/work/install-coverage/include/opencv4/opencv2/objdetect.hpp
Line | Count | Source (jump to first uncovered line) |
1 | | /*M/////////////////////////////////////////////////////////////////////////////////////// |
2 | | // |
3 | | // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
4 | | // |
5 | | // By downloading, copying, installing or using the software you agree to this license. |
6 | | // If you do not agree to this license, do not download, install, |
7 | | // copy or use the software. |
8 | | // |
9 | | // |
10 | | // License Agreement |
11 | | // For Open Source Computer Vision Library |
12 | | // |
13 | | // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
14 | | // Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
15 | | // Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
16 | | // Third party copyrights are property of their respective owners. |
17 | | // |
18 | | // Redistribution and use in source and binary forms, with or without modification, |
19 | | // are permitted provided that the following conditions are met: |
20 | | // |
21 | | // * Redistribution's of source code must retain the above copyright notice, |
22 | | // this list of conditions and the following disclaimer. |
23 | | // |
24 | | // * Redistribution's in binary form must reproduce the above copyright notice, |
25 | | // this list of conditions and the following disclaimer in the documentation |
26 | | // and/or other materials provided with the distribution. |
27 | | // |
28 | | // * The name of the copyright holders may not be used to endorse or promote products |
29 | | // derived from this software without specific prior written permission. |
30 | | // |
31 | | // This software is provided by the copyright holders and contributors "as is" and |
32 | | // any express or implied warranties, including, but not limited to, the implied |
33 | | // warranties of merchantability and fitness for a particular purpose are disclaimed. |
34 | | // In no event shall the Intel Corporation or contributors be liable for any direct, |
35 | | // indirect, incidental, special, exemplary, or consequential damages |
36 | | // (including, but not limited to, procurement of substitute goods or services; |
37 | | // loss of use, data, or profits; or business interruption) however caused |
38 | | // and on any theory of liability, whether in contract, strict liability, |
39 | | // or tort (including negligence or otherwise) arising in any way out of |
40 | | // the use of this software, even if advised of the possibility of such damage. |
41 | | // |
42 | | //M*/ |
43 | | |
44 | | #ifndef OPENCV_OBJDETECT_HPP |
45 | | #define OPENCV_OBJDETECT_HPP |
46 | | |
47 | | #include "opencv2/core.hpp" |
48 | | #include "opencv2/objdetect/aruco_detector.hpp" |
49 | | #include "opencv2/objdetect/graphical_code_detector.hpp" |
50 | | |
51 | | /** |
52 | | @defgroup objdetect Object Detection |
53 | | |
54 | | @{ |
55 | | @defgroup objdetect_cascade_classifier Cascade Classifier for Object Detection |
56 | | |
57 | | The object detector described below has been initially proposed by Paul Viola @cite Viola01 and |
58 | | improved by Rainer Lienhart @cite Lienhart02 . |
59 | | |
60 | | First, a classifier (namely a *cascade of boosted classifiers working with haar-like features*) is |
61 | | trained with a few hundred sample views of a particular object (i.e., a face or a car), called |
62 | | positive examples, that are scaled to the same size (say, 20x20), and negative examples - arbitrary |
63 | | images of the same size. |
64 | | |
65 | | After a classifier is trained, it can be applied to a region of interest (of the same size as used |
66 | | during the training) in an input image. The classifier outputs a "1" if the region is likely to show |
67 | | the object (i.e., face/car), and "0" otherwise. To search for the object in the whole image one can |
68 | | move the search window across the image and check every location using the classifier. The |
69 | | classifier is designed so that it can be easily "resized" in order to be able to find the objects of |
70 | | interest at different sizes, which is more efficient than resizing the image itself. So, to find an |
71 | | object of an unknown size in the image the scan procedure should be done several times at different |
72 | | scales. |
73 | | |
74 | | The word "cascade" in the classifier name means that the resultant classifier consists of several |
75 | | simpler classifiers (*stages*) that are applied subsequently to a region of interest until at some |
76 | | stage the candidate is rejected or all the stages are passed. The word "boosted" means that the |
77 | | classifiers at every stage of the cascade are complex themselves and they are built out of basic |
78 | | classifiers using one of four different boosting techniques (weighted voting). Currently Discrete |
79 | | Adaboost, Real Adaboost, Gentle Adaboost and Logitboost are supported. The basic classifiers are |
80 | | decision-tree classifiers with at least 2 leaves. Haar-like features are the input to the basic |
81 | | classifiers, and are calculated as described below. The current algorithm uses the following |
82 | | Haar-like features: |
83 | | |
84 | |  |
85 | | |
86 | | The feature used in a particular classifier is specified by its shape (1a, 2b etc.), position within |
87 | | the region of interest and the scale (this scale is not the same as the scale used at the detection |
88 | | stage, though these two scales are multiplied). For example, in the case of the third line feature |
89 | | (2c) the response is calculated as the difference between the sum of image pixels under the |
90 | | rectangle covering the whole feature (including the two white stripes and the black stripe in the |
91 | | middle) and the sum of the image pixels under the black stripe multiplied by 3 in order to |
92 | | compensate for the differences in the size of areas. The sums of pixel values over a rectangular |
93 | | regions are calculated rapidly using integral images (see below and the integral description). |
94 | | |
95 | | Check @ref tutorial_cascade_classifier "the corresponding tutorial" for more details. |
96 | | |
97 | | The following reference is for the detection part only. There is a separate application called |
98 | | opencv_traincascade that can train a cascade of boosted classifiers from a set of samples. |
99 | | |
100 | | @note In the new C++ interface it is also possible to use LBP (local binary pattern) features in |
101 | | addition to Haar-like features. .. [Viola01] Paul Viola and Michael J. Jones. Rapid Object Detection |
102 | | using a Boosted Cascade of Simple Features. IEEE CVPR, 2001. The paper is available online at |
103 | | <https://github.com/SvHey/thesis/blob/master/Literature/ObjectDetection/violaJones_CVPR2001.pdf> |
104 | | |
105 | | @defgroup objdetect_hog HOG (Histogram of Oriented Gradients) descriptor and object detector |
106 | | @defgroup objdetect_barcode Barcode detection and decoding |
107 | | @defgroup objdetect_qrcode QRCode detection and encoding |
108 | | @defgroup objdetect_dnn_face DNN-based face detection and recognition |
109 | | |
110 | | Check @ref tutorial_dnn_face "the corresponding tutorial" for more details. |
111 | | |
112 | | @defgroup objdetect_common Common functions and classes |
113 | | @defgroup objdetect_aruco ArUco markers and boards detection for robust camera pose estimation |
114 | | @{ |
115 | | ArUco Marker Detection |
116 | | Square fiducial markers (also known as Augmented Reality Markers) are useful for easy, |
117 | | fast and robust camera pose estimation. |
118 | | |
119 | | The main functionality of ArucoDetector class is detection of markers in an image. If the markers are grouped |
120 | | as a board, then you can try to recover the missing markers with ArucoDetector::refineDetectedMarkers(). |
121 | | ArUco markers can also be used for advanced chessboard corner finding. To do this, group the markers in the |
122 | | CharucoBoard and find the corners of the chessboard with the CharucoDetector::detectBoard(). |
123 | | |
124 | | The implementation is based on the ArUco Library by R. Muñoz-Salinas and S. Garrido-Jurado @cite Aruco2014. |
125 | | |
126 | | Markers can also be detected based on the AprilTag 2 @cite wang2016iros fiducial detection method. |
127 | | |
128 | | @sa @cite Aruco2014 |
129 | | This code has been originally developed by Sergio Garrido-Jurado as a project |
130 | | for Google Summer of Code 2015 (GSoC 15). |
131 | | @} |
132 | | |
133 | | @} |
134 | | */ |
135 | | |
136 | | typedef struct CvHaarClassifierCascade CvHaarClassifierCascade; |
137 | | |
138 | | namespace cv |
139 | | { |
140 | | |
141 | | //! @addtogroup objdetect_common |
142 | | //! @{ |
143 | | |
144 | | ///////////////////////////// Object Detection //////////////////////////// |
145 | | |
146 | | /** @brief This class is used for grouping object candidates detected by Cascade Classifier, HOG etc. |
147 | | |
148 | | instance of the class is to be passed to cv::partition |
149 | | */ |
150 | | class CV_EXPORTS SimilarRects |
151 | | { |
152 | | public: |
153 | 0 | SimilarRects(double _eps) : eps(_eps) {} |
154 | | inline bool operator()(const Rect& r1, const Rect& r2) const |
155 | 0 | { |
156 | 0 | double delta = eps * ((std::min)(r1.width, r2.width) + (std::min)(r1.height, r2.height)) * 0.5; |
157 | 0 | return std::abs(r1.x - r2.x) <= delta && |
158 | 0 | std::abs(r1.y - r2.y) <= delta && |
159 | 0 | std::abs(r1.x + r1.width - r2.x - r2.width) <= delta && |
160 | 0 | std::abs(r1.y + r1.height - r2.y - r2.height) <= delta; |
161 | 0 | } |
162 | | double eps; |
163 | | }; |
164 | | |
165 | | /** @brief Groups the object candidate rectangles. |
166 | | |
167 | | @param rectList Input/output vector of rectangles. Output vector includes retained and grouped |
168 | | rectangles. (The Python list is not modified in place.) |
169 | | @param groupThreshold Minimum possible number of rectangles minus 1. The threshold is used in a |
170 | | group of rectangles to retain it. |
171 | | @param eps Relative difference between sides of the rectangles to merge them into a group. |
172 | | |
173 | | The function is a wrapper for the generic function partition . It clusters all the input rectangles |
174 | | using the rectangle equivalence criteria that combines rectangles with similar sizes and similar |
175 | | locations. The similarity is defined by eps. When eps=0 , no clustering is done at all. If |
176 | | \f$\texttt{eps}\rightarrow +\inf\f$ , all the rectangles are put in one cluster. Then, the small |
177 | | clusters containing less than or equal to groupThreshold rectangles are rejected. In each other |
178 | | cluster, the average rectangle is computed and put into the output rectangle list. |
179 | | */ |
180 | | CV_EXPORTS void groupRectangles(std::vector<Rect>& rectList, int groupThreshold, double eps = 0.2); |
181 | | /** @overload */ |
182 | | CV_EXPORTS_W void groupRectangles(CV_IN_OUT std::vector<Rect>& rectList, CV_OUT std::vector<int>& weights, |
183 | | int groupThreshold, double eps = 0.2); |
184 | | /** @overload */ |
185 | | CV_EXPORTS void groupRectangles(std::vector<Rect>& rectList, int groupThreshold, |
186 | | double eps, std::vector<int>* weights, std::vector<double>* levelWeights ); |
187 | | /** @overload */ |
188 | | CV_EXPORTS void groupRectangles(std::vector<Rect>& rectList, std::vector<int>& rejectLevels, |
189 | | std::vector<double>& levelWeights, int groupThreshold, double eps = 0.2); |
190 | | /** @overload */ |
191 | | CV_EXPORTS void groupRectangles_meanshift(std::vector<Rect>& rectList, std::vector<double>& foundWeights, |
192 | | std::vector<double>& foundScales, |
193 | | double detectThreshold = 0.0, Size winDetSize = Size(64, 128)); |
194 | | //! @} |
195 | | |
196 | | //! @addtogroup objdetect_cascade_classifier |
197 | | //! @{ |
198 | | |
199 | | template<> struct DefaultDeleter<CvHaarClassifierCascade>{ CV_EXPORTS void operator ()(CvHaarClassifierCascade* obj) const; }; |
200 | | |
201 | | enum { CASCADE_DO_CANNY_PRUNING = 1, |
202 | | CASCADE_SCALE_IMAGE = 2, |
203 | | CASCADE_FIND_BIGGEST_OBJECT = 4, |
204 | | CASCADE_DO_ROUGH_SEARCH = 8 |
205 | | }; |
206 | | |
207 | | class CV_EXPORTS_W BaseCascadeClassifier : public Algorithm |
208 | | { |
209 | | public: |
210 | | virtual ~BaseCascadeClassifier(); |
211 | | virtual bool empty() const CV_OVERRIDE = 0; |
212 | | virtual bool load( const String& filename ) = 0; |
213 | | virtual void detectMultiScale( InputArray image, |
214 | | CV_OUT std::vector<Rect>& objects, |
215 | | double scaleFactor, |
216 | | int minNeighbors, int flags, |
217 | | Size minSize, Size maxSize ) = 0; |
218 | | |
219 | | virtual void detectMultiScale( InputArray image, |
220 | | CV_OUT std::vector<Rect>& objects, |
221 | | CV_OUT std::vector<int>& numDetections, |
222 | | double scaleFactor, |
223 | | int minNeighbors, int flags, |
224 | | Size minSize, Size maxSize ) = 0; |
225 | | |
226 | | virtual void detectMultiScale( InputArray image, |
227 | | CV_OUT std::vector<Rect>& objects, |
228 | | CV_OUT std::vector<int>& rejectLevels, |
229 | | CV_OUT std::vector<double>& levelWeights, |
230 | | double scaleFactor, |
231 | | int minNeighbors, int flags, |
232 | | Size minSize, Size maxSize, |
233 | | bool outputRejectLevels ) = 0; |
234 | | |
235 | | virtual bool isOldFormatCascade() const = 0; |
236 | | virtual Size getOriginalWindowSize() const = 0; |
237 | | virtual int getFeatureType() const = 0; |
238 | | virtual void* getOldCascade() = 0; |
239 | | |
240 | | class CV_EXPORTS MaskGenerator |
241 | | { |
242 | | public: |
243 | 0 | virtual ~MaskGenerator() {} |
244 | | virtual Mat generateMask(const Mat& src)=0; |
245 | 0 | virtual void initializeMask(const Mat& /*src*/) { } |
246 | | }; |
247 | | virtual void setMaskGenerator(const Ptr<MaskGenerator>& maskGenerator) = 0; |
248 | | virtual Ptr<MaskGenerator> getMaskGenerator() = 0; |
249 | | }; |
250 | | |
251 | | /** @example samples/cpp/facedetect.cpp |
252 | | This program demonstrates usage of the Cascade classifier class |
253 | | \image html Cascade_Classifier_Tutorial_Result_Haar.jpg "Sample screenshot" width=321 height=254 |
254 | | */ |
255 | | /** @brief Cascade classifier class for object detection. |
256 | | */ |
257 | | class CV_EXPORTS_W CascadeClassifier |
258 | | { |
259 | | public: |
260 | | CV_WRAP CascadeClassifier(); |
261 | | /** @brief Loads a classifier from a file. |
262 | | |
263 | | @param filename Name of the file from which the classifier is loaded. |
264 | | */ |
265 | | CV_WRAP CascadeClassifier(const String& filename); |
266 | | ~CascadeClassifier(); |
267 | | /** @brief Checks whether the classifier has been loaded. |
268 | | */ |
269 | | CV_WRAP bool empty() const; |
270 | | /** @brief Loads a classifier from a file. |
271 | | |
272 | | @param filename Name of the file from which the classifier is loaded. The file may contain an old |
273 | | HAAR classifier trained by the haartraining application or a new cascade classifier trained by the |
274 | | traincascade application. |
275 | | */ |
276 | | CV_WRAP bool load( const String& filename ); |
277 | | /** @brief Reads a classifier from a FileStorage node. |
278 | | |
279 | | @note The file may contain a new cascade classifier (trained by the traincascade application) only. |
280 | | */ |
281 | | CV_WRAP bool read( const FileNode& node ); |
282 | | |
283 | | /** @brief Detects objects of different sizes in the input image. The detected objects are returned as a list |
284 | | of rectangles. |
285 | | |
286 | | @param image Matrix of the type CV_8U containing an image where objects are detected. |
287 | | @param objects Vector of rectangles where each rectangle contains the detected object, the |
288 | | rectangles may be partially outside the original image. |
289 | | @param scaleFactor Parameter specifying how much the image size is reduced at each image scale. |
290 | | @param minNeighbors Parameter specifying how many neighbors each candidate rectangle should have |
291 | | to retain it. |
292 | | @param flags Parameter with the same meaning for an old cascade as in the function |
293 | | cvHaarDetectObjects. It is not used for a new cascade. |
294 | | @param minSize Minimum possible object size. Objects smaller than that are ignored. |
295 | | @param maxSize Maximum possible object size. Objects larger than that are ignored. If `maxSize == minSize` model is evaluated on single scale. |
296 | | */ |
297 | | CV_WRAP void detectMultiScale( InputArray image, |
298 | | CV_OUT std::vector<Rect>& objects, |
299 | | double scaleFactor = 1.1, |
300 | | int minNeighbors = 3, int flags = 0, |
301 | | Size minSize = Size(), |
302 | | Size maxSize = Size() ); |
303 | | |
304 | | /** @overload |
305 | | @param image Matrix of the type CV_8U containing an image where objects are detected. |
306 | | @param objects Vector of rectangles where each rectangle contains the detected object, the |
307 | | rectangles may be partially outside the original image. |
308 | | @param numDetections Vector of detection numbers for the corresponding objects. An object's number |
309 | | of detections is the number of neighboring positively classified rectangles that were joined |
310 | | together to form the object. |
311 | | @param scaleFactor Parameter specifying how much the image size is reduced at each image scale. |
312 | | @param minNeighbors Parameter specifying how many neighbors each candidate rectangle should have |
313 | | to retain it. |
314 | | @param flags Parameter with the same meaning for an old cascade as in the function |
315 | | cvHaarDetectObjects. It is not used for a new cascade. |
316 | | @param minSize Minimum possible object size. Objects smaller than that are ignored. |
317 | | @param maxSize Maximum possible object size. Objects larger than that are ignored. If `maxSize == minSize` model is evaluated on single scale. |
318 | | */ |
319 | | CV_WRAP_AS(detectMultiScale2) void detectMultiScale( InputArray image, |
320 | | CV_OUT std::vector<Rect>& objects, |
321 | | CV_OUT std::vector<int>& numDetections, |
322 | | double scaleFactor=1.1, |
323 | | int minNeighbors=3, int flags=0, |
324 | | Size minSize=Size(), |
325 | | Size maxSize=Size() ); |
326 | | |
327 | | /** @overload |
328 | | This function allows you to retrieve the final stage decision certainty of classification. |
329 | | For this, one needs to set `outputRejectLevels` on true and provide the `rejectLevels` and `levelWeights` parameter. |
330 | | For each resulting detection, `levelWeights` will then contain the certainty of classification at the final stage. |
331 | | This value can then be used to separate strong from weaker classifications. |
332 | | |
333 | | A code sample on how to use it efficiently can be found below: |
334 | | @code |
335 | | Mat img; |
336 | | vector<double> weights; |
337 | | vector<int> levels; |
338 | | vector<Rect> detections; |
339 | | CascadeClassifier model("/path/to/your/model.xml"); |
340 | | model.detectMultiScale(img, detections, levels, weights, 1.1, 3, 0, Size(), Size(), true); |
341 | | cerr << "Detection " << detections[0] << " with weight " << weights[0] << endl; |
342 | | @endcode |
343 | | */ |
344 | | CV_WRAP_AS(detectMultiScale3) void detectMultiScale( InputArray image, |
345 | | CV_OUT std::vector<Rect>& objects, |
346 | | CV_OUT std::vector<int>& rejectLevels, |
347 | | CV_OUT std::vector<double>& levelWeights, |
348 | | double scaleFactor = 1.1, |
349 | | int minNeighbors = 3, int flags = 0, |
350 | | Size minSize = Size(), |
351 | | Size maxSize = Size(), |
352 | | bool outputRejectLevels = false ); |
353 | | |
354 | | CV_WRAP bool isOldFormatCascade() const; |
355 | | CV_WRAP Size getOriginalWindowSize() const; |
356 | | CV_WRAP int getFeatureType() const; |
357 | | void* getOldCascade(); |
358 | | |
359 | | CV_WRAP static bool convert(const String& oldcascade, const String& newcascade); |
360 | | |
361 | | void setMaskGenerator(const Ptr<BaseCascadeClassifier::MaskGenerator>& maskGenerator); |
362 | | Ptr<BaseCascadeClassifier::MaskGenerator> getMaskGenerator(); |
363 | | |
364 | | Ptr<BaseCascadeClassifier> cc; |
365 | | }; |
366 | | |
367 | | CV_EXPORTS Ptr<BaseCascadeClassifier::MaskGenerator> createFaceDetectionMaskGenerator(); |
368 | | //! @} |
369 | | |
370 | | //! @addtogroup objdetect_hog |
371 | | //! @{ |
372 | | //////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector ////////////// |
373 | | |
374 | | //! struct for detection region of interest (ROI) |
375 | | struct DetectionROI |
376 | | { |
377 | | //! scale(size) of the bounding box |
378 | | double scale; |
379 | | //! set of requested locations to be evaluated |
380 | | std::vector<cv::Point> locations; |
381 | | //! vector that will contain confidence values for each location |
382 | | std::vector<double> confidences; |
383 | | }; |
384 | | |
385 | | /**@brief Implementation of HOG (Histogram of Oriented Gradients) descriptor and object detector. |
386 | | |
387 | | the HOG descriptor algorithm introduced by Navneet Dalal and Bill Triggs @cite Dalal2005 . |
388 | | |
389 | | useful links: |
390 | | |
391 | | https://hal.inria.fr/inria-00548512/document/ |
392 | | |
393 | | https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients |
394 | | |
395 | | https://software.intel.com/en-us/ipp-dev-reference-histogram-of-oriented-gradients-hog-descriptor |
396 | | |
397 | | http://www.learnopencv.com/histogram-of-oriented-gradients |
398 | | |
399 | | http://www.learnopencv.com/handwritten-digits-classification-an-opencv-c-python-tutorial |
400 | | |
401 | | */ |
402 | | struct CV_EXPORTS_W HOGDescriptor |
403 | | { |
404 | | public: |
405 | | enum HistogramNormType { L2Hys = 0 //!< Default histogramNormType |
406 | | }; |
407 | | enum { DEFAULT_NLEVELS = 64 //!< Default nlevels value. |
408 | | }; |
409 | | enum DescriptorStorageFormat { DESCR_FORMAT_COL_BY_COL, DESCR_FORMAT_ROW_BY_ROW }; |
410 | | |
411 | | /**@brief Creates the HOG descriptor and detector with default parameters. |
412 | | |
413 | | aqual to HOGDescriptor(Size(64,128), Size(16,16), Size(8,8), Size(8,8), 9 ) |
414 | | */ |
415 | | CV_WRAP HOGDescriptor() : winSize(64,128), blockSize(16,16), blockStride(8,8), |
416 | | cellSize(8,8), nbins(9), derivAperture(1), winSigma(-1), |
417 | | histogramNormType(HOGDescriptor::L2Hys), L2HysThreshold(0.2), gammaCorrection(true), |
418 | | free_coef(-1.f), nlevels(HOGDescriptor::DEFAULT_NLEVELS), signedGradient(false) |
419 | 0 | {} |
420 | | |
421 | | /** @overload |
422 | | @param _winSize sets winSize with given value. |
423 | | @param _blockSize sets blockSize with given value. |
424 | | @param _blockStride sets blockStride with given value. |
425 | | @param _cellSize sets cellSize with given value. |
426 | | @param _nbins sets nbins with given value. |
427 | | @param _derivAperture sets derivAperture with given value. |
428 | | @param _winSigma sets winSigma with given value. |
429 | | @param _histogramNormType sets histogramNormType with given value. |
430 | | @param _L2HysThreshold sets L2HysThreshold with given value. |
431 | | @param _gammaCorrection sets gammaCorrection with given value. |
432 | | @param _nlevels sets nlevels with given value. |
433 | | @param _signedGradient sets signedGradient with given value. |
434 | | */ |
435 | | CV_WRAP HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride, |
436 | | Size _cellSize, int _nbins, int _derivAperture=1, double _winSigma=-1, |
437 | | HOGDescriptor::HistogramNormType _histogramNormType=HOGDescriptor::L2Hys, |
438 | | double _L2HysThreshold=0.2, bool _gammaCorrection=false, |
439 | | int _nlevels=HOGDescriptor::DEFAULT_NLEVELS, bool _signedGradient=false) |
440 | | : winSize(_winSize), blockSize(_blockSize), blockStride(_blockStride), cellSize(_cellSize), |
441 | | nbins(_nbins), derivAperture(_derivAperture), winSigma(_winSigma), |
442 | | histogramNormType(_histogramNormType), L2HysThreshold(_L2HysThreshold), |
443 | | gammaCorrection(_gammaCorrection), free_coef(-1.f), nlevels(_nlevels), signedGradient(_signedGradient) |
444 | 0 | {} |
445 | | |
446 | | /** @overload |
447 | | |
448 | | Creates the HOG descriptor and detector and loads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file. |
449 | | @param filename The file name containing HOGDescriptor properties and coefficients for the linear SVM classifier. |
450 | | */ |
451 | | CV_WRAP HOGDescriptor(const String& filename) |
452 | 0 | { |
453 | 0 | load(filename); |
454 | 0 | } |
455 | | |
456 | | /** @overload |
457 | | @param d the HOGDescriptor which cloned to create a new one. |
458 | | */ |
459 | | HOGDescriptor(const HOGDescriptor& d) |
460 | 0 | { |
461 | 0 | d.copyTo(*this); |
462 | 0 | } |
463 | | |
464 | | /**@brief Default destructor. |
465 | | */ |
466 | 0 | virtual ~HOGDescriptor() {} |
467 | | |
468 | | /**@brief Returns the number of coefficients required for the classification. |
469 | | */ |
470 | | CV_WRAP size_t getDescriptorSize() const; |
471 | | |
472 | | /** @brief Checks if detector size equal to descriptor size. |
473 | | */ |
474 | | CV_WRAP bool checkDetectorSize() const; |
475 | | |
476 | | /** @brief Returns winSigma value |
477 | | */ |
478 | | CV_WRAP double getWinSigma() const; |
479 | | |
480 | | /**@example samples/cpp/peopledetect.cpp |
481 | | */ |
482 | | /**@brief Sets coefficients for the linear SVM classifier. |
483 | | @param svmdetector coefficients for the linear SVM classifier. |
484 | | */ |
485 | | CV_WRAP virtual void setSVMDetector(InputArray svmdetector); |
486 | | |
487 | | /** @brief Reads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file node. |
488 | | @param fn File node |
489 | | */ |
490 | | virtual bool read(FileNode& fn); |
491 | | |
492 | | /** @brief Stores HOGDescriptor parameters and coefficients for the linear SVM classifier in a file storage. |
493 | | @param fs File storage |
494 | | @param objname Object name |
495 | | */ |
496 | | virtual void write(FileStorage& fs, const String& objname) const; |
497 | | |
498 | | /** @brief loads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file |
499 | | @param filename Name of the file to read. |
500 | | @param objname The optional name of the node to read (if empty, the first top-level node will be used). |
501 | | */ |
502 | | CV_WRAP virtual bool load(const String& filename, const String& objname = String()); |
503 | | |
504 | | /** @brief saves HOGDescriptor parameters and coefficients for the linear SVM classifier to a file |
505 | | @param filename File name |
506 | | @param objname Object name |
507 | | */ |
508 | | CV_WRAP virtual void save(const String& filename, const String& objname = String()) const; |
509 | | |
510 | | /** @brief clones the HOGDescriptor |
511 | | @param c cloned HOGDescriptor |
512 | | */ |
513 | | virtual void copyTo(HOGDescriptor& c) const; |
514 | | |
515 | | /**@example samples/cpp/train_HOG.cpp |
516 | | */ |
517 | | /** @brief Computes HOG descriptors of given image. |
518 | | @param img Matrix of the type CV_8U containing an image where HOG features will be calculated. |
519 | | @param descriptors Matrix of the type CV_32F |
520 | | @param winStride Window stride. It must be a multiple of block stride. |
521 | | @param padding Padding |
522 | | @param locations Vector of Point |
523 | | */ |
524 | | CV_WRAP virtual void compute(InputArray img, |
525 | | CV_OUT std::vector<float>& descriptors, |
526 | | Size winStride = Size(), Size padding = Size(), |
527 | | const std::vector<Point>& locations = std::vector<Point>()) const; |
528 | | |
529 | | /** @brief Performs object detection without a multi-scale window. |
530 | | @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected. |
531 | | @param foundLocations Vector of point where each point contains left-top corner point of detected object boundaries. |
532 | | @param weights Vector that will contain confidence values for each detected object. |
533 | | @param hitThreshold Threshold for the distance between features and SVM classifying plane. |
534 | | Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). |
535 | | But if the free coefficient is omitted (which is allowed), you can specify it manually here. |
536 | | @param winStride Window stride. It must be a multiple of block stride. |
537 | | @param padding Padding |
538 | | @param searchLocations Vector of Point includes set of requested locations to be evaluated. |
539 | | */ |
540 | | CV_WRAP virtual void detect(InputArray img, CV_OUT std::vector<Point>& foundLocations, |
541 | | CV_OUT std::vector<double>& weights, |
542 | | double hitThreshold = 0, Size winStride = Size(), |
543 | | Size padding = Size(), |
544 | | const std::vector<Point>& searchLocations = std::vector<Point>()) const; |
545 | | |
546 | | /** @brief Performs object detection without a multi-scale window. |
547 | | @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected. |
548 | | @param foundLocations Vector of point where each point contains left-top corner point of detected object boundaries. |
549 | | @param hitThreshold Threshold for the distance between features and SVM classifying plane. |
550 | | Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). |
551 | | But if the free coefficient is omitted (which is allowed), you can specify it manually here. |
552 | | @param winStride Window stride. It must be a multiple of block stride. |
553 | | @param padding Padding |
554 | | @param searchLocations Vector of Point includes locations to search. |
555 | | */ |
556 | | virtual void detect(InputArray img, CV_OUT std::vector<Point>& foundLocations, |
557 | | double hitThreshold = 0, Size winStride = Size(), |
558 | | Size padding = Size(), |
559 | | const std::vector<Point>& searchLocations=std::vector<Point>()) const; |
560 | | |
561 | | /** @brief Detects objects of different sizes in the input image. The detected objects are returned as a list |
562 | | of rectangles. |
563 | | @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected. |
564 | | @param foundLocations Vector of rectangles where each rectangle contains the detected object. |
565 | | @param foundWeights Vector that will contain confidence values for each detected object. |
566 | | @param hitThreshold Threshold for the distance between features and SVM classifying plane. |
567 | | Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). |
568 | | But if the free coefficient is omitted (which is allowed), you can specify it manually here. |
569 | | @param winStride Window stride. It must be a multiple of block stride. |
570 | | @param padding Padding |
571 | | @param scale Coefficient of the detection window increase. |
572 | | @param groupThreshold Coefficient to regulate the similarity threshold. When detected, some objects can be covered |
573 | | by many rectangles. 0 means not to perform grouping. |
574 | | @param useMeanshiftGrouping indicates grouping algorithm |
575 | | */ |
576 | | CV_WRAP virtual void detectMultiScale(InputArray img, CV_OUT std::vector<Rect>& foundLocations, |
577 | | CV_OUT std::vector<double>& foundWeights, double hitThreshold = 0, |
578 | | Size winStride = Size(), Size padding = Size(), double scale = 1.05, |
579 | | double groupThreshold = 2.0, bool useMeanshiftGrouping = false) const; |
580 | | |
581 | | /** @brief Detects objects of different sizes in the input image. The detected objects are returned as a list |
582 | | of rectangles. |
583 | | @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected. |
584 | | @param foundLocations Vector of rectangles where each rectangle contains the detected object. |
585 | | @param hitThreshold Threshold for the distance between features and SVM classifying plane. |
586 | | Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). |
587 | | But if the free coefficient is omitted (which is allowed), you can specify it manually here. |
588 | | @param winStride Window stride. It must be a multiple of block stride. |
589 | | @param padding Padding |
590 | | @param scale Coefficient of the detection window increase. |
591 | | @param groupThreshold Coefficient to regulate the similarity threshold. When detected, some objects can be covered |
592 | | by many rectangles. 0 means not to perform grouping. |
593 | | @param useMeanshiftGrouping indicates grouping algorithm |
594 | | */ |
595 | | virtual void detectMultiScale(InputArray img, CV_OUT std::vector<Rect>& foundLocations, |
596 | | double hitThreshold = 0, Size winStride = Size(), |
597 | | Size padding = Size(), double scale = 1.05, |
598 | | double groupThreshold = 2.0, bool useMeanshiftGrouping = false) const; |
599 | | |
600 | | /** @brief Computes gradients and quantized gradient orientations. |
601 | | @param img Matrix contains the image to be computed |
602 | | @param grad Matrix of type CV_32FC2 contains computed gradients |
603 | | @param angleOfs Matrix of type CV_8UC2 contains quantized gradient orientations |
604 | | @param paddingTL Padding from top-left |
605 | | @param paddingBR Padding from bottom-right |
606 | | */ |
607 | | CV_WRAP virtual void computeGradient(InputArray img, InputOutputArray grad, InputOutputArray angleOfs, |
608 | | Size paddingTL = Size(), Size paddingBR = Size()) const; |
609 | | |
610 | | /** @brief Returns coefficients of the classifier trained for people detection (for 64x128 windows). |
611 | | */ |
612 | | CV_WRAP static std::vector<float> getDefaultPeopleDetector(); |
613 | | |
614 | | /**@example samples/tapi/hog.cpp |
615 | | */ |
616 | | /** @brief Returns coefficients of the classifier trained for people detection (for 48x96 windows). |
617 | | */ |
618 | | CV_WRAP static std::vector<float> getDaimlerPeopleDetector(); |
619 | | |
620 | | //! Detection window size. Align to block size and block stride. Default value is Size(64,128). |
621 | | CV_PROP Size winSize; |
622 | | |
623 | | //! Block size in pixels. Align to cell size. Default value is Size(16,16). |
624 | | CV_PROP Size blockSize; |
625 | | |
626 | | //! Block stride. It must be a multiple of cell size. Default value is Size(8,8). |
627 | | CV_PROP Size blockStride; |
628 | | |
629 | | //! Cell size. Default value is Size(8,8). |
630 | | CV_PROP Size cellSize; |
631 | | |
632 | | //! Number of bins used in the calculation of histogram of gradients. Default value is 9. |
633 | | CV_PROP int nbins; |
634 | | |
635 | | //! not documented |
636 | | CV_PROP int derivAperture; |
637 | | |
638 | | //! Gaussian smoothing window parameter. |
639 | | CV_PROP double winSigma; |
640 | | |
641 | | //! histogramNormType |
642 | | CV_PROP HOGDescriptor::HistogramNormType histogramNormType; |
643 | | |
644 | | //! L2-Hys normalization method shrinkage. |
645 | | CV_PROP double L2HysThreshold; |
646 | | |
647 | | //! Flag to specify whether the gamma correction preprocessing is required or not. |
648 | | CV_PROP bool gammaCorrection; |
649 | | |
650 | | //! coefficients for the linear SVM classifier. |
651 | | CV_PROP std::vector<float> svmDetector; |
652 | | |
653 | | //! coefficients for the linear SVM classifier used when OpenCL is enabled |
654 | | UMat oclSvmDetector; |
655 | | |
656 | | //! not documented |
657 | | float free_coef; |
658 | | |
659 | | //! Maximum number of detection window increases. Default value is 64 |
660 | | CV_PROP int nlevels; |
661 | | |
662 | | //! Indicates signed gradient will be used or not |
663 | | CV_PROP bool signedGradient; |
664 | | |
665 | | /** @brief evaluate specified ROI and return confidence value for each location |
666 | | @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected. |
667 | | @param locations Vector of Point |
668 | | @param foundLocations Vector of Point where each Point is detected object's top-left point. |
669 | | @param confidences confidences |
670 | | @param hitThreshold Threshold for the distance between features and SVM classifying plane. Usually |
671 | | it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if |
672 | | the free coefficient is omitted (which is allowed), you can specify it manually here |
673 | | @param winStride winStride |
674 | | @param padding padding |
675 | | */ |
676 | | virtual void detectROI(InputArray img, const std::vector<cv::Point> &locations, |
677 | | CV_OUT std::vector<cv::Point>& foundLocations, CV_OUT std::vector<double>& confidences, |
678 | | double hitThreshold = 0, cv::Size winStride = Size(), |
679 | | cv::Size padding = Size()) const; |
680 | | |
681 | | /** @brief evaluate specified ROI and return confidence value for each location in multiple scales |
682 | | @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected. |
683 | | @param foundLocations Vector of rectangles where each rectangle contains the detected object. |
684 | | @param locations Vector of DetectionROI |
685 | | @param hitThreshold Threshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified |
686 | | in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here. |
687 | | @param groupThreshold Minimum possible number of rectangles minus 1. The threshold is used in a group of rectangles to retain it. |
688 | | */ |
689 | | virtual void detectMultiScaleROI(InputArray img, |
690 | | CV_OUT std::vector<cv::Rect>& foundLocations, |
691 | | std::vector<DetectionROI>& locations, |
692 | | double hitThreshold = 0, |
693 | | int groupThreshold = 0) const; |
694 | | |
695 | | /** @brief Groups the object candidate rectangles. |
696 | | @param rectList Input/output vector of rectangles. Output vector includes retained and grouped rectangles. (The Python list is not modified in place.) |
697 | | @param weights Input/output vector of weights of rectangles. Output vector includes weights of retained and grouped rectangles. (The Python list is not modified in place.) |
698 | | @param groupThreshold Minimum possible number of rectangles minus 1. The threshold is used in a group of rectangles to retain it. |
699 | | @param eps Relative difference between sides of the rectangles to merge them into a group. |
700 | | */ |
701 | | void groupRectangles(std::vector<cv::Rect>& rectList, std::vector<double>& weights, int groupThreshold, double eps) const; |
702 | | }; |
703 | | //! @} |
704 | | |
705 | | //! @addtogroup objdetect_qrcode |
706 | | //! @{ |
707 | | |
708 | | class CV_EXPORTS_W QRCodeEncoder { |
709 | | protected: |
710 | | QRCodeEncoder(); // use ::create() |
711 | | public: |
712 | | virtual ~QRCodeEncoder(); |
713 | | |
714 | | enum EncodeMode { |
715 | | MODE_AUTO = -1, |
716 | | MODE_NUMERIC = 1, // 0b0001 |
717 | | MODE_ALPHANUMERIC = 2, // 0b0010 |
718 | | MODE_BYTE = 4, // 0b0100 |
719 | | MODE_ECI = 7, // 0b0111 |
720 | | MODE_KANJI = 8, // 0b1000 |
721 | | MODE_STRUCTURED_APPEND = 3 // 0b0011 |
722 | | }; |
723 | | |
724 | | enum CorrectionLevel { |
725 | | CORRECT_LEVEL_L = 0, |
726 | | CORRECT_LEVEL_M = 1, |
727 | | CORRECT_LEVEL_Q = 2, |
728 | | CORRECT_LEVEL_H = 3 |
729 | | }; |
730 | | |
731 | | enum ECIEncodings { |
732 | | ECI_SHIFT_JIS = 20, |
733 | | ECI_UTF8 = 26, |
734 | | }; |
735 | | |
736 | | /** @brief QR code encoder parameters. */ |
737 | | struct CV_EXPORTS_W_SIMPLE Params |
738 | | { |
739 | | CV_WRAP Params(); |
740 | | |
741 | | //! The optional version of QR code (by default - maximum possible depending on the length of the string). |
742 | | CV_PROP_RW int version; |
743 | | |
744 | | //! The optional level of error correction (by default - the lowest). |
745 | | CV_PROP_RW QRCodeEncoder::CorrectionLevel correction_level; |
746 | | |
747 | | //! The optional encoding mode - Numeric, Alphanumeric, Byte, Kanji, ECI or Structured Append. |
748 | | CV_PROP_RW QRCodeEncoder::EncodeMode mode; |
749 | | |
750 | | //! The optional number of QR codes to generate in Structured Append mode. |
751 | | CV_PROP_RW int structure_number; |
752 | | }; |
753 | | |
754 | | /** @brief Constructor |
755 | | @param parameters QR code encoder parameters QRCodeEncoder::Params |
756 | | */ |
757 | | static CV_WRAP |
758 | | Ptr<QRCodeEncoder> create(const QRCodeEncoder::Params& parameters = QRCodeEncoder::Params()); |
759 | | |
760 | | /** @brief Generates QR code from input string. |
761 | | @param encoded_info Input string to encode. |
762 | | @param qrcode Generated QR code. |
763 | | */ |
764 | | CV_WRAP virtual void encode(const String& encoded_info, OutputArray qrcode) = 0; |
765 | | |
766 | | /** @brief Generates QR code from input string in Structured Append mode. The encoded message is splitting over a number of QR codes. |
767 | | @param encoded_info Input string to encode. |
768 | | @param qrcodes Vector of generated QR codes. |
769 | | */ |
770 | | CV_WRAP virtual void encodeStructuredAppend(const String& encoded_info, OutputArrayOfArrays qrcodes) = 0; |
771 | | |
772 | | }; |
773 | | class CV_EXPORTS_W_SIMPLE QRCodeDetector : public GraphicalCodeDetector |
774 | | { |
775 | | public: |
776 | | CV_WRAP QRCodeDetector(); |
777 | | |
778 | | /** @brief sets the epsilon used during the horizontal scan of QR code stop marker detection. |
779 | | @param epsX Epsilon neighborhood, which allows you to determine the horizontal pattern |
780 | | of the scheme 1:1:3:1:1 according to QR code standard. |
781 | | */ |
782 | | CV_WRAP QRCodeDetector& setEpsX(double epsX); |
783 | | /** @brief sets the epsilon used during the vertical scan of QR code stop marker detection. |
784 | | @param epsY Epsilon neighborhood, which allows you to determine the vertical pattern |
785 | | of the scheme 1:1:3:1:1 according to QR code standard. |
786 | | */ |
787 | | CV_WRAP QRCodeDetector& setEpsY(double epsY); |
788 | | |
789 | | /** @brief use markers to improve the position of the corners of the QR code |
790 | | * |
791 | | * alignmentMarkers using by default |
792 | | */ |
793 | | CV_WRAP QRCodeDetector& setUseAlignmentMarkers(bool useAlignmentMarkers); |
794 | | |
795 | | /** @brief Decodes QR code on a curved surface in image once it's found by the detect() method. |
796 | | |
797 | | Returns UTF8-encoded output string or empty string if the code cannot be decoded. |
798 | | @param img grayscale or color (BGR) image containing QR code. |
799 | | @param points Quadrangle vertices found by detect() method (or some other algorithm). |
800 | | @param straight_qrcode The optional output image containing rectified and binarized QR code |
801 | | */ |
802 | | CV_WRAP cv::String decodeCurved(InputArray img, InputArray points, OutputArray straight_qrcode = noArray()); |
803 | | |
804 | | /** @brief Both detects and decodes QR code on a curved surface |
805 | | |
806 | | @param img grayscale or color (BGR) image containing QR code. |
807 | | @param points optional output array of vertices of the found QR code quadrangle. Will be empty if not found. |
808 | | @param straight_qrcode The optional output image containing rectified and binarized QR code |
809 | | */ |
810 | | CV_WRAP std::string detectAndDecodeCurved(InputArray img, OutputArray points=noArray(), |
811 | | OutputArray straight_qrcode = noArray()); |
812 | | |
813 | | /** @brief Returns a kind of encoding for the decoded info from the latest @ref decode or @ref detectAndDecode call |
814 | | @param codeIdx an index of the previously decoded QR code. |
815 | | When @ref decode or @ref detectAndDecode is used, valid value is zero. |
816 | | For @ref decodeMulti or @ref detectAndDecodeMulti use indices corresponding to the output order. |
817 | | */ |
818 | | CV_WRAP QRCodeEncoder::ECIEncodings getEncoding(int codeIdx = 0); |
819 | | }; |
820 | | |
821 | | class CV_EXPORTS_W_SIMPLE QRCodeDetectorAruco : public GraphicalCodeDetector { |
822 | | public: |
823 | | CV_WRAP QRCodeDetectorAruco(); |
824 | | |
825 | | struct CV_EXPORTS_W_SIMPLE Params { |
826 | | CV_WRAP Params(); |
827 | | |
828 | | /** @brief The minimum allowed pixel size of a QR module in the smallest image in the image pyramid, default 4.f */ |
829 | | CV_PROP_RW float minModuleSizeInPyramid; |
830 | | |
831 | | /** @brief The maximum allowed relative rotation for finder patterns in the same QR code, default pi/12 */ |
832 | | CV_PROP_RW float maxRotation; |
833 | | |
834 | | /** @brief The maximum allowed relative mismatch in module sizes for finder patterns in the same QR code, default 1.75f */ |
835 | | CV_PROP_RW float maxModuleSizeMismatch; |
836 | | |
837 | | /** @brief The maximum allowed module relative mismatch for timing pattern module, default 2.f |
838 | | * |
839 | | * If relative mismatch of timing pattern module more this value, penalty points will be added. |
840 | | * If a lot of penalty points are added, QR code will be rejected. */ |
841 | | CV_PROP_RW float maxTimingPatternMismatch; |
842 | | |
843 | | /** @brief The maximum allowed percentage of penalty points out of total pins in timing pattern, default 0.4f */ |
844 | | CV_PROP_RW float maxPenalties; |
845 | | |
846 | | /** @brief The maximum allowed relative color mismatch in the timing pattern, default 0.2f*/ |
847 | | CV_PROP_RW float maxColorsMismatch; |
848 | | |
849 | | /** @brief The algorithm find QR codes with almost minimum timing pattern score and minimum size, default 0.9f |
850 | | * |
851 | | * The QR code with the minimum "timing pattern score" and minimum "size" is selected as the best QR code. |
852 | | * If for the current QR code "timing pattern score" * scaleTimingPatternScore < "previous timing pattern score" and "size" < "previous size", then |
853 | | * current QR code set as the best QR code. */ |
854 | | CV_PROP_RW float scaleTimingPatternScore; |
855 | | }; |
856 | | |
857 | | /** @brief QR code detector constructor for Aruco-based algorithm. See cv::QRCodeDetectorAruco::Params */ |
858 | | CV_WRAP explicit QRCodeDetectorAruco(const QRCodeDetectorAruco::Params& params); |
859 | | |
860 | | /** @brief Detector parameters getter. See cv::QRCodeDetectorAruco::Params */ |
861 | | CV_WRAP const QRCodeDetectorAruco::Params& getDetectorParameters() const; |
862 | | |
863 | | /** @brief Detector parameters setter. See cv::QRCodeDetectorAruco::Params */ |
864 | | CV_WRAP QRCodeDetectorAruco& setDetectorParameters(const QRCodeDetectorAruco::Params& params); |
865 | | |
866 | | /** @brief Aruco detector parameters are used to search for the finder patterns. */ |
867 | | CV_WRAP const aruco::DetectorParameters& getArucoParameters() const; |
868 | | |
869 | | /** @brief Aruco detector parameters are used to search for the finder patterns. */ |
870 | | CV_WRAP void setArucoParameters(const aruco::DetectorParameters& params); |
871 | | }; |
872 | | |
873 | | //! @} |
874 | | } |
875 | | |
876 | | #include "opencv2/objdetect/detection_based_tracker.hpp" |
877 | | #include "opencv2/objdetect/face.hpp" |
878 | | #include "opencv2/objdetect/charuco_detector.hpp" |
879 | | #include "opencv2/objdetect/barcode.hpp" |
880 | | |
881 | | #endif |