Coverage Report

Created: 2025-07-23 07:06

/work/install-coverage/include/opencv4/opencv2/objdetect.hpp
Line
Count
Source (jump to first uncovered line)
1
/*M///////////////////////////////////////////////////////////////////////////////////////
2
//
3
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4
//
5
//  By downloading, copying, installing or using the software you agree to this license.
6
//  If you do not agree to this license, do not download, install,
7
//  copy or use the software.
8
//
9
//
10
//                          License Agreement
11
//                For Open Source Computer Vision Library
12
//
13
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
16
// Third party copyrights are property of their respective owners.
17
//
18
// Redistribution and use in source and binary forms, with or without modification,
19
// are permitted provided that the following conditions are met:
20
//
21
//   * Redistribution's of source code must retain the above copyright notice,
22
//     this list of conditions and the following disclaimer.
23
//
24
//   * Redistribution's in binary form must reproduce the above copyright notice,
25
//     this list of conditions and the following disclaimer in the documentation
26
//     and/or other materials provided with the distribution.
27
//
28
//   * The name of the copyright holders may not be used to endorse or promote products
29
//     derived from this software without specific prior written permission.
30
//
31
// This software is provided by the copyright holders and contributors "as is" and
32
// any express or implied warranties, including, but not limited to, the implied
33
// warranties of merchantability and fitness for a particular purpose are disclaimed.
34
// In no event shall the Intel Corporation or contributors be liable for any direct,
35
// indirect, incidental, special, exemplary, or consequential damages
36
// (including, but not limited to, procurement of substitute goods or services;
37
// loss of use, data, or profits; or business interruption) however caused
38
// and on any theory of liability, whether in contract, strict liability,
39
// or tort (including negligence or otherwise) arising in any way out of
40
// the use of this software, even if advised of the possibility of such damage.
41
//
42
//M*/
43
44
#ifndef OPENCV_OBJDETECT_HPP
45
#define OPENCV_OBJDETECT_HPP
46
47
#include "opencv2/core.hpp"
48
#include "opencv2/objdetect/aruco_detector.hpp"
49
#include "opencv2/objdetect/graphical_code_detector.hpp"
50
51
/**
52
@defgroup objdetect Object Detection
53
54
@{
55
    @defgroup objdetect_cascade_classifier Cascade Classifier for Object Detection
56
57
    The object detector described below has been initially proposed by Paul Viola @cite Viola01 and
58
    improved by Rainer Lienhart @cite Lienhart02 .
59
60
    First, a classifier (namely a *cascade of boosted classifiers working with haar-like features*) is
61
    trained with a few hundred sample views of a particular object (i.e., a face or a car), called
62
    positive examples, that are scaled to the same size (say, 20x20), and negative examples - arbitrary
63
    images of the same size.
64
65
    After a classifier is trained, it can be applied to a region of interest (of the same size as used
66
    during the training) in an input image. The classifier outputs a "1" if the region is likely to show
67
    the object (i.e., face/car), and "0" otherwise. To search for the object in the whole image one can
68
    move the search window across the image and check every location using the classifier. The
69
    classifier is designed so that it can be easily "resized" in order to be able to find the objects of
70
    interest at different sizes, which is more efficient than resizing the image itself. So, to find an
71
    object of an unknown size in the image the scan procedure should be done several times at different
72
    scales.
73
74
    The word "cascade" in the classifier name means that the resultant classifier consists of several
75
    simpler classifiers (*stages*) that are applied subsequently to a region of interest until at some
76
    stage the candidate is rejected or all the stages are passed. The word "boosted" means that the
77
    classifiers at every stage of the cascade are complex themselves and they are built out of basic
78
    classifiers using one of four different boosting techniques (weighted voting). Currently Discrete
79
    Adaboost, Real Adaboost, Gentle Adaboost and Logitboost are supported. The basic classifiers are
80
    decision-tree classifiers with at least 2 leaves. Haar-like features are the input to the basic
81
    classifiers, and are calculated as described below. The current algorithm uses the following
82
    Haar-like features:
83
84
    ![image](pics/haarfeatures.png)
85
86
    The feature used in a particular classifier is specified by its shape (1a, 2b etc.), position within
87
    the region of interest and the scale (this scale is not the same as the scale used at the detection
88
    stage, though these two scales are multiplied). For example, in the case of the third line feature
89
    (2c) the response is calculated as the difference between the sum of image pixels under the
90
    rectangle covering the whole feature (including the two white stripes and the black stripe in the
91
    middle) and the sum of the image pixels under the black stripe multiplied by 3 in order to
92
    compensate for the differences in the size of areas. The sums of pixel values over a rectangular
93
    regions are calculated rapidly using integral images (see below and the integral description).
94
95
    Check @ref tutorial_cascade_classifier "the corresponding tutorial" for more details.
96
97
    The following reference is for the detection part only. There is a separate application called
98
    opencv_traincascade that can train a cascade of boosted classifiers from a set of samples.
99
100
    @note In the new C++ interface it is also possible to use LBP (local binary pattern) features in
101
    addition to Haar-like features. .. [Viola01] Paul Viola and Michael J. Jones. Rapid Object Detection
102
    using a Boosted Cascade of Simple Features. IEEE CVPR, 2001. The paper is available online at
103
    <https://github.com/SvHey/thesis/blob/master/Literature/ObjectDetection/violaJones_CVPR2001.pdf>
104
105
    @defgroup objdetect_hog HOG (Histogram of Oriented Gradients) descriptor and object detector
106
    @defgroup objdetect_barcode Barcode detection and decoding
107
    @defgroup objdetect_qrcode QRCode detection and encoding
108
    @defgroup objdetect_dnn_face DNN-based face detection and recognition
109
110
    Check @ref tutorial_dnn_face "the corresponding tutorial" for more details.
111
112
    @defgroup objdetect_common Common functions and classes
113
    @defgroup objdetect_aruco ArUco markers and boards detection for robust camera pose estimation
114
    @{
115
        ArUco Marker Detection
116
        Square fiducial markers (also known as Augmented Reality Markers) are useful for easy,
117
        fast and robust camera pose estimation.
118
119
        The main functionality of ArucoDetector class is detection of markers in an image. If the markers are grouped
120
        as a board, then you can try to recover the missing markers with ArucoDetector::refineDetectedMarkers().
121
        ArUco markers can also be used for advanced chessboard corner finding. To do this, group the markers in the
122
        CharucoBoard and find the corners of the chessboard with the CharucoDetector::detectBoard().
123
124
        The implementation is based on the ArUco Library by R. Muñoz-Salinas and S. Garrido-Jurado @cite Aruco2014.
125
126
        Markers can also be detected based on the AprilTag 2 @cite wang2016iros fiducial detection method.
127
128
        @sa @cite Aruco2014
129
        This code has been originally developed by Sergio Garrido-Jurado as a project
130
        for Google Summer of Code 2015 (GSoC 15).
131
    @}
132
133
@}
134
 */
135
136
typedef struct CvHaarClassifierCascade CvHaarClassifierCascade;
137
138
namespace cv
139
{
140
141
//! @addtogroup objdetect_common
142
//! @{
143
144
///////////////////////////// Object Detection ////////////////////////////
145
146
/** @brief This class is used for grouping object candidates detected by Cascade Classifier, HOG etc.
147
148
instance of the class is to be passed to cv::partition
149
 */
150
class CV_EXPORTS SimilarRects
151
{
152
public:
153
0
    SimilarRects(double _eps) : eps(_eps) {}
154
    inline bool operator()(const Rect& r1, const Rect& r2) const
155
0
    {
156
0
        double delta = eps * ((std::min)(r1.width, r2.width) + (std::min)(r1.height, r2.height)) * 0.5;
157
0
        return std::abs(r1.x - r2.x) <= delta &&
158
0
            std::abs(r1.y - r2.y) <= delta &&
159
0
            std::abs(r1.x + r1.width - r2.x - r2.width) <= delta &&
160
0
            std::abs(r1.y + r1.height - r2.y - r2.height) <= delta;
161
0
    }
162
    double eps;
163
};
164
165
/** @brief Groups the object candidate rectangles.
166
167
@param rectList Input/output vector of rectangles. Output vector includes retained and grouped
168
rectangles. (The Python list is not modified in place.)
169
@param groupThreshold Minimum possible number of rectangles minus 1. The threshold is used in a
170
group of rectangles to retain it.
171
@param eps Relative difference between sides of the rectangles to merge them into a group.
172
173
The function is a wrapper for the generic function partition . It clusters all the input rectangles
174
using the rectangle equivalence criteria that combines rectangles with similar sizes and similar
175
locations. The similarity is defined by eps. When eps=0 , no clustering is done at all. If
176
\f$\texttt{eps}\rightarrow +\inf\f$ , all the rectangles are put in one cluster. Then, the small
177
clusters containing less than or equal to groupThreshold rectangles are rejected. In each other
178
cluster, the average rectangle is computed and put into the output rectangle list.
179
 */
180
CV_EXPORTS   void groupRectangles(std::vector<Rect>& rectList, int groupThreshold, double eps = 0.2);
181
/** @overload */
182
CV_EXPORTS_W void groupRectangles(CV_IN_OUT std::vector<Rect>& rectList, CV_OUT std::vector<int>& weights,
183
                                  int groupThreshold, double eps = 0.2);
184
/** @overload */
185
CV_EXPORTS   void groupRectangles(std::vector<Rect>& rectList, int groupThreshold,
186
                                  double eps, std::vector<int>* weights, std::vector<double>* levelWeights );
187
/** @overload */
188
CV_EXPORTS   void groupRectangles(std::vector<Rect>& rectList, std::vector<int>& rejectLevels,
189
                                  std::vector<double>& levelWeights, int groupThreshold, double eps = 0.2);
190
/** @overload */
191
CV_EXPORTS   void groupRectangles_meanshift(std::vector<Rect>& rectList, std::vector<double>& foundWeights,
192
                                            std::vector<double>& foundScales,
193
                                            double detectThreshold = 0.0, Size winDetSize = Size(64, 128));
194
//! @}
195
196
//! @addtogroup objdetect_cascade_classifier
197
//! @{
198
199
template<> struct DefaultDeleter<CvHaarClassifierCascade>{ CV_EXPORTS void operator ()(CvHaarClassifierCascade* obj) const; };
200
201
enum { CASCADE_DO_CANNY_PRUNING    = 1,
202
       CASCADE_SCALE_IMAGE         = 2,
203
       CASCADE_FIND_BIGGEST_OBJECT = 4,
204
       CASCADE_DO_ROUGH_SEARCH     = 8
205
     };
206
207
class CV_EXPORTS_W BaseCascadeClassifier : public Algorithm
208
{
209
public:
210
    virtual ~BaseCascadeClassifier();
211
    virtual bool empty() const CV_OVERRIDE = 0;
212
    virtual bool load( const String& filename ) = 0;
213
    virtual void detectMultiScale( InputArray image,
214
                           CV_OUT std::vector<Rect>& objects,
215
                           double scaleFactor,
216
                           int minNeighbors, int flags,
217
                           Size minSize, Size maxSize ) = 0;
218
219
    virtual void detectMultiScale( InputArray image,
220
                           CV_OUT std::vector<Rect>& objects,
221
                           CV_OUT std::vector<int>& numDetections,
222
                           double scaleFactor,
223
                           int minNeighbors, int flags,
224
                           Size minSize, Size maxSize ) = 0;
225
226
    virtual void detectMultiScale( InputArray image,
227
                                   CV_OUT std::vector<Rect>& objects,
228
                                   CV_OUT std::vector<int>& rejectLevels,
229
                                   CV_OUT std::vector<double>& levelWeights,
230
                                   double scaleFactor,
231
                                   int minNeighbors, int flags,
232
                                   Size minSize, Size maxSize,
233
                                   bool outputRejectLevels ) = 0;
234
235
    virtual bool isOldFormatCascade() const = 0;
236
    virtual Size getOriginalWindowSize() const = 0;
237
    virtual int getFeatureType() const = 0;
238
    virtual void* getOldCascade() = 0;
239
240
    class CV_EXPORTS MaskGenerator
241
    {
242
    public:
243
0
        virtual ~MaskGenerator() {}
244
        virtual Mat generateMask(const Mat& src)=0;
245
0
        virtual void initializeMask(const Mat& /*src*/) { }
246
    };
247
    virtual void setMaskGenerator(const Ptr<MaskGenerator>& maskGenerator) = 0;
248
    virtual Ptr<MaskGenerator> getMaskGenerator() = 0;
249
};
250
251
/** @example samples/cpp/facedetect.cpp
252
This program demonstrates usage of the Cascade classifier class
253
\image html Cascade_Classifier_Tutorial_Result_Haar.jpg "Sample screenshot" width=321 height=254
254
*/
255
/** @brief Cascade classifier class for object detection.
256
 */
257
class CV_EXPORTS_W CascadeClassifier
258
{
259
public:
260
    CV_WRAP CascadeClassifier();
261
    /** @brief Loads a classifier from a file.
262
263
    @param filename Name of the file from which the classifier is loaded.
264
     */
265
    CV_WRAP CascadeClassifier(const String& filename);
266
    ~CascadeClassifier();
267
    /** @brief Checks whether the classifier has been loaded.
268
    */
269
    CV_WRAP bool empty() const;
270
    /** @brief Loads a classifier from a file.
271
272
    @param filename Name of the file from which the classifier is loaded. The file may contain an old
273
    HAAR classifier trained by the haartraining application or a new cascade classifier trained by the
274
    traincascade application.
275
     */
276
    CV_WRAP bool load( const String& filename );
277
    /** @brief Reads a classifier from a FileStorage node.
278
279
    @note The file may contain a new cascade classifier (trained by the traincascade application) only.
280
     */
281
    CV_WRAP bool read( const FileNode& node );
282
283
    /** @brief Detects objects of different sizes in the input image. The detected objects are returned as a list
284
    of rectangles.
285
286
    @param image Matrix of the type CV_8U containing an image where objects are detected.
287
    @param objects Vector of rectangles where each rectangle contains the detected object, the
288
    rectangles may be partially outside the original image.
289
    @param scaleFactor Parameter specifying how much the image size is reduced at each image scale.
290
    @param minNeighbors Parameter specifying how many neighbors each candidate rectangle should have
291
    to retain it.
292
    @param flags Parameter with the same meaning for an old cascade as in the function
293
    cvHaarDetectObjects. It is not used for a new cascade.
294
    @param minSize Minimum possible object size. Objects smaller than that are ignored.
295
    @param maxSize Maximum possible object size. Objects larger than that are ignored. If `maxSize == minSize` model is evaluated on single scale.
296
    */
297
    CV_WRAP void detectMultiScale( InputArray image,
298
                          CV_OUT std::vector<Rect>& objects,
299
                          double scaleFactor = 1.1,
300
                          int minNeighbors = 3, int flags = 0,
301
                          Size minSize = Size(),
302
                          Size maxSize = Size() );
303
304
    /** @overload
305
    @param image Matrix of the type CV_8U containing an image where objects are detected.
306
    @param objects Vector of rectangles where each rectangle contains the detected object, the
307
    rectangles may be partially outside the original image.
308
    @param numDetections Vector of detection numbers for the corresponding objects. An object's number
309
    of detections is the number of neighboring positively classified rectangles that were joined
310
    together to form the object.
311
    @param scaleFactor Parameter specifying how much the image size is reduced at each image scale.
312
    @param minNeighbors Parameter specifying how many neighbors each candidate rectangle should have
313
    to retain it.
314
    @param flags Parameter with the same meaning for an old cascade as in the function
315
    cvHaarDetectObjects. It is not used for a new cascade.
316
    @param minSize Minimum possible object size. Objects smaller than that are ignored.
317
    @param maxSize Maximum possible object size. Objects larger than that are ignored. If `maxSize == minSize` model is evaluated on single scale.
318
    */
319
    CV_WRAP_AS(detectMultiScale2) void detectMultiScale( InputArray image,
320
                          CV_OUT std::vector<Rect>& objects,
321
                          CV_OUT std::vector<int>& numDetections,
322
                          double scaleFactor=1.1,
323
                          int minNeighbors=3, int flags=0,
324
                          Size minSize=Size(),
325
                          Size maxSize=Size() );
326
327
    /** @overload
328
    This function allows you to retrieve the final stage decision certainty of classification.
329
    For this, one needs to set `outputRejectLevels` on true and provide the `rejectLevels` and `levelWeights` parameter.
330
    For each resulting detection, `levelWeights` will then contain the certainty of classification at the final stage.
331
    This value can then be used to separate strong from weaker classifications.
332
333
    A code sample on how to use it efficiently can be found below:
334
    @code
335
    Mat img;
336
    vector<double> weights;
337
    vector<int> levels;
338
    vector<Rect> detections;
339
    CascadeClassifier model("/path/to/your/model.xml");
340
    model.detectMultiScale(img, detections, levels, weights, 1.1, 3, 0, Size(), Size(), true);
341
    cerr << "Detection " << detections[0] << " with weight " << weights[0] << endl;
342
    @endcode
343
    */
344
    CV_WRAP_AS(detectMultiScale3) void detectMultiScale( InputArray image,
345
                                  CV_OUT std::vector<Rect>& objects,
346
                                  CV_OUT std::vector<int>& rejectLevels,
347
                                  CV_OUT std::vector<double>& levelWeights,
348
                                  double scaleFactor = 1.1,
349
                                  int minNeighbors = 3, int flags = 0,
350
                                  Size minSize = Size(),
351
                                  Size maxSize = Size(),
352
                                  bool outputRejectLevels = false );
353
354
    CV_WRAP bool isOldFormatCascade() const;
355
    CV_WRAP Size getOriginalWindowSize() const;
356
    CV_WRAP int getFeatureType() const;
357
    void* getOldCascade();
358
359
    CV_WRAP static bool convert(const String& oldcascade, const String& newcascade);
360
361
    void setMaskGenerator(const Ptr<BaseCascadeClassifier::MaskGenerator>& maskGenerator);
362
    Ptr<BaseCascadeClassifier::MaskGenerator> getMaskGenerator();
363
364
    Ptr<BaseCascadeClassifier> cc;
365
};
366
367
CV_EXPORTS Ptr<BaseCascadeClassifier::MaskGenerator> createFaceDetectionMaskGenerator();
368
//! @}
369
370
//! @addtogroup objdetect_hog
371
//! @{
372
//////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector //////////////
373
374
//! struct for detection region of interest (ROI)
375
struct DetectionROI
376
{
377
   //! scale(size) of the bounding box
378
   double scale;
379
   //! set of requested locations to be evaluated
380
   std::vector<cv::Point> locations;
381
   //! vector that will contain confidence values for each location
382
   std::vector<double> confidences;
383
};
384
385
/**@brief Implementation of HOG (Histogram of Oriented Gradients) descriptor and object detector.
386
387
the HOG descriptor algorithm introduced by Navneet Dalal and Bill Triggs @cite Dalal2005 .
388
389
useful links:
390
391
https://hal.inria.fr/inria-00548512/document/
392
393
https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients
394
395
https://software.intel.com/en-us/ipp-dev-reference-histogram-of-oriented-gradients-hog-descriptor
396
397
http://www.learnopencv.com/histogram-of-oriented-gradients
398
399
http://www.learnopencv.com/handwritten-digits-classification-an-opencv-c-python-tutorial
400
401
 */
402
struct CV_EXPORTS_W HOGDescriptor
403
{
404
public:
405
    enum HistogramNormType { L2Hys = 0 //!< Default histogramNormType
406
         };
407
    enum { DEFAULT_NLEVELS = 64 //!< Default nlevels value.
408
         };
409
    enum DescriptorStorageFormat { DESCR_FORMAT_COL_BY_COL, DESCR_FORMAT_ROW_BY_ROW };
410
411
    /**@brief Creates the HOG descriptor and detector with default parameters.
412
413
    aqual to HOGDescriptor(Size(64,128), Size(16,16), Size(8,8), Size(8,8), 9 )
414
    */
415
    CV_WRAP HOGDescriptor() : winSize(64,128), blockSize(16,16), blockStride(8,8),
416
        cellSize(8,8), nbins(9), derivAperture(1), winSigma(-1),
417
        histogramNormType(HOGDescriptor::L2Hys), L2HysThreshold(0.2), gammaCorrection(true),
418
        free_coef(-1.f), nlevels(HOGDescriptor::DEFAULT_NLEVELS), signedGradient(false)
419
0
    {}
420
421
    /** @overload
422
    @param _winSize sets winSize with given value.
423
    @param _blockSize sets blockSize with given value.
424
    @param _blockStride sets blockStride with given value.
425
    @param _cellSize sets cellSize with given value.
426
    @param _nbins sets nbins with given value.
427
    @param _derivAperture sets derivAperture with given value.
428
    @param _winSigma sets winSigma with given value.
429
    @param _histogramNormType sets histogramNormType with given value.
430
    @param _L2HysThreshold sets L2HysThreshold with given value.
431
    @param _gammaCorrection sets gammaCorrection with given value.
432
    @param _nlevels sets nlevels with given value.
433
    @param _signedGradient sets signedGradient with given value.
434
    */
435
    CV_WRAP HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride,
436
                  Size _cellSize, int _nbins, int _derivAperture=1, double _winSigma=-1,
437
                  HOGDescriptor::HistogramNormType _histogramNormType=HOGDescriptor::L2Hys,
438
                  double _L2HysThreshold=0.2, bool _gammaCorrection=false,
439
                  int _nlevels=HOGDescriptor::DEFAULT_NLEVELS, bool _signedGradient=false)
440
    : winSize(_winSize), blockSize(_blockSize), blockStride(_blockStride), cellSize(_cellSize),
441
    nbins(_nbins), derivAperture(_derivAperture), winSigma(_winSigma),
442
    histogramNormType(_histogramNormType), L2HysThreshold(_L2HysThreshold),
443
    gammaCorrection(_gammaCorrection), free_coef(-1.f), nlevels(_nlevels), signedGradient(_signedGradient)
444
0
    {}
445
446
    /** @overload
447
448
    Creates the HOG descriptor and detector and loads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file.
449
    @param filename The file name containing HOGDescriptor properties and coefficients for the linear SVM classifier.
450
    */
451
    CV_WRAP HOGDescriptor(const String& filename)
452
0
    {
453
0
        load(filename);
454
0
    }
455
456
    /** @overload
457
    @param d the HOGDescriptor which cloned to create a new one.
458
    */
459
    HOGDescriptor(const HOGDescriptor& d)
460
0
    {
461
0
        d.copyTo(*this);
462
0
    }
463
464
    /**@brief Default destructor.
465
    */
466
0
    virtual ~HOGDescriptor() {}
467
468
    /**@brief Returns the number of coefficients required for the classification.
469
    */
470
    CV_WRAP size_t getDescriptorSize() const;
471
472
    /** @brief Checks if detector size equal to descriptor size.
473
    */
474
    CV_WRAP bool checkDetectorSize() const;
475
476
    /** @brief Returns winSigma value
477
    */
478
    CV_WRAP double getWinSigma() const;
479
480
    /**@example samples/cpp/peopledetect.cpp
481
    */
482
    /**@brief Sets coefficients for the linear SVM classifier.
483
    @param svmdetector coefficients for the linear SVM classifier.
484
    */
485
    CV_WRAP virtual void setSVMDetector(InputArray svmdetector);
486
487
    /** @brief Reads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file node.
488
    @param fn File node
489
    */
490
    virtual bool read(FileNode& fn);
491
492
    /** @brief Stores HOGDescriptor parameters and coefficients for the linear SVM classifier in a file storage.
493
    @param fs File storage
494
    @param objname Object name
495
    */
496
    virtual void write(FileStorage& fs, const String& objname) const;
497
498
    /** @brief loads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file
499
    @param filename Name of the file to read.
500
    @param objname The optional name of the node to read (if empty, the first top-level node will be used).
501
    */
502
    CV_WRAP virtual bool load(const String& filename, const String& objname = String());
503
504
    /** @brief saves HOGDescriptor parameters and coefficients for the linear SVM classifier to a file
505
    @param filename File name
506
    @param objname Object name
507
    */
508
    CV_WRAP virtual void save(const String& filename, const String& objname = String()) const;
509
510
    /** @brief clones the HOGDescriptor
511
    @param c cloned HOGDescriptor
512
    */
513
    virtual void copyTo(HOGDescriptor& c) const;
514
515
    /**@example samples/cpp/train_HOG.cpp
516
    */
517
    /** @brief Computes HOG descriptors of given image.
518
    @param img Matrix of the type CV_8U containing an image where HOG features will be calculated.
519
    @param descriptors Matrix of the type CV_32F
520
    @param winStride Window stride. It must be a multiple of block stride.
521
    @param padding Padding
522
    @param locations Vector of Point
523
    */
524
    CV_WRAP virtual void compute(InputArray img,
525
                         CV_OUT std::vector<float>& descriptors,
526
                         Size winStride = Size(), Size padding = Size(),
527
                         const std::vector<Point>& locations = std::vector<Point>()) const;
528
529
    /** @brief Performs object detection without a multi-scale window.
530
    @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
531
    @param foundLocations Vector of point where each point contains left-top corner point of detected object boundaries.
532
    @param weights Vector that will contain confidence values for each detected object.
533
    @param hitThreshold Threshold for the distance between features and SVM classifying plane.
534
    Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient).
535
    But if the free coefficient is omitted (which is allowed), you can specify it manually here.
536
    @param winStride Window stride. It must be a multiple of block stride.
537
    @param padding Padding
538
    @param searchLocations Vector of Point includes set of requested locations to be evaluated.
539
    */
540
    CV_WRAP virtual void detect(InputArray img, CV_OUT std::vector<Point>& foundLocations,
541
                        CV_OUT std::vector<double>& weights,
542
                        double hitThreshold = 0, Size winStride = Size(),
543
                        Size padding = Size(),
544
                        const std::vector<Point>& searchLocations = std::vector<Point>()) const;
545
546
    /** @brief Performs object detection without a multi-scale window.
547
    @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
548
    @param foundLocations Vector of point where each point contains left-top corner point of detected object boundaries.
549
    @param hitThreshold Threshold for the distance between features and SVM classifying plane.
550
    Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient).
551
    But if the free coefficient is omitted (which is allowed), you can specify it manually here.
552
    @param winStride Window stride. It must be a multiple of block stride.
553
    @param padding Padding
554
    @param searchLocations Vector of Point includes locations to search.
555
    */
556
    virtual void detect(InputArray img, CV_OUT std::vector<Point>& foundLocations,
557
                        double hitThreshold = 0, Size winStride = Size(),
558
                        Size padding = Size(),
559
                        const std::vector<Point>& searchLocations=std::vector<Point>()) const;
560
561
    /** @brief Detects objects of different sizes in the input image. The detected objects are returned as a list
562
    of rectangles.
563
    @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
564
    @param foundLocations Vector of rectangles where each rectangle contains the detected object.
565
    @param foundWeights Vector that will contain confidence values for each detected object.
566
    @param hitThreshold Threshold for the distance between features and SVM classifying plane.
567
    Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient).
568
    But if the free coefficient is omitted (which is allowed), you can specify it manually here.
569
    @param winStride Window stride. It must be a multiple of block stride.
570
    @param padding Padding
571
    @param scale Coefficient of the detection window increase.
572
    @param groupThreshold Coefficient to regulate the similarity threshold. When detected, some objects can be covered
573
    by many rectangles. 0 means not to perform grouping.
574
    @param useMeanshiftGrouping indicates grouping algorithm
575
    */
576
    CV_WRAP virtual void detectMultiScale(InputArray img, CV_OUT std::vector<Rect>& foundLocations,
577
                                  CV_OUT std::vector<double>& foundWeights, double hitThreshold = 0,
578
                                  Size winStride = Size(), Size padding = Size(), double scale = 1.05,
579
                                  double groupThreshold = 2.0, bool useMeanshiftGrouping = false) const;
580
581
    /** @brief Detects objects of different sizes in the input image. The detected objects are returned as a list
582
    of rectangles.
583
    @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
584
    @param foundLocations Vector of rectangles where each rectangle contains the detected object.
585
    @param hitThreshold Threshold for the distance between features and SVM classifying plane.
586
    Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient).
587
    But if the free coefficient is omitted (which is allowed), you can specify it manually here.
588
    @param winStride Window stride. It must be a multiple of block stride.
589
    @param padding Padding
590
    @param scale Coefficient of the detection window increase.
591
    @param groupThreshold Coefficient to regulate the similarity threshold. When detected, some objects can be covered
592
    by many rectangles. 0 means not to perform grouping.
593
    @param useMeanshiftGrouping indicates grouping algorithm
594
    */
595
    virtual void detectMultiScale(InputArray img, CV_OUT std::vector<Rect>& foundLocations,
596
                                  double hitThreshold = 0, Size winStride = Size(),
597
                                  Size padding = Size(), double scale = 1.05,
598
                                  double groupThreshold = 2.0, bool useMeanshiftGrouping = false) const;
599
600
    /** @brief  Computes gradients and quantized gradient orientations.
601
    @param img Matrix contains the image to be computed
602
    @param grad Matrix of type CV_32FC2 contains computed gradients
603
    @param angleOfs Matrix of type CV_8UC2 contains quantized gradient orientations
604
    @param paddingTL Padding from top-left
605
    @param paddingBR Padding from bottom-right
606
    */
607
    CV_WRAP virtual void computeGradient(InputArray img, InputOutputArray grad, InputOutputArray angleOfs,
608
                                 Size paddingTL = Size(), Size paddingBR = Size()) const;
609
610
    /** @brief Returns coefficients of the classifier trained for people detection (for 64x128 windows).
611
    */
612
    CV_WRAP static std::vector<float> getDefaultPeopleDetector();
613
614
    /**@example samples/tapi/hog.cpp
615
    */
616
    /** @brief Returns coefficients of the classifier trained for people detection (for 48x96 windows).
617
    */
618
    CV_WRAP static std::vector<float> getDaimlerPeopleDetector();
619
620
    //! Detection window size. Align to block size and block stride. Default value is Size(64,128).
621
    CV_PROP Size winSize;
622
623
    //! Block size in pixels. Align to cell size. Default value is Size(16,16).
624
    CV_PROP Size blockSize;
625
626
    //! Block stride. It must be a multiple of cell size. Default value is Size(8,8).
627
    CV_PROP Size blockStride;
628
629
    //! Cell size. Default value is Size(8,8).
630
    CV_PROP Size cellSize;
631
632
    //! Number of bins used in the calculation of histogram of gradients. Default value is 9.
633
    CV_PROP int nbins;
634
635
    //! not documented
636
    CV_PROP int derivAperture;
637
638
    //! Gaussian smoothing window parameter.
639
    CV_PROP double winSigma;
640
641
    //! histogramNormType
642
    CV_PROP HOGDescriptor::HistogramNormType histogramNormType;
643
644
    //! L2-Hys normalization method shrinkage.
645
    CV_PROP double L2HysThreshold;
646
647
    //! Flag to specify whether the gamma correction preprocessing is required or not.
648
    CV_PROP bool gammaCorrection;
649
650
    //! coefficients for the linear SVM classifier.
651
    CV_PROP std::vector<float> svmDetector;
652
653
    //! coefficients for the linear SVM classifier used when OpenCL is enabled
654
    UMat oclSvmDetector;
655
656
    //! not documented
657
    float free_coef;
658
659
    //! Maximum number of detection window increases. Default value is 64
660
    CV_PROP int nlevels;
661
662
    //! Indicates signed gradient will be used or not
663
    CV_PROP bool signedGradient;
664
665
    /** @brief evaluate specified ROI and return confidence value for each location
666
    @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
667
    @param locations Vector of Point
668
    @param foundLocations Vector of Point where each Point is detected object's top-left point.
669
    @param confidences confidences
670
    @param hitThreshold Threshold for the distance between features and SVM classifying plane. Usually
671
    it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if
672
    the free coefficient is omitted (which is allowed), you can specify it manually here
673
    @param winStride winStride
674
    @param padding padding
675
    */
676
    virtual void detectROI(InputArray img, const std::vector<cv::Point> &locations,
677
                                   CV_OUT std::vector<cv::Point>& foundLocations, CV_OUT std::vector<double>& confidences,
678
                                   double hitThreshold = 0, cv::Size winStride = Size(),
679
                                   cv::Size padding = Size()) const;
680
681
    /** @brief evaluate specified ROI and return confidence value for each location in multiple scales
682
    @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
683
    @param foundLocations Vector of rectangles where each rectangle contains the detected object.
684
    @param locations Vector of DetectionROI
685
    @param hitThreshold Threshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified
686
    in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.
687
    @param groupThreshold Minimum possible number of rectangles minus 1. The threshold is used in a group of rectangles to retain it.
688
    */
689
    virtual void detectMultiScaleROI(InputArray img,
690
                                     CV_OUT std::vector<cv::Rect>& foundLocations,
691
                                     std::vector<DetectionROI>& locations,
692
                                     double hitThreshold = 0,
693
                                     int groupThreshold = 0) const;
694
695
    /** @brief Groups the object candidate rectangles.
696
    @param rectList  Input/output vector of rectangles. Output vector includes retained and grouped rectangles. (The Python list is not modified in place.)
697
    @param weights Input/output vector of weights of rectangles. Output vector includes weights of retained and grouped rectangles. (The Python list is not modified in place.)
698
    @param groupThreshold Minimum possible number of rectangles minus 1. The threshold is used in a group of rectangles to retain it.
699
    @param eps Relative difference between sides of the rectangles to merge them into a group.
700
    */
701
    void groupRectangles(std::vector<cv::Rect>& rectList, std::vector<double>& weights, int groupThreshold, double eps) const;
702
};
703
//! @}
704
705
//! @addtogroup objdetect_qrcode
706
//! @{
707
708
class CV_EXPORTS_W QRCodeEncoder {
709
protected:
710
    QRCodeEncoder();  // use ::create()
711
public:
712
    virtual ~QRCodeEncoder();
713
714
    enum EncodeMode {
715
        MODE_AUTO              = -1,
716
        MODE_NUMERIC           = 1, // 0b0001
717
        MODE_ALPHANUMERIC      = 2, // 0b0010
718
        MODE_BYTE              = 4, // 0b0100
719
        MODE_ECI               = 7, // 0b0111
720
        MODE_KANJI             = 8, // 0b1000
721
        MODE_STRUCTURED_APPEND = 3  // 0b0011
722
    };
723
724
    enum CorrectionLevel {
725
        CORRECT_LEVEL_L = 0,
726
        CORRECT_LEVEL_M = 1,
727
        CORRECT_LEVEL_Q = 2,
728
        CORRECT_LEVEL_H = 3
729
    };
730
731
    enum ECIEncodings {
732
        ECI_SHIFT_JIS = 20,
733
        ECI_UTF8 = 26,
734
    };
735
736
    /** @brief QR code encoder parameters. */
737
    struct CV_EXPORTS_W_SIMPLE Params
738
    {
739
        CV_WRAP Params();
740
741
        //! The optional version of QR code (by default - maximum possible depending on the length of the string).
742
        CV_PROP_RW int version;
743
744
        //! The optional level of error correction (by default - the lowest).
745
        CV_PROP_RW QRCodeEncoder::CorrectionLevel correction_level;
746
747
        //! The optional encoding mode - Numeric, Alphanumeric, Byte, Kanji, ECI or Structured Append.
748
        CV_PROP_RW QRCodeEncoder::EncodeMode mode;
749
750
        //! The optional number of QR codes to generate in Structured Append mode.
751
        CV_PROP_RW int structure_number;
752
    };
753
754
    /** @brief Constructor
755
    @param parameters QR code encoder parameters QRCodeEncoder::Params
756
    */
757
    static CV_WRAP
758
    Ptr<QRCodeEncoder> create(const QRCodeEncoder::Params& parameters = QRCodeEncoder::Params());
759
760
    /** @brief Generates QR code from input string.
761
     @param encoded_info Input string to encode.
762
     @param qrcode Generated QR code.
763
    */
764
    CV_WRAP virtual void encode(const String& encoded_info, OutputArray qrcode) = 0;
765
766
    /** @brief Generates QR code from input string in Structured Append mode. The encoded message is splitting over a number of QR codes.
767
     @param encoded_info Input string to encode.
768
     @param qrcodes Vector of generated QR codes.
769
    */
770
    CV_WRAP virtual void encodeStructuredAppend(const String& encoded_info, OutputArrayOfArrays qrcodes) = 0;
771
772
};
773
class CV_EXPORTS_W_SIMPLE QRCodeDetector : public GraphicalCodeDetector
774
{
775
public:
776
    CV_WRAP QRCodeDetector();
777
778
    /** @brief sets the epsilon used during the horizontal scan of QR code stop marker detection.
779
     @param epsX Epsilon neighborhood, which allows you to determine the horizontal pattern
780
     of the scheme 1:1:3:1:1 according to QR code standard.
781
    */
782
    CV_WRAP QRCodeDetector& setEpsX(double epsX);
783
    /** @brief sets the epsilon used during the vertical scan of QR code stop marker detection.
784
     @param epsY Epsilon neighborhood, which allows you to determine the vertical pattern
785
     of the scheme 1:1:3:1:1 according to QR code standard.
786
     */
787
    CV_WRAP QRCodeDetector& setEpsY(double epsY);
788
789
    /** @brief use markers to improve the position of the corners of the QR code
790
     *
791
     * alignmentMarkers using by default
792
     */
793
    CV_WRAP QRCodeDetector& setUseAlignmentMarkers(bool useAlignmentMarkers);
794
795
    /** @brief Decodes QR code on a curved surface in image once it's found by the detect() method.
796
797
     Returns UTF8-encoded output string or empty string if the code cannot be decoded.
798
     @param img grayscale or color (BGR) image containing QR code.
799
     @param points Quadrangle vertices found by detect() method (or some other algorithm).
800
     @param straight_qrcode The optional output image containing rectified and binarized QR code
801
     */
802
    CV_WRAP cv::String decodeCurved(InputArray img, InputArray points, OutputArray straight_qrcode = noArray());
803
804
    /** @brief Both detects and decodes QR code on a curved surface
805
806
     @param img grayscale or color (BGR) image containing QR code.
807
     @param points optional output array of vertices of the found QR code quadrangle. Will be empty if not found.
808
     @param straight_qrcode The optional output image containing rectified and binarized QR code
809
     */
810
    CV_WRAP std::string detectAndDecodeCurved(InputArray img, OutputArray points=noArray(),
811
                                              OutputArray straight_qrcode = noArray());
812
813
    /** @brief Returns a kind of encoding for the decoded info from the latest @ref decode or @ref detectAndDecode call
814
    @param codeIdx an index of the previously decoded QR code.
815
                   When @ref decode or @ref detectAndDecode is used, valid value is zero.
816
                   For @ref decodeMulti or @ref detectAndDecodeMulti use indices corresponding to the output order.
817
    */
818
    CV_WRAP QRCodeEncoder::ECIEncodings getEncoding(int codeIdx = 0);
819
};
820
821
class CV_EXPORTS_W_SIMPLE QRCodeDetectorAruco : public GraphicalCodeDetector {
822
public:
823
    CV_WRAP QRCodeDetectorAruco();
824
825
    struct CV_EXPORTS_W_SIMPLE Params {
826
        CV_WRAP Params();
827
828
        /** @brief The minimum allowed pixel size of a QR module in the smallest image in the image pyramid, default 4.f */
829
        CV_PROP_RW float minModuleSizeInPyramid;
830
831
        /** @brief The maximum allowed relative rotation for finder patterns in the same QR code, default pi/12 */
832
        CV_PROP_RW float maxRotation;
833
834
        /** @brief The maximum allowed relative mismatch in module sizes for finder patterns in the same QR code, default 1.75f */
835
        CV_PROP_RW float maxModuleSizeMismatch;
836
837
        /** @brief The maximum allowed module relative mismatch for timing pattern module, default 2.f
838
         *
839
         * If relative mismatch of timing pattern module more this value, penalty points will be added.
840
         * If a lot of penalty points are added, QR code will be rejected. */
841
        CV_PROP_RW float maxTimingPatternMismatch;
842
843
        /** @brief The maximum allowed percentage of penalty points out of total pins in timing pattern, default 0.4f */
844
        CV_PROP_RW float maxPenalties;
845
846
        /** @brief The maximum allowed relative color mismatch in the timing pattern, default 0.2f*/
847
        CV_PROP_RW float maxColorsMismatch;
848
849
        /** @brief The algorithm find QR codes with almost minimum timing pattern score and minimum size, default 0.9f
850
         *
851
         * The QR code with the minimum "timing pattern score" and minimum "size" is selected as the best QR code.
852
         * If for the current QR code "timing pattern score" * scaleTimingPatternScore < "previous timing pattern score" and "size" < "previous size", then
853
         * current QR code set as the best QR code. */
854
        CV_PROP_RW float scaleTimingPatternScore;
855
    };
856
857
    /** @brief QR code detector constructor for Aruco-based algorithm. See cv::QRCodeDetectorAruco::Params */
858
    CV_WRAP explicit QRCodeDetectorAruco(const QRCodeDetectorAruco::Params& params);
859
860
    /** @brief Detector parameters getter. See cv::QRCodeDetectorAruco::Params */
861
    CV_WRAP const QRCodeDetectorAruco::Params& getDetectorParameters() const;
862
863
    /** @brief Detector parameters setter. See cv::QRCodeDetectorAruco::Params */
864
    CV_WRAP QRCodeDetectorAruco& setDetectorParameters(const QRCodeDetectorAruco::Params& params);
865
866
    /** @brief Aruco detector parameters are used to search for the finder patterns. */
867
    CV_WRAP const aruco::DetectorParameters& getArucoParameters() const;
868
869
    /** @brief Aruco detector parameters are used to search for the finder patterns. */
870
    CV_WRAP void setArucoParameters(const aruco::DetectorParameters& params);
871
};
872
873
//! @}
874
}
875
876
#include "opencv2/objdetect/detection_based_tracker.hpp"
877
#include "opencv2/objdetect/face.hpp"
878
#include "opencv2/objdetect/charuco_detector.hpp"
879
#include "opencv2/objdetect/barcode.hpp"
880
881
#endif