Coverage Report

Created: 2025-07-23 07:06

/work/install-coverage/include/opencv4/opencv2/dnn/dnn.hpp
Line
Count
Source (jump to first uncovered line)
1
/*M///////////////////////////////////////////////////////////////////////////////////////
2
//
3
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4
//
5
//  By downloading, copying, installing or using the software you agree to this license.
6
//  If you do not agree to this license, do not download, install,
7
//  copy or use the software.
8
//
9
//
10
//                           License Agreement
11
//                For Open Source Computer Vision Library
12
//
13
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
14
// Third party copyrights are property of their respective owners.
15
//
16
// Redistribution and use in source and binary forms, with or without modification,
17
// are permitted provided that the following conditions are met:
18
//
19
//   * Redistribution's of source code must retain the above copyright notice,
20
//     this list of conditions and the following disclaimer.
21
//
22
//   * Redistribution's in binary form must reproduce the above copyright notice,
23
//     this list of conditions and the following disclaimer in the documentation
24
//     and/or other materials provided with the distribution.
25
//
26
//   * The name of the copyright holders may not be used to endorse or promote products
27
//     derived from this software without specific prior written permission.
28
//
29
// This software is provided by the copyright holders and contributors "as is" and
30
// any express or implied warranties, including, but not limited to, the implied
31
// warranties of merchantability and fitness for a particular purpose are disclaimed.
32
// In no event shall the Intel Corporation or contributors be liable for any direct,
33
// indirect, incidental, special, exemplary, or consequential damages
34
// (including, but not limited to, procurement of substitute goods or services;
35
// loss of use, data, or profits; or business interruption) however caused
36
// and on any theory of liability, whether in contract, strict liability,
37
// or tort (including negligence or otherwise) arising in any way out of
38
// the use of this software, even if advised of the possibility of such damage.
39
//
40
//M*/
41
42
#ifndef OPENCV_DNN_DNN_HPP
43
#define OPENCV_DNN_DNN_HPP
44
45
#include <vector>
46
#include <opencv2/core.hpp>
47
#include "opencv2/core/async.hpp"
48
49
#include "../dnn/version.hpp"
50
51
#include <opencv2/dnn/dict.hpp>
52
53
namespace cv {
54
namespace dnn {
55
56
namespace accessor {
57
class DnnNetAccessor;  // forward declaration
58
}
59
60
CV__DNN_INLINE_NS_BEGIN
61
//! @addtogroup dnn
62
//! @{
63
64
    typedef std::vector<int> MatShape;
65
66
    /**
67
     * @brief Enum of computation backends supported by layers.
68
     * @see Net::setPreferableBackend
69
     */
70
    enum Backend
71
    {
72
        //! DNN_BACKEND_DEFAULT equals to OPENCV_DNN_BACKEND_DEFAULT, which can be defined using CMake or a configuration parameter
73
        DNN_BACKEND_DEFAULT = 0,
74
        DNN_BACKEND_HALIDE,
75
        DNN_BACKEND_INFERENCE_ENGINE,            //!< Intel OpenVINO computational backend, supported targets: CPU, OPENCL, OPENCL_FP16, MYRIAD, HDDL, NPU
76
                                                 //!< @note Tutorial how to build OpenCV with OpenVINO: @ref tutorial_dnn_openvino
77
        DNN_BACKEND_OPENCV,
78
        DNN_BACKEND_VKCOM,
79
        DNN_BACKEND_CUDA,
80
        DNN_BACKEND_WEBNN,
81
        DNN_BACKEND_TIMVX,
82
        DNN_BACKEND_CANN,
83
#if defined(__OPENCV_BUILD) || defined(BUILD_PLUGIN)
84
#if !defined(OPENCV_BINDING_PARSER)
85
        DNN_BACKEND_INFERENCE_ENGINE_NGRAPH = 1000000,     // internal - use DNN_BACKEND_INFERENCE_ENGINE + setInferenceEngineBackendType()
86
        DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019,      // internal - use DNN_BACKEND_INFERENCE_ENGINE + setInferenceEngineBackendType()
87
#endif
88
#endif
89
    };
90
91
    /**
92
     * @brief Enum of target devices for computations.
93
     * @see Net::setPreferableTarget
94
     */
95
    enum Target
96
    {
97
        DNN_TARGET_CPU = 0,
98
        DNN_TARGET_OPENCL,
99
        DNN_TARGET_OPENCL_FP16,
100
        DNN_TARGET_MYRIAD,
101
        DNN_TARGET_VULKAN,
102
        DNN_TARGET_FPGA,  //!< FPGA device with CPU fallbacks using Inference Engine's Heterogeneous plugin.
103
        DNN_TARGET_CUDA,
104
        DNN_TARGET_CUDA_FP16,
105
        DNN_TARGET_HDDL,
106
        DNN_TARGET_NPU,
107
        DNN_TARGET_CPU_FP16, // Only the ARM platform is supported. Low precision computing, accelerate model inference.
108
    };
109
110
    /**
111
     * @brief Enum of data layout for model inference.
112
     * @see Image2BlobParams
113
     */
114
    enum DataLayout
115
    {
116
        DNN_LAYOUT_UNKNOWN = 0,
117
        DNN_LAYOUT_ND = 1,        //!< OpenCV data layout for 2D data.
118
        DNN_LAYOUT_NCHW = 2,      //!< OpenCV data layout for 4D data.
119
        DNN_LAYOUT_NCDHW = 3,      //!< OpenCV data layout for 5D data.
120
        DNN_LAYOUT_NHWC = 4,      //!< Tensorflow-like data layout for 4D data.
121
        DNN_LAYOUT_NDHWC = 5,      //!< Tensorflow-like data layout for 5D data.
122
        DNN_LAYOUT_PLANAR = 6,     //!< Tensorflow-like data layout, it should only be used at tf or tflite model parsing.
123
    };
124
125
    CV_EXPORTS std::vector< std::pair<Backend, Target> > getAvailableBackends();
126
    CV_EXPORTS_W std::vector<Target> getAvailableTargets(dnn::Backend be);
127
128
    /**
129
     * @brief Enables detailed logging of the DNN model loading with CV DNN API.
130
     * @param[in] isDiagnosticsMode Indicates whether diagnostic mode should be set.
131
     *
132
     * Diagnostic mode provides detailed logging of the model loading stage to explore
133
     * potential problems (ex.: not implemented layer type).
134
     *
135
     * @note In diagnostic mode series of assertions will be skipped, it can lead to the
136
     * expected application crash.
137
     */
138
    CV_EXPORTS void enableModelDiagnostics(bool isDiagnosticsMode);
139
140
    /** @brief This class provides all data needed to initialize layer.
141
     *
142
     * It includes dictionary with scalar params (which can be read by using Dict interface),
143
     * blob params #blobs and optional meta information: #name and #type of layer instance.
144
    */
145
    class CV_EXPORTS LayerParams : public Dict
146
    {
147
    public:
148
        //TODO: Add ability to name blob params
149
        std::vector<Mat> blobs; //!< List of learned parameters stored as blobs.
150
151
        String name; //!< Name of the layer instance (optional, can be used internal purposes).
152
        String type; //!< Type name which was used for creating layer by layer factory (optional).
153
    };
154
155
   /**
156
    * @brief Derivatives of this class encapsulates functions of certain backends.
157
    */
158
    class BackendNode
159
    {
160
    public:
161
        explicit BackendNode(int backendId);
162
163
        virtual ~BackendNode(); //!< Virtual destructor to make polymorphism.
164
165
        int backendId; //!< Backend identifier.
166
    };
167
168
    /**
169
     * @brief Derivatives of this class wraps cv::Mat for different backends and targets.
170
     */
171
    class BackendWrapper
172
    {
173
    public:
174
        BackendWrapper(int backendId, int targetId);
175
176
        /**
177
         * @brief Wrap cv::Mat for specific backend and target.
178
         * @param[in] targetId Target identifier.
179
         * @param[in] m cv::Mat for wrapping.
180
         *
181
         * Make CPU->GPU data transfer if it's require for the target.
182
         */
183
        BackendWrapper(int targetId, const cv::Mat& m);
184
185
        /**
186
         * @brief Make wrapper for reused cv::Mat.
187
         * @param[in] base Wrapper of cv::Mat that will be reused.
188
         * @param[in] shape Specific shape.
189
         *
190
         * Initialize wrapper from another one. It'll wrap the same host CPU
191
         * memory and mustn't allocate memory on device(i.e. GPU). It might
192
         * has different shape. Use in case of CPU memory reusing for reuse
193
         * associated memory on device too.
194
         */
195
        BackendWrapper(const Ptr<BackendWrapper>& base, const MatShape& shape);
196
197
        virtual ~BackendWrapper(); //!< Virtual destructor to make polymorphism.
198
199
        /**
200
         * @brief Transfer data to CPU host memory.
201
         */
202
        virtual void copyToHost() = 0;
203
204
        /**
205
         * @brief Indicate that an actual data is on CPU.
206
         */
207
        virtual void setHostDirty() = 0;
208
209
        int backendId;  //!< Backend identifier.
210
        int targetId;   //!< Target identifier.
211
    };
212
213
    class CV_EXPORTS ActivationLayer;
214
215
    /** @brief This interface class allows to build new Layers - are building blocks of networks.
216
     *
217
     * Each class, derived from Layer, must implement forward() method to compute outputs.
218
     * Also before using the new layer into networks you must register your layer by using one of @ref dnnLayerFactory "LayerFactory" macros.
219
     */
220
    class CV_EXPORTS_W Layer : public Algorithm
221
    {
222
    public:
223
224
        //! List of learned parameters must be stored here to allow read them by using Net::getParam().
225
        CV_PROP_RW std::vector<Mat> blobs;
226
227
        /** @brief Computes and sets internal parameters according to inputs, outputs and blobs.
228
         *  @deprecated Use Layer::finalize(InputArrayOfArrays, OutputArrayOfArrays) instead
229
         *  @param[in]  input  vector of already allocated input blobs
230
         *  @param[out] output vector of already allocated output blobs
231
         *
232
         * This method is called after network has allocated all memory for input and output blobs
233
         * and before inferencing.
234
         */
235
        CV_DEPRECATED_EXTERNAL
236
        virtual void finalize(const std::vector<Mat*> &input, std::vector<Mat> &output);
237
238
        /** @brief Computes and sets internal parameters according to inputs, outputs and blobs.
239
         *  @param[in]  inputs  vector of already allocated input blobs
240
         *  @param[out] outputs vector of already allocated output blobs
241
         *
242
         * This method is called after network has allocated all memory for input and output blobs
243
         * and before inferencing.
244
         */
245
        CV_WRAP virtual void finalize(InputArrayOfArrays inputs, OutputArrayOfArrays outputs);
246
247
        /** @brief Given the @p input blobs, computes the output @p blobs.
248
         *  @deprecated Use Layer::forward(InputArrayOfArrays, OutputArrayOfArrays, OutputArrayOfArrays) instead
249
         *  @param[in]  input  the input blobs.
250
         *  @param[out] output allocated output blobs, which will store results of the computation.
251
         *  @param[out] internals allocated internal blobs
252
         */
253
        CV_DEPRECATED_EXTERNAL
254
        virtual void forward(std::vector<Mat*> &input, std::vector<Mat> &output, std::vector<Mat> &internals);
255
256
        /** @brief Given the @p input blobs, computes the output @p blobs.
257
         *  @param[in]  inputs  the input blobs.
258
         *  @param[out] outputs allocated output blobs, which will store results of the computation.
259
         *  @param[out] internals allocated internal blobs
260
         */
261
        virtual void forward(InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals);
262
263
        /** @brief Tries to quantize the given layer and compute the quantization parameters required for fixed point implementation.
264
         *  @param[in] scales input and output scales.
265
         *  @param[in] zeropoints input and output zeropoints.
266
         *  @param[out] params Quantized parameters required for fixed point implementation of that layer.
267
         *  @returns True if layer can be quantized.
268
         */
269
        virtual bool tryQuantize(const std::vector<std::vector<float> > &scales,
270
                                 const std::vector<std::vector<int> > &zeropoints, LayerParams& params);
271
272
        /** @brief Given the @p input blobs, computes the output @p blobs.
273
         *  @param[in]  inputs  the input blobs.
274
         *  @param[out] outputs allocated output blobs, which will store results of the computation.
275
         *  @param[out] internals allocated internal blobs
276
         */
277
        void forward_fallback(InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals);
278
279
        /** @brief
280
         * @overload
281
         * @deprecated Use Layer::finalize(InputArrayOfArrays, OutputArrayOfArrays) instead
282
         */
283
        CV_DEPRECATED_EXTERNAL
284
        void finalize(const std::vector<Mat> &inputs, CV_OUT std::vector<Mat> &outputs);
285
286
        /** @brief
287
         * @overload
288
         * @deprecated Use Layer::finalize(InputArrayOfArrays, OutputArrayOfArrays) instead
289
         */
290
        CV_DEPRECATED std::vector<Mat> finalize(const std::vector<Mat> &inputs);
291
292
        /** @brief Allocates layer and computes output.
293
         *  @deprecated This method will be removed in the future release.
294
         */
295
        CV_DEPRECATED CV_WRAP void run(const std::vector<Mat> &inputs, CV_OUT std::vector<Mat> &outputs,
296
                                       CV_IN_OUT std::vector<Mat> &internals);
297
298
        /** @brief Returns index of input blob into the input array.
299
         *  @param inputName label of input blob
300
         *
301
         * Each layer input and output can be labeled to easily identify them using "%<layer_name%>[.output_name]" notation.
302
         * This method maps label of input blob to its index into input vector.
303
         */
304
        virtual int inputNameToIndex(String inputName);  // FIXIT const
305
        /** @brief Returns index of output blob in output array.
306
         *  @see inputNameToIndex()
307
         */
308
        CV_WRAP virtual int outputNameToIndex(const String& outputName);  // FIXIT const
309
310
        /**
311
         * @brief Ask layer if it support specific backend for doing computations.
312
         * @param[in] backendId computation backend identifier.
313
         * @see Backend
314
         */
315
        virtual bool supportBackend(int backendId);  // FIXIT const
316
317
        /**
318
         * @brief Returns Halide backend node.
319
         * @param[in] inputs Input Halide buffers.
320
         * @see BackendNode, BackendWrapper
321
         *
322
         * Input buffers should be exactly the same that will be used in forward invocations.
323
         * Despite we can use Halide::ImageParam based on input shape only,
324
         * it helps prevent some memory management issues (if something wrong,
325
         * Halide tests will be failed).
326
         */
327
        virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs);
328
329
        virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> > &inputs, const std::vector<Ptr<BackendNode> >& nodes);
330
331
        virtual Ptr<BackendNode> initVkCom(const std::vector<Ptr<BackendWrapper> > &inputs, std::vector<Ptr<BackendWrapper> > &outputs);
332
333
        virtual Ptr<BackendNode> initWebnn(const std::vector<Ptr<BackendWrapper> > &inputs, const std::vector<Ptr<BackendNode> >& nodes);
334
335
        /**
336
         * @brief Returns a CUDA backend node
337
         *
338
         * @param   context  void pointer to CSLContext object
339
         * @param   inputs   layer inputs
340
         * @param   outputs  layer outputs
341
         */
342
        virtual Ptr<BackendNode> initCUDA(
343
            void *context,
344
            const std::vector<Ptr<BackendWrapper>>& inputs,
345
            const std::vector<Ptr<BackendWrapper>>& outputs
346
        );
347
348
        /**
349
         * @brief Returns a TimVX backend node
350
         *
351
         * @param   timVxInfo  void pointer to CSLContext object
352
         * @param   inputsWrapper   layer inputs
353
         * @param   outputsWrapper  layer outputs
354
         * @param   isLast if the node is the last one of the TimVX Graph.
355
         */
356
        virtual Ptr<BackendNode> initTimVX(void* timVxInfo,
357
                                           const std::vector<Ptr<BackendWrapper> > &inputsWrapper,
358
                                           const std::vector<Ptr<BackendWrapper> > &outputsWrapper,
359
                                           bool isLast);
360
361
        /**
362
         * @brief Returns a CANN backend node
363
         *
364
         * @param   inputs   input tensors of CANN operator
365
         * @param   outputs  output tensors of CANN operator
366
         * @param   nodes           nodes of input tensors
367
         */
368
        virtual Ptr<BackendNode> initCann(const std::vector<Ptr<BackendWrapper> > &inputs,
369
                                          const std::vector<Ptr<BackendWrapper> > &outputs,
370
                                          const std::vector<Ptr<BackendNode> >& nodes);
371
372
       /**
373
        * @brief Automatic Halide scheduling based on layer hyper-parameters.
374
        * @param[in] node Backend node with Halide functions.
375
        * @param[in] inputs Blobs that will be used in forward invocations.
376
        * @param[in] outputs Blobs that will be used in forward invocations.
377
        * @param[in] targetId Target identifier
378
        * @see BackendNode, Target
379
        *
380
        * Layer don't use own Halide::Func members because we can have applied
381
        * layers fusing. In this way the fused function should be scheduled.
382
        */
383
        virtual void applyHalideScheduler(Ptr<BackendNode>& node,
384
                                          const std::vector<Mat*> &inputs,
385
                                          const std::vector<Mat> &outputs,
386
                                          int targetId) const;
387
388
        /**
389
         * @brief Implement layers fusing.
390
         * @param[in] node Backend node of bottom layer.
391
         * @see BackendNode
392
         *
393
         * Actual for graph-based backends. If layer attached successfully,
394
         * returns non-empty cv::Ptr to node of the same backend.
395
         * Fuse only over the last function.
396
         */
397
        virtual Ptr<BackendNode> tryAttach(const Ptr<BackendNode>& node);
398
399
        /**
400
         * @brief Tries to attach to the layer the subsequent activation layer, i.e. do the layer fusion in a partial case.
401
         * @param[in] layer The subsequent activation layer.
402
         *
403
         * Returns true if the activation layer has been attached successfully.
404
         */
405
        virtual bool setActivation(const Ptr<ActivationLayer>& layer);
406
407
        /**
408
         * @brief Try to fuse current layer with a next one
409
         * @param[in] top Next layer to be fused.
410
         * @returns True if fusion was performed.
411
         */
412
        virtual bool tryFuse(Ptr<Layer>& top);
413
414
        /**
415
         * @brief Returns parameters of layers with channel-wise multiplication and addition.
416
         * @param[out] scale Channel-wise multipliers. Total number of values should
417
         *                   be equal to number of channels.
418
         * @param[out] shift Channel-wise offsets. Total number of values should
419
         *                   be equal to number of channels.
420
         *
421
         * Some layers can fuse their transformations with further layers.
422
         * In example, convolution + batch normalization. This way base layer
423
         * use weights from layer after it. Fused layer is skipped.
424
         * By default, @p scale and @p shift are empty that means layer has no
425
         * element-wise multiplications or additions.
426
         */
427
        virtual void getScaleShift(Mat& scale, Mat& shift) const;
428
429
        /**
430
         * @brief Returns scale and zeropoint of layers
431
         * @param[out] scale Output scale
432
         * @param[out] zeropoint Output zeropoint
433
         *
434
         * By default, @p scale is 1 and @p zeropoint is 0.
435
         */
436
        virtual void getScaleZeropoint(float& scale, int& zeropoint) const;
437
438
439
        /**
440
         * @brief "Detaches" all the layers, attached to particular layer.
441
         */
442
        virtual void unsetAttached();
443
444
        virtual bool getMemoryShapes(const std::vector<MatShape> &inputs,
445
                                     const int requiredOutputs,
446
                                     std::vector<MatShape> &outputs,
447
                                     std::vector<MatShape> &internals) const;
448
449
        virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
450
0
                               const std::vector<MatShape> &outputs) const {CV_UNUSED(inputs); CV_UNUSED(outputs); return 0;}
451
452
        virtual bool updateMemoryShapes(const std::vector<MatShape> &inputs);
453
454
        CV_PROP String name; //!< Name of the layer instance, can be used for logging or other internal purposes.
455
        CV_PROP String type; //!< Type name which was used for creating layer by layer factory.
456
        CV_PROP int preferableTarget; //!< prefer target for layer forwarding
457
458
        Layer();
459
        explicit Layer(const LayerParams &params);      //!< Initializes only #name, #type and #blobs fields.
460
        void setParamsFrom(const LayerParams &params);  //!< Initializes only #name, #type and #blobs fields.
461
        virtual ~Layer();
462
    };
463
464
    /** @brief This class allows to create and manipulate comprehensive artificial neural networks.
465
     *
466
     * Neural network is presented as directed acyclic graph (DAG), where vertices are Layer instances,
467
     * and edges specify relationships between layers inputs and outputs.
468
     *
469
     * Each network layer has unique integer id and unique string name inside its network.
470
     * LayerId can store either layer name or layer id.
471
     *
472
     * This class supports reference counting of its instances, i. e. copies point to the same instance.
473
     */
474
    class CV_EXPORTS_W_SIMPLE Net
475
    {
476
    public:
477
478
        CV_WRAP Net();  //!< Default constructor.
479
        CV_WRAP ~Net(); //!< Destructor frees the net only if there aren't references to the net anymore.
480
481
        /** @brief Create a network from Intel's Model Optimizer intermediate representation (IR).
482
         *  @param[in] xml XML configuration file with network's topology.
483
         *  @param[in] bin Binary file with trained weights.
484
         *  Networks imported from Intel's Model Optimizer are launched in Intel's Inference Engine
485
         *  backend.
486
         */
487
        CV_WRAP static Net readFromModelOptimizer(CV_WRAP_FILE_PATH const String& xml, CV_WRAP_FILE_PATH const String& bin);
488
489
        /** @brief Create a network from Intel's Model Optimizer in-memory buffers with intermediate representation (IR).
490
         *  @param[in] bufferModelConfig buffer with model's configuration.
491
         *  @param[in] bufferWeights buffer with model's trained weights.
492
         *  @returns Net object.
493
         */
494
        CV_WRAP static
495
        Net readFromModelOptimizer(const std::vector<uchar>& bufferModelConfig, const std::vector<uchar>& bufferWeights);
496
497
        /** @brief Create a network from Intel's Model Optimizer in-memory buffers with intermediate representation (IR).
498
         *  @param[in] bufferModelConfigPtr buffer pointer of model's configuration.
499
         *  @param[in] bufferModelConfigSize buffer size of model's configuration.
500
         *  @param[in] bufferWeightsPtr buffer pointer of model's trained weights.
501
         *  @param[in] bufferWeightsSize buffer size of model's trained weights.
502
         *  @returns Net object.
503
         */
504
        static
505
        Net readFromModelOptimizer(const uchar* bufferModelConfigPtr, size_t bufferModelConfigSize,
506
                                            const uchar* bufferWeightsPtr, size_t bufferWeightsSize);
507
508
        /** Returns true if there are no layers in the network. */
509
        CV_WRAP bool empty() const;
510
511
        /** @brief Dump net to String
512
         *  @returns String with structure, hyperparameters, backend, target and fusion
513
         *  Call method after setInput(). To see correct backend, target and fusion run after forward().
514
         */
515
        CV_WRAP String dump();
516
        /** @brief Dump net structure, hyperparameters, backend, target and fusion to dot file
517
         *  @param path   path to output file with .dot extension
518
         *  @see dump()
519
         */
520
        CV_WRAP void dumpToFile(CV_WRAP_FILE_PATH const String& path);
521
        /** @brief Dump net structure, hyperparameters, backend, target and fusion to pbtxt file
522
         *  @param path   path to output file with .pbtxt extension
523
         *
524
         *  Use Netron (https://netron.app) to open the target file to visualize the model.
525
         *  Call method after setInput(). To see correct backend, target and fusion run after forward().
526
        */
527
        CV_WRAP void dumpToPbtxt(CV_WRAP_FILE_PATH const String& path);
528
529
        /** @brief Adds new layer to the net.
530
         *  @param name   unique name of the adding layer.
531
         *  @param type   typename of the adding layer (type must be registered in LayerRegister).
532
         *  @param dtype  datatype of output blobs.
533
         *  @param params parameters which will be used to initialize the creating layer.
534
         *  @returns unique identifier of created layer, or -1 if a failure will happen.
535
         */
536
        CV_WRAP int addLayer(const String &name, const String &type, const int &dtype, LayerParams &params);
537
538
        /** @overload Datatype of output blobs set to default CV_32F */
539
        int addLayer(const String &name, const String &type, LayerParams &params);
540
541
        /** @brief Adds new layer and connects its first input to the first output of previously added layer.
542
         *  @see addLayer()
543
         */
544
        CV_WRAP int addLayerToPrev(const String &name, const String &type, const int &dtype, LayerParams &params);
545
546
        /** @overload */
547
        int addLayerToPrev(const String &name, const String &type, LayerParams &params);
548
549
        /** @brief Converts string name of the layer to the integer identifier.
550
         *  @returns id of the layer, or -1 if the layer wasn't found.
551
         */
552
        CV_WRAP int getLayerId(const String &layer) const;
553
554
        CV_WRAP std::vector<String> getLayerNames() const;
555
556
        /** @brief Container for strings and integers.
557
         *
558
         * @deprecated Use getLayerId() with int result.
559
         */
560
        typedef DictValue LayerId;
561
562
        /** @brief Returns pointer to layer with specified id or name which the network use. */
563
        CV_WRAP Ptr<Layer> getLayer(int layerId) const;
564
        /** @overload
565
         *  @deprecated Use int getLayerId(const String &layer)
566
         */
567
0
        CV_WRAP inline Ptr<Layer> getLayer(const String& layerName) const { return getLayer(getLayerId(layerName)); }
568
        /** @overload
569
         *  @deprecated to be removed
570
         */
571
        CV_WRAP Ptr<Layer> getLayer(const LayerId& layerId) const;
572
573
        /** @brief Returns pointers to input layers of specific layer. */
574
        std::vector<Ptr<Layer> > getLayerInputs(int layerId) const; // FIXIT: CV_WRAP
575
576
        /** @brief Connects output of the first layer to input of the second layer.
577
         *  @param outPin descriptor of the first layer output.
578
         *  @param inpPin descriptor of the second layer input.
579
         *
580
         * Descriptors have the following template <DFN>&lt;layer_name&gt;[.input_number]</DFN>:
581
         * - the first part of the template <DFN>layer_name</DFN> is string name of the added layer.
582
         *   If this part is empty then the network input pseudo layer will be used;
583
         * - the second optional part of the template <DFN>input_number</DFN>
584
         *   is either number of the layer input, either label one.
585
         *   If this part is omitted then the first layer input will be used.
586
         *
587
         *  @see setNetInputs(), Layer::inputNameToIndex(), Layer::outputNameToIndex()
588
         */
589
        CV_WRAP void connect(String outPin, String inpPin);
590
591
        /** @brief Connects #@p outNum output of the first layer to #@p inNum input of the second layer.
592
         *  @param outLayerId identifier of the first layer
593
         *  @param outNum number of the first layer output
594
         *  @param inpLayerId identifier of the second layer
595
         *  @param inpNum number of the second layer input
596
         */
597
        void connect(int outLayerId, int outNum, int inpLayerId, int inpNum);
598
599
        /** @brief Registers network output with name
600
         *
601
         *  Function may create additional 'Identity' layer.
602
         *
603
         *  @param outputName identifier of the output
604
         *  @param layerId identifier of the second layer
605
         *  @param outputPort number of the second layer input
606
         *
607
         *  @returns index of bound layer (the same as layerId or newly created)
608
         */
609
        CV_WRAP int registerOutput(const std::string& outputName, int layerId, int outputPort);
610
611
        /** @brief Sets outputs names of the network input pseudo layer.
612
         *
613
         * Each net always has special own the network input pseudo layer with id=0.
614
         * This layer stores the user blobs only and don't make any computations.
615
         * In fact, this layer provides the only way to pass user data into the network.
616
         * As any other layer, this layer can label its outputs and this function provides an easy way to do this.
617
         */
618
        CV_WRAP void setInputsNames(const std::vector<String> &inputBlobNames);
619
620
        /** @brief Specify shape of network input.
621
         */
622
        CV_WRAP void setInputShape(const String &inputName, const MatShape& shape);
623
624
        /** @brief Runs forward pass to compute output of layer with name @p outputName.
625
         *  @param outputName name for layer which output is needed to get
626
         *  @return blob for first output of specified layer.
627
         *  @details By default runs forward pass for the whole network.
628
         */
629
        CV_WRAP Mat forward(const String& outputName = String());
630
631
        /** @brief Runs forward pass to compute output of layer with name @p outputName.
632
         *  @param outputName name for layer which output is needed to get
633
         *  @details By default runs forward pass for the whole network.
634
         *
635
         *  This is an asynchronous version of forward(const String&).
636
         *  dnn::DNN_BACKEND_INFERENCE_ENGINE backend is required.
637
         */
638
        CV_WRAP AsyncArray forwardAsync(const String& outputName = String());
639
640
        /** @brief Runs forward pass to compute output of layer with name @p outputName.
641
         *  @param outputBlobs contains all output blobs for specified layer.
642
         *  @param outputName name for layer which output is needed to get
643
         *  @details If @p outputName is empty, runs forward pass for the whole network.
644
         */
645
        CV_WRAP void forward(CV_ND OutputArrayOfArrays outputBlobs, const String& outputName = String());
646
647
        /** @brief Runs forward pass to compute outputs of layers listed in @p outBlobNames.
648
         *  @param outputBlobs contains blobs for first outputs of specified layers.
649
         *  @param outBlobNames names for layers which outputs are needed to get
650
         */
651
        CV_WRAP void forward(CV_ND OutputArrayOfArrays outputBlobs,
652
                             const std::vector<String>& outBlobNames);
653
654
        /** @brief Runs forward pass to compute outputs of layers listed in @p outBlobNames.
655
         *  @param outputBlobs contains all output blobs for each layer specified in @p outBlobNames.
656
         *  @param outBlobNames names for layers which outputs are needed to get
657
         */
658
        CV_WRAP_AS(forwardAndRetrieve) void forward(CV_OUT std::vector<std::vector<Mat> >& outputBlobs,
659
                                                    const std::vector<String>& outBlobNames);
660
661
        /** @brief Returns a quantized Net from a floating-point Net.
662
         *  @param calibData Calibration data to compute the quantization parameters.
663
         *  @param inputsDtype Datatype of quantized net's inputs. Can be CV_32F or CV_8S.
664
         *  @param outputsDtype Datatype of quantized net's outputs. Can be CV_32F or CV_8S.
665
         *  @param perChannel Quantization granularity of quantized Net. The default is true, that means quantize model
666
         *  in per-channel way (channel-wise). Set it false to quantize model in per-tensor way (or tensor-wise).
667
         */
668
        CV_WRAP Net quantize(InputArrayOfArrays calibData, int inputsDtype, int outputsDtype, bool perChannel=true);
669
670
        /** @brief Returns input scale and zeropoint for a quantized Net.
671
         *  @param scales output parameter for returning input scales.
672
         *  @param zeropoints output parameter for returning input zeropoints.
673
         */
674
        CV_WRAP void getInputDetails(CV_OUT std::vector<float>& scales, CV_OUT std::vector<int>& zeropoints) const;
675
676
        /** @brief Returns output scale and zeropoint for a quantized Net.
677
         *  @param scales output parameter for returning output scales.
678
         *  @param zeropoints output parameter for returning output zeropoints.
679
         */
680
        CV_WRAP void getOutputDetails(CV_OUT std::vector<float>& scales, CV_OUT std::vector<int>& zeropoints) const;
681
682
        /**
683
         * @brief Compile Halide layers.
684
         * @param[in] scheduler Path to YAML file with scheduling directives.
685
         * @see setPreferableBackend
686
         *
687
         * Schedule layers that support Halide backend. Then compile them for
688
         * specific target. For layers that not represented in scheduling file
689
         * or if no manual scheduling used at all, automatic scheduling will be applied.
690
         */
691
        CV_WRAP void setHalideScheduler(const String& scheduler);
692
693
        /**
694
         * @brief Ask network to use specific computation backend where it supported.
695
         * @param[in] backendId backend identifier.
696
         * @see Backend
697
         */
698
        CV_WRAP void setPreferableBackend(int backendId);
699
700
        /**
701
         * @brief Ask network to make computations on specific target device.
702
         * @param[in] targetId target identifier.
703
         * @see Target
704
         *
705
         * List of supported combinations backend / target:
706
         * |                        | DNN_BACKEND_OPENCV | DNN_BACKEND_INFERENCE_ENGINE | DNN_BACKEND_HALIDE |  DNN_BACKEND_CUDA |
707
         * |------------------------|--------------------|------------------------------|--------------------|-------------------|
708
         * | DNN_TARGET_CPU         |                  + |                            + |                  + |                   |
709
         * | DNN_TARGET_OPENCL      |                  + |                            + |                  + |                   |
710
         * | DNN_TARGET_OPENCL_FP16 |                  + |                            + |                    |                   |
711
         * | DNN_TARGET_MYRIAD      |                    |                            + |                    |                   |
712
         * | DNN_TARGET_FPGA        |                    |                            + |                    |                   |
713
         * | DNN_TARGET_CUDA        |                    |                              |                    |                 + |
714
         * | DNN_TARGET_CUDA_FP16   |                    |                              |                    |                 + |
715
         * | DNN_TARGET_HDDL        |                    |                            + |                    |                   |
716
         */
717
        CV_WRAP void setPreferableTarget(int targetId);
718
719
        /** @brief Sets the new input value for the network
720
         *  @param blob        A new blob. Should have CV_32F or CV_8U depth.
721
         *  @param name        A name of input layer.
722
         *  @param scalefactor An optional normalization scale.
723
         *  @param mean        An optional mean subtraction values.
724
         *  @see connect(String, String) to know format of the descriptor.
725
         *
726
         *  If scale or mean values are specified, a final input blob is computed
727
         *  as:
728
         * \f[input(n,c,h,w) = scalefactor \times (blob(n,c,h,w) - mean_c)\f]
729
         */
730
        CV_WRAP void setInput(CV_ND InputArray blob, const String& name = "",
731
                              double scalefactor = 1.0, const Scalar& mean = Scalar());
732
733
        /** @brief Sets the new value for the learned param of the layer.
734
         *  @param layer name or id of the layer.
735
         *  @param numParam index of the layer parameter in the Layer::blobs array.
736
         *  @param blob the new value.
737
         *  @see Layer::blobs
738
         *  @note If shape of the new blob differs from the previous shape,
739
         *  then the following forward pass may fail.
740
        */
741
        CV_WRAP void setParam(int layer, int numParam, CV_ND const Mat &blob);
742
0
        CV_WRAP inline void setParam(const String& layerName, int numParam, CV_ND const Mat &blob) { return setParam(getLayerId(layerName), numParam, blob); }
743
744
        /** @brief Returns parameter blob of the layer.
745
         *  @param layer name or id of the layer.
746
         *  @param numParam index of the layer parameter in the Layer::blobs array.
747
         *  @see Layer::blobs
748
         */
749
        CV_WRAP Mat getParam(int layer, int numParam = 0) const;
750
0
        CV_WRAP inline Mat getParam(const String& layerName, int numParam = 0) const { return getParam(getLayerId(layerName), numParam); }
751
752
        /** @brief Returns indexes of layers with unconnected outputs.
753
         *
754
         * FIXIT: Rework API to registerOutput() approach, deprecate this call
755
         */
756
        CV_WRAP std::vector<int> getUnconnectedOutLayers() const;
757
758
        /** @brief Returns names of layers with unconnected outputs.
759
         *
760
         * FIXIT: Rework API to registerOutput() approach, deprecate this call
761
         */
762
        CV_WRAP std::vector<String> getUnconnectedOutLayersNames() const;
763
764
        /** @brief Returns input and output shapes for all layers in loaded model;
765
         *  preliminary inferencing isn't necessary.
766
         *  @param netInputShapes shapes for all input blobs in net input layer.
767
         *  @param layersIds output parameter for layer IDs.
768
         *  @param inLayersShapes output parameter for input layers shapes;
769
         * order is the same as in layersIds
770
         *  @param outLayersShapes output parameter for output layers shapes;
771
         * order is the same as in layersIds
772
         */
773
        CV_WRAP void getLayersShapes(const std::vector<MatShape>& netInputShapes,
774
                                     CV_OUT std::vector<int>& layersIds,
775
                                     CV_OUT std::vector<std::vector<MatShape> >& inLayersShapes,
776
                                     CV_OUT std::vector<std::vector<MatShape> >& outLayersShapes) const;
777
778
        /** @overload */
779
        CV_WRAP void getLayersShapes(const MatShape& netInputShape,
780
                                     CV_OUT std::vector<int>& layersIds,
781
                                     CV_OUT std::vector<std::vector<MatShape> >& inLayersShapes,
782
                                     CV_OUT std::vector<std::vector<MatShape> >& outLayersShapes) const;
783
784
        /** @brief Returns input and output shapes for layer with specified
785
         * id in loaded model; preliminary inferencing isn't necessary.
786
         *  @param netInputShape shape input blob in net input layer.
787
         *  @param layerId id for layer.
788
         *  @param inLayerShapes output parameter for input layers shapes;
789
         * order is the same as in layersIds
790
         *  @param outLayerShapes output parameter for output layers shapes;
791
         * order is the same as in layersIds
792
         */
793
        void getLayerShapes(const MatShape& netInputShape,
794
                                    const int layerId,
795
                                    CV_OUT std::vector<MatShape>& inLayerShapes,
796
                                    CV_OUT std::vector<MatShape>& outLayerShapes) const; // FIXIT: CV_WRAP
797
798
        /** @overload */
799
        void getLayerShapes(const std::vector<MatShape>& netInputShapes,
800
                                    const int layerId,
801
                                    CV_OUT std::vector<MatShape>& inLayerShapes,
802
                                    CV_OUT std::vector<MatShape>& outLayerShapes) const; // FIXIT: CV_WRAP
803
804
        /** @brief Computes FLOP for whole loaded model with specified input shapes.
805
         * @param netInputShapes vector of shapes for all net inputs.
806
         * @returns computed FLOP.
807
         */
808
        CV_WRAP int64 getFLOPS(const std::vector<MatShape>& netInputShapes) const;
809
        /** @overload */
810
        CV_WRAP int64 getFLOPS(const MatShape& netInputShape) const;
811
        /** @overload */
812
        CV_WRAP int64 getFLOPS(const int layerId,
813
                               const std::vector<MatShape>& netInputShapes) const;
814
        /** @overload */
815
        CV_WRAP int64 getFLOPS(const int layerId,
816
                               const MatShape& netInputShape) const;
817
818
        /** @brief Returns list of types for layer used in model.
819
         * @param layersTypes output parameter for returning types.
820
         */
821
        CV_WRAP void getLayerTypes(CV_OUT std::vector<String>& layersTypes) const;
822
823
        /** @brief Returns count of layers of specified type.
824
         * @param layerType type.
825
         * @returns count of layers
826
         */
827
        CV_WRAP int getLayersCount(const String& layerType) const;
828
829
        /** @brief Computes bytes number which are required to store
830
         * all weights and intermediate blobs for model.
831
         * @param netInputShapes vector of shapes for all net inputs.
832
         * @param weights output parameter to store resulting bytes for weights.
833
         * @param blobs output parameter to store resulting bytes for intermediate blobs.
834
         */
835
        void getMemoryConsumption(const std::vector<MatShape>& netInputShapes,
836
                                          CV_OUT size_t& weights, CV_OUT size_t& blobs) const; // FIXIT: CV_WRAP
837
        /** @overload */
838
        CV_WRAP void getMemoryConsumption(const MatShape& netInputShape,
839
                                          CV_OUT size_t& weights, CV_OUT size_t& blobs) const;
840
        /** @overload */
841
        CV_WRAP void getMemoryConsumption(const int layerId,
842
                                          const std::vector<MatShape>& netInputShapes,
843
                                          CV_OUT size_t& weights, CV_OUT size_t& blobs) const;
844
        /** @overload */
845
        CV_WRAP void getMemoryConsumption(const int layerId,
846
                                          const MatShape& netInputShape,
847
                                          CV_OUT size_t& weights, CV_OUT size_t& blobs) const;
848
849
        /** @brief Computes bytes number which are required to store
850
         * all weights and intermediate blobs for each layer.
851
         * @param netInputShapes vector of shapes for all net inputs.
852
         * @param layerIds output vector to save layer IDs.
853
         * @param weights output parameter to store resulting bytes for weights.
854
         * @param blobs output parameter to store resulting bytes for intermediate blobs.
855
         */
856
        void getMemoryConsumption(const std::vector<MatShape>& netInputShapes,
857
                                          CV_OUT std::vector<int>& layerIds,
858
                                          CV_OUT std::vector<size_t>& weights,
859
                                          CV_OUT std::vector<size_t>& blobs) const; // FIXIT: CV_WRAP
860
        /** @overload */
861
        void getMemoryConsumption(const MatShape& netInputShape,
862
                                          CV_OUT std::vector<int>& layerIds,
863
                                          CV_OUT std::vector<size_t>& weights,
864
                                          CV_OUT std::vector<size_t>& blobs) const; // FIXIT: CV_WRAP
865
866
        /** @brief Enables or disables layer fusion in the network.
867
         * @param fusion true to enable the fusion, false to disable. The fusion is enabled by default.
868
         */
869
        CV_WRAP void enableFusion(bool fusion);
870
871
        /** @brief Enables or disables the Winograd compute branch. The Winograd compute branch can speed up
872
         * 3x3 Convolution at a small loss of accuracy.
873
        * @param useWinograd true to enable the Winograd compute branch. The default is true.
874
        */
875
        CV_WRAP void enableWinograd(bool useWinograd);
876
877
        /** @brief Returns overall time for inference and timings (in ticks) for layers.
878
         *
879
         * Indexes in returned vector correspond to layers ids. Some layers can be fused with others,
880
         * in this case zero ticks count will be return for that skipped layers. Supported by DNN_BACKEND_OPENCV on DNN_TARGET_CPU only.
881
         *
882
         * @param[out] timings vector for tick timings for all layers.
883
         * @return overall ticks for model inference.
884
         */
885
        CV_WRAP int64 getPerfProfile(CV_OUT std::vector<double>& timings);
886
887
888
        struct Impl;
889
0
        inline Impl* getImpl() const { return impl.get(); }
890
0
        inline Impl& getImplRef() const { CV_DbgAssert(impl); return *impl.get(); }
891
        friend class accessor::DnnNetAccessor;
892
    protected:
893
        Ptr<Impl> impl;
894
    };
895
896
    /** @brief Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files.
897
    *  @param cfgFile      path to the .cfg file with text description of the network architecture.
898
    *  @param darknetModel path to the .weights file with learned network.
899
    *  @returns Network object that ready to do forward, throw an exception in failure cases.
900
    */
901
    CV_EXPORTS_W Net readNetFromDarknet(CV_WRAP_FILE_PATH const String &cfgFile, CV_WRAP_FILE_PATH const String &darknetModel = String());
902
903
    /** @brief Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files.
904
     *  @param bufferCfg   A buffer contains a content of .cfg file with text description of the network architecture.
905
     *  @param bufferModel A buffer contains a content of .weights file with learned network.
906
     *  @returns Net object.
907
     */
908
    CV_EXPORTS_W Net readNetFromDarknet(const std::vector<uchar>& bufferCfg,
909
                                        const std::vector<uchar>& bufferModel = std::vector<uchar>());
910
911
    /** @brief Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files.
912
     *  @param bufferCfg   A buffer contains a content of .cfg file with text description of the network architecture.
913
     *  @param lenCfg      Number of bytes to read from bufferCfg
914
     *  @param bufferModel A buffer contains a content of .weights file with learned network.
915
     *  @param lenModel    Number of bytes to read from bufferModel
916
     *  @returns Net object.
917
     */
918
    CV_EXPORTS Net readNetFromDarknet(const char *bufferCfg, size_t lenCfg,
919
                                      const char *bufferModel = NULL, size_t lenModel = 0);
920
921
    /** @brief Reads a network model stored in <a href="http://caffe.berkeleyvision.org">Caffe</a> framework's format.
922
      * @param prototxt   path to the .prototxt file with text description of the network architecture.
923
      * @param caffeModel path to the .caffemodel file with learned network.
924
      * @returns Net object.
925
      */
926
    CV_EXPORTS_W Net readNetFromCaffe(CV_WRAP_FILE_PATH const String &prototxt, CV_WRAP_FILE_PATH const String &caffeModel = String());
927
928
    /** @brief Reads a network model stored in Caffe model in memory.
929
      * @param bufferProto buffer containing the content of the .prototxt file
930
      * @param bufferModel buffer containing the content of the .caffemodel file
931
      * @returns Net object.
932
      */
933
    CV_EXPORTS_W Net readNetFromCaffe(const std::vector<uchar>& bufferProto,
934
                                      const std::vector<uchar>& bufferModel = std::vector<uchar>());
935
936
    /** @brief Reads a network model stored in Caffe model in memory.
937
      * @details This is an overloaded member function, provided for convenience.
938
      * It differs from the above function only in what argument(s) it accepts.
939
      * @param bufferProto buffer containing the content of the .prototxt file
940
      * @param lenProto length of bufferProto
941
      * @param bufferModel buffer containing the content of the .caffemodel file
942
      * @param lenModel length of bufferModel
943
      * @returns Net object.
944
      */
945
    CV_EXPORTS Net readNetFromCaffe(const char *bufferProto, size_t lenProto,
946
                                    const char *bufferModel = NULL, size_t lenModel = 0);
947
948
    /** @brief Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format.
949
      * @param model  path to the .pb file with binary protobuf description of the network architecture
950
      * @param config path to the .pbtxt file that contains text graph definition in protobuf format.
951
      *               Resulting Net object is built by text graph using weights from a binary one that
952
      *               let us make it more flexible.
953
      * @returns Net object.
954
      */
955
    CV_EXPORTS_W Net readNetFromTensorflow(CV_WRAP_FILE_PATH const String &model, CV_WRAP_FILE_PATH const String &config = String());
956
957
    /** @brief Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format.
958
      * @param bufferModel buffer containing the content of the pb file
959
      * @param bufferConfig buffer containing the content of the pbtxt file
960
      * @returns Net object.
961
      */
962
    CV_EXPORTS_W Net readNetFromTensorflow(const std::vector<uchar>& bufferModel,
963
                                           const std::vector<uchar>& bufferConfig = std::vector<uchar>());
964
965
    /** @brief Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format.
966
      * @details This is an overloaded member function, provided for convenience.
967
      * It differs from the above function only in what argument(s) it accepts.
968
      * @param bufferModel buffer containing the content of the pb file
969
      * @param lenModel length of bufferModel
970
      * @param bufferConfig buffer containing the content of the pbtxt file
971
      * @param lenConfig length of bufferConfig
972
      */
973
    CV_EXPORTS Net readNetFromTensorflow(const char *bufferModel, size_t lenModel,
974
                                         const char *bufferConfig = NULL, size_t lenConfig = 0);
975
976
    /** @brief Reads a network model stored in <a href="https://www.tensorflow.org/lite">TFLite</a> framework's format.
977
      * @param model  path to the .tflite file with binary flatbuffers description of the network architecture
978
      * @returns Net object.
979
      */
980
    CV_EXPORTS_W Net readNetFromTFLite(CV_WRAP_FILE_PATH const String &model);
981
982
    /** @brief Reads a network model stored in <a href="https://www.tensorflow.org/lite">TFLite</a> framework's format.
983
      * @param bufferModel buffer containing the content of the tflite file
984
      * @returns Net object.
985
      */
986
    CV_EXPORTS_W Net readNetFromTFLite(const std::vector<uchar>& bufferModel);
987
988
    /** @brief Reads a network model stored in <a href="https://www.tensorflow.org/lite">TFLite</a> framework's format.
989
      * @details This is an overloaded member function, provided for convenience.
990
      * It differs from the above function only in what argument(s) it accepts.
991
      * @param bufferModel buffer containing the content of the tflite file
992
      * @param lenModel length of bufferModel
993
      */
994
    CV_EXPORTS Net readNetFromTFLite(const char *bufferModel, size_t lenModel);
995
996
    /**
997
     *  @brief Reads a network model stored in <a href="http://torch.ch">Torch7</a> framework's format.
998
     *  @param model    path to the file, dumped from Torch by using torch.save() function.
999
     *  @param isBinary specifies whether the network was serialized in ascii mode or binary.
1000
     *  @param evaluate specifies testing phase of network. If true, it's similar to evaluate() method in Torch.
1001
     *  @returns Net object.
1002
     *
1003
     *  @note Ascii mode of Torch serializer is more preferable, because binary mode extensively use `long` type of C language,
1004
     *  which has various bit-length on different systems.
1005
     *
1006
     * The loading file must contain serialized <a href="https://github.com/torch/nn/blob/master/doc/module.md">nn.Module</a> object
1007
     * with importing network. Try to eliminate a custom objects from serialazing data to avoid importing errors.
1008
     *
1009
     * List of supported layers (i.e. object instances derived from Torch nn.Module class):
1010
     * - nn.Sequential
1011
     * - nn.Parallel
1012
     * - nn.Concat
1013
     * - nn.Linear
1014
     * - nn.SpatialConvolution
1015
     * - nn.SpatialMaxPooling, nn.SpatialAveragePooling
1016
     * - nn.ReLU, nn.TanH, nn.Sigmoid
1017
     * - nn.Reshape
1018
     * - nn.SoftMax, nn.LogSoftMax
1019
     *
1020
     * Also some equivalents of these classes from cunn, cudnn, and fbcunn may be successfully imported.
1021
     */
1022
     CV_EXPORTS_W Net readNetFromTorch(CV_WRAP_FILE_PATH const String &model, bool isBinary = true, bool evaluate = true);
1023
1024
     /**
1025
      * @brief Read deep learning network represented in one of the supported formats.
1026
      * @param[in] model Binary file contains trained weights. The following file
1027
      *                  extensions are expected for models from different frameworks:
1028
      *                  * `*.caffemodel` (Caffe, http://caffe.berkeleyvision.org/)
1029
      *                  * `*.pb` (TensorFlow, https://www.tensorflow.org/)
1030
      *                  * `*.t7` | `*.net` (Torch, http://torch.ch/)
1031
      *                  * `*.weights` (Darknet, https://pjreddie.com/darknet/)
1032
      *                  * `*.bin` | `*.onnx` (OpenVINO, https://software.intel.com/openvino-toolkit)
1033
      *                  * `*.onnx` (ONNX, https://onnx.ai/)
1034
      * @param[in] config Text file contains network configuration. It could be a
1035
      *                   file with the following extensions:
1036
      *                  * `*.prototxt` (Caffe, http://caffe.berkeleyvision.org/)
1037
      *                  * `*.pbtxt` (TensorFlow, https://www.tensorflow.org/)
1038
      *                  * `*.cfg` (Darknet, https://pjreddie.com/darknet/)
1039
      *                  * `*.xml` (OpenVINO, https://software.intel.com/openvino-toolkit)
1040
      * @param[in] framework Explicit framework name tag to determine a format.
1041
      * @returns Net object.
1042
      *
1043
      * This function automatically detects an origin framework of trained model
1044
      * and calls an appropriate function such @ref readNetFromCaffe, @ref readNetFromTensorflow,
1045
      * @ref readNetFromTorch or @ref readNetFromDarknet. An order of @p model and @p config
1046
      * arguments does not matter.
1047
      */
1048
     CV_EXPORTS_W Net readNet(CV_WRAP_FILE_PATH const String& model, CV_WRAP_FILE_PATH const String& config = "", const String& framework = "");
1049
1050
     /**
1051
      * @brief Read deep learning network represented in one of the supported formats.
1052
      * @details This is an overloaded member function, provided for convenience.
1053
      *          It differs from the above function only in what argument(s) it accepts.
1054
      * @param[in] framework    Name of origin framework.
1055
      * @param[in] bufferModel  A buffer with a content of binary file with weights
1056
      * @param[in] bufferConfig A buffer with a content of text file contains network configuration.
1057
      * @returns Net object.
1058
      */
1059
     CV_EXPORTS_W Net readNet(const String& framework, const std::vector<uchar>& bufferModel,
1060
                              const std::vector<uchar>& bufferConfig = std::vector<uchar>());
1061
1062
    /** @brief Loads blob which was serialized as torch.Tensor object of Torch7 framework.
1063
     *  @warning This function has the same limitations as readNetFromTorch().
1064
     */
1065
    CV_EXPORTS_W Mat readTorchBlob(const String &filename, bool isBinary = true);
1066
1067
    /** @brief Load a network from Intel's Model Optimizer intermediate representation.
1068
     *  @param[in] xml XML configuration file with network's topology.
1069
     *  @param[in] bin Binary file with trained weights.
1070
     *  @returns Net object.
1071
     *  Networks imported from Intel's Model Optimizer are launched in Intel's Inference Engine
1072
     *  backend.
1073
     */
1074
    CV_EXPORTS_W
1075
    Net readNetFromModelOptimizer(CV_WRAP_FILE_PATH const String &xml, CV_WRAP_FILE_PATH const String &bin = "");
1076
1077
    /** @brief Load a network from Intel's Model Optimizer intermediate representation.
1078
     *  @param[in] bufferModelConfig Buffer contains XML configuration with network's topology.
1079
     *  @param[in] bufferWeights Buffer contains binary data with trained weights.
1080
     *  @returns Net object.
1081
     *  Networks imported from Intel's Model Optimizer are launched in Intel's Inference Engine
1082
     *  backend.
1083
     */
1084
    CV_EXPORTS_W
1085
    Net readNetFromModelOptimizer(const std::vector<uchar>& bufferModelConfig, const std::vector<uchar>& bufferWeights);
1086
1087
    /** @brief Load a network from Intel's Model Optimizer intermediate representation.
1088
     *  @param[in] bufferModelConfigPtr Pointer to buffer which contains XML configuration with network's topology.
1089
     *  @param[in] bufferModelConfigSize Binary size of XML configuration data.
1090
     *  @param[in] bufferWeightsPtr Pointer to buffer which contains binary data with trained weights.
1091
     *  @param[in] bufferWeightsSize Binary size of trained weights data.
1092
     *  @returns Net object.
1093
     *  Networks imported from Intel's Model Optimizer are launched in Intel's Inference Engine
1094
     *  backend.
1095
     */
1096
    CV_EXPORTS
1097
    Net readNetFromModelOptimizer(const uchar* bufferModelConfigPtr, size_t bufferModelConfigSize,
1098
                                           const uchar* bufferWeightsPtr, size_t bufferWeightsSize);
1099
1100
    /** @brief Reads a network model <a href="https://onnx.ai/">ONNX</a>.
1101
     *  @param onnxFile path to the .onnx file with text description of the network architecture.
1102
     *  @returns Network object that ready to do forward, throw an exception in failure cases.
1103
     */
1104
    CV_EXPORTS_W Net readNetFromONNX(CV_WRAP_FILE_PATH const String &onnxFile);
1105
1106
    /** @brief Reads a network model from <a href="https://onnx.ai/">ONNX</a>
1107
     *         in-memory buffer.
1108
     *  @param buffer memory address of the first byte of the buffer.
1109
     *  @param sizeBuffer size of the buffer.
1110
     *  @returns Network object that ready to do forward, throw an exception
1111
     *        in failure cases.
1112
     */
1113
    CV_EXPORTS Net readNetFromONNX(const char* buffer, size_t sizeBuffer);
1114
1115
    /** @brief Reads a network model from <a href="https://onnx.ai/">ONNX</a>
1116
     *         in-memory buffer.
1117
     *  @param buffer in-memory buffer that stores the ONNX model bytes.
1118
     *  @returns Network object that ready to do forward, throw an exception
1119
     *        in failure cases.
1120
     */
1121
    CV_EXPORTS_W Net readNetFromONNX(const std::vector<uchar>& buffer);
1122
1123
    /** @brief Creates blob from .pb file.
1124
     *  @param path to the .pb file with input tensor.
1125
     *  @returns Mat.
1126
     */
1127
    CV_EXPORTS_W Mat readTensorFromONNX(CV_WRAP_FILE_PATH const String& path);
1128
1129
    /** @brief Creates 4-dimensional blob from image. Optionally resizes and crops @p image from center,
1130
     *  subtract @p mean values, scales values by @p scalefactor, swap Blue and Red channels.
1131
     *  @param image input image (with 1-, 3- or 4-channels).
1132
     *  @param scalefactor multiplier for @p images values.
1133
     *  @param size spatial size for output image
1134
     *  @param mean scalar with mean values which are subtracted from channels. Values are intended
1135
     *  to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
1136
     *  @param swapRB flag which indicates that swap first and last channels
1137
     *  in 3-channel image is necessary.
1138
     *  @param crop flag which indicates whether image will be cropped after resize or not
1139
     *  @param ddepth Depth of output blob. Choose CV_32F or CV_8U.
1140
     *  @details if @p crop is true, input image is resized so one side after resize is equal to corresponding
1141
     *  dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
1142
     *  If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
1143
     *  @returns 4-dimensional Mat with NCHW dimensions order.
1144
     *
1145
     * @note
1146
     * The order and usage of `scalefactor` and `mean` are (input - mean) * scalefactor.
1147
     */
1148
    CV_EXPORTS_W Mat blobFromImage(InputArray image, double scalefactor=1.0, const Size& size = Size(),
1149
                                   const Scalar& mean = Scalar(), bool swapRB=false, bool crop=false,
1150
                                   int ddepth=CV_32F);
1151
1152
    /** @brief Creates 4-dimensional blob from image.
1153
     *  @details This is an overloaded member function, provided for convenience.
1154
     *           It differs from the above function only in what argument(s) it accepts.
1155
     */
1156
    CV_EXPORTS void blobFromImage(InputArray image, OutputArray blob, double scalefactor=1.0,
1157
                                  const Size& size = Size(), const Scalar& mean = Scalar(),
1158
                                  bool swapRB=false, bool crop=false, int ddepth=CV_32F);
1159
1160
1161
    /** @brief Creates 4-dimensional blob from series of images. Optionally resizes and
1162
     *  crops @p images from center, subtract @p mean values, scales values by @p scalefactor,
1163
     *  swap Blue and Red channels.
1164
     *  @param images input images (all with 1-, 3- or 4-channels).
1165
     *  @param size spatial size for output image
1166
     *  @param mean scalar with mean values which are subtracted from channels. Values are intended
1167
     *  to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
1168
     *  @param scalefactor multiplier for @p images values.
1169
     *  @param swapRB flag which indicates that swap first and last channels
1170
     *  in 3-channel image is necessary.
1171
     *  @param crop flag which indicates whether image will be cropped after resize or not
1172
     *  @param ddepth Depth of output blob. Choose CV_32F or CV_8U.
1173
     *  @details if @p crop is true, input image is resized so one side after resize is equal to corresponding
1174
     *  dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
1175
     *  If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
1176
     *  @returns 4-dimensional Mat with NCHW dimensions order.
1177
     *
1178
     * @note
1179
     * The order and usage of `scalefactor` and `mean` are (input - mean) * scalefactor.
1180
     */
1181
    CV_EXPORTS_W Mat blobFromImages(InputArrayOfArrays images, double scalefactor=1.0,
1182
                                    Size size = Size(), const Scalar& mean = Scalar(), bool swapRB=false, bool crop=false,
1183
                                    int ddepth=CV_32F);
1184
1185
    /** @brief Creates 4-dimensional blob from series of images.
1186
     *  @details This is an overloaded member function, provided for convenience.
1187
     *           It differs from the above function only in what argument(s) it accepts.
1188
     */
1189
    CV_EXPORTS void blobFromImages(InputArrayOfArrays images, OutputArray blob,
1190
                                   double scalefactor=1.0, Size size = Size(),
1191
                                   const Scalar& mean = Scalar(), bool swapRB=false, bool crop=false,
1192
                                   int ddepth=CV_32F);
1193
1194
    /**
1195
     * @brief Enum of image processing mode.
1196
     * To facilitate the specialization pre-processing requirements of the dnn model.
1197
     * For example, the `letter box` often used in the Yolo series of models.
1198
     * @see Image2BlobParams
1199
     */
1200
    enum ImagePaddingMode
1201
    {
1202
        DNN_PMODE_NULL = 0,        // !< Default. Resize to required input size without extra processing.
1203
        DNN_PMODE_CROP_CENTER = 1, // !< Image will be cropped after resize.
1204
        DNN_PMODE_LETTERBOX = 2,   // !< Resize image to the desired size while preserving the aspect ratio of original image.
1205
    };
1206
1207
    /** @brief Processing params of image to blob.
1208
     *
1209
     * It includes all possible image processing operations and corresponding parameters.
1210
     *
1211
     * @see blobFromImageWithParams
1212
     *
1213
     * @note
1214
     * The order and usage of `scalefactor` and `mean` are (input - mean) * scalefactor.
1215
     * The order and usage of `scalefactor`, `size`, `mean`, `swapRB`, and `ddepth` are consistent
1216
     * with the function of @ref blobFromImage.
1217
    */
1218
    struct CV_EXPORTS_W_SIMPLE Image2BlobParams
1219
    {
1220
        CV_WRAP Image2BlobParams();
1221
        CV_WRAP Image2BlobParams(const Scalar& scalefactor, const Size& size = Size(), const Scalar& mean = Scalar(),
1222
                            bool swapRB = false, int ddepth = CV_32F, dnn::DataLayout datalayout = DNN_LAYOUT_NCHW,
1223
                            ImagePaddingMode mode = dnn::DNN_PMODE_NULL, Scalar borderValue = 0.0);
1224
1225
        CV_PROP_RW Scalar scalefactor; //!< scalefactor multiplier for input image values.
1226
        CV_PROP_RW Size size;    //!< Spatial size for output image.
1227
        CV_PROP_RW Scalar mean;  //!< Scalar with mean values which are subtracted from channels.
1228
        CV_PROP_RW bool swapRB;  //!< Flag which indicates that swap first and last channels
1229
        CV_PROP_RW int ddepth;   //!< Depth of output blob. Choose CV_32F or CV_8U.
1230
        CV_PROP_RW dnn::DataLayout datalayout; //!< Order of output dimensions. Choose DNN_LAYOUT_NCHW or DNN_LAYOUT_NHWC.
1231
        CV_PROP_RW dnn::ImagePaddingMode paddingmode;   //!< Image padding mode. @see ImagePaddingMode.
1232
        CV_PROP_RW Scalar borderValue;   //!< Value used in padding mode for padding.
1233
1234
        /** @brief Get rectangle coordinates in original image system from rectangle in blob coordinates.
1235
         *  @param rBlob rect in blob coordinates.
1236
         *  @param size original input image size.
1237
         *  @returns rectangle in original image coordinates.
1238
         */
1239
        CV_WRAP Rect blobRectToImageRect(const Rect &rBlob, const Size &size);
1240
1241
        /** @brief Get rectangle coordinates in original image system from rectangle in blob coordinates.
1242
         *  @param rBlob rect in blob coordinates.
1243
         *  @param rImg result rect in image coordinates.
1244
         *  @param size original input image size.
1245
         */
1246
        CV_WRAP void blobRectsToImageRects(const std::vector<Rect> &rBlob, CV_OUT std::vector<Rect>& rImg, const Size& size);
1247
    };
1248
1249
    /** @brief Creates 4-dimensional blob from image with given params.
1250
     *
1251
     *  @details This function is an extension of @ref blobFromImage to meet more image preprocess needs.
1252
     *  Given input image and preprocessing parameters, and function outputs the blob.
1253
     *
1254
     *  @param image input image (all with 1-, 3- or 4-channels).
1255
     *  @param param struct of Image2BlobParams, contains all parameters needed by processing of image to blob.
1256
     *  @return 4-dimensional Mat.
1257
     */
1258
    CV_EXPORTS_W Mat blobFromImageWithParams(InputArray image, const Image2BlobParams& param = Image2BlobParams());
1259
1260
    /** @overload */
1261
    CV_EXPORTS_W void blobFromImageWithParams(InputArray image, OutputArray blob, const Image2BlobParams& param = Image2BlobParams());
1262
1263
    /** @brief Creates 4-dimensional blob from series of images with given params.
1264
     *
1265
     *  @details This function is an extension of @ref blobFromImages to meet more image preprocess needs.
1266
     *  Given input image and preprocessing parameters, and function outputs the blob.
1267
     *
1268
     *  @param images input image (all with 1-, 3- or 4-channels).
1269
     *  @param param struct of Image2BlobParams, contains all parameters needed by processing of image to blob.
1270
     *  @returns 4-dimensional Mat.
1271
     */
1272
    CV_EXPORTS_W Mat blobFromImagesWithParams(InputArrayOfArrays images, const Image2BlobParams& param = Image2BlobParams());
1273
1274
    /** @overload */
1275
    CV_EXPORTS_W void blobFromImagesWithParams(InputArrayOfArrays images, OutputArray blob, const Image2BlobParams& param = Image2BlobParams());
1276
1277
    /** @brief Parse a 4D blob and output the images it contains as 2D arrays through a simpler data structure
1278
     *  (std::vector<cv::Mat>).
1279
     *  @param[in] blob_ 4 dimensional array (images, channels, height, width) in floating point precision (CV_32F) from
1280
     *  which you would like to extract the images.
1281
     *  @param[out] images_ array of 2D Mat containing the images extracted from the blob in floating point precision
1282
     *  (CV_32F). They are non normalized neither mean added. The number of returned images equals the first dimension
1283
     *  of the blob (batch size). Every image has a number of channels equals to the second dimension of the blob (depth).
1284
     */
1285
    CV_EXPORTS_W void imagesFromBlob(const cv::Mat& blob_, OutputArrayOfArrays images_);
1286
1287
    /** @brief Convert all weights of Caffe network to half precision floating point.
1288
     * @param src Path to origin model from Caffe framework contains single
1289
     *            precision floating point weights (usually has `.caffemodel` extension).
1290
     * @param dst Path to destination model with updated weights.
1291
     * @param layersTypes Set of layers types which parameters will be converted.
1292
     *                    By default, converts only Convolutional and Fully-Connected layers'
1293
     *                    weights.
1294
     *
1295
     * @note Shrinked model has no origin float32 weights so it can't be used
1296
     *       in origin Caffe framework anymore. However the structure of data
1297
     *       is taken from NVidia's Caffe fork: https://github.com/NVIDIA/caffe.
1298
     *       So the resulting model may be used there.
1299
     */
1300
    CV_EXPORTS_W void shrinkCaffeModel(CV_WRAP_FILE_PATH const String& src, CV_WRAP_FILE_PATH const String& dst,
1301
                                       const std::vector<String>& layersTypes = std::vector<String>());
1302
1303
    /** @brief Create a text representation for a binary network stored in protocol buffer format.
1304
     *  @param[in] model  A path to binary network.
1305
     *  @param[in] output A path to output text file to be created.
1306
     *
1307
     *  @note To reduce output file size, trained weights are not included.
1308
     */
1309
    CV_EXPORTS_W void writeTextGraph(CV_WRAP_FILE_PATH const String& model, CV_WRAP_FILE_PATH const String& output);
1310
1311
    /** @brief Performs non maximum suppression given boxes and corresponding scores.
1312
1313
     * @param bboxes a set of bounding boxes to apply NMS.
1314
     * @param scores a set of corresponding confidences.
1315
     * @param score_threshold a threshold used to filter boxes by score.
1316
     * @param nms_threshold a threshold used in non maximum suppression.
1317
     * @param indices the kept indices of bboxes after NMS.
1318
     * @param eta a coefficient in adaptive threshold formula: \f$nms\_threshold_{i+1}=eta\cdot nms\_threshold_i\f$.
1319
     * @param top_k if `>0`, keep at most @p top_k picked indices.
1320
     */
1321
    CV_EXPORTS void NMSBoxes(const std::vector<Rect>& bboxes, const std::vector<float>& scores,
1322
                               const float score_threshold, const float nms_threshold,
1323
                               CV_OUT std::vector<int>& indices,
1324
                               const float eta = 1.f, const int top_k = 0);
1325
1326
    CV_EXPORTS_W void NMSBoxes(const std::vector<Rect2d>& bboxes, const std::vector<float>& scores,
1327
                               const float score_threshold, const float nms_threshold,
1328
                               CV_OUT std::vector<int>& indices,
1329
                               const float eta = 1.f, const int top_k = 0);
1330
1331
    CV_EXPORTS_AS(NMSBoxesRotated) void NMSBoxes(const std::vector<RotatedRect>& bboxes, const std::vector<float>& scores,
1332
                             const float score_threshold, const float nms_threshold,
1333
                             CV_OUT std::vector<int>& indices,
1334
                             const float eta = 1.f, const int top_k = 0);
1335
1336
    /** @brief Performs batched non maximum suppression on given boxes and corresponding scores across different classes.
1337
1338
     * @param bboxes a set of bounding boxes to apply NMS.
1339
     * @param scores a set of corresponding confidences.
1340
     * @param class_ids a set of corresponding class ids. Ids are integer and usually start from 0.
1341
     * @param score_threshold a threshold used to filter boxes by score.
1342
     * @param nms_threshold a threshold used in non maximum suppression.
1343
     * @param indices the kept indices of bboxes after NMS.
1344
     * @param eta a coefficient in adaptive threshold formula: \f$nms\_threshold_{i+1}=eta\cdot nms\_threshold_i\f$.
1345
     * @param top_k if `>0`, keep at most @p top_k picked indices.
1346
     */
1347
    CV_EXPORTS void NMSBoxesBatched(const std::vector<Rect>& bboxes, const std::vector<float>& scores, const std::vector<int>& class_ids,
1348
                                    const float score_threshold, const float nms_threshold,
1349
                                    CV_OUT std::vector<int>& indices,
1350
                                    const float eta = 1.f, const int top_k = 0);
1351
1352
    CV_EXPORTS_W void NMSBoxesBatched(const std::vector<Rect2d>& bboxes, const std::vector<float>& scores, const std::vector<int>& class_ids,
1353
                                      const float score_threshold, const float nms_threshold,
1354
                                      CV_OUT std::vector<int>& indices,
1355
                                      const float eta = 1.f, const int top_k = 0);
1356
1357
    /**
1358
     * @brief Enum of Soft NMS methods.
1359
     * @see softNMSBoxes
1360
     */
1361
    enum class SoftNMSMethod
1362
    {
1363
        SOFTNMS_LINEAR = 1,
1364
        SOFTNMS_GAUSSIAN = 2
1365
    };
1366
1367
    /** @brief Performs soft non maximum suppression given boxes and corresponding scores.
1368
     * Reference: https://arxiv.org/abs/1704.04503
1369
     * @param bboxes a set of bounding boxes to apply Soft NMS.
1370
     * @param scores a set of corresponding confidences.
1371
     * @param updated_scores a set of corresponding updated confidences.
1372
     * @param score_threshold a threshold used to filter boxes by score.
1373
     * @param nms_threshold a threshold used in non maximum suppression.
1374
     * @param indices the kept indices of bboxes after NMS.
1375
     * @param top_k keep at most @p top_k picked indices.
1376
     * @param sigma parameter of Gaussian weighting.
1377
     * @param method Gaussian or linear.
1378
     * @see SoftNMSMethod
1379
     */
1380
    CV_EXPORTS_W void softNMSBoxes(const std::vector<Rect>& bboxes,
1381
                                   const std::vector<float>& scores,
1382
                                   CV_OUT std::vector<float>& updated_scores,
1383
                                   const float score_threshold,
1384
                                   const float nms_threshold,
1385
                                   CV_OUT std::vector<int>& indices,
1386
                                   size_t top_k = 0,
1387
                                   const float sigma = 0.5,
1388
                                   SoftNMSMethod method = SoftNMSMethod::SOFTNMS_GAUSSIAN);
1389
1390
1391
     /** @brief This class is presented high-level API for neural networks.
1392
      *
1393
      * Model allows to set params for preprocessing input image.
1394
      * Model creates net from file with trained weights and config,
1395
      * sets preprocessing input and runs forward pass.
1396
      */
1397
     class CV_EXPORTS_W_SIMPLE Model
1398
     {
1399
     public:
1400
         CV_DEPRECATED_EXTERNAL  // avoid using in C++ code, will be moved to "protected" (need to fix bindings first)
1401
         Model();
1402
1403
         Model(const Model&) = default;
1404
         Model(Model&&) = default;
1405
         Model& operator=(const Model&) = default;
1406
         Model& operator=(Model&&) = default;
1407
1408
         /**
1409
          * @brief Create model from deep learning network represented in one of the supported formats.
1410
          * An order of @p model and @p config arguments does not matter.
1411
          * @param[in] model Binary file contains trained weights.
1412
          * @param[in] config Text file contains network configuration.
1413
          */
1414
         CV_WRAP Model(CV_WRAP_FILE_PATH const String& model, CV_WRAP_FILE_PATH const String& config = "");
1415
1416
         /**
1417
          * @brief Create model from deep learning network.
1418
          * @param[in] network Net object.
1419
          */
1420
         CV_WRAP Model(const Net& network);
1421
1422
         /** @brief Set input size for frame.
1423
          *  @param[in] size New input size.
1424
          *  @note If shape of the new blob less than 0, then frame size not change.
1425
         */
1426
         CV_WRAP Model& setInputSize(const Size& size);
1427
1428
         /** @overload
1429
         *  @param[in] width New input width.
1430
         *  @param[in] height New input height.
1431
         */
1432
         CV_WRAP inline
1433
0
         Model& setInputSize(int width, int height) { return setInputSize(Size(width, height)); }
1434
1435
         /** @brief Set mean value for frame.
1436
          *  @param[in] mean Scalar with mean values which are subtracted from channels.
1437
         */
1438
         CV_WRAP Model& setInputMean(const Scalar& mean);
1439
1440
         /** @brief Set scalefactor value for frame.
1441
          *  @param[in] scale Multiplier for frame values.
1442
         */
1443
         CV_WRAP Model& setInputScale(const Scalar& scale);
1444
1445
         /** @brief Set flag crop for frame.
1446
          *  @param[in] crop Flag which indicates whether image will be cropped after resize or not.
1447
         */
1448
         CV_WRAP Model& setInputCrop(bool crop);
1449
1450
         /** @brief Set flag swapRB for frame.
1451
          *  @param[in] swapRB Flag which indicates that swap first and last channels.
1452
         */
1453
         CV_WRAP Model& setInputSwapRB(bool swapRB);
1454
1455
         /** @brief Set output names for frame.
1456
          *  @param[in] outNames Names for output layers.
1457
         */
1458
         CV_WRAP Model& setOutputNames(const std::vector<String>& outNames);
1459
1460
         /** @brief Set preprocessing parameters for frame.
1461
         *  @param[in] size New input size.
1462
         *  @param[in] mean Scalar with mean values which are subtracted from channels.
1463
         *  @param[in] scale Multiplier for frame values.
1464
         *  @param[in] swapRB Flag which indicates that swap first and last channels.
1465
         *  @param[in] crop Flag which indicates whether image will be cropped after resize or not.
1466
         *  blob(n, c, y, x) = scale * resize( frame(y, x, c) ) - mean(c) )
1467
         */
1468
         CV_WRAP void setInputParams(double scale = 1.0, const Size& size = Size(),
1469
                                     const Scalar& mean = Scalar(), bool swapRB = false, bool crop = false);
1470
1471
         /** @brief Given the @p input frame, create input blob, run net and return the output @p blobs.
1472
          *  @param[in]  frame  The input image.
1473
          *  @param[out] outs Allocated output blobs, which will store results of the computation.
1474
          */
1475
         CV_WRAP void predict(InputArray frame, OutputArrayOfArrays outs) const;
1476
1477
1478
         // ============================== Net proxy methods ==============================
1479
         // Never expose methods with network implementation details, like:
1480
         // - addLayer, addLayerToPrev, connect, setInputsNames, setInputShape, setParam, getParam
1481
         // - getLayer*, getUnconnectedOutLayers, getUnconnectedOutLayersNames, getLayersShapes
1482
         // - forward* methods, setInput
1483
1484
         /// @sa Net::setPreferableBackend
1485
         CV_WRAP Model& setPreferableBackend(dnn::Backend backendId);
1486
         /// @sa Net::setPreferableTarget
1487
         CV_WRAP Model& setPreferableTarget(dnn::Target targetId);
1488
1489
         /// @sa Net::enableWinograd
1490
         CV_WRAP Model& enableWinograd(bool useWinograd);
1491
1492
         CV_DEPRECATED_EXTERNAL
1493
0
         operator Net&() const { return getNetwork_(); }
1494
1495
     //protected: - internal/tests usage only
1496
         Net& getNetwork_() const;
1497
0
         inline Net& getNetwork_() { return const_cast<const Model*>(this)->getNetwork_(); }
1498
1499
         struct Impl;
1500
0
         inline Impl* getImpl() const { return impl.get(); }
1501
0
         inline Impl& getImplRef() const { CV_DbgAssert(impl); return *impl.get(); }
1502
     protected:
1503
         Ptr<Impl> impl;
1504
     };
1505
1506
     /** @brief This class represents high-level API for classification models.
1507
      *
1508
      * ClassificationModel allows to set params for preprocessing input image.
1509
      * ClassificationModel creates net from file with trained weights and config,
1510
      * sets preprocessing input, runs forward pass and return top-1 prediction.
1511
      */
1512
     class CV_EXPORTS_W_SIMPLE ClassificationModel : public Model
1513
     {
1514
     public:
1515
         CV_DEPRECATED_EXTERNAL  // avoid using in C++ code, will be moved to "protected" (need to fix bindings first)
1516
         ClassificationModel();
1517
1518
         /**
1519
          * @brief Create classification model from network represented in one of the supported formats.
1520
          * An order of @p model and @p config arguments does not matter.
1521
          * @param[in] model Binary file contains trained weights.
1522
          * @param[in] config Text file contains network configuration.
1523
          */
1524
          CV_WRAP ClassificationModel(CV_WRAP_FILE_PATH const String& model, CV_WRAP_FILE_PATH const String& config = "");
1525
1526
         /**
1527
          * @brief Create model from deep learning network.
1528
          * @param[in] network Net object.
1529
          */
1530
         CV_WRAP ClassificationModel(const Net& network);
1531
1532
         /**
1533
          * @brief Set enable/disable softmax post processing option.
1534
          *
1535
          * If this option is true, softmax is applied after forward inference within the classify() function
1536
          * to convert the confidences range to [0.0-1.0].
1537
          * This function allows you to toggle this behavior.
1538
          * Please turn true when not contain softmax layer in model.
1539
          * @param[in] enable Set enable softmax post processing within the classify() function.
1540
          */
1541
         CV_WRAP ClassificationModel& setEnableSoftmaxPostProcessing(bool enable);
1542
1543
         /**
1544
          * @brief Get enable/disable softmax post processing option.
1545
          *
1546
          * This option defaults to false, softmax post processing is not applied within the classify() function.
1547
          */
1548
         CV_WRAP bool getEnableSoftmaxPostProcessing() const;
1549
1550
         /** @brief Given the @p input frame, create input blob, run net and return top-1 prediction.
1551
          *  @param[in]  frame  The input image.
1552
          */
1553
         std::pair<int, float> classify(InputArray frame);
1554
1555
         /** @overload */
1556
         CV_WRAP void classify(InputArray frame, CV_OUT int& classId, CV_OUT float& conf);
1557
     };
1558
1559
     /** @brief This class represents high-level API for keypoints models
1560
      *
1561
      * KeypointsModel allows to set params for preprocessing input image.
1562
      * KeypointsModel creates net from file with trained weights and config,
1563
      * sets preprocessing input, runs forward pass and returns the x and y coordinates of each detected keypoint
1564
      */
1565
     class CV_EXPORTS_W_SIMPLE KeypointsModel: public Model
1566
     {
1567
     public:
1568
         /**
1569
          * @brief Create keypoints model from network represented in one of the supported formats.
1570
          * An order of @p model and @p config arguments does not matter.
1571
          * @param[in] model Binary file contains trained weights.
1572
          * @param[in] config Text file contains network configuration.
1573
          */
1574
          CV_WRAP KeypointsModel(CV_WRAP_FILE_PATH const String& model, CV_WRAP_FILE_PATH const String& config = "");
1575
1576
         /**
1577
          * @brief Create model from deep learning network.
1578
          * @param[in] network Net object.
1579
          */
1580
         CV_WRAP KeypointsModel(const Net& network);
1581
1582
         /** @brief Given the @p input frame, create input blob, run net
1583
          *  @param[in]  frame  The input image.
1584
          *  @param thresh minimum confidence threshold to select a keypoint
1585
          *  @returns a vector holding the x and y coordinates of each detected keypoint
1586
          *
1587
          */
1588
         CV_WRAP std::vector<Point2f> estimate(InputArray frame, float thresh=0.5);
1589
     };
1590
1591
     /** @brief This class represents high-level API for segmentation  models
1592
      *
1593
      * SegmentationModel allows to set params for preprocessing input image.
1594
      * SegmentationModel creates net from file with trained weights and config,
1595
      * sets preprocessing input, runs forward pass and returns the class prediction for each pixel.
1596
      */
1597
     class CV_EXPORTS_W_SIMPLE SegmentationModel: public Model
1598
     {
1599
     public:
1600
         /**
1601
          * @brief Create segmentation model from network represented in one of the supported formats.
1602
          * An order of @p model and @p config arguments does not matter.
1603
          * @param[in] model Binary file contains trained weights.
1604
          * @param[in] config Text file contains network configuration.
1605
          */
1606
          CV_WRAP SegmentationModel(CV_WRAP_FILE_PATH const String& model, CV_WRAP_FILE_PATH const String& config = "");
1607
1608
         /**
1609
          * @brief Create model from deep learning network.
1610
          * @param[in] network Net object.
1611
          */
1612
         CV_WRAP SegmentationModel(const Net& network);
1613
1614
         /** @brief Given the @p input frame, create input blob, run net
1615
          *  @param[in]  frame  The input image.
1616
          *  @param[out] mask Allocated class prediction for each pixel
1617
          */
1618
         CV_WRAP void segment(InputArray frame, OutputArray mask);
1619
     };
1620
1621
     /** @brief This class represents high-level API for object detection networks.
1622
      *
1623
      * DetectionModel allows to set params for preprocessing input image.
1624
      * DetectionModel creates net from file with trained weights and config,
1625
      * sets preprocessing input, runs forward pass and return result detections.
1626
      * For DetectionModel SSD, Faster R-CNN, YOLO topologies are supported.
1627
      */
1628
     class CV_EXPORTS_W_SIMPLE DetectionModel : public Model
1629
     {
1630
     public:
1631
         /**
1632
          * @brief Create detection model from network represented in one of the supported formats.
1633
          * An order of @p model and @p config arguments does not matter.
1634
          * @param[in] model Binary file contains trained weights.
1635
          * @param[in] config Text file contains network configuration.
1636
          */
1637
         CV_WRAP DetectionModel(CV_WRAP_FILE_PATH const String& model, CV_WRAP_FILE_PATH const String& config = "");
1638
1639
         /**
1640
          * @brief Create model from deep learning network.
1641
          * @param[in] network Net object.
1642
          */
1643
         CV_WRAP DetectionModel(const Net& network);
1644
1645
         CV_DEPRECATED_EXTERNAL  // avoid using in C++ code (need to fix bindings first)
1646
         DetectionModel();
1647
1648
         /**
1649
          * @brief nmsAcrossClasses defaults to false,
1650
          * such that when non max suppression is used during the detect() function, it will do so per-class.
1651
          * This function allows you to toggle this behaviour.
1652
          * @param[in] value The new value for nmsAcrossClasses
1653
          */
1654
         CV_WRAP DetectionModel& setNmsAcrossClasses(bool value);
1655
1656
         /**
1657
          * @brief Getter for nmsAcrossClasses. This variable defaults to false,
1658
          * such that when non max suppression is used during the detect() function, it will do so only per-class
1659
          */
1660
         CV_WRAP bool getNmsAcrossClasses();
1661
1662
         /** @brief Given the @p input frame, create input blob, run net and return result detections.
1663
          *  @param[in]  frame  The input image.
1664
          *  @param[out] classIds Class indexes in result detection.
1665
          *  @param[out] confidences A set of corresponding confidences.
1666
          *  @param[out] boxes A set of bounding boxes.
1667
          *  @param[in] confThreshold A threshold used to filter boxes by confidences.
1668
          *  @param[in] nmsThreshold A threshold used in non maximum suppression.
1669
          */
1670
         CV_WRAP void detect(InputArray frame, CV_OUT std::vector<int>& classIds,
1671
                             CV_OUT std::vector<float>& confidences, CV_OUT std::vector<Rect>& boxes,
1672
                             float confThreshold = 0.5f, float nmsThreshold = 0.0f);
1673
     };
1674
1675
1676
/** @brief This class represents high-level API for text recognition networks.
1677
 *
1678
 * TextRecognitionModel allows to set params for preprocessing input image.
1679
 * TextRecognitionModel creates net from file with trained weights and config,
1680
 * sets preprocessing input, runs forward pass and return recognition result.
1681
 * For TextRecognitionModel, CRNN-CTC is supported.
1682
 */
1683
class CV_EXPORTS_W_SIMPLE TextRecognitionModel : public Model
1684
{
1685
public:
1686
    CV_DEPRECATED_EXTERNAL  // avoid using in C++ code, will be moved to "protected" (need to fix bindings first)
1687
    TextRecognitionModel();
1688
1689
    /**
1690
     * @brief Create Text Recognition model from deep learning network
1691
     * Call setDecodeType() and setVocabulary() after constructor to initialize the decoding method
1692
     * @param[in] network Net object
1693
     */
1694
    CV_WRAP TextRecognitionModel(const Net& network);
1695
1696
    /**
1697
     * @brief Create text recognition model from network represented in one of the supported formats
1698
     * Call setDecodeType() and setVocabulary() after constructor to initialize the decoding method
1699
     * @param[in] model Binary file contains trained weights
1700
     * @param[in] config Text file contains network configuration
1701
     */
1702
    CV_WRAP inline
1703
    TextRecognitionModel(CV_WRAP_FILE_PATH const std::string& model, CV_WRAP_FILE_PATH const std::string& config = "")
1704
0
        : TextRecognitionModel(readNet(model, config)) { /* nothing */ }
1705
1706
    /**
1707
     * @brief Set the decoding method of translating the network output into string
1708
     * @param[in] decodeType The decoding method of translating the network output into string, currently supported type:
1709
     *    - `"CTC-greedy"` greedy decoding for the output of CTC-based methods
1710
     *    - `"CTC-prefix-beam-search"` Prefix beam search decoding for the output of CTC-based methods
1711
     */
1712
    CV_WRAP
1713
    TextRecognitionModel& setDecodeType(const std::string& decodeType);
1714
1715
    /**
1716
     * @brief Get the decoding method
1717
     * @return the decoding method
1718
     */
1719
    CV_WRAP
1720
    const std::string& getDecodeType() const;
1721
1722
    /**
1723
     * @brief Set the decoding method options for `"CTC-prefix-beam-search"` decode usage
1724
     * @param[in] beamSize Beam size for search
1725
     * @param[in] vocPruneSize Parameter to optimize big vocabulary search,
1726
     * only take top @p vocPruneSize tokens in each search step, @p vocPruneSize <= 0 stands for disable this prune.
1727
     */
1728
    CV_WRAP
1729
    TextRecognitionModel& setDecodeOptsCTCPrefixBeamSearch(int beamSize, int vocPruneSize = 0);
1730
1731
    /**
1732
     * @brief Set the vocabulary for recognition.
1733
     * @param[in] vocabulary the associated vocabulary of the network.
1734
     */
1735
    CV_WRAP
1736
    TextRecognitionModel& setVocabulary(const std::vector<std::string>& vocabulary);
1737
1738
    /**
1739
     * @brief Get the vocabulary for recognition.
1740
     * @return vocabulary the associated vocabulary
1741
     */
1742
    CV_WRAP
1743
    const std::vector<std::string>& getVocabulary() const;
1744
1745
    /**
1746
     * @brief Given the @p input frame, create input blob, run net and return recognition result
1747
     * @param[in] frame The input image
1748
     * @return The text recognition result
1749
     */
1750
    CV_WRAP
1751
    std::string recognize(InputArray frame) const;
1752
1753
    /**
1754
     * @brief Given the @p input frame, create input blob, run net and return recognition result
1755
     * @param[in] frame The input image
1756
     * @param[in] roiRects List of text detection regions of interest (cv::Rect, CV_32SC4). ROIs is be cropped as the network inputs
1757
     * @param[out] results A set of text recognition results.
1758
     */
1759
    CV_WRAP
1760
    void recognize(InputArray frame, InputArrayOfArrays roiRects, CV_OUT std::vector<std::string>& results) const;
1761
};
1762
1763
1764
/** @brief Base class for text detection networks
1765
 */
1766
class CV_EXPORTS_W_SIMPLE TextDetectionModel : public Model
1767
{
1768
protected:
1769
    CV_DEPRECATED_EXTERNAL  // avoid using in C++ code, will be moved to "protected" (need to fix bindings first)
1770
    TextDetectionModel();
1771
1772
public:
1773
1774
    /** @brief Performs detection
1775
     *
1776
     * Given the input @p frame, prepare network input, run network inference, post-process network output and return result detections.
1777
     *
1778
     * Each result is quadrangle's 4 points in this order:
1779
     * - bottom-left
1780
     * - top-left
1781
     * - top-right
1782
     * - bottom-right
1783
     *
1784
     * Use cv::getPerspectiveTransform function to retrieve image region without perspective transformations.
1785
     *
1786
     * @note If DL model doesn't support that kind of output then result may be derived from detectTextRectangles() output.
1787
     *
1788
     * @param[in] frame The input image
1789
     * @param[out] detections array with detections' quadrangles (4 points per result)
1790
     * @param[out] confidences array with detection confidences
1791
     */
1792
    CV_WRAP
1793
    void detect(
1794
            InputArray frame,
1795
            CV_OUT std::vector< std::vector<Point> >& detections,
1796
            CV_OUT std::vector<float>& confidences
1797
    ) const;
1798
1799
    /** @overload */
1800
    CV_WRAP
1801
    void detect(
1802
            InputArray frame,
1803
            CV_OUT std::vector< std::vector<Point> >& detections
1804
    ) const;
1805
1806
    /** @brief Performs detection
1807
     *
1808
     * Given the input @p frame, prepare network input, run network inference, post-process network output and return result detections.
1809
     *
1810
     * Each result is rotated rectangle.
1811
     *
1812
     * @note Result may be inaccurate in case of strong perspective transformations.
1813
     *
1814
     * @param[in] frame the input image
1815
     * @param[out] detections array with detections' RotationRect results
1816
     * @param[out] confidences array with detection confidences
1817
     */
1818
    CV_WRAP
1819
    void detectTextRectangles(
1820
            InputArray frame,
1821
            CV_OUT std::vector<cv::RotatedRect>& detections,
1822
            CV_OUT std::vector<float>& confidences
1823
    ) const;
1824
1825
    /** @overload */
1826
    CV_WRAP
1827
    void detectTextRectangles(
1828
            InputArray frame,
1829
            CV_OUT std::vector<cv::RotatedRect>& detections
1830
    ) const;
1831
};
1832
1833
/** @brief This class represents high-level API for text detection DL networks compatible with EAST model.
1834
 *
1835
 * Configurable parameters:
1836
 * - (float) confThreshold - used to filter boxes by confidences, default: 0.5f
1837
 * - (float) nmsThreshold - used in non maximum suppression, default: 0.0f
1838
 */
1839
class CV_EXPORTS_W_SIMPLE TextDetectionModel_EAST : public TextDetectionModel
1840
{
1841
public:
1842
    CV_DEPRECATED_EXTERNAL  // avoid using in C++ code, will be moved to "protected" (need to fix bindings first)
1843
    TextDetectionModel_EAST();
1844
1845
    /**
1846
     * @brief Create text detection algorithm from deep learning network
1847
     * @param[in] network Net object
1848
     */
1849
    CV_WRAP TextDetectionModel_EAST(const Net& network);
1850
1851
    /**
1852
     * @brief Create text detection model from network represented in one of the supported formats.
1853
     * An order of @p model and @p config arguments does not matter.
1854
     * @param[in] model Binary file contains trained weights.
1855
     * @param[in] config Text file contains network configuration.
1856
     */
1857
    CV_WRAP inline
1858
    TextDetectionModel_EAST(CV_WRAP_FILE_PATH const std::string& model, CV_WRAP_FILE_PATH const std::string& config = "")
1859
0
        : TextDetectionModel_EAST(readNet(model, config)) { /* nothing */ }
1860
1861
    /**
1862
     * @brief Set the detection confidence threshold
1863
     * @param[in] confThreshold A threshold used to filter boxes by confidences
1864
     */
1865
    CV_WRAP
1866
    TextDetectionModel_EAST& setConfidenceThreshold(float confThreshold);
1867
1868
    /**
1869
     * @brief Get the detection confidence threshold
1870
     */
1871
    CV_WRAP
1872
    float getConfidenceThreshold() const;
1873
1874
    /**
1875
     * @brief Set the detection NMS filter threshold
1876
     * @param[in] nmsThreshold A threshold used in non maximum suppression
1877
     */
1878
    CV_WRAP
1879
    TextDetectionModel_EAST& setNMSThreshold(float nmsThreshold);
1880
1881
    /**
1882
     * @brief Get the detection confidence threshold
1883
     */
1884
    CV_WRAP
1885
    float getNMSThreshold() const;
1886
};
1887
1888
/** @brief This class represents high-level API for text detection DL networks compatible with DB model.
1889
 *
1890
 * Related publications: @cite liao2020real
1891
 * Paper: https://arxiv.org/abs/1911.08947
1892
 * For more information about the hyper-parameters setting, please refer to https://github.com/MhLiao/DB
1893
 *
1894
 * Configurable parameters:
1895
 * - (float) binaryThreshold - The threshold of the binary map. It is usually set to 0.3.
1896
 * - (float) polygonThreshold - The threshold of text polygons. It is usually set to 0.5, 0.6, and 0.7. Default is 0.5f
1897
 * - (double) unclipRatio - The unclip ratio of the detected text region, which determines the output size. It is usually set to 2.0.
1898
 * - (int) maxCandidates - The max number of the output results.
1899
 */
1900
class CV_EXPORTS_W_SIMPLE TextDetectionModel_DB : public TextDetectionModel
1901
{
1902
public:
1903
    CV_DEPRECATED_EXTERNAL  // avoid using in C++ code, will be moved to "protected" (need to fix bindings first)
1904
    TextDetectionModel_DB();
1905
1906
    /**
1907
     * @brief Create text detection algorithm from deep learning network.
1908
     * @param[in] network Net object.
1909
     */
1910
    CV_WRAP TextDetectionModel_DB(const Net& network);
1911
1912
    /**
1913
     * @brief Create text detection model from network represented in one of the supported formats.
1914
     * An order of @p model and @p config arguments does not matter.
1915
     * @param[in] model Binary file contains trained weights.
1916
     * @param[in] config Text file contains network configuration.
1917
     */
1918
    CV_WRAP inline
1919
    TextDetectionModel_DB(CV_WRAP_FILE_PATH const std::string& model, CV_WRAP_FILE_PATH const std::string& config = "")
1920
0
        : TextDetectionModel_DB(readNet(model, config)) { /* nothing */ }
1921
1922
    CV_WRAP TextDetectionModel_DB& setBinaryThreshold(float binaryThreshold);
1923
    CV_WRAP float getBinaryThreshold() const;
1924
1925
    CV_WRAP TextDetectionModel_DB& setPolygonThreshold(float polygonThreshold);
1926
    CV_WRAP float getPolygonThreshold() const;
1927
1928
    CV_WRAP TextDetectionModel_DB& setUnclipRatio(double unclipRatio);
1929
    CV_WRAP double getUnclipRatio() const;
1930
1931
    CV_WRAP TextDetectionModel_DB& setMaxCandidates(int maxCandidates);
1932
    CV_WRAP int getMaxCandidates() const;
1933
};
1934
1935
//! @}
1936
CV__DNN_INLINE_NS_END
1937
}
1938
}
1939
1940
#include <opencv2/dnn/layer.hpp>
1941
#include <opencv2/dnn/dnn.inl.hpp>
1942
1943
/// @deprecated Include this header directly from application. Automatic inclusion will be removed
1944
#include <opencv2/dnn/utils/inference_engine.hpp>
1945
1946
#endif  /* OPENCV_DNN_DNN_HPP */