928
1929
/** @brief Harris corner detector.
1930
1931
The function runs the Harris corner detector on the image. Similarly to cornerMinEigenVal and
1932
cornerEigenValsAndVecs , for each pixel \f$(x, y)\f$ it calculates a \f$2\times2\f$ gradient covariance
1933
matrix \f$M^{(x,y)}\f$ over a \f$\texttt{blockSize} \times \texttt{blockSize}\f$ neighborhood. Then, it
1934
computes the following characteristic:
1935
1936
\f[\texttt{dst} (x,y) =  \mathrm{det} M^{(x,y)} - k  \cdot \left ( \mathrm{tr} M^{(x,y)} \right )^2\f]
1937
1938
Corners in the image can be found as the local maxima of this response map.
1939
1940
@param src Input single-channel 8-bit or floating-point image.
1941
@param dst Image to store the Harris detector responses. It has the type CV_32FC1 and the same
1942
size as src .
1943
@param blockSize Neighborhood size (see the details on #cornerEigenValsAndVecs ).
1944
@param ksize Aperture parameter for the Sobel operator.
1945
@param k Harris detector free parameter. See the formula above.
1946
@param borderType Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported.
1947
 */
1948
CV_EXPORTS_W void cornerHarris( InputArray src, OutputArray dst, int blockSize,
1949
                                int ksize, double k,
1950
                                int borderType = BORDER_DEFAULT );
1951
1952
/** @brief Calculates eigenvalues and eigenvectors of image blocks for corner detection.
1953
1954
For every pixel \f$p\f$ , the function cornerEigenValsAndVecs considers a blockSize \f$\times\f$ blockSize
1955
neighborhood \f$S(p)\f$ . It calculates the covariation matrix of derivatives over the neighborhood as:
1956
1957
\f[M =  \begin{bmatrix} \sum _{S(p)}(dI/dx)^2 &  \sum _{S(p)}dI/dx dI/dy  \\ \sum _{S(p)}dI/dx dI/dy &  \sum _{S(p)}(dI/dy)^2 \end{bmatrix}\f]
1958
1959
where the derivatives are computed using the Sobel operator.
1960
1961
After that, it finds eigenvectors and eigenvalues of \f$M\f$ and stores them in the destination image as
1962
\f$(\lambda_1, \lambda_2, x_1, y_1, x_2, y_2)\f$ where
1963
1964
-   \f$\lambda_1, \lambda_2\f$ are the non-sorted eigenvalues of \f$M\f$
1965
-   \f$x_1, y_1\f$ are the eigenvectors corresponding to \f$\lambda_1\f$
1966
-   \f$x_2, y_2\f$ are the eigenvectors corresponding to \f$\lambda_2\f$
1967
1968
The output of the function can be used for robust edge or corner detection.
1969
1970
@param src Input single-channel 8-bit or floating-point image.
1971
@param dst Image to store the results. It has the same size as src and the type CV_32FC(6) .
1972
@param blockSize Neighborhood size (see details below).
1973
@param ksize Aperture parameter for the Sobel operator.
1974
@param borderType Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported.
1975
1976
@sa  cornerMinEigenVal, cornerHarris, preCornerDetect
1977
 */
1978
CV_EXPORTS_W void cornerEigenValsAndVecs( InputArray src, OutputArray dst,
1979
                                          int blockSize, int ksize,
1980
                                          int borderType = BORDER_DEFAULT );
1981
1982
/** @brief Calculates a feature map for corner detection.
1983
1984
The function calculates the complex spatial derivative-based function of the source image
1985
1986
\f[\texttt{dst} = (D_x  \texttt{src} )^2  \cdot D_{yy}  \texttt{src} + (D_y  \texttt{src} )^2  \cdot D_{xx}  \texttt{src} - 2 D_x  \texttt{src} \cdot D_y  \texttt{src} \cdot D_{xy}  \texttt{src}\f]
1987
1988
where \f$D_x\f$,\f$D_y\f$ are the first image derivatives, \f$D_{xx}\f$,\f$D_{yy}\f$ are the second image
1989
derivatives, and \f$D_{xy}\f$ is the mixed derivative.
1990
1991
The corners can be found as local maximums of the functions, as shown below:
1992
@code
1993
    Mat corners, dilated_corners;
1994
    preCornerDetect(image, corners, 3);
1995
    // dilation with 3x3 rectangular structuring element
1996
    dilate(corners, dilated_corners, Mat(), 1);
1997
    Mat corner_mask = corners == dilated_corners;
1998
@endcode
1999
2000
@param src Source single-channel 8-bit of floating-point image.
2001
@param dst Output image that has the type CV_32F and the same size as src .
2002
@param ksize %Aperture size of the Sobel .
2003
@param borderType Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported.
2004
 */
2005
CV_EXPORTS_W void preCornerDetect( InputArray src, OutputArray dst, int ksize,
2006
                                   int borderType = BORDER_DEFAULT );
2007
2008
/** @brief Refines the corner locations.
2009
2010
The function iterates to find the sub-pixel accurate location of corners or radial saddle
2011
points as described in @cite forstner1987fast, and as shown on the figure below.
2012
2013
![image](pics/cornersubpix.png)
2014
2015
Sub-pixel accurate corner locator is based on the observation that every vector from the center \f$q\f$
2016
to a point \f$p\f$ located within a neighborhood of \f$q\f$ is orthogonal to the image gradient at \f$p\f$
2017
subject to image and measurement noise. Consider the expression:
2018
2019
\f[\epsilon _i = {DI_{p_i}}^T  \cdot (q - p_i)\f]
2020
2021
where \f${DI_{p_i}}\f$ is an image gradient at one of the points \f$p_i\f$ in a neighborhood of \f$q\f$ . The
2022
value of \f$q\f$ is to be found so that \f$\epsilon_i\f$ is minimized. A system of equations may be set up
2023
with \f$\epsilon_i\f$ set to zero:
2024
2025
\f[\sum _i(DI_{p_i}  \cdot {DI_{p_i}}^T) \cdot q -  \sum _i(DI_{p_i}  \cdot {DI_{p_i}}^T  \cdot p_i)\f]
2026
2027
where the gradients are summed within a neighborhood ("search window") of \f$q\f$ . Calling the first
2028
gradient term \f$G\f$ and the second gradient term \f$b\f$ gives:
2029
2030
\f[q = G^{-1}  \cdot b\f]
2031
2032
The algorithm sets the center of the neighborhood window at this new center \f$q\f$ and then iterates
2033
until the center stays within a set threshold.
2034
2035
@param image Input single-channel, 8-bit or float image.
2036
@param corners Initial coordinates of the input corners and refined coordinates provided for
2037
output.
2038
@param winSize Half of the side length of the search window. For example, if winSize=Size(5,5) ,
2039
then a \f$(5*2+1) \times (5*2+1) = 11 \times 11\f$ search window is used.
2040
@param zeroZone Half of the size of the dead region in the middle of the search zone over which
2041
the summation in the formula below is not done. It is used sometimes to avoid possible
2042
singularities of the autocorrelation matrix. The value of (-1,-1) indicates that there is no such
2043
a size.
2044
@param criteria Criteria for termination of the iterative process of corner refinement. That is,
2045
the process of corner position refinement stops either after criteria.maxCount iterations or when
2046
the corner position moves by less than criteria.epsilon on some iteration.
2047
 */
2048
CV_EXPORTS_W void cornerSubPix( InputArray image, InputOutputArray corners,
2049
                                Size winSize, Size zeroZone,
2050
                                TermCriteria criteria );
2051
2052
/** @brief Determines strong corners on an image.
2053
2054
The function finds the most prominent corners in the image or in the specified image region, as
2055
described in @cite Shi94
2056
2057
-   Function calculates the corner quality measure at every source image pixel using the
2058
    #cornerMinEigenVal or #cornerHarris .
2059
-   Function performs a non-maximum suppression (the local maximums in *3 x 3* neighborhood are
2060
    retained).
2061
-   The corners with the minimal eigenvalue less than
2062
    \f$\texttt{qualityLevel} \cdot \max_{x,y} qualityMeasureMap(x,y)\f$ are rejected.
2063
-   The remaining corners are sorted by the quality measure in the descending order.
2064
-   Function throws away each corner for which there is a stronger corner at a distance less than
2065
    maxDistance.
2066
2067
The function can be used to initialize a point-based tracker of an object.
2068
2069
@note If the function is called with different values A and B of the parameter qualityLevel , and
2070
A \> B, the vector of returned corners with qualityLevel=A will be the prefix of the output vector
2071
with qualityLevel=B .
2072
2073
@param image Input 8-bit or floating-point 32-bit, single-channel image.
2074
@param corners Output vector of detected corners.
2075
@param maxCorners Maximum number of corners to return. If there are more corners than are found,
2076
the strongest of them is returned. `maxCorners <= 0` implies that no limit on the maximum is set
2077
and all detected corners are returned.
2078
@param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The
2079
parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
2080
(see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the
2081
quality measure less than the product are rejected. For example, if the best corner has the
2082
quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
2083
less than 15 are rejected.
2084
@param minDistance Minimum possible Euclidean distance between the returned corners.
2085
@param mask Optional region of interest. If the image is not empty (it needs to have the type
2086
CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected.
2087
@param blockSize Size of an average block for computing a derivative covariation matrix over each
2088
pixel neighborhood. See cornerEigenValsAndVecs .
2089
@param useHarrisDetector Parameter indicating whether to use a Harris detector (see #cornerHarris)
2090
or #cornerMinEigenVal.
2091
@param k Free parameter of the Harris detector.
2092
2093
@sa  cornerMinEigenVal, cornerHarris, calcOpticalFlowPyrLK, estimateRigidTransform,
2094
 */
2095
2096
CV_EXPORTS_W void goodFeaturesToTrack( InputArray image, OutputArray corners,
2097
                                     int maxCorners, double qualityLevel, double minDistance,
2098
                                     InputArray mask = noArray(), int blockSize = 3,
2099
                                     bool useHarrisDetector = false, double k = 0.04 );
2100
2101
CV_EXPORTS_W void goodFeaturesToTrack( InputArray image, OutputArray corners,
2102
                                     int maxCorners, double qualityLevel, double minDistance,
2103
                                     InputArray mask, int blockSize,
2104
                                     int gradientSize, bool useHarrisDetector = false,
2105
                                     double k = 0.04 );
2106
2107
/** @brief Same as above, but returns also quality measure of the detected corners.
2108
2109
@param image Input 8-bit or floating-point 32-bit, single-channel image.
2110
@param corners Output vector of detected corners.
2111
@param maxCorners Maximum number of corners to return. If there are more corners than are found,
2112
the strongest of them is returned. `maxCorners <= 0` implies that no limit on the maximum is set
2113
and all detected corners are returned.
2114
@param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The
2115
parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
2116
(see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the
2117
quality measure less than the product are rejected. For example, if the best corner has the
2118
quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
2119
less than 15 are rejected.
2120
@param minDistance Minimum possible Euclidean distance between the returned corners.
2121
@param mask Region of interest. If the image is not empty (it needs to have the type
2122
CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected.
2123
@param cornersQuality Output vector of quality measure of the detected corners.
2124
@param blockSize Size of an average block for computing a derivative covariation matrix over each
2125
pixel neighborhood. See cornerEigenValsAndVecs .
2126
@param gradientSize Aperture parameter for the Sobel operator used for derivatives computation.
2127
See cornerEigenValsAndVecs .
2128
@param useHarrisDetector Parameter indicating whether to use a Harris detector (see #cornerHarris)
2129
or #cornerMinEigenVal.
2130
@param k Free parameter of the Harris detector.
2131
 */
2132
CV_EXPORTS CV_WRAP_AS(goodFeaturesToTrackWithQuality) void goodFeaturesToTrack(
2133
        InputArray image, OutputArray corners,
2134
        int maxCorners, double qualityLevel, double minDistance,
2135
        InputArray mask, OutputArray cornersQuality, int blockSize = 3,
2136
        int gradientSize = 3, bool useHarrisDetector = false, double k = 0.04);
2137
2138
/** @example samples/cpp/tutorial_code/ImgTrans/houghlines.cpp
2139
An example using the Hough line detector
2140
![Sample input image](Hough_Lines_Tutorial_Original_Image.jpg) ![Output image](Hough_Lines_Tutorial_Result.jpg)
2141
*/
2142
2143
/** @brief Finds lines in a binary image using the standard Hough transform.
2144
2145
The function implements the standard or standard multi-scale Hough transform algorithm for line
2146
detection. See <https://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm> for a good explanation of Hough
2147
transform.
2148
2149
@param image 8-bit, single-channel binary source image. The image may be modified by the function.
2150
@param lines Output vector of lines. Each line is represented by a 2 or 3 element vector
2151
\f$(\rho, \theta)\f$ or \f$(\rho, \theta, \textrm{votes})\f$, where \f$\rho\f$ is the distance from
2152
the coordinate origin \f$(0,0)\f$ (top-left corner of the image), \f$\theta\f$ is the line rotation
2153
angle in radians ( \f$0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}\f$ ), and
2154
\f$\textrm{votes}\f$ is the value of accumulator.
2155
@param rho Distance resolution of the accumulator in pixels.
2156
@param theta Angle resolution of the accumulator in radians.
2157
@param threshold %Accumulator threshold parameter. Only those lines are returned that get enough
2158
votes ( \f$>\texttt{threshold}\f$ ).
2159
@param srn For the multi-scale Hough transform, it is a divisor for the distance resolution rho.
2160
The coarse accumulator distance resolution is rho and the accurate accumulator resolution is
2161
rho/srn. If both srn=0 and stn=0, the classical Hough transform is used. Otherwise, both these
2162
parameters should be positive.
2163
@param stn For the multi-scale Hough transform, it is a divisor for the distance resolution theta.
2164
@param min_theta For standard and multi-scale Hough transform, minimum angle to check for lines.
2165
Must fall between 0 and max_theta.
2166
@param max_theta For standard and multi-scale Hough transform, an upper bound for the angle.
2167
Must fall between min_theta and CV_PI. The actual maximum angle in the accumulator may be slightly
2168
less than max_theta, depending on the parameters min_theta and theta.
2169
@param use_edgeval True if you want to use weighted Hough transform.
2170
 */
2171
CV_EXPORTS_W void HoughLines( InputArray image, OutputArray lines,
2172
                              double rho, double theta, int threshold,
2173
                              double srn = 0, double stn = 0,
2174
                              double min_theta = 0, double max_theta = CV_PI,
2175
                              bool use_edgeval = false );
2176
2177
/** @brief Finds line segments in a binary image using the probabilistic Hough transform.
2178
2179
The function implements the probabilistic Hough transform algorithm for line detection, described
2180
in @cite Matas00
2181
2182
See the line detection example below:
2183
@include snippets/imgproc_HoughLinesP.cpp
2184
This is a sample picture the function parameters have been tuned for:
2185
2186
![image](pics/building.jpg)
2187
2188
And this is the output of the above program in case of the probabilistic Hough transform:
2189
2190
![image](pics/houghp.png)
2191
2192
@param image 8-bit, single-channel binary source image. The image may be modified by the function.
2193
@param lines Output vector of lines. Each line is represented by a 4-element vector
2194
\f$(x_1, y_1, x_2, y_2)\f$ , where \f$(x_1,y_1)\f$ and \f$(x_2, y_2)\f$ are the ending points of each detected
2195
line segment.
2196
@param rho Distance resolution of the accumulator in pixels.
2197
@param theta Angle resolution of the accumulator in radians.
2198
@param threshold %Accumulator threshold parameter. Only those lines are returned that get enough
2199
votes ( \f$>\texttt{threshold}\f$ ).
2200
@param minLineLength Minimum line length. Line segments shorter than that are rejected.
2201
@param maxLineGap Maximum allowed gap between points on the same line to link them.
2202
2203
@sa LineSegmentDetector
2204
 */
2205
CV_EXPORTS_W void HoughLinesP( InputArray image, OutputArray lines,
2206
                               double rho, double theta, int threshold,
2207
                               double minLineLength = 0, double maxLineGap = 0 );
2208
2209
/** @brief Finds lines in a set of points using the standard Hough transform.
2210
2211
The function finds lines in a set of points using a modification of the Hough transform.
2212
@include snippets/imgproc_HoughLinesPointSet.cpp
2213
@param point Input vector of points. Each vector must be encoded as a Point vector \f$(x,y)\f$. Type must be CV_32FC2 or CV_32SC2.
2214
@param lines Output vector of found lines. Each vector is encoded as a vector<Vec3d> \f$(votes, rho, theta)\f$.
2215
The larger the value of 'votes', the higher the reliability of the Hough line.
2216
@param lines_max Max count of Hough lines.
2217
@param threshold %Accumulator threshold parameter. Only those lines are returned that get enough
2218
votes ( \f$>\texttt{threshold}\f$ ).
2219
@param min_rho Minimum value for \f$\rho\f$ for the accumulator (Note: \f$\rho\f$ can be negative. The absolute value \f$|\rho|\f$ is the distance of a line to the origin.).
2220
@param max_rho Maximum value for \f$\rho\f$ for the accumulator.
2221
@param rho_step Distance resolution of the accumulator.
2222
@param min_theta Minimum angle value of the accumulator in radians.
2223
@param max_theta Upper bound for the angle value of the accumulator in radians. The actual maximum
2224
angle may be slightly less than max_theta, depending on the parameters min_theta and theta_step.
2225
@param theta_step Angle resolution of the accumulator in radians.
2226
 */
2227
CV_EXPORTS_W void HoughLinesPointSet( InputArray point, OutputArray lines, int lines_max, int threshold,
2228
                                      double min_rho, double max_rho, double rho_step,
2229
                                      double min_theta, double max_theta, double theta_step );
2230
2231
/** @example samples/cpp/tutorial_code/ImgTrans/houghcircles.cpp
2232
An example using the Hough circle detector
2233
*/
2234
2235
/** @brief Finds circles in a grayscale image using the Hough transform.
2236
2237
The function finds circles in a grayscale image using a modification of the Hough transform.
2238
2239
Example: :
2240
@include snippets/imgproc_HoughLinesCircles.cpp
2241
2242
@note Usually the function detects the centers of circles well. However, it may fail to find correct
2243
radii. You can assist to the function by specifying the radius range ( minRadius and maxRadius ) if
2244
you know it. Or, in the case of #HOUGH_GRADIENT method you may set maxRadius to a negative number
2245
to return centers only without radius search, and find the correct radius using an additional procedure.
2246
2247
It also helps to smooth image a bit unless it's already soft. For example,
2248
GaussianBlur() with 7x7 kernel and 1.5x1.5 sigma or similar blurring may help.
2249
2250
@param image 8-bit, single-channel, grayscale input image.
2251
@param circles Output vector of found circles. Each vector is encoded as  3 or 4 element
2252
floating-point vector \f$(x, y, radius)\f$ or \f$(x, y, radius, votes)\f$ .
2253
@param method Detection method, see #HoughModes. The available methods are #HOUGH_GRADIENT and #HOUGH_GRADIENT_ALT.
2254
@param dp Inverse ratio of the accumulator resolution to the image resolution. For example, if
2255
dp=1 , the accumulator has the same resolution as the input image. If dp=2 , the accumulator has
2256
half as big width and height. For #HOUGH_GRADIENT_ALT the recommended value is dp=1.5,
2257
unless some small very circles need to be detected.
2258
@param minDist Minimum distance between the centers of the detected circles. If the parameter is
2259
too small, multiple neighbor circles may be falsely detected in addition to a true one. If it is
2260
too large, some circles may be missed.
2261
@param param1 First method-specific parameter. In case of #HOUGH_GRADIENT and #HOUGH_GRADIENT_ALT,
2262
it is the higher threshold of the two passed to the Canny edge detector (the lower one is twice smaller).
2263
Note that #HOUGH_GRADIENT_ALT uses #Scharr algorithm to compute image derivatives, so the threshold value
2264
should normally be higher, such as 300 or normally exposed and contrasty images.
2265
@param param2 Second method-specific parameter. In case of #HOUGH_GRADIENT, it is the
2266
accumulator threshold for the circle centers at the detection stage. The smaller it is, the more
2267
false circles may be detected. Circles, corresponding to the larger accumulator values, will be
2268
returned first. In the case of #HOUGH_GRADIENT_ALT algorithm, this is the circle "perfectness" measure.
2269
The closer it to 1, the better shaped circles algorithm selects. In most cases 0.9 should be fine.
2270
If you want get better detection of small circles, you may decrease it to 0.85, 0.8 or even less.
2271
But then also try to limit the search range [minRadius, maxRadius] to avoid many false circles.
2272
@param minRadius Minimum circle radius.
2273
@param maxRadius Maximum circle radius. If <= 0, uses the maximum image dimension. If < 0, #HOUGH_GRADIENT returns
2274
centers without finding the radius. #HOUGH_GRADIENT_ALT always computes circle radiuses.
2275
2276
@sa fitEllipse, minEnclosingCircle
2277
 */
2278
CV_EXPORTS_W void HoughCircles( InputArray image, OutputArray circles,
2279
                               int method, double dp, double minDist,
2280
                               double param1 = 100, double param2 = 100,
2281
                               int minRadius = 0, int maxRadius = 0 );
2282
2283
//! @} imgproc_feature
2284
2285
//! @addtogroup imgproc_filter
2286
//! @{
2287
2288
/** @example samples/cpp/tutorial_code/ImgProc/Morphology_2.cpp
2289
Advanced morphology Transformations sample code
2290
![Sample screenshot](Morphology_2_Tutorial_Result.jpg)
2291
Check @ref tutorial_opening_closing_hats "the corresponding tutorial" for more details
2292
*/
2293
2294
/** @brief Erodes an image by using a specific structuring element.
2295
2296
The function erodes the source image using the specified structuring element that determines the
2297
shape of a pixel neighborhood over which the minimum is taken:
2298
2299
\f[\texttt{dst} (x,y) =  \min _{(x',y'):  \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\f]
2300
2301
The function supports the in-place mode. Erosion can be applied several ( iterations ) times. In
2302
case of multi-channel images, each channel is processed independently.
2303
2304
@param src input image; the number of channels can be arbitrary, but the depth should be one of
2305
CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
2306
@param dst output image of the same size and type as src.
2307
@param kernel structuring element used for erosion; if `element=Mat()`, a `3 x 3` rectangular
2308
structuring element is used. Kernel can be created using #getStructuringElement.
2309
@param anchor position of the anchor within the element; default value (-1, -1) means that the
2310
anchor is at the element center.
2311
@param iterations number of times erosion is applied.
2312
@param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
2313
@param borderValue border value in case of a constant border
2314
@sa  dilate, morphologyEx, getStructuringElement
2315
 */
2316
CV_EXPORTS_W void erode( InputArray src, OutputArray dst, InputArray kernel,
2317
                         Point anchor = Point(-1,-1), int iterations = 1,
2318
                         int borderType = BORDER_CONSTANT,
2319
                         const Scalar& borderValue = morphologyDefaultBorderValue() );
2320
2321
/** @example samples/cpp/tutorial_code/ImgProc/Morphology_1.cpp
2322
Erosion and Dilation sample code
2323
![Sample Screenshot-Erosion](Morphology_1_Tutorial_Erosion_Result.jpg)![Sample Screenshot-Dilation](Morphology_1_Tutorial_Dilation_Result.jpg)
2324
Check @ref tutorial_erosion_dilatation "the corresponding tutorial" for more details
2325
*/
2326
2327
/** @brief Dilates an image by using a specific structuring element.
2328
2329
The function dilates the source image using the specified structuring element that determines the
2330
shape of a pixel neighborhood over which the maximum is taken:
2331
\f[\texttt{dst} (x,y) =  \max _{(x',y'):  \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\f]
2332
2333
The function supports the in-place mode. Dilation can be applied several ( iterations ) times. In
2334
case of multi-channel images, each channel is processed independently.
2335
2336
@param src input image; the number of channels can be arbitrary, but the depth should be one of
2337
CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
2338
@param dst output image of the same size and type as src.
2339
@param kernel structuring element used for dilation; if element=Mat(), a 3 x 3 rectangular
2340
structuring element is used. Kernel can be created using #getStructuringElement
2341
@param anchor position of the anchor within the element; default value (-1, -1) means that the
2342
anchor is at the element center.
2343
@param iterations number of times dilation is applied.
2344
@param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not suported.
2345
@param borderValue border value in case of a constant border
2346
@sa  erode, morphologyEx, getStructuringElement
2347
 */
2348
CV_EXPORTS_W void dilate( InputArray src, OutputArray dst, InputArray kernel,
2349
                          Point anchor = Point(-1,-1), int iterations = 1,
2350
                          int borderType = BORDER_CONSTANT,
2351
                          const Scalar& borderValue = morphologyDefaultBorderValue() );
2352
2353
/** @brief Performs advanced morphological transformations.
2354
2355
The function cv::morphologyEx can perform advanced morphological transformations using an erosion and dilation as
2356
basic operations.
2357
2358
Any of the operations can be done in-place. In case of multi-channel images, each channel is
2359
processed independently.
2360
2361
@param src Source image. The number of channels can be arbitrary. The depth should be one of
2362
CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
2363
@param dst Destination image of the same size and type as source image.
2364
@param op Type of a morphological operation, see #MorphTypes
2365
@param kernel Structuring element. It can be created using #getStructuringElement.
2366
@param anchor Anchor position with the kernel. Negative values mean that the anchor is at the
2367
kernel center.
2368
@param iterations Number of times erosion and dilation are applied.
2369
@param borderType Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
2370
@param borderValue Border value in case of a constant border. The default value has a special
2371
meaning.
2372
@sa  dilate, erode, getStructuringElement
2373
@note The number of iterations is the number of times erosion or dilatation operation will be applied.
2374
For instance, an opening operation (#MORPH_OPEN) with two iterations is equivalent to apply
2375
successively: erode -> erode -> dilate -> dilate (and not erode -> dilate -> erode -> dilate).
2376
 */
2377
CV_EXPORTS_W void morphologyEx( InputArray src, OutputArray dst,
2378
                                int op, InputArray kernel,
2379
                                Point anchor = Point(-1,-1), int iterations = 1,
2380
                                int borderType = BORDER_CONSTANT,
2381
                                const Scalar& borderValue = morphologyDefaultBorderValue() );
2382
2383
//! @} imgproc_filter
2384
2385
//! @addtogroup imgproc_transform
2386
//! @{
2387
2388
/** @brief Resizes an image.
2389
2390
The function resize resizes the image src down to or up to the specified size. Note that the
2391
initial dst type or size are not taken into account. Instead, the size and type are derived from
2392
the `src`,`dsize`,`fx`, and `fy`. If you want to resize src so that it fits the pre-created dst,
2393
you may call the function as follows:
2394
@code
2395
    // explicitly specify dsize=dst.size(); fx and fy will be computed from that.
2396
    resize(src, dst, dst.size(), 0, 0, interpolation);
2397
@endcode
2398
If you want to decimate the image by factor of 2 in each direction, you can call the function this
2399
way:
2400
@code
2401
    // specify fx and fy and let the function compute the destination image size.
2402
    resize(src, dst, Size(), 0.5, 0.5, interpolation);
2403
@endcode
2404
To shrink an image, it will generally look best with #INTER_AREA interpolation, whereas to
2405
enlarge an image, it will generally look best with #INTER_CUBIC (slow) or #INTER_LINEAR
2406
(faster but still looks OK).
2407
2408
@param src input image.
2409
@param dst output image; it has the size dsize (when it is non-zero) or the size computed from
2410
src.size(), fx, and fy; the type of dst is the same as of src.
2411
@param dsize output image size; if it equals zero (`None` in Python), it is computed as:
2412
 \f[\texttt{dsize = Size(round(fx*src.cols), round(fy*src.rows))}\f]
2413
 Either dsize or both fx and fy must be non-zero.
2414
@param fx scale factor along the horizontal axis; when it equals 0, it is computed as
2415
\f[\texttt{(double)dsize.width/src.cols}\f]
2416
@param fy scale factor along the vertical axis; when it equals 0, it is computed as
2417
\f[\texttt{(double)dsize.height/src.rows}\f]
2418
@param interpolation interpolation method, see #InterpolationFlags
2419
2420
@sa  warpAffine, warpPerspective, remap
2421
 */
2422
CV_EXPORTS_W void resize( InputArray src, OutputArray dst,
2423
                          Size dsize, double fx = 0, double fy = 0,
2424
                          int interpolation = INTER_LINEAR );
2425
2426
/** @brief Applies an affine transformation to an image.
2427
2428
The function warpAffine transforms the source image using the specified matrix:
2429
2430
\f[\texttt{dst} (x,y) =  \texttt{src} ( \texttt{M} _{11} x +  \texttt{M} _{12} y +  \texttt{M} _{13}, \texttt{M} _{21} x +  \texttt{M} _{22} y +  \texttt{M} _{23})\f]
2431
2432
when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted
2433
with #invertAffineTransform and then put in the formula above instead of M. The function cannot
2434
operate in-place.
2435
2436
@param src input image.
2437
@param dst output image that has the size dsize and the same type as src .
2438
@param M \f$2\times 3\f$ transformation matrix.
2439
@param dsize size of the output image.
2440
@param flags combination of interpolation methods (see #InterpolationFlags) and the optional
2441
flag #WARP_INVERSE_MAP that means that M is the inverse transformation (
2442
\f$\texttt{dst}\rightarrow\texttt{src}\f$ ).
2443
@param borderMode pixel extrapolation method (see #BorderTypes); when
2444
borderMode=#BORDER_TRANSPARENT, it means that the pixels in the destination image corresponding to
2445
the "outliers" in the source image are not modified by the function.
2446
@param borderValue value used in case of a constant border; by default, it is 0.
2447
2448
@sa  warpPerspective, resize, remap, getRectSubPix, transform
2449
 */
2450
CV_EXPORTS_W void warpAffine( InputArray src, OutputArray dst,
2451
                              InputArray M, Size dsize,
2452
                              int flags = INTER_LINEAR,
2453
                              int borderMode = BORDER_CONSTANT,
2454
                              const Scalar& borderValue = Scalar());
2455
2456
/** @example samples/cpp/warpPerspective_demo.cpp
2457
An example program shows using cv::getPerspectiveTransform and cv::warpPerspective for image warping
2458
*/
2459
2460
/** @brief Applies a perspective transformation to an image.
2461
2462
The function warpPerspective transforms the source image using the specified matrix:
2463
2464
\f[\texttt{dst} (x,y) =  \texttt{src} \left ( \frac{M_{11} x + M_{12} y + M_{13}}{M_{31} x + M_{32} y + M_{33}} ,
2465
     \frac{M_{21} x + M_{22} y + M_{23}}{M_{31} x + M_{32} y + M_{33}} \right )\f]
2466
2467
when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted with invert
2468
and then put in the formula above instead of M. The function cannot operate in-place.
2469
2470
@param src input image.
2471
@param dst output image that has the size dsize and the same type as src .
2472
@param M \f$3\times 3\f$ transformation matrix.
2473
@param dsize size of the output image.
2474
@param flags combination of interpolation methods (#INTER_LINEAR or #INTER_NEAREST) and the
2475
optional flag #WARP_INVERSE_MAP, that sets M as the inverse transformation (
2476
\f$\texttt{dst}\rightarrow\texttt{src}\f$ ).
2477
@param borderMode pixel extrapolation method (#BORDER_CONSTANT or #BORDER_REPLICATE).
2478
@param borderValue value used in case of a constant border; by default, it equals 0.
2479
2480
@sa  warpAffine, resize, remap, getRectSubPix, perspectiveTransform
2481
 */
2482
CV_EXPORTS_W void warpPerspective( InputArray src, OutputArray dst,
2483
                                   InputArray M, Size dsize,
2484
                                   int flags = INTER_LINEAR,
2485
                                   int borderMode = BORDER_CONSTANT,
2486
                                   const Scalar& borderValue = Scalar());
2487
2488
/** @brief Applies a generic geometrical transformation to an image.
2489
2490
The function remap transforms the source image using the specified map:
2491
2492
\f[\texttt{dst} (x,y) =  \texttt{src} (map_x(x,y),map_y(x,y))\f]
2493
2494
with the WARP_RELATIVE_MAP flag :
2495
2496
\f[\texttt{dst} (x,y) =  \texttt{src} (x+map_x(x,y),y+map_y(x,y))\f]
2497
2498
where values of pixels with non-integer coordinates are computed using one of available
2499
interpolation methods. \f$map_x\f$ and \f$map_y\f$ can be encoded as separate floating-point maps
2500
in \f$map_1\f$ and \f$map_2\f$ respectively, or interleaved floating-point maps of \f$(x,y)\f$ in
2501
\f$map_1\f$, or fixed-point maps created by using #convertMaps. The reason you might want to
2502
convert from floating to fixed-point representations of a map is that they can yield much faster
2503
(\~2x) remapping operations. In the converted case, \f$map_1\f$ contains pairs (cvFloor(x),
2504
cvFloor(y)) and \f$map_2\f$ contains indices in a table of interpolation coefficients.
2505
2506
This function cannot operate in-place.
2507
2508
@param src Source image.
2509
@param dst Destination image. It has the same size as map1 and the same type as src .
2510
@param map1 The first map of either (x,y) points or just x values having the type CV_16SC2 ,
2511
CV_32FC1, or CV_32FC2. See #convertMaps for details on converting a floating point
2512
representation to fixed-point for speed.
2513
@param map2 The second map of y values having the type CV_16UC1, CV_32FC1, or none (empty map
2514
if map1 is (x,y) points), respectively.
2515
@param interpolation Interpolation method (see #InterpolationFlags). The methods #INTER_AREA
2516
#INTER_LINEAR_EXACT and #INTER_NEAREST_EXACT are not supported by this function.
2517
The extra flag WARP_RELATIVE_MAP can be ORed to the interpolation method
2518
(e.g. INTER_LINEAR | WARP_RELATIVE_MAP)
2519
@param borderMode Pixel extrapolation method (see #BorderTypes). When
2520
borderMode=#BORDER_TRANSPARENT, it means that the pixels in the destination image that
2521
corresponds to the "outliers" in the source image are not modified by the function.
2522
@param borderValue Value used in case of a constant border. By default, it is 0.
2523
@note
2524
Due to current implementation limitations the size of an input and output images should be less than 32767x32767.
2525
 */
2526
CV_EXPORTS_W void remap( InputArray src, OutputArray dst,
2527
                         InputArray map1, InputArray map2,
2528
                         int interpolation, int borderMode = BORDER_CONSTANT,
2529
                         const Scalar& borderValue = Scalar());
2530
2531
/** @brief Converts image transformation maps from one representation to another.
2532
2533
The function converts a pair of maps for remap from one representation to another. The following
2534
options ( (map1.type(), map2.type()) \f$\rightarrow\f$ (dstmap1.type(), dstmap2.type()) ) are
2535
supported:
2536
2537
- \f$\texttt{(CV_32FC1, CV_32FC1)} \rightarrow \texttt{(CV_16SC2, CV_16UC1)}\f$. This is the
2538
most frequently used conversion operation, in which the original floating-point maps (see #remap)
2539
are converted to a more compact and much faster fixed-point representation. The first output array
2540
contains the rounded coordinates and the second array (created only when nninterpolation=false )
2541
contains indices in the interpolation tables.
2542
2543
- \f$\texttt{(CV_32FC2)} \rightarrow \texttt{(CV_16SC2, CV_16UC1)}\f$. The same as above but
2544
the original maps are stored in one 2-channel matrix.
2545
2546
- Reverse conversion. Obviously, the reconstructed floating-point maps will not be exactly the same
2547
as the originals.
2548
2549
@param map1 The first input map of type CV_16SC2, CV_32FC1, or CV_32FC2 .
2550
@param map2 The second input map of type CV_16UC1, CV_32FC1, or none (empty matrix),
2551
respectively.
2552
@param dstmap1 The first output map that has the type dstmap1type and the same size as src .
2553
@param dstmap2 The second output map.
2554
@param dstmap1type Type of the first output map that should be CV_16SC2, CV_32FC1, or
2555
CV_32FC2 .
2556
@param nninterpolation Flag indicating whether the fixed-point maps are used for the
2557
nearest-neighbor or for a more complex interpolation.
2558
2559
@sa  remap, undistort, initUndistortRectifyMap
2560
 */
2561
CV_EXPORTS_W void convertMaps( InputArray map1, InputArray map2,
2562
                               OutputArray dstmap1, OutputArray dstmap2,
2563
                               int dstmap1type, bool nninterpolation = false );
2564
2565
/** @brief Calculates an affine matrix of 2D rotation.
2566
2567
The function calculates the following matrix:
2568
2569
\f[\begin{bmatrix} \alpha &  \beta & (1- \alpha )  \cdot \texttt{center.x} -  \beta \cdot \texttt{center.y} \\ - \beta &  \alpha &  \beta \cdot \texttt{center.x} + (1- \alpha )  \cdot \texttt{center.y} \end{bmatrix}\f]
2570
2571
where
2572
2573
\f[\begin{array}{l} \alpha =  \texttt{scale} \cdot \cos \texttt{angle} , \\ \beta =  \texttt{scale} \cdot \sin \texttt{angle} \end{array}\f]
2574
2575
The transformation maps the rotation center to itself. If this is not the target, adjust the shift.
2576
2577
@param center Center of the rotation in the source image.
2578
@param angle Rotation angle in degrees. Positive values mean counter-clockwise rotation (the
2579
coordinate origin is assumed to be the top-left corner).
2580
@param scale Isotropic scale factor.
2581
2582
@sa  getAffineTransform, warpAffine, transform
2583
 */
2584
CV_EXPORTS_W Mat getRotationMatrix2D(Point2f center, double angle, double scale);
2585
2586
/** @sa getRotationMatrix2D */
2587
CV_EXPORTS Matx23d getRotationMatrix2D_(Point2f center, double angle, double scale);
2588
2589
inline
2590
Mat getRotationMatrix2D(Point2f center, double angle, double scale)
2591
0
{
2592
0
    return Mat(getRotationMatrix2D_(center, angle, scale), true);
2593
0
}
2594
2595
/** @brief Calculates an affine transform from three pairs of the corresponding points.
2596
2597
The function calculates the \f$2 \times 3\f$ matrix of an affine transform so that:
2598
2599
\f[\begin{bmatrix} x'_i \\ y'_i \end{bmatrix} = \texttt{map_matrix} \cdot \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}\f]
2600
2601
where
2602
2603
\f[dst(i)=(x'_i,y'_i), src(i)=(x_i, y_i), i=0,1,2\f]
2604
2605
@param src Coordinates of triangle vertices in the source image.
2606
@param dst Coordinates of the corresponding triangle vertices in the destination image.
2607
2608
@sa  warpAffine, transform
2609
 */
2610
CV_EXPORTS Mat getAffineTransform( const Point2f src[], const Point2f dst[] );
2611
2612
/** @brief Inverts an affine transformation.
2613
2614
The function computes an inverse affine transformation represented by \f$2 \times 3\f$ matrix M:
2615
2616
\f[\begin{bmatrix} a_{11} & a_{12} & b_1  \\ a_{21} & a_{22} & b_2 \end{bmatrix}\f]
2617
2618
The result is also a \f$2 \times 3\f$ matrix of the same type as M.
2619
2620
@param M Original affine transformation.
2621
@param iM Output reverse affine transformation.
2622
 */
2623
CV_EXPORTS_W void invertAffineTransform( InputArray M, OutputArray iM );
2624
2625
/** @brief Calculates a perspective transform from four pairs of the corresponding points.
2626
2627
The function calculates the \f$3 \times 3\f$ matrix of a perspective transform so that:
2628
2629
\f[\begin{bmatrix} t_i x'_i \\ t_i y'_i \\ t_i \end{bmatrix} = \texttt{map_matrix} \cdot \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}\f]
2630
2631
where
2632
2633
\f[dst(i)=(x'_i,y'_i), src(i)=(x_i, y_i), i=0,1,2,3\f]
2634
2635
@param src Coordinates of quadrangle vertices in the source image.
2636
@param dst Coordinates of the corresponding quadrangle vertices in the destination image.
2637
@param solveMethod method passed to cv::solve (#DecompTypes)
2638
2639
@sa  findHomography, warpPerspective, perspectiveTransform
2640
 */
2641
CV_EXPORTS_W Mat getPerspectiveTransform(InputArray src, InputArray dst, int solveMethod = DECOMP_LU);
2642
2643
/** @overload */
2644
CV_EXPORTS Mat getPerspectiveTransform(const Point2f src[], const Point2f dst[], int solveMethod = DECOMP_LU);
2645
2646
2647
CV_EXPORTS_W Mat getAffineTransform( InputArray src, InputArray dst );
2648
2649
/** @brief Retrieves a pixel rectangle from an image with sub-pixel accuracy.
2650
2651
The function getRectSubPix extracts pixels from src:
2652
2653
\f[patch(x, y) = src(x +  \texttt{center.x} - ( \texttt{dst.cols} -1)*0.5, y +  \texttt{center.y} - ( \texttt{dst.rows} -1)*0.5)\f]
2654
2655
where the values of the pixels at non-integer coordinates are retrieved using bilinear
2656
interpolation. Every channel of multi-channel images is processed independently. Also
2657
the image should be a single channel or three channel image. While the center of the
2658
rectangle must be inside the image, parts of the rectangle may be outside.
2659
2660
@param image Source image.
2661
@param patchSize Size of the extracted patch.
2662
@param center Floating point coordinates of the center of the extracted rectangle within the
2663
source image. The center must be inside the image.
2664
@param patch Extracted patch that has the size patchSize and the same number of channels as src .
2665
@param patchType Depth of the extracted pixels. By default, they have the same depth as src .
2666
2667
@sa  warpAffine, warpPerspective
2668
 */
2669
CV_EXPORTS_W void getRectSubPix( InputArray image, Size patchSize,
2670
                                 Point2f center, OutputArray patch, int patchType = -1 );
2671
2672
/** @example samples/cpp/polar_transforms.cpp
2673
An example using the cv::linearPolar and cv::logPolar operations
2674
*/
2675
2676
/** @brief Remaps an image to semilog-polar coordinates space.
2677
2678
@deprecated This function produces same result as cv::warpPolar(src, dst, src.size(), center, maxRadius, flags+WARP_POLAR_LOG);
2679
2680
@internal
2681
Transform the source image using the following transformation (See @ref polar_remaps_reference_image "Polar remaps reference image d)"):
2682
\f[\begin{array}{l}
2683
  dst( \rho , \phi ) = src(x,y) \\
2684
  dst.size() \leftarrow src.size()
2685
\end{array}\f]
2686
2687
where
2688
\f[\begin{array}{l}
2689
  I = (dx,dy) = (x - center.x,y - center.y) \\
2690
  \rho = M \cdot log_e(\texttt{magnitude} (I)) ,\\
2691
  \phi = Kangle \cdot \texttt{angle} (I) \\
2692
\end{array}\f]
2693
2694
and
2695
\f[\begin{array}{l}
2696
  M = src.cols / log_e(maxRadius) \\
2697
  Kangle = src.rows / 2\Pi \\
2698
\end{array}\f]
2699
2700
The function emulates the human "foveal" vision and can be used for fast scale and
2701
rotation-invariant template matching, for object tracking and so forth.
2702
@param src Source image
2703
@param dst Destination image. It will have same size and type as src.
2704
@param center The transformation center; where the output precision is maximal
2705
@param M Magnitude scale parameter. It determines the radius of the bounding circle to transform too.
2706
@param flags A combination of interpolation methods, see #InterpolationFlags
2707
2708
@note
2709
-   The function can not operate in-place.
2710
-   To calculate magnitude and angle in degrees #cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees.
2711
2712
@sa cv::linearPolar
2713
@endinternal
2714
*/
2715
CV_EXPORTS_W void logPolar( InputArray src, OutputArray dst,
2716
                            Point2f center, double M, int flags );
2717
2718
/** @brief Remaps an image to polar coordinates space.
2719
2720
@deprecated This function produces same result as cv::warpPolar(src, dst, src.size(), center, maxRadius, flags)
2721
2722
@internal
2723
Transform the source image using the following transformation (See @ref polar_remaps_reference_image "Polar remaps reference image c)"):
2724
\f[\begin{array}{l}
2725
  dst( \rho , \phi ) = src(x,y) \\
2726
  dst.size() \leftarrow src.size()
2727
\end{array}\f]
2728
2729
where
2730
\f[\begin{array}{l}
2731
  I = (dx,dy) = (x - center.x,y - center.y) \\
2732
  \rho = Kmag \cdot \texttt{magnitude} (I) ,\\
2733
  \phi = angle \cdot \texttt{angle} (I)
2734
\end{array}\f]
2735
2736
and
2737
\f[\begin{array}{l}
2738
  Kx = src.cols / maxRadius \\
2739
  Ky = src.rows / 2\Pi
2740
\end{array}\f]
2741
2742
2743
@param src Source image
2744
@param dst Destination image. It will have same size and type as src.
2745
@param center The transformation center;
2746
@param maxRadius The radius of the bounding circle to transform. It determines the inverse magnitude scale parameter too.
2747
@param flags A combination of interpolation methods, see #InterpolationFlags
2748
2749
@note
2750
-   The function can not operate in-place.
2751
-   To calculate magnitude and angle in degrees #cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees.
2752
2753
@sa cv::logPolar
2754
@endinternal
2755
*/
2756
CV_EXPORTS_W void linearPolar( InputArray src, OutputArray dst,
2757
                               Point2f center, double maxRadius, int flags );
2758
2759
2760
/** \brief Remaps an image to polar or semilog-polar coordinates space
2761
2762
@anchor polar_remaps_reference_image
2763
![Polar remaps reference](pics/polar_remap_doc.png)
2764
2765
Transform the source image using the following transformation:
2766
\f[
2767
dst(\rho , \phi ) = src(x,y)
2768
\f]
2769
2770
where
2771
\f[
2772
\begin{array}{l}
2773
\vec{I} = (x - center.x, \;y - center.y) \\
2774
\phi = Kangle \cdot \texttt{angle} (\vec{I}) \\
2775
\rho = \left\{\begin{matrix}
2776
Klin \cdot \texttt{magnitude} (\vec{I}) & default \\
2777
Klog \cdot log_e(\texttt{magnitude} (\vec{I})) & if \; semilog \\
2778
\end{matrix}\right.
2779
\end{array}
2780
\f]
2781
2782
and
2783
\f[
2784
\begin{array}{l}
2785
Kangle = dsize.height / 2\Pi \\
2786
Klin = dsize.width / maxRadius \\
2787
Klog = dsize.width / log_e(maxRadius) \\
2788
\end{array}
2789
\f]
2790
2791
2792
\par Linear vs semilog mapping
2793
2794
Polar mapping can be linear or semi-log. Add one of #WarpPolarMode to `flags` to specify the polar mapping mode.
2795
2796
Linear is the default mode.
2797
2798
The semilog mapping emulates the human "foveal" vision that permit very high acuity on the line of sight (central vision)
2799
in contrast to peripheral vision where acuity is minor.
2800
2801
\par Option on `dsize`:
2802
2803
- if both values in `dsize <=0 ` (default),
2804
the destination image will have (almost) same area of source bounding circle:
2805
\f[\begin{array}{l}
2806
dsize.area  \leftarrow (maxRadius^2 \cdot \Pi) \\
2807
dsize.width = \texttt{cvRound}(maxRadius) \\
2808
dsize.height = \texttt{cvRound}(maxRadius \cdot \Pi) \\
2809
\end{array}\f]
2810
2811
2812
- if only `dsize.height <= 0`,
2813
the destination image area will be proportional to the bounding circle area but scaled by `Kx * Kx`:
2814
\f[\begin{array}{l}
2815
dsize.height = \texttt{cvRound}(dsize.width \cdot \Pi) \\
2816
\end{array}
2817
\f]
2818
2819
- if both values in `dsize > 0 `,
2820
the destination image will have the given size therefore the area of the bounding circle will be scaled to `dsize`.
2821
2822
2823
\par Reverse mapping
2824
2825
You can get reverse mapping adding #WARP_INVERSE_MAP to `flags`
2826
\snippet polar_transforms.cpp InverseMap
2827
2828
In addiction, to calculate the original coordinate from a polar mapped coordinate \f$(rho, phi)->(x, y)\f$:
2829
\snippet polar_transforms.cpp InverseCoordinate
2830
2831
@param src Source image.
2832
@param dst Destination image. It will have same type as src.
2833
@param dsize The destination image size (see description for valid options).
2834
@param center The transformation center.
2835
@param maxRadius The radius of the bounding circle to transform. It determines the inverse magnitude scale parameter too.
2836
@param flags A combination of interpolation methods, #InterpolationFlags + #WarpPolarMode.
2837
            - Add #WARP_POLAR_LINEAR to select linear polar mapping (default)
2838
            - Add #WARP_POLAR_LOG to select semilog polar mapping
2839
            - Add #WARP_INVERSE_MAP for reverse mapping.
2840
@note
2841
-  The function can not operate in-place.
2842
-  To calculate magnitude and angle in degrees #cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees.
2843
-  This function uses #remap. Due to current implementation limitations the size of an input and output images should be less than 32767x32767.
2844
2845
@sa cv::remap
2846
*/
2847
CV_EXPORTS_W void warpPolar(InputArray src, OutputArray dst, Size dsize,
2848
                            Point2f center, double maxRadius, int flags);
2849
2850
2851
//! @} imgproc_transform
2852
2853
//! @addtogroup imgproc_misc
2854
//! @{
2855
2856
/** @brief Calculates the integral of an image.
2857
2858
The function calculates one or more integral images for the source image as follows:
2859
2860
\f[\texttt{sum} (X,Y) =  \sum _{x<X,y<Y}  \texttt{image} (x,y)\f]
2861
2862
\f[\texttt{sqsum} (X,Y) =  \sum _{x<X,y<Y}  \texttt{image} (x,y)^2\f]
2863
2864
\f[\texttt{tilted} (X,Y) =  \sum _{y<Y,abs(x-X+1) \leq Y-y-1}  \texttt{image} (x,y)\f]
2865
2866
Using these integral images, you can calculate sum, mean, and standard deviation over a specific
2867
up-right or rotated rectangular region of the image in a constant time, for example:
2868
2869
\f[\sum _{x_1 \leq x < x_2,  \, y_1  \leq y < y_2}  \texttt{image} (x,y) =  \texttt{sum} (x_2,y_2)- \texttt{sum} (x_1,y_2)- \texttt{sum} (x_2,y_1)+ \texttt{sum} (x_1,y_1)\f]
2870
2871
It makes possible to do a fast blurring or fast block correlation with a variable window size, for
2872
example. In case of multi-channel images, sums for each channel are accumulated independently.
2873
2874
As a practical example, the next figure shows the calculation of the integral of a straight
2875
rectangle Rect(4,4,3,2) and of a tilted rectangle Rect(5,1,2,3) . The selected pixels in the
2876
original image are shown, as well as the relative pixels in the integral images sum and tilted .
2877
2878
![integral calculation example](pics/integral.png)
2879
2880
@param src input image as \f$W \times H\f$, 8-bit or floating-point (32f or 64f).
2881
@param sum integral image as \f$(W+1)\times (H+1)\f$ , 32-bit integer or floating-point (32f or 64f).
2882
@param sqsum integral image for squared pixel values; it is \f$(W+1)\times (H+1)\f$, double-precision
2883
floating-point (64f) array.
2884
@param tilted integral for the image rotated by 45 degrees; it is \f$(W+1)\times (H+1)\f$ array with
2885
the same data type as sum.
2886
@param sdepth desired depth of the integral and the tilted integral images, CV_32S, CV_32F, or
2887
CV_64F.
2888
@param sqdepth desired depth of the integral image of squared pixel values, CV_32F or CV_64F.
2889
 */
2890
CV_EXPORTS_AS(integral3) void integral( InputArray src, OutputArray sum,
2891
                                        OutputArray sqsum, OutputArray tilted,
2892
                                        int sdepth = -1, int sqdepth = -1 );
2893
2894
/** @overload */
2895
CV_EXPORTS_W void integral( InputArray src, OutputArray sum, int sdepth = -1 );
2896
2897
/** @overload */
2898
CV_EXPORTS_AS(integral2) void integral( InputArray src, OutputArray sum,
2899
                                        OutputArray sqsum, int sdepth = -1, int sqdepth = -1 );
2900
2901
//! @} imgproc_misc
2902
2903
//! @addtogroup imgproc_motion
2904
//! @{
2905
2906
/** @brief Adds an image to the accumulator image.
2907
2908
The function adds src or some of its elements to dst :
2909
2910
\f[\texttt{dst} (x,y)  \leftarrow \texttt{dst} (x,y) +  \texttt{src} (x,y)  \quad \text{if} \quad \texttt{mask} (x,y)  \ne 0\f]
2911
2912
The function supports multi-channel images. Each channel is processed independently.
2913
2914
The function cv::accumulate can be used, for example, to collect statistics of a scene background
2915
viewed by a still camera and for the further foreground-background segmentation.
2916
2917
@param src Input image of type CV_8UC(n), CV_16UC(n), CV_32FC(n) or CV_64FC(n), where n is a positive integer.
2918
@param dst %Accumulator image with the same number of channels as input image, and a depth of CV_32F or CV_64F.
2919
@param mask Optional operation mask.
2920
2921
@sa  accumulateSquare, accumulateProduct, accumulateWeighted
2922
 */
2923
CV_EXPORTS_W void accumulate( InputArray src, InputOutputArray dst,
2924
                              InputArray mask = noArray() );
2925
2926
/** @brief Adds the square of a source image to the accumulator image.
2927
2928
The function adds the input image src or its selected region, raised to a power of 2, to the
2929
accumulator dst :
2930
2931
\f[\texttt{dst} (x,y)  \leftarrow \texttt{dst} (x,y) +  \texttt{src} (x,y)^2  \quad \text{if} \quad \texttt{mask} (x,y)  \ne 0\f]
2932
2933
The function supports multi-channel images. Each channel is processed independently.
2934
2935
@param src Input image as 1- or 3-channel, 8-bit or 32-bit floating point.
2936
@param dst %Accumulator image with the same number of channels as input image, 32-bit or 64-bit
2937
floating-point.
2938
@param mask Optional operation mask.
2939
2940
@sa  accumulateSquare, accumulateProduct, accumulateWeighted
2941
 */
2942
CV_EXPORTS_W void accumulateSquare( InputArray src, InputOutputArray dst,
2943
                                    InputArray mask = noArray() );
2944
2945
/** @brief Adds the per-element product of two input images to the accumulator image.
2946
2947
The function adds the product of two images or their selected regions to the accumulator dst :
2948
2949
\f[\texttt{dst} (x,y)  \leftarrow \texttt{dst} (x,y) +  \texttt{src1} (x,y)  \cdot \texttt{src2} (x,y)  \quad \text{if} \quad \texttt{mask} (x,y)  \ne 0\f]
2950
2951
The function supports multi-channel images. Each channel is processed independently.
2952
2953
@param src1 First input image, 1- or 3-channel, 8-bit or 32-bit floating point.
2954
@param src2 Second input image of the same type and the same size as src1 .
2955
@param dst %Accumulator image with the same number of channels as input images, 32-bit or 64-bit
2956
floating-point.
2957
@param mask Optional operation mask.
2958
2959
@sa  accumulate, accumulateSquare, accumulateWeighted
2960
 */
2961
CV_EXPORTS_W void accumulateProduct( InputArray src1, InputArray src2,
2962
                                     InputOutputArray dst, InputArray mask=noArray() );
2963
2964
/** @brief Updates a running average.
2965
2966
The function calculates the weighted sum of the input image src and the accumulator dst so that dst
2967
becomes a running average of a frame sequence:
2968
2969
\f[\texttt{dst} (x,y)  \leftarrow (1- \texttt{alpha} )  \cdot \texttt{dst} (x,y) +  \texttt{alpha} \cdot \texttt{src} (x,y)  \quad \text{if} \quad \texttt{mask} (x,y)  \ne 0\f]
2970
2971
That is, alpha regulates the update speed (how fast the accumulator "forgets" about earlier images).
2972
The function supports multi-channel images. Each channel is processed independently.
2973
2974
@param src Input image as 1- or 3-channel, 8-bit or 32-bit floating point.
2975
@param dst %Accumulator image with the same number of channels as input image, 32-bit or 64-bit
2976
floating-point.
2977
@param alpha Weight of the input image.
2978
@param mask Optional operation mask.
2979
2980
@sa  accumulate, accumulateSquare, accumulateProduct
2981
 */
2982
CV_EXPORTS_W void accumulateWeighted( InputArray src, InputOutputArray dst,
2983
                                      double alpha, InputArray mask = noArray() );
2984
2985
/** @brief The function is used to detect translational shifts that occur between two images.
2986
2987
The operation takes advantage of the Fourier shift theorem for detecting the translational shift in
2988
the frequency domain. It can be used for fast image registration as well as motion estimation. For
2989
more information please see <https://en.wikipedia.org/wiki/Phase_correlation>
2990
2991
Calculates the cross-power spectrum of two supplied source arrays. The arrays are padded if needed
2992
with getOptimalDFTSize.
2993
2994
The function performs the following equations:
2995
- First it applies a Hanning window (see <https://en.wikipedia.org/wiki/Hann_function>) to each
2996
image to remove possible edge effects. This window is cached until the array size changes to speed
2997
up processing time.
2998
- Next it computes the forward DFTs of each source array:
2999
\f[\mathbf{G}_a = \mathcal{F}\{src_1\}, \; \mathbf{G}_b = \mathcal{F}\{src_2\}\f]
3000
where \f$\mathcal{F}\f$ is the forward DFT.
3001
- It then computes the cross-power spectrum of each frequency domain array:
3002
\f[R = \frac{ \mathbf{G}_a \mathbf{G}_b^*}{|\mathbf{G}_a \mathbf{G}_b^*|}\f]
3003
- Next the cross-correlation is converted back into the time domain via the inverse DFT:
3004
\f[r = \mathcal{F}^{-1}\{R\}\f]
3005
- Finally, it computes the peak location and computes a 5x5 weighted centroid around the peak to
3006
achieve sub-pixel accuracy.
3007
\f[(\Delta x, \Delta y) = \texttt{weightedCentroid} \{\arg \max_{(x, y)}\{r\}\}\f]
3008
- If non-zero, the response parameter is computed as the sum of the elements of r within the 5x5
3009
centroid around the peak location. It is normalized to a maximum of 1 (meaning there is a single
3010
peak) and will be smaller when there are multiple peaks.
3011
3012
@param src1 Source floating point array (CV_32FC1 or CV_64FC1)
3013
@param src2 Source floating point array (CV_32FC1 or CV_64FC1)
3014
@param window Floating point array with windowing coefficients to reduce edge effects (optional).
3015
@param response Signal power within the 5x5 centroid around the peak, between 0 and 1 (optional).
3016
@returns detected phase shift (sub-pixel) between the two arrays.
3017
3018
@sa dft, getOptimalDFTSize, idft, mulSpectrums createHanningWindow
3019
 */
3020
CV_EXPORTS_W Point2d phaseCorrelate(InputArray src1, InputArray src2,
3021
                                    InputArray window = noArray(), CV_OUT double* response = 0);
3022
3023
/** @brief This function computes a Hanning window coefficients in two dimensions.
3024
3025
See (https://en.wikipedia.org/wiki/Hann_function) and (https://en.wikipedia.org/wiki/Window_function)
3026
for more information.
3027
3028
An example is shown below:
3029
@code
3030
    // create hanning window of size 100x100 and type CV_32F
3031
    Mat hann;
3032
    createHanningWindow(hann, Size(100, 100), CV_32F);
3033
@endcode
3034
@param dst Destination array to place Hann coefficients in
3035
@param winSize The window size specifications (both width and height must be > 1)
3036
@param type Created array type
3037
 */
3038
CV_EXPORTS_W void createHanningWindow(OutputArray dst, Size winSize, int type);
3039
3040
/** @brief Performs the per-element division of the first Fourier spectrum by the second Fourier spectrum.
3041
3042
The function cv::divSpectrums performs the per-element division of the first array by the second array.
3043
The arrays are CCS-packed or complex matrices that are results of a real or complex Fourier transform.
3044
3045
@param a first input array.
3046
@param b second input array of the same size and type as src1 .
3047
@param c output array of the same size and type as src1 .
3048
@param flags operation flags; currently, the only supported flag is cv::DFT_ROWS, which indicates that
3049
each row of src1 and src2 is an independent 1D Fourier spectrum. If you do not want to use this flag, then simply add a `0` as value.
3050
@param conjB optional flag that conjugates the second input array before the multiplication (true)
3051
or not (false).
3052
*/
3053
CV_EXPORTS_W void divSpectrums(InputArray a, InputArray b, OutputArray c,
3054
                               int flags, bool conjB = false);
3055
3056
//! @} imgproc_motion
3057
3058
//! @addtogroup imgproc_misc
3059
//! @{
3060
3061
/** @brief Applies a fixed-level threshold to each array element.
3062
3063
The function applies fixed-level thresholding to a multiple-channel array. The function is typically
3064
used to get a bi-level (binary) image out of a grayscale image ( #compare could be also used for
3065
this purpose) or for removing a noise, that is, filtering out pixels with too small or too large
3066
values. There are several types of thresholding supported by the function. They are determined by
3067
type parameter.
3068
3069
Also, the special values #THRESH_OTSU or #THRESH_TRIANGLE may be combined with one of the
3070
above values. In these cases, the function determines the optimal threshold value using the Otsu's
3071
or Triangle algorithm and uses it instead of the specified thresh.
3072
3073
@note Currently, the Otsu's method is implemented only for CV_8UC1 and CV_16UC1 images,
3074
and the Triangle's method is implemented only for CV_8UC1 images.
3075
3076
@param src input array (multiple-channel, CV_8U, CV_16S, CV_16U, CV_32F or CV_64F).
3077
@param dst output array of the same size  and type and the same number of channels as src.
3078
@param thresh threshold value.
3079
@param maxval maximum value to use with the #THRESH_BINARY and #THRESH_BINARY_INV thresholding
3080
types.
3081
@param type thresholding type (see #ThresholdTypes).
3082
@return the computed threshold value if Otsu's or Triangle methods used.
3083
3084
@sa  thresholdWithMask, adaptiveThreshold, findContours, compare, min, max
3085
 */
3086
CV_EXPORTS_W double threshold( InputArray src, OutputArray dst,
3087
                               double thresh, double maxval, int type );
3088
3089
/** @brief Same as #threshold, but with an optional mask
3090
3091
@note If the mask is empty, #thresholdWithMask is equivalent to #threshold.
3092
If the mask is not empty, dst *must* be of the same size and type as src, so that
3093
outliers pixels are left as-is
3094
3095
@param src input array (multiple-channel, 8-bit or 32-bit floating point).
3096
@param dst output array of the same size  and type and the same number of channels as src.
3097
@param mask optional mask (same size as src, 8-bit).
3098
@param thresh threshold value.
3099
@param maxval maximum value to use with the #THRESH_BINARY and #THRESH_BINARY_INV thresholding
3100
types.
3101
@param type thresholding type (see #ThresholdTypes).
3102
@return the computed threshold value if Otsu's or Triangle methods used.
3103
3104
@sa  threshold, adaptiveThreshold, findContours, compare, min, max
3105
*/
3106
CV_EXPORTS_W double thresholdWithMask( InputArray src, InputOutputArray dst, InputArray mask,
3107
                                       double thresh, double maxval, int type );
3108
3109
/** @brief Applies an adaptive threshold to an array.
3110
3111
The function transforms a grayscale image to a binary image according to the formulae:
3112
-   **THRESH_BINARY**
3113
    \f[dst(x,y) =  \fork{\texttt{maxValue}}{if \(src(x,y) > T(x,y)\)}{0}{otherwise}\f]
3114
-   **THRESH_BINARY_INV**
3115
    \f[dst(x,y) =  \fork{0}{if \(src(x,y) > T(x,y)\)}{\texttt{maxValue}}{otherwise}\f]
3116
where \f$T(x,y)\f$ is a threshold calculated individually for each pixel (see adaptiveMethod parameter).
3117
3118
The function can process the image in-place.
3119
3120
@param src Source 8-bit single-channel image.
3121
@param dst Destination image of the same size and the same type as src.
3122
@param maxValue Non-zero value assigned to the pixels for which the condition is satisfied
3123
@param adaptiveMethod Adaptive thresholding algorithm to use, see #AdaptiveThresholdTypes.
3124
The #BORDER_REPLICATE | #BORDER_ISOLATED is used to process boundaries.
3125
@param thresholdType Thresholding type that must be either #THRESH_BINARY or #THRESH_BINARY_INV,
3126
see #ThresholdTypes.
3127
@param blockSize Size of a pixel neighborhood that is used to calculate a threshold value for the
3128
pixel: 3, 5, 7, and so on.
3129
@param C Constant subtracted from the mean or weighted mean (see the details below). Normally, it
3130
is positive but may be zero or negative as well.
3131
3132
@sa  threshold, blur, GaussianBlur
3133
 */
3134
CV_EXPORTS_W void adaptiveThreshold( InputArray src, OutputArray dst,
3135
                                     double maxValue, int adaptiveMethod,
3136
                                     int thresholdType, int blockSize, double C );
3137
3138
//! @} imgproc_misc
3139
3140
//! @addtogroup imgproc_filter
3141
//! @{
3142
3143
/** @example samples/cpp/tutorial_code/ImgProc/Pyramids/Pyramids.cpp
3144
An example using pyrDown and pyrUp functions
3145
*/
3146
3147
/** @brief Blurs an image and downsamples it.
3148
3149
By default, size of the output image is computed as `Size((src.cols+1)/2, (src.rows+1)/2)`, but in
3150
any case, the following conditions should be satisfied:
3151
3152
\f[\begin{array}{l} | \texttt{dstsize.width} *2-src.cols| \leq 2 \\ | \texttt{dstsize.height} *2-src.rows| \leq 2 \end{array}\f]
3153
3154
The function performs the downsampling step of the Gaussian pyramid construction. First, it
3155
convolves the source image with the kernel:
3156
3157
\f[\frac{1}{256} \begin{bmatrix} 1 & 4 & 6 & 4 & 1  \\ 4 & 16 & 24 & 16 & 4  \\ 6 & 24 & 36 & 24 & 6  \\ 4 & 16 & 24 & 16 & 4  \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix}\f]
3158
3159
Then, it downsamples the image by rejecting even rows and columns.
3160
3161
@param src input image.
3162
@param dst output image; it has the specified size and the same type as src.
3163
@param dstsize size of the output image.
3164
@param borderType Pixel extrapolation method, see #BorderTypes (#BORDER_CONSTANT isn't supported)
3165
 */
3166
CV_EXPORTS_W void pyrDown( InputArray src, OutputArray dst,
3167
                           const Size& dstsize = Size(), int borderType = BORDER_DEFAULT );
3168
3169
/** @brief Upsamples an image and then blurs it.
3170
3171
By default, size of the output image is computed as `Size(src.cols\*2, (src.rows\*2)`, but in any
3172
case, the following conditions should be satisfied:
3173
3174
\f[\begin{array}{l} | \texttt{dstsize.width} -src.cols*2| \leq  ( \texttt{dstsize.width}   \mod  2)  \\ | \texttt{dstsize.height} -src.rows*2| \leq  ( \texttt{dstsize.height}   \mod  2) \end{array}\f]
3175
3176
The function performs the upsampling step of the Gaussian pyramid construction, though it can
3177
actually be used to construct the Laplacian pyramid. First, it upsamples the source image by
3178
injecting even zero rows and columns and then convolves the result with the same kernel as in
3179
pyrDown multiplied by 4.
3180
3181
@param src input image.
3182
@param dst output image. It has the specified size and the same type as src .
3183
@param dstsize size of the output image.
3184
@param borderType Pixel extrapolation method, see #BorderTypes (only #BORDER_DEFAULT is supported)
3185
 */
3186
CV_EXPORTS_W void pyrUp( InputArray src, OutputArray dst,
3187
                         const Size& dstsize = Size(), int borderType = BORDER_DEFAULT );
3188
3189
/** @brief Constructs the Gaussian pyramid for an image.
3190
3191
The function constructs a vector of images and builds the Gaussian pyramid by recursively applying
3192
pyrDown to the previously built pyramid layers, starting from `dst[0]==src`.
3193
3194
@param src Source image. Check pyrDown for the list of supported types.
3195
@param dst Destination vector of maxlevel+1 images of the same type as src. dst[0] will be the
3196
same as src. dst[1] is the next pyramid layer, a smoothed and down-sized src, and so on.
3197
@param maxlevel 0-based index of the last (the smallest) pyramid layer. It must be non-negative.
3198
@param borderType Pixel extrapolation method, see #BorderTypes (#BORDER_CONSTANT isn't supported)
3199
 */
3200
CV_EXPORTS void buildPyramid( InputArray src, OutputArrayOfArrays dst,
3201
                              int maxlevel, int borderType = BORDER_DEFAULT );
3202
3203
//! @} imgproc_filter
3204
3205
//! @addtogroup imgproc_hist
3206
//! @{
3207
3208
/** @example samples/cpp/demhist.cpp
3209
An example for creating histograms of an image
3210
*/
3211
3212
/** @brief Calculates a histogram of a set of arrays.
3213
3214
The function cv::calcHist calculates the histogram of one or more arrays. The elements of a tuple used
3215
to increment a histogram bin are taken from the corresponding input arrays at the same location. The
3216
sample below shows how to compute a 2D Hue-Saturation histogram for a color image. :
3217
@include snippets/imgproc_calcHist.cpp
3218
3219
@param images Source arrays. They all should have the same depth, CV_8U, CV_16U or CV_32F , and the same
3220
size. Each of them can have an arbitrary number of channels.
3221
@param nimages Number of source images.
3222
@param channels List of the dims channels used to compute the histogram. The first array channels
3223
are numerated from 0 to images[0].channels()-1 , the second array channels are counted from
3224
images[0].channels() to images[0].channels() + images[1].channels()-1, and so on.
3225
@param mask Optional mask. If the matrix is not empty, it must be an 8-bit array of the same size
3226
as images[i] . The non-zero mask elements mark the array elements counted in the histogram.
3227
@param hist Output histogram, which is a dense or sparse dims -dimensional array.
3228
@param dims Histogram dimensionality that must be positive and not greater than CV_MAX_DIMS
3229
(equal to 32 in the current OpenCV version).
3230
@param histSize Array of histogram sizes in each dimension.
3231
@param ranges Array of the dims arrays of the histogram bin boundaries in each dimension. When the
3232
histogram is uniform ( uniform =true), then for each dimension i it is enough to specify the lower
3233
(inclusive) boundary \f$L_0\f$ of the 0-th histogram bin and the upper (exclusive) boundary
3234
\f$U_{\texttt{histSize}[i]-1}\f$ for the last histogram bin histSize[i]-1 . That is, in case of a
3235
uniform histogram each of ranges[i] is an array of 2 elements. When the histogram is not uniform (
3236
uniform=false ), then each of ranges[i] contains histSize[i]+1 elements:
3237
\f$L_0, U_0=L_1, U_1=L_2, ..., U_{\texttt{histSize[i]}-2}=L_{\texttt{histSize[i]}-1}, U_{\texttt{histSize[i]}-1}\f$
3238
. The array elements, that are not between \f$L_0\f$ and \f$U_{\texttt{histSize[i]}-1}\f$ , are not
3239
counted in the histogram.
3240
@param uniform Flag indicating whether the histogram is uniform or not (see above).
3241
@param accumulate Accumulation flag. If it is set, the histogram is not cleared in the beginning
3242
when it is allocated. This feature enables you to compute a single histogram from several sets of
3243
arrays, or to update the histogram in time.
3244
*/
3245
CV_EXPORTS void calcHist( const Mat* images, int nimages,
3246
                          const int* channels, InputArray mask,
3247
                          OutputArray hist, int dims, const int* histSize,
3248
                          const float** ranges, bool uniform = true, bool accumulate = false );
3249
3250
/** @overload
3251
3252
this variant uses %SparseMat for output
3253
*/
3254
CV_EXPORTS void calcHist( const Mat* images, int nimages,
3255
                          const int* channels, InputArray mask,
3256
                          SparseMat& hist, int dims,
3257
                          const int* histSize, const float** ranges,
3258
                          bool uniform = true, bool accumulate = false );
3259
3260
/** @overload
3261
3262
this variant supports only uniform histograms.
3263
3264
ranges argument is either empty vector or a flattened vector of histSize.size()*2 elements
3265
(histSize.size() element pairs). The first and second elements of each pair specify the lower and
3266
upper boundaries.
3267
*/
3268
CV_EXPORTS_W void calcHist( InputArrayOfArrays images,
3269
                            const std::vector<int>& channels,
3270
                            InputArray mask, OutputArray hist,
3271
                            const std::vector<int>& histSize,
3272
                            const std::vector<float>& ranges,
3273
                            bool accumulate = false );
3274
3275
/** @brief Calculates the back projection of a histogram.
3276
3277
The function cv::calcBackProject calculates the back project of the histogram. That is, similarly to
3278
#calcHist , at each location (x, y) the function collects the values from the selected channels
3279
in the input images and finds the corresponding histogram bin. But instead of incrementing it, the
3280
function reads the bin value, scales it by scale , and stores in backProject(x,y) . In terms of
3281
statistics, the function computes probability of each element value in respect with the empirical
3282
probability distribution represented by the histogram. See how, for example, you can find and track
3283
a bright-colored object in a scene:
3284
3285
- Before tracking, show the object to the camera so that it covers almost the whole frame.
3286
Calculate a hue histogram. The histogram may have strong maximums, corresponding to the dominant
3287
colors in the object.
3288
3289
- When tracking, calculate a back projection of a hue plane of each input video frame using that
3290
pre-computed histogram. Threshold the back projection to suppress weak colors. It may also make
3291
sense to suppress pixels with non-sufficient color saturation and too dark or too bright pixels.
3292
3293
- Find connected components in the resulting picture and choose, for example, the largest
3294
component.
3295
3296
This is an approximate algorithm of the CamShift color object tracker.
3297
3298
@param images Source arrays. They all should have the same depth, CV_8U, CV_16U or CV_32F , and the same
3299
size. Each of them can have an arbitrary number of channels.
3300
@param nimages Number of source images.
3301
@param channels The list of channels used to compute the back projection. The number of channels
3302
must match the histogram dimensionality. The first array channels are numerated from 0 to
3303
images[0].channels()-1 , the second array channels are counted from images[0].channels() to
3304
images[0].channels() + images[1].channels()-1, and so on.
3305
@param hist Input histogram that can be dense or sparse.
3306
@param backProject Destination back projection array that is a single-channel array of the same
3307
size and depth as images[0] .
3308
@param ranges Array of arrays of the histogram bin boundaries in each dimension. See #calcHist .
3309
@param scale Optional scale factor for the output back projection.
3310
@param uniform Flag indicating whether the histogram is uniform or not (see #calcHist).
3311
3312
@sa calcHist, compareHist
3313
 */
3314
CV_EXPORTS void calcBackProject( const Mat* images, int nimages,
3315
                                 const int* channels, InputArray hist,
3316
                                 OutputArray backProject, const float** ranges,
3317
                                 double scale = 1, bool uniform = true );
3318
3319
/** @overload */
3320
CV_EXPORTS void calcBackProject( const Mat* images, int nimages,
3321
                                 const int* channels, const SparseMat& hist,
3322
                                 OutputArray backProject, const float** ranges,
3323
                                 double scale = 1, bool uniform = true );
3324
3325
/** @overload */
3326
CV_EXPORTS_W void calcBackProject( InputArrayOfArrays images, const std::vector<int>& channels,
3327
                                   InputArray hist, OutputArray dst,
3328
                                   const std::vector<float>& ranges,
3329
                                   double scale );
3330
3331
/** @brief Compares two histograms.
3332
3333
The function cv::compareHist compares two dense or two sparse histograms using the specified method.
3334
3335
The function returns \f$d(H_1, H_2)\f$ .
3336
3337
While the function works well with 1-, 2-, 3-dimensional dense histograms, it may not be suitable
3338
for high-dimensional sparse histograms. In such histograms, because of aliasing and sampling
3339
problems, the coordinates of non-zero histogram bins can slightly shift. To compare such histograms
3340
or more general sparse configurations of weighted points, consider using the #EMD function.
3341
3342
@param H1 First compared histogram.
3343
@param H2 Second compared histogram of the same size as H1 .
3344
@param method Comparison method, see #HistCompMethods
3345
 */
3346
CV_EXPORTS_W double compareHist( InputArray H1, InputArray H2, int method );
3347
3348
/** @overload */
3349
CV_EXPORTS double compareHist( const SparseMat& H1, const SparseMat& H2, int method );
3350
3351
/** @brief Equalizes the histogram of a grayscale image.
3352
3353
The function equalizes the histogram of the input image using the following algorithm:
3354
3355
- Calculate the histogram \f$H\f$ for src .
3356
- Normalize the histogram so that the sum of histogram bins is 255.
3357
- Compute the integral of the histogram:
3358
\f[H'_i =  \sum _{0  \le j < i} H(j)\f]
3359
- Transform the image using \f$H'\f$ as a look-up table: \f$\texttt{dst}(x,y) = H'(\texttt{src}(x,y))\f$
3360
3361
The algorithm normalizes the brightness and increases the contrast of the image.
3362
3363
@param src Source 8-bit single channel image.
3364
@param dst Destination image of the same size and type as src .
3365
 */
3366
CV_EXPORTS_W void equalizeHist( InputArray src, OutputArray dst );
3367
3368
/** @brief Creates a smart pointer to a cv::CLAHE class and initializes it.
3369
3370
@param clipLimit Threshold for contrast limiting.
3371
@param tileGridSize Size of grid for histogram equalization. Input image will be divided into
3372
equally sized rectangular tiles. tileGridSize defines the number of tiles in row and column.
3373
 */
3374
CV_EXPORTS_W Ptr<CLAHE> createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8));
3375
3376
/** @brief Computes the "minimal work" distance between two weighted point configurations.
3377
3378
The function computes the earth mover distance and/or a lower boundary of the distance between the
3379
two weighted point configurations. One of the applications described in @cite RubnerSept98,
3380
@cite Rubner2000 is multi-dimensional histogram comparison for image retrieval. EMD is a transportation
3381
problem that is solved using some modification of a simplex algorithm, thus the complexity is
3382
exponential in the worst case, though, on average it is much faster. In the case of a real metric
3383
the lower boundary can be calculated even faster (using linear-time algorithm) and it can be used
3384
to determine roughly whether the two signatures are far enough so that they cannot relate to the
3385
same object.
3386
3387
@param signature1 First signature, a \f$\texttt{size1}\times \texttt{dims}+1\f$ floating-point matrix.
3388
Each row stores the point weight followed by the point coordinates. The matrix is allowed to have
3389
a single column (weights only) if the user-defined cost matrix is used. The weights must be
3390
non-negative and have at least one non-zero value.
3391
@param signature2 Second signature of the same format as signature1 , though the number of rows
3392
may be different. The total weights may be different. In this case an extra "dummy" point is added
3393
to either signature1 or signature2. The weights must be non-negative and have at least one non-zero
3394
value.
3395
@param distType Used metric. See #DistanceTypes.
3396
@param cost User-defined \f$\texttt{size1}\times \texttt{size2}\f$ cost matrix. Also, if a cost matrix
3397
is used, lower boundary lowerBound cannot be calculated because it needs a metric function.
3398
@param lowerBound Optional input/output parameter: lower boundary of a distance between the two
3399
signatures that is a distance between mass centers. The lower boundary may not be calculated if
3400
the user-defined cost matrix is used, the total weights of point configurations are not equal, or
3401
if the signatures consist of weights only (the signature matrices have a single column). You
3402
**must** initialize \*lowerBound . If the calculated distance between mass centers is greater or
3403
equal to \*lowerBound (it means that the signatures are far enough), the function does not
3404
calculate EMD. In any case \*lowerBound is set to the calculated distance between mass centers on
3405
return. Thus, if you want to calculate both distance between mass centers and EMD, \*lowerBound
3406
should be set to 0.
3407
@param flow Resultant \f$\texttt{size1} \times \texttt{size2}\f$ flow matrix: \f$\texttt{flow}_{i,j}\f$ is
3408
a flow from \f$i\f$ -th point of signature1 to \f$j\f$ -th point of signature2 .
3409
 */
3410
CV_EXPORTS float EMD( InputArray signature1, InputArray signature2,
3411
                      int distType, InputArray cost=noArray(),
3412
                      float* lowerBound = 0, OutputArray flow = noArray() );
3413
3414
CV_EXPORTS_AS(EMD) float wrapperEMD( InputArray signature1, InputArray signature2,
3415
                      int distType, InputArray cost=noArray(),
3416
                      CV_IN_OUT Ptr<float> lowerBound = Ptr<float>(), OutputArray flow = noArray() );
3417
3418
//! @} imgproc_hist
3419
3420
//! @addtogroup imgproc_segmentation
3421
//! @{
3422
3423
/** @example samples/cpp/watershed.cpp
3424
An example using the watershed algorithm
3425
*/
3426
3427
/** @brief Performs a marker-based image segmentation using the watershed algorithm.
3428
3429
The function implements one of the variants of watershed, non-parametric marker-based segmentation
3430
algorithm, described in @cite Meyer92 .
3431
3432
Before passing the image to the function, you have to roughly outline the desired regions in the
3433
image markers with positive (\>0) indices. So, every region is represented as one or more connected
3434
components with the pixel values 1, 2, 3, and so on. Such markers can be retrieved from a binary
3435
mask using #findContours and #drawContours (see the watershed.cpp demo). The markers are "seeds" of
3436
the future image regions. All the other pixels in markers , whose relation to the outlined regions
3437
is not known and should be defined by the algorithm, should be set to 0's. In the function output,
3438
each pixel in markers is set to a value of the "seed" components or to -1 at boundaries between the
3439
regions.
3440
3441
@note Any two neighbor connected components are not necessarily separated by a watershed boundary
3442
(-1's pixels); for example, they can touch each other in the initial marker image passed to the
3443
function.
3444
3445
@param image Input 8-bit 3-channel image.
3446
@param markers Input/output 32-bit single-channel image (map) of markers. It should have the same
3447
size as image .
3448
3449
@sa findContours
3450
 */
3451
CV_EXPORTS_W void watershed( InputArray image, InputOutputArray markers );
3452
3453
//! @} imgproc_segmentation
3454
3455
//! @addtogroup imgproc_filter
3456
//! @{
3457
3458
/** @brief Performs initial step of meanshift segmentation of an image.
3459
3460
The function implements the filtering stage of meanshift segmentation, that is, the output of the
3461
function is the filtered "posterized" image with color gradients and fine-grain texture flattened.
3462
At every pixel (X,Y) of the input image (or down-sized input image, see below) the function executes
3463
meanshift iterations, that is, the pixel (X,Y) neighborhood in the joint space-color hyperspace is
3464
considered:
3465
3466
\f[(x,y): X- \texttt{sp} \le x  \le X+ \texttt{sp} , Y- \texttt{sp} \le y  \le Y+ \texttt{sp} , ||(R,G,B)-(r,g,b)||   \le \texttt{sr}\f]
3467
3468
where (R,G,B) and (r,g,b) are the vectors of color components at (X,Y) and (x,y), respectively
3469
(though, the algorithm does not depend on the color space used, so any 3-component color space can
3470
be used instead). Over the neighborhood the average spatial value (X',Y') and average color vector
3471
(R',G',B') are found and they act as the neighborhood center on the next iteration:
3472
3473
\f[(X,Y)~(X',Y'), (R,G,B)~(R',G',B').\f]
3474
3475
After the iterations over, the color components of the initial pixel (that is, the pixel from where
3476
the iterations started) are set to the final value (average color at the last iteration):
3477
3478
\f[I(X,Y) <- (R*,G*,B*)\f]
3479
3480
When maxLevel \> 0, the gaussian pyramid of maxLevel+1 levels is built, and the above procedure is
3481
run on the smallest layer first. After that, the results are propagated to the larger layer and the
3482
iterations are run again only on those pixels where the layer colors differ by more than sr from the
3483
lower-resolution layer of the pyramid. That makes boundaries of color regions sharper. Note that the
3484
results will be actually different from the ones obtained by running the meanshift procedure on the
3485
whole original image (i.e. when maxLevel==0).
3486
3487
@param src The source 8-bit, 3-channel image.
3488
@param dst The destination image of the same format and the same size as the source.
3489
@param sp The spatial window radius.
3490
@param sr The color window radius.
3491
@param maxLevel Maximum level of the pyramid for the segmentation.
3492
@param termcrit Termination criteria: when to stop meanshift iterations.
3493
 */
3494
CV_EXPORTS_W void pyrMeanShiftFiltering( InputArray src, OutputArray dst,
3495
                                         double sp, double sr, int maxLevel = 1,
3496
                                         TermCriteria termcrit=TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS,5,1) );
3497
3498
//! @}
3499
3500
//! @addtogroup imgproc_segmentation
3501
//! @{
3502
3503
/** @example samples/cpp/grabcut.cpp
3504
An example using the GrabCut algorithm
3505
![Sample Screenshot](grabcut_output1.jpg)
3506
*/
3507
3508
/** @brief Runs the GrabCut algorithm.
3509
3510
The function implements the [GrabCut image segmentation algorithm](https://en.wikipedia.org/wiki/GrabCut).
3511
3512
@param img Input 8-bit 3-channel image.
3513
@param mask Input/output 8-bit single-channel mask. The mask is initialized by the function when
3514
mode is set to #GC_INIT_WITH_RECT. Its elements may have one of the #GrabCutClasses.
3515
@param rect ROI containing a segmented object. The pixels outside of the ROI are marked as
3516
"obvious background". The parameter is only used when mode==#GC_INIT_WITH_RECT .
3517
@param bgdModel Temporary array for the background model. Do not modify it while you are
3518
processing the same image.
3519
@param fgdModel Temporary arrays for the foreground model. Do not modify it while you are
3520
processing the same image.
3521
@param iterCount Number of iterations the algorithm should make before returning the result. Note
3522
that the result can be refined with further calls with mode==#GC_INIT_WITH_MASK or
3523
mode==GC_EVAL .
3524
@param mode Operation mode that could be one of the #GrabCutModes
3525
 */
3526
CV_EXPORTS_W void grabCut( InputArray img, InputOutputArray mask, Rect rect,
3527
                           InputOutputArray bgdModel, InputOutputArray fgdModel,
3528
                           int iterCount, int mode = GC_EVAL );
3529
3530
//! @} imgproc_segmentation
3531
3532
//! @addtogroup imgproc_misc
3533
//! @{
3534
3535
/** @example samples/cpp/distrans.cpp
3536
An example on using the distance transform
3537
*/
3538
3539
/** @brief Calculates the distance to the closest zero pixel for each pixel of the source image.
3540
3541
The function cv::distanceTransform calculates the approximate or precise distance from every binary
3542
image pixel to the nearest zero pixel. For zero image pixels, the distance will obviously be zero.
3543
3544
When maskSize == #DIST_MASK_PRECISE and distanceType == #DIST_L2 , the function runs the
3545
algorithm described in @cite Felzenszwalb04 . This algorithm is parallelized with the TBB library.
3546
3547
In other cases, the algorithm @cite Borgefors86 is used. This means that for a pixel the function
3548
finds the shortest path to the nearest zero pixel consisting of basic shifts: horizontal, vertical,
3549
diagonal, or knight's move (the latest is available for a \f$5\times 5\f$ mask). The overall
3550
distance is calculated as a sum of these basic distances. Since the distance function should be
3551
symmetric, all of the horizontal and vertical shifts must have the same cost (denoted as a ), all
3552
the diagonal shifts must have the same cost (denoted as `b`), and all knight's moves must have the
3553
same cost (denoted as `c`). For the #DIST_C and #DIST_L1 types, the distance is calculated
3554
precisely, whereas for #DIST_L2 (Euclidean distance) the distance can be calculated only with a
3555
relative error (a \f$5\times 5\f$ mask gives more accurate results). For `a`,`b`, and `c`, OpenCV
3556
uses the values suggested in the original paper:
3557
- DIST_L1: `a = 1, b = 2`
3558
- DIST_L2:
3559
    - `3 x 3`: `a=0.955, b=1.3693`
3560
    - `5 x 5`: `a=1, b=1.4, c=2.1969`
3561
- DIST_C: `a = 1, b = 1`
3562
3563
Typically, for a fast, coarse distance estimation #DIST_L2, a \f$3\times 3\f$ mask is used. For a
3564
more accurate distance estimation #DIST_L2, a \f$5\times 5\f$ mask or the precise algorithm is used.
3565
Note that both the precise and the approximate algorithms are linear on the number of pixels.
3566
3567
This variant of the function does not only compute the minimum distance for each pixel \f$(x, y)\f$
3568
but also identifies the nearest connected component consisting of zero pixels
3569
(labelType==#DIST_LABEL_CCOMP) or the nearest zero pixel (labelType==#DIST_LABEL_PIXEL). Index of the
3570
component/pixel is stored in `labels(x, y)`. When labelType==#DIST_LABEL_CCOMP, the function
3571
automatically finds connected components of zero pixels in the input image and marks them with
3572
distinct labels. When labelType==#DIST_LABEL_PIXEL, the function scans through the input image and
3573
marks all the zero pixels with distinct labels.
3574
3575
In this mode, the complexity is still linear. That is, the function provides a very fast way to
3576
compute the Voronoi diagram for a binary image. Currently, the second variant can use only the
3577
approximate distance transform algorithm, i.e. maskSize=#DIST_MASK_PRECISE is not supported
3578
yet.
3579
3580
@param src 8-bit, single-channel (binary) source image.
3581
@param dst Output image with calculated distances. It is a 8-bit or 32-bit floating-point,
3582
single-channel image of the same size as src.
3583
@param labels Output 2D array of labels (the discrete Voronoi diagram). It has the type
3584
CV_32SC1 and the same size as src.
3585
@param distanceType Type of distance, see #DistanceTypes
3586
@param maskSize Size of the distance transform mask, see #DistanceTransformMasks.
3587
#DIST_MASK_PRECISE is not supported by this variant. In case of the #DIST_L1 or #DIST_C distance type,
3588
the parameter is forced to 3 because a \f$3\times 3\f$ mask gives the same result as \f$5\times
3589
5\f$ or any larger aperture.
3590
@param labelType Type of the label array to build, see #DistanceTransformLabelTypes.
3591
 */
3592
CV_EXPORTS_AS(distanceTransformWithLabels) void distanceTransform( InputArray src, OutputArray dst,
3593
                                     OutputArray labels, int distanceType, int maskSize,
3594
                                     int labelType = DIST_LABEL_CCOMP );
3595
3596
/** @overload
3597
@param src 8-bit, single-channel (binary) source image.
3598
@param dst Output image with calculated distances. It is a 8-bit or 32-bit floating-point,
3599
single-channel image of the same size as src .
3600
@param distanceType Type of distance, see #DistanceTypes
3601
@param maskSize Size of the distance transform mask, see #DistanceTransformMasks. In case of the
3602
#DIST_L1 or #DIST_C distance type, the parameter is forced to 3 because a \f$3\times 3\f$ mask gives
3603
the same result as \f$5\times 5\f$ or any larger aperture.
3604
@param dstType Type of output image. It can be CV_8U or CV_32F. Type CV_8U can be used only for
3605
the first variant of the function and distanceType == #DIST_L1.
3606
*/
3607
CV_EXPORTS_W void distanceTransform( InputArray src, OutputArray dst,
3608
                                     int distanceType, int maskSize, int dstType=CV_32F);
3609
3610
/** @brief Fills a connected component with the given color.
3611
3612
The function cv::floodFill fills a connected component starting from the seed point with the specified
3613
color. The connectivity is determined by the color/brightness closeness of the neighbor pixels. The
3614
pixel at \f$(x,y)\f$ is considered to belong to the repainted domain if:
3615
3616
- in case of a grayscale image and floating range
3617
\f[\texttt{src} (x',y')- \texttt{loDiff} \leq \texttt{src} (x,y)  \leq \texttt{src} (x',y')+ \texttt{upDiff}\f]
3618
3619
3620
- in case of a grayscale image and fixed range
3621
\f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)- \texttt{loDiff} \leq \texttt{src} (x,y)  \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)+ \texttt{upDiff}\f]
3622
3623
3624
- in case of a color image and floating range
3625
\f[\texttt{src} (x',y')_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} (x',y')_r+ \texttt{upDiff} _r,\f]
3626
\f[\texttt{src} (x',y')_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} (x',y')_g+ \texttt{upDiff} _g\f]
3627
and
3628
\f[\texttt{src} (x',y')_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} (x',y')_b+ \texttt{upDiff} _b\f]
3629
3630
3631
- in case of a color image and fixed range
3632
\f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r+ \texttt{upDiff} _r,\f]
3633
\f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g+ \texttt{upDiff} _g\f]
3634
and
3635
\f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b+ \texttt{upDiff} _b\f]
3636
3637
3638
where \f$src(x',y')\f$ is the value of one of pixel neighbors that is already known to belong to the
3639
component. That is, to be added to the connected component, a color/brightness of the pixel should
3640
be close enough to:
3641
- Color/brightness of one of its neighbors that already belong to the connected component in case
3642
of a floating range.
3643
- Color/brightness of the seed point in case of a fixed range.
3644
3645
Use these functions to either mark a connected component with the specified color in-place, or build
3646
a mask and then extract the contour, or copy the region to another image, and so on.
3647
3648
@param image Input/output 1- or 3-channel, 8-bit, or floating-point image. It is modified by the
3649
function unless the #FLOODFILL_MASK_ONLY flag is set in the second variant of the function. See
3650
the details below.
3651
@param mask Operation mask that should be a single-channel 8-bit image, 2 pixels wider and 2 pixels
3652
taller than image. If an empty Mat is passed it will be created automatically. Since this is both an
3653
input and output parameter, you must take responsibility of initializing it.
3654
Flood-filling cannot go across non-zero pixels in the input mask. For example,
3655
an edge detector output can be used as a mask to stop filling at edges. On output, pixels in the
3656
mask corresponding to filled pixels in the image are set to 1 or to the specified value in flags
3657
as described below. Additionally, the function fills the border of the mask with ones to simplify
3658
internal processing. It is therefore possible to use the same mask in multiple calls to the function
3659
to make sure the filled areas do not overlap.
3660
@param seedPoint Starting point.
3661
@param newVal New value of the repainted domain pixels.
3662
@param loDiff Maximal lower brightness/color difference between the currently observed pixel and
3663
one of its neighbors belonging to the component, or a seed pixel being added to the component.
3664
@param upDiff Maximal upper brightness/color difference between the currently observed pixel and
3665
one of its neighbors belonging to the component, or a seed pixel being added to the component.
3666
@param rect Optional output parameter set by the function to the minimum bounding rectangle of the
3667
repainted domain.
3668
@param flags Operation flags. The first 8 bits contain a connectivity value. The default value of
3669
4 means that only the four nearest neighbor pixels (those that share an edge) are considered. A
3670
connectivity value of 8 means that the eight nearest neighbor pixels (those that share a corner)
3671
will be considered. The next 8 bits (8-16) contain a value between 1 and 255 with which to fill
3672
the mask (the default value is 1). For example, 4 | ( 255 \<\< 8 ) will consider 4 nearest
3673
neighbours and fill the mask with a value of 255. The following additional options occupy higher
3674
bits and therefore may be further combined with the connectivity and mask fill values using
3675
bit-wise or (|), see #FloodFillFlags.
3676
3677
@note Since the mask is larger than the filled image, a pixel \f$(x, y)\f$ in image corresponds to the
3678
pixel \f$(x+1, y+1)\f$ in the mask .
3679
3680
@sa findContours
3681
 */
3682
CV_EXPORTS_W int floodFill( InputOutputArray image, InputOutputArray mask,
3683
                            Point seedPoint, Scalar newVal, CV_OUT Rect* rect=0,
3684
                            Scalar loDiff = Scalar(), Scalar upDiff = Scalar(),
3685
                            int flags = 4 );
3686
3687
/** @example samples/cpp/ffilldemo.cpp
3688
An example using the FloodFill technique
3689
*/
3690
3691
/** @overload
3692
3693
variant without `mask` parameter
3694
*/
3695
CV_EXPORTS int floodFill( InputOutputArray image,
3696
                          Point seedPoint, Scalar newVal, CV_OUT Rect* rect = 0,
3697
                          Scalar loDiff = Scalar(), Scalar upDiff = Scalar(),
3698
                          int flags = 4 );
3699
3700
//! Performs linear blending of two images:
3701
//! \f[ \texttt{dst}(i,j) = \texttt{weights1}(i,j)*\texttt{src1}(i,j) + \texttt{weights2}(i,j)*\texttt{src2}(i,j) \f]
3702
//! @param src1 It has a type of CV_8UC(n) or CV_32FC(n), where n is a positive integer.
3703
//! @param src2 It has the same type and size as src1.
3704
//! @param weights1 It has a type of CV_32FC1 and the same size with src1.
3705
//! @param weights2 It has a type of CV_32FC1 and the same size with src1.
3706
//! @param dst It is created if it does not have the same size and type with src1.
3707
CV_EXPORTS_W void blendLinear(InputArray src1, InputArray src2, InputArray weights1, InputArray weights2, OutputArray dst);
3708
3709
//! @} imgproc_misc
3710
3711
//! @addtogroup imgproc_color_conversions
3712
//! @{
3713
3714
/** @brief Converts an image from one color space to another.
3715
3716
The function converts an input image from one color space to another. In case of a transformation
3717
to-from RGB color space, the order of the channels should be specified explicitly (RGB or BGR). Note
3718
that the default color format in OpenCV is often referred to as RGB but it is actually BGR (the
3719
bytes are reversed). So the first byte in a standard (24-bit) color image will be an 8-bit Blue
3720
component, the second byte will be Green, and the third byte will be Red. The fourth, fifth, and
3721
sixth bytes would then be the second pixel (Blue, then Green, then Red), and so on.
3722
3723
The conventional ranges for R, G, and B channel values are:
3724
-   0 to 255 for CV_8U images
3725
-   0 to 65535 for CV_16U images
3726
-   0 to 1 for CV_32F images
3727
3728
In case of linear transformations, the range does not matter. But in case of a non-linear
3729
transformation, an input RGB image should be normalized to the proper value range to get the correct
3730
results, for example, for RGB \f$\rightarrow\f$ L\*u\*v\* transformation. For example, if you have a
3731
32-bit floating-point image directly converted from an 8-bit image without any scaling, then it will
3732
have the 0..255 value range instead of 0..1 assumed by the function. So, before calling #cvtColor ,
3733
you need first to scale the image down:
3734
@code
3735
    img *= 1./255;
3736
    cvtColor(img, img, COLOR_BGR2Luv);
3737
@endcode
3738
If you use #cvtColor with 8-bit images, the conversion will have some information lost. For many
3739
applications, this will not be noticeable but it is recommended to use 32-bit images in applications
3740
that need the full range of colors or that convert an image before an operation and then convert
3741
back.
3742
3743
If conversion adds the alpha channel, its value will set to the maximum of corresponding channel
3744
range: 255 for CV_8U, 65535 for CV_16U, 1 for CV_32F.
3745
3746
@param src input image: 8-bit unsigned, 16-bit unsigned ( CV_16UC... ), or single-precision
3747
floating-point.
3748
@param dst output image of the same size and depth as src.
3749
@param code color space conversion code (see #ColorConversionCodes).
3750
@param dstCn number of channels in the destination image; if the parameter is 0, the number of the
3751
channels is derived automatically from src and code.
3752
@param hint Implementation modfication flags. See #AlgorithmHint
3753
3754
@see @ref imgproc_color_conversions
3755
 */
3756
CV_EXPORTS_W void cvtColor( InputArray src, OutputArray dst, int code, int dstCn = 0, AlgorithmHint hint = cv::ALGO_HINT_DEFAULT );
3757
3758
/** @brief Converts an image from one color space to another where the source image is
3759
stored in two planes.
3760
3761
This function only supports YUV420 to RGB conversion as of now.
3762
3763
@param src1 8-bit image (#CV_8U) of the Y plane.
3764
@param src2 image containing interleaved U/V plane.
3765
@param dst output image.
3766
@param code Specifies the type of conversion. It can take any of the following values:
3767
- #COLOR_YUV2BGR_NV12
3768
- #COLOR_YUV2RGB_NV12
3769
- #COLOR_YUV2BGRA_NV12
3770
- #COLOR_YUV2RGBA_NV12
3771
- #COLOR_YUV2BGR_NV21
3772
- #COLOR_YUV2RGB_NV21
3773
- #COLOR_YUV2BGRA_NV21
3774
- #COLOR_YUV2RGBA_NV21
3775
@param hint Implementation modfication flags. See #AlgorithmHint
3776
*/
3777
CV_EXPORTS_W void cvtColorTwoPlane( InputArray src1, InputArray src2, OutputArray dst, int code, AlgorithmHint hint = cv::ALGO_HINT_DEFAULT );
3778
3779
/** @brief main function for all demosaicing processes
3780
3781
@param src input image: 8-bit unsigned or 16-bit unsigned.
3782
@param dst output image of the same size and depth as src.
3783
@param code Color space conversion code (see the description below).
3784
@param dstCn number of channels in the destination image; if the parameter is 0, the number of the
3785
channels is derived automatically from src and code.
3786
3787
The function can do the following transformations:
3788
3789
-   Demosaicing using bilinear interpolation
3790
3791
    #COLOR_BayerBG2BGR , #COLOR_BayerGB2BGR , #COLOR_BayerRG2BGR , #COLOR_BayerGR2BGR
3792
3793
    #COLOR_BayerBG2GRAY , #COLOR_BayerGB2GRAY , #COLOR_BayerRG2GRAY , #COLOR_BayerGR2GRAY
3794
3795
-   Demosaicing using Variable Number of Gradients.
3796
3797
    #COLOR_BayerBG2BGR_VNG , #COLOR_BayerGB2BGR_VNG , #COLOR_BayerRG2BGR_VNG , #COLOR_BayerGR2BGR_VNG
3798
3799
-   Edge-Aware Demosaicing.
3800
3801
    #COLOR_BayerBG2BGR_EA , #COLOR_BayerGB2BGR_EA , #COLOR_BayerRG2BGR_EA , #COLOR_BayerGR2BGR_EA
3802
3803
-   Demosaicing with alpha channel
3804
3805
    #COLOR_BayerBG2BGRA , #COLOR_BayerGB2BGRA , #COLOR_BayerRG2BGRA , #COLOR_BayerGR2BGRA
3806
3807
@sa cvtColor
3808
*/
3809
CV_EXPORTS_W void demosaicing(InputArray src, OutputArray dst, int code, int dstCn = 0);
3810
3811
//! @} imgproc_color_conversions
3812
3813
//! @addtogroup imgproc_shape
3814
//! @{
3815
3816
/** @brief Calculates all of the moments up to the third order of a polygon or rasterized shape.
3817
3818
The function computes moments, up to the 3rd order, of a vector shape or a rasterized shape. The
3819
results are returned in the structure cv::Moments.
3820
3821
@param array Single chanel raster image (CV_8U, CV_16U, CV_16S, CV_32F, CV_64F) or an array (
3822
\f$1 \times N\f$ or \f$N \times 1\f$ ) of 2D points (Point or Point2f).
3823
@param binaryImage If it is true, all non-zero image pixels are treated as 1's. The parameter is
3824
used for images only.
3825
@returns moments.
3826
3827
@note Only applicable to contour moments calculations from Python bindings: Note that the numpy
3828
type for the input array should be either np.int32 or np.float32.
3829
3830
@sa  contourArea, arcLength
3831
 */
3832
CV_EXPORTS_W Moments moments( InputArray array, bool binaryImage = false );
3833
3834
/** @brief Calculates seven Hu invariants.
3835
3836
The function calculates seven Hu invariants (introduced in @cite Hu62; see also
3837
<https://en.wikipedia.org/wiki/Image_moment>) defined as:
3838
3839
\f[\begin{array}{l} hu[0]= \eta _{20}+ \eta _{02} \\ hu[1]=( \eta _{20}- \eta _{02})^{2}+4 \eta _{11}^{2} \\ hu[2]=( \eta _{30}-3 \eta _{12})^{2}+ (3 \eta _{21}- \eta _{03})^{2} \\ hu[3]=( \eta _{30}+ \eta _{12})^{2}+ ( \eta _{21}+ \eta _{03})^{2} \\ hu[4]=( \eta _{30}-3 \eta _{12})( \eta _{30}+ \eta _{12})[( \eta _{30}+ \eta _{12})^{2}-3( \eta _{21}+ \eta _{03})^{2}]+(3 \eta _{21}- \eta _{03})( \eta _{21}+ \eta _{03})[3( \eta _{30}+ \eta _{12})^{2}-( \eta _{21}+ \eta _{03})^{2}] \\ hu[5]=( \eta _{20}- \eta _{02})[( \eta _{30}+ \eta _{12})^{2}- ( \eta _{21}+ \eta _{03})^{2}]+4 \eta _{11}( \eta _{30}+ \eta _{12})( \eta _{21}+ \eta _{03}) \\ hu[6]=(3 \eta _{21}- \eta _{03})( \eta _{21}+ \eta _{03})[3( \eta _{30}+ \eta _{12})^{2}-( \eta _{21}+ \eta _{03})^{2}]-( \eta _{30}-3 \eta _{12})( \eta _{21}+ \eta _{03})[3( \eta _{30}+ \eta _{12})^{2}-( \eta _{21}+ \eta _{03})^{2}] \\ \end{array}\f]
3840
3841
where \f$\eta_{ji}\f$ stands for \f$\texttt{Moments::nu}_{ji}\f$ .
3842
3843
These values are proved to be invariants to the image scale, rotation, and reflection except the
3844
seventh one, whose sign is changed by reflection. This invariance is proved with the assumption of
3845
infinite image resolution. In case of raster images, the computed Hu invariants for the original and
3846
transformed images are a bit different.
3847
3848
@param moments Input moments computed with moments .
3849
@param hu Output Hu invariants.
3850
3851
@sa matchShapes
3852
 */
3853
CV_EXPORTS void HuMoments( const Moments& moments, double hu[7] );
3854
3855
/** @overload */
3856
CV_EXPORTS_W void HuMoments( const Moments& m, OutputArray hu );
3857
3858
//! @} imgproc_shape
3859
3860
//! @addtogroup imgproc_object
3861
//! @{
3862
3863
//! type of the template matching operation
3864
enum TemplateMatchModes {
3865
    TM_SQDIFF        = 0, /*!< \f[R(x,y)= \sum _{x',y'} (T(x',y')-I(x+x',y+y'))^2\f]
3866
                               with mask:
3867
                               \f[R(x,y)= \sum _{x',y'} \left( (T(x',y')-I(x+x',y+y')) \cdot
3868
                                  M(x',y') \right)^2\f] */
3869
    TM_SQDIFF_NORMED = 1, /*!< \f[R(x,y)= \frac{\sum_{x',y'} (T(x',y')-I(x+x',y+y'))^2}{\sqrt{\sum_{
3870
                                  x',y'}T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}\f]
3871
                               with mask:
3872
                               \f[R(x,y)= \frac{\sum _{x',y'} \left( (T(x',y')-I(x+x',y+y')) \cdot
3873
                                  M(x',y') \right)^2}{\sqrt{\sum_{x',y'} \left( T(x',y') \cdot
3874
                                  M(x',y') \right)^2 \cdot \sum_{x',y'} \left( I(x+x',y+y') \cdot
3875
                                  M(x',y') \right)^2}}\f] */
3876
    TM_CCORR         = 2, /*!< \f[R(x,y)= \sum _{x',y'} (T(x',y') \cdot I(x+x',y+y'))\f]
3877
                               with mask:
3878
                               \f[R(x,y)= \sum _{x',y'} (T(x',y') \cdot I(x+x',y+y') \cdot M(x',y')
3879
                                  ^2)\f] */
3880
    TM_CCORR_NORMED  = 3, /*!< \f[R(x,y)= \frac{\sum_{x',y'} (T(x',y') \cdot I(x+x',y+y'))}{\sqrt{
3881
                                  \sum_{x',y'}T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}\f]
3882
                               with mask:
3883
                               \f[R(x,y)= \frac{\sum_{x',y'} (T(x',y') \cdot I(x+x',y+y') \cdot
3884
                                  M(x',y')^2)}{\sqrt{\sum_{x',y'} \left( T(x',y') \cdot M(x',y')
3885
                                  \right)^2 \cdot \sum_{x',y'} \left( I(x+x',y+y') \cdot M(x',y')
3886
                                  \right)^2}}\f] */
3887
    TM_CCOEFF        = 4, /*!< \f[R(x,y)= \sum _{x',y'} (T'(x',y') \cdot I'(x+x',y+y'))\f]
3888
                               where
3889
                               \f[\begin{array}{l} T'(x',y')=T(x',y') - 1/(w \cdot h) \cdot \sum _{
3890
                                  x'',y''} T(x'',y'') \\ I'(x+x',y+y')=I(x+x',y+y') - 1/(w \cdot h)
3891
                                  \cdot \sum _{x'',y''} I(x+x'',y+y'') \end{array}\f]
3892
                               with mask:
3893
                               \f[\begin{array}{l} T'(x',y')=M(x',y') \cdot \left( T(x',y') -
3894
                                  \frac{1}{\sum _{x'',y''} M(x'',y'')} \cdot \sum _{x'',y''}
3895
                                  (T(x'',y'') \cdot M(x'',y'')) \right) \\ I'(x+x',y+y')=M(x',y')
3896
                                  \cdot \left( I(x+x',y+y') - \frac{1}{\sum _{x'',y''} M(x'',y'')}
3897
                                  \cdot \sum _{x'',y''} (I(x+x'',y+y'') \cdot M(x'',y'')) \right)
3898
                                  \end{array} \f] */
3899
    TM_CCOEFF_NORMED = 5  /*!< \f[R(x,y)= \frac{ \sum_{x',y'} (T'(x',y') \cdot I'(x+x',y+y')) }{
3900
                                  \sqrt{\sum_{x',y'}T'(x',y')^2 \cdot \sum_{x',y'} I'(x+x',y+y')^2}
3901
                                  }\f] */
3902
};
3903
3904
/** @example samples/cpp/tutorial_code/Histograms_Matching/MatchTemplate_Demo.cpp
3905
An example using Template Matching algorithm
3906
*/
3907
3908
/** @brief Compares a template against overlapped image regions.
3909
3910
The function slides through image , compares the overlapped patches of size \f$w \times h\f$ against
3911
templ using the specified method and stores the comparison results in result . #TemplateMatchModes
3912
describes the formulae for the available comparison methods ( \f$I\f$ denotes image, \f$T\f$
3913
template, \f$R\f$ result, \f$M\f$ the optional mask ). The summation is done over template and/or
3914
the image patch: \f$x' = 0...w-1, y' = 0...h-1\f$
3915
3916
After the function finishes the comparison, the best matches can be found as global minimums (when
3917
#TM_SQDIFF was used) or maximums (when #TM_CCORR or #TM_CCOEFF was used) using the
3918
#minMaxLoc function. In case of a color image, template summation in the numerator and each sum in
3919
the denominator is done over all of the channels and separate mean values are used for each channel.
3920
That is, the function can take a color template and a color image. The result will still be a
3921
single-channel image, which is easier to analyze.
3922
3923
@param image Image where the search is running. It must be 8-bit or 32-bit floating-point.
3924
@param templ Searched template. It must be not greater than the source image and have the same
3925
data type.
3926
@param result Map of comparison results. It must be single-channel 32-bit floating-point. If image
3927
is \f$W \times H\f$ and templ is \f$w \times h\f$ , then result is \f$(W-w+1) \times (H-h+1)\f$ .
3928
@param method Parameter specifying the comparison method, see #TemplateMatchModes
3929
@param mask Optional mask. It must have the same size as templ. It must either have the same number
3930
            of channels as template or only one channel, which is then used for all template and
3931
            image channels. If the data type is #CV_8U, the mask is interpreted as a binary mask,
3932
            meaning only elements where mask is nonzero are used and are kept unchanged independent
3933
            of the actual mask value (weight equals 1). For data type #CV_32F, the mask values are
3934
            used as weights. The exact formulas are documented in #TemplateMatchModes.
3935
 */
3936
CV_EXPORTS_W void matchTemplate( InputArray image, InputArray templ,
3937
                                 OutputArray result, int method, InputArray mask = noArray() );
3938
3939
//! @}
3940
3941
//! @addtogroup imgproc_shape
3942
//! @{
3943
3944
/** @example samples/cpp/connected_components.cpp
3945
This program demonstrates connected components and use of the trackbar
3946
*/
3947
3948
/** @brief computes the connected components labeled image of boolean image
3949
3950
image with 4 or 8 way connectivity - returns N, the total number of labels [0, N-1] where 0
3951
represents the background label. ltype specifies the output label image type, an important
3952
consideration based on the total number of labels or alternatively the total number of pixels in
3953
the source image. ccltype specifies the connected components labeling algorithm to use, currently
3954
Bolelli (Spaghetti) @cite Bolelli2019, Grana (BBDT) @cite Grana2010 and Wu's (SAUF) @cite Wu2009 algorithms
3955
are supported, see the #ConnectedComponentsAlgorithmsTypes for details. Note that SAUF algorithm forces
3956
a row major ordering of labels while Spaghetti and BBDT do not.
3957
This function uses parallel version of the algorithms if at least one allowed
3958
parallel framework is enabled and if the rows of the image are at least twice the number returned by #getNumberOfCPUs.
3959
3960
@param image the 8-bit single-channel image to be labeled
3961
@param labels destination labeled image
3962
@param connectivity 8 or 4 for 8-way or 4-way connectivity respectively
3963
@param ltype output image label type. Currently CV_32S and CV_16U are supported.
3964
@param ccltype connected components algorithm type (see the #ConnectedComponentsAlgorithmsTypes).
3965
*/
3966
CV_EXPORTS_AS(connectedComponentsWithAlgorithm) int connectedComponents(InputArray image, OutputArray labels,
3967
                                                                        int connectivity, int ltype, int ccltype);
3968
3969
3970
/** @overload
3971
3972
@param image the 8-bit single-channel image to be labeled
3973
@param labels destination labeled image
3974
@param connectivity 8 or 4 for 8-way or 4-way connectivity respectively
3975
@param ltype output image label type. Currently CV_32S and CV_16U are supported.
3976
*/
3977
CV_EXPORTS_W int connectedComponents(InputArray image, OutputArray labels,
3978
                                     int connectivity = 8, int ltype = CV_32S);
3979
3980
3981
/** @brief computes the connected components labeled image of boolean image and also produces a statistics output for each label
3982
3983
image with 4 or 8 way connectivity - returns N, the total number of labels [0, N-1] where 0
3984
represents the background label. ltype specifies the output label image type, an important
3985
consideration based on the total number of labels or alternatively the total number of pixels in
3986
the source image. ccltype specifies the connected components labeling algorithm to use, currently
3987
Bolelli (Spaghetti) @cite Bolelli2019, Grana (BBDT) @cite Grana2010 and Wu's (SAUF) @cite Wu2009 algorithms
3988
are supported, see the #ConnectedComponentsAlgorithmsTypes for details. Note that SAUF algorithm forces
3989
a row major ordering of labels while Spaghetti and BBDT do not.
3990
This function uses parallel version of the algorithms (statistics included) if at least one allowed
3991
parallel framework is enabled and if the rows of the image are at least twice the number returned by #getNumberOfCPUs.
3992
3993
@param image the 8-bit single-channel image to be labeled
3994
@param labels destination labeled image
3995
@param stats statistics output for each label, including the background label.
3996
Statistics are accessed via stats(label, COLUMN) where COLUMN is one of
3997
#ConnectedComponentsTypes, selecting the statistic. The data type is CV_32S.
3998
@param centroids centroid output for each label, including the background label. Centroids are
3999
accessed via centroids(label, 0) for x and centroids(label, 1) for y. The data type CV_64F.
4000
@param connectivity 8 or 4 for 8-way or 4-way connectivity respectively
4001
@param ltype output image label type. Currently CV_32S and CV_16U are supported.
4002
@param ccltype connected components algorithm type (see #ConnectedComponentsAlgorithmsTypes).
4003
*/
4004
CV_EXPORTS_AS(connectedComponentsWithStatsWithAlgorithm) int connectedComponentsWithStats(InputArray image, OutputArray labels,
4005
                                                                                          OutputArray stats, OutputArray centroids,
4006
                                                                                          int connectivity, int ltype, int ccltype);
4007
4008
/** @overload
4009
@param image the 8-bit single-channel image to be labeled
4010
@param labels destination labeled image
4011
@param stats statistics output for each label, including the background label.
4012
Statistics are accessed via stats(label, COLUMN) where COLUMN is one of
4013
#ConnectedComponentsTypes, selecting the statistic. The data type is CV_32S.
4014
@param centroids centroid output for each label, including the background label. Centroids are
4015
accessed via centroids(label, 0) for x and centroids(label, 1) for y. The data type CV_64F.
4016
@param connectivity 8 or 4 for 8-way or 4-way connectivity respectively
4017
@param ltype output image label type. Currently CV_32S and CV_16U are supported.
4018
*/
4019
CV_EXPORTS_W int connectedComponentsWithStats(InputArray image, OutputArray labels,
4020
                                              OutputArray stats, OutputArray centroids,
4021
                                              int connectivity = 8, int ltype = CV_32S);
4022
4023
4024
/** @brief Finds contours in a binary image.
4025
4026
The function retrieves contours from the binary image using the algorithm @cite Suzuki85 . The contours
4027
are a useful tool for shape analysis and object detection and recognition. See squares.cpp in the
4028
OpenCV sample directory.
4029
@note Since opencv 3.2 source image is not modified by this function.
4030
4031
@param image Source, an 8-bit single-channel image. Non-zero pixels are treated as 1's. Zero
4032
pixels remain 0's, so the image is treated as binary . You can use #compare, #inRange, #threshold ,
4033
#adaptiveThreshold, #Canny, and others to create a binary image out of a grayscale or color one.
4034
If mode equals to #RETR_CCOMP or #RETR_FLOODFILL, the input can also be a 32-bit integer image of labels (CV_32SC1).
4035
@param contours Detected contours. Each contour is stored as a vector of points (e.g.
4036
std::vector<std::vector<cv::Point> >).
4037
@param hierarchy Optional output vector (e.g. std::vector<cv::Vec4i>), containing information about the image topology. It has
4038
as many elements as the number of contours. For each i-th contour contours[i], the elements
4039
hierarchy[i][0] , hierarchy[i][1] , hierarchy[i][2] , and hierarchy[i][3] are set to 0-based indices
4040
in contours of the next and previous contours at the same hierarchical level, the first child
4041
contour and the parent contour, respectively. If for the contour i there are no next, previous,
4042
parent, or nested contours, the corresponding elements of hierarchy[i] will be negative.
4043
@note In Python, hierarchy is nested inside a top level array. Use hierarchy[0][i] to access hierarchical elements of i-th contour.
4044
@param mode Contour retrieval mode, see #RetrievalModes
4045
@param method Contour approximation method, see #ContourApproximationModes
4046
@param offset Optional offset by which every contour point is shifted. This is useful if the
4047
contours are extracted from the image ROI and then they should be analyzed in the whole image
4048
context.
4049
 */
4050
CV_EXPORTS_W void findContours( InputArray image, OutputArrayOfArrays contours,
4051
                              OutputArray hierarchy, int mode,
4052
                              int method, Point offset = Point());
4053
4054
/** @overload */
4055
CV_EXPORTS void findContours( InputArray image, OutputArrayOfArrays contours,
4056
                              int mode, int method, Point offset = Point());
4057
4058
//! @brief Find contours using link runs algorithm
4059
//!
4060
//! This function implements an algorithm different from cv::findContours:
4061
//! - doesn't allocate temporary image internally, thus it has reduced memory consumption
4062
//! - supports CV_8UC1 images only
4063
//! - outputs 2-level hierarhy only (RETR_CCOMP mode)
4064
//! - doesn't support approximation change other than CHAIN_APPROX_SIMPLE
4065
//! In all other aspects this function is compatible with cv::findContours.
4066
CV_EXPORTS_W void findContoursLinkRuns(InputArray image, OutputArrayOfArrays contours, OutputArray hierarchy);
4067
4068
//! @overload
4069
CV_EXPORTS_W void findContoursLinkRuns(InputArray image, OutputArrayOfArrays contours);
4070
4071
/** @brief Approximates a polygonal curve(s) with the specified precision.
4072
4073
The function cv::approxPolyDP approximates a curve or a polygon with another curve/polygon with less
4074
vertices so that the distance between them is less or equal to the specified precision. It uses the
4075
Douglas-Peucker algorithm <https://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm>
4076
4077
@param curve Input vector of a 2D point stored in std::vector or Mat
4078
@param approxCurve Result of the approximation. The type should match the type of the input curve.
4079
@param epsilon Parameter specifying the approximation accuracy. This is the maximum distance
4080
between the original curve and its approximation.
4081
@param closed If true, the approximated curve is closed (its first and last vertices are
4082
connected). Otherwise, it is not closed.
4083
 */
4084
CV_EXPORTS_W void approxPolyDP( InputArray curve,
4085
                                OutputArray approxCurve,
4086
                                double epsilon, bool closed );
4087
4088
/** @brief Approximates a polygon with a convex hull with a specified accuracy and number of sides.
4089
4090
The cv::approxPolyN function approximates a polygon with a convex hull
4091
so that the difference between the contour area of the original contour and the new polygon is minimal.
4092
It uses a greedy algorithm for contracting two vertices into one in such a way that the additional area is minimal.
4093
Straight lines formed by each edge of the convex contour are drawn and the areas of the resulting triangles are considered.
4094
Each vertex will lie either on the original contour or outside it.
4095
4096
The algorithm based on the paper @cite LowIlie2003 .
4097
4098
@param curve Input vector of a 2D points stored in std::vector or Mat, points must be float or integer.
4099
@param approxCurve Result of the approximation. The type is vector of a 2D point (Point2f or Point) in std::vector or Mat.
4100
@param nsides The parameter defines the number of sides of the result polygon.
4101
@param epsilon_percentage defines the percentage of the maximum of additional area.
4102
If it equals -1, it is not used. Otherwise algorighm stops if additional area is greater than contourArea(_curve) * percentage.
4103
If additional area exceeds the limit, algorithm returns as many vertices as there were at the moment the limit was exceeded.
4104
@param ensure_convex If it is true, algorithm creates a convex hull of input contour. Otherwise input vector should be convex.
4105
 */
4106
CV_EXPORTS_W void approxPolyN(InputArray curve, OutputArray approxCurve,
4107
                              int nsides, float epsilon_percentage = -1.0,
4108
                              bool ensure_convex = true);
4109
4110
/** @brief Calculates a contour perimeter or a curve length.
4111
4112
The function computes a curve length or a closed contour perimeter.
4113
4114
@param curve Input vector of 2D points, stored in std::vector or Mat.
4115
@param closed Flag indicating whether the curve is closed or not.
4116
 */
4117
CV_EXPORTS_W double arcLength( InputArray curve, bool closed );
4118
4119
/** @brief Calculates the up-right bounding rectangle of a point set or non-zero pixels of gray-scale image.
4120
4121
The function calculates and returns the minimal up-right bounding rectangle for the specified point set or
4122
non-zero pixels of gray-scale image.
4123
4124
@param array Input gray-scale image or 2D point set, stored in std::vector or Mat.
4125
 */
4126
CV_EXPORTS_W Rect boundingRect( InputArray array );
4127
4128
/** @brief Calculates a contour area.
4129
4130
The function computes a contour area. Similarly to moments , the area is computed using the Green
4131
formula. Thus, the returned area and the number of non-zero pixels, if you draw the contour using
4132
#drawContours or #fillPoly , can be different. Also, the function will most certainly give a wrong
4133
results for contours with self-intersections.
4134
4135
Example:
4136
@code
4137
    vector<Point> contour;
4138
    contour.push_back(Point2f(0, 0));
4139
    contour.push_back(Point2f(10, 0));
4140
    contour.push_back(Point2f(10, 10));
4141
    contour.push_back(Point2f(5, 4));
4142
4143
    double area0 = contourArea(contour);
4144
    vector<Point> approx;
4145
    approxPolyDP(contour, approx, 5, true);
4146
    double area1 = contourArea(approx);
4147
4148
    cout << "area0 =" << area0 << endl <<
4149
            "area1 =" << area1 << endl <<
4150
            "approx poly vertices" << approx.size() << endl;
4151
@endcode
4152
@param contour Input vector of 2D points (contour vertices), stored in std::vector or Mat.
4153
@param oriented Oriented area flag. If it is true, the function returns a signed area value,
4154
depending on the contour orientation (clockwise or counter-clockwise). Using this feature you can
4155
determine orientation of a contour by taking the sign of an area. By default, the parameter is
4156
false, which means that the absolute value is returned.
4157
 */
4158
CV_EXPORTS_W double contourArea( InputArray contour, bool oriented = false );
4159
4160
/** @brief Finds a rotated rectangle of the minimum area enclosing the input 2D point set.
4161
4162
The function calculates and returns the minimum-area bounding rectangle (possibly rotated) for a
4163
specified point set. The angle of rotation represents the angle between the line connecting the starting
4164
and ending points (based on the clockwise order with greatest index for the corner with greatest \f$y\f$)
4165
and the horizontal axis. This angle always falls between \f$[-90, 0)\f$ because, if the object
4166
rotates more than a rect angle, the next edge is used to measure the angle. The starting and ending points change
4167
as the object rotates.Developer should keep in mind that the returned RotatedRect can contain negative
4168
indices when data is close to the containing Mat element boundary.
4169
4170
@param points Input vector of 2D points, stored in std::vector\<\> or Mat
4171
 */
4172
CV_EXPORTS_W RotatedRect minAreaRect( InputArray points );
4173
4174
/** @brief Finds the four vertices of a rotated rect. Useful to draw the rotated rectangle.
4175
4176
The function finds the four vertices of a rotated rectangle. The four vertices are returned
4177
in clockwise order starting from the point with greatest \f$y\f$. If two points have the
4178
same \f$y\f$ coordinate the rightmost is the starting point. This function is useful to draw the
4179
rectangle. In C++, instead of using this function, you can directly use RotatedRect::points method. Please
4180
visit the @ref tutorial_bounding_rotated_ellipses "tutorial on Creating Bounding rotated boxes and ellipses for contours" for more information.
4181
4182
@param box The input rotated rectangle. It may be the output of @ref minAreaRect.
4183
@param points The output array of four vertices of rectangles.
4184
 */
4185
CV_EXPORTS_W void boxPoints(RotatedRect box, OutputArray points);
4186
4187
/** @brief Finds a circle of the minimum area enclosing a 2D point set.
4188
4189
The function finds the minimal enclosing circle of a 2D point set using an iterative algorithm.
4190
4191
@param points Input vector of 2D points, stored in std::vector\<\> or Mat
4192
@param center Output center of the circle.
4193
@param radius Output radius of the circle.
4194
 */
4195
CV_EXPORTS_W void minEnclosingCircle( InputArray points,
4196
                                      CV_OUT Point2f& center, CV_OUT float& radius );
4197
4198
/** @example samples/cpp/minarea.cpp
4199
*/
4200
4201
/** @brief Finds a triangle of minimum area enclosing a 2D point set and returns its area.
4202
4203
The function finds a triangle of minimum area enclosing the given set of 2D points and returns its
4204
area. The output for a given 2D point set is shown in the image below. 2D points are depicted in
4205
*red* and the enclosing triangle in *yellow*.
4206
4207
![Sample output of the minimum enclosing triangle function](pics/minenclosingtriangle.png)
4208
4209
The implementation of the algorithm is based on O'Rourke's @cite ORourke86 and Klee and Laskowski's
4210
@cite KleeLaskowski85 papers. O'Rourke provides a \f$\theta(n)\f$ algorithm for finding the minimal
4211
enclosing triangle of a 2D convex polygon with n vertices. Since the #minEnclosingTriangle function
4212
takes a 2D point set as input an additional preprocessing step of computing the convex hull of the
4213
2D point set is required. The complexity of the #convexHull function is \f$O(n log(n))\f$ which is higher
4214
than \f$\theta(n)\f$. Thus the overall complexity of the function is \f$O(n log(n))\f$.
4215
4216
@param points Input vector of 2D points with depth CV_32S or CV_32F, stored in std::vector\<\> or Mat
4217
@param triangle Output vector of three 2D points defining the vertices of the triangle. The depth
4218
of the OutputArray must be CV_32F.
4219
 */
4220
CV_EXPORTS_W double minEnclosingTriangle( InputArray points, CV_OUT OutputArray triangle );
4221
4222
/** @brief Compares two shapes.
4223
4224
The function compares two shapes. All three implemented methods use the Hu invariants (see #HuMoments)
4225
4226
@param contour1 First contour or grayscale image.
4227
@param contour2 Second contour or grayscale image.
4228
@param method Comparison method, see #ShapeMatchModes
4229
@param parameter Method-specific parameter (not supported now).
4230
 */
4231
CV_EXPORTS_W double matchShapes( InputArray contour1, InputArray contour2,
4232
                                 int method, double parameter );
4233
4234
/** @example samples/cpp/convexhull.cpp
4235
An example using the convexHull functionality
4236
*/
4237
4238
/** @brief Finds the convex hull of a point set.
4239
4240
The function cv::convexHull finds the convex hull of a 2D point set using the Sklansky's algorithm @cite Sklansky82
4241
that has *O(N logN)* complexity in the current implementation.
4242
4243
@param points Input 2D point set, stored in std::vector or Mat.
4244
@param hull Output convex hull. It is either an integer vector of indices or vector of points. In
4245
the first case, the hull elements are 0-based indices of the convex hull points in the original
4246
array (since the set of convex hull points is a subset of the original point set). In the second
4247
case, hull elements are the convex hull points themselves.
4248
@param clockwise Orientation flag. If it is true, the output convex hull is oriented clockwise.
4249
Otherwise, it is oriented counter-clockwise. The assumed coordinate system has its X axis pointing
4250
to the right, and its Y axis pointing upwards.
4251
@param returnPoints Operation flag. In case of a matrix, when the flag is true, the function
4252
returns convex hull points. Otherwise, it returns indices of the convex hull points. When the
4253
output array is std::vector, the flag is ignored, and the output depends on the type of the
4254
vector: std::vector\<int\> implies returnPoints=false, std::vector\<Point\> implies
4255
returnPoints=true.
4256
4257
@note `points` and `hull` should be different arrays, inplace processing isn't supported.
4258
4259
Check @ref tutorial_hull "the corresponding tutorial" for more details.
4260
4261
useful links:
4262
4263
https://www.learnopencv.com/convex-hull-using-opencv-in-python-and-c/
4264
 */
4265
CV_EXPORTS_W void convexHull( InputArray points, OutputArray hull,
4266
                              bool clockwise = false, bool returnPoints = true );
4267
4268
/** @brief Finds the convexity defects of a contour.
4269
4270
The figure below displays convexity defects of a hand contour:
4271
4272
![image](pics/defects.png)
4273
4274
@param contour Input contour.
4275
@param convexhull Convex hull obtained using convexHull that should contain indices of the contour
4276
points that make the hull.
4277
@param convexityDefects The output vector of convexity defects. In C++ and the new Python/Java
4278
interface each convexity defect is represented as 4-element integer vector (a.k.a. #Vec4i):
4279
(start_index, end_index, farthest_pt_index, fixpt_depth), where indices are 0-based indices
4280
in the original contour of the convexity defect beginning, end and the farthest point, and
4281
fixpt_depth is fixed-point approximation (with 8 fractional bits) of the distance between the
4282
farthest contour point and the hull. That is, to get the floating-point value of the depth will be
4283
fixpt_depth/256.0.
4284
 */
4285
CV_EXPORTS_W void convexityDefects( InputArray contour, InputArray convexhull, OutputArray convexityDefects );
4286
4287
/** @brief Tests a contour convexity.
4288
4289
The function tests whether the input contour is convex or not. The contour must be simple, that is,
4290
without self-intersections. Otherwise, the function output is undefined.
4291
4292
@param contour Input vector of 2D points, stored in std::vector\<\> or Mat
4293
 */
4294
CV_EXPORTS_W bool isContourConvex( InputArray contour );
4295
4296
/** @example samples/cpp/intersectExample.cpp
4297
Examples of how intersectConvexConvex works
4298
*/
4299
4300
/** @brief Finds intersection of two convex polygons
4301
4302
@param p1 First polygon
4303
@param p2 Second polygon
4304
@param p12 Output polygon describing the intersecting area
4305
@param handleNested When true, an intersection is found if one of the polygons is fully enclosed in the other.
4306
When false, no intersection is found. If the polygons share a side or the vertex of one polygon lies on an edge
4307
of the other, they are not considered nested and an intersection will be found regardless of the value of handleNested.
4308
4309
@returns Area of intersecting polygon. May be negative, if algorithm has not converged, e.g. non-convex input.
4310
4311
@note intersectConvexConvex doesn't confirm that both polygons are convex and will return invalid results if they aren't.
4312
 */
4313
CV_EXPORTS_W float intersectConvexConvex( InputArray p1, InputArray p2,
4314
                                          OutputArray p12, bool handleNested = true );
4315
4316
/** @example samples/cpp/fitellipse.cpp
4317
An example using the fitEllipse technique
4318
*/
4319
4320
/** @brief Fits an ellipse around a set of 2D points.
4321
4322
The function calculates the ellipse that fits (in a least-squares sense) a set of 2D points best of
4323
all. It returns the rotated rectangle in which the ellipse is inscribed. The first algorithm described by @cite Fitzgibbon95
4324
is used. Developer should keep in mind that it is possible that the returned
4325
ellipse/rotatedRect data contains negative indices, due to the data points being close to the
4326
border of the containing Mat element.
4327
4328
@param points Input 2D point set, stored in std::vector\<\> or Mat
4329
4330
@note Input point types are @ref Point2i or @ref Point2f and at least 5 points are required.
4331
@note @ref getClosestEllipsePoints function can be used to compute the ellipse fitting error.
4332
 */
4333
CV_EXPORTS_W RotatedRect fitEllipse( InputArray points );
4334
4335
/** @brief Fits an ellipse around a set of 2D points.
4336
4337
 The function calculates the ellipse that fits a set of 2D points.
4338
 It returns the rotated rectangle in which the ellipse is inscribed.
4339
 The Approximate Mean Square (AMS) proposed by @cite Taubin1991 is used.
4340
4341
 For an ellipse, this basis set is \f$ \chi= \left(x^2, x y, y^2, x, y, 1\right) \f$,
4342
 which is a set of six free coefficients \f$ A^T=\left\{A_{\text{xx}},A_{\text{xy}},A_{\text{yy}},A_x,A_y,A_0\right\} \f$.
4343
 However, to specify an ellipse, all that is needed is five numbers; the major and minor axes lengths \f$ (a,b) \f$,
4344
 the position \f$ (x_0,y_0) \f$, and the orientation \f$ \theta \f$. This is because the basis set includes lines,
4345
 quadratics, parabolic and hyperbolic functions as well as elliptical functions as possible fits.
4346
 If the fit is found to be a parabolic or hyperbolic function then the standard #fitEllipse method is used.
4347
 The AMS method restricts the fit to parabolic, hyperbolic and elliptical curves
4348
 by imposing the condition that \f$ A^T ( D_x^T D_x  +   D_y^T D_y) A = 1 \f$ where
4349
 the matrices \f$ Dx \f$ and \f$ Dy \f$ are the partial derivatives of the design matrix \f$ D \f$ with
4350
 respect to x and y. The matrices are formed row by row applying the following to
4351
 each of the points in the set:
4352
 \f{align*}{
4353
 D(i,:)&=\left\{x_i^2, x_i y_i, y_i^2, x_i, y_i, 1\right\} &
4354
 D_x(i,:)&=\left\{2 x_i,y_i,0,1,0,0\right\} &
4355
 D_y(i,:)&=\left\{0,x_i,2 y_i,0,1,0\right\}
4356
 \f}
4357
 The AMS method minimizes the cost function
4358
 \f{equation*}{
4359
 \epsilon ^2=\frac{ A^T D^T D A }{ A^T (D_x^T D_x +  D_y^T D_y) A^T }
4360
 \f}
4361
4362
 The minimum cost is found by solving the generalized eigenvalue problem.
4363
4364
 \f{equation*}{
4365
 D^T D A = \lambda  \left( D_x^T D_x +  D_y^T D_y\right) A
4366
 \f}
4367
4368
 @param points Input 2D point set, stored in std::vector\<\> or Mat
4369
4370
 @note Input point types are @ref Point2i or @ref Point2f and at least 5 points are required.
4371
 @note @ref getClosestEllipsePoints function can be used to compute the ellipse fitting error.
4372
 */
4373
CV_EXPORTS_W RotatedRect fitEllipseAMS( InputArray points );
4374
4375
4376
/** @brief Fits an ellipse around a set of 2D points.
4377
4378
 The function calculates the ellipse that fits a set of 2D points.
4379
 It returns the rotated rectangle in which the ellipse is inscribed.
4380
 The Direct least square (Direct) method by @cite oy1998NumericallySD is used.
4381
4382
 For an ellipse, this basis set is \f$ \chi= \left(x^2, x y, y^2, x, y, 1\right) \f$,
4383
 which is a set of six free coefficients \f$ A^T=\left\{A_{\text{xx}},A_{\text{xy}},A_{\text{yy}},A_x,A_y,A_0\right\} \f$.
4384
 However, to specify an ellipse, all that is needed is five numbers; the major and minor axes lengths \f$ (a,b) \f$,
4385
 the position \f$ (x_0,y_0) \f$, and the orientation \f$ \theta \f$. This is because the basis set includes lines,
4386
 quadratics, parabolic and hyperbolic functions as well as elliptical functions as possible fits.
4387
 The Direct method confines the fit to ellipses by ensuring that \f$ 4 A_{xx} A_{yy}- A_{xy}^2 > 0 \f$.
4388
 The condition imposed is that \f$ 4 A_{xx} A_{yy}- A_{xy}^2=1 \f$ which satisfies the inequality
4389
 and as the coefficients can be arbitrarily scaled is not overly restrictive.
4390
4391
 \f{equation*}{
4392
 \epsilon ^2= A^T D^T D A \quad \text{with} \quad A^T C A =1 \quad \text{and} \quad C=\left(\begin{matrix}
4393
 0 & 0  & 2  & 0  & 0  &  0  \\
4394
 0 & -1  & 0  & 0  & 0  &  0 \\
4395
 2 & 0  & 0  & 0  & 0  &  0 \\
4396
 0 & 0  & 0  & 0  & 0  &  0 \\
4397
 0 & 0  & 0  & 0  & 0  &  0 \\
4398
 0 & 0  & 0  & 0  & 0  &  0
4399
 \end{matrix} \right)
4400
 \f}
4401
4402
 The minimum cost is found by solving the generalized eigenvalue problem.
4403
4404
 \f{equation*}{
4405
 D^T D A = \lambda  \left( C\right) A
4406
 \f}
4407
4408
 The system produces only one positive eigenvalue \f$ \lambda\f$ which is chosen as the solution
4409
 with its eigenvector \f$\mathbf{u}\f$. These are used to find the coefficients
4410
4411
 \f{equation*}{
4412
 A = \sqrt{\frac{1}{\mathbf{u}^T C \mathbf{u}}}  \mathbf{u}
4413
 \f}
4414
 The scaling factor guarantees that  \f$A^T C A =1\f$.
4415
4416
 @param points Input 2D point set, stored in std::vector\<\> or Mat
4417
4418
 @note Input point types are @ref Point2i or @ref Point2f and at least 5 points are required.
4419
 @note @ref getClosestEllipsePoints function can be used to compute the ellipse fitting error.
4420
 */
4421
CV_EXPORTS_W RotatedRect fitEllipseDirect( InputArray points );
4422
4423
/** @brief Compute for each 2d point the nearest 2d point located on a given ellipse.
4424
4425
 The function computes the nearest 2d location on a given ellipse for a vector of 2d points and is based on @cite Chatfield2017 code.
4426
 This function can be used to compute for instance the ellipse fitting error.
4427
4428
 @param ellipse_params Ellipse parameters
4429
 @param points Input 2d points
4430
 @param closest_pts For each 2d point, their corresponding closest 2d point located on a given ellipse
4431
4432
 @note Input point types are @ref Point2i or @ref Point2f
4433
 @see fitEllipse, fitEllipseAMS, fitEllipseDirect
4434
 */
4435
CV_EXPORTS_W void getClosestEllipsePoints( const RotatedRect& ellipse_params, InputArray points, OutputArray closest_pts );
4436
4437
/** @brief Fits a line to a 2D or 3D point set.
4438
4439
The function fitLine fits a line to a 2D or 3D point set by minimizing \f$\sum_i \rho(r_i)\f$ where
4440
\f$r_i\f$ is a distance between the \f$i^{th}\f$ point, the line and \f$\rho(r)\f$ is a distance function, one
4441
of the following:
4442
-  DIST_L2
4443
\f[\rho (r) = r^2/2  \quad \text{(the simplest and the fastest least-squares method)}\f]
4444
- DIST_L1
4445
\f[\rho (r) = r\f]
4446
- DIST_L12
4447
\f[\rho (r) = 2  \cdot ( \sqrt{1 + \frac{r^2}{2}} - 1)\f]
4448
- DIST_FAIR
4449
\f[\rho \left (r \right ) = C^2  \cdot \left (  \frac{r}{C} -  \log{\left(1 + \frac{r}{C}\right)} \right )  \quad \text{where} \quad C=1.3998\f]
4450
- DIST_WELSCH
4451
\f[\rho \left (r \right ) =  \frac{C^2}{2} \cdot \left ( 1 -  \exp{\left(-\left(\frac{r}{C}\right)^2\right)} \right )  \quad \text{where} \quad C=2.9846\f]
4452
- DIST_HUBER
4453
\f[\rho (r) =  \fork{r^2/2}{if \(r < C\)}{C \cdot (r-C/2)}{otherwise} \quad \text{where} \quad C=1.345\f]
4454
4455
The algorithm is based on the M-estimator ( <https://en.wikipedia.org/wiki/M-estimator> ) technique
4456
that iteratively fits the line using the weighted least-squares algorithm. After each iteration the
4457
weights \f$w_i\f$ are adjusted to be inversely proportional to \f$\rho(r_i)\f$ .
4458
4459
@param points Input vector of 2D or 3D points, stored in std::vector\<\> or Mat.
4460
@param line Output line parameters. In case of 2D fitting, it should be a vector of 4 elements
4461
(like Vec4f) - (vx, vy, x0, y0), where (vx, vy) is a normalized vector collinear to the line and
4462
(x0, y0) is a point on the line. In case of 3D fitting, it should be a vector of 6 elements (like
4463
Vec6f) - (vx, vy, vz, x0, y0, z0), where (vx, vy, vz) is a normalized vector collinear to the line
4464
and (x0, y0, z0) is a point on the line.
4465
@param distType Distance used by the M-estimator, see #DistanceTypes
4466
@param param Numerical parameter ( C ) for some types of distances. If it is 0, an optimal value
4467
is chosen.
4468
@param reps Sufficient accuracy for the radius (distance between the coordinate origin and the line).
4469
@param aeps Sufficient accuracy for the angle. 0.01 would be a good default value for reps and aeps.
4470
 */
4471
CV_EXPORTS_W void fitLine( InputArray points, OutputArray line, int distType,
4472
                           double param, double reps, double aeps );
4473
4474
/** @brief Performs a point-in-contour test.
4475
4476
The function determines whether the point is inside a contour, outside, or lies on an edge (or
4477
coincides with a vertex). It returns positive (inside), negative (outside), or zero (on an edge)
4478
value, correspondingly. When measureDist=false , the return value is +1, -1, and 0, respectively.
4479
Otherwise, the return value is a signed distance between the point and the nearest contour edge.
4480
4481
See below a sample output of the function where each image pixel is tested against the contour:
4482
4483
![sample output](pics/pointpolygon.png)
4484
4485
@param contour Input contour.
4486
@param pt Point tested against the contour.
4487
@param measureDist If true, the function estimates the signed distance from the point to the
4488
nearest contour edge. Otherwise, the function only checks if the point is inside a contour or not.
4489
 */
4490
CV_EXPORTS_W double pointPolygonTest( InputArray contour, Point2f pt, bool measureDist );
4491
4492
/** @brief Finds out if there is any intersection between two rotated rectangles.
4493
4494
If there is then the vertices of the intersecting region are returned as well.
4495
4496
Below are some examples of intersection configurations. The hatched pattern indicates the
4497
intersecting region and the red vertices are returned by the function.
4498
4499
![intersection examples](pics/intersection.png)
4500
4501
@param rect1 First rectangle
4502
@param rect2 Second rectangle
4503
@param intersectingRegion The output array of the vertices of the intersecting region. It returns
4504
at most 8 vertices. Stored as std::vector\<cv::Point2f\> or cv::Mat as Mx1 of type CV_32FC2.
4505
@returns One of #RectanglesIntersectTypes
4506
 */
4507
CV_EXPORTS_W int rotatedRectangleIntersection( const RotatedRect& rect1, const RotatedRect& rect2, OutputArray intersectingRegion  );
4508
4509
/** @brief Creates a smart pointer to a cv::GeneralizedHoughBallard class and initializes it.
4510
*/
4511
CV_EXPORTS_W Ptr<GeneralizedHoughBallard> createGeneralizedHoughBallard();
4512
4513
/** @brief Creates a smart pointer to a cv::GeneralizedHoughGuil class and initializes it.
4514
*/
4515
CV_EXPORTS_W Ptr<GeneralizedHoughGuil> createGeneralizedHoughGuil();
4516
4517
//! @} imgproc_shape
4518
4519
//! @addtogroup imgproc_colormap
4520
//! @{
4521
4522
//! GNU Octave/MATLAB equivalent colormaps
4523
enum ColormapTypes
4524
{
4525
    COLORMAP_AUTUMN = 0, //!< ![autumn](pics/colormaps/colorscale_autumn.jpg)
4526
    COLORMAP_BONE = 1, //!< ![bone](pics/colormaps/colorscale_bone.jpg)
4527
    COLORMAP_JET = 2, //!< ![jet](pics/colormaps/colorscale_jet.jpg)
4528
    COLORMAP_WINTER = 3, //!< ![winter](pics/colormaps/colorscale_winter.jpg)
4529
    COLORMAP_RAINBOW = 4, //!< ![rainbow](pics/colormaps/colorscale_rainbow.jpg)
4530
    COLORMAP_OCEAN = 5, //!< ![ocean](pics/colormaps/colorscale_ocean.jpg)
4531
    COLORMAP_SUMMER = 6, //!< ![summer](pics/colormaps/colorscale_summer.jpg)
4532
    COLORMAP_SPRING = 7, //!< ![spring](pics/colormaps/colorscale_spring.jpg)
4533
    COLORMAP_COOL = 8, //!< ![cool](pics/colormaps/colorscale_cool.jpg)
4534
    COLORMAP_HSV = 9, //!< ![HSV](pics/colormaps/colorscale_hsv.jpg)
4535
    COLORMAP_PINK = 10, //!< ![pink](pics/colormaps/colorscale_pink.jpg)
4536
    COLORMAP_HOT = 11, //!< ![hot](pics/colormaps/colorscale_hot.jpg)
4537
    COLORMAP_PARULA = 12, //!< ![parula](pics/colormaps/colorscale_parula.jpg)
4538
    COLORMAP_MAGMA = 13, //!< ![magma](pics/colormaps/colorscale_magma.jpg)
4539
    COLORMAP_INFERNO = 14, //!< ![inferno](pics/colormaps/colorscale_inferno.jpg)
4540
    COLORMAP_PLASMA = 15, //!< ![plasma](pics/colormaps/colorscale_plasma.jpg)
4541
    COLORMAP_VIRIDIS = 16, //!< ![viridis](pics/colormaps/colorscale_viridis.jpg)
4542
    COLORMAP_CIVIDIS = 17, //!< ![cividis](pics/colormaps/colorscale_cividis.jpg)
4543
    COLORMAP_TWILIGHT = 18, //!< ![twilight](pics/colormaps/colorscale_twilight.jpg)
4544
    COLORMAP_TWILIGHT_SHIFTED = 19, //!< ![twilight shifted](pics/colormaps/colorscale_twilight_shifted.jpg)
4545
    COLORMAP_TURBO = 20, //!< ![turbo](pics/colormaps/colorscale_turbo.jpg)
4546
    COLORMAP_DEEPGREEN = 21  //!< ![deepgreen](pics/colormaps/colorscale_deepgreen.jpg)
4547
};
4548
4549
/** @example samples/cpp/falsecolor.cpp
4550
An example using applyColorMap function
4551
*/
4552
4553
/** @brief Applies a GNU Octave/MATLAB equivalent colormap on a given image.
4554
4555
@param src The source image, grayscale or colored of type CV_8UC1 or CV_8UC3. If CV_8UC3, then the CV_8UC1 image is generated internally using cv::COLOR_BGR2GRAY.
4556
@param dst The result is the colormapped source image. Note: Mat::create is called on dst.
4557
@param colormap The colormap to apply, see #ColormapTypes
4558
*/
4559
CV_EXPORTS_W void applyColorMap(InputArray src, OutputArray dst, int colormap);
4560
4561
/** @brief Applies a user colormap on a given image.
4562
4563
@param src The source image, grayscale or colored of type CV_8UC1 or CV_8UC3. If CV_8UC3, then the CV_8UC1 image is generated internally using cv::COLOR_BGR2GRAY.
4564
@param dst The result is the colormapped source image of the same number of channels as userColor. Note: Mat::create is called on dst.
4565
@param userColor The colormap to apply of type CV_8UC1 or CV_8UC3 and size 256
4566
*/
4567
CV_EXPORTS_W void applyColorMap(InputArray src, OutputArray dst, InputArray userColor);
4568
4569
//! @} imgproc_colormap
4570
4571
//! @addtogroup imgproc_draw
4572
//! @{
4573
4574
4575
/** OpenCV color channel order is BGR[A] */
4576
#define CV_RGB(r, g, b)  cv::Scalar((b), (g), (r), 0)
4577
4578
/** @brief Draws a line segment connecting two points.
4579
4580
The function line draws the line segment between pt1 and pt2 points in the image. The line is
4581
clipped by the image boundaries. For non-antialiased lines with integer coordinates, the 8-connected
4582
or 4-connected Bresenham algorithm is used. Thick lines are drawn with rounding endings. Antialiased
4583
lines are drawn using Gaussian filtering.
4584
4585
@param img Image.
4586
@param pt1 First point of the line segment.
4587
@param pt2 Second point of the line segment.
4588
@param color Line color.
4589
@param thickness Line thickness.
4590
@param lineType Type of the line. See #LineTypes.
4591
@param shift Number of fractional bits in the point coordinates.
4592
 */
4593
CV_EXPORTS_W void line(InputOutputArray img, Point pt1, Point pt2, const Scalar& color,
4594
                     int thickness = 1, int lineType = LINE_8, int shift = 0);
4595
4596
/** @brief Draws an arrow segment pointing from the first point to the second one.
4597
4598
The function cv::arrowedLine draws an arrow between pt1 and pt2 points in the image. See also #line.
4599
4600
@param img Image.
4601
@param pt1 The point the arrow starts from.
4602
@param pt2 The point the arrow points to.
4603
@param color Line color.
4604
@param thickness Line thickness.
4605
@param line_type Type of the line. See #LineTypes
4606
@param shift Number of fractional bits in the point coordinates.
4607
@param tipLength The length of the arrow tip in relation to the arrow length
4608
 */
4609
CV_EXPORTS_W void arrowedLine(InputOutputArray img, Point pt1, Point pt2, const Scalar& color,
4610
                     int thickness=1, int line_type=8, int shift=0, double tipLength=0.1);
4611
4612
/** @brief Draws a simple, thick, or filled up-right rectangle.
4613
4614
The function cv::rectangle draws a rectangle outline or a filled rectangle whose two opposite corners
4615
are pt1 and pt2.
4616
4617
@param img Image.
4618
@param pt1 Vertex of the rectangle.
4619
@param pt2 Vertex of the rectangle opposite to pt1 .
4620
@param color Rectangle color or brightness (grayscale image).
4621
@param thickness Thickness of lines that make up the rectangle. Negative values, like #FILLED,
4622
mean that the function has to draw a filled rectangle.
4623
@param lineType Type of the line. See #LineTypes
4624
@param shift Number of fractional bits in the point coordinates.
4625
 */
4626
CV_EXPORTS_W void rectangle(InputOutputArray img, Point pt1, Point pt2,
4627
                          const Scalar& color, int thickness = 1,
4628
                          int lineType = LINE_8, int shift = 0);
4629
4630
/** @overload
4631
4632
use `rec` parameter as alternative specification of the drawn rectangle: `r.tl() and
4633
r.br()-Point(1,1)` are opposite corners
4634
*/
4635
CV_EXPORTS_W void rectangle(InputOutputArray img, Rect rec,
4636
                          const Scalar& color, int thickness = 1,
4637
                          int lineType = LINE_8, int shift = 0);
4638
4639
/** @example samples/cpp/tutorial_code/ImgProc/basic_drawing/Drawing_2.cpp
4640
An example using drawing functions
4641
*/
4642
4643
/** @brief Draws a circle.
4644
4645
The function cv::circle draws a simple or filled circle with a given center and radius.
4646
@param img Image where the circle is drawn.
4647
@param center Center of the circle.
4648
@param radius Radius of the circle.
4649
@param color Circle color.
4650
@param thickness Thickness of the circle outline, if positive. Negative values, like #FILLED,
4651
mean that a filled circle is to be drawn.
4652
@param lineType Type of the circle boundary. See #LineTypes
4653
@param shift Number of fractional bits in the coordinates of the center and in the radius value.
4654
 */
4655
CV_EXPORTS_W void circle(InputOutputArray img, Point center, int radius,
4656
                       const Scalar& color, int thickness = 1,
4657
                       int lineType = LINE_8, int shift = 0);
4658
4659
/** @brief Draws a simple or thick elliptic arc or fills an ellipse sector.
4660
4661
The function cv::ellipse with more parameters draws an ellipse outline, a filled ellipse, an elliptic
4662
arc, or a filled ellipse sector. The drawing code uses general parametric form.
4663
A piecewise-linear curve is used to approximate the elliptic arc
4664
boundary. If you need more control of the ellipse rendering, you can retrieve the curve using
4665
#ellipse2Poly and then render it with #polylines or fill it with #fillPoly. If you use the first
4666
variant of the function and want to draw the whole ellipse, not an arc, pass `startAngle=0` and
4667
`endAngle=360`. If `startAngle` is greater than `endAngle`, they are swapped. The figure below explains
4668
the meaning of the parameters to draw the blue arc.
4669
4670
![Parameters of Elliptic Arc](pics/ellipse.svg)
4671
4672
@param img Image.
4673
@param center Center of the ellipse.
4674
@param axes Half of the size of the ellipse main axes.
4675
@param angle Ellipse rotation angle in degrees.
4676
@param startAngle Starting angle of the elliptic arc in degrees.
4677
@param endAngle Ending angle of the elliptic arc in degrees.
4678
@param color Ellipse color.
4679
@param thickness Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that
4680
a filled ellipse sector is to be drawn.
4681
@param lineType Type of the ellipse boundary. See #LineTypes
4682
@param shift Number of fractional bits in the coordinates of the center and values of axes.
4683
 */
4684
CV_EXPORTS_W void ellipse(InputOutputArray img, Point center, Size axes,
4685
                        double angle, double startAngle, double endAngle,
4686
                        const Scalar& color, int thickness = 1,
4687
                        int lineType = LINE_8, int shift = 0);
4688
4689
/** @overload
4690
@param img Image.
4691
@param box Alternative ellipse representation via RotatedRect. This means that the function draws
4692
an ellipse inscribed in the rotated rectangle.
4693
@param color Ellipse color.
4694
@param thickness Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that
4695
a filled ellipse sector is to be drawn.
4696
@param lineType Type of the ellipse boundary. See #LineTypes
4697
*/
4698
CV_EXPORTS_W void ellipse(InputOutputArray img, const RotatedRect& box, const Scalar& color,
4699
                        int thickness = 1, int lineType = LINE_8);
4700
4701
/* ----------------------------------------------------------------------------------------- */
4702
/* ADDING A SET OF PREDEFINED MARKERS WHICH COULD BE USED TO HIGHLIGHT POSITIONS IN AN IMAGE */
4703
/* ----------------------------------------------------------------------------------------- */
4704
4705
/** @brief Draws a marker on a predefined position in an image.
4706
4707
The function cv::drawMarker draws a marker on a given position in the image. For the moment several
4708
marker types are supported, see #MarkerTypes for more information.
4709
4710
@param img Image.
4711
@param position The point where the crosshair is positioned.
4712
@param color Line color.
4713
@param markerType The specific type of marker you want to use, see #MarkerTypes
4714
@param thickness Line thickness.
4715
@param line_type Type of the line, See #LineTypes
4716
@param markerSize The length of the marker axis [default = 20 pixels]
4717
 */
4718
CV_EXPORTS_W void drawMarker(InputOutputArray img, Point position, const Scalar& color,
4719
                             int markerType = MARKER_CROSS, int markerSize=20, int thickness=1,
4720
                             int line_type=8);
4721
4722
/* ----------------------------------------------------------------------------------------- */
4723
/* END OF MARKER SECTION */
4724
/* ----------------------------------------------------------------------------------------- */
4725
4726
/** @brief Fills a convex polygon.
4727
4728
The function cv::fillConvexPoly draws a filled convex polygon. This function is much faster than the
4729
function #fillPoly . It can fill not only convex polygons but any monotonic polygon without
4730
self-intersections, that is, a polygon whose contour intersects every horizontal line (scan line)
4731
twice at the most (though, its top-most and/or the bottom edge could be horizontal).
4732
4733
@param img Image.
4734
@param points Polygon vertices.
4735
@param color Polygon color.
4736
@param lineType Type of the polygon boundaries. See #LineTypes
4737
@param shift Number of fractional bits in the vertex coordinates.
4738
 */
4739
CV_EXPORTS_W void fillConvexPoly(InputOutputArray img, InputArray points,
4740
                                 const Scalar& color, int lineType = LINE_8,
4741
                                 int shift = 0);
4742
4743
/** @overload */
4744
CV_EXPORTS void fillConvexPoly(InputOutputArray img, const Point* pts, int npts,
4745
                               const Scalar& color, int lineType = LINE_8,
4746
                               int shift = 0);
4747
4748
/** @example samples/cpp/tutorial_code/ImgProc/basic_drawing/Drawing_1.cpp
4749
An example using drawing functions
4750
Check @ref tutorial_random_generator_and_text "the corresponding tutorial" for more details
4751
*/
4752
4753
/** @brief Fills the area bounded by one or more polygons.
4754
4755
The function cv::fillPoly fills an area bounded by several polygonal contours. The function can fill
4756
complex areas, for example, areas with holes, contours with self-intersections (some of their
4757
parts), and so forth.
4758
4759
@param img Image.
4760
@param pts Array of polygons where each polygon is represented as an array of points.
4761
@param color Polygon color.
4762
@param lineType Type of the polygon boundaries. See #LineTypes
4763
@param shift Number of fractional bits in the vertex coordinates.
4764
@param offset Optional offset of all points of the contours.
4765
 */
4766
CV_EXPORTS_W void fillPoly(InputOutputArray img, InputArrayOfArrays pts,
4767
                           const Scalar& color, int lineType = LINE_8, int shift = 0,
4768
                           Point offset = Point() );
4769
4770
/** @overload */
4771
CV_EXPORTS void fillPoly(InputOutputArray img, const Point** pts,
4772
                         const int* npts, int ncontours,
4773
                         const Scalar& color, int lineType = LINE_8, int shift = 0,
4774
                         Point offset = Point() );
4775
4776
/** @brief Draws several polygonal curves.
4777
4778
@param img Image.
4779
@param pts Array of polygonal curves.
4780
@param isClosed Flag indicating whether the drawn polylines are closed or not. If they are closed,
4781
the function draws a line from the last vertex of each curve to its first vertex.
4782
@param color Polyline color.
4783
@param thickness Thickness of the polyline edges.
4784
@param lineType Type of the line segments. See #LineTypes
4785
@param shift Number of fractional bits in the vertex coordinates.
4786
4787
The function cv::polylines draws one or more polygonal curves.
4788
 */
4789
CV_EXPORTS_W void polylines(InputOutputArray img, InputArrayOfArrays pts,
4790
                            bool isClosed, const Scalar& color,
4791
                            int thickness = 1, int lineType = LINE_8, int shift = 0 );
4792
4793
/** @overload */
4794
CV_EXPORTS void polylines(InputOutputArray img, const Point* const* pts, const int* npts,
4795
                          int ncontours, bool isClosed, const Scalar& color,
4796
                          int thickness = 1, int lineType = LINE_8, int shift = 0 );
4797
4798
/** @example samples/cpp/contours2.cpp
4799
An example program illustrates the use of cv::findContours and cv::drawContours
4800
\image html WindowsQtContoursOutput.png "Screenshot of the program"
4801
*/
4802
4803
/** @example samples/cpp/segment_objects.cpp
4804
An example using drawContours to clean up a background segmentation result
4805
*/
4806
4807
/** @brief Draws contours outlines or filled contours.
4808
4809
The function draws contour outlines in the image if \f$\texttt{thickness} \ge 0\f$ or fills the area
4810
bounded by the contours if \f$\texttt{thickness}<0\f$ . The example below shows how to retrieve
4811
connected components from the binary image and label them: :
4812
@include snippets/imgproc_drawContours.cpp
4813
4814
@param image Destination image.
4815
@param contours All the input contours. Each contour is stored as a point vector.
4816
@param contourIdx Parameter indicating a contour to draw. If it is negative, all the contours are drawn.
4817
@param color Color of the contours.
4818
@param thickness Thickness of lines the contours are drawn with. If it is negative (for example,
4819
thickness=#FILLED ), the contour interiors are drawn.
4820
@param lineType Line connectivity. See #LineTypes
4821
@param hierarchy Optional information about hierarchy. It is only needed if you want to draw only
4822
some of the contours (see maxLevel ).
4823
@param maxLevel Maximal level for drawn contours. If it is 0, only the specified contour is drawn.
4824
If it is 1, the function draws the contour(s) and all the nested contours. If it is 2, the function
4825
draws the contours, all the nested contours, all the nested-to-nested contours, and so on. This
4826
parameter is only taken into account when there is hierarchy available.
4827
@param offset Optional contour shift parameter. Shift all the drawn contours by the specified
4828
\f$\texttt{offset}=(dx,dy)\f$ .
4829
@note When thickness=#FILLED, the function is designed to handle connected components with holes correctly
4830
even when no hierarchy data is provided. This is done by analyzing all the outlines together
4831
using even-odd rule. This may give incorrect results if you have a joint collection of separately retrieved
4832
contours. In order to solve this problem, you need to call #drawContours separately for each sub-group
4833
of contours, or iterate over the collection using contourIdx parameter.
4834
 */
4835
CV_EXPORTS_W void drawContours( InputOutputArray image, InputArrayOfArrays contours,
4836
                              int contourIdx, const Scalar& color,
4837
                              int thickness = 1, int lineType = LINE_8,
4838
                              InputArray hierarchy = noArray(),
4839
                              int maxLevel = INT_MAX, Point offset = Point() );
4840
4841
/** @brief Clips the line against the image rectangle.
4842
4843
The function cv::clipLine calculates a part of the line segment that is entirely within the specified
4844
rectangle. It returns false if the line segment is completely outside the rectangle. Otherwise,
4845
it returns true .
4846
@param imgSize Image size. The image rectangle is Rect(0, 0, imgSize.width, imgSize.height) .
4847
@param pt1 First line point.
4848
@param pt2 Second line point.
4849
 */
4850
CV_EXPORTS bool clipLine(Size imgSize, CV_IN_OUT Point& pt1, CV_IN_OUT Point& pt2);
4851
4852
/** @overload
4853
@param imgSize Image size. The image rectangle is Rect(0, 0, imgSize.width, imgSize.height) .
4854
@param pt1 First line point.
4855
@param pt2 Second line point.
4856
*/
4857
CV_EXPORTS bool clipLine(Size2l imgSize, CV_IN_OUT Point2l& pt1, CV_IN_OUT Point2l& pt2);
4858
4859
/** @overload
4860
@param imgRect Image rectangle.
4861
@param pt1 First line point.
4862
@param pt2 Second line point.
4863
*/
4864
CV_EXPORTS_W bool clipLine(Rect imgRect, CV_OUT CV_IN_OUT Point& pt1, CV_OUT CV_IN_OUT Point& pt2);
4865
4866
/** @brief Approximates an elliptic arc with a polyline.
4867
4868
The function ellipse2Poly computes the vertices of a polyline that approximates the specified
4869
elliptic arc. It is used by #ellipse. If `arcStart` is greater than `arcEnd`, they are swapped.
4870
4871
@param center Center of the arc.
4872
@param axes Half of the size of the ellipse main axes. See #ellipse for details.
4873
@param angle Rotation angle of the ellipse in degrees. See #ellipse for details.
4874
@param arcStart Starting angle of the elliptic arc in degrees.
4875
@param arcEnd Ending angle of the elliptic arc in degrees.
4876
@param delta Angle between the subsequent polyline vertices. It defines the approximation
4877
accuracy.
4878
@param pts Output vector of polyline vertices.
4879
 */
4880
CV_EXPORTS_W void ellipse2Poly( Point center, Size axes, int angle,
4881
                                int arcStart, int arcEnd, int delta,
4882
                                CV_OUT std::vector<Point>& pts );
4883
4884
/** @overload
4885
@param center Center of the arc.
4886
@param axes Half of the size of the ellipse main axes. See #ellipse for details.
4887
@param angle Rotation angle of the ellipse in degrees. See #ellipse for details.
4888
@param arcStart Starting angle of the elliptic arc in degrees.
4889
@param arcEnd Ending angle of the elliptic arc in degrees.
4890
@param delta Angle between the subsequent polyline vertices. It defines the approximation accuracy.
4891
@param pts Output vector of polyline vertices.
4892
*/
4893
CV_EXPORTS void ellipse2Poly(Point2d center, Size2d axes, int angle,
4894
                             int arcStart, int arcEnd, int delta,
4895
                             CV_OUT std::vector<Point2d>& pts);
4896
4897
/** @brief Draws a text string.
4898
4899
The function cv::putText renders the specified text string in the image. Symbols that cannot be rendered
4900
using the specified font are replaced by question marks. See #getTextSize for a text rendering code
4901
example.
4902
4903
The `fontScale` parameter is a scale factor that is multiplied by the base font size:
4904
- When scale > 1, the text is magnified.
4905
- When 0 < scale < 1, the text is minimized.
4906
- When scale < 0, the text is mirrored or reversed.
4907
4908
@param img Image.
4909
@param text Text string to be drawn.
4910
@param org Bottom-left corner of the text string in the image.
4911
@param fontFace Font type, see #HersheyFonts.
4912
@param fontScale Font scale factor that is multiplied by the font-specific base size.
4913
@param color Text color.
4914
@param thickness Thickness of the lines used to draw a text.
4915
@param lineType Line type. See #LineTypes
4916
@param bottomLeftOrigin When true, the image data origin is at the bottom-left corner. Otherwise,
4917
it is at the top-left corner.
4918
 */
4919
CV_EXPORTS_W void putText( InputOutputArray img, const String& text, Point org,
4920
                         int fontFace, double fontScale, Scalar color,
4921
                         int thickness = 1, int lineType = LINE_8,
4922
                         bool bottomLeftOrigin = false );
4923
4924
/** @brief Calculates the width and height of a text string.
4925
4926
The function cv::getTextSize calculates and returns the size of a box that contains the specified text.
4927
That is, the following code renders some text, the tight box surrounding it, and the baseline: :
4928
@code
4929
    String text = "Funny text inside the box";
4930
    int fontFace = FONT_HERSHEY_SCRIPT_SIMPLEX;
4931
    double fontScale = 2;
4932
    int thickness = 3;
4933
4934
    Mat img(600, 800, CV_8UC3, Scalar::all(0));
4935
4936
    int baseline=0;
4937
    Size textSize = getTextSize(text, fontFace,
4938
                                fontScale, thickness, &baseline);
4939
    baseline += thickness;
4940
4941
    // center the text
4942
    Point textOrg((img.cols - textSize.width)/2,
4943
                  (img.rows + textSize.height)/2);
4944
4945
    // draw the box
4946
    rectangle(img, textOrg + Point(0, baseline),
4947
              textOrg + Point(textSize.width, -textSize.height),
4948
              Scalar(0,0,255));
4949
    // ... and the baseline first
4950
    line(img, textOrg + Point(0, thickness),
4951
         textOrg + Point(textSize.width, thickness),
4952
         Scalar(0, 0, 255));
4953
4954
    // then put the text itself
4955
    putText(img, text, textOrg, fontFace, fontScale,
4956
            Scalar::all(255), thickness, 8);
4957
@endcode
4958
4959
@param text Input text string.
4960
@param fontFace Font to use, see #HersheyFonts.
4961
@param fontScale Font scale factor that is multiplied by the font-specific base size.
4962
@param thickness Thickness of lines used to render the text. See #putText for details.
4963
@param[out] baseLine y-coordinate of the baseline relative to the bottom-most text
4964
point.
4965
@return The size of a box that contains the specified text.
4966
4967
@see putText
4968
 */
4969
CV_EXPORTS_W Size getTextSize(const String& text, int fontFace,
4970
                            double fontScale, int thickness,
4971
                            CV_OUT int* baseLine);
4972
4973
4974
/** @brief Calculates the font-specific size to use to achieve a given height in pixels.
4975
4976
@param fontFace Font to use, see cv::HersheyFonts.
4977
@param pixelHeight Pixel height to compute the fontScale for
4978
@param thickness Thickness of lines used to render the text.See putText for details.
4979
@return The fontSize to use for cv::putText
4980
4981
@see cv::putText
4982
*/
4983
CV_EXPORTS_W double getFontScaleFromHeight(const int fontFace,
4984
                                           const int pixelHeight,
4985
                                           const int thickness = 1);
4986
4987
/** @brief Class for iterating over all pixels on a raster line segment.
4988
4989
The class LineIterator is used to get each pixel of a raster line connecting
4990
two specified points.
4991
It can be treated as a versatile implementation of the Bresenham algorithm
4992
where you can stop at each pixel and do some extra processing, for
4993
example, grab pixel values along the line or draw a line with an effect
4994
(for example, with XOR operation).
4995
4996
The number of pixels along the line is stored in LineIterator::count.
4997
The method LineIterator::pos returns the current position in the image:
4998
4999
@code{.cpp}
5000
// grabs pixels along the line (pt1, pt2)
5001
// from 8-bit 3-channel image to the buffer
5002
LineIterator it(img, pt1, pt2, 8);
5003
LineIterator it2 = it;
5004
vector<Vec3b> buf(it.count);
5005
5006
for(int i = 0; i < it.count; i++, ++it)
5007
    buf[i] = *(const Vec3b*)*it;
5008
5009
// alternative way of iterating through the line
5010
for(int i = 0; i < it2.count; i++, ++it2)
5011
{
5012
    Vec3b val = img.at<Vec3b>(it2.pos());
5013
    CV_Assert(buf[i] == val);
5014
}
5015
@endcode
5016
*/
5017
class CV_EXPORTS LineIterator
5018
{
5019
public:
5020
    /** @brief Initializes iterator object for the given line and image.
5021
5022
    The returned iterator can be used to traverse all pixels on a line that
5023
    connects the given two points.
5024
    The line will be clipped on the image boundaries.
5025
5026
    @param img Underlying image.
5027
    @param pt1 First endpoint of the line.
5028
    @param pt2 The other endpoint of the line.
5029
    @param connectivity Pixel connectivity of the iterator. Valid values are 4 (iterator can move
5030
    up, down, left and right) and 8 (iterator can also move diagonally).
5031
    @param leftToRight If true, the line is traversed from the leftmost endpoint to the rightmost
5032
    endpoint. Otherwise, the line is traversed from \p pt1 to \p pt2.
5033
    */
5034
    LineIterator( const Mat& img, Point pt1, Point pt2,
5035
                  int connectivity = 8, bool leftToRight = false )
5036
    {
5037
        init(&img, Rect(0, 0, img.cols, img.rows), pt1, pt2, connectivity, leftToRight);
5038
        ptmode = false;
5039
    }
5040
    LineIterator( Point pt1, Point pt2,
5041
                  int connectivity = 8, bool leftToRight = false )
5042
0
    {
5043
0
        init(0, Rect(std::min(pt1.x, pt2.x),
5044
0
                     std::min(pt1.y, pt2.y),
5045
0
                     std::max(pt1.x, pt2.x) - std::min(pt1.x, pt2.x) + 1,
5046
0
                     std::max(pt1.y, pt2.y) - std::min(pt1.y, pt2.y) + 1),
5047
0
             pt1, pt2, connectivity, leftToRight);
5048
0
        ptmode = true;
5049
0
    }
5050
    LineIterator( Size boundingAreaSize, Point pt1, Point pt2,
5051
                  int connectivity = 8, bool leftToRight = false )
5052
0
    {
5053
0
        init(0, Rect(0, 0, boundingAreaSize.width, boundingAreaSize.height),
5054
0
             pt1, pt2, connectivity, leftToRight);
5055
0
        ptmode = true;
5056
0
    }
5057
    LineIterator( Rect boundingAreaRect, Point pt1, Point pt2,
5058
                  int connectivity = 8, bool leftToRight = false )
5059
0
    {
5060
0
        init(0, boundingAreaRect, pt1, pt2, connectivity, leftToRight);
5061
0
        ptmode = true;
5062
0
    }
5063
    void init(const Mat* img, Rect boundingAreaRect, Point pt1, Point pt2, int connectivity, bool leftToRight);
5064
5065
    /** @brief Returns pointer to the current pixel.
5066
    */
5067
    uchar* operator *();
5068
5069
    /** @brief Moves iterator to the next pixel on the line.
5070
5071
    This is the prefix version (++it).
5072
    */
5073
    LineIterator& operator ++();
5074
5075
    /** @brief Moves iterator to the next pixel on the line.
5076
5077
    This is the postfix version (it++).
5078
    */
5079
    LineIterator operator ++(int);
5080
5081
    /** @brief Returns coordinates of the current pixel.
5082
    */
5083
    Point pos() const;
5084
5085
    uchar* ptr;
5086
    const uchar* ptr0;
5087
    int step, elemSize;
5088
    int err, count;
5089
    int minusDelta, plusDelta;
5090
    int minusStep, plusStep;
5091
    int minusShift, plusShift;
5092
    Point p;
5093
    bool ptmode;
5094
};
5095
5096
//! @cond IGNORED
5097
5098
// === LineIterator implementation ===
5099
5100
inline
5101
uchar* LineIterator::operator *()
5102
{
5103
    return ptmode ? 0 : ptr;
5104
}
5105
5106
inline
5107
LineIterator& LineIterator::operator ++()
5108
{
5109
    int mask = err < 0 ? -1 : 0;
5110
    err += minusDelta + (plusDelta & mask);
5111
    if(!ptmode)
5112
    {
5113
        ptr += minusStep + (plusStep & mask);
5114
    }
5115
    else
5116
    {
5117
        p.x += minusShift + (plusShift & mask);
5118
        p.y += minusStep + (plusStep & mask);
5119
    }
5120
    return *this;
5121
}
5122
5123
inline
5124
LineIterator LineIterator::operator ++(int)
5125
0
{
5126
0
    LineIterator it = *this;
5127
0
    ++(*this);
5128
0
    return it;
5129
0
}
5130
5131
inline
5132
Point LineIterator::pos() const
5133
0
{
5134
0
    if(!ptmode)
5135
0
    {
5136
0
        size_t offset = (size_t)(ptr - ptr0);
5137
0
        int y = (int)(offset/step);
5138
0
        int x = (int)((offset - (size_t)y*step)/elemSize);
5139
0
        return Point(x, y);
5140
0
    }
5141
0
    return p;
5142
0
}
5143
5144
//! @endcond
5145
5146
//! @} imgproc_draw
5147
5148
//! @} imgproc
5149
5150
} // cv
5151
5152
5153
#include "./imgproc/segmentation.hpp"
5154
5155
5156
#endif