Coverage Report

Created: 2025-07-23 07:06

/work/install-coverage/include/opencv4/opencv2/calib3d.hpp
Line
Count
Source (jump to first uncovered line)
1
/*M///////////////////////////////////////////////////////////////////////////////////////
2
//
3
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4
//
5
//  By downloading, copying, installing or using the software you agree to this license.
6
//  If you do not agree to this license, do not download, install,
7
//  copy or use the software.
8
//
9
//
10
//                          License Agreement
11
//                For Open Source Computer Vision Library
12
//
13
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
16
// Third party copyrights are property of their respective owners.
17
//
18
// Redistribution and use in source and binary forms, with or without modification,
19
// are permitted provided that the following conditions are met:
20
//
21
//   * Redistribution's of source code must retain the above copyright notice,
22
//     this list of conditions and the following disclaimer.
23
//
24
//   * Redistribution's in binary form must reproduce the above copyright notice,
25
//     this list of conditions and the following disclaimer in the documentation
26
//     and/or other materials provided with the distribution.
27
//
28
//   * The name of the copyright holders may not be used to endorse or promote products
29
//     derived from this software without specific prior written permission.
30
//
31
// This software is provided by the copyright holders and contributors "as is" and
32
// any express or implied warranties, including, but not limited to, the implied
33
// warranties of merchantability and fitness for a particular purpose are disclaimed.
34
// In no event shall the Intel Corporation or contributors be liable for any direct,
35
// indirect, incidental, special, exemplary, or consequential damages
36
// (including, but not limited to, procurement of substitute goods or services;
37
// loss of use, data, or profits; or business interruption) however caused
38
// and on any theory of liability, whether in contract, strict liability,
39
// or tort (including negligence or otherwise) arising in any way out of
40
// the use of this software, even if advised of the possibility of such damage.
41
//
42
//M*/
43
44
#ifndef OPENCV_CALIB3D_HPP
45
#define OPENCV_CALIB3D_HPP
46
47
#include "opencv2/core.hpp"
48
#include "opencv2/core/types.hpp"
49
#include "opencv2/features2d.hpp"
50
#include "opencv2/core/affine.hpp"
51
#include "opencv2/core/utils/logger.hpp"
52
53
/**
54
  @defgroup calib3d Camera Calibration and 3D Reconstruction
55
56
The functions in this section use a so-called pinhole camera model. The view of a scene
57
is obtained by projecting a scene's 3D point \f$P_w\f$ into the image plane using a perspective
58
transformation which forms the corresponding pixel \f$p\f$. Both \f$P_w\f$ and \f$p\f$ are
59
represented in homogeneous coordinates, i.e. as 3D and 2D homogeneous vector respectively. You will
60
find a brief introduction to projective geometry, homogeneous vectors and homogeneous
61
transformations at the end of this section's introduction. For more succinct notation, we often drop
62
the 'homogeneous' and say vector instead of homogeneous vector.
63
64
The distortion-free projective transformation given by a  pinhole camera model is shown below.
65
66
\f[s \; p = A \begin{bmatrix} R|t \end{bmatrix} P_w,\f]
67
68
where \f$P_w\f$ is a 3D point expressed with respect to the world coordinate system,
69
\f$p\f$ is a 2D pixel in the image plane, \f$A\f$ is the camera intrinsic matrix,
70
\f$R\f$ and \f$t\f$ are the rotation and translation that describe the change of coordinates from
71
world to camera coordinate systems (or camera frame) and \f$s\f$ is the projective transformation's
72
arbitrary scaling and not part of the camera model.
73
74
The camera intrinsic matrix \f$A\f$ (notation used as in @cite Zhang2000 and also generally notated
75
as \f$K\f$) projects 3D points given in the camera coordinate system to 2D pixel coordinates, i.e.
76
77
\f[p = A P_c.\f]
78
79
The camera intrinsic matrix \f$A\f$ is composed of the focal lengths \f$f_x\f$ and \f$f_y\f$, which are
80
expressed in pixel units, and the principal point \f$(c_x, c_y)\f$, that is usually close to the
81
image center:
82
83
\f[A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1},\f]
84
85
and thus
86
87
\f[s \vecthree{u}{v}{1} = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1} \vecthree{X_c}{Y_c}{Z_c}.\f]
88
89
The matrix of intrinsic parameters does not depend on the scene viewed. So, once estimated, it can
90
be re-used as long as the focal length is fixed (in case of a zoom lens). Thus, if an image from the
91
camera is scaled by a factor, all of these parameters need to be scaled (multiplied/divided,
92
respectively) by the same factor.
93
94
The joint rotation-translation matrix \f$[R|t]\f$ is the matrix product of a projective
95
transformation and a homogeneous transformation. The 3-by-4 projective transformation maps 3D points
96
represented in camera coordinates to 2D points in the image plane and represented in normalized
97
camera coordinates \f$x' = X_c / Z_c\f$ and \f$y' = Y_c / Z_c\f$:
98
99
\f[Z_c \begin{bmatrix}
100
x' \\
101
y' \\
102
1
103
\end{bmatrix} = \begin{bmatrix}
104
1 & 0 & 0 & 0 \\
105
0 & 1 & 0 & 0 \\
106
0 & 0 & 1 & 0
107
\end{bmatrix}
108
\begin{bmatrix}
109
X_c \\
110
Y_c \\
111
Z_c \\
112
1
113
\end{bmatrix}.\f]
114
115
The homogeneous transformation is encoded by the extrinsic parameters \f$R\f$ and \f$t\f$ and
116
represents the change of basis from world coordinate system \f$w\f$ to the camera coordinate sytem
117
\f$c\f$. Thus, given the representation of the point \f$P\f$ in world coordinates, \f$P_w\f$, we
118
obtain \f$P\f$'s representation in the camera coordinate system, \f$P_c\f$, by
119
120
\f[P_c = \begin{bmatrix}
121
R & t \\
122
0 & 1
123
\end{bmatrix} P_w,\f]
124
125
This homogeneous transformation is composed out of \f$R\f$, a 3-by-3 rotation matrix, and \f$t\f$, a
126
3-by-1 translation vector:
127
128
\f[\begin{bmatrix}
129
R & t \\
130
0 & 1
131
\end{bmatrix} = \begin{bmatrix}
132
r_{11} & r_{12} & r_{13} & t_x \\
133
r_{21} & r_{22} & r_{23} & t_y \\
134
r_{31} & r_{32} & r_{33} & t_z \\
135
0 & 0 & 0 & 1
136
\end{bmatrix},
137
\f]
138
139
and therefore
140
141
\f[\begin{bmatrix}
142
X_c \\
143
Y_c \\
144
Z_c \\
145
1
146
\end{bmatrix} = \begin{bmatrix}
147
r_{11} & r_{12} & r_{13} & t_x \\
148
r_{21} & r_{22} & r_{23} & t_y \\
149
r_{31} & r_{32} & r_{33} & t_z \\
150
0 & 0 & 0 & 1
151
\end{bmatrix}
152
\begin{bmatrix}
153
X_w \\
154
Y_w \\
155
Z_w \\
156
1
157
\end{bmatrix}.\f]
158
159
Combining the projective transformation and the homogeneous transformation, we obtain the projective
160
transformation that maps 3D points in world coordinates into 2D points in the image plane and in
161
normalized camera coordinates:
162
163
\f[Z_c \begin{bmatrix}
164
x' \\
165
y' \\
166
1
167
\end{bmatrix} = \begin{bmatrix} R|t \end{bmatrix} \begin{bmatrix}
168
X_w \\
169
Y_w \\
170
Z_w \\
171
1
172
\end{bmatrix} = \begin{bmatrix}
173
r_{11} & r_{12} & r_{13} & t_x \\
174
r_{21} & r_{22} & r_{23} & t_y \\
175
r_{31} & r_{32} & r_{33} & t_z
176
\end{bmatrix}
177
\begin{bmatrix}
178
X_w \\
179
Y_w \\
180
Z_w \\
181
1
182
\end{bmatrix},\f]
183
184
with \f$x' = X_c / Z_c\f$ and \f$y' = Y_c / Z_c\f$. Putting the equations for instrincs and extrinsics together, we can write out
185
\f$s \; p = A \begin{bmatrix} R|t \end{bmatrix} P_w\f$ as
186
187
\f[s \vecthree{u}{v}{1} = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}
188
\begin{bmatrix}
189
r_{11} & r_{12} & r_{13} & t_x \\
190
r_{21} & r_{22} & r_{23} & t_y \\
191
r_{31} & r_{32} & r_{33} & t_z
192
\end{bmatrix}
193
\begin{bmatrix}
194
X_w \\
195
Y_w \\
196
Z_w \\
197
1
198
\end{bmatrix}.\f]
199
200
If \f$Z_c \ne 0\f$, the transformation above is equivalent to the following,
201
202
\f[\begin{bmatrix}
203
u \\
204
v
205
\end{bmatrix} = \begin{bmatrix}
206
f_x X_c/Z_c + c_x \\
207
f_y Y_c/Z_c + c_y
208
\end{bmatrix}\f]
209
210
with
211
212
\f[\vecthree{X_c}{Y_c}{Z_c} = \begin{bmatrix}
213
R|t
214
\end{bmatrix} \begin{bmatrix}
215
X_w \\
216
Y_w \\
217
Z_w \\
218
1
219
\end{bmatrix}.\f]
220
221
The following figure illustrates the pinhole camera model.
222
223
![Pinhole camera model](pics/pinhole_camera_model.png)
224
225
Real lenses usually have some distortion, mostly radial distortion, and slight tangential distortion.
226
So, the above model is extended as:
227
228
\f[\begin{bmatrix}
229
u \\
230
v
231
\end{bmatrix} = \begin{bmatrix}
232
f_x x'' + c_x \\
233
f_y y'' + c_y
234
\end{bmatrix}\f]
235
236
where
237
238
\f[\begin{bmatrix}
239
x'' \\
240
y''
241
\end{bmatrix} = \begin{bmatrix}
242
x' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} + 2 p_1 x' y' + p_2(r^2 + 2 x'^2) + s_1 r^2 + s_2 r^4 \\
243
y' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} + p_1 (r^2 + 2 y'^2) + 2 p_2 x' y' + s_3 r^2 + s_4 r^4 \\
244
\end{bmatrix}\f]
245
246
with
247
248
\f[r^2 = x'^2 + y'^2\f]
249
250
and
251
252
\f[\begin{bmatrix}
253
x'\\
254
y'
255
\end{bmatrix} = \begin{bmatrix}
256
X_c/Z_c \\
257
Y_c/Z_c
258
\end{bmatrix},\f]
259
260
if \f$Z_c \ne 0\f$.
261
262
The distortion parameters are the radial coefficients \f$k_1\f$, \f$k_2\f$, \f$k_3\f$, \f$k_4\f$, \f$k_5\f$, and \f$k_6\f$
263
,\f$p_1\f$ and \f$p_2\f$ are the tangential distortion coefficients, and \f$s_1\f$, \f$s_2\f$, \f$s_3\f$, and \f$s_4\f$,
264
are the thin prism distortion coefficients. Higher-order coefficients are not considered in OpenCV.
265
266
The next figures show two common types of radial distortion: barrel distortion
267
(\f$ 1 + k_1 r^2 + k_2 r^4 + k_3 r^6 \f$ monotonically decreasing)
268
and pincushion distortion (\f$ 1 + k_1 r^2 + k_2 r^4 + k_3 r^6 \f$ monotonically increasing).
269
Radial distortion is always monotonic for real lenses,
270
and if the estimator produces a non-monotonic result,
271
this should be considered a calibration failure.
272
More generally, radial distortion must be monotonic and the distortion function must be bijective.
273
A failed estimation result may look deceptively good near the image center
274
but will work poorly in e.g. AR/SFM applications.
275
The optimization method used in OpenCV camera calibration does not include these constraints as
276
the framework does not support the required integer programming and polynomial inequalities.
277
See [issue #15992](https://github.com/opencv/opencv/issues/15992) for additional information.
278
279
![](pics/distortion_examples.png)
280
![](pics/distortion_examples2.png)
281
282
In some cases, the image sensor may be tilted in order to focus an oblique plane in front of the
283
camera (Scheimpflug principle). This can be useful for particle image velocimetry (PIV) or
284
triangulation with a laser fan. The tilt causes a perspective distortion of \f$x''\f$ and
285
\f$y''\f$. This distortion can be modeled in the following way, see e.g. @cite Louhichi07.
286
287
\f[\begin{bmatrix}
288
u \\
289
v
290
\end{bmatrix} = \begin{bmatrix}
291
f_x x''' + c_x \\
292
f_y y''' + c_y
293
\end{bmatrix},\f]
294
295
where
296
297
\f[s\vecthree{x'''}{y'''}{1} =
298
\vecthreethree{R_{33}(\tau_x, \tau_y)}{0}{-R_{13}(\tau_x, \tau_y)}
299
{0}{R_{33}(\tau_x, \tau_y)}{-R_{23}(\tau_x, \tau_y)}
300
{0}{0}{1} R(\tau_x, \tau_y) \vecthree{x''}{y''}{1}\f]
301
302
and the matrix \f$R(\tau_x, \tau_y)\f$ is defined by two rotations with angular parameter
303
\f$\tau_x\f$ and \f$\tau_y\f$, respectively,
304
305
\f[
306
R(\tau_x, \tau_y) =
307
\vecthreethree{\cos(\tau_y)}{0}{-\sin(\tau_y)}{0}{1}{0}{\sin(\tau_y)}{0}{\cos(\tau_y)}
308
\vecthreethree{1}{0}{0}{0}{\cos(\tau_x)}{\sin(\tau_x)}{0}{-\sin(\tau_x)}{\cos(\tau_x)} =
309
\vecthreethree{\cos(\tau_y)}{\sin(\tau_y)\sin(\tau_x)}{-\sin(\tau_y)\cos(\tau_x)}
310
{0}{\cos(\tau_x)}{\sin(\tau_x)}
311
{\sin(\tau_y)}{-\cos(\tau_y)\sin(\tau_x)}{\cos(\tau_y)\cos(\tau_x)}.
312
\f]
313
314
In the functions below the coefficients are passed or returned as
315
316
\f[(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f]
317
318
vector. That is, if the vector contains four elements, it means that \f$k_3=0\f$ . The distortion
319
coefficients do not depend on the scene viewed. Thus, they also belong to the intrinsic camera
320
parameters. And they remain the same regardless of the captured image resolution. If, for example, a
321
camera has been calibrated on images of 320 x 240 resolution, absolutely the same distortion
322
coefficients can be used for 640 x 480 images from the same camera while \f$f_x\f$, \f$f_y\f$,
323
\f$c_x\f$, and \f$c_y\f$ need to be scaled appropriately.
324
325
The functions below use the above model to do the following:
326
327
-   Project 3D points to the image plane given intrinsic and extrinsic parameters.
328
-   Compute extrinsic parameters given intrinsic parameters, a few 3D points, and their
329
projections.
330
-   Estimate intrinsic and extrinsic camera parameters from several views of a known calibration
331
pattern (every view is described by several 3D-2D point correspondences).
332
-   Estimate the relative position and orientation of the stereo camera "heads" and compute the
333
*rectification* transformation that makes the camera optical axes parallel.
334
335
<B> Homogeneous Coordinates </B><br>
336
Homogeneous Coordinates are a system of coordinates that are used in projective geometry. Their use
337
allows to represent points at infinity by finite coordinates and simplifies formulas when compared
338
to the cartesian counterparts, e.g. they have the advantage that affine transformations can be
339
expressed as linear homogeneous transformation.
340
341
One obtains the homogeneous vector \f$P_h\f$ by appending a 1 along an n-dimensional cartesian
342
vector \f$P\f$ e.g. for a 3D cartesian vector the mapping \f$P \rightarrow P_h\f$ is:
343
344
\f[\begin{bmatrix}
345
X \\
346
Y \\
347
Z
348
\end{bmatrix} \rightarrow \begin{bmatrix}
349
X \\
350
Y \\
351
Z \\
352
1
353
\end{bmatrix}.\f]
354
355
For the inverse mapping \f$P_h \rightarrow P\f$, one divides all elements of the homogeneous vector
356
by its last element, e.g. for a 3D homogeneous vector one gets its 2D cartesian counterpart by:
357
358
\f[\begin{bmatrix}
359
X \\
360
Y \\
361
W
362
\end{bmatrix} \rightarrow \begin{bmatrix}
363
X / W \\
364
Y / W
365
\end{bmatrix},\f]
366
367
if \f$W \ne 0\f$.
368
369
Due to this mapping, all multiples \f$k P_h\f$, for \f$k \ne 0\f$, of a homogeneous point represent
370
the same point \f$P_h\f$. An intuitive understanding of this property is that under a projective
371
transformation, all multiples of \f$P_h\f$ are mapped to the same point. This is the physical
372
observation one does for pinhole cameras, as all points along a ray through the camera's pinhole are
373
projected to the same image point, e.g. all points along the red ray in the image of the pinhole
374
camera model above would be mapped to the same image coordinate. This property is also the source
375
for the scale ambiguity s in the equation of the pinhole camera model.
376
377
As mentioned, by using homogeneous coordinates we can express any change of basis parameterized by
378
\f$R\f$ and \f$t\f$ as a linear transformation, e.g. for the change of basis from coordinate system
379
0 to coordinate system 1 becomes:
380
381
\f[P_1 = R P_0 + t \rightarrow P_{h_1} = \begin{bmatrix}
382
R & t \\
383
0 & 1
384
\end{bmatrix} P_{h_0}.\f]
385
386
<B> Homogeneous Transformations, Object frame / Camera frame </B><br>
387
Change of basis or computing the 3D coordinates from one frame to another frame can be achieved easily using
388
the following notation:
389
390
\f[
391
\mathbf{X}_c = \hspace{0.2em}
392
{}^{c}\mathbf{T}_o \hspace{0.2em} \mathbf{X}_o
393
\f]
394
395
\f[
396
\begin{bmatrix}
397
X_c \\
398
Y_c \\
399
Z_c \\
400
1
401
\end{bmatrix} =
402
\begin{bmatrix}
403
{}^{c}\mathbf{R}_o & {}^{c}\mathbf{t}_o \\
404
0_{1 \times 3} & 1
405
\end{bmatrix}
406
\begin{bmatrix}
407
X_o \\
408
Y_o \\
409
Z_o \\
410
1
411
\end{bmatrix}
412
\f]
413
414
For a 3D points (\f$ \mathbf{X}_o \f$) expressed in the object frame, the homogeneous transformation matrix
415
\f$ {}^{c}\mathbf{T}_o \f$ allows computing the corresponding coordinate (\f$ \mathbf{X}_c \f$) in the camera frame.
416
This transformation matrix is composed of a 3x3 rotation matrix \f$ {}^{c}\mathbf{R}_o \f$ and a 3x1 translation vector
417
\f$ {}^{c}\mathbf{t}_o \f$.
418
The 3x1 translation vector \f$ {}^{c}\mathbf{t}_o \f$ is the position of the object frame in the camera frame and the
419
3x3 rotation matrix \f$ {}^{c}\mathbf{R}_o \f$ the orientation of the object frame in the camera frame.
420
421
With this simple notation, it is easy to chain the transformations. For instance, to compute the 3D coordinates of a point
422
expressed in the object frame in the world frame can be done with:
423
424
\f[
425
\mathbf{X}_w = \hspace{0.2em}
426
{}^{w}\mathbf{T}_c \hspace{0.2em} {}^{c}\mathbf{T}_o \hspace{0.2em}
427
\mathbf{X}_o =
428
{}^{w}\mathbf{T}_o \hspace{0.2em} \mathbf{X}_o
429
\f]
430
431
Similarly, computing the inverse transformation can be done with:
432
433
\f[
434
\mathbf{X}_o = \hspace{0.2em}
435
{}^{o}\mathbf{T}_c \hspace{0.2em} \mathbf{X}_c =
436
\left( {}^{c}\mathbf{T}_o \right)^{-1} \hspace{0.2em} \mathbf{X}_c
437
\f]
438
439
The inverse of an homogeneous transformation matrix is then:
440
441
\f[
442
{}^{o}\mathbf{T}_c = \left( {}^{c}\mathbf{T}_o \right)^{-1} =
443
\begin{bmatrix}
444
{}^{c}\mathbf{R}^{\top}_o & - \hspace{0.2em} {}^{c}\mathbf{R}^{\top}_o \hspace{0.2em} {}^{c}\mathbf{t}_o \\
445
0_{1 \times 3} & 1
446
\end{bmatrix}
447
\f]
448
449
One can note that the inverse of a 3x3 rotation matrix is directly its matrix transpose.
450
451
![Perspective projection, from object to camera frame](pics/pinhole_homogeneous_transformation.png)
452
453
This figure summarizes the whole process. The object pose returned for instance by the @ref solvePnP function
454
or pose from fiducial marker detection is this \f$ {}^{c}\mathbf{T}_o \f$ transformation.
455
456
The camera intrinsic matrix \f$ \mathbf{K} \f$ allows projecting the 3D point expressed in the camera frame onto the image plane
457
assuming a perspective projection model (pinhole camera model). Image coordinates extracted from classical image processing functions
458
assume a (u,v) top-left coordinates frame.
459
460
\note
461
- for an online video course on this topic, see for instance:
462
  - ["3.3.1. Homogeneous Transformation Matrices", Modern Robotics, Kevin M. Lynch and Frank C. Park](https://modernrobotics.northwestern.edu/nu-gm-book-resource/3-3-1-homogeneous-transformation-matrices/)
463
- the 3x3 rotation matrix is composed of 9 values but describes a 3 dof transformation
464
- some additional properties of the 3x3 rotation matrix are:
465
  - \f$ \mathrm{det} \left( \mathbf{R} \right) = 1 \f$
466
  - \f$ \mathbf{R} \mathbf{R}^{\top} = \mathbf{R}^{\top} \mathbf{R} = \mathrm{I}_{3 \times 3} \f$
467
  - interpolating rotation can be done using the [Slerp (spherical linear interpolation)](https://en.wikipedia.org/wiki/Slerp) method
468
- quick conversions between the different rotation formalisms can be done using this [online tool](https://www.andre-gaschler.com/rotationconverter/)
469
470
<B> Intrinsic parameters from camera lens specifications </B><br>
471
When dealing with industrial cameras, the camera intrinsic matrix or more precisely \f$ \left(f_x, f_y \right) \f$
472
can be deduced, approximated from the camera specifications:
473
474
\f[
475
f_x = \frac{f_{\text{mm}}}{\text{pixel_size_in_mm}} = \frac{f_{\text{mm}}}{\text{sensor_size_in_mm} / \text{nb_pixels}}
476
\f]
477
478
In a same way, the physical focal length can be deduced from the angular field of view:
479
480
\f[
481
f_{\text{mm}} = \frac{\text{sensor_size_in_mm}}{2 \times \tan{\frac{\text{fov}}{2}}}
482
\f]
483
484
This latter conversion can be useful when using a rendering software to mimic a physical camera device.
485
486
@note
487
    -    See also #calibrationMatrixValues
488
489
<B> Additional references, notes </B><br>
490
@note
491
    -   Many functions in this module take a camera intrinsic matrix as an input parameter. Although all
492
        functions assume the same structure of this parameter, they may name it differently. The
493
        parameter's description, however, will be clear in that a camera intrinsic matrix with the structure
494
        shown above is required.
495
    -   A calibration sample for 3 cameras in a horizontal position can be found at
496
        opencv_source_code/samples/cpp/3calibration.cpp
497
    -   A calibration sample based on a sequence of images can be found at
498
        opencv_source_code/samples/cpp/calibration.cpp
499
    -   A calibration sample in order to do 3D reconstruction can be found at
500
        opencv_source_code/samples/cpp/build3dmodel.cpp
501
    -   A calibration example on stereo calibration can be found at
502
        opencv_source_code/samples/cpp/stereo_calib.cpp
503
    -   A calibration example on stereo matching can be found at
504
        opencv_source_code/samples/cpp/stereo_match.cpp
505
    -   (Python) A camera calibration sample can be found at
506
        opencv_source_code/samples/python/calibrate.py
507
508
  @{
509
    @defgroup calib3d_fisheye Fisheye camera model
510
511
    Definitions: Let P be a point in 3D of coordinates X in the world reference frame (stored in the
512
    matrix X) The coordinate vector of P in the camera reference frame is:
513
514
    \f[Xc = R X + T\f]
515
516
    where R is the rotation matrix corresponding to the rotation vector om: R = rodrigues(om); call x, y
517
    and z the 3 coordinates of Xc:
518
519
    \f[\begin{array}{l} x = Xc_1 \\ y = Xc_2 \\ z = Xc_3 \end{array} \f]
520
521
    The pinhole projection coordinates of P is [a; b] where
522
523
    \f[\begin{array}{l} a = x / z \ and \ b = y / z \\ r^2 = a^2 + b^2 \\ \theta = atan(r) \end{array} \f]
524
525
    Fisheye distortion:
526
527
    \f[\theta_d = \theta (1 + k_1 \theta^2 + k_2 \theta^4 + k_3 \theta^6 + k_4 \theta^8)\f]
528
529
    The distorted point coordinates are [x'; y'] where
530
531
    \f[\begin{array}{l} x' = (\theta_d / r) a \\ y' = (\theta_d / r) b \end{array} \f]
532
533
    Finally, conversion into pixel coordinates: The final pixel coordinates vector [u; v] where:
534
535
    \f[\begin{array}{l} u = f_x (x' + \alpha y') + c_x \\
536
    v = f_y y' + c_y \end{array} \f]
537
538
    Summary:
539
    Generic camera model @cite Kannala2006 with perspective projection and without distortion correction
540
541
  @}
542
 */
543
544
namespace cv
545
{
546
547
//! @addtogroup calib3d
548
//! @{
549
550
//! type of the robust estimation algorithm
551
enum { LMEDS  = 4,  //!< least-median of squares algorithm
552
       RANSAC = 8,  //!< RANSAC algorithm
553
       RHO    = 16, //!< RHO algorithm
554
       USAC_DEFAULT  = 32, //!< USAC algorithm, default settings
555
       USAC_PARALLEL = 33, //!< USAC, parallel version
556
       USAC_FM_8PTS = 34,  //!< USAC, fundamental matrix 8 points
557
       USAC_FAST = 35,     //!< USAC, fast settings
558
       USAC_ACCURATE = 36, //!< USAC, accurate settings
559
       USAC_PROSAC = 37,   //!< USAC, sorted points, runs PROSAC
560
       USAC_MAGSAC = 38    //!< USAC, runs MAGSAC++
561
     };
562
563
enum SolvePnPMethod {
564
    SOLVEPNP_ITERATIVE   = 0, //!< Pose refinement using non-linear Levenberg-Marquardt minimization scheme @cite Madsen04 @cite Eade13 \n
565
                              //!< Initial solution for non-planar "objectPoints" needs at least 6 points and uses the DLT algorithm. \n
566
                              //!< Initial solution for planar "objectPoints" needs at least 4 points and uses pose from homography decomposition.
567
    SOLVEPNP_EPNP        = 1, //!< EPnP: Efficient Perspective-n-Point Camera Pose Estimation @cite lepetit2009epnp
568
    SOLVEPNP_P3P         = 2, //!< Complete Solution Classification for the Perspective-Three-Point Problem @cite gao2003complete
569
    SOLVEPNP_DLS         = 3, //!< **Broken implementation. Using this flag will fallback to EPnP.** \n
570
                              //!< A Direct Least-Squares (DLS) Method for PnP @cite hesch2011direct
571
    SOLVEPNP_UPNP        = 4, //!< **Broken implementation. Using this flag will fallback to EPnP.** \n
572
                              //!< Exhaustive Linearization for Robust Camera Pose and Focal Length Estimation @cite penate2013exhaustive
573
    SOLVEPNP_AP3P        = 5, //!< An Efficient Algebraic Solution to the Perspective-Three-Point Problem @cite Ke17
574
    SOLVEPNP_IPPE        = 6, //!< Infinitesimal Plane-Based Pose Estimation @cite Collins14 \n
575
                              //!< Object points must be coplanar.
576
    SOLVEPNP_IPPE_SQUARE = 7, //!< Infinitesimal Plane-Based Pose Estimation @cite Collins14 \n
577
                              //!< This is a special case suitable for marker pose estimation.\n
578
                              //!< 4 coplanar object points must be defined in the following order:
579
                              //!<   - point 0: [-squareLength / 2,  squareLength / 2, 0]
580
                              //!<   - point 1: [ squareLength / 2,  squareLength / 2, 0]
581
                              //!<   - point 2: [ squareLength / 2, -squareLength / 2, 0]
582
                              //!<   - point 3: [-squareLength / 2, -squareLength / 2, 0]
583
    SOLVEPNP_SQPNP       = 8, //!< SQPnP: A Consistently Fast and Globally OptimalSolution to the Perspective-n-Point Problem @cite Terzakis2020SQPnP
584
#ifndef CV_DOXYGEN
585
    SOLVEPNP_MAX_COUNT        //!< Used for count
586
#endif
587
};
588
589
enum { CALIB_CB_ADAPTIVE_THRESH = 1,
590
       CALIB_CB_NORMALIZE_IMAGE = 2,
591
       CALIB_CB_FILTER_QUADS    = 4,
592
       CALIB_CB_FAST_CHECK      = 8,
593
       CALIB_CB_EXHAUSTIVE      = 16,
594
       CALIB_CB_ACCURACY        = 32,
595
       CALIB_CB_LARGER          = 64,
596
       CALIB_CB_MARKER          = 128,
597
       CALIB_CB_PLAIN           = 256
598
     };
599
600
enum { CALIB_CB_SYMMETRIC_GRID  = 1,
601
       CALIB_CB_ASYMMETRIC_GRID = 2,
602
       CALIB_CB_CLUSTERING      = 4
603
     };
604
605
enum { CALIB_NINTRINSIC          = 18,
606
       CALIB_USE_INTRINSIC_GUESS = 0x00001,
607
       CALIB_FIX_ASPECT_RATIO    = 0x00002,
608
       CALIB_FIX_PRINCIPAL_POINT = 0x00004,
609
       CALIB_ZERO_TANGENT_DIST   = 0x00008,
610
       CALIB_FIX_FOCAL_LENGTH    = 0x00010,
611
       CALIB_FIX_K1              = 0x00020,
612
       CALIB_FIX_K2              = 0x00040,
613
       CALIB_FIX_K3              = 0x00080,
614
       CALIB_FIX_K4              = 0x00800,
615
       CALIB_FIX_K5              = 0x01000,
616
       CALIB_FIX_K6              = 0x02000,
617
       CALIB_RATIONAL_MODEL      = 0x04000,
618
       CALIB_THIN_PRISM_MODEL    = 0x08000,
619
       CALIB_FIX_S1_S2_S3_S4     = 0x10000,
620
       CALIB_TILTED_MODEL        = 0x40000,
621
       CALIB_FIX_TAUX_TAUY       = 0x80000,
622
       CALIB_USE_QR              = 0x100000, //!< use QR instead of SVD decomposition for solving. Faster but potentially less precise
623
       CALIB_FIX_TANGENT_DIST    = 0x200000,
624
       // only for stereo
625
       CALIB_FIX_INTRINSIC       = 0x00100,
626
       CALIB_SAME_FOCAL_LENGTH   = 0x00200,
627
       // for stereo rectification
628
       CALIB_ZERO_DISPARITY      = 0x00400,
629
       CALIB_USE_LU              = (1 << 17), //!< use LU instead of SVD decomposition for solving. much faster but potentially less precise
630
       CALIB_USE_EXTRINSIC_GUESS = (1 << 22)  //!< for stereoCalibrate
631
     };
632
633
//! the algorithm for finding fundamental matrix
634
enum { FM_7POINT = 1, //!< 7-point algorithm
635
       FM_8POINT = 2, //!< 8-point algorithm
636
       FM_LMEDS  = 4, //!< least-median algorithm. 7-point algorithm is used.
637
       FM_RANSAC = 8  //!< RANSAC algorithm. It needs at least 15 points. 7-point algorithm is used.
638
     };
639
640
enum HandEyeCalibrationMethod
641
{
642
    CALIB_HAND_EYE_TSAI         = 0, //!< A New Technique for Fully Autonomous and Efficient 3D Robotics Hand/Eye Calibration @cite Tsai89
643
    CALIB_HAND_EYE_PARK         = 1, //!< Robot Sensor Calibration: Solving AX = XB on the Euclidean Group @cite Park94
644
    CALIB_HAND_EYE_HORAUD       = 2, //!< Hand-eye Calibration @cite Horaud95
645
    CALIB_HAND_EYE_ANDREFF      = 3, //!< On-line Hand-Eye Calibration @cite Andreff99
646
    CALIB_HAND_EYE_DANIILIDIS   = 4  //!< Hand-Eye Calibration Using Dual Quaternions @cite Daniilidis98
647
};
648
649
enum RobotWorldHandEyeCalibrationMethod
650
{
651
    CALIB_ROBOT_WORLD_HAND_EYE_SHAH = 0, //!< Solving the robot-world/hand-eye calibration problem using the kronecker product @cite Shah2013SolvingTR
652
    CALIB_ROBOT_WORLD_HAND_EYE_LI   = 1  //!< Simultaneous robot-world and hand-eye calibration using dual-quaternions and kronecker product @cite Li2010SimultaneousRA
653
};
654
655
enum SamplingMethod { SAMPLING_UNIFORM=0, SAMPLING_PROGRESSIVE_NAPSAC=1, SAMPLING_NAPSAC=2,
656
        SAMPLING_PROSAC=3 };
657
enum LocalOptimMethod {LOCAL_OPTIM_NULL=0, LOCAL_OPTIM_INNER_LO=1, LOCAL_OPTIM_INNER_AND_ITER_LO=2,
658
        LOCAL_OPTIM_GC=3, LOCAL_OPTIM_SIGMA=4};
659
enum ScoreMethod {SCORE_METHOD_RANSAC=0, SCORE_METHOD_MSAC=1, SCORE_METHOD_MAGSAC=2, SCORE_METHOD_LMEDS=3};
660
enum NeighborSearchMethod { NEIGH_FLANN_KNN=0, NEIGH_GRID=1, NEIGH_FLANN_RADIUS=2 };
661
enum PolishingMethod { NONE_POLISHER=0, LSQ_POLISHER=1, MAGSAC=2, COV_POLISHER=3 };
662
663
struct CV_EXPORTS_W_SIMPLE UsacParams
664
{ // in alphabetical order
665
    CV_WRAP UsacParams();
666
    CV_PROP_RW double confidence;
667
    CV_PROP_RW bool isParallel;
668
    CV_PROP_RW int loIterations;
669
    CV_PROP_RW LocalOptimMethod loMethod;
670
    CV_PROP_RW int loSampleSize;
671
    CV_PROP_RW int maxIterations;
672
    CV_PROP_RW NeighborSearchMethod neighborsSearch;
673
    CV_PROP_RW int randomGeneratorState;
674
    CV_PROP_RW SamplingMethod sampler;
675
    CV_PROP_RW ScoreMethod score;
676
    CV_PROP_RW double threshold;
677
    CV_PROP_RW PolishingMethod final_polisher;
678
    CV_PROP_RW int final_polisher_iterations;
679
};
680
681
/** @brief Converts a rotation matrix to a rotation vector or vice versa.
682
683
@param src Input rotation vector (3x1 or 1x3) or rotation matrix (3x3).
684
@param dst Output rotation matrix (3x3) or rotation vector (3x1 or 1x3), respectively.
685
@param jacobian Optional output Jacobian matrix, 3x9 or 9x3, which is a matrix of partial
686
derivatives of the output array components with respect to the input array components.
687
688
\f[\begin{array}{l} \theta \leftarrow norm(r) \\ r  \leftarrow r/ \theta \\ R =  \cos(\theta) I + (1- \cos{\theta} ) r r^T +  \sin(\theta) \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} \end{array}\f]
689
690
Inverse transformation can be also done easily, since
691
692
\f[\sin ( \theta ) \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} = \frac{R - R^T}{2}\f]
693
694
A rotation vector is a convenient and most compact representation of a rotation matrix (since any
695
rotation matrix has just 3 degrees of freedom). The representation is used in the global 3D geometry
696
optimization procedures like @ref calibrateCamera, @ref stereoCalibrate, or @ref solvePnP .
697
698
@note More information about the computation of the derivative of a 3D rotation matrix with respect to its exponential coordinate
699
can be found in:
700
    - A Compact Formula for the Derivative of a 3-D Rotation in Exponential Coordinates, Guillermo Gallego, Anthony J. Yezzi @cite Gallego2014ACF
701
702
@note Useful information on SE(3) and Lie Groups can be found in:
703
    - A tutorial on SE(3) transformation parameterizations and on-manifold optimization, Jose-Luis Blanco @cite blanco2010tutorial
704
    - Lie Groups for 2D and 3D Transformation, Ethan Eade @cite Eade17
705
    - A micro Lie theory for state estimation in robotics, Joan Solà, Jérémie Deray, Dinesh Atchuthan @cite Sol2018AML
706
 */
707
CV_EXPORTS_W void Rodrigues( InputArray src, OutputArray dst, OutputArray jacobian = noArray() );
708
709
710
711
/** Levenberg-Marquardt solver. Starting with the specified vector of parameters it
712
    optimizes the target vector criteria "err"
713
    (finds local minima of each target vector component absolute value).
714
715
    When needed, it calls user-provided callback.
716
*/
717
class CV_EXPORTS LMSolver : public Algorithm
718
{
719
public:
720
    class CV_EXPORTS Callback
721
    {
722
    public:
723
0
        virtual ~Callback() {}
724
        /**
725
         computes error and Jacobian for the specified vector of parameters
726
727
         @param param the current vector of parameters
728
         @param err output vector of errors: err_i = actual_f_i - ideal_f_i
729
         @param J output Jacobian: J_ij = d(ideal_f_i)/d(param_j)
730
731
         when J=noArray(), it means that it does not need to be computed.
732
         Dimensionality of error vector and param vector can be different.
733
         The callback should explicitly allocate (with "create" method) each output array
734
         (unless it's noArray()).
735
        */
736
        virtual bool compute(InputArray param, OutputArray err, OutputArray J) const = 0;
737
    };
738
739
    /**
740
       Runs Levenberg-Marquardt algorithm using the passed vector of parameters as the start point.
741
       The final vector of parameters (whether the algorithm converged or not) is stored at the same
742
       vector. The method returns the number of iterations used. If it's equal to the previously specified
743
       maxIters, there is a big chance the algorithm did not converge.
744
745
       @param param initial/final vector of parameters.
746
747
       Note that the dimensionality of parameter space is defined by the size of param vector,
748
       and the dimensionality of optimized criteria is defined by the size of err vector
749
       computed by the callback.
750
    */
751
    virtual int run(InputOutputArray param) const = 0;
752
753
    /**
754
       Sets the maximum number of iterations
755
       @param maxIters the number of iterations
756
    */
757
    virtual void setMaxIters(int maxIters) = 0;
758
    /**
759
       Retrieves the current maximum number of iterations
760
    */
761
    virtual int getMaxIters() const = 0;
762
763
    /**
764
       Creates Levenberg-Marquard solver
765
766
       @param cb callback
767
       @param maxIters maximum number of iterations that can be further
768
         modified using setMaxIters() method.
769
    */
770
    static Ptr<LMSolver> create(const Ptr<LMSolver::Callback>& cb, int maxIters);
771
    static Ptr<LMSolver> create(const Ptr<LMSolver::Callback>& cb, int maxIters, double eps);
772
};
773
774
775
776
/** @example samples/cpp/tutorial_code/features2D/Homography/pose_from_homography.cpp
777
An example program about pose estimation from coplanar points
778
779
Check @ref tutorial_homography "the corresponding tutorial" for more details
780
*/
781
782
/** @brief Finds a perspective transformation between two planes.
783
784
@param srcPoints Coordinates of the points in the original plane, a matrix of the type CV_32FC2
785
or vector\<Point2f\> .
786
@param dstPoints Coordinates of the points in the target plane, a matrix of the type CV_32FC2 or
787
a vector\<Point2f\> .
788
@param method Method used to compute a homography matrix. The following methods are possible:
789
-   **0** - a regular method using all the points, i.e., the least squares method
790
-   @ref RANSAC - RANSAC-based robust method
791
-   @ref LMEDS - Least-Median robust method
792
-   @ref RHO - PROSAC-based robust method
793
@param ransacReprojThreshold Maximum allowed reprojection error to treat a point pair as an inlier
794
(used in the RANSAC and RHO methods only). That is, if
795
\f[\| \texttt{dstPoints} _i -  \texttt{convertPointsHomogeneous} ( \texttt{H} \cdot \texttt{srcPoints} _i) \|_2  >  \texttt{ransacReprojThreshold}\f]
796
then the point \f$i\f$ is considered as an outlier. If srcPoints and dstPoints are measured in pixels,
797
it usually makes sense to set this parameter somewhere in the range of 1 to 10.
798
@param mask Optional output mask set by a robust method ( RANSAC or LMeDS ). Note that the input
799
mask values are ignored.
800
@param maxIters The maximum number of RANSAC iterations.
801
@param confidence Confidence level, between 0 and 1.
802
803
The function finds and returns the perspective transformation \f$H\f$ between the source and the
804
destination planes:
805
806
\f[s_i  \vecthree{x'_i}{y'_i}{1} \sim H  \vecthree{x_i}{y_i}{1}\f]
807
808
so that the back-projection error
809
810
\f[\sum _i \left ( x'_i- \frac{h_{11} x_i + h_{12} y_i + h_{13}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2+ \left ( y'_i- \frac{h_{21} x_i + h_{22} y_i + h_{23}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2\f]
811
812
is minimized. If the parameter method is set to the default value 0, the function uses all the point
813
pairs to compute an initial homography estimate with a simple least-squares scheme.
814
815
However, if not all of the point pairs ( \f$srcPoints_i\f$, \f$dstPoints_i\f$ ) fit the rigid perspective
816
transformation (that is, there are some outliers), this initial estimate will be poor. In this case,
817
you can use one of the three robust methods. The methods RANSAC, LMeDS and RHO try many different
818
random subsets of the corresponding point pairs (of four pairs each, collinear pairs are discarded), estimate the homography matrix
819
using this subset and a simple least-squares algorithm, and then compute the quality/goodness of the
820
computed homography (which is the number of inliers for RANSAC or the least median re-projection error for
821
LMeDS). The best subset is then used to produce the initial estimate of the homography matrix and
822
the mask of inliers/outliers.
823
824
Regardless of the method, robust or not, the computed homography matrix is refined further (using
825
inliers only in case of a robust method) with the Levenberg-Marquardt method to reduce the
826
re-projection error even more.
827
828
The methods RANSAC and RHO can handle practically any ratio of outliers but need a threshold to
829
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
830
correctly only when there are more than 50% of inliers. Finally, if there are no outliers and the
831
noise is rather small, use the default method (method=0).
832
833
The function is used to find initial intrinsic and extrinsic matrices. Homography matrix is
834
determined up to a scale. If \f$h_{33}\f$ is non-zero, the matrix is normalized so that \f$h_{33}=1\f$.
835
@note Whenever an \f$H\f$ matrix cannot be estimated, an empty one will be returned.
836
837
@sa
838
getAffineTransform, estimateAffine2D, estimateAffinePartial2D, getPerspectiveTransform, warpPerspective,
839
perspectiveTransform
840
 */
841
CV_EXPORTS_W Mat findHomography( InputArray srcPoints, InputArray dstPoints,
842
                                 int method = 0, double ransacReprojThreshold = 3,
843
                                 OutputArray mask=noArray(), const int maxIters = 2000,
844
                                 const double confidence = 0.995);
845
846
/** @overload */
847
CV_EXPORTS Mat findHomography( InputArray srcPoints, InputArray dstPoints,
848
                               OutputArray mask, int method = 0, double ransacReprojThreshold = 3 );
849
850
851
CV_EXPORTS_W Mat findHomography(InputArray srcPoints, InputArray dstPoints, OutputArray mask,
852
                   const UsacParams &params);
853
854
/** @brief Computes an RQ decomposition of 3x3 matrices.
855
856
@param src 3x3 input matrix.
857
@param mtxR Output 3x3 upper-triangular matrix.
858
@param mtxQ Output 3x3 orthogonal matrix.
859
@param Qx Optional output 3x3 rotation matrix around x-axis.
860
@param Qy Optional output 3x3 rotation matrix around y-axis.
861
@param Qz Optional output 3x3 rotation matrix around z-axis.
862
863
The function computes a RQ decomposition using the given rotations. This function is used in
864
#decomposeProjectionMatrix to decompose the left 3x3 submatrix of a projection matrix into a camera
865
and a rotation matrix.
866
867
It optionally returns three rotation matrices, one for each axis, and the three Euler angles in
868
degrees (as the return value) that could be used in OpenGL. Note, there is always more than one
869
sequence of rotations about the three principal axes that results in the same orientation of an
870
object, e.g. see @cite Slabaugh . Returned three rotation matrices and corresponding three Euler angles
871
are only one of the possible solutions.
872
 */
873
CV_EXPORTS_W Vec3d RQDecomp3x3( InputArray src, OutputArray mtxR, OutputArray mtxQ,
874
                                OutputArray Qx = noArray(),
875
                                OutputArray Qy = noArray(),
876
                                OutputArray Qz = noArray());
877
878
/** @brief Decomposes a projection matrix into a rotation matrix and a camera intrinsic matrix.
879
880
@param projMatrix 3x4 input projection matrix P.
881
@param cameraMatrix Output 3x3 camera intrinsic matrix \f$\cameramatrix{A}\f$.
882
@param rotMatrix Output 3x3 external rotation matrix R.
883
@param transVect Output 4x1 translation vector T.
884
@param rotMatrixX Optional 3x3 rotation matrix around x-axis.
885
@param rotMatrixY Optional 3x3 rotation matrix around y-axis.
886
@param rotMatrixZ Optional 3x3 rotation matrix around z-axis.
887
@param eulerAngles Optional three-element vector containing three Euler angles of rotation in
888
degrees.
889
890
The function computes a decomposition of a projection matrix into a calibration and a rotation
891
matrix and the position of a camera.
892
893
It optionally returns three rotation matrices, one for each axis, and three Euler angles that could
894
be used in OpenGL. Note, there is always more than one sequence of rotations about the three
895
principal axes that results in the same orientation of an object, e.g. see @cite Slabaugh . Returned
896
three rotation matrices and corresponding three Euler angles are only one of the possible solutions.
897
898
The function is based on #RQDecomp3x3 .
899
 */
900
CV_EXPORTS_W void decomposeProjectionMatrix( InputArray projMatrix, OutputArray cameraMatrix,
901
                                             OutputArray rotMatrix, OutputArray transVect,
902
                                             OutputArray rotMatrixX = noArray(),
903
                                             OutputArray rotMatrixY = noArray(),
904
                                             OutputArray rotMatrixZ = noArray(),
905
                                             OutputArray eulerAngles =noArray() );
906
907
/** @brief Computes partial derivatives of the matrix product for each multiplied matrix.
908
909
@param A First multiplied matrix.
910
@param B Second multiplied matrix.
911
@param dABdA First output derivative matrix d(A\*B)/dA of size
912
\f$\texttt{A.rows*B.cols} \times {A.rows*A.cols}\f$ .
913
@param dABdB Second output derivative matrix d(A\*B)/dB of size
914
\f$\texttt{A.rows*B.cols} \times {B.rows*B.cols}\f$ .
915
916
The function computes partial derivatives of the elements of the matrix product \f$A*B\f$ with regard to
917
the elements of each of the two input matrices. The function is used to compute the Jacobian
918
matrices in #stereoCalibrate but can also be used in any other similar optimization function.
919
 */
920
CV_EXPORTS_W void matMulDeriv( InputArray A, InputArray B, OutputArray dABdA, OutputArray dABdB );
921
922
/** @brief Combines two rotation-and-shift transformations.
923
924
@param rvec1 First rotation vector.
925
@param tvec1 First translation vector.
926
@param rvec2 Second rotation vector.
927
@param tvec2 Second translation vector.
928
@param rvec3 Output rotation vector of the superposition.
929
@param tvec3 Output translation vector of the superposition.
930
@param dr3dr1 Optional output derivative of rvec3 with regard to rvec1
931
@param dr3dt1 Optional output derivative of rvec3 with regard to tvec1
932
@param dr3dr2 Optional output derivative of rvec3 with regard to rvec2
933
@param dr3dt2 Optional output derivative of rvec3 with regard to tvec2
934
@param dt3dr1 Optional output derivative of tvec3 with regard to rvec1
935
@param dt3dt1 Optional output derivative of tvec3 with regard to tvec1
936
@param dt3dr2 Optional output derivative of tvec3 with regard to rvec2
937
@param dt3dt2 Optional output derivative of tvec3 with regard to tvec2
938
939
The functions compute:
940
941
\f[\begin{array}{l} \texttt{rvec3} =  \mathrm{rodrigues} ^{-1} \left ( \mathrm{rodrigues} ( \texttt{rvec2} )  \cdot \mathrm{rodrigues} ( \texttt{rvec1} ) \right )  \\ \texttt{tvec3} =  \mathrm{rodrigues} ( \texttt{rvec2} )  \cdot \texttt{tvec1} +  \texttt{tvec2} \end{array} ,\f]
942
943
where \f$\mathrm{rodrigues}\f$ denotes a rotation vector to a rotation matrix transformation, and
944
\f$\mathrm{rodrigues}^{-1}\f$ denotes the inverse transformation. See #Rodrigues for details.
945
946
Also, the functions can compute the derivatives of the output vectors with regards to the input
947
vectors (see #matMulDeriv ). The functions are used inside #stereoCalibrate but can also be used in
948
your own code where Levenberg-Marquardt or another gradient-based solver is used to optimize a
949
function that contains a matrix multiplication.
950
 */
951
CV_EXPORTS_W void composeRT( InputArray rvec1, InputArray tvec1,
952
                             InputArray rvec2, InputArray tvec2,
953
                             OutputArray rvec3, OutputArray tvec3,
954
                             OutputArray dr3dr1 = noArray(), OutputArray dr3dt1 = noArray(),
955
                             OutputArray dr3dr2 = noArray(), OutputArray dr3dt2 = noArray(),
956
                             OutputArray dt3dr1 = noArray(), OutputArray dt3dt1 = noArray(),
957
                             OutputArray dt3dr2 = noArray(), OutputArray dt3dt2 = noArray() );
958
959
/** @brief Projects 3D points to an image plane.
960
961
@param objectPoints Array of object points expressed wrt. the world coordinate frame. A 3xN/Nx3
962
1-channel or 1xN/Nx1 3-channel (or vector\<Point3f\> ), where N is the number of points in the view.
963
@param rvec The rotation vector (@ref Rodrigues) that, together with tvec, performs a change of
964
basis from world to camera coordinate system, see @ref calibrateCamera for details.
965
@param tvec The translation vector, see parameter description above.
966
@param cameraMatrix Camera intrinsic matrix \f$\cameramatrix{A}\f$ .
967
@param distCoeffs Input vector of distortion coefficients
968
\f$\distcoeffs\f$ . If the vector is empty, the zero distortion coefficients are assumed.
969
@param imagePoints Output array of image points, 1xN/Nx1 2-channel, or
970
vector\<Point2f\> .
971
@param jacobian Optional output 2Nx(10+\<numDistCoeffs\>) jacobian matrix of derivatives of image
972
points with respect to components of the rotation vector, translation vector, focal lengths,
973
coordinates of the principal point and the distortion coefficients. In the old interface different
974
components of the jacobian are returned via different output parameters.
975
@param aspectRatio Optional "fixed aspect ratio" parameter. If the parameter is not 0, the
976
function assumes that the aspect ratio (\f$f_x / f_y\f$) is fixed and correspondingly adjusts the
977
jacobian matrix.
978
979
The function computes the 2D projections of 3D points to the image plane, given intrinsic and
980
extrinsic camera parameters. Optionally, the function computes Jacobians -matrices of partial
981
derivatives of image points coordinates (as functions of all the input parameters) with respect to
982
the particular parameters, intrinsic and/or extrinsic. The Jacobians are used during the global
983
optimization in @ref calibrateCamera, @ref solvePnP, and @ref stereoCalibrate. The function itself
984
can also be used to compute a re-projection error, given the current intrinsic and extrinsic
985
parameters.
986
987
@note By setting rvec = tvec = \f$[0, 0, 0]\f$, or by setting cameraMatrix to a 3x3 identity matrix,
988
or by passing zero distortion coefficients, one can get various useful partial cases of the
989
function. This means, one can compute the distorted coordinates for a sparse set of points or apply
990
a perspective transformation (and also compute the derivatives) in the ideal zero-distortion setup.
991
 */
992
CV_EXPORTS_W void projectPoints( InputArray objectPoints,
993
                                 InputArray rvec, InputArray tvec,
994
                                 InputArray cameraMatrix, InputArray distCoeffs,
995
                                 OutputArray imagePoints,
996
                                 OutputArray jacobian = noArray(),
997
                                 double aspectRatio = 0 );
998
999
/** @example samples/cpp/tutorial_code/features2D/Homography/homography_from_camera_displacement.cpp
1000
An example program about homography from the camera displacement
1001
1002
Check @ref tutorial_homography "the corresponding tutorial" for more details
1003
*/
1004
1005
/** @brief Finds an object pose \f$ {}^{c}\mathbf{T}_o \f$ from 3D-2D point correspondences:
1006
1007
![Perspective projection, from object to camera frame](pics/pinhole_homogeneous_transformation.png){ width=50% }
1008
1009
@see @ref calib3d_solvePnP
1010
1011
This function returns the rotation and the translation vectors that transform a 3D point expressed in the object
1012
coordinate frame to the camera coordinate frame, using different methods:
1013
- P3P methods (@ref SOLVEPNP_P3P, @ref SOLVEPNP_AP3P): need 4 input points to return a unique solution.
1014
- @ref SOLVEPNP_IPPE Input points must be >= 4 and object points must be coplanar.
1015
- @ref SOLVEPNP_IPPE_SQUARE Special case suitable for marker pose estimation.
1016
Number of input points must be 4. Object points must be defined in the following order:
1017
  - point 0: [-squareLength / 2,  squareLength / 2, 0]
1018
  - point 1: [ squareLength / 2,  squareLength / 2, 0]
1019
  - point 2: [ squareLength / 2, -squareLength / 2, 0]
1020
  - point 3: [-squareLength / 2, -squareLength / 2, 0]
1021
- for all the other flags, number of input points must be >= 4 and object points can be in any configuration.
1022
1023
@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or
1024
1xN/Nx1 3-channel, where N is the number of points. vector\<Point3d\> can be also passed here.
1025
@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
1026
where N is the number of points. vector\<Point2d\> can be also passed here.
1027
@param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ .
1028
@param distCoeffs Input vector of distortion coefficients
1029
\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are
1030
assumed.
1031
@param rvec Output rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from
1032
the model coordinate system to the camera coordinate system.
1033
@param tvec Output translation vector.
1034
@param useExtrinsicGuess Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses
1035
the provided rvec and tvec values as initial approximations of the rotation and translation
1036
vectors, respectively, and further optimizes them.
1037
@param flags Method for solving a PnP problem: see @ref calib3d_solvePnP_flags
1038
1039
More information about Perspective-n-Points is described in @ref calib3d_solvePnP
1040
1041
@note
1042
   -   An example of how to use solvePnP for planar augmented reality can be found at
1043
        opencv_source_code/samples/python/plane_ar.py
1044
   -   If you are using Python:
1045
        - Numpy array slices won't work as input because solvePnP requires contiguous
1046
        arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of
1047
        modules/calib3d/src/solvepnp.cpp version 2.4.9)
1048
        - The P3P algorithm requires image points to be in an array of shape (N,1,2) due
1049
        to its calling of #undistortPoints (around line 75 of modules/calib3d/src/solvepnp.cpp version 2.4.9)
1050
        which requires 2-channel information.
1051
        - Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of
1052
        it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints =
1053
        np.ascontiguousarray(D[:,:2]).reshape((N,1,2))
1054
   -   The methods @ref SOLVEPNP_DLS and @ref SOLVEPNP_UPNP cannot be used as the current implementations are
1055
       unstable and sometimes give completely wrong results. If you pass one of these two
1056
       flags, @ref SOLVEPNP_EPNP method will be used instead.
1057
   -   The minimum number of points is 4 in the general case. In the case of @ref SOLVEPNP_P3P and @ref SOLVEPNP_AP3P
1058
       methods, it is required to use exactly 4 points (the first 3 points are used to estimate all the solutions
1059
       of the P3P problem, the last one is used to retain the best solution that minimizes the reprojection error).
1060
   -   With @ref SOLVEPNP_ITERATIVE method and `useExtrinsicGuess=true`, the minimum number of points is 3 (3 points
1061
       are sufficient to compute a pose but there are up to 4 solutions). The initial solution should be close to the
1062
       global solution to converge.
1063
   -   With @ref SOLVEPNP_IPPE input points must be >= 4 and object points must be coplanar.
1064
   -   With @ref SOLVEPNP_IPPE_SQUARE this is a special case suitable for marker pose estimation.
1065
       Number of input points must be 4. Object points must be defined in the following order:
1066
         - point 0: [-squareLength / 2,  squareLength / 2, 0]
1067
         - point 1: [ squareLength / 2,  squareLength / 2, 0]
1068
         - point 2: [ squareLength / 2, -squareLength / 2, 0]
1069
         - point 3: [-squareLength / 2, -squareLength / 2, 0]
1070
   -   With @ref SOLVEPNP_SQPNP input points must be >= 3
1071
 */
1072
CV_EXPORTS_W bool solvePnP( InputArray objectPoints, InputArray imagePoints,
1073
                            InputArray cameraMatrix, InputArray distCoeffs,
1074
                            OutputArray rvec, OutputArray tvec,
1075
                            bool useExtrinsicGuess = false, int flags = SOLVEPNP_ITERATIVE );
1076
1077
/** @brief Finds an object pose \f$ {}^{c}\mathbf{T}_o \f$ from 3D-2D point correspondences using the RANSAC scheme to deal with bad matches.
1078
1079
![Perspective projection, from object to camera frame](pics/pinhole_homogeneous_transformation.png){ width=50% }
1080
1081
@see @ref calib3d_solvePnP
1082
1083
@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or
1084
1xN/Nx1 3-channel, where N is the number of points. vector\<Point3d\> can be also passed here.
1085
@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
1086
where N is the number of points. vector\<Point2d\> can be also passed here.
1087
@param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ .
1088
@param distCoeffs Input vector of distortion coefficients
1089
\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are
1090
assumed.
1091
@param rvec Output rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from
1092
the model coordinate system to the camera coordinate system.
1093
@param tvec Output translation vector.
1094
@param useExtrinsicGuess Parameter used for @ref SOLVEPNP_ITERATIVE. If true (1), the function uses
1095
the provided rvec and tvec values as initial approximations of the rotation and translation
1096
vectors, respectively, and further optimizes them.
1097
@param iterationsCount Number of iterations.
1098
@param reprojectionError Inlier threshold value used by the RANSAC procedure. The parameter value
1099
is the maximum allowed distance between the observed and computed point projections to consider it
1100
an inlier.
1101
@param confidence The probability that the algorithm produces a useful result.
1102
@param inliers Output vector that contains indices of inliers in objectPoints and imagePoints .
1103
@param flags Method for solving a PnP problem (see @ref solvePnP ).
1104
1105
The function estimates an object pose given a set of object points, their corresponding image
1106
projections, as well as the camera intrinsic matrix and the distortion coefficients. This function finds such
1107
a pose that minimizes reprojection error, that is, the sum of squared distances between the observed
1108
projections imagePoints and the projected (using @ref projectPoints ) objectPoints. The use of RANSAC
1109
makes the function resistant to outliers.
1110
1111
@note
1112
   -   An example of how to use solvePnPRansac for object detection can be found at
1113
        @ref tutorial_real_time_pose
1114
   -   The default method used to estimate the camera pose for the Minimal Sample Sets step
1115
       is #SOLVEPNP_EPNP. Exceptions are:
1116
         - if you choose #SOLVEPNP_P3P or #SOLVEPNP_AP3P, these methods will be used.
1117
         - if the number of input points is equal to 4, #SOLVEPNP_P3P is used.
1118
   -   The method used to estimate the camera pose using all the inliers is defined by the
1119
       flags parameters unless it is equal to #SOLVEPNP_P3P or #SOLVEPNP_AP3P. In this case,
1120
       the method #SOLVEPNP_EPNP will be used instead.
1121
 */
1122
CV_EXPORTS_W bool solvePnPRansac( InputArray objectPoints, InputArray imagePoints,
1123
                                  InputArray cameraMatrix, InputArray distCoeffs,
1124
                                  OutputArray rvec, OutputArray tvec,
1125
                                  bool useExtrinsicGuess = false, int iterationsCount = 100,
1126
                                  float reprojectionError = 8.0, double confidence = 0.99,
1127
                                  OutputArray inliers = noArray(), int flags = SOLVEPNP_ITERATIVE );
1128
1129
1130
/*
1131
Finds rotation and translation vector.
1132
If cameraMatrix is given then run P3P. Otherwise run linear P6P and output cameraMatrix too.
1133
*/
1134
CV_EXPORTS_W bool solvePnPRansac( InputArray objectPoints, InputArray imagePoints,
1135
                     InputOutputArray cameraMatrix, InputArray distCoeffs,
1136
                     OutputArray rvec, OutputArray tvec, OutputArray inliers,
1137
                     const UsacParams &params=UsacParams());
1138
1139
/** @brief Finds an object pose \f$ {}^{c}\mathbf{T}_o \f$ from **3** 3D-2D point correspondences.
1140
1141
![Perspective projection, from object to camera frame](pics/pinhole_homogeneous_transformation.png){ width=50% }
1142
1143
@see @ref calib3d_solvePnP
1144
1145
@param objectPoints Array of object points in the object coordinate space, 3x3 1-channel or
1146
1x3/3x1 3-channel. vector\<Point3f\> can be also passed here.
1147
@param imagePoints Array of corresponding image points, 3x2 1-channel or 1x3/3x1 2-channel.
1148
 vector\<Point2f\> can be also passed here.
1149
@param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ .
1150
@param distCoeffs Input vector of distortion coefficients
1151
\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are
1152
assumed.
1153
@param rvecs Output rotation vectors (see @ref Rodrigues ) that, together with tvecs, brings points from
1154
the model coordinate system to the camera coordinate system. A P3P problem has up to 4 solutions.
1155
@param tvecs Output translation vectors.
1156
@param flags Method for solving a P3P problem:
1157
-   @ref SOLVEPNP_P3P Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang
1158
"Complete Solution Classification for the Perspective-Three-Point Problem" (@cite gao2003complete).
1159
-   @ref SOLVEPNP_AP3P Method is based on the paper of T. Ke and S. Roumeliotis.
1160
"An Efficient Algebraic Solution to the Perspective-Three-Point Problem" (@cite Ke17).
1161
1162
The function estimates the object pose given 3 object points, their corresponding image
1163
projections, as well as the camera intrinsic matrix and the distortion coefficients.
1164
1165
@note
1166
The solutions are sorted by reprojection errors (lowest to highest).
1167
 */
1168
CV_EXPORTS_W int solveP3P( InputArray objectPoints, InputArray imagePoints,
1169
                           InputArray cameraMatrix, InputArray distCoeffs,
1170
                           OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
1171
                           int flags );
1172
1173
/** @brief Refine a pose (the translation and the rotation that transform a 3D point expressed in the object coordinate frame
1174
to the camera coordinate frame) from a 3D-2D point correspondences and starting from an initial solution.
1175
1176
@see @ref calib3d_solvePnP
1177
1178
@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or 1xN/Nx1 3-channel,
1179
where N is the number of points. vector\<Point3d\> can also be passed here.
1180
@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
1181
where N is the number of points. vector\<Point2d\> can also be passed here.
1182
@param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ .
1183
@param distCoeffs Input vector of distortion coefficients
1184
\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are
1185
assumed.
1186
@param rvec Input/Output rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from
1187
the model coordinate system to the camera coordinate system. Input values are used as an initial solution.
1188
@param tvec Input/Output translation vector. Input values are used as an initial solution.
1189
@param criteria Criteria when to stop the Levenberg-Marquard iterative algorithm.
1190
1191
The function refines the object pose given at least 3 object points, their corresponding image
1192
projections, an initial solution for the rotation and translation vector,
1193
as well as the camera intrinsic matrix and the distortion coefficients.
1194
The function minimizes the projection error with respect to the rotation and the translation vectors, according
1195
to a Levenberg-Marquardt iterative minimization @cite Madsen04 @cite Eade13 process.
1196
 */
1197
CV_EXPORTS_W void solvePnPRefineLM( InputArray objectPoints, InputArray imagePoints,
1198
                                    InputArray cameraMatrix, InputArray distCoeffs,
1199
                                    InputOutputArray rvec, InputOutputArray tvec,
1200
                                    TermCriteria criteria = TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 20, FLT_EPSILON));
1201
1202
/** @brief Refine a pose (the translation and the rotation that transform a 3D point expressed in the object coordinate frame
1203
to the camera coordinate frame) from a 3D-2D point correspondences and starting from an initial solution.
1204
1205
@see @ref calib3d_solvePnP
1206
1207
@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or 1xN/Nx1 3-channel,
1208
where N is the number of points. vector\<Point3d\> can also be passed here.
1209
@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
1210
where N is the number of points. vector\<Point2d\> can also be passed here.
1211
@param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ .
1212
@param distCoeffs Input vector of distortion coefficients
1213
\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are
1214
assumed.
1215
@param rvec Input/Output rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from
1216
the model coordinate system to the camera coordinate system. Input values are used as an initial solution.
1217
@param tvec Input/Output translation vector. Input values are used as an initial solution.
1218
@param criteria Criteria when to stop the Levenberg-Marquard iterative algorithm.
1219
@param VVSlambda Gain for the virtual visual servoing control law, equivalent to the \f$\alpha\f$
1220
gain in the Damped Gauss-Newton formulation.
1221
1222
The function refines the object pose given at least 3 object points, their corresponding image
1223
projections, an initial solution for the rotation and translation vector,
1224
as well as the camera intrinsic matrix and the distortion coefficients.
1225
The function minimizes the projection error with respect to the rotation and the translation vectors, using a
1226
virtual visual servoing (VVS) @cite Chaumette06 @cite Marchand16 scheme.
1227
 */
1228
CV_EXPORTS_W void solvePnPRefineVVS( InputArray objectPoints, InputArray imagePoints,
1229
                                     InputArray cameraMatrix, InputArray distCoeffs,
1230
                                     InputOutputArray rvec, InputOutputArray tvec,
1231
                                     TermCriteria criteria = TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 20, FLT_EPSILON),
1232
                                     double VVSlambda = 1);
1233
1234
/** @brief Finds an object pose \f$ {}^{c}\mathbf{T}_o \f$ from 3D-2D point correspondences.
1235
1236
![Perspective projection, from object to camera frame](pics/pinhole_homogeneous_transformation.png){ width=50% }
1237
1238
@see @ref calib3d_solvePnP
1239
1240
This function returns a list of all the possible solutions (a solution is a <rotation vector, translation vector>
1241
couple), depending on the number of input points and the chosen method:
1242
- P3P methods (@ref SOLVEPNP_P3P, @ref SOLVEPNP_AP3P): 3 or 4 input points. Number of returned solutions can be between 0 and 4 with 3 input points.
1243
- @ref SOLVEPNP_IPPE Input points must be >= 4 and object points must be coplanar. Returns 2 solutions.
1244
- @ref SOLVEPNP_IPPE_SQUARE Special case suitable for marker pose estimation.
1245
Number of input points must be 4 and 2 solutions are returned. Object points must be defined in the following order:
1246
  - point 0: [-squareLength / 2,  squareLength / 2, 0]
1247
  - point 1: [ squareLength / 2,  squareLength / 2, 0]
1248
  - point 2: [ squareLength / 2, -squareLength / 2, 0]
1249
  - point 3: [-squareLength / 2, -squareLength / 2, 0]
1250
- for all the other flags, number of input points must be >= 4 and object points can be in any configuration.
1251
Only 1 solution is returned.
1252
1253
@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or
1254
1xN/Nx1 3-channel, where N is the number of points. vector\<Point3d\> can be also passed here.
1255
@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
1256
where N is the number of points. vector\<Point2d\> can be also passed here.
1257
@param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ .
1258
@param distCoeffs Input vector of distortion coefficients
1259
\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are
1260
assumed.
1261
@param rvecs Vector of output rotation vectors (see @ref Rodrigues ) that, together with tvecs, brings points from
1262
the model coordinate system to the camera coordinate system.
1263
@param tvecs Vector of output translation vectors.
1264
@param useExtrinsicGuess Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses
1265
the provided rvec and tvec values as initial approximations of the rotation and translation
1266
vectors, respectively, and further optimizes them.
1267
@param flags Method for solving a PnP problem: see @ref calib3d_solvePnP_flags
1268
@param rvec Rotation vector used to initialize an iterative PnP refinement algorithm, when flag is @ref SOLVEPNP_ITERATIVE
1269
and useExtrinsicGuess is set to true.
1270
@param tvec Translation vector used to initialize an iterative PnP refinement algorithm, when flag is @ref SOLVEPNP_ITERATIVE
1271
and useExtrinsicGuess is set to true.
1272
@param reprojectionError Optional vector of reprojection error, that is the RMS error
1273
(\f$ \text{RMSE} = \sqrt{\frac{\sum_{i}^{N} \left ( \hat{y_i} - y_i \right )^2}{N}} \f$) between the input image points
1274
and the 3D object points projected with the estimated pose.
1275
1276
More information is described in @ref calib3d_solvePnP
1277
1278
@note
1279
   -   An example of how to use solvePnP for planar augmented reality can be found at
1280
        opencv_source_code/samples/python/plane_ar.py
1281
   -   If you are using Python:
1282
        - Numpy array slices won't work as input because solvePnP requires contiguous
1283
        arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of
1284
        modules/calib3d/src/solvepnp.cpp version 2.4.9)
1285
        - The P3P algorithm requires image points to be in an array of shape (N,1,2) due
1286
        to its calling of #undistortPoints (around line 75 of modules/calib3d/src/solvepnp.cpp version 2.4.9)
1287
        which requires 2-channel information.
1288
        - Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of
1289
        it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints =
1290
        np.ascontiguousarray(D[:,:2]).reshape((N,1,2))
1291
   -   The methods @ref SOLVEPNP_DLS and @ref SOLVEPNP_UPNP cannot be used as the current implementations are
1292
       unstable and sometimes give completely wrong results. If you pass one of these two
1293
       flags, @ref SOLVEPNP_EPNP method will be used instead.
1294
   -   The minimum number of points is 4 in the general case. In the case of @ref SOLVEPNP_P3P and @ref SOLVEPNP_AP3P
1295
       methods, it is required to use exactly 4 points (the first 3 points are used to estimate all the solutions
1296
       of the P3P problem, the last one is used to retain the best solution that minimizes the reprojection error).
1297
   -   With @ref SOLVEPNP_ITERATIVE method and `useExtrinsicGuess=true`, the minimum number of points is 3 (3 points
1298
       are sufficient to compute a pose but there are up to 4 solutions). The initial solution should be close to the
1299
       global solution to converge.
1300
   -   With @ref SOLVEPNP_IPPE input points must be >= 4 and object points must be coplanar.
1301
   -   With @ref SOLVEPNP_IPPE_SQUARE this is a special case suitable for marker pose estimation.
1302
       Number of input points must be 4. Object points must be defined in the following order:
1303
         - point 0: [-squareLength / 2,  squareLength / 2, 0]
1304
         - point 1: [ squareLength / 2,  squareLength / 2, 0]
1305
         - point 2: [ squareLength / 2, -squareLength / 2, 0]
1306
         - point 3: [-squareLength / 2, -squareLength / 2, 0]
1307
   -   With @ref SOLVEPNP_SQPNP input points must be >= 3
1308
 */
1309
CV_EXPORTS_W int solvePnPGeneric( InputArray objectPoints, InputArray imagePoints,
1310
                                  InputArray cameraMatrix, InputArray distCoeffs,
1311
                                  OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
1312
                                  bool useExtrinsicGuess = false, SolvePnPMethod flags = SOLVEPNP_ITERATIVE,
1313
                                  InputArray rvec = noArray(), InputArray tvec = noArray(),
1314
                                  OutputArray reprojectionError = noArray() );
1315
1316
/** @brief Finds an initial camera intrinsic matrix from 3D-2D point correspondences.
1317
1318
@param objectPoints Vector of vectors of the calibration pattern points in the calibration pattern
1319
coordinate space. In the old interface all the per-view vectors are concatenated. See
1320
#calibrateCamera for details.
1321
@param imagePoints Vector of vectors of the projections of the calibration pattern points. In the
1322
old interface all the per-view vectors are concatenated.
1323
@param imageSize Image size in pixels used to initialize the principal point.
1324
@param aspectRatio If it is zero or negative, both \f$f_x\f$ and \f$f_y\f$ are estimated independently.
1325
Otherwise, \f$f_x = f_y \cdot \texttt{aspectRatio}\f$ .
1326
1327
The function estimates and returns an initial camera intrinsic matrix for the camera calibration process.
1328
Currently, the function only supports planar calibration patterns, which are patterns where each
1329
object point has z-coordinate =0.
1330
 */
1331
CV_EXPORTS_W Mat initCameraMatrix2D( InputArrayOfArrays objectPoints,
1332
                                     InputArrayOfArrays imagePoints,
1333
                                     Size imageSize, double aspectRatio = 1.0 );
1334
1335
/** @brief Finds the positions of internal corners of the chessboard.
1336
1337
@param image Source chessboard view. It must be an 8-bit grayscale or color image.
1338
@param patternSize Number of inner corners per a chessboard row and column
1339
( patternSize = cv::Size(points_per_row,points_per_colum) = cv::Size(columns,rows) ).
1340
@param corners Output array of detected corners.
1341
@param flags Various operation flags that can be zero or a combination of the following values:
1342
-   @ref CALIB_CB_ADAPTIVE_THRESH Use adaptive thresholding to convert the image to black
1343
and white, rather than a fixed threshold level (computed from the average image brightness).
1344
-   @ref CALIB_CB_NORMALIZE_IMAGE Normalize the image gamma with #equalizeHist before
1345
applying fixed or adaptive thresholding.
1346
-   @ref CALIB_CB_FILTER_QUADS Use additional criteria (like contour area, perimeter,
1347
square-like shape) to filter out false quads extracted at the contour retrieval stage.
1348
-   @ref CALIB_CB_FAST_CHECK Run a fast check on the image that looks for chessboard corners,
1349
and shortcut the call if none is found. This can drastically speed up the call in the
1350
degenerate condition when no chessboard is observed.
1351
-   @ref CALIB_CB_PLAIN All other flags are ignored. The input image is taken as is.
1352
No image processing is done to improve to find the checkerboard. This has the effect of speeding up the
1353
execution of the function but could lead to not recognizing the checkerboard if the image
1354
is not previously binarized in the appropriate manner.
1355
1356
The function attempts to determine whether the input image is a view of the chessboard pattern and
1357
locate the internal chessboard corners. The function returns a non-zero value if all of the corners
1358
are found and they are placed in a certain order (row by row, left to right in every row).
1359
Otherwise, if the function fails to find all the corners or reorder them, it returns 0. For example,
1360
a regular chessboard has 8 x 8 squares and 7 x 7 internal corners, that is, points where the black
1361
squares touch each other. The detected coordinates are approximate, and to determine their positions
1362
more accurately, the function calls #cornerSubPix. You also may use the function #cornerSubPix with
1363
different parameters if returned coordinates are not accurate enough.
1364
1365
Sample usage of detecting and drawing chessboard corners: :
1366
@code
1367
    Size patternsize(8,6); //interior number of corners
1368
    Mat gray = ....; //source image
1369
    vector<Point2f> corners; //this will be filled by the detected corners
1370
1371
    //CALIB_CB_FAST_CHECK saves a lot of time on images
1372
    //that do not contain any chessboard corners
1373
    bool patternfound = findChessboardCorners(gray, patternsize, corners,
1374
            CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE
1375
            + CALIB_CB_FAST_CHECK);
1376
1377
    if(patternfound)
1378
      cornerSubPix(gray, corners, Size(11, 11), Size(-1, -1),
1379
        TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 30, 0.1));
1380
1381
    drawChessboardCorners(img, patternsize, Mat(corners), patternfound);
1382
@endcode
1383
@note The function requires white space (like a square-thick border, the wider the better) around
1384
the board to make the detection more robust in various environments. Otherwise, if there is no
1385
border and the background is dark, the outer black squares cannot be segmented properly and so the
1386
square grouping and ordering algorithm fails.
1387
1388
Use the `gen_pattern.py` Python script (@ref tutorial_camera_calibration_pattern)
1389
to create the desired checkerboard pattern.
1390
 */
1391
CV_EXPORTS_W bool findChessboardCorners( InputArray image, Size patternSize, OutputArray corners,
1392
                                         int flags = CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE );
1393
1394
/*
1395
   Checks whether the image contains chessboard of the specific size or not.
1396
   If yes, nonzero value is returned.
1397
*/
1398
CV_EXPORTS_W bool checkChessboard(InputArray img, Size size);
1399
1400
/** @brief Finds the positions of internal corners of the chessboard using a sector based approach.
1401
1402
@param image Source chessboard view. It must be an 8-bit grayscale or color image.
1403
@param patternSize Number of inner corners per a chessboard row and column
1404
( patternSize = cv::Size(points_per_row,points_per_colum) = cv::Size(columns,rows) ).
1405
@param corners Output array of detected corners.
1406
@param flags Various operation flags that can be zero or a combination of the following values:
1407
-   @ref CALIB_CB_NORMALIZE_IMAGE Normalize the image gamma with equalizeHist before detection.
1408
-   @ref CALIB_CB_EXHAUSTIVE Run an exhaustive search to improve detection rate.
1409
-   @ref CALIB_CB_ACCURACY Up sample input image to improve sub-pixel accuracy due to aliasing effects.
1410
-   @ref CALIB_CB_LARGER The detected pattern is allowed to be larger than patternSize (see description).
1411
-   @ref CALIB_CB_MARKER The detected pattern must have a marker (see description).
1412
This should be used if an accurate camera calibration is required.
1413
@param meta Optional output arrray of detected corners (CV_8UC1 and size = cv::Size(columns,rows)).
1414
Each entry stands for one corner of the pattern and can have one of the following values:
1415
-   0 = no meta data attached
1416
-   1 = left-top corner of a black cell
1417
-   2 = left-top corner of a white cell
1418
-   3 = left-top corner of a black cell with a white marker dot
1419
-   4 = left-top corner of a white cell with a black marker dot (pattern origin in case of markers otherwise first corner)
1420
1421
The function is analog to #findChessboardCorners but uses a localized radon
1422
transformation approximated by box filters being more robust to all sort of
1423
noise, faster on larger images and is able to directly return the sub-pixel
1424
position of the internal chessboard corners. The Method is based on the paper
1425
@cite duda2018 "Accurate Detection and Localization of Checkerboard Corners for
1426
Calibration" demonstrating that the returned sub-pixel positions are more
1427
accurate than the one returned by cornerSubPix allowing a precise camera
1428
calibration for demanding applications.
1429
1430
In the case, the flags @ref CALIB_CB_LARGER or @ref CALIB_CB_MARKER are given,
1431
the result can be recovered from the optional meta array. Both flags are
1432
helpful to use calibration patterns exceeding the field of view of the camera.
1433
These oversized patterns allow more accurate calibrations as corners can be
1434
utilized, which are as close as possible to the image borders.  For a
1435
consistent coordinate system across all images, the optional marker (see image
1436
below) can be used to move the origin of the board to the location where the
1437
black circle is located.
1438
1439
@note The function requires a white boarder with roughly the same width as one
1440
of the checkerboard fields around the whole board to improve the detection in
1441
various environments. In addition, because of the localized radon
1442
transformation it is beneficial to use round corners for the field corners
1443
which are located on the outside of the board. The following figure illustrates
1444
a sample checkerboard optimized for the detection. However, any other checkerboard
1445
can be used as well.
1446
1447
Use the `gen_pattern.py` Python script (@ref tutorial_camera_calibration_pattern)
1448
to create the corresponding checkerboard pattern:
1449
\image html pics/checkerboard_radon.png width=60%
1450
 */
1451
CV_EXPORTS_AS(findChessboardCornersSBWithMeta)
1452
bool findChessboardCornersSB(InputArray image,Size patternSize, OutputArray corners,
1453
                             int flags,OutputArray meta);
1454
/** @overload */
1455
CV_EXPORTS_W inline
1456
bool findChessboardCornersSB(InputArray image, Size patternSize, OutputArray corners,
1457
                             int flags = 0)
1458
0
{
1459
0
    return findChessboardCornersSB(image, patternSize, corners, flags, noArray());
1460
0
}
1461
1462
/** @brief Estimates the sharpness of a detected chessboard.
1463
1464
Image sharpness, as well as brightness, are a critical parameter for accuracte
1465
camera calibration. For accessing these parameters for filtering out
1466
problematic calibraiton images, this method calculates edge profiles by traveling from
1467
black to white chessboard cell centers. Based on this, the number of pixels is
1468
calculated required to transit from black to white. This width of the
1469
transition area is a good indication of how sharp the chessboard is imaged
1470
and should be below ~3.0 pixels.
1471
1472
@param image Gray image used to find chessboard corners
1473
@param patternSize Size of a found chessboard pattern
1474
@param corners Corners found by #findChessboardCornersSB
1475
@param rise_distance Rise distance 0.8 means 10% ... 90% of the final signal strength
1476
@param vertical By default edge responses for horizontal lines are calculated
1477
@param sharpness Optional output array with a sharpness value for calculated edge responses (see description)
1478
1479
The optional sharpness array is of type CV_32FC1 and has for each calculated
1480
profile one row with the following five entries:
1481
* 0 = x coordinate of the underlying edge in the image
1482
* 1 = y coordinate of the underlying edge in the image
1483
* 2 = width of the transition area (sharpness)
1484
* 3 = signal strength in the black cell (min brightness)
1485
* 4 = signal strength in the white cell (max brightness)
1486
1487
@return Scalar(average sharpness, average min brightness, average max brightness,0)
1488
*/
1489
CV_EXPORTS_W Scalar estimateChessboardSharpness(InputArray image, Size patternSize, InputArray corners,
1490
                                                float rise_distance=0.8F,bool vertical=false,
1491
                                                OutputArray sharpness=noArray());
1492
1493
1494
//! finds subpixel-accurate positions of the chessboard corners
1495
CV_EXPORTS_W bool find4QuadCornerSubpix( InputArray img, InputOutputArray corners, Size region_size );
1496
1497
/** @brief Renders the detected chessboard corners.
1498
1499
@param image Destination image. It must be an 8-bit color image.
1500
@param patternSize Number of inner corners per a chessboard row and column
1501
(patternSize = cv::Size(points_per_row,points_per_column)).
1502
@param corners Array of detected corners, the output of #findChessboardCorners.
1503
@param patternWasFound Parameter indicating whether the complete board was found or not. The
1504
return value of #findChessboardCorners should be passed here.
1505
1506
The function draws individual chessboard corners detected either as red circles if the board was not
1507
found, or as colored corners connected with lines if the board was found.
1508
 */
1509
CV_EXPORTS_W void drawChessboardCorners( InputOutputArray image, Size patternSize,
1510
                                         InputArray corners, bool patternWasFound );
1511
1512
/** @brief Draw axes of the world/object coordinate system from pose estimation. @sa solvePnP
1513
1514
@param image Input/output image. It must have 1 or 3 channels. The number of channels is not altered.
1515
@param cameraMatrix Input 3x3 floating-point matrix of camera intrinsic parameters.
1516
\f$\cameramatrix{A}\f$
1517
@param distCoeffs Input vector of distortion coefficients
1518
\f$\distcoeffs\f$. If the vector is empty, the zero distortion coefficients are assumed.
1519
@param rvec Rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from
1520
the model coordinate system to the camera coordinate system.
1521
@param tvec Translation vector.
1522
@param length Length of the painted axes in the same unit than tvec (usually in meters).
1523
@param thickness Line thickness of the painted axes.
1524
1525
This function draws the axes of the world/object coordinate system w.r.t. to the camera frame.
1526
OX is drawn in red, OY in green and OZ in blue.
1527
 */
1528
CV_EXPORTS_W void drawFrameAxes(InputOutputArray image, InputArray cameraMatrix, InputArray distCoeffs,
1529
                                InputArray rvec, InputArray tvec, float length, int thickness=3);
1530
1531
struct CV_EXPORTS_W_SIMPLE CirclesGridFinderParameters
1532
{
1533
    CV_WRAP CirclesGridFinderParameters();
1534
    CV_PROP_RW cv::Size2f densityNeighborhoodSize;
1535
    CV_PROP_RW float minDensity;
1536
    CV_PROP_RW int kmeansAttempts;
1537
    CV_PROP_RW int minDistanceToAddKeypoint;
1538
    CV_PROP_RW int keypointScale;
1539
    CV_PROP_RW float minGraphConfidence;
1540
    CV_PROP_RW float vertexGain;
1541
    CV_PROP_RW float vertexPenalty;
1542
    CV_PROP_RW float existingVertexGain;
1543
    CV_PROP_RW float edgeGain;
1544
    CV_PROP_RW float edgePenalty;
1545
    CV_PROP_RW float convexHullFactor;
1546
    CV_PROP_RW float minRNGEdgeSwitchDist;
1547
1548
    enum GridType
1549
    {
1550
      SYMMETRIC_GRID, ASYMMETRIC_GRID
1551
    };
1552
    GridType gridType;
1553
1554
    CV_PROP_RW float squareSize; //!< Distance between two adjacent points. Used by CALIB_CB_CLUSTERING.
1555
    CV_PROP_RW float maxRectifiedDistance; //!< Max deviation from prediction. Used by CALIB_CB_CLUSTERING.
1556
};
1557
1558
#ifndef DISABLE_OPENCV_3_COMPATIBILITY
1559
typedef CirclesGridFinderParameters CirclesGridFinderParameters2;
1560
#endif
1561
1562
/** @brief Finds centers in the grid of circles.
1563
1564
@param image grid view of input circles; it must be an 8-bit grayscale or color image.
1565
@param patternSize number of circles per row and column
1566
( patternSize = Size(points_per_row, points_per_colum) ).
1567
@param centers output array of detected centers.
1568
@param flags various operation flags that can be one of the following values:
1569
-   @ref CALIB_CB_SYMMETRIC_GRID uses symmetric pattern of circles.
1570
-   @ref CALIB_CB_ASYMMETRIC_GRID uses asymmetric pattern of circles.
1571
-   @ref CALIB_CB_CLUSTERING uses a special algorithm for grid detection. It is more robust to
1572
perspective distortions but much more sensitive to background clutter.
1573
@param blobDetector feature detector that finds blobs like dark circles on light background.
1574
                    If `blobDetector` is NULL then `image` represents Point2f array of candidates.
1575
@param parameters struct for finding circles in a grid pattern.
1576
1577
The function attempts to determine whether the input image contains a grid of circles. If it is, the
1578
function locates centers of the circles. The function returns a non-zero value if all of the centers
1579
have been found and they have been placed in a certain order (row by row, left to right in every
1580
row). Otherwise, if the function fails to find all the corners or reorder them, it returns 0.
1581
1582
Sample usage of detecting and drawing the centers of circles: :
1583
@code
1584
    Size patternsize(7,7); //number of centers
1585
    Mat gray = ...; //source image
1586
    vector<Point2f> centers; //this will be filled by the detected centers
1587
1588
    bool patternfound = findCirclesGrid(gray, patternsize, centers);
1589
1590
    drawChessboardCorners(img, patternsize, Mat(centers), patternfound);
1591
@endcode
1592
@note The function requires white space (like a square-thick border, the wider the better) around
1593
the board to make the detection more robust in various environments.
1594
 */
1595
CV_EXPORTS_W bool findCirclesGrid( InputArray image, Size patternSize,
1596
                                   OutputArray centers, int flags,
1597
                                   const Ptr<FeatureDetector> &blobDetector,
1598
                                   const CirclesGridFinderParameters& parameters);
1599
1600
/** @overload */
1601
CV_EXPORTS_W bool findCirclesGrid( InputArray image, Size patternSize,
1602
                                   OutputArray centers, int flags = CALIB_CB_SYMMETRIC_GRID,
1603
                                   const Ptr<FeatureDetector> &blobDetector = SimpleBlobDetector::create());
1604
1605
/** @brief Finds the camera intrinsic and extrinsic parameters from several views of a calibration
1606
pattern.
1607
1608
@param objectPoints In the new interface it is a vector of vectors of calibration pattern points in
1609
the calibration pattern coordinate space (e.g. std::vector<std::vector<cv::Vec3f>>). The outer
1610
vector contains as many elements as the number of pattern views. If the same calibration pattern
1611
is shown in each view and it is fully visible, all the vectors will be the same. Although, it is
1612
possible to use partially occluded patterns or even different patterns in different views. Then,
1613
the vectors will be different. Although the points are 3D, they all lie in the calibration pattern's
1614
XY coordinate plane (thus 0 in the Z-coordinate), if the used calibration pattern is a planar rig.
1615
In the old interface all the vectors of object points from different views are concatenated
1616
together.
1617
@param imagePoints In the new interface it is a vector of vectors of the projections of calibration
1618
pattern points (e.g. std::vector<std::vector<cv::Vec2f>>). imagePoints.size() and
1619
objectPoints.size(), and imagePoints[i].size() and objectPoints[i].size() for each i, must be equal,
1620
respectively. In the old interface all the vectors of object points from different views are
1621
concatenated together.
1622
@param imageSize Size of the image used only to initialize the camera intrinsic matrix.
1623
@param cameraMatrix Input/output 3x3 floating-point camera intrinsic matrix
1624
\f$\cameramatrix{A}\f$ . If @ref CALIB_USE_INTRINSIC_GUESS
1625
and/or @ref CALIB_FIX_ASPECT_RATIO, @ref CALIB_FIX_PRINCIPAL_POINT or @ref CALIB_FIX_FOCAL_LENGTH
1626
are specified, some or all of fx, fy, cx, cy must be initialized before calling the function.
1627
@param distCoeffs Input/output vector of distortion coefficients
1628
\f$\distcoeffs\f$.
1629
@param rvecs Output vector of rotation vectors (@ref Rodrigues ) estimated for each pattern view
1630
(e.g. std::vector<cv::Mat>>). That is, each i-th rotation vector together with the corresponding
1631
i-th translation vector (see the next output parameter description) brings the calibration pattern
1632
from the object coordinate space (in which object points are specified) to the camera coordinate
1633
space. In more technical terms, the tuple of the i-th rotation and translation vector performs
1634
a change of basis from object coordinate space to camera coordinate space. Due to its duality, this
1635
tuple is equivalent to the position of the calibration pattern with respect to the camera coordinate
1636
space.
1637
@param tvecs Output vector of translation vectors estimated for each pattern view, see parameter
1638
describtion above.
1639
@param stdDeviationsIntrinsics Output vector of standard deviations estimated for intrinsic
1640
parameters. Order of deviations values:
1641
\f$(f_x, f_y, c_x, c_y, k_1, k_2, p_1, p_2, k_3, k_4, k_5, k_6 , s_1, s_2, s_3,
1642
 s_4, \tau_x, \tau_y)\f$ If one of parameters is not estimated, it's deviation is equals to zero.
1643
@param stdDeviationsExtrinsics Output vector of standard deviations estimated for extrinsic
1644
parameters. Order of deviations values: \f$(R_0, T_0, \dotsc , R_{M - 1}, T_{M - 1})\f$ where M is
1645
the number of pattern views. \f$R_i, T_i\f$ are concatenated 1x3 vectors.
1646
 @param perViewErrors Output vector of the RMS re-projection error estimated for each pattern view.
1647
@param flags Different flags that may be zero or a combination of the following values:
1648
-   @ref CALIB_USE_INTRINSIC_GUESS cameraMatrix contains valid initial values of
1649
fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
1650
center ( imageSize is used), and focal distances are computed in a least-squares fashion.
1651
Note, that if intrinsic parameters are known, there is no need to use this function just to
1652
estimate extrinsic parameters. Use @ref solvePnP instead.
1653
-   @ref CALIB_FIX_PRINCIPAL_POINT The principal point is not changed during the global
1654
optimization. It stays at the center or at a different location specified when
1655
 @ref CALIB_USE_INTRINSIC_GUESS is set too.
1656
-   @ref CALIB_FIX_ASPECT_RATIO The functions consider only fy as a free parameter. The
1657
ratio fx/fy stays the same as in the input cameraMatrix . When
1658
 @ref CALIB_USE_INTRINSIC_GUESS is not set, the actual input values of fx and fy are
1659
ignored, only their ratio is computed and used further.
1660
-   @ref CALIB_ZERO_TANGENT_DIST Tangential distortion coefficients \f$(p_1, p_2)\f$ are set
1661
to zeros and stay zero.
1662
-   @ref CALIB_FIX_FOCAL_LENGTH The focal length is not changed during the global optimization if
1663
 @ref CALIB_USE_INTRINSIC_GUESS is set.
1664
-   @ref CALIB_FIX_K1,..., @ref CALIB_FIX_K6 The corresponding radial distortion
1665
coefficient is not changed during the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is
1666
set, the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
1667
-   @ref CALIB_RATIONAL_MODEL Coefficients k4, k5, and k6 are enabled. To provide the
1668
backward compatibility, this extra flag should be explicitly specified to make the
1669
calibration function use the rational model and return 8 coefficients or more.
1670
-   @ref CALIB_THIN_PRISM_MODEL Coefficients s1, s2, s3 and s4 are enabled. To provide the
1671
backward compatibility, this extra flag should be explicitly specified to make the
1672
calibration function use the thin prism model and return 12 coefficients or more.
1673
-   @ref CALIB_FIX_S1_S2_S3_S4 The thin prism distortion coefficients are not changed during
1674
the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
1675
supplied distCoeffs matrix is used. Otherwise, it is set to 0.
1676
-   @ref CALIB_TILTED_MODEL Coefficients tauX and tauY are enabled. To provide the
1677
backward compatibility, this extra flag should be explicitly specified to make the
1678
calibration function use the tilted sensor model and return 14 coefficients.
1679
-   @ref CALIB_FIX_TAUX_TAUY The coefficients of the tilted sensor model are not changed during
1680
the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
1681
supplied distCoeffs matrix is used. Otherwise, it is set to 0.
1682
@param criteria Termination criteria for the iterative optimization algorithm.
1683
1684
@return the overall RMS re-projection error.
1685
1686
The function estimates the intrinsic camera parameters and extrinsic parameters for each of the
1687
views. The algorithm is based on @cite Zhang2000 and @cite BouguetMCT . The coordinates of 3D object
1688
points and their corresponding 2D projections in each view must be specified. That may be achieved
1689
by using an object with known geometry and easily detectable feature points. Such an object is
1690
called a calibration rig or calibration pattern, and OpenCV has built-in support for a chessboard as
1691
a calibration rig (see @ref findChessboardCorners). Currently, initialization of intrinsic
1692
parameters (when @ref CALIB_USE_INTRINSIC_GUESS is not set) is only implemented for planar calibration
1693
patterns (where Z-coordinates of the object points must be all zeros). 3D calibration rigs can also
1694
be used as long as initial cameraMatrix is provided.
1695
1696
The algorithm performs the following steps:
1697
1698
-   Compute the initial intrinsic parameters (the option only available for planar calibration
1699
    patterns) or read them from the input parameters. The distortion coefficients are all set to
1700
    zeros initially unless some of CALIB_FIX_K? are specified.
1701
1702
-   Estimate the initial camera pose as if the intrinsic parameters have been already known. This is
1703
    done using @ref solvePnP .
1704
1705
-   Run the global Levenberg-Marquardt optimization algorithm to minimize the reprojection error,
1706
    that is, the total sum of squared distances between the observed feature points imagePoints and
1707
    the projected (using the current estimates for camera parameters and the poses) object points
1708
    objectPoints. See @ref projectPoints for details.
1709
1710
@note
1711
    If you use a non-square (i.e. non-N-by-N) grid and @ref findChessboardCorners for calibration,
1712
    and @ref calibrateCamera returns bad values (zero distortion coefficients, \f$c_x\f$ and
1713
    \f$c_y\f$ very far from the image center, and/or large differences between \f$f_x\f$ and
1714
    \f$f_y\f$ (ratios of 10:1 or more)), then you are probably using patternSize=cvSize(rows,cols)
1715
    instead of using patternSize=cvSize(cols,rows) in @ref findChessboardCorners.
1716
1717
@note
1718
    The function may throw exceptions, if unsupported combination of parameters is provided or
1719
    the system is underconstrained.
1720
1721
@sa
1722
   calibrateCameraRO, findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate,
1723
   undistort
1724
 */
1725
CV_EXPORTS_AS(calibrateCameraExtended) double calibrateCamera( InputArrayOfArrays objectPoints,
1726
                                     InputArrayOfArrays imagePoints, Size imageSize,
1727
                                     InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
1728
                                     OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
1729
                                     OutputArray stdDeviationsIntrinsics,
1730
                                     OutputArray stdDeviationsExtrinsics,
1731
                                     OutputArray perViewErrors,
1732
                                     int flags = 0, TermCriteria criteria = TermCriteria(
1733
                                        TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) );
1734
1735
/** @overload */
1736
CV_EXPORTS_W double calibrateCamera( InputArrayOfArrays objectPoints,
1737
                                     InputArrayOfArrays imagePoints, Size imageSize,
1738
                                     InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
1739
                                     OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
1740
                                     int flags = 0, TermCriteria criteria = TermCriteria(
1741
                                        TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) );
1742
1743
/** @brief Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern.
1744
1745
This function is an extension of #calibrateCamera with the method of releasing object which was
1746
proposed in @cite strobl2011iccv. In many common cases with inaccurate, unmeasured, roughly planar
1747
targets (calibration plates), this method can dramatically improve the precision of the estimated
1748
camera parameters. Both the object-releasing method and standard method are supported by this
1749
function. Use the parameter **iFixedPoint** for method selection. In the internal implementation,
1750
#calibrateCamera is a wrapper for this function.
1751
1752
@param objectPoints Vector of vectors of calibration pattern points in the calibration pattern
1753
coordinate space. See #calibrateCamera for details. If the method of releasing object to be used,
1754
the identical calibration board must be used in each view and it must be fully visible, and all
1755
objectPoints[i] must be the same and all points should be roughly close to a plane. **The calibration
1756
target has to be rigid, or at least static if the camera (rather than the calibration target) is
1757
shifted for grabbing images.**
1758
@param imagePoints Vector of vectors of the projections of calibration pattern points. See
1759
#calibrateCamera for details.
1760
@param imageSize Size of the image used only to initialize the intrinsic camera matrix.
1761
@param iFixedPoint The index of the 3D object point in objectPoints[0] to be fixed. It also acts as
1762
a switch for calibration method selection. If object-releasing method to be used, pass in the
1763
parameter in the range of [1, objectPoints[0].size()-2], otherwise a value out of this range will
1764
make standard calibration method selected. Usually the top-right corner point of the calibration
1765
board grid is recommended to be fixed when object-releasing method being utilized. According to
1766
\cite strobl2011iccv, two other points are also fixed. In this implementation, objectPoints[0].front
1767
and objectPoints[0].back.z are used. With object-releasing method, accurate rvecs, tvecs and
1768
newObjPoints are only possible if coordinates of these three fixed points are accurate enough.
1769
@param cameraMatrix Output 3x3 floating-point camera matrix. See #calibrateCamera for details.
1770
@param distCoeffs Output vector of distortion coefficients. See #calibrateCamera for details.
1771
@param rvecs Output vector of rotation vectors estimated for each pattern view. See #calibrateCamera
1772
for details.
1773
@param tvecs Output vector of translation vectors estimated for each pattern view.
1774
@param newObjPoints The updated output vector of calibration pattern points. The coordinates might
1775
be scaled based on three fixed points. The returned coordinates are accurate only if the above
1776
mentioned three fixed points are accurate. If not needed, noArray() can be passed in. This parameter
1777
is ignored with standard calibration method.
1778
@param stdDeviationsIntrinsics Output vector of standard deviations estimated for intrinsic parameters.
1779
See #calibrateCamera for details.
1780
@param stdDeviationsExtrinsics Output vector of standard deviations estimated for extrinsic parameters.
1781
See #calibrateCamera for details.
1782
@param stdDeviationsObjPoints Output vector of standard deviations estimated for refined coordinates
1783
of calibration pattern points. It has the same size and order as objectPoints[0] vector. This
1784
parameter is ignored with standard calibration method.
1785
 @param perViewErrors Output vector of the RMS re-projection error estimated for each pattern view.
1786
@param flags Different flags that may be zero or a combination of some predefined values. See
1787
#calibrateCamera for details. If the method of releasing object is used, the calibration time may
1788
be much longer. CALIB_USE_QR or CALIB_USE_LU could be used for faster calibration with potentially
1789
less precise and less stable in some rare cases.
1790
@param criteria Termination criteria for the iterative optimization algorithm.
1791
1792
@return the overall RMS re-projection error.
1793
1794
The function estimates the intrinsic camera parameters and extrinsic parameters for each of the
1795
views. The algorithm is based on @cite Zhang2000, @cite BouguetMCT and @cite strobl2011iccv. See
1796
#calibrateCamera for other detailed explanations.
1797
@sa
1798
   calibrateCamera, findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate, undistort
1799
 */
1800
CV_EXPORTS_AS(calibrateCameraROExtended) double calibrateCameraRO( InputArrayOfArrays objectPoints,
1801
                                     InputArrayOfArrays imagePoints, Size imageSize, int iFixedPoint,
1802
                                     InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
1803
                                     OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
1804
                                     OutputArray newObjPoints,
1805
                                     OutputArray stdDeviationsIntrinsics,
1806
                                     OutputArray stdDeviationsExtrinsics,
1807
                                     OutputArray stdDeviationsObjPoints,
1808
                                     OutputArray perViewErrors,
1809
                                     int flags = 0, TermCriteria criteria = TermCriteria(
1810
                                        TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) );
1811
1812
/** @overload */
1813
CV_EXPORTS_W double calibrateCameraRO( InputArrayOfArrays objectPoints,
1814
                                     InputArrayOfArrays imagePoints, Size imageSize, int iFixedPoint,
1815
                                     InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
1816
                                     OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
1817
                                     OutputArray newObjPoints,
1818
                                     int flags = 0, TermCriteria criteria = TermCriteria(
1819
                                        TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) );
1820
1821
/** @brief Computes useful camera characteristics from the camera intrinsic matrix.
1822
1823
@param cameraMatrix Input camera intrinsic matrix that can be estimated by #calibrateCamera or
1824
#stereoCalibrate .
1825
@param imageSize Input image size in pixels.
1826
@param apertureWidth Physical width in mm of the sensor.
1827
@param apertureHeight Physical height in mm of the sensor.
1828
@param fovx Output field of view in degrees along the horizontal sensor axis.
1829
@param fovy Output field of view in degrees along the vertical sensor axis.
1830
@param focalLength Focal length of the lens in mm.
1831
@param principalPoint Principal point in mm.
1832
@param aspectRatio \f$f_y/f_x\f$
1833
1834
The function computes various useful camera characteristics from the previously estimated camera
1835
matrix.
1836
1837
@note
1838
   Do keep in mind that the unity measure 'mm' stands for whatever unit of measure one chooses for
1839
    the chessboard pitch (it can thus be any value).
1840
 */
1841
CV_EXPORTS_W void calibrationMatrixValues( InputArray cameraMatrix, Size imageSize,
1842
                                           double apertureWidth, double apertureHeight,
1843
                                           CV_OUT double& fovx, CV_OUT double& fovy,
1844
                                           CV_OUT double& focalLength, CV_OUT Point2d& principalPoint,
1845
                                           CV_OUT double& aspectRatio );
1846
1847
/** @brief Calibrates a stereo camera set up. This function finds the intrinsic parameters
1848
for each of the two cameras and the extrinsic parameters between the two cameras.
1849
1850
@param objectPoints Vector of vectors of the calibration pattern points. The same structure as
1851
in @ref calibrateCamera. For each pattern view, both cameras need to see the same object
1852
points. Therefore, objectPoints.size(), imagePoints1.size(), and imagePoints2.size() need to be
1853
equal as well as objectPoints[i].size(), imagePoints1[i].size(), and imagePoints2[i].size() need to
1854
be equal for each i.
1855
@param imagePoints1 Vector of vectors of the projections of the calibration pattern points,
1856
observed by the first camera. The same structure as in @ref calibrateCamera.
1857
@param imagePoints2 Vector of vectors of the projections of the calibration pattern points,
1858
observed by the second camera. The same structure as in @ref calibrateCamera.
1859
@param cameraMatrix1 Input/output camera intrinsic matrix for the first camera, the same as in
1860
@ref calibrateCamera. Furthermore, for the stereo case, additional flags may be used, see below.
1861
@param distCoeffs1 Input/output vector of distortion coefficients, the same as in
1862
@ref calibrateCamera.
1863
@param cameraMatrix2 Input/output second camera intrinsic matrix for the second camera. See description for
1864
cameraMatrix1.
1865
@param distCoeffs2 Input/output lens distortion coefficients for the second camera. See
1866
description for distCoeffs1.
1867
@param imageSize Size of the image used only to initialize the camera intrinsic matrices.
1868
@param R Output rotation matrix. Together with the translation vector T, this matrix brings
1869
points given in the first camera's coordinate system to points in the second camera's
1870
coordinate system. In more technical terms, the tuple of R and T performs a change of basis
1871
from the first camera's coordinate system to the second camera's coordinate system. Due to its
1872
duality, this tuple is equivalent to the position of the first camera with respect to the
1873
second camera coordinate system.
1874
@param T Output translation vector, see description above.
1875
@param E Output essential matrix.
1876
@param F Output fundamental matrix.
1877
@param rvecs Output vector of rotation vectors ( @ref Rodrigues ) estimated for each pattern view in the
1878
coordinate system of the first camera of the stereo pair (e.g. std::vector<cv::Mat>). More in detail, each
1879
i-th rotation vector together with the corresponding i-th translation vector (see the next output parameter
1880
description) brings the calibration pattern from the object coordinate space (in which object points are
1881
specified) to the camera coordinate space of the first camera of the stereo pair. In more technical terms,
1882
the tuple of the i-th rotation and translation vector performs a change of basis from object coordinate space
1883
to camera coordinate space of the first camera of the stereo pair.
1884
@param tvecs Output vector of translation vectors estimated for each pattern view, see parameter description
1885
of previous output parameter ( rvecs ).
1886
@param perViewErrors Output vector of the RMS re-projection error estimated for each pattern view.
1887
@param flags Different flags that may be zero or a combination of the following values:
1888
-   @ref CALIB_FIX_INTRINSIC Fix cameraMatrix? and distCoeffs? so that only R, T, E, and F
1889
matrices are estimated.
1890
-   @ref CALIB_USE_INTRINSIC_GUESS Optimize some or all of the intrinsic parameters
1891
according to the specified flags. Initial values are provided by the user.
1892
-   @ref CALIB_USE_EXTRINSIC_GUESS R and T contain valid initial values that are optimized further.
1893
Otherwise R and T are initialized to the median value of the pattern views (each dimension separately).
1894
-   @ref CALIB_FIX_PRINCIPAL_POINT Fix the principal points during the optimization.
1895
-   @ref CALIB_FIX_FOCAL_LENGTH Fix \f$f^{(j)}_x\f$ and \f$f^{(j)}_y\f$ .
1896
-   @ref CALIB_FIX_ASPECT_RATIO Optimize \f$f^{(j)}_y\f$ . Fix the ratio \f$f^{(j)}_x/f^{(j)}_y\f$
1897
.
1898
-   @ref CALIB_SAME_FOCAL_LENGTH Enforce \f$f^{(0)}_x=f^{(1)}_x\f$ and \f$f^{(0)}_y=f^{(1)}_y\f$ .
1899
-   @ref CALIB_ZERO_TANGENT_DIST Set tangential distortion coefficients for each camera to
1900
zeros and fix there.
1901
-   @ref CALIB_FIX_K1,..., @ref CALIB_FIX_K6 Do not change the corresponding radial
1902
distortion coefficient during the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set,
1903
the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
1904
-   @ref CALIB_RATIONAL_MODEL Enable coefficients k4, k5, and k6. To provide the backward
1905
compatibility, this extra flag should be explicitly specified to make the calibration
1906
function use the rational model and return 8 coefficients. If the flag is not set, the
1907
function computes and returns only 5 distortion coefficients.
1908
-   @ref CALIB_THIN_PRISM_MODEL Coefficients s1, s2, s3 and s4 are enabled. To provide the
1909
backward compatibility, this extra flag should be explicitly specified to make the
1910
calibration function use the thin prism model and return 12 coefficients. If the flag is not
1911
set, the function computes and returns only 5 distortion coefficients.
1912
-   @ref CALIB_FIX_S1_S2_S3_S4 The thin prism distortion coefficients are not changed during
1913
the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
1914
supplied distCoeffs matrix is used. Otherwise, it is set to 0.
1915
-   @ref CALIB_TILTED_MODEL Coefficients tauX and tauY are enabled. To provide the
1916
backward compatibility, this extra flag should be explicitly specified to make the
1917
calibration function use the tilted sensor model and return 14 coefficients. If the flag is not
1918
set, the function computes and returns only 5 distortion coefficients.
1919
-   @ref CALIB_FIX_TAUX_TAUY The coefficients of the tilted sensor model are not changed during
1920
the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
1921
supplied distCoeffs matrix is used. Otherwise, it is set to 0.
1922
@param criteria Termination criteria for the iterative optimization algorithm.
1923
1924
The function estimates the transformation between two cameras making a stereo pair. If one computes
1925
the poses of an object relative to the first camera and to the second camera,
1926
( \f$R_1\f$,\f$T_1\f$ ) and (\f$R_2\f$,\f$T_2\f$), respectively, for a stereo camera where the
1927
relative position and orientation between the two cameras are fixed, then those poses definitely
1928
relate to each other. This means, if the relative position and orientation (\f$R\f$,\f$T\f$) of the
1929
two cameras is known, it is possible to compute (\f$R_2\f$,\f$T_2\f$) when (\f$R_1\f$,\f$T_1\f$) is
1930
given. This is what the described function does. It computes (\f$R\f$,\f$T\f$) such that:
1931
1932
\f[R_2=R R_1\f]
1933
\f[T_2=R T_1 + T.\f]
1934
1935
Therefore, one can compute the coordinate representation of a 3D point for the second camera's
1936
coordinate system when given the point's coordinate representation in the first camera's coordinate
1937
system:
1938
1939
\f[\begin{bmatrix}
1940
X_2 \\
1941
Y_2 \\
1942
Z_2 \\
1943
1
1944
\end{bmatrix} = \begin{bmatrix}
1945
R & T \\
1946
0 & 1
1947
\end{bmatrix} \begin{bmatrix}
1948
X_1 \\
1949
Y_1 \\
1950
Z_1 \\
1951
1
1952
\end{bmatrix}.\f]
1953
1954
1955
Optionally, it computes the essential matrix E:
1956
1957
\f[E= \vecthreethree{0}{-T_2}{T_1}{T_2}{0}{-T_0}{-T_1}{T_0}{0} R\f]
1958
1959
where \f$T_i\f$ are components of the translation vector \f$T\f$ : \f$T=[T_0, T_1, T_2]^T\f$ .
1960
And the function can also compute the fundamental matrix F:
1961
1962
\f[F = cameraMatrix2^{-T}\cdot E \cdot cameraMatrix1^{-1}\f]
1963
1964
Besides the stereo-related information, the function can also perform a full calibration of each of
1965
the two cameras. However, due to the high dimensionality of the parameter space and noise in the
1966
input data, the function can diverge from the correct solution. If the intrinsic parameters can be
1967
estimated with high accuracy for each of the cameras individually (for example, using
1968
#calibrateCamera ), you are recommended to do so and then pass @ref CALIB_FIX_INTRINSIC flag to the
1969
function along with the computed intrinsic parameters. Otherwise, if all the parameters are
1970
estimated at once, it makes sense to restrict some parameters, for example, pass
1971
 @ref CALIB_SAME_FOCAL_LENGTH and @ref CALIB_ZERO_TANGENT_DIST flags, which is usually a
1972
reasonable assumption.
1973
1974
Similarly to #calibrateCamera, the function minimizes the total re-projection error for all the
1975
points in all the available views from both cameras. The function returns the final value of the
1976
re-projection error.
1977
 */
1978
CV_EXPORTS_AS(stereoCalibrateExtended) double stereoCalibrate( InputArrayOfArrays objectPoints,
1979
                                     InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
1980
                                     InputOutputArray cameraMatrix1, InputOutputArray distCoeffs1,
1981
                                     InputOutputArray cameraMatrix2, InputOutputArray distCoeffs2,
1982
                                     Size imageSize, InputOutputArray R, InputOutputArray T, OutputArray E, OutputArray F,
1983
                                     OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, OutputArray perViewErrors, int flags = CALIB_FIX_INTRINSIC,
1984
                                     TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6) );
1985
1986
/// @overload
1987
CV_EXPORTS_W double stereoCalibrate( InputArrayOfArrays objectPoints,
1988
                                     InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
1989
                                     InputOutputArray cameraMatrix1, InputOutputArray distCoeffs1,
1990
                                     InputOutputArray cameraMatrix2, InputOutputArray distCoeffs2,
1991
                                     Size imageSize, OutputArray R,OutputArray T, OutputArray E, OutputArray F,
1992
                                     int flags = CALIB_FIX_INTRINSIC,
1993
                                     TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6) );
1994
1995
/// @overload
1996
CV_EXPORTS_W double stereoCalibrate( InputArrayOfArrays objectPoints,
1997
                                     InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
1998
                                     InputOutputArray cameraMatrix1, InputOutputArray distCoeffs1,
1999
                                     InputOutputArray cameraMatrix2, InputOutputArray distCoeffs2,
2000
                                     Size imageSize, InputOutputArray R, InputOutputArray T, OutputArray E, OutputArray F,
2001
                                     OutputArray perViewErrors, int flags = CALIB_FIX_INTRINSIC,
2002
                                     TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6) );
2003
2004
/** @brief Computes rectification transforms for each head of a calibrated stereo camera.
2005
2006
@param cameraMatrix1 First camera intrinsic matrix.
2007
@param distCoeffs1 First camera distortion parameters.
2008
@param cameraMatrix2 Second camera intrinsic matrix.
2009
@param distCoeffs2 Second camera distortion parameters.
2010
@param imageSize Size of the image used for stereo calibration.
2011
@param R Rotation matrix from the coordinate system of the first camera to the second camera,
2012
see @ref stereoCalibrate.
2013
@param T Translation vector from the coordinate system of the first camera to the second camera,
2014
see @ref stereoCalibrate.
2015
@param R1 Output 3x3 rectification transform (rotation matrix) for the first camera. This matrix
2016
brings points given in the unrectified first camera's coordinate system to points in the rectified
2017
first camera's coordinate system. In more technical terms, it performs a change of basis from the
2018
unrectified first camera's coordinate system to the rectified first camera's coordinate system.
2019
@param R2 Output 3x3 rectification transform (rotation matrix) for the second camera. This matrix
2020
brings points given in the unrectified second camera's coordinate system to points in the rectified
2021
second camera's coordinate system. In more technical terms, it performs a change of basis from the
2022
unrectified second camera's coordinate system to the rectified second camera's coordinate system.
2023
@param P1 Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
2024
camera, i.e. it projects points given in the rectified first camera coordinate system into the
2025
rectified first camera's image.
2026
@param P2 Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
2027
camera, i.e. it projects points given in the rectified first camera coordinate system into the
2028
rectified second camera's image.
2029
@param Q Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see @ref reprojectImageTo3D).
2030
@param flags Operation flags that may be zero or @ref CALIB_ZERO_DISPARITY . If the flag is set,
2031
the function makes the principal points of each camera have the same pixel coordinates in the
2032
rectified views. And if the flag is not set, the function may still shift the images in the
2033
horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
2034
useful image area.
2035
@param alpha Free scaling parameter. If it is -1 or absent, the function performs the default
2036
scaling. Otherwise, the parameter should be between 0 and 1. alpha=0 means that the rectified
2037
images are zoomed and shifted so that only valid pixels are visible (no black areas after
2038
rectification). alpha=1 means that the rectified image is decimated and shifted so that all the
2039
pixels from the original images from the cameras are retained in the rectified images (no source
2040
image pixels are lost). Any intermediate value yields an intermediate result between
2041
those two extreme cases.
2042
@param newImageSize New image resolution after rectification. The same size should be passed to
2043
#initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
2044
is passed (default), it is set to the original imageSize . Setting it to a larger value can help you
2045
preserve details in the original image, especially when there is a big radial distortion.
2046
@param validPixROI1 Optional output rectangles inside the rectified images where all the pixels
2047
are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
2048
(see the picture below).
2049
@param validPixROI2 Optional output rectangles inside the rectified images where all the pixels
2050
are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
2051
(see the picture below).
2052
2053
The function computes the rotation matrices for each camera that (virtually) make both camera image
2054
planes the same plane. Consequently, this makes all the epipolar lines parallel and thus simplifies
2055
the dense stereo correspondence problem. The function takes the matrices computed by #stereoCalibrate
2056
as input. As output, it provides two rotation matrices and also two projection matrices in the new
2057
coordinates. The function distinguishes the following two cases:
2058
2059
-   **Horizontal stereo**: the first and the second camera views are shifted relative to each other
2060
    mainly along the x-axis (with possible small vertical shift). In the rectified images, the
2061
    corresponding epipolar lines in the left and right cameras are horizontal and have the same
2062
    y-coordinate. P1 and P2 look like:
2063
2064
    \f[\texttt{P1} = \begin{bmatrix}
2065
                        f & 0 & cx_1 & 0 \\
2066
                        0 & f & cy & 0 \\
2067
                        0 & 0 & 1 & 0
2068
                     \end{bmatrix}\f]
2069
2070
    \f[\texttt{P2} = \begin{bmatrix}
2071
                        f & 0 & cx_2 & T_x \cdot f \\
2072
                        0 & f & cy & 0 \\
2073
                        0 & 0 & 1 & 0
2074
                     \end{bmatrix} ,\f]
2075
2076
    \f[\texttt{Q} = \begin{bmatrix}
2077
                        1 & 0 & 0 & -cx_1 \\
2078
                        0 & 1 & 0 & -cy \\
2079
                        0 & 0 & 0 & f \\
2080
                        0 & 0 & -\frac{1}{T_x} & \frac{cx_1 - cx_2}{T_x}
2081
                    \end{bmatrix} \f]
2082
2083
    where \f$T_x\f$ is a horizontal shift between the cameras and \f$cx_1=cx_2\f$ if
2084
    @ref CALIB_ZERO_DISPARITY is set.
2085
2086
-   **Vertical stereo**: the first and the second camera views are shifted relative to each other
2087
    mainly in the vertical direction (and probably a bit in the horizontal direction too). The epipolar
2088
    lines in the rectified images are vertical and have the same x-coordinate. P1 and P2 look like:
2089
2090
    \f[\texttt{P1} = \begin{bmatrix}
2091
                        f & 0 & cx & 0 \\
2092
                        0 & f & cy_1 & 0 \\
2093
                        0 & 0 & 1 & 0
2094
                     \end{bmatrix}\f]
2095
2096
    \f[\texttt{P2} = \begin{bmatrix}
2097
                        f & 0 & cx & 0 \\
2098
                        0 & f & cy_2 & T_y \cdot f \\
2099
                        0 & 0 & 1 & 0
2100
                     \end{bmatrix},\f]
2101
2102
    \f[\texttt{Q} = \begin{bmatrix}
2103
                        1 & 0 & 0 & -cx \\
2104
                        0 & 1 & 0 & -cy_1 \\
2105
                        0 & 0 & 0 & f \\
2106
                        0 & 0 & -\frac{1}{T_y} & \frac{cy_1 - cy_2}{T_y}
2107
                    \end{bmatrix} \f]
2108
2109
    where \f$T_y\f$ is a vertical shift between the cameras and \f$cy_1=cy_2\f$ if
2110
    @ref CALIB_ZERO_DISPARITY is set.
2111
2112
As you can see, the first three columns of P1 and P2 will effectively be the new "rectified" camera
2113
matrices. The matrices, together with R1 and R2 , can then be passed to #initUndistortRectifyMap to
2114
initialize the rectification map for each camera.
2115
2116
See below the screenshot from the stereo_calib.cpp sample. Some red horizontal lines pass through
2117
the corresponding image regions. This means that the images are well rectified, which is what most
2118
stereo correspondence algorithms rely on. The green rectangles are roi1 and roi2 . You see that
2119
their interiors are all valid pixels.
2120
2121
![image](pics/stereo_undistort.jpg)
2122
 */
2123
CV_EXPORTS_W void stereoRectify( InputArray cameraMatrix1, InputArray distCoeffs1,
2124
                                 InputArray cameraMatrix2, InputArray distCoeffs2,
2125
                                 Size imageSize, InputArray R, InputArray T,
2126
                                 OutputArray R1, OutputArray R2,
2127
                                 OutputArray P1, OutputArray P2,
2128
                                 OutputArray Q, int flags = CALIB_ZERO_DISPARITY,
2129
                                 double alpha = -1, Size newImageSize = Size(),
2130
                                 CV_OUT Rect* validPixROI1 = 0, CV_OUT Rect* validPixROI2 = 0 );
2131
2132
/** @brief Computes a rectification transform for an uncalibrated stereo camera.
2133
2134
@param points1 Array of feature points in the first image.
2135
@param points2 The corresponding points in the second image. The same formats as in
2136
#findFundamentalMat are supported.
2137
@param F Input fundamental matrix. It can be computed from the same set of point pairs using
2138
#findFundamentalMat .
2139
@param imgSize Size of the image.
2140
@param H1 Output rectification homography matrix for the first image.
2141
@param H2 Output rectification homography matrix for the second image.
2142
@param threshold Optional threshold used to filter out the outliers. If the parameter is greater
2143
than zero, all the point pairs that do not comply with the epipolar geometry (that is, the points
2144
for which \f$|\texttt{points2[i]}^T \cdot \texttt{F} \cdot \texttt{points1[i]}|>\texttt{threshold}\f$ )
2145
are rejected prior to computing the homographies. Otherwise, all the points are considered inliers.
2146
2147
The function computes the rectification transformations without knowing intrinsic parameters of the
2148
cameras and their relative position in the space, which explains the suffix "uncalibrated". Another
2149
related difference from #stereoRectify is that the function outputs not the rectification
2150
transformations in the object (3D) space, but the planar perspective transformations encoded by the
2151
homography matrices H1 and H2 . The function implements the algorithm @cite Hartley99 .
2152
2153
@note
2154
   While the algorithm does not need to know the intrinsic parameters of the cameras, it heavily
2155
    depends on the epipolar geometry. Therefore, if the camera lenses have a significant distortion,
2156
    it would be better to correct it before computing the fundamental matrix and calling this
2157
    function. For example, distortion coefficients can be estimated for each head of stereo camera
2158
    separately by using #calibrateCamera . Then, the images can be corrected using #undistort , or
2159
    just the point coordinates can be corrected with #undistortPoints .
2160
 */
2161
CV_EXPORTS_W bool stereoRectifyUncalibrated( InputArray points1, InputArray points2,
2162
                                             InputArray F, Size imgSize,
2163
                                             OutputArray H1, OutputArray H2,
2164
                                             double threshold = 5 );
2165
2166
//! computes the rectification transformations for 3-head camera, where all the heads are on the same line.
2167
CV_EXPORTS_W float rectify3Collinear( InputArray cameraMatrix1, InputArray distCoeffs1,
2168
                                      InputArray cameraMatrix2, InputArray distCoeffs2,
2169
                                      InputArray cameraMatrix3, InputArray distCoeffs3,
2170
                                      InputArrayOfArrays imgpt1, InputArrayOfArrays imgpt3,
2171
                                      Size imageSize, InputArray R12, InputArray T12,
2172
                                      InputArray R13, InputArray T13,
2173
                                      OutputArray R1, OutputArray R2, OutputArray R3,
2174
                                      OutputArray P1, OutputArray P2, OutputArray P3,
2175
                                      OutputArray Q, double alpha, Size newImgSize,
2176
                                      CV_OUT Rect* roi1, CV_OUT Rect* roi2, int flags );
2177
2178
/** @brief Returns the new camera intrinsic matrix based on the free scaling parameter.
2179
2180
@param cameraMatrix Input camera intrinsic matrix.
2181
@param distCoeffs Input vector of distortion coefficients
2182
\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are
2183
assumed.
2184
@param imageSize Original image size.
2185
@param alpha Free scaling parameter between 0 (when all the pixels in the undistorted image are
2186
valid) and 1 (when all the source image pixels are retained in the undistorted image). See
2187
#stereoRectify for details.
2188
@param newImgSize Image size after rectification. By default, it is set to imageSize .
2189
@param validPixROI Optional output rectangle that outlines all-good-pixels region in the
2190
undistorted image. See roi1, roi2 description in #stereoRectify .
2191
@param centerPrincipalPoint Optional flag that indicates whether in the new camera intrinsic matrix the
2192
principal point should be at the image center or not. By default, the principal point is chosen to
2193
best fit a subset of the source image (determined by alpha) to the corrected image.
2194
@return new_camera_matrix Output new camera intrinsic matrix.
2195
2196
The function computes and returns the optimal new camera intrinsic matrix based on the free scaling parameter.
2197
By varying this parameter, you may retrieve only sensible pixels alpha=0 , keep all the original
2198
image pixels if there is valuable information in the corners alpha=1 , or get something in between.
2199
When alpha\>0 , the undistorted result is likely to have some black pixels corresponding to
2200
"virtual" pixels outside of the captured distorted image. The original camera intrinsic matrix, distortion
2201
coefficients, the computed new camera intrinsic matrix, and newImageSize should be passed to
2202
#initUndistortRectifyMap to produce the maps for #remap .
2203
 */
2204
CV_EXPORTS_W Mat getOptimalNewCameraMatrix( InputArray cameraMatrix, InputArray distCoeffs,
2205
                                            Size imageSize, double alpha, Size newImgSize = Size(),
2206
                                            CV_OUT Rect* validPixROI = 0,
2207
                                            bool centerPrincipalPoint = false);
2208
2209
/** @brief Computes Hand-Eye calibration: \f$_{}^{g}\textrm{T}_c\f$
2210
2211
@param[in] R_gripper2base Rotation part extracted from the homogeneous matrix that transforms a point
2212
expressed in the gripper frame to the robot base frame (\f$_{}^{b}\textrm{T}_g\f$).
2213
This is a vector (`vector<Mat>`) that contains the rotation, `(3x3)` rotation matrices or `(3x1)` rotation vectors,
2214
for all the transformations from gripper frame to robot base frame.
2215
@param[in] t_gripper2base Translation part extracted from the homogeneous matrix that transforms a point
2216
expressed in the gripper frame to the robot base frame (\f$_{}^{b}\textrm{T}_g\f$).
2217
This is a vector (`vector<Mat>`) that contains the `(3x1)` translation vectors for all the transformations
2218
from gripper frame to robot base frame.
2219
@param[in] R_target2cam Rotation part extracted from the homogeneous matrix that transforms a point
2220
expressed in the target frame to the camera frame (\f$_{}^{c}\textrm{T}_t\f$).
2221
This is a vector (`vector<Mat>`) that contains the rotation, `(3x3)` rotation matrices or `(3x1)` rotation vectors,
2222
for all the transformations from calibration target frame to camera frame.
2223
@param[in] t_target2cam Rotation part extracted from the homogeneous matrix that transforms a point
2224
expressed in the target frame to the camera frame (\f$_{}^{c}\textrm{T}_t\f$).
2225
This is a vector (`vector<Mat>`) that contains the `(3x1)` translation vectors for all the transformations
2226
from calibration target frame to camera frame.
2227
@param[out] R_cam2gripper Estimated `(3x3)` rotation part extracted from the homogeneous matrix that transforms a point
2228
expressed in the camera frame to the gripper frame (\f$_{}^{g}\textrm{T}_c\f$).
2229
@param[out] t_cam2gripper Estimated `(3x1)` translation part extracted from the homogeneous matrix that transforms a point
2230
expressed in the camera frame to the gripper frame (\f$_{}^{g}\textrm{T}_c\f$).
2231
@param[in] method One of the implemented Hand-Eye calibration method, see cv::HandEyeCalibrationMethod
2232
2233
The function performs the Hand-Eye calibration using various methods. One approach consists in estimating the
2234
rotation then the translation (separable solutions) and the following methods are implemented:
2235
  - R. Tsai, R. Lenz A New Technique for Fully Autonomous and Efficient 3D Robotics Hand/EyeCalibration \cite Tsai89
2236
  - F. Park, B. Martin Robot Sensor Calibration: Solving AX = XB on the Euclidean Group \cite Park94
2237
  - R. Horaud, F. Dornaika Hand-Eye Calibration \cite Horaud95
2238
2239
Another approach consists in estimating simultaneously the rotation and the translation (simultaneous solutions),
2240
with the following implemented methods:
2241
  - N. Andreff, R. Horaud, B. Espiau On-line Hand-Eye Calibration \cite Andreff99
2242
  - K. Daniilidis Hand-Eye Calibration Using Dual Quaternions \cite Daniilidis98
2243
2244
The following picture describes the Hand-Eye calibration problem where the transformation between a camera ("eye")
2245
mounted on a robot gripper ("hand") has to be estimated. This configuration is called eye-in-hand.
2246
2247
The eye-to-hand configuration consists in a static camera observing a calibration pattern mounted on the robot
2248
end-effector. The transformation from the camera to the robot base frame can then be estimated by inputting
2249
the suitable transformations to the function, see below.
2250
2251
![](pics/hand-eye_figure.png)
2252
2253
The calibration procedure is the following:
2254
  - a static calibration pattern is used to estimate the transformation between the target frame
2255
  and the camera frame
2256
  - the robot gripper is moved in order to acquire several poses
2257
  - for each pose, the homogeneous transformation between the gripper frame and the robot base frame is recorded using for
2258
  instance the robot kinematics
2259
\f[
2260
    \begin{bmatrix}
2261
    X_b\\
2262
    Y_b\\
2263
    Z_b\\
2264
    1
2265
    \end{bmatrix}
2266
    =
2267
    \begin{bmatrix}
2268
    _{}^{b}\textrm{R}_g & _{}^{b}\textrm{t}_g \\
2269
    0_{1 \times 3} & 1
2270
    \end{bmatrix}
2271
    \begin{bmatrix}
2272
    X_g\\
2273
    Y_g\\
2274
    Z_g\\
2275
    1
2276
    \end{bmatrix}
2277
\f]
2278
  - for each pose, the homogeneous transformation between the calibration target frame and the camera frame is recorded using
2279
  for instance a pose estimation method (PnP) from 2D-3D point correspondences
2280
\f[
2281
    \begin{bmatrix}
2282
    X_c\\
2283
    Y_c\\
2284
    Z_c\\
2285
    1
2286
    \end{bmatrix}
2287
    =
2288
    \begin{bmatrix}
2289
    _{}^{c}\textrm{R}_t & _{}^{c}\textrm{t}_t \\
2290
    0_{1 \times 3} & 1
2291
    \end{bmatrix}
2292
    \begin{bmatrix}
2293
    X_t\\
2294
    Y_t\\
2295
    Z_t\\
2296
    1
2297
    \end{bmatrix}
2298
\f]
2299
2300
The Hand-Eye calibration procedure returns the following homogeneous transformation
2301
\f[
2302
    \begin{bmatrix}
2303
    X_g\\
2304
    Y_g\\
2305
    Z_g\\
2306
    1
2307
    \end{bmatrix}
2308
    =
2309
    \begin{bmatrix}
2310
    _{}^{g}\textrm{R}_c & _{}^{g}\textrm{t}_c \\
2311
    0_{1 \times 3} & 1
2312
    \end{bmatrix}
2313
    \begin{bmatrix}
2314
    X_c\\
2315
    Y_c\\
2316
    Z_c\\
2317
    1
2318
    \end{bmatrix}
2319
\f]
2320
2321
This problem is also known as solving the \f$\mathbf{A}\mathbf{X}=\mathbf{X}\mathbf{B}\f$ equation:
2322
  - for an eye-in-hand configuration
2323
\f[
2324
    \begin{align*}
2325
    ^{b}{\textrm{T}_g}^{(1)} \hspace{0.2em} ^{g}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(1)} &=
2326
    \hspace{0.1em} ^{b}{\textrm{T}_g}^{(2)} \hspace{0.2em} ^{g}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(2)} \\
2327
2328
    (^{b}{\textrm{T}_g}^{(2)})^{-1} \hspace{0.2em} ^{b}{\textrm{T}_g}^{(1)} \hspace{0.2em} ^{g}\textrm{T}_c &=
2329
    \hspace{0.1em} ^{g}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(2)} (^{c}{\textrm{T}_t}^{(1)})^{-1} \\
2330
2331
    \textrm{A}_i \textrm{X} &= \textrm{X} \textrm{B}_i \\
2332
    \end{align*}
2333
\f]
2334
2335
  - for an eye-to-hand configuration
2336
\f[
2337
    \begin{align*}
2338
    ^{g}{\textrm{T}_b}^{(1)} \hspace{0.2em} ^{b}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(1)} &=
2339
    \hspace{0.1em} ^{g}{\textrm{T}_b}^{(2)} \hspace{0.2em} ^{b}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(2)} \\
2340
2341
    (^{g}{\textrm{T}_b}^{(2)})^{-1} \hspace{0.2em} ^{g}{\textrm{T}_b}^{(1)} \hspace{0.2em} ^{b}\textrm{T}_c &=
2342
    \hspace{0.1em} ^{b}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(2)} (^{c}{\textrm{T}_t}^{(1)})^{-1} \\
2343
2344
    \textrm{A}_i \textrm{X} &= \textrm{X} \textrm{B}_i \\
2345
    \end{align*}
2346
\f]
2347
2348
\note
2349
Additional information can be found on this [website](http://campar.in.tum.de/Chair/HandEyeCalibration).
2350
\note
2351
A minimum of 2 motions with non parallel rotation axes are necessary to determine the hand-eye transformation.
2352
So at least 3 different poses are required, but it is strongly recommended to use many more poses.
2353
2354
 */
2355
CV_EXPORTS_W void calibrateHandEye( InputArrayOfArrays R_gripper2base, InputArrayOfArrays t_gripper2base,
2356
                                    InputArrayOfArrays R_target2cam, InputArrayOfArrays t_target2cam,
2357
                                    OutputArray R_cam2gripper, OutputArray t_cam2gripper,
2358
                                    HandEyeCalibrationMethod method=CALIB_HAND_EYE_TSAI );
2359
2360
/** @brief Computes Robot-World/Hand-Eye calibration: \f$_{}^{w}\textrm{T}_b\f$ and \f$_{}^{c}\textrm{T}_g\f$
2361
2362
@param[in] R_world2cam Rotation part extracted from the homogeneous matrix that transforms a point
2363
expressed in the world frame to the camera frame (\f$_{}^{c}\textrm{T}_w\f$).
2364
This is a vector (`vector<Mat>`) that contains the rotation, `(3x3)` rotation matrices or `(3x1)` rotation vectors,
2365
for all the transformations from world frame to the camera frame.
2366
@param[in] t_world2cam Translation part extracted from the homogeneous matrix that transforms a point
2367
expressed in the world frame to the camera frame (\f$_{}^{c}\textrm{T}_w\f$).
2368
This is a vector (`vector<Mat>`) that contains the `(3x1)` translation vectors for all the transformations
2369
from world frame to the camera frame.
2370
@param[in] R_base2gripper Rotation part extracted from the homogeneous matrix that transforms a point
2371
expressed in the robot base frame to the gripper frame (\f$_{}^{g}\textrm{T}_b\f$).
2372
This is a vector (`vector<Mat>`) that contains the rotation, `(3x3)` rotation matrices or `(3x1)` rotation vectors,
2373
for all the transformations from robot base frame to the gripper frame.
2374
@param[in] t_base2gripper Rotation part extracted from the homogeneous matrix that transforms a point
2375
expressed in the robot base frame to the gripper frame (\f$_{}^{g}\textrm{T}_b\f$).
2376
This is a vector (`vector<Mat>`) that contains the `(3x1)` translation vectors for all the transformations
2377
from robot base frame to the gripper frame.
2378
@param[out] R_base2world Estimated `(3x3)` rotation part extracted from the homogeneous matrix that transforms a point
2379
expressed in the robot base frame to the world frame (\f$_{}^{w}\textrm{T}_b\f$).
2380
@param[out] t_base2world Estimated `(3x1)` translation part extracted from the homogeneous matrix that transforms a point
2381
expressed in the robot base frame to the world frame (\f$_{}^{w}\textrm{T}_b\f$).
2382
@param[out] R_gripper2cam Estimated `(3x3)` rotation part extracted from the homogeneous matrix that transforms a point
2383
expressed in the gripper frame to the camera frame (\f$_{}^{c}\textrm{T}_g\f$).
2384
@param[out] t_gripper2cam Estimated `(3x1)` translation part extracted from the homogeneous matrix that transforms a point
2385
expressed in the gripper frame to the camera frame (\f$_{}^{c}\textrm{T}_g\f$).
2386
@param[in] method One of the implemented Robot-World/Hand-Eye calibration method, see cv::RobotWorldHandEyeCalibrationMethod
2387
2388
The function performs the Robot-World/Hand-Eye calibration using various methods. One approach consists in estimating the
2389
rotation then the translation (separable solutions):
2390
  - M. Shah, Solving the robot-world/hand-eye calibration problem using the kronecker product \cite Shah2013SolvingTR
2391
2392
Another approach consists in estimating simultaneously the rotation and the translation (simultaneous solutions),
2393
with the following implemented method:
2394
  - A. Li, L. Wang, and D. Wu, Simultaneous robot-world and hand-eye calibration using dual-quaternions and kronecker product \cite Li2010SimultaneousRA
2395
2396
The following picture describes the Robot-World/Hand-Eye calibration problem where the transformations between a robot and a world frame
2397
and between a robot gripper ("hand") and a camera ("eye") mounted at the robot end-effector have to be estimated.
2398
2399
![](pics/robot-world_hand-eye_figure.png)
2400
2401
The calibration procedure is the following:
2402
  - a static calibration pattern is used to estimate the transformation between the target frame
2403
  and the camera frame
2404
  - the robot gripper is moved in order to acquire several poses
2405
  - for each pose, the homogeneous transformation between the gripper frame and the robot base frame is recorded using for
2406
  instance the robot kinematics
2407
\f[
2408
    \begin{bmatrix}
2409
    X_g\\
2410
    Y_g\\
2411
    Z_g\\
2412
    1
2413
    \end{bmatrix}
2414
    =
2415
    \begin{bmatrix}
2416
    _{}^{g}\textrm{R}_b & _{}^{g}\textrm{t}_b \\
2417
    0_{1 \times 3} & 1
2418
    \end{bmatrix}
2419
    \begin{bmatrix}
2420
    X_b\\
2421
    Y_b\\
2422
    Z_b\\
2423
    1
2424
    \end{bmatrix}
2425
\f]
2426
  - for each pose, the homogeneous transformation between the calibration target frame (the world frame) and the camera frame is recorded using
2427
  for instance a pose estimation method (PnP) from 2D-3D point correspondences
2428
\f[
2429
    \begin{bmatrix}
2430
    X_c\\
2431
    Y_c\\
2432
    Z_c\\
2433
    1
2434
    \end{bmatrix}
2435
    =
2436
    \begin{bmatrix}
2437
    _{}^{c}\textrm{R}_w & _{}^{c}\textrm{t}_w \\
2438
    0_{1 \times 3} & 1
2439
    \end{bmatrix}
2440
    \begin{bmatrix}
2441
    X_w\\
2442
    Y_w\\
2443
    Z_w\\
2444
    1
2445
    \end{bmatrix}
2446
\f]
2447
2448
The Robot-World/Hand-Eye calibration procedure returns the following homogeneous transformations
2449
\f[
2450
    \begin{bmatrix}
2451
    X_w\\
2452
    Y_w\\
2453
    Z_w\\
2454
    1
2455
    \end{bmatrix}
2456
    =
2457
    \begin{bmatrix}
2458
    _{}^{w}\textrm{R}_b & _{}^{w}\textrm{t}_b \\
2459
    0_{1 \times 3} & 1
2460
    \end{bmatrix}
2461
    \begin{bmatrix}
2462
    X_b\\
2463
    Y_b\\
2464
    Z_b\\
2465
    1
2466
    \end{bmatrix}
2467
\f]
2468
\f[
2469
    \begin{bmatrix}
2470
    X_c\\
2471
    Y_c\\
2472
    Z_c\\
2473
    1
2474
    \end{bmatrix}
2475
    =
2476
    \begin{bmatrix}
2477
    _{}^{c}\textrm{R}_g & _{}^{c}\textrm{t}_g \\
2478
    0_{1 \times 3} & 1
2479
    \end{bmatrix}
2480
    \begin{bmatrix}
2481
    X_g\\
2482
    Y_g\\
2483
    Z_g\\
2484
    1
2485
    \end{bmatrix}
2486
\f]
2487
2488
This problem is also known as solving the \f$\mathbf{A}\mathbf{X}=\mathbf{Z}\mathbf{B}\f$ equation, with:
2489
  - \f$\mathbf{A} \Leftrightarrow \hspace{0.1em} _{}^{c}\textrm{T}_w\f$
2490
  - \f$\mathbf{X} \Leftrightarrow \hspace{0.1em} _{}^{w}\textrm{T}_b\f$
2491
  - \f$\mathbf{Z} \Leftrightarrow \hspace{0.1em} _{}^{c}\textrm{T}_g\f$
2492
  - \f$\mathbf{B} \Leftrightarrow \hspace{0.1em} _{}^{g}\textrm{T}_b\f$
2493
2494
\note
2495
At least 3 measurements are required (input vectors size must be greater or equal to 3).
2496
2497
 */
2498
CV_EXPORTS_W void calibrateRobotWorldHandEye( InputArrayOfArrays R_world2cam, InputArrayOfArrays t_world2cam,
2499
                                              InputArrayOfArrays R_base2gripper, InputArrayOfArrays t_base2gripper,
2500
                                              OutputArray R_base2world, OutputArray t_base2world,
2501
                                              OutputArray R_gripper2cam, OutputArray t_gripper2cam,
2502
                                              RobotWorldHandEyeCalibrationMethod method=CALIB_ROBOT_WORLD_HAND_EYE_SHAH );
2503
2504
/** @brief Converts points from Euclidean to homogeneous space.
2505
2506
@param src Input vector of N-dimensional points.
2507
@param dst Output vector of N+1-dimensional points.
2508
2509
The function converts points from Euclidean to homogeneous space by appending 1's to the tuple of
2510
point coordinates. That is, each point (x1, x2, ..., xn) is converted to (x1, x2, ..., xn, 1).
2511
 */
2512
CV_EXPORTS_W void convertPointsToHomogeneous( InputArray src, OutputArray dst );
2513
2514
/** @brief Converts points from homogeneous to Euclidean space.
2515
2516
@param src Input vector of N-dimensional points.
2517
@param dst Output vector of N-1-dimensional points.
2518
2519
The function converts points homogeneous to Euclidean space using perspective projection. That is,
2520
each point (x1, x2, ... x(n-1), xn) is converted to (x1/xn, x2/xn, ..., x(n-1)/xn). When xn=0, the
2521
output point coordinates will be (0,0,0,...).
2522
 */
2523
CV_EXPORTS_W void convertPointsFromHomogeneous( InputArray src, OutputArray dst );
2524
2525
/** @brief Converts points to/from homogeneous coordinates.
2526
2527
@param src Input array or vector of 2D, 3D, or 4D points.
2528
@param dst Output vector of 2D, 3D, or 4D points.
2529
2530
The function converts 2D or 3D points from/to homogeneous coordinates by calling either
2531
#convertPointsToHomogeneous or #convertPointsFromHomogeneous.
2532
2533
@note The function is obsolete. Use one of the previous two functions instead.
2534
 */
2535
CV_EXPORTS void convertPointsHomogeneous( InputArray src, OutputArray dst );
2536
2537
/** @brief Calculates a fundamental matrix from the corresponding points in two images.
2538
2539
@param points1 Array of N points from the first image. The point coordinates should be
2540
floating-point (single or double precision).
2541
@param points2 Array of the second image points of the same size and format as points1 .
2542
@param method Method for computing a fundamental matrix.
2543
-   @ref FM_7POINT for a 7-point algorithm. \f$N = 7\f$
2544
-   @ref FM_8POINT for an 8-point algorithm. \f$N \ge 8\f$
2545
-   @ref FM_RANSAC for the RANSAC algorithm. \f$N \ge 8\f$
2546
-   @ref FM_LMEDS for the LMedS algorithm. \f$N \ge 8\f$
2547
@param ransacReprojThreshold Parameter used only for RANSAC. It is the maximum distance from a point to an epipolar
2548
line in pixels, beyond which the point is considered an outlier and is not used for computing the
2549
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
2550
point localization, image resolution, and the image noise.
2551
@param confidence Parameter used for the RANSAC and LMedS methods only. It specifies a desirable level
2552
of confidence (probability) that the estimated matrix is correct.
2553
@param[out] mask optional output mask
2554
@param maxIters The maximum number of robust method iterations.
2555
2556
The epipolar geometry is described by the following equation:
2557
2558
\f[[p_2; 1]^T F [p_1; 1] = 0\f]
2559
2560
where \f$F\f$ is a fundamental matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the
2561
second images, respectively.
2562
2563
The function calculates the fundamental matrix using one of four methods listed above and returns
2564
the found fundamental matrix. Normally just one matrix is found. But in case of the 7-point
2565
algorithm, the function may return up to 3 solutions ( \f$9 \times 3\f$ matrix that stores all 3
2566
matrices sequentially).
2567
2568
The calculated fundamental matrix may be passed further to #computeCorrespondEpilines that finds the
2569
epipolar lines corresponding to the specified points. It can also be passed to
2570
#stereoRectifyUncalibrated to compute the rectification transformation. :
2571
@code
2572
    // Example. Estimation of fundamental matrix using the RANSAC algorithm
2573
    int point_count = 100;
2574
    vector<Point2f> points1(point_count);
2575
    vector<Point2f> points2(point_count);
2576
2577
    // initialize the points here ...
2578
    for( int i = 0; i < point_count; i++ )
2579
    {
2580
        points1[i] = ...;
2581
        points2[i] = ...;
2582
    }
2583
2584
    Mat fundamental_matrix =
2585
     findFundamentalMat(points1, points2, FM_RANSAC, 3, 0.99);
2586
@endcode
2587
 */
2588
CV_EXPORTS_W Mat findFundamentalMat( InputArray points1, InputArray points2,
2589
                                     int method, double ransacReprojThreshold, double confidence,
2590
                                     int maxIters, OutputArray mask = noArray() );
2591
2592
/** @overload */
2593
CV_EXPORTS_W Mat findFundamentalMat( InputArray points1, InputArray points2,
2594
                                     int method = FM_RANSAC,
2595
                                     double ransacReprojThreshold = 3., double confidence = 0.99,
2596
                                     OutputArray mask = noArray() );
2597
2598
/** @overload */
2599
CV_EXPORTS Mat findFundamentalMat( InputArray points1, InputArray points2,
2600
                                   OutputArray mask, int method = FM_RANSAC,
2601
                                   double ransacReprojThreshold = 3., double confidence = 0.99 );
2602
2603
2604
CV_EXPORTS_W Mat findFundamentalMat( InputArray points1, InputArray points2,
2605
                        OutputArray mask, const UsacParams &params);
2606
2607
/** @brief Calculates an essential matrix from the corresponding points in two images.
2608
2609
@param points1 Array of N (N \>= 5) 2D points from the first image. The point coordinates should
2610
be floating-point (single or double precision).
2611
@param points2 Array of the second image points of the same size and format as points1.
2612
@param cameraMatrix Camera intrinsic matrix \f$\cameramatrix{A}\f$ .
2613
Note that this function assumes that points1 and points2 are feature points from cameras with the
2614
same camera intrinsic matrix. If this assumption does not hold for your use case, use another
2615
function overload or #undistortPoints with `P = cv::NoArray()` for both cameras to transform image
2616
points to normalized image coordinates, which are valid for the identity camera intrinsic matrix.
2617
When passing these coordinates, pass the identity matrix for this parameter.
2618
@param method Method for computing an essential matrix.
2619
-   @ref RANSAC for the RANSAC algorithm.
2620
-   @ref LMEDS for the LMedS algorithm.
2621
@param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
2622
confidence (probability) that the estimated matrix is correct.
2623
@param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
2624
line in pixels, beyond which the point is considered an outlier and is not used for computing the
2625
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
2626
point localization, image resolution, and the image noise.
2627
@param mask Output array of N elements, every element of which is set to 0 for outliers and to 1
2628
for the other points. The array is computed only in the RANSAC and LMedS methods.
2629
@param maxIters The maximum number of robust method iterations.
2630
2631
This function estimates essential matrix based on the five-point algorithm solver in @cite Nister03 .
2632
@cite SteweniusCFS is also a related. The epipolar geometry is described by the following equation:
2633
2634
\f[[p_2; 1]^T K^{-T} E K^{-1} [p_1; 1] = 0\f]
2635
2636
where \f$E\f$ is an essential matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the
2637
second images, respectively. The result of this function may be passed further to
2638
#decomposeEssentialMat or #recoverPose to recover the relative pose between cameras.
2639
 */
2640
CV_EXPORTS_W
2641
Mat findEssentialMat(
2642
    InputArray points1, InputArray points2,
2643
    InputArray cameraMatrix, int method = RANSAC,
2644
    double prob = 0.999, double threshold = 1.0,
2645
    int maxIters = 1000, OutputArray mask = noArray()
2646
);
2647
2648
/** @overload */
2649
CV_EXPORTS
2650
Mat findEssentialMat(
2651
    InputArray points1, InputArray points2,
2652
    InputArray cameraMatrix, int method,
2653
    double prob, double threshold,
2654
    OutputArray mask
2655
);  // TODO remove from OpenCV 5.0
2656
2657
/** @overload
2658
@param points1 Array of N (N \>= 5) 2D points from the first image. The point coordinates should
2659
be floating-point (single or double precision).
2660
@param points2 Array of the second image points of the same size and format as points1 .
2661
@param focal focal length of the camera. Note that this function assumes that points1 and points2
2662
are feature points from cameras with same focal length and principal point.
2663
@param pp principal point of the camera.
2664
@param method Method for computing a fundamental matrix.
2665
-   @ref RANSAC for the RANSAC algorithm.
2666
-   @ref LMEDS for the LMedS algorithm.
2667
@param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
2668
line in pixels, beyond which the point is considered an outlier and is not used for computing the
2669
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
2670
point localization, image resolution, and the image noise.
2671
@param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
2672
confidence (probability) that the estimated matrix is correct.
2673
@param mask Output array of N elements, every element of which is set to 0 for outliers and to 1
2674
for the other points. The array is computed only in the RANSAC and LMedS methods.
2675
@param maxIters The maximum number of robust method iterations.
2676
2677
This function differs from the one above that it computes camera intrinsic matrix from focal length and
2678
principal point:
2679
2680
\f[A =
2681
\begin{bmatrix}
2682
f & 0 & x_{pp}  \\
2683
0 & f & y_{pp}  \\
2684
0 & 0 & 1
2685
\end{bmatrix}\f]
2686
 */
2687
CV_EXPORTS_W
2688
Mat findEssentialMat(
2689
    InputArray points1, InputArray points2,
2690
    double focal = 1.0, Point2d pp = Point2d(0, 0),
2691
    int method = RANSAC, double prob = 0.999,
2692
    double threshold = 1.0, int maxIters = 1000,
2693
    OutputArray mask = noArray()
2694
);
2695
2696
/** @overload */
2697
CV_EXPORTS
2698
Mat findEssentialMat(
2699
    InputArray points1, InputArray points2,
2700
    double focal, Point2d pp,
2701
    int method, double prob,
2702
    double threshold, OutputArray mask
2703
);  // TODO remove from OpenCV 5.0
2704
2705
/** @brief Calculates an essential matrix from the corresponding points in two images from potentially two different cameras.
2706
2707
@param points1 Array of N (N \>= 5) 2D points from the first image. The point coordinates should
2708
be floating-point (single or double precision).
2709
@param points2 Array of the second image points of the same size and format as points1.
2710
@param cameraMatrix1 Camera matrix for the first camera \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
2711
@param cameraMatrix2 Camera matrix for the second camera \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
2712
@param distCoeffs1 Input vector of distortion coefficients for the first camera
2713
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
2714
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
2715
@param distCoeffs2 Input vector of distortion coefficients for the second camera
2716
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
2717
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
2718
@param method Method for computing an essential matrix.
2719
-   @ref RANSAC for the RANSAC algorithm.
2720
-   @ref LMEDS for the LMedS algorithm.
2721
@param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
2722
confidence (probability) that the estimated matrix is correct.
2723
@param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
2724
line in pixels, beyond which the point is considered an outlier and is not used for computing the
2725
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
2726
point localization, image resolution, and the image noise.
2727
@param mask Output array of N elements, every element of which is set to 0 for outliers and to 1
2728
for the other points. The array is computed only in the RANSAC and LMedS methods.
2729
2730
This function estimates essential matrix based on the five-point algorithm solver in @cite Nister03 .
2731
@cite SteweniusCFS is also a related. The epipolar geometry is described by the following equation:
2732
2733
\f[[p_2; 1]^T K^{-T} E K^{-1} [p_1; 1] = 0\f]
2734
2735
where \f$E\f$ is an essential matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the
2736
second images, respectively. The result of this function may be passed further to
2737
#decomposeEssentialMat or  #recoverPose to recover the relative pose between cameras.
2738
 */
2739
CV_EXPORTS_W Mat findEssentialMat( InputArray points1, InputArray points2,
2740
                                 InputArray cameraMatrix1, InputArray distCoeffs1,
2741
                                 InputArray cameraMatrix2, InputArray distCoeffs2,
2742
                                 int method = RANSAC,
2743
                                 double prob = 0.999, double threshold = 1.0,
2744
                                 OutputArray mask = noArray() );
2745
2746
2747
CV_EXPORTS_W Mat findEssentialMat( InputArray points1, InputArray points2,
2748
                      InputArray cameraMatrix1, InputArray cameraMatrix2,
2749
                      InputArray dist_coeff1, InputArray dist_coeff2, OutputArray mask,
2750
                      const UsacParams &params);
2751
2752
/** @brief Decompose an essential matrix to possible rotations and translation.
2753
2754
@param E The input essential matrix.
2755
@param R1 One possible rotation matrix.
2756
@param R2 Another possible rotation matrix.
2757
@param t One possible translation.
2758
2759
This function decomposes the essential matrix E using svd decomposition @cite HartleyZ00. In
2760
general, four possible poses exist for the decomposition of E. They are \f$[R_1, t]\f$,
2761
\f$[R_1, -t]\f$, \f$[R_2, t]\f$, \f$[R_2, -t]\f$.
2762
2763
If E gives the epipolar constraint \f$[p_2; 1]^T A^{-T} E A^{-1} [p_1; 1] = 0\f$ between the image
2764
points \f$p_1\f$ in the first image and \f$p_2\f$ in second image, then any of the tuples
2765
\f$[R_1, t]\f$, \f$[R_1, -t]\f$, \f$[R_2, t]\f$, \f$[R_2, -t]\f$ is a change of basis from the first
2766
camera's coordinate system to the second camera's coordinate system. However, by decomposing E, one
2767
can only get the direction of the translation. For this reason, the translation t is returned with
2768
unit length.
2769
 */
2770
CV_EXPORTS_W void decomposeEssentialMat( InputArray E, OutputArray R1, OutputArray R2, OutputArray t );
2771
2772
/** @brief Recovers the relative camera rotation and the translation from corresponding points in two images from two different cameras, using cheirality check. Returns the number of
2773
inliers that pass the check.
2774
2775
@param points1 Array of N 2D points from the first image. The point coordinates should be
2776
floating-point (single or double precision).
2777
@param points2 Array of the second image points of the same size and format as points1 .
2778
@param cameraMatrix1 Input/output camera matrix for the first camera, the same as in
2779
@ref calibrateCamera. Furthermore, for the stereo case, additional flags may be used, see below.
2780
@param distCoeffs1 Input/output vector of distortion coefficients, the same as in
2781
@ref calibrateCamera.
2782
@param cameraMatrix2 Input/output camera matrix for the first camera, the same as in
2783
@ref calibrateCamera. Furthermore, for the stereo case, additional flags may be used, see below.
2784
@param distCoeffs2 Input/output vector of distortion coefficients, the same as in
2785
@ref calibrateCamera.
2786
@param E The output essential matrix.
2787
@param R Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
2788
that performs a change of basis from the first camera's coordinate system to the second camera's
2789
coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
2790
described below.
2791
@param t Output translation vector. This vector is obtained by @ref decomposeEssentialMat and
2792
therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
2793
length.
2794
@param method Method for computing an essential matrix.
2795
-   @ref RANSAC for the RANSAC algorithm.
2796
-   @ref LMEDS for the LMedS algorithm.
2797
@param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
2798
confidence (probability) that the estimated matrix is correct.
2799
@param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
2800
line in pixels, beyond which the point is considered an outlier and is not used for computing the
2801
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
2802
point localization, image resolution, and the image noise.
2803
@param mask Input/output mask for inliers in points1 and points2. If it is not empty, then it marks
2804
inliers in points1 and points2 for then given essential matrix E. Only these inliers will be used to
2805
recover pose. In the output mask only inliers which pass the cheirality check.
2806
2807
This function decomposes an essential matrix using @ref decomposeEssentialMat and then verifies
2808
possible pose hypotheses by doing cheirality check. The cheirality check means that the
2809
triangulated 3D points should have positive depth. Some details can be found in @cite Nister03.
2810
2811
This function can be used to process the output E and mask from @ref findEssentialMat. In this
2812
scenario, points1 and points2 are the same input for findEssentialMat.:
2813
@code
2814
    // Example. Estimation of fundamental matrix using the RANSAC algorithm
2815
    int point_count = 100;
2816
    vector<Point2f> points1(point_count);
2817
    vector<Point2f> points2(point_count);
2818
2819
    // initialize the points here ...
2820
    for( int i = 0; i < point_count; i++ )
2821
    {
2822
        points1[i] = ...;
2823
        points2[i] = ...;
2824
    }
2825
2826
    // Input: camera calibration of both cameras, for example using intrinsic chessboard calibration.
2827
    Mat cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2;
2828
2829
    // Output: Essential matrix, relative rotation and relative translation.
2830
    Mat E, R, t, mask;
2831
2832
    recoverPose(points1, points2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, E, R, t, mask);
2833
@endcode
2834
 */
2835
CV_EXPORTS_W int recoverPose( InputArray points1, InputArray points2,
2836
                            InputArray cameraMatrix1, InputArray distCoeffs1,
2837
                            InputArray cameraMatrix2, InputArray distCoeffs2,
2838
                            OutputArray E, OutputArray R, OutputArray t,
2839
                            int method = cv::RANSAC, double prob = 0.999, double threshold = 1.0,
2840
                            InputOutputArray mask = noArray());
2841
2842
/** @brief Recovers the relative camera rotation and the translation from an estimated essential
2843
matrix and the corresponding points in two images, using chirality check. Returns the number of
2844
inliers that pass the check.
2845
2846
@param E The input essential matrix.
2847
@param points1 Array of N 2D points from the first image. The point coordinates should be
2848
floating-point (single or double precision).
2849
@param points2 Array of the second image points of the same size and format as points1 .
2850
@param cameraMatrix Camera intrinsic matrix \f$\cameramatrix{A}\f$ .
2851
Note that this function assumes that points1 and points2 are feature points from cameras with the
2852
same camera intrinsic matrix.
2853
@param R Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
2854
that performs a change of basis from the first camera's coordinate system to the second camera's
2855
coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
2856
described below.
2857
@param t Output translation vector. This vector is obtained by @ref decomposeEssentialMat and
2858
therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
2859
length.
2860
@param mask Input/output mask for inliers in points1 and points2. If it is not empty, then it marks
2861
inliers in points1 and points2 for the given essential matrix E. Only these inliers will be used to
2862
recover pose. In the output mask only inliers which pass the chirality check.
2863
2864
This function decomposes an essential matrix using @ref decomposeEssentialMat and then verifies
2865
possible pose hypotheses by doing chirality check. The chirality check means that the
2866
triangulated 3D points should have positive depth. Some details can be found in @cite Nister03.
2867
2868
This function can be used to process the output E and mask from @ref findEssentialMat. In this
2869
scenario, points1 and points2 are the same input for #findEssentialMat :
2870
@code
2871
    // Example. Estimation of fundamental matrix using the RANSAC algorithm
2872
    int point_count = 100;
2873
    vector<Point2f> points1(point_count);
2874
    vector<Point2f> points2(point_count);
2875
2876
    // initialize the points here ...
2877
    for( int i = 0; i < point_count; i++ )
2878
    {
2879
        points1[i] = ...;
2880
        points2[i] = ...;
2881
    }
2882
2883
    // cametra matrix with both focal lengths = 1, and principal point = (0, 0)
2884
    Mat cameraMatrix = Mat::eye(3, 3, CV_64F);
2885
2886
    Mat E, R, t, mask;
2887
2888
    E = findEssentialMat(points1, points2, cameraMatrix, RANSAC, 0.999, 1.0, mask);
2889
    recoverPose(E, points1, points2, cameraMatrix, R, t, mask);
2890
@endcode
2891
 */
2892
CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2,
2893
                            InputArray cameraMatrix, OutputArray R, OutputArray t,
2894
                            InputOutputArray mask = noArray() );
2895
2896
/** @overload
2897
@param E The input essential matrix.
2898
@param points1 Array of N 2D points from the first image. The point coordinates should be
2899
floating-point (single or double precision).
2900
@param points2 Array of the second image points of the same size and format as points1 .
2901
@param R Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
2902
that performs a change of basis from the first camera's coordinate system to the second camera's
2903
coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
2904
description below.
2905
@param t Output translation vector. This vector is obtained by @ref decomposeEssentialMat and
2906
therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
2907
length.
2908
@param focal Focal length of the camera. Note that this function assumes that points1 and points2
2909
are feature points from cameras with same focal length and principal point.
2910
@param pp principal point of the camera.
2911
@param mask Input/output mask for inliers in points1 and points2. If it is not empty, then it marks
2912
inliers in points1 and points2 for the given essential matrix E. Only these inliers will be used to
2913
recover pose. In the output mask only inliers which pass the chirality check.
2914
2915
This function differs from the one above that it computes camera intrinsic matrix from focal length and
2916
principal point:
2917
2918
\f[A =
2919
\begin{bmatrix}
2920
f & 0 & x_{pp}  \\
2921
0 & f & y_{pp}  \\
2922
0 & 0 & 1
2923
\end{bmatrix}\f]
2924
 */
2925
CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2,
2926
                            OutputArray R, OutputArray t,
2927
                            double focal = 1.0, Point2d pp = Point2d(0, 0),
2928
                            InputOutputArray mask = noArray() );
2929
2930
/** @overload
2931
@param E The input essential matrix.
2932
@param points1 Array of N 2D points from the first image. The point coordinates should be
2933
floating-point (single or double precision).
2934
@param points2 Array of the second image points of the same size and format as points1.
2935
@param cameraMatrix Camera intrinsic matrix \f$\cameramatrix{A}\f$ .
2936
Note that this function assumes that points1 and points2 are feature points from cameras with the
2937
same camera intrinsic matrix.
2938
@param R Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
2939
that performs a change of basis from the first camera's coordinate system to the second camera's
2940
coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
2941
description below.
2942
@param t Output translation vector. This vector is obtained by @ref decomposeEssentialMat and
2943
therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
2944
length.
2945
@param distanceThresh threshold distance which is used to filter out far away points (i.e. infinite
2946
points).
2947
@param mask Input/output mask for inliers in points1 and points2. If it is not empty, then it marks
2948
inliers in points1 and points2 for the given essential matrix E. Only these inliers will be used to
2949
recover pose. In the output mask only inliers which pass the chirality check.
2950
@param triangulatedPoints 3D points which were reconstructed by triangulation.
2951
2952
This function differs from the one above that it outputs the triangulated 3D point that are used for
2953
the chirality check.
2954
 */
2955
CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2,
2956
                            InputArray cameraMatrix, OutputArray R, OutputArray t, double distanceThresh, InputOutputArray mask = noArray(),
2957
                            OutputArray triangulatedPoints = noArray());
2958
2959
/** @brief For points in an image of a stereo pair, computes the corresponding epilines in the other image.
2960
2961
@param points Input points. \f$N \times 1\f$ or \f$1 \times N\f$ matrix of type CV_32FC2 or
2962
vector\<Point2f\> .
2963
@param whichImage Index of the image (1 or 2) that contains the points .
2964
@param F Fundamental matrix that can be estimated using #findFundamentalMat or #stereoRectify .
2965
@param lines Output vector of the epipolar lines corresponding to the points in the other image.
2966
Each line \f$ax + by + c=0\f$ is encoded by 3 numbers \f$(a, b, c)\f$ .
2967
2968
For every point in one of the two images of a stereo pair, the function finds the equation of the
2969
corresponding epipolar line in the other image.
2970
2971
From the fundamental matrix definition (see #findFundamentalMat ), line \f$l^{(2)}_i\f$ in the second
2972
image for the point \f$p^{(1)}_i\f$ in the first image (when whichImage=1 ) is computed as:
2973
2974
\f[l^{(2)}_i = F p^{(1)}_i\f]
2975
2976
And vice versa, when whichImage=2, \f$l^{(1)}_i\f$ is computed from \f$p^{(2)}_i\f$ as:
2977
2978
\f[l^{(1)}_i = F^T p^{(2)}_i\f]
2979
2980
Line coefficients are defined up to a scale. They are normalized so that \f$a_i^2+b_i^2=1\f$ .
2981
 */
2982
CV_EXPORTS_W void computeCorrespondEpilines( InputArray points, int whichImage,
2983
                                             InputArray F, OutputArray lines );
2984
2985
/** @brief This function reconstructs 3-dimensional points (in homogeneous coordinates) by using
2986
their observations with a stereo camera.
2987
2988
@param projMatr1 3x4 projection matrix of the first camera, i.e. this matrix projects 3D points
2989
given in the world's coordinate system into the first image.
2990
@param projMatr2 3x4 projection matrix of the second camera, i.e. this matrix projects 3D points
2991
given in the world's coordinate system into the second image.
2992
@param projPoints1 2xN array of feature points in the first image. In the case of the c++ version,
2993
it can be also a vector of feature points or two-channel matrix of size 1xN or Nx1.
2994
@param projPoints2 2xN array of corresponding points in the second image. In the case of the c++
2995
version, it can be also a vector of feature points or two-channel matrix of size 1xN or Nx1.
2996
@param points4D 4xN array of reconstructed points in homogeneous coordinates. These points are
2997
returned in the world's coordinate system.
2998
2999
@note
3000
   Keep in mind that all input data should be of float type in order for this function to work.
3001
3002
@note
3003
   If the projection matrices from @ref stereoRectify are used, then the returned points are
3004
   represented in the first camera's rectified coordinate system.
3005
3006
@sa
3007
   reprojectImageTo3D
3008
 */
3009
CV_EXPORTS_W void triangulatePoints( InputArray projMatr1, InputArray projMatr2,
3010
                                     InputArray projPoints1, InputArray projPoints2,
3011
                                     OutputArray points4D );
3012
3013
/** @brief Refines coordinates of corresponding points.
3014
3015
@param F 3x3 fundamental matrix.
3016
@param points1 1xN array containing the first set of points.
3017
@param points2 1xN array containing the second set of points.
3018
@param newPoints1 The optimized points1.
3019
@param newPoints2 The optimized points2.
3020
3021
The function implements the Optimal Triangulation Method (see Multiple View Geometry @cite HartleyZ00 for details).
3022
For each given point correspondence points1[i] \<-\> points2[i], and a fundamental matrix F, it
3023
computes the corrected correspondences newPoints1[i] \<-\> newPoints2[i] that minimize the geometric
3024
error \f$d(points1[i], newPoints1[i])^2 + d(points2[i],newPoints2[i])^2\f$ (where \f$d(a,b)\f$ is the
3025
geometric distance between points \f$a\f$ and \f$b\f$ ) subject to the epipolar constraint
3026
\f$newPoints2^T \cdot F \cdot newPoints1 = 0\f$ .
3027
 */
3028
CV_EXPORTS_W void correctMatches( InputArray F, InputArray points1, InputArray points2,
3029
                                  OutputArray newPoints1, OutputArray newPoints2 );
3030
3031
/** @brief Filters off small noise blobs (speckles) in the disparity map
3032
3033
@param img The input 16-bit signed disparity image
3034
@param newVal The disparity value used to paint-off the speckles
3035
@param maxSpeckleSize The maximum speckle size to consider it a speckle. Larger blobs are not
3036
affected by the algorithm
3037
@param maxDiff Maximum difference between neighbor disparity pixels to put them into the same
3038
blob. Note that since StereoBM, StereoSGBM and may be other algorithms return a fixed-point
3039
disparity map, where disparity values are multiplied by 16, this scale factor should be taken into
3040
account when specifying this parameter value.
3041
@param buf The optional temporary buffer to avoid memory allocation within the function.
3042
 */
3043
CV_EXPORTS_W void filterSpeckles( InputOutputArray img, double newVal,
3044
                                  int maxSpeckleSize, double maxDiff,
3045
                                  InputOutputArray buf = noArray() );
3046
3047
//! computes valid disparity ROI from the valid ROIs of the rectified images (that are returned by #stereoRectify)
3048
CV_EXPORTS_W Rect getValidDisparityROI( Rect roi1, Rect roi2,
3049
                                        int minDisparity, int numberOfDisparities,
3050
                                        int blockSize );
3051
3052
//! validates disparity using the left-right check. The matrix "cost" should be computed by the stereo correspondence algorithm
3053
CV_EXPORTS_W void validateDisparity( InputOutputArray disparity, InputArray cost,
3054
                                     int minDisparity, int numberOfDisparities,
3055
                                     int disp12MaxDisp = 1 );
3056
3057
/** @brief Reprojects a disparity image to 3D space.
3058
3059
@param disparity Input single-channel 8-bit unsigned, 16-bit signed, 32-bit signed or 32-bit
3060
floating-point disparity image. The values of 8-bit / 16-bit signed formats are assumed to have no
3061
fractional bits. If the disparity is 16-bit signed format, as computed by @ref StereoBM or
3062
@ref StereoSGBM and maybe other algorithms, it should be divided by 16 (and scaled to float) before
3063
being used here.
3064
@param _3dImage Output 3-channel floating-point image of the same size as disparity. Each element of
3065
_3dImage(x,y) contains 3D coordinates of the point (x,y) computed from the disparity map. If one
3066
uses Q obtained by @ref stereoRectify, then the returned points are represented in the first
3067
camera's rectified coordinate system.
3068
@param Q \f$4 \times 4\f$ perspective transformation matrix that can be obtained with
3069
@ref stereoRectify.
3070
@param handleMissingValues Indicates, whether the function should handle missing values (i.e.
3071
points where the disparity was not computed). If handleMissingValues=true, then pixels with the
3072
minimal disparity that corresponds to the outliers (see StereoMatcher::compute ) are transformed
3073
to 3D points with a very large Z value (currently set to 10000).
3074
@param ddepth The optional output array depth. If it is -1, the output image will have CV_32F
3075
depth. ddepth can also be set to CV_16S, CV_32S or CV_32F.
3076
3077
The function transforms a single-channel disparity map to a 3-channel image representing a 3D
3078
surface. That is, for each pixel (x,y) and the corresponding disparity d=disparity(x,y) , it
3079
computes:
3080
3081
\f[\begin{bmatrix}
3082
X \\
3083
Y \\
3084
Z \\
3085
W
3086
\end{bmatrix} = Q \begin{bmatrix}
3087
x \\
3088
y \\
3089
\texttt{disparity} (x,y) \\
3090
1
3091
\end{bmatrix}.\f]
3092
3093
@sa
3094
   To reproject a sparse set of points {(x,y,d),...} to 3D space, use perspectiveTransform.
3095
 */
3096
CV_EXPORTS_W void reprojectImageTo3D( InputArray disparity,
3097
                                      OutputArray _3dImage, InputArray Q,
3098
                                      bool handleMissingValues = false,
3099
                                      int ddepth = -1 );
3100
3101
/** @brief Calculates the Sampson Distance between two points.
3102
3103
The function cv::sampsonDistance calculates and returns the first order approximation of the geometric error as:
3104
\f[
3105
sd( \texttt{pt1} , \texttt{pt2} )=
3106
\frac{(\texttt{pt2}^t \cdot \texttt{F} \cdot \texttt{pt1})^2}
3107
{((\texttt{F} \cdot \texttt{pt1})(0))^2 +
3108
((\texttt{F} \cdot \texttt{pt1})(1))^2 +
3109
((\texttt{F}^t \cdot \texttt{pt2})(0))^2 +
3110
((\texttt{F}^t \cdot \texttt{pt2})(1))^2}
3111
\f]
3112
The fundamental matrix may be calculated using the #findFundamentalMat function. See @cite HartleyZ00 11.4.3 for details.
3113
@param pt1 first homogeneous 2d point
3114
@param pt2 second homogeneous 2d point
3115
@param F fundamental matrix
3116
@return The computed Sampson distance.
3117
*/
3118
CV_EXPORTS_W double sampsonDistance(InputArray pt1, InputArray pt2, InputArray F);
3119
3120
/** @brief Computes an optimal affine transformation between two 3D point sets.
3121
3122
It computes
3123
\f[
3124
\begin{bmatrix}
3125
x\\
3126
y\\
3127
z\\
3128
\end{bmatrix}
3129
=
3130
\begin{bmatrix}
3131
a_{11} & a_{12} & a_{13}\\
3132
a_{21} & a_{22} & a_{23}\\
3133
a_{31} & a_{32} & a_{33}\\
3134
\end{bmatrix}
3135
\begin{bmatrix}
3136
X\\
3137
Y\\
3138
Z\\
3139
\end{bmatrix}
3140
+
3141
\begin{bmatrix}
3142
b_1\\
3143
b_2\\
3144
b_3\\
3145
\end{bmatrix}
3146
\f]
3147
3148
@param src First input 3D point set containing \f$(X,Y,Z)\f$.
3149
@param dst Second input 3D point set containing \f$(x,y,z)\f$.
3150
@param out Output 3D affine transformation matrix \f$3 \times 4\f$ of the form
3151
\f[
3152
\begin{bmatrix}
3153
a_{11} & a_{12} & a_{13} & b_1\\
3154
a_{21} & a_{22} & a_{23} & b_2\\
3155
a_{31} & a_{32} & a_{33} & b_3\\
3156
\end{bmatrix}
3157
\f]
3158
@param inliers Output vector indicating which points are inliers (1-inlier, 0-outlier).
3159
@param ransacThreshold Maximum reprojection error in the RANSAC algorithm to consider a point as
3160
an inlier.
3161
@param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
3162
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
3163
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
3164
3165
The function estimates an optimal 3D affine transformation between two 3D point sets using the
3166
RANSAC algorithm.
3167
 */
3168
CV_EXPORTS_W  int estimateAffine3D(InputArray src, InputArray dst,
3169
                                   OutputArray out, OutputArray inliers,
3170
                                   double ransacThreshold = 3, double confidence = 0.99);
3171
3172
/** @brief Computes an optimal affine transformation between two 3D point sets.
3173
3174
It computes \f$R,s,t\f$ minimizing \f$\sum{i} dst_i - c \cdot R \cdot src_i \f$
3175
where \f$R\f$ is a 3x3 rotation matrix, \f$t\f$ is a 3x1 translation vector and \f$s\f$ is a
3176
scalar size value. This is an implementation of the algorithm by Umeyama \cite umeyama1991least .
3177
The estimated affine transform has a homogeneous scale which is a subclass of affine
3178
transformations with 7 degrees of freedom. The paired point sets need to comprise at least 3
3179
points each.
3180
3181
@param src First input 3D point set.
3182
@param dst Second input 3D point set.
3183
@param scale If null is passed, the scale parameter c will be assumed to be 1.0.
3184
Else the pointed-to variable will be set to the optimal scale.
3185
@param force_rotation If true, the returned rotation will never be a reflection.
3186
This might be unwanted, e.g. when optimizing a transform between a right- and a
3187
left-handed coordinate system.
3188
@return 3D affine transformation matrix \f$3 \times 4\f$ of the form
3189
\f[T =
3190
\begin{bmatrix}
3191
R & t\\
3192
\end{bmatrix}
3193
\f]
3194
3195
 */
3196
CV_EXPORTS_W   cv::Mat estimateAffine3D(InputArray src, InputArray dst,
3197
                                        CV_OUT double* scale = nullptr, bool force_rotation = true);
3198
3199
/** @brief Computes an optimal translation between two 3D point sets.
3200
 *
3201
 * It computes
3202
 * \f[
3203
 * \begin{bmatrix}
3204
 * x\\
3205
 * y\\
3206
 * z\\
3207
 * \end{bmatrix}
3208
 * =
3209
 * \begin{bmatrix}
3210
 * X\\
3211
 * Y\\
3212
 * Z\\
3213
 * \end{bmatrix}
3214
 * +
3215
 * \begin{bmatrix}
3216
 * b_1\\
3217
 * b_2\\
3218
 * b_3\\
3219
 * \end{bmatrix}
3220
 * \f]
3221
 *
3222
 * @param src First input 3D point set containing \f$(X,Y,Z)\f$.
3223
 * @param dst Second input 3D point set containing \f$(x,y,z)\f$.
3224
 * @param out Output 3D translation vector \f$3 \times 1\f$ of the form
3225
 * \f[
3226
 * \begin{bmatrix}
3227
 * b_1 \\
3228
 * b_2 \\
3229
 * b_3 \\
3230
 * \end{bmatrix}
3231
 * \f]
3232
 * @param inliers Output vector indicating which points are inliers (1-inlier, 0-outlier).
3233
 * @param ransacThreshold Maximum reprojection error in the RANSAC algorithm to consider a point as
3234
 * an inlier.
3235
 * @param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
3236
 * between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
3237
 * significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
3238
 *
3239
 * The function estimates an optimal 3D translation between two 3D point sets using the
3240
 * RANSAC algorithm.
3241
 *  */
3242
CV_EXPORTS_W  int estimateTranslation3D(InputArray src, InputArray dst,
3243
                                        OutputArray out, OutputArray inliers,
3244
                                        double ransacThreshold = 3, double confidence = 0.99);
3245
3246
/** @brief Computes an optimal affine transformation between two 2D point sets.
3247
3248
It computes
3249
\f[
3250
\begin{bmatrix}
3251
x\\
3252
y\\
3253
\end{bmatrix}
3254
=
3255
\begin{bmatrix}
3256
a_{11} & a_{12}\\
3257
a_{21} & a_{22}\\
3258
\end{bmatrix}
3259
\begin{bmatrix}
3260
X\\
3261
Y\\
3262
\end{bmatrix}
3263
+
3264
\begin{bmatrix}
3265
b_1\\
3266
b_2\\
3267
\end{bmatrix}
3268
\f]
3269
3270
@param from First input 2D point set containing \f$(X,Y)\f$.
3271
@param to Second input 2D point set containing \f$(x,y)\f$.
3272
@param inliers Output vector indicating which points are inliers (1-inlier, 0-outlier).
3273
@param method Robust method used to compute transformation. The following methods are possible:
3274
-   @ref RANSAC - RANSAC-based robust method
3275
-   @ref LMEDS - Least-Median robust method
3276
RANSAC is the default method.
3277
@param ransacReprojThreshold Maximum reprojection error in the RANSAC algorithm to consider
3278
a point as an inlier. Applies only to RANSAC.
3279
@param maxIters The maximum number of robust method iterations.
3280
@param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
3281
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
3282
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
3283
@param refineIters Maximum number of iterations of refining algorithm (Levenberg-Marquardt).
3284
Passing 0 will disable refining, so the output matrix will be output of robust method.
3285
3286
@return Output 2D affine transformation matrix \f$2 \times 3\f$ or empty matrix if transformation
3287
could not be estimated. The returned matrix has the following form:
3288
\f[
3289
\begin{bmatrix}
3290
a_{11} & a_{12} & b_1\\
3291
a_{21} & a_{22} & b_2\\
3292
\end{bmatrix}
3293
\f]
3294
3295
The function estimates an optimal 2D affine transformation between two 2D point sets using the
3296
selected robust algorithm.
3297
3298
The computed transformation is then refined further (using only inliers) with the
3299
Levenberg-Marquardt method to reduce the re-projection error even more.
3300
3301
@note
3302
The RANSAC method can handle practically any ratio of outliers but needs a threshold to
3303
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
3304
correctly only when there are more than 50% of inliers.
3305
3306
@sa estimateAffinePartial2D, getAffineTransform
3307
*/
3308
CV_EXPORTS_W cv::Mat estimateAffine2D(InputArray from, InputArray to, OutputArray inliers = noArray(),
3309
                                  int method = RANSAC, double ransacReprojThreshold = 3,
3310
                                  size_t maxIters = 2000, double confidence = 0.99,
3311
                                  size_t refineIters = 10);
3312
3313
3314
CV_EXPORTS_W cv::Mat estimateAffine2D(InputArray pts1, InputArray pts2, OutputArray inliers,
3315
                     const UsacParams &params);
3316
3317
/** @brief Computes an optimal limited affine transformation with 4 degrees of freedom between
3318
two 2D point sets.
3319
3320
@param from First input 2D point set.
3321
@param to Second input 2D point set.
3322
@param inliers Output vector indicating which points are inliers.
3323
@param method Robust method used to compute transformation. The following methods are possible:
3324
-   @ref RANSAC - RANSAC-based robust method
3325
-   @ref LMEDS - Least-Median robust method
3326
RANSAC is the default method.
3327
@param ransacReprojThreshold Maximum reprojection error in the RANSAC algorithm to consider
3328
a point as an inlier. Applies only to RANSAC.
3329
@param maxIters The maximum number of robust method iterations.
3330
@param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
3331
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
3332
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
3333
@param refineIters Maximum number of iterations of refining algorithm (Levenberg-Marquardt).
3334
Passing 0 will disable refining, so the output matrix will be output of robust method.
3335
3336
@return Output 2D affine transformation (4 degrees of freedom) matrix \f$2 \times 3\f$ or
3337
empty matrix if transformation could not be estimated.
3338
3339
The function estimates an optimal 2D affine transformation with 4 degrees of freedom limited to
3340
combinations of translation, rotation, and uniform scaling. Uses the selected algorithm for robust
3341
estimation.
3342
3343
The computed transformation is then refined further (using only inliers) with the
3344
Levenberg-Marquardt method to reduce the re-projection error even more.
3345
3346
Estimated transformation matrix is:
3347
\f[ \begin{bmatrix} \cos(\theta) \cdot s & -\sin(\theta) \cdot s & t_x \\
3348
                \sin(\theta) \cdot s & \cos(\theta) \cdot s & t_y
3349
\end{bmatrix} \f]
3350
Where \f$ \theta \f$ is the rotation angle, \f$ s \f$ the scaling factor and \f$ t_x, t_y \f$ are
3351
translations in \f$ x, y \f$ axes respectively.
3352
3353
@note
3354
The RANSAC method can handle practically any ratio of outliers but need a threshold to
3355
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
3356
correctly only when there are more than 50% of inliers.
3357
3358
@sa estimateAffine2D, getAffineTransform
3359
*/
3360
CV_EXPORTS_W cv::Mat estimateAffinePartial2D(InputArray from, InputArray to, OutputArray inliers = noArray(),
3361
                                  int method = RANSAC, double ransacReprojThreshold = 3,
3362
                                  size_t maxIters = 2000, double confidence = 0.99,
3363
                                  size_t refineIters = 10);
3364
3365
/** @example samples/cpp/tutorial_code/features2D/Homography/decompose_homography.cpp
3366
An example program with homography decomposition.
3367
3368
Check @ref tutorial_homography "the corresponding tutorial" for more details.
3369
*/
3370
3371
/** @brief Decompose a homography matrix to rotation(s), translation(s) and plane normal(s).
3372
3373
@param H The input homography matrix between two images.
3374
@param K The input camera intrinsic matrix.
3375
@param rotations Array of rotation matrices.
3376
@param translations Array of translation matrices.
3377
@param normals Array of plane normal matrices.
3378
3379
This function extracts relative camera motion between two views of a planar object and returns up to
3380
four mathematical solution tuples of rotation, translation, and plane normal. The decomposition of
3381
the homography matrix H is described in detail in @cite Malis2007.
3382
3383
If the homography H, induced by the plane, gives the constraint
3384
\f[s_i \vecthree{x'_i}{y'_i}{1} \sim H \vecthree{x_i}{y_i}{1}\f] on the source image points
3385
\f$p_i\f$ and the destination image points \f$p'_i\f$, then the tuple of rotations[k] and
3386
translations[k] is a change of basis from the source camera's coordinate system to the destination
3387
camera's coordinate system. However, by decomposing H, one can only get the translation normalized
3388
by the (typically unknown) depth of the scene, i.e. its direction but with normalized length.
3389
3390
If point correspondences are available, at least two solutions may further be invalidated, by
3391
applying positive depth constraint, i.e. all points must be in front of the camera.
3392
 */
3393
CV_EXPORTS_W int decomposeHomographyMat(InputArray H,
3394
                                        InputArray K,
3395
                                        OutputArrayOfArrays rotations,
3396
                                        OutputArrayOfArrays translations,
3397
                                        OutputArrayOfArrays normals);
3398
3399
/** @brief Filters homography decompositions based on additional information.
3400
3401
@param rotations Vector of rotation matrices.
3402
@param normals Vector of plane normal matrices.
3403
@param beforePoints Vector of (rectified) visible reference points before the homography is applied
3404
@param afterPoints Vector of (rectified) visible reference points after the homography is applied
3405
@param possibleSolutions Vector of int indices representing the viable solution set after filtering
3406
@param pointsMask optional Mat/Vector of 8u type representing the mask for the inliers as given by the #findHomography function
3407
3408
This function is intended to filter the output of the #decomposeHomographyMat based on additional
3409
information as described in @cite Malis2007 . The summary of the method: the #decomposeHomographyMat function
3410
returns 2 unique solutions and their "opposites" for a total of 4 solutions. If we have access to the
3411
sets of points visible in the camera frame before and after the homography transformation is applied,
3412
we can determine which are the true potential solutions and which are the opposites by verifying which
3413
homographies are consistent with all visible reference points being in front of the camera. The inputs
3414
are left unchanged; the filtered solution set is returned as indices into the existing one.
3415
3416
*/
3417
CV_EXPORTS_W void filterHomographyDecompByVisibleRefpoints(InputArrayOfArrays rotations,
3418
                                                           InputArrayOfArrays normals,
3419
                                                           InputArray beforePoints,
3420
                                                           InputArray afterPoints,
3421
                                                           OutputArray possibleSolutions,
3422
                                                           InputArray pointsMask = noArray());
3423
3424
/** @brief The base class for stereo correspondence algorithms.
3425
 */
3426
class CV_EXPORTS_W StereoMatcher : public Algorithm
3427
{
3428
public:
3429
    enum { DISP_SHIFT = 4,
3430
           DISP_SCALE = (1 << DISP_SHIFT)
3431
         };
3432
3433
    /** @brief Computes disparity map for the specified stereo pair
3434
3435
    @param left Left 8-bit single-channel image.
3436
    @param right Right image of the same size and the same type as the left one.
3437
    @param disparity Output disparity map. It has the same size as the input images. Some algorithms,
3438
    like StereoBM or StereoSGBM compute 16-bit fixed-point disparity map (where each disparity value
3439
    has 4 fractional bits), whereas other algorithms output 32-bit floating-point disparity map.
3440
     */
3441
    CV_WRAP virtual void compute( InputArray left, InputArray right,
3442
                                  OutputArray disparity ) = 0;
3443
3444
    CV_WRAP virtual int getMinDisparity() const = 0;
3445
    CV_WRAP virtual void setMinDisparity(int minDisparity) = 0;
3446
3447
    CV_WRAP virtual int getNumDisparities() const = 0;
3448
    CV_WRAP virtual void setNumDisparities(int numDisparities) = 0;
3449
3450
    CV_WRAP virtual int getBlockSize() const = 0;
3451
    CV_WRAP virtual void setBlockSize(int blockSize) = 0;
3452
3453
    CV_WRAP virtual int getSpeckleWindowSize() const = 0;
3454
    CV_WRAP virtual void setSpeckleWindowSize(int speckleWindowSize) = 0;
3455
3456
    CV_WRAP virtual int getSpeckleRange() const = 0;
3457
    CV_WRAP virtual void setSpeckleRange(int speckleRange) = 0;
3458
3459
    CV_WRAP virtual int getDisp12MaxDiff() const = 0;
3460
    CV_WRAP virtual void setDisp12MaxDiff(int disp12MaxDiff) = 0;
3461
};
3462
3463
3464
/**
3465
 * @brief Class for computing stereo correspondence using the block matching algorithm, introduced and contributed to OpenCV by K. Konolige.
3466
 * @details This class implements a block matching algorithm for stereo correspondence, which is used to compute disparity maps from stereo image pairs. It provides methods to fine-tune parameters such as pre-filtering, texture thresholds, uniqueness ratios, and regions of interest (ROIs) to optimize performance and accuracy.
3467
 */
3468
class CV_EXPORTS_W StereoBM : public StereoMatcher
3469
{
3470
public:
3471
    /**
3472
     * @brief Pre-filter types for the stereo matching algorithm.
3473
     * @details These constants define the type of pre-filtering applied to the images before computing the disparity map.
3474
     * - PREFILTER_NORMALIZED_RESPONSE: Uses normalized response for pre-filtering.
3475
     * - PREFILTER_XSOBEL: Uses the X-Sobel operator for pre-filtering.
3476
     */
3477
    enum {
3478
        PREFILTER_NORMALIZED_RESPONSE = 0,  ///< Normalized response pre-filter
3479
        PREFILTER_XSOBEL              = 1   ///< X-Sobel pre-filter
3480
    };
3481
3482
    /**
3483
     * @brief Gets the type of pre-filtering currently used in the algorithm.
3484
     * @return The current pre-filter type: 0 for PREFILTER_NORMALIZED_RESPONSE or 1 for PREFILTER_XSOBEL.
3485
     */
3486
    CV_WRAP virtual int getPreFilterType() const = 0;
3487
3488
    /**
3489
     * @brief Sets the type of pre-filtering used in the algorithm.
3490
     * @param preFilterType The type of pre-filter to use. Possible values are:
3491
     * - PREFILTER_NORMALIZED_RESPONSE (0): Uses normalized response for pre-filtering.
3492
     * - PREFILTER_XSOBEL (1): Uses the X-Sobel operator for pre-filtering.
3493
     * @details The pre-filter type affects how the images are prepared before computing the disparity map. Different pre-filtering methods can enhance specific image features or reduce noise, influencing the quality of the disparity map.
3494
     */
3495
    CV_WRAP virtual void setPreFilterType(int preFilterType) = 0;
3496
3497
    /**
3498
     * @brief Gets the current size of the pre-filter kernel.
3499
     * @return The current pre-filter size.
3500
     */
3501
    CV_WRAP virtual int getPreFilterSize() const = 0;
3502
3503
    /**
3504
     * @brief Sets the size of the pre-filter kernel.
3505
     * @param preFilterSize The size of the pre-filter kernel. Must be an odd integer, typically between 5 and 255.
3506
     * @details The pre-filter size determines the spatial extent of the pre-filtering operation, which prepares the images for disparity computation by normalizing brightness and enhancing texture. Larger sizes reduce noise but may blur details, while smaller sizes preserve details but are more susceptible to noise.
3507
     */
3508
    CV_WRAP virtual void setPreFilterSize(int preFilterSize) = 0;
3509
3510
    /**
3511
     * @brief Gets the current truncation value for prefiltered pixels.
3512
     * @return The current pre-filter cap value.
3513
     */
3514
    CV_WRAP virtual int getPreFilterCap() const = 0;
3515
3516
    /**
3517
     * @brief Sets the truncation value for prefiltered pixels.
3518
     * @param preFilterCap The truncation value. Typically in the range [1, 63].
3519
     * @details This value caps the output of the pre-filter to [-preFilterCap, preFilterCap], helping to reduce the impact of noise and outliers in the pre-filtered image.
3520
     */
3521
    CV_WRAP virtual void setPreFilterCap(int preFilterCap) = 0;
3522
3523
    /**
3524
     * @brief Gets the current texture threshold value.
3525
     * @return The current texture threshold.
3526
     */
3527
    CV_WRAP virtual int getTextureThreshold() const = 0;
3528
3529
    /**
3530
     * @brief Sets the threshold for filtering low-texture regions.
3531
     * @param textureThreshold The threshold value. Must be non-negative.
3532
     * @details This parameter filters out regions with low texture, where establishing correspondences is difficult, thus reducing noise in the disparity map. Higher values filter more aggressively but may discard valid information.
3533
     */
3534
    CV_WRAP virtual void setTextureThreshold(int textureThreshold) = 0;
3535
3536
    /**
3537
     * @brief Gets the current uniqueness ratio value.
3538
     * @return The current uniqueness ratio.
3539
     */
3540
    CV_WRAP virtual int getUniquenessRatio() const = 0;
3541
3542
    /**
3543
     * @brief Sets the uniqueness ratio for filtering ambiguous matches.
3544
     * @param uniquenessRatio The uniqueness ratio value. Typically in the range [5, 15], but can be from 0 to 100.
3545
     * @details This parameter ensures that the best match is sufficiently better than the next best match, reducing false positives. Higher values are stricter but may filter out valid matches in difficult regions.
3546
     */
3547
    CV_WRAP virtual void setUniquenessRatio(int uniquenessRatio) = 0;
3548
3549
    /**
3550
     * @brief Gets the current size of the smaller block used for texture check.
3551
     * @return The current smaller block size.
3552
     */
3553
    CV_WRAP virtual int getSmallerBlockSize() const = 0;
3554
3555
    /**
3556
     * @brief Sets the size of the smaller block used for texture check.
3557
     * @param blockSize The size of the smaller block. Must be an odd integer between 5 and 255.
3558
     * @details This parameter determines the size of the block used to compute texture variance. Smaller blocks capture finer details but are more sensitive to noise, while larger blocks are more robust but may miss fine details.
3559
     */
3560
    CV_WRAP virtual void setSmallerBlockSize(int blockSize) = 0;
3561
3562
    /**
3563
     * @brief Gets the current Region of Interest (ROI) for the left image.
3564
     * @return The current ROI for the left image.
3565
     */
3566
    CV_WRAP virtual Rect getROI1() const = 0;
3567
3568
    /**
3569
     * @brief Sets the Region of Interest (ROI) for the left image.
3570
     * @param roi1 The ROI rectangle for the left image.
3571
     * @details By setting the ROI, the stereo matching computation is limited to the specified region, improving performance and potentially accuracy by focusing on relevant parts of the image.
3572
     */
3573
    CV_WRAP virtual void setROI1(Rect roi1) = 0;
3574
3575
    /**
3576
     * @brief Gets the current Region of Interest (ROI) for the right image.
3577
     * @return The current ROI for the right image.
3578
     */
3579
    CV_WRAP virtual Rect getROI2() const = 0;
3580
3581
    /**
3582
     * @brief Sets the Region of Interest (ROI) for the right image.
3583
     * @param roi2 The ROI rectangle for the right image.
3584
     * @details Similar to setROI1, this limits the computation to the specified region in the right image.
3585
     */
3586
    CV_WRAP virtual void setROI2(Rect roi2) = 0;
3587
3588
    /**
3589
     * @brief Creates StereoBM object
3590
     * @param numDisparities The disparity search range. For each pixel, the algorithm will find the best disparity from 0 (default minimum disparity) to numDisparities. The search range can be shifted by changing the minimum disparity.
3591
     * @param blockSize The linear size of the blocks compared by the algorithm. The size should be odd (as the block is centered at the current pixel). Larger block size implies smoother, though less accurate disparity map. Smaller block size gives more detailed disparity map, but there is a higher chance for the algorithm to find a wrong correspondence.
3592
     * @return A pointer to the created StereoBM object.
3593
     * @details The function creates a StereoBM object. You can then call StereoBM::compute() to compute disparity for a specific stereo pair.
3594
     */
3595
    CV_WRAP static Ptr<StereoBM> create(int numDisparities = 0, int blockSize = 21);
3596
};
3597
3598
/** @brief The class implements the modified H. Hirschmuller algorithm @cite HH08 that differs from the original
3599
one as follows:
3600
3601
-   By default, the algorithm is single-pass, which means that you consider only 5 directions
3602
instead of 8. Set mode=StereoSGBM::MODE_HH in createStereoSGBM to run the full variant of the
3603
algorithm but beware that it may consume a lot of memory.
3604
-   The algorithm matches blocks, not individual pixels. Though, setting blockSize=1 reduces the
3605
blocks to single pixels.
3606
-   Mutual information cost function is not implemented. Instead, a simpler Birchfield-Tomasi
3607
sub-pixel metric from @cite BT98 is used. Though, the color images are supported as well.
3608
-   Some pre- and post- processing steps from K. Konolige algorithm StereoBM are included, for
3609
example: pre-filtering (StereoBM::PREFILTER_XSOBEL type) and post-filtering (uniqueness
3610
check, quadratic interpolation and speckle filtering).
3611
3612
@note
3613
   -   (Python) An example illustrating the use of the StereoSGBM matching algorithm can be found
3614
        at opencv_source_code/samples/python/stereo_match.py
3615
 */
3616
class CV_EXPORTS_W StereoSGBM : public StereoMatcher
3617
{
3618
public:
3619
    enum
3620
    {
3621
        MODE_SGBM = 0,
3622
        MODE_HH   = 1,
3623
        MODE_SGBM_3WAY = 2,
3624
        MODE_HH4  = 3
3625
    };
3626
3627
    CV_WRAP virtual int getPreFilterCap() const = 0;
3628
    CV_WRAP virtual void setPreFilterCap(int preFilterCap) = 0;
3629
3630
    CV_WRAP virtual int getUniquenessRatio() const = 0;
3631
    CV_WRAP virtual void setUniquenessRatio(int uniquenessRatio) = 0;
3632
3633
    CV_WRAP virtual int getP1() const = 0;
3634
    CV_WRAP virtual void setP1(int P1) = 0;
3635
3636
    CV_WRAP virtual int getP2() const = 0;
3637
    CV_WRAP virtual void setP2(int P2) = 0;
3638
3639
    CV_WRAP virtual int getMode() const = 0;
3640
    CV_WRAP virtual void setMode(int mode) = 0;
3641
3642
    /** @brief Creates StereoSGBM object
3643
3644
    @param minDisparity Minimum possible disparity value. Normally, it is zero but sometimes
3645
    rectification algorithms can shift images, so this parameter needs to be adjusted accordingly.
3646
    @param numDisparities Maximum disparity minus minimum disparity. The value is always greater than
3647
    zero. In the current implementation, this parameter must be divisible by 16.
3648
    @param blockSize Matched block size. It must be an odd number \>=1 . Normally, it should be
3649
    somewhere in the 3..11 range.
3650
    @param P1 The first parameter controlling the disparity smoothness. See below.
3651
    @param P2 The second parameter controlling the disparity smoothness. The larger the values are,
3652
    the smoother the disparity is. P1 is the penalty on the disparity change by plus or minus 1
3653
    between neighbor pixels. P2 is the penalty on the disparity change by more than 1 between neighbor
3654
    pixels. The algorithm requires P2 \> P1 . See stereo_match.cpp sample where some reasonably good
3655
    P1 and P2 values are shown (like 8\*number_of_image_channels\*blockSize\*blockSize and
3656
    32\*number_of_image_channels\*blockSize\*blockSize , respectively).
3657
    @param disp12MaxDiff Maximum allowed difference (in integer pixel units) in the left-right
3658
    disparity check. Set it to a non-positive value to disable the check.
3659
    @param preFilterCap Truncation value for the prefiltered image pixels. The algorithm first
3660
    computes x-derivative at each pixel and clips its value by [-preFilterCap, preFilterCap] interval.
3661
    The result values are passed to the Birchfield-Tomasi pixel cost function.
3662
    @param uniquenessRatio Margin in percentage by which the best (minimum) computed cost function
3663
    value should "win" the second best value to consider the found match correct. Normally, a value
3664
    within the 5-15 range is good enough.
3665
    @param speckleWindowSize Maximum size of smooth disparity regions to consider their noise speckles
3666
    and invalidate. Set it to 0 to disable speckle filtering. Otherwise, set it somewhere in the
3667
    50-200 range.
3668
    @param speckleRange Maximum disparity variation within each connected component. If you do speckle
3669
    filtering, set the parameter to a positive value, it will be implicitly multiplied by 16.
3670
    Normally, 1 or 2 is good enough.
3671
    @param mode Set it to StereoSGBM::MODE_HH to run the full-scale two-pass dynamic programming
3672
    algorithm. It will consume O(W\*H\*numDisparities) bytes, which is large for 640x480 stereo and
3673
    huge for HD-size pictures. By default, it is set to false .
3674
3675
    The first constructor initializes StereoSGBM with all the default parameters. So, you only have to
3676
    set StereoSGBM::numDisparities at minimum. The second constructor enables you to set each parameter
3677
    to a custom value.
3678
     */
3679
    CV_WRAP static Ptr<StereoSGBM> create(int minDisparity = 0, int numDisparities = 16, int blockSize = 3,
3680
                                          int P1 = 0, int P2 = 0, int disp12MaxDiff = 0,
3681
                                          int preFilterCap = 0, int uniquenessRatio = 0,
3682
                                          int speckleWindowSize = 0, int speckleRange = 0,
3683
                                          int mode = StereoSGBM::MODE_SGBM);
3684
};
3685
3686
3687
//! cv::undistort mode
3688
enum UndistortTypes
3689
{
3690
    PROJ_SPHERICAL_ORTHO  = 0,
3691
    PROJ_SPHERICAL_EQRECT = 1
3692
};
3693
3694
/** @brief Transforms an image to compensate for lens distortion.
3695
3696
The function transforms an image to compensate radial and tangential lens distortion.
3697
3698
The function is simply a combination of #initUndistortRectifyMap (with unity R ) and #remap
3699
(with bilinear interpolation). See the former function for details of the transformation being
3700
performed.
3701
3702
Those pixels in the destination image, for which there is no correspondent pixels in the source
3703
image, are filled with zeros (black color).
3704
3705
A particular subset of the source image that will be visible in the corrected image can be regulated
3706
by newCameraMatrix. You can use #getOptimalNewCameraMatrix to compute the appropriate
3707
newCameraMatrix depending on your requirements.
3708
3709
The camera matrix and the distortion parameters can be determined using #calibrateCamera. If
3710
the resolution of images is different from the resolution used at the calibration stage, \f$f_x,
3711
f_y, c_x\f$ and \f$c_y\f$ need to be scaled accordingly, while the distortion coefficients remain
3712
the same.
3713
3714
@param src Input (distorted) image.
3715
@param dst Output (corrected) image that has the same size and type as src .
3716
@param cameraMatrix Input camera matrix \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
3717
@param distCoeffs Input vector of distortion coefficients
3718
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
3719
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
3720
@param newCameraMatrix Camera matrix of the distorted image. By default, it is the same as
3721
cameraMatrix but you may additionally scale and shift the result by using a different matrix.
3722
 */
3723
CV_EXPORTS_W void undistort( InputArray src, OutputArray dst,
3724
                             InputArray cameraMatrix,
3725
                             InputArray distCoeffs,
3726
                             InputArray newCameraMatrix = noArray() );
3727
3728
/** @brief Computes the undistortion and rectification transformation map.
3729
3730
The function computes the joint undistortion and rectification transformation and represents the
3731
result in the form of maps for #remap. The undistorted image looks like original, as if it is
3732
captured with a camera using the camera matrix =newCameraMatrix and zero distortion. In case of a
3733
monocular camera, newCameraMatrix is usually equal to cameraMatrix, or it can be computed by
3734
#getOptimalNewCameraMatrix for a better control over scaling. In case of a stereo camera,
3735
newCameraMatrix is normally set to P1 or P2 computed by #stereoRectify .
3736
3737
Also, this new camera is oriented differently in the coordinate space, according to R. That, for
3738
example, helps to align two heads of a stereo camera so that the epipolar lines on both images
3739
become horizontal and have the same y- coordinate (in case of a horizontally aligned stereo camera).
3740
3741
The function actually builds the maps for the inverse mapping algorithm that is used by #remap. That
3742
is, for each pixel \f$(u, v)\f$ in the destination (corrected and rectified) image, the function
3743
computes the corresponding coordinates in the source image (that is, in the original image from
3744
camera). The following process is applied:
3745
\f[
3746
\begin{array}{l}
3747
x  \leftarrow (u - {c'}_x)/{f'}_x  \\
3748
y  \leftarrow (v - {c'}_y)/{f'}_y  \\
3749
{[X\,Y\,W]} ^T  \leftarrow R^{-1}*[x \, y \, 1]^T  \\
3750
x'  \leftarrow X/W  \\
3751
y'  \leftarrow Y/W  \\
3752
r^2  \leftarrow x'^2 + y'^2 \\
3753
x''  \leftarrow x' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6}
3754
+ 2p_1 x' y' + p_2(r^2 + 2 x'^2)  + s_1 r^2 + s_2 r^4\\
3755
y''  \leftarrow y' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6}
3756
+ p_1 (r^2 + 2 y'^2) + 2 p_2 x' y' + s_3 r^2 + s_4 r^4 \\
3757
s\vecthree{x'''}{y'''}{1} =
3758
\vecthreethree{R_{33}(\tau_x, \tau_y)}{0}{-R_{13}((\tau_x, \tau_y)}
3759
{0}{R_{33}(\tau_x, \tau_y)}{-R_{23}(\tau_x, \tau_y)}
3760
{0}{0}{1} R(\tau_x, \tau_y) \vecthree{x''}{y''}{1}\\
3761
map_x(u,v)  \leftarrow x''' f_x + c_x  \\
3762
map_y(u,v)  \leftarrow y''' f_y + c_y
3763
\end{array}
3764
\f]
3765
where \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
3766
are the distortion coefficients.
3767
3768
In case of a stereo camera, this function is called twice: once for each camera head, after
3769
#stereoRectify, which in its turn is called after #stereoCalibrate. But if the stereo camera
3770
was not calibrated, it is still possible to compute the rectification transformations directly from
3771
the fundamental matrix using #stereoRectifyUncalibrated. For each camera, the function computes
3772
homography H as the rectification transformation in a pixel domain, not a rotation matrix R in 3D
3773
space. R can be computed from H as
3774
\f[\texttt{R} = \texttt{cameraMatrix} ^{-1} \cdot \texttt{H} \cdot \texttt{cameraMatrix}\f]
3775
where cameraMatrix can be chosen arbitrarily.
3776
3777
@param cameraMatrix Input camera matrix \f$A=\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
3778
@param distCoeffs Input vector of distortion coefficients
3779
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
3780
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
3781
@param R Optional rectification transformation in the object space (3x3 matrix). R1 or R2 ,
3782
computed by #stereoRectify can be passed here. If the matrix is empty, the identity transformation
3783
is assumed. In #initUndistortRectifyMap R assumed to be an identity matrix.
3784
@param newCameraMatrix New camera matrix \f$A'=\vecthreethree{f_x'}{0}{c_x'}{0}{f_y'}{c_y'}{0}{0}{1}\f$.
3785
@param size Undistorted image size.
3786
@param m1type Type of the first output map that can be CV_32FC1, CV_32FC2 or CV_16SC2, see #convertMaps
3787
@param map1 The first output map.
3788
@param map2 The second output map.
3789
 */
3790
CV_EXPORTS_W
3791
void initUndistortRectifyMap(InputArray cameraMatrix, InputArray distCoeffs,
3792
                             InputArray R, InputArray newCameraMatrix,
3793
                             Size size, int m1type, OutputArray map1, OutputArray map2);
3794
3795
/** @brief Computes the projection and inverse-rectification transformation map. In essense, this is the inverse of
3796
#initUndistortRectifyMap to accomodate stereo-rectification of projectors ('inverse-cameras') in projector-camera pairs.
3797
3798
The function computes the joint projection and inverse rectification transformation and represents the
3799
result in the form of maps for #remap. The projected image looks like a distorted version of the original which,
3800
once projected by a projector, should visually match the original. In case of a monocular camera, newCameraMatrix
3801
is usually equal to cameraMatrix, or it can be computed by
3802
#getOptimalNewCameraMatrix for a better control over scaling. In case of a projector-camera pair,
3803
newCameraMatrix is normally set to P1 or P2 computed by #stereoRectify .
3804
3805
The projector is oriented differently in the coordinate space, according to R. In case of projector-camera pairs,
3806
this helps align the projector (in the same manner as #initUndistortRectifyMap for the camera) to create a stereo-rectified pair. This
3807
allows epipolar lines on both images to become horizontal and have the same y-coordinate (in case of a horizontally aligned projector-camera pair).
3808
3809
The function builds the maps for the inverse mapping algorithm that is used by #remap. That
3810
is, for each pixel \f$(u, v)\f$ in the destination (projected and inverse-rectified) image, the function
3811
computes the corresponding coordinates in the source image (that is, in the original digital image). The following process is applied:
3812
3813
\f[
3814
\begin{array}{l}
3815
\text{newCameraMatrix}\\
3816
x  \leftarrow (u - {c'}_x)/{f'}_x  \\
3817
y  \leftarrow (v - {c'}_y)/{f'}_y  \\
3818
3819
\\\text{Undistortion}
3820
\\\scriptsize{\textit{though equation shown is for radial undistortion, function implements cv::undistortPoints()}}\\
3821
r^2  \leftarrow x^2 + y^2 \\
3822
\theta \leftarrow \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6}\\
3823
x' \leftarrow \frac{x}{\theta} \\
3824
y'  \leftarrow \frac{y}{\theta} \\
3825
3826
\\\text{Rectification}\\
3827
{[X\,Y\,W]} ^T  \leftarrow R*[x' \, y' \, 1]^T  \\
3828
x''  \leftarrow X/W  \\
3829
y''  \leftarrow Y/W  \\
3830
3831
\\\text{cameraMatrix}\\
3832
map_x(u,v)  \leftarrow x'' f_x + c_x  \\
3833
map_y(u,v)  \leftarrow y'' f_y + c_y
3834
\end{array}
3835
\f]
3836
where \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
3837
are the distortion coefficients vector distCoeffs.
3838
3839
In case of a stereo-rectified projector-camera pair, this function is called for the projector while #initUndistortRectifyMap is called for the camera head.
3840
This is done after #stereoRectify, which in turn is called after #stereoCalibrate. If the projector-camera pair
3841
is not calibrated, it is still possible to compute the rectification transformations directly from
3842
the fundamental matrix using #stereoRectifyUncalibrated. For the projector and camera, the function computes
3843
homography H as the rectification transformation in a pixel domain, not a rotation matrix R in 3D
3844
space. R can be computed from H as
3845
\f[\texttt{R} = \texttt{cameraMatrix} ^{-1} \cdot \texttt{H} \cdot \texttt{cameraMatrix}\f]
3846
where cameraMatrix can be chosen arbitrarily.
3847
3848
@param cameraMatrix Input camera matrix \f$A=\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
3849
@param distCoeffs Input vector of distortion coefficients
3850
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
3851
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
3852
@param R Optional rectification transformation in the object space (3x3 matrix). R1 or R2,
3853
computed by #stereoRectify can be passed here. If the matrix is empty, the identity transformation
3854
is assumed.
3855
@param newCameraMatrix New camera matrix \f$A'=\vecthreethree{f_x'}{0}{c_x'}{0}{f_y'}{c_y'}{0}{0}{1}\f$.
3856
@param size Distorted image size.
3857
@param m1type Type of the first output map. Can be CV_32FC1, CV_32FC2 or CV_16SC2, see #convertMaps
3858
@param map1 The first output map for #remap.
3859
@param map2 The second output map for #remap.
3860
 */
3861
CV_EXPORTS_W
3862
void initInverseRectificationMap( InputArray cameraMatrix, InputArray distCoeffs,
3863
                           InputArray R, InputArray newCameraMatrix,
3864
                           const Size& size, int m1type, OutputArray map1, OutputArray map2 );
3865
3866
//! initializes maps for #remap for wide-angle
3867
CV_EXPORTS
3868
float initWideAngleProjMap(InputArray cameraMatrix, InputArray distCoeffs,
3869
                           Size imageSize, int destImageWidth,
3870
                           int m1type, OutputArray map1, OutputArray map2,
3871
                           enum UndistortTypes projType = PROJ_SPHERICAL_EQRECT, double alpha = 0);
3872
static inline
3873
float initWideAngleProjMap(InputArray cameraMatrix, InputArray distCoeffs,
3874
                           Size imageSize, int destImageWidth,
3875
                           int m1type, OutputArray map1, OutputArray map2,
3876
                           int projType, double alpha = 0)
3877
0
{
3878
0
    return initWideAngleProjMap(cameraMatrix, distCoeffs, imageSize, destImageWidth,
3879
0
                                m1type, map1, map2, (UndistortTypes)projType, alpha);
3880
0
}
Unexecuted instantiation: generateusergallerycollage_fuzzer.cc:cv::initWideAngleProjMap(cv::_InputArray const&, cv::_InputArray const&, cv::Size_<int>, int, int, cv::_OutputArray const&, cv::_OutputArray const&, int, double)
Unexecuted instantiation: imread_fuzzer.cc:cv::initWideAngleProjMap(cv::_InputArray const&, cv::_InputArray const&, cv::Size_<int>, int, int, cv::_OutputArray const&, cv::_OutputArray const&, int, double)
Unexecuted instantiation: imdecode_fuzzer.cc:cv::initWideAngleProjMap(cv::_InputArray const&, cv::_InputArray const&, cv::Size_<int>, int, int, cv::_OutputArray const&, cv::_OutputArray const&, int, double)
Unexecuted instantiation: filestorage_read_string_fuzzer.cc:cv::initWideAngleProjMap(cv::_InputArray const&, cv::_InputArray const&, cv::Size_<int>, int, int, cv::_OutputArray const&, cv::_OutputArray const&, int, double)
Unexecuted instantiation: filestorage_read_file_fuzzer.cc:cv::initWideAngleProjMap(cv::_InputArray const&, cv::_InputArray const&, cv::Size_<int>, int, int, cv::_OutputArray const&, cv::_OutputArray const&, int, double)
Unexecuted instantiation: core_fuzzer.cc:cv::initWideAngleProjMap(cv::_InputArray const&, cv::_InputArray const&, cv::Size_<int>, int, int, cv::_OutputArray const&, cv::_OutputArray const&, int, double)
Unexecuted instantiation: imencode_fuzzer.cc:cv::initWideAngleProjMap(cv::_InputArray const&, cv::_InputArray const&, cv::Size_<int>, int, int, cv::_OutputArray const&, cv::_OutputArray const&, int, double)
Unexecuted instantiation: filestorage_read_filename_fuzzer.cc:cv::initWideAngleProjMap(cv::_InputArray const&, cv::_InputArray const&, cv::Size_<int>, int, int, cv::_OutputArray const&, cv::_OutputArray const&, int, double)
3881
3882
/** @brief Returns the default new camera matrix.
3883
3884
The function returns the camera matrix that is either an exact copy of the input cameraMatrix (when
3885
centerPrinicipalPoint=false ), or the modified one (when centerPrincipalPoint=true).
3886
3887
In the latter case, the new camera matrix will be:
3888
3889
\f[\begin{bmatrix} f_x && 0 && ( \texttt{imgSize.width} -1)*0.5  \\ 0 && f_y && ( \texttt{imgSize.height} -1)*0.5  \\ 0 && 0 && 1 \end{bmatrix} ,\f]
3890
3891
where \f$f_x\f$ and \f$f_y\f$ are \f$(0,0)\f$ and \f$(1,1)\f$ elements of cameraMatrix, respectively.
3892
3893
By default, the undistortion functions in OpenCV (see #initUndistortRectifyMap, #undistort) do not
3894
move the principal point. However, when you work with stereo, it is important to move the principal
3895
points in both views to the same y-coordinate (which is required by most of stereo correspondence
3896
algorithms), and may be to the same x-coordinate too. So, you can form the new camera matrix for
3897
each view where the principal points are located at the center.
3898
3899
@param cameraMatrix Input camera matrix.
3900
@param imgsize Camera view image size in pixels.
3901
@param centerPrincipalPoint Location of the principal point in the new camera matrix. The
3902
parameter indicates whether this location should be at the image center or not.
3903
 */
3904
CV_EXPORTS_W
3905
Mat getDefaultNewCameraMatrix(InputArray cameraMatrix, Size imgsize = Size(),
3906
                              bool centerPrincipalPoint = false);
3907
3908
/** @brief Computes the ideal point coordinates from the observed point coordinates.
3909
3910
The function is similar to #undistort and #initUndistortRectifyMap but it operates on a
3911
sparse set of points instead of a raster image. Also the function performs a reverse transformation
3912
to  #projectPoints. In case of a 3D object, it does not reconstruct its 3D coordinates, but for a
3913
planar object, it does, up to a translation vector, if the proper R is specified.
3914
3915
For each observed point coordinate \f$(u, v)\f$ the function computes:
3916
\f[
3917
\begin{array}{l}
3918
x^{"}  \leftarrow (u - c_x)/f_x  \\
3919
y^{"}  \leftarrow (v - c_y)/f_y  \\
3920
(x',y') = undistort(x^{"},y^{"}, \texttt{distCoeffs}) \\
3921
{[X\,Y\,W]} ^T  \leftarrow R*[x' \, y' \, 1]^T  \\
3922
x  \leftarrow X/W  \\
3923
y  \leftarrow Y/W  \\
3924
\text{only performed if P is specified:} \\
3925
u'  \leftarrow x {f'}_x + {c'}_x  \\
3926
v'  \leftarrow y {f'}_y + {c'}_y
3927
\end{array}
3928
\f]
3929
3930
where *undistort* is an approximate iterative algorithm that estimates the normalized original
3931
point coordinates out of the normalized distorted point coordinates ("normalized" means that the
3932
coordinates do not depend on the camera matrix).
3933
3934
The function can be used for both a stereo camera head or a monocular camera (when R is empty).
3935
@param src Observed point coordinates, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel (CV_32FC2 or CV_64FC2) (or
3936
vector\<Point2f\> ).
3937
@param dst Output ideal point coordinates (1xN/Nx1 2-channel or vector\<Point2f\> ) after undistortion and reverse perspective
3938
transformation. If matrix P is identity or omitted, dst will contain normalized point coordinates.
3939
@param cameraMatrix Camera matrix \f$\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
3940
@param distCoeffs Input vector of distortion coefficients
3941
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
3942
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
3943
@param R Rectification transformation in the object space (3x3 matrix). R1 or R2 computed by
3944
#stereoRectify can be passed here. If the matrix is empty, the identity transformation is used.
3945
@param P New camera matrix (3x3) or new projection matrix (3x4) \f$\begin{bmatrix} {f'}_x & 0 & {c'}_x & t_x \\ 0 & {f'}_y & {c'}_y & t_y \\ 0 & 0 & 1 & t_z \end{bmatrix}\f$. P1 or P2 computed by
3946
#stereoRectify can be passed here. If the matrix is empty, the identity new camera matrix is used.
3947
 */
3948
CV_EXPORTS_W
3949
void undistortPoints(InputArray src, OutputArray dst,
3950
                     InputArray cameraMatrix, InputArray distCoeffs,
3951
                     InputArray R = noArray(), InputArray P = noArray());
3952
/** @overload
3953
    @note Default version of #undistortPoints does 5 iterations to compute undistorted points.
3954
 */
3955
CV_EXPORTS_AS(undistortPointsIter)
3956
void undistortPoints(InputArray src, OutputArray dst,
3957
                     InputArray cameraMatrix, InputArray distCoeffs,
3958
                     InputArray R, InputArray P, TermCriteria criteria);
3959
3960
/**
3961
 * @brief Compute undistorted image points position
3962
 *
3963
 * @param src Observed points position, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel (CV_32FC2 or
3964
CV_64FC2) (or vector\<Point2f\> ).
3965
 * @param dst Output undistorted points position (1xN/Nx1 2-channel or vector\<Point2f\> ).
3966
 * @param cameraMatrix Camera matrix \f$\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
3967
 * @param distCoeffs Distortion coefficients
3968
 */
3969
CV_EXPORTS_W
3970
void undistortImagePoints(InputArray src, OutputArray dst, InputArray cameraMatrix,
3971
                          InputArray distCoeffs,
3972
                          TermCriteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5,
3973
                                                      0.01));
3974
3975
//! @} calib3d
3976
3977
/** @brief The methods in this namespace use a so-called fisheye camera model.
3978
  @ingroup calib3d_fisheye
3979
*/
3980
namespace fisheye
3981
{
3982
//! @addtogroup calib3d_fisheye
3983
//! @{
3984
3985
    enum{
3986
        CALIB_USE_INTRINSIC_GUESS   = 1 << 0,
3987
        CALIB_RECOMPUTE_EXTRINSIC   = 1 << 1,
3988
        CALIB_CHECK_COND            = 1 << 2,
3989
        CALIB_FIX_SKEW              = 1 << 3,
3990
        CALIB_FIX_K1                = 1 << 4,
3991
        CALIB_FIX_K2                = 1 << 5,
3992
        CALIB_FIX_K3                = 1 << 6,
3993
        CALIB_FIX_K4                = 1 << 7,
3994
        CALIB_FIX_INTRINSIC         = 1 << 8,
3995
        CALIB_FIX_PRINCIPAL_POINT   = 1 << 9,
3996
        CALIB_ZERO_DISPARITY        = 1 << 10,
3997
        CALIB_FIX_FOCAL_LENGTH      = 1 << 11
3998
    };
3999
4000
    /** @brief Projects points using fisheye model
4001
4002
    @param objectPoints Array of object points, 1xN/Nx1 3-channel (or vector\<Point3f\> ), where N is
4003
    the number of points in the view.
4004
    @param imagePoints Output array of image points, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel, or
4005
    vector\<Point2f\>.
4006
    @param affine
4007
    @param K Camera intrinsic matrix \f$\cameramatrix{K}\f$.
4008
    @param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.
4009
    @param alpha The skew coefficient.
4010
    @param jacobian Optional output 2Nx15 jacobian matrix of derivatives of image points with respect
4011
    to components of the focal lengths, coordinates of the principal point, distortion coefficients,
4012
    rotation vector, translation vector, and the skew. In the old interface different components of
4013
    the jacobian are returned via different output parameters.
4014
4015
    The function computes projections of 3D points to the image plane given intrinsic and extrinsic
4016
    camera parameters. Optionally, the function computes Jacobians - matrices of partial derivatives of
4017
    image points coordinates (as functions of all the input parameters) with respect to the particular
4018
    parameters, intrinsic and/or extrinsic.
4019
     */
4020
    CV_EXPORTS void projectPoints(InputArray objectPoints, OutputArray imagePoints, const Affine3d& affine,
4021
        InputArray K, InputArray D, double alpha = 0, OutputArray jacobian = noArray());
4022
4023
    /** @overload */
4024
    CV_EXPORTS_W void projectPoints(InputArray objectPoints, OutputArray imagePoints, InputArray rvec, InputArray tvec,
4025
        InputArray K, InputArray D, double alpha = 0, OutputArray jacobian = noArray());
4026
4027
    /** @brief Distorts 2D points using fisheye model.
4028
4029
    @param undistorted Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is
4030
    the number of points in the view.
4031
    @param K Camera intrinsic matrix \f$\cameramatrix{K}\f$.
4032
    @param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.
4033
    @param alpha The skew coefficient.
4034
    @param distorted Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> .
4035
4036
    Note that the function assumes the camera intrinsic matrix of the undistorted points to be identity.
4037
    This means if you want to distort image points you have to multiply them with \f$K^{-1}\f$ or
4038
    use another function overload.
4039
     */
4040
    CV_EXPORTS_W void distortPoints(InputArray undistorted, OutputArray distorted, InputArray K, InputArray D, double alpha = 0);
4041
4042
    /** @overload
4043
    Overload of distortPoints function to handle cases when undistorted points are obtained with non-identity
4044
    camera matrix, e.g. output of #estimateNewCameraMatrixForUndistortRectify.
4045
    @param undistorted Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is
4046
    the number of points in the view.
4047
    @param Kundistorted Camera intrinsic matrix used as new camera matrix for undistortion.
4048
    @param K Camera intrinsic matrix \f$\cameramatrix{K}\f$.
4049
    @param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.
4050
    @param alpha The skew coefficient.
4051
    @param distorted Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> .
4052
    @sa estimateNewCameraMatrixForUndistortRectify
4053
    */
4054
    CV_EXPORTS_W void distortPoints(InputArray undistorted, OutputArray distorted, InputArray Kundistorted, InputArray K, InputArray D, double alpha = 0);
4055
4056
    /** @brief Undistorts 2D points using fisheye model
4057
4058
    @param distorted Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is the
4059
    number of points in the view.
4060
    @param K Camera intrinsic matrix \f$\cameramatrix{K}\f$.
4061
    @param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.
4062
    @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
4063
    1-channel or 1x1 3-channel
4064
    @param P New camera intrinsic matrix (3x3) or new projection matrix (3x4)
4065
    @param criteria Termination criteria
4066
    @param undistorted Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> .
4067
     */
4068
    CV_EXPORTS_W void undistortPoints(InputArray distorted, OutputArray undistorted,
4069
        InputArray K, InputArray D, InputArray R = noArray(), InputArray P  = noArray(),
4070
                TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 10, 1e-8));
4071
4072
    /** @brief Computes undistortion and rectification maps for image transform by #remap. If D is empty zero
4073
    distortion is used, if R or P is empty identity matrixes are used.
4074
4075
    @param K Camera intrinsic matrix \f$\cameramatrix{K}\f$.
4076
    @param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.
4077
    @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
4078
    1-channel or 1x1 3-channel
4079
    @param P New camera intrinsic matrix (3x3) or new projection matrix (3x4)
4080
    @param size Undistorted image size.
4081
    @param m1type Type of the first output map that can be CV_32FC1 or CV_16SC2 . See #convertMaps
4082
    for details.
4083
    @param map1 The first output map.
4084
    @param map2 The second output map.
4085
     */
4086
    CV_EXPORTS_W void initUndistortRectifyMap(InputArray K, InputArray D, InputArray R, InputArray P,
4087
        const cv::Size& size, int m1type, OutputArray map1, OutputArray map2);
4088
4089
    /** @brief Transforms an image to compensate for fisheye lens distortion.
4090
4091
    @param distorted image with fisheye lens distortion.
4092
    @param undistorted Output image with compensated fisheye lens distortion.
4093
    @param K Camera intrinsic matrix \f$\cameramatrix{K}\f$.
4094
    @param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.
4095
    @param Knew Camera intrinsic matrix of the distorted image. By default, it is the identity matrix but you
4096
    may additionally scale and shift the result by using a different matrix.
4097
    @param new_size the new size
4098
4099
    The function transforms an image to compensate radial and tangential lens distortion.
4100
4101
    The function is simply a combination of #fisheye::initUndistortRectifyMap (with unity R ) and #remap
4102
    (with bilinear interpolation). See the former function for details of the transformation being
4103
    performed.
4104
4105
    See below the results of undistortImage.
4106
       -   a\) result of undistort of perspective camera model (all possible coefficients (k_1, k_2, k_3,
4107
            k_4, k_5, k_6) of distortion were optimized under calibration)
4108
        -   b\) result of #fisheye::undistortImage of fisheye camera model (all possible coefficients (k_1, k_2,
4109
            k_3, k_4) of fisheye distortion were optimized under calibration)
4110
        -   c\) original image was captured with fisheye lens
4111
4112
    Pictures a) and b) almost the same. But if we consider points of image located far from the center
4113
    of image, we can notice that on image a) these points are distorted.
4114
4115
    ![image](pics/fisheye_undistorted.jpg)
4116
     */
4117
    CV_EXPORTS_W void undistortImage(InputArray distorted, OutputArray undistorted,
4118
        InputArray K, InputArray D, InputArray Knew = cv::noArray(), const Size& new_size = Size());
4119
4120
    /** @brief Estimates new camera intrinsic matrix for undistortion or rectification.
4121
4122
    @param K Camera intrinsic matrix \f$\cameramatrix{K}\f$.
4123
    @param image_size Size of the image
4124
    @param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.
4125
    @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
4126
    1-channel or 1x1 3-channel
4127
    @param P New camera intrinsic matrix (3x3) or new projection matrix (3x4)
4128
    @param balance Sets the new focal length in range between the min focal length and the max focal
4129
    length. Balance is in range of [0, 1].
4130
    @param new_size the new size
4131
    @param fov_scale Divisor for new focal length.
4132
     */
4133
    CV_EXPORTS_W void estimateNewCameraMatrixForUndistortRectify(InputArray K, InputArray D, const Size &image_size, InputArray R,
4134
        OutputArray P, double balance = 0.0, const Size& new_size = Size(), double fov_scale = 1.0);
4135
4136
    /** @brief Performs camera calibration
4137
4138
    @param objectPoints vector of vectors of calibration pattern points in the calibration pattern
4139
    coordinate space.
4140
    @param imagePoints vector of vectors of the projections of calibration pattern points.
4141
    imagePoints.size() and objectPoints.size() and imagePoints[i].size() must be equal to
4142
    objectPoints[i].size() for each i.
4143
    @param image_size Size of the image used only to initialize the camera intrinsic matrix.
4144
    @param K Output 3x3 floating-point camera intrinsic matrix
4145
    \f$\cameramatrix{A}\f$ . If
4146
    @ref fisheye::CALIB_USE_INTRINSIC_GUESS is specified, some or all of fx, fy, cx, cy must be
4147
    initialized before calling the function.
4148
    @param D Output vector of distortion coefficients \f$\distcoeffsfisheye\f$.
4149
    @param rvecs Output vector of rotation vectors (see @ref Rodrigues ) estimated for each pattern view.
4150
    That is, each k-th rotation vector together with the corresponding k-th translation vector (see
4151
    the next output parameter description) brings the calibration pattern from the model coordinate
4152
    space (in which object points are specified) to the world coordinate space, that is, a real
4153
    position of the calibration pattern in the k-th pattern view (k=0.. *M* -1).
4154
    @param tvecs Output vector of translation vectors estimated for each pattern view.
4155
    @param flags Different flags that may be zero or a combination of the following values:
4156
    -    @ref fisheye::CALIB_USE_INTRINSIC_GUESS  cameraMatrix contains valid initial values of
4157
    fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
4158
    center ( imageSize is used), and focal distances are computed in a least-squares fashion.
4159
    -    @ref fisheye::CALIB_RECOMPUTE_EXTRINSIC  Extrinsic will be recomputed after each iteration
4160
    of intrinsic optimization.
4161
    -    @ref fisheye::CALIB_CHECK_COND  The functions will check validity of condition number.
4162
    -    @ref fisheye::CALIB_FIX_SKEW  Skew coefficient (alpha) is set to zero and stay zero.
4163
    -    @ref fisheye::CALIB_FIX_K1,..., @ref fisheye::CALIB_FIX_K4 Selected distortion coefficients
4164
    are set to zeros and stay zero.
4165
    -    @ref fisheye::CALIB_FIX_PRINCIPAL_POINT  The principal point is not changed during the global
4166
optimization. It stays at the center or at a different location specified when @ref fisheye::CALIB_USE_INTRINSIC_GUESS is set too.
4167
    -    @ref fisheye::CALIB_FIX_FOCAL_LENGTH The focal length is not changed during the global
4168
optimization. It is the \f$max(width,height)/\pi\f$ or the provided \f$f_x\f$, \f$f_y\f$ when @ref fisheye::CALIB_USE_INTRINSIC_GUESS is set too.
4169
    @param criteria Termination criteria for the iterative optimization algorithm.
4170
     */
4171
    CV_EXPORTS_W double calibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, const Size& image_size,
4172
        InputOutputArray K, InputOutputArray D, OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, int flags = 0,
4173
            TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON));
4174
4175
    /** @brief Stereo rectification for fisheye camera model
4176
4177
    @param K1 First camera intrinsic matrix.
4178
    @param D1 First camera distortion parameters.
4179
    @param K2 Second camera intrinsic matrix.
4180
    @param D2 Second camera distortion parameters.
4181
    @param imageSize Size of the image used for stereo calibration.
4182
    @param R Rotation matrix between the coordinate systems of the first and the second
4183
    cameras.
4184
    @param tvec Translation vector between coordinate systems of the cameras.
4185
    @param R1 Output 3x3 rectification transform (rotation matrix) for the first camera.
4186
    @param R2 Output 3x3 rectification transform (rotation matrix) for the second camera.
4187
    @param P1 Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
4188
    camera.
4189
    @param P2 Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
4190
    camera.
4191
    @param Q Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see #reprojectImageTo3D ).
4192
    @param flags Operation flags that may be zero or @ref fisheye::CALIB_ZERO_DISPARITY . If the flag is set,
4193
    the function makes the principal points of each camera have the same pixel coordinates in the
4194
    rectified views. And if the flag is not set, the function may still shift the images in the
4195
    horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
4196
    useful image area.
4197
    @param newImageSize New image resolution after rectification. The same size should be passed to
4198
    #initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
4199
    is passed (default), it is set to the original imageSize . Setting it to larger value can help you
4200
    preserve details in the original image, especially when there is a big radial distortion.
4201
    @param balance Sets the new focal length in range between the min focal length and the max focal
4202
    length. Balance is in range of [0, 1].
4203
    @param fov_scale Divisor for new focal length.
4204
     */
4205
    CV_EXPORTS_W void stereoRectify(InputArray K1, InputArray D1, InputArray K2, InputArray D2, const Size &imageSize, InputArray R, InputArray tvec,
4206
        OutputArray R1, OutputArray R2, OutputArray P1, OutputArray P2, OutputArray Q, int flags, const Size &newImageSize = Size(),
4207
        double balance = 0.0, double fov_scale = 1.0);
4208
4209
    /** @brief Performs stereo calibration
4210
4211
    @param objectPoints Vector of vectors of the calibration pattern points.
4212
    @param imagePoints1 Vector of vectors of the projections of the calibration pattern points,
4213
    observed by the first camera.
4214
    @param imagePoints2 Vector of vectors of the projections of the calibration pattern points,
4215
    observed by the second camera.
4216
    @param K1 Input/output first camera intrinsic matrix:
4217
    \f$\vecthreethree{f_x^{(j)}}{0}{c_x^{(j)}}{0}{f_y^{(j)}}{c_y^{(j)}}{0}{0}{1}\f$ , \f$j = 0,\, 1\f$ . If
4218
    any of @ref fisheye::CALIB_USE_INTRINSIC_GUESS , @ref fisheye::CALIB_FIX_INTRINSIC are specified,
4219
    some or all of the matrix components must be initialized.
4220
    @param D1 Input/output vector of distortion coefficients \f$\distcoeffsfisheye\f$ of 4 elements.
4221
    @param K2 Input/output second camera intrinsic matrix. The parameter is similar to K1 .
4222
    @param D2 Input/output lens distortion coefficients for the second camera. The parameter is
4223
    similar to D1 .
4224
    @param imageSize Size of the image used only to initialize camera intrinsic matrix.
4225
    @param R Output rotation matrix between the 1st and the 2nd camera coordinate systems.
4226
    @param T Output translation vector between the coordinate systems of the cameras.
4227
    @param rvecs Output vector of rotation vectors ( @ref Rodrigues ) estimated for each pattern view in the
4228
    coordinate system of the first camera of the stereo pair (e.g. std::vector<cv::Mat>). More in detail, each
4229
    i-th rotation vector together with the corresponding i-th translation vector (see the next output parameter
4230
    description) brings the calibration pattern from the object coordinate space (in which object points are
4231
    specified) to the camera coordinate space of the first camera of the stereo pair. In more technical terms,
4232
    the tuple of the i-th rotation and translation vector performs a change of basis from object coordinate space
4233
    to camera coordinate space of the first camera of the stereo pair.
4234
    @param tvecs Output vector of translation vectors estimated for each pattern view, see parameter description
4235
    of previous output parameter ( rvecs ).
4236
    @param flags Different flags that may be zero or a combination of the following values:
4237
    -    @ref fisheye::CALIB_FIX_INTRINSIC  Fix K1, K2? and D1, D2? so that only R, T matrices
4238
    are estimated.
4239
    -    @ref fisheye::CALIB_USE_INTRINSIC_GUESS  K1, K2 contains valid initial values of
4240
    fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
4241
    center (imageSize is used), and focal distances are computed in a least-squares fashion.
4242
    -    @ref fisheye::CALIB_RECOMPUTE_EXTRINSIC  Extrinsic will be recomputed after each iteration
4243
    of intrinsic optimization.
4244
    -    @ref fisheye::CALIB_CHECK_COND  The functions will check validity of condition number.
4245
    -    @ref fisheye::CALIB_FIX_SKEW  Skew coefficient (alpha) is set to zero and stay zero.
4246
    -   @ref fisheye::CALIB_FIX_K1,..., @ref fisheye::CALIB_FIX_K4 Selected distortion coefficients are set to zeros and stay
4247
    zero.
4248
    @param criteria Termination criteria for the iterative optimization algorithm.
4249
     */
4250
    CV_EXPORTS_W double stereoCalibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
4251
                                  InputOutputArray K1, InputOutputArray D1, InputOutputArray K2, InputOutputArray D2, Size imageSize,
4252
                                  OutputArray R, OutputArray T, OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, int flags = fisheye::CALIB_FIX_INTRINSIC,
4253
                                  TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON));
4254
4255
    /// @overload
4256
    CV_EXPORTS_W double stereoCalibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
4257
                                  InputOutputArray K1, InputOutputArray D1, InputOutputArray K2, InputOutputArray D2, Size imageSize,
4258
                                  OutputArray R, OutputArray T, int flags = fisheye::CALIB_FIX_INTRINSIC,
4259
                                  TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON));
4260
4261
    /**
4262
    @brief Finds an object pose from 3D-2D point correspondences for fisheye camera moodel.
4263
4264
    @param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or
4265
    1xN/Nx1 3-channel, where N is the number of points. vector\<Point3d\> can also be passed here.
4266
    @param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
4267
    where N is the number of points. vector\<Point2d\> can also be passed here.
4268
    @param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ .
4269
    @param distCoeffs Input vector of distortion coefficients (4x1/1x4).
4270
    @param rvec Output rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from
4271
    the model coordinate system to the camera coordinate system.
4272
    @param tvec Output translation vector.
4273
    @param useExtrinsicGuess Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses
4274
    the provided rvec and tvec values as initial approximations of the rotation and translation
4275
    vectors, respectively, and further optimizes them.
4276
    @param flags Method for solving a PnP problem: see @ref calib3d_solvePnP_flags
4277
    @param criteria Termination criteria for internal undistortPoints call.
4278
    The function interally undistorts points with @ref undistortPoints and call @ref cv::solvePnP,
4279
    thus the input are very similar. More information about Perspective-n-Points is described in @ref calib3d_solvePnP
4280
    for more information.
4281
    */
4282
    CV_EXPORTS_W bool solvePnP( InputArray objectPoints, InputArray imagePoints,
4283
                                InputArray cameraMatrix, InputArray distCoeffs,
4284
                                OutputArray rvec, OutputArray tvec,
4285
                                bool useExtrinsicGuess = false, int flags = SOLVEPNP_ITERATIVE,
4286
                                TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 10, 1e-8)
4287
                              );
4288
4289
    /**
4290
    @brief Finds an object pose from 3D-2D point correspondences using the RANSAC scheme for fisheye camera moodel.
4291
4292
    @param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or
4293
    1xN/Nx1 3-channel, where N is the number of points. vector\<Point3d\> can be also passed here.
4294
    @param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
4295
    where N is the number of points. vector\<Point2d\> can be also passed here.
4296
    @param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ .
4297
    @param distCoeffs Input vector of distortion coefficients (4x1/1x4).
4298
    @param rvec Output rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from
4299
    the model coordinate system to the camera coordinate system.
4300
    @param tvec Output translation vector.
4301
    @param useExtrinsicGuess Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses
4302
    the provided rvec and tvec values as initial approximations of the rotation and translation
4303
    vectors, respectively, and further optimizes them.
4304
    @param iterationsCount Number of iterations.
4305
    @param reprojectionError Inlier threshold value used by the RANSAC procedure. The parameter value
4306
    is the maximum allowed distance between the observed and computed point projections to consider it
4307
    an inlier.
4308
    @param confidence The probability that the algorithm produces a useful result.
4309
    @param inliers Output vector that contains indices of inliers in objectPoints and imagePoints .
4310
    @param flags Method for solving a PnP problem: see @ref calib3d_solvePnP_flags
4311
    This function returns the rotation and the translation vectors that transform a 3D point expressed in the object
4312
    coordinate frame to the camera coordinate frame, using different methods:
4313
    - P3P methods (@ref SOLVEPNP_P3P, @ref SOLVEPNP_AP3P): need 4 input points to return a unique solution.
4314
    - @ref SOLVEPNP_IPPE Input points must be >= 4 and object points must be coplanar.
4315
    - @ref SOLVEPNP_IPPE_SQUARE Special case suitable for marker pose estimation.
4316
    Number of input points must be 4. Object points must be defined in the following order:
4317
    - point 0: [-squareLength / 2,  squareLength / 2, 0]
4318
    - point 1: [ squareLength / 2,  squareLength / 2, 0]
4319
    - point 2: [ squareLength / 2, -squareLength / 2, 0]
4320
    - point 3: [-squareLength / 2, -squareLength / 2, 0]
4321
    - for all the other flags, number of input points must be >= 4 and object points can be in any configuration.
4322
    @param criteria Termination criteria for internal undistortPoints call.
4323
    The function interally undistorts points with @ref undistortPoints and call @ref cv::solvePnP,
4324
    thus the input are very similar. More information about Perspective-n-Points is described in @ref calib3d_solvePnP
4325
    for more information.
4326
    */
4327
    CV_EXPORTS_W bool solvePnPRansac( InputArray objectPoints, InputArray imagePoints,
4328
                                      InputArray cameraMatrix, InputArray distCoeffs,
4329
                                      OutputArray rvec, OutputArray tvec,
4330
                                      bool useExtrinsicGuess = false, int iterationsCount = 100,
4331
                                      float reprojectionError = 8.0, double confidence = 0.99,
4332
                                      OutputArray inliers = noArray(), int flags = SOLVEPNP_ITERATIVE,
4333
                                      TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 10, 1e-8)
4334
                                    );
4335
4336
//! @} calib3d_fisheye
4337
} // end namespace fisheye
4338
4339
} //end namespace cv
4340
4341
#if 0 //def __cplusplus
4342
//////////////////////////////////////////////////////////////////////////////////////////
4343
class CV_EXPORTS CvLevMarq
4344
{
4345
public:
4346
    CvLevMarq();
4347
    CvLevMarq( int nparams, int nerrs, CvTermCriteria criteria=
4348
              cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON),
4349
              bool completeSymmFlag=false );
4350
    ~CvLevMarq();
4351
    void init( int nparams, int nerrs, CvTermCriteria criteria=
4352
              cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON),
4353
              bool completeSymmFlag=false );
4354
    bool update( const CvMat*& param, CvMat*& J, CvMat*& err );
4355
    bool updateAlt( const CvMat*& param, CvMat*& JtJ, CvMat*& JtErr, double*& errNorm );
4356
4357
    void clear();
4358
    void step();
4359
    enum { DONE=0, STARTED=1, CALC_J=2, CHECK_ERR=3 };
4360
4361
    cv::Ptr<CvMat> mask;
4362
    cv::Ptr<CvMat> prevParam;
4363
    cv::Ptr<CvMat> param;
4364
    cv::Ptr<CvMat> J;
4365
    cv::Ptr<CvMat> err;
4366
    cv::Ptr<CvMat> JtJ;
4367
    cv::Ptr<CvMat> JtJN;
4368
    cv::Ptr<CvMat> JtErr;
4369
    cv::Ptr<CvMat> JtJV;
4370
    cv::Ptr<CvMat> JtJW;
4371
    double prevErrNorm, errNorm;
4372
    int lambdaLg10;
4373
    CvTermCriteria criteria;
4374
    int state;
4375
    int iters;
4376
    bool completeSymmFlag;
4377
    int solveMethod;
4378
};
4379
#endif
4380
4381
#endif