Coverage Report

Created: 2025-09-27 07:21

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/work/install-coverage/include/opencv4/opencv2/imgproc.hpp
Line
Count
Source
1
/*M///////////////////////////////////////////////////////////////////////////////////////
2
//
3
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4
//
5
//  By downloading, copying, installing or using the software you agree to this license.
6
//  If you do not agree to this license, do not download, install,
7
//  copy or use the software.
8
//
9
//
10
//                           License Agreement
11
//                For Open Source Computer Vision Library
12
//
13
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15
// Third party copyrights are property of their respective owners.
16
//
17
// Redistribution and use in source and binary forms, with or without modification,
18
// are permitted provided that the following conditions are met:
19
//
20
//   * Redistribution's of source code must retain the above copyright notice,
21
//     this list of conditions and the following disclaimer.
22
//
23
//   * Redistribution's in binary form must reproduce the above copyright notice,
24
//     this list of conditions and the following disclaimer in the documentation
25
//     and/or other materials provided with the distribution.
26
//
27
//   * The name of the copyright holders may not be used to endorse or promote products
28
//     derived from this software without specific prior written permission.
29
//
30
// This software is provided by the copyright holders and contributors "as is" and
31
// any express or implied warranties, including, but not limited to, the implied
32
// warranties of merchantability and fitness for a particular purpose are disclaimed.
33
// In no event shall the Intel Corporation or contributors be liable for any direct,
34
// indirect, incidental, special, exemplary, or consequential damages
35
// (including, but not limited to, procurement of substitute goods or services;
36
// loss of use, data, or profits; or business interruption) however caused
37
// and on any theory of liability, whether in contract, strict liability,
38
// or tort (including negligence or otherwise) arising in any way out of
39
// the use of this software, even if advised of the possibility of such damage.
40
//
41
//M*/
42
43
#ifndef OPENCV_IMGPROC_HPP
44
#define OPENCV_IMGPROC_HPP
45
46
#include "opencv2/core.hpp"
47
48
/**
49
@defgroup imgproc Image Processing
50
51
This module offers a comprehensive suite of image processing functions, enabling tasks such as those listed above.
52
53
@{
54
    @defgroup imgproc_filter Image Filtering
55
56
    Functions and classes described in this section are used to perform various linear or non-linear
57
    filtering operations on 2D images (represented as Mat's). It means that for each pixel location
58
    \f$(x,y)\f$ in the source image (normally, rectangular), its neighborhood is considered and used to
59
    compute the response. In case of a linear filter, it is a weighted sum of pixel values. In case of
60
    morphological operations, it is the minimum or maximum values, and so on. The computed response is
61
    stored in the destination image at the same location \f$(x,y)\f$. It means that the output image
62
    will be of the same size as the input image. Normally, the functions support multi-channel arrays,
63
    in which case every channel is processed independently. Therefore, the output image will also have
64
    the same number of channels as the input one.
65
66
    Another common feature of the functions and classes described in this section is that, unlike
67
    simple arithmetic functions, they need to extrapolate values of some non-existing pixels. For
68
    example, if you want to smooth an image using a Gaussian \f$3 \times 3\f$ filter, then, when
69
    processing the left-most pixels in each row, you need pixels to the left of them, that is, outside
70
    of the image. You can let these pixels be the same as the left-most image pixels ("replicated
71
    border" extrapolation method), or assume that all the non-existing pixels are zeros ("constant
72
    border" extrapolation method), and so on. OpenCV enables you to specify the extrapolation method.
73
    For details, see #BorderTypes
74
75
    @anchor filter_depths
76
    ### Depth combinations
77
    Input depth (src.depth()) | Output depth (ddepth)
78
    --------------------------|----------------------
79
    CV_8U                     | -1/CV_16S/CV_32F/CV_64F
80
    CV_16U/CV_16S             | -1/CV_32F/CV_64F
81
    CV_32F                    | -1/CV_32F
82
    CV_64F                    | -1/CV_64F
83
84
    @note when ddepth=-1, the output image will have the same depth as the source.
85
86
    @note if you need double floating-point accuracy and using single floating-point input data
87
    (CV_32F input and CV_64F output depth combination), you can use @ref Mat.convertTo to convert
88
    the input data to the desired precision.
89
90
    @defgroup imgproc_transform Geometric Image Transformations
91
92
    The functions in this section perform various geometrical transformations of 2D images. They do not
93
    change the image content but deform the pixel grid and map this deformed grid to the destination
94
    image. In fact, to avoid sampling artifacts, the mapping is done in the reverse order, from
95
    destination to the source. That is, for each pixel \f$(x, y)\f$ of the destination image, the
96
    functions compute coordinates of the corresponding "donor" pixel in the source image and copy the
97
    pixel value:
98
99
    \f[\texttt{dst} (x,y)= \texttt{src} (f_x(x,y), f_y(x,y))\f]
100
101
    In case when you specify the forward mapping \f$\left<g_x, g_y\right>: \texttt{src} \rightarrow
102
    \texttt{dst}\f$, the OpenCV functions first compute the corresponding inverse mapping
103
    \f$\left<f_x, f_y\right>: \texttt{dst} \rightarrow \texttt{src}\f$ and then use the above formula.
104
105
    The actual implementations of the geometrical transformations, from the most generic remap and to
106
    the simplest and the fastest resize, need to solve two main problems with the above formula:
107
108
    - Extrapolation of non-existing pixels. Similarly to the filtering functions described in the
109
    previous section, for some \f$(x,y)\f$, either one of \f$f_x(x,y)\f$, or \f$f_y(x,y)\f$, or both
110
    of them may fall outside of the image. In this case, an extrapolation method needs to be used.
111
    OpenCV provides the same selection of extrapolation methods as in the filtering functions. In
112
    addition, it provides the method #BORDER_TRANSPARENT. This means that the corresponding pixels in
113
    the destination image will not be modified at all.
114
115
    - Interpolation of pixel values. Usually \f$f_x(x,y)\f$ and \f$f_y(x,y)\f$ are floating-point
116
    numbers. This means that \f$\left<f_x, f_y\right>\f$ can be either an affine or perspective
117
    transformation, or radial lens distortion correction, and so on. So, a pixel value at fractional
118
    coordinates needs to be retrieved. In the simplest case, the coordinates can be just rounded to the
119
    nearest integer coordinates and the corresponding pixel can be used. This is called a
120
    nearest-neighbor interpolation. However, a better result can be achieved by using more
121
    sophisticated [interpolation methods](https://en.wikipedia.org/wiki/Multivariate_interpolation) ,
122
    where a polynomial function is fit into some neighborhood of the computed pixel \f$(f_x(x,y),
123
    f_y(x,y))\f$, and then the value of the polynomial at \f$(f_x(x,y), f_y(x,y))\f$ is taken as the
124
    interpolated pixel value. In OpenCV, you can choose between several interpolation methods. See
125
    #resize for details.
126
127
    @note The geometrical transformations do not work with `CV_8S` or `CV_32S` images.
128
129
    @defgroup imgproc_misc Miscellaneous Image Transformations
130
    @defgroup imgproc_draw Drawing Functions
131
132
    Drawing functions work with matrices/images of arbitrary depth. The boundaries of the shapes can be
133
    rendered with antialiasing (implemented only for 8-bit images for now). All the functions include
134
    the parameter color that uses an RGB value (that may be constructed with the Scalar constructor )
135
    for color images and brightness for grayscale images. For color images, the channel ordering is
136
    normally *Blue, Green, Red*. This is what imshow, imread, and imwrite expect. So, if you form a
137
    color using the Scalar constructor, it should look like:
138
139
    \f[\texttt{Scalar} (blue \_ component, green \_ component, red \_ component[, alpha \_ component])\f]
140
141
    If you are using your own image rendering and I/O functions, you can use any channel ordering. The
142
    drawing functions process each channel independently and do not depend on the channel order or even
143
    on the used color space. The whole image can be converted from BGR to RGB or to a different color
144
    space using cvtColor .
145
146
    If a drawn figure is partially or completely outside the image, the drawing functions clip it. Also,
147
    many drawing functions can handle pixel coordinates specified with sub-pixel accuracy. This means
148
    that the coordinates can be passed as fixed-point numbers encoded as integers. The number of
149
    fractional bits is specified by the shift parameter and the real point coordinates are calculated as
150
    \f$\texttt{Point}(x,y)\rightarrow\texttt{Point2f}(x*2^{-shift},y*2^{-shift})\f$ . This feature is
151
    especially effective when rendering antialiased shapes.
152
153
    @note The functions do not support alpha-transparency when the target image is 4-channel. In this
154
    case, the color[3] is simply copied to the repainted pixels. Thus, if you want to paint
155
    semi-transparent shapes, you can paint them in a separate buffer and then blend it with the main
156
    image.
157
158
    @defgroup imgproc_color_conversions Color Space Conversions
159
    @defgroup imgproc_colormap ColorMaps in OpenCV
160
161
    The human perception isn't built for observing fine changes in grayscale images. Human eyes are more
162
    sensitive to observing changes between colors, so you often need to recolor your grayscale images to
163
    get a clue about them. OpenCV now comes with various colormaps to enhance the visualization in your
164
    computer vision application.
165
166
    In OpenCV you only need applyColorMap to apply a colormap on a given image. The following sample
167
    code reads the path to an image from command line, applies a Jet colormap on it and shows the
168
    result:
169
170
    @include snippets/imgproc_applyColorMap.cpp
171
172
    @see #ColormapTypes
173
174
    @defgroup imgproc_subdiv2d Planar Subdivision
175
176
    The Subdiv2D class described in this section is used to perform various planar subdivision on
177
    a set of 2D points (represented as vector of Point2f). OpenCV subdivides a plane into triangles
178
    using the Delaunay's algorithm, which corresponds to the dual graph of the Voronoi diagram.
179
    In the figure below, the Delaunay's triangulation is marked with black lines and the Voronoi
180
    diagram with red lines.
181
182
    ![Delaunay triangulation (black) and Voronoi (red)](pics/delaunay_voronoi.png)
183
184
    The subdivisions can be used for the 3D piece-wise transformation of a plane, morphing, fast
185
    location of points on the plane, building special graphs (such as NNG,RNG), and so forth.
186
187
    @defgroup imgproc_hist Histograms
188
    @defgroup imgproc_shape Structural Analysis and Shape Descriptors
189
    @defgroup imgproc_motion Motion Analysis and Object Tracking
190
    @defgroup imgproc_feature Feature Detection
191
    @defgroup imgproc_object Object Detection
192
    @defgroup imgproc_segmentation Image Segmentation
193
    @defgroup imgproc_hal Hardware Acceleration Layer
194
    @{
195
        @defgroup imgproc_hal_functions Functions
196
        @defgroup imgproc_hal_interface Interface
197
    @}
198
  @}
199
*/
200
201
namespace cv
202
{
203
204
/** @addtogroup imgproc
205
@{
206
*/
207
208
//! @addtogroup imgproc_filter
209
//! @{
210
211
enum SpecialFilter {
212
    FILTER_SCHARR = -1
213
};
214
215
//! type of morphological operation
216
enum MorphTypes{
217
    MORPH_ERODE    = 0, //!< see #erode
218
    MORPH_DILATE   = 1, //!< see #dilate
219
    MORPH_OPEN     = 2, //!< an opening operation
220
                        //!< \f[\texttt{dst} = \mathrm{open} ( \texttt{src} , \texttt{element} )= \mathrm{dilate} ( \mathrm{erode} ( \texttt{src} , \texttt{element} ))\f]
221
    MORPH_CLOSE    = 3, //!< a closing operation
222
                        //!< \f[\texttt{dst} = \mathrm{close} ( \texttt{src} , \texttt{element} )= \mathrm{erode} ( \mathrm{dilate} ( \texttt{src} , \texttt{element} ))\f]
223
    MORPH_GRADIENT = 4, //!< a morphological gradient
224
                        //!< \f[\texttt{dst} = \mathrm{morph\_grad} ( \texttt{src} , \texttt{element} )= \mathrm{dilate} ( \texttt{src} , \texttt{element} )- \mathrm{erode} ( \texttt{src} , \texttt{element} )\f]
225
    MORPH_TOPHAT   = 5, //!< "top hat"
226
                        //!< \f[\texttt{dst} = \mathrm{tophat} ( \texttt{src} , \texttt{element} )= \texttt{src} - \mathrm{open} ( \texttt{src} , \texttt{element} )\f]
227
    MORPH_BLACKHAT = 6, //!< "black hat"
228
                        //!< \f[\texttt{dst} = \mathrm{blackhat} ( \texttt{src} , \texttt{element} )= \mathrm{close} ( \texttt{src} , \texttt{element} )- \texttt{src}\f]
229
    MORPH_HITMISS  = 7  //!< "hit or miss"
230
                        //!<   .- Only supported for CV_8UC1 binary images. A tutorial can be found in the documentation
231
};
232
233
//! shape of the structuring element
234
enum MorphShapes {
235
    MORPH_RECT    = 0, //!< a rectangular structuring element:  \f[E_{ij}=1\f]
236
    MORPH_CROSS   = 1, //!< a cross-shaped structuring element:
237
                       //!< \f[E_{ij} = \begin{cases} 1 & \texttt{if } {i=\texttt{anchor.y } {or } {j=\texttt{anchor.x}}} \\0 & \texttt{otherwise} \end{cases}\f]
238
    MORPH_ELLIPSE = 2, //!< an elliptic structuring element, that is, a filled ellipse inscribed
239
                      //!< into the rectangle Rect(0, 0, esize.width, esize.height)
240
    MORPH_DIAMOND = 3  //!< a diamond structuring element defined by Manhattan distance
241
};
242
243
//! @} imgproc_filter
244
245
//! @addtogroup imgproc_transform
246
//! @{
247
248
//! interpolation algorithm
249
enum InterpolationFlags{
250
    /** nearest neighbor interpolation */
251
    INTER_NEAREST        = 0,
252
    /** bilinear interpolation */
253
    INTER_LINEAR         = 1,
254
    /** bicubic interpolation */
255
    INTER_CUBIC          = 2,
256
    /** resampling using pixel area relation. It may be a preferred method for image decimation, as
257
    it gives moire'-free results. But when the image is zoomed, it is similar to the INTER_NEAREST
258
    method. */
259
    INTER_AREA           = 3,
260
    /** Lanczos interpolation over 8x8 neighborhood */
261
    INTER_LANCZOS4       = 4,
262
    /** Bit exact bilinear interpolation */
263
    INTER_LINEAR_EXACT = 5,
264
    /** Bit exact nearest neighbor interpolation. This will produce same results as
265
    the nearest neighbor method in PIL, scikit-image or Matlab. */
266
    INTER_NEAREST_EXACT  = 6,
267
    /** mask for interpolation codes */
268
    INTER_MAX            = 7,
269
    /** flag, fills all of the destination image pixels. If some of them correspond to outliers in the
270
    source image, they are set to zero */
271
    WARP_FILL_OUTLIERS   = 8,
272
    /** flag, inverse transformation
273
274
    For example, #linearPolar or #logPolar transforms:
275
    - flag is __not__ set: \f$dst( \rho , \phi ) = src(x,y)\f$
276
    - flag is set: \f$dst(x,y) = src( \rho , \phi )\f$
277
    */
278
    WARP_INVERSE_MAP     = 16,
279
    WARP_RELATIVE_MAP    = 32
280
};
281
282
/** \brief Specify the polar mapping mode
283
@sa warpPolar
284
*/
285
enum WarpPolarMode
286
{
287
    WARP_POLAR_LINEAR = 0, ///< Remaps an image to/from polar space.
288
    WARP_POLAR_LOG = 256   ///< Remaps an image to/from semilog-polar space.
289
};
290
291
enum InterpolationMasks {
292
       INTER_BITS      = 5,
293
       INTER_BITS2     = INTER_BITS * 2,
294
       INTER_TAB_SIZE  = 1 << INTER_BITS,
295
       INTER_TAB_SIZE2 = INTER_TAB_SIZE * INTER_TAB_SIZE
296
     };
297
298
//! @} imgproc_transform
299
300
//! @addtogroup imgproc_misc
301
//! @{
302
303
//! Distance types for Distance Transform and M-estimators
304
//! @see distanceTransform, fitLine
305
enum DistanceTypes {
306
    DIST_USER    = -1,  //!< User defined distance
307
    DIST_L1      = 1,   //!< distance = |x1-x2| + |y1-y2|
308
    DIST_L2      = 2,   //!< the simple euclidean distance
309
    DIST_C       = 3,   //!< distance = max(|x1-x2|,|y1-y2|)
310
    DIST_L12     = 4,   //!< L1-L2 metric: distance = 2(sqrt(1+x*x/2) - 1))
311
    DIST_FAIR    = 5,   //!< distance = c^2(|x|/c-log(1+|x|/c)), c = 1.3998
312
    DIST_WELSCH  = 6,   //!< distance = c^2/2(1-exp(-(x/c)^2)), c = 2.9846
313
    DIST_HUBER   = 7    //!< distance = |x|<c ? x^2/2 : c(|x|-c/2), c=1.345
314
};
315
316
//! Mask size for distance transform
317
enum DistanceTransformMasks {
318
    DIST_MASK_3       = 3, //!< mask=3
319
    DIST_MASK_5       = 5, //!< mask=5
320
    DIST_MASK_PRECISE = 0  //!<
321
};
322
323
//! type of the threshold operation
324
//! ![threshold types](pics/threshold.png)
325
enum ThresholdTypes {
326
    THRESH_BINARY     = 0, //!< \f[\texttt{dst} (x,y) =  \fork{\texttt{maxval}}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{0}{otherwise}\f]
327
    THRESH_BINARY_INV = 1, //!< \f[\texttt{dst} (x,y) =  \fork{0}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{\texttt{maxval}}{otherwise}\f]
328
    THRESH_TRUNC      = 2, //!< \f[\texttt{dst} (x,y) =  \fork{\texttt{threshold}}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{\texttt{src}(x,y)}{otherwise}\f]
329
    THRESH_TOZERO     = 3, //!< \f[\texttt{dst} (x,y) =  \fork{\texttt{src}(x,y)}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{0}{otherwise}\f]
330
    THRESH_TOZERO_INV = 4, //!< \f[\texttt{dst} (x,y) =  \fork{0}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{\texttt{src}(x,y)}{otherwise}\f]
331
    THRESH_MASK       = 7,
332
    THRESH_OTSU       = 8, //!< flag, use Otsu algorithm to choose the optimal threshold value
333
    THRESH_TRIANGLE   = 16, //!< flag, use Triangle algorithm to choose the optimal threshold value
334
    THRESH_DRYRUN     = 128 //!< flag, compute threshold only (useful for OTSU/TRIANGLE) but does not actually run thresholding
335
};
336
337
//! adaptive threshold algorithm
338
//! @see adaptiveThreshold
339
enum AdaptiveThresholdTypes {
340
    /** the threshold value \f$T(x,y)\f$ is a mean of the \f$\texttt{blockSize} \times
341
    \texttt{blockSize}\f$ neighborhood of \f$(x, y)\f$ minus C */
342
    ADAPTIVE_THRESH_MEAN_C     = 0,
343
    /** the threshold value \f$T(x, y)\f$ is a weighted sum (cross-correlation with a Gaussian
344
    window) of the \f$\texttt{blockSize} \times \texttt{blockSize}\f$ neighborhood of \f$(x, y)\f$
345
    minus C . The default sigma (standard deviation) is used for the specified blockSize . See
346
    #getGaussianKernel*/
347
    ADAPTIVE_THRESH_GAUSSIAN_C = 1
348
};
349
350
//! class of the pixel in GrabCut algorithm
351
enum GrabCutClasses {
352
    GC_BGD    = 0,  //!< an obvious background pixels
353
    GC_FGD    = 1,  //!< an obvious foreground (object) pixel
354
    GC_PR_BGD = 2,  //!< a possible background pixel
355
    GC_PR_FGD = 3   //!< a possible foreground pixel
356
};
357
358
//! GrabCut algorithm flags
359
enum GrabCutModes {
360
    /** The function initializes the state and the mask using the provided rectangle. After that it
361
    runs iterCount iterations of the algorithm. */
362
    GC_INIT_WITH_RECT  = 0,
363
    /** The function initializes the state using the provided mask. Note that GC_INIT_WITH_RECT
364
    and GC_INIT_WITH_MASK can be combined. Then, all the pixels outside of the ROI are
365
    automatically initialized with GC_BGD .*/
366
    GC_INIT_WITH_MASK  = 1,
367
    /** The value means that the algorithm should just resume. */
368
    GC_EVAL            = 2,
369
    /** The value means that the algorithm should just run the grabCut algorithm (a single iteration) with the fixed model */
370
    GC_EVAL_FREEZE_MODEL = 3
371
};
372
373
//! distanceTransform algorithm flags
374
enum DistanceTransformLabelTypes {
375
    /** each connected component of zeros in src (as well as all the non-zero pixels closest to the
376
    connected component) will be assigned the same label */
377
    DIST_LABEL_CCOMP = 0,
378
    /** each zero pixel (and all the non-zero pixels closest to it) gets its own label. */
379
    DIST_LABEL_PIXEL = 1
380
};
381
382
//! floodfill algorithm flags
383
enum FloodFillFlags {
384
    /** If set, the difference between the current pixel and seed pixel is considered. Otherwise,
385
    the difference between neighbor pixels is considered (that is, the range is floating). */
386
    FLOODFILL_FIXED_RANGE = 1 << 16,
387
    /** If set, the function does not change the image ( newVal is ignored), and only fills the
388
    mask with the value specified in bits 8-16 of flags as described above. This option only make
389
    sense in function variants that have the mask parameter. */
390
    FLOODFILL_MASK_ONLY   = 1 << 17
391
};
392
393
//! @} imgproc_misc
394
395
//! @addtogroup imgproc_shape
396
//! @{
397
398
//! connected components statistics
399
enum ConnectedComponentsTypes {
400
    CC_STAT_LEFT   = 0, //!< The leftmost (x) coordinate which is the inclusive start of the bounding
401
                        //!< box in the horizontal direction.
402
    CC_STAT_TOP    = 1, //!< The topmost (y) coordinate which is the inclusive start of the bounding
403
                        //!< box in the vertical direction.
404
    CC_STAT_WIDTH  = 2, //!< The horizontal size of the bounding box
405
    CC_STAT_HEIGHT = 3, //!< The vertical size of the bounding box
406
    CC_STAT_AREA   = 4, //!< The total area (in pixels) of the connected component
407
#ifndef CV_DOXYGEN
408
    CC_STAT_MAX    = 5 //!< Max enumeration value. Used internally only for memory allocation
409
#endif
410
};
411
412
//! connected components algorithm
413
enum ConnectedComponentsAlgorithmsTypes {
414
    CCL_DEFAULT   = -1, //!< Spaghetti @cite Bolelli2019 algorithm for 8-way connectivity, Spaghetti4C @cite Bolelli2021 algorithm for 4-way connectivity.
415
    CCL_WU        = 0,  //!< SAUF @cite Wu2009 algorithm for 8-way connectivity, SAUF algorithm for 4-way connectivity. The parallel implementation described in @cite Bolelli2017 is available for SAUF.
416
    CCL_GRANA     = 1,  //!< BBDT @cite Grana2010 algorithm for 8-way connectivity, SAUF algorithm for 4-way connectivity. The parallel implementation described in @cite Bolelli2017 is available for both BBDT and SAUF.
417
    CCL_BOLELLI   = 2,  //!< Spaghetti @cite Bolelli2019 algorithm for 8-way connectivity, Spaghetti4C @cite Bolelli2021 algorithm for 4-way connectivity. The parallel implementation described in @cite Bolelli2017 is available for both Spaghetti and Spaghetti4C.
418
    CCL_SAUF      = 3,  //!< Same as CCL_WU. It is preferable to use the flag with the name of the algorithm (CCL_SAUF) rather than the one with the name of the first author (CCL_WU).
419
    CCL_BBDT      = 4,  //!< Same as CCL_GRANA. It is preferable to use the flag with the name of the algorithm (CCL_BBDT) rather than the one with the name of the first author (CCL_GRANA).
420
    CCL_SPAGHETTI = 5,  //!< Same as CCL_BOLELLI. It is preferable to use the flag with the name of the algorithm (CCL_SPAGHETTI) rather than the one with the name of the first author (CCL_BOLELLI).
421
};
422
423
//! mode of the contour retrieval algorithm
424
enum RetrievalModes {
425
    /** retrieves only the extreme outer contours. It sets `hierarchy[i][2]=hierarchy[i][3]=-1` for
426
    all the contours. */
427
    RETR_EXTERNAL  = 0,
428
    /** retrieves all of the contours without establishing any hierarchical relationships. */
429
    RETR_LIST      = 1,
430
    /** retrieves all of the contours and organizes them into a two-level hierarchy. At the top
431
    level, there are external boundaries of the components. At the second level, there are
432
    boundaries of the holes. If there is another contour inside a hole of a connected component, it
433
    is still put at the top level. */
434
    RETR_CCOMP     = 2,
435
    /** retrieves all of the contours and reconstructs a full hierarchy of nested contours.*/
436
    RETR_TREE      = 3,
437
    RETR_FLOODFILL = 4 //!<
438
};
439
440
//! the contour approximation algorithm
441
enum ContourApproximationModes {
442
    /** stores absolutely all the contour points. That is, any 2 subsequent points (x1,y1) and
443
    (x2,y2) of the contour will be either horizontal, vertical or diagonal neighbors, that is,
444
    max(abs(x1-x2),abs(y2-y1))==1. */
445
    CHAIN_APPROX_NONE      = 1,
446
    /** compresses horizontal, vertical, and diagonal segments and leaves only their end points.
447
    For example, an up-right rectangular contour is encoded with 4 points. */
448
    CHAIN_APPROX_SIMPLE    = 2,
449
    /** applies one of the flavors of the Teh-Chin chain approximation algorithm @cite TehChin89 */
450
    CHAIN_APPROX_TC89_L1   = 3,
451
    /** applies one of the flavors of the Teh-Chin chain approximation algorithm @cite TehChin89 */
452
    CHAIN_APPROX_TC89_KCOS = 4
453
};
454
455
/** @brief Shape matching methods
456
457
\f$A\f$ denotes object1,\f$B\f$ denotes object2
458
459
\f$\begin{array}{l} m^A_i =  \mathrm{sign} (h^A_i)  \cdot \log{h^A_i} \\ m^B_i =  \mathrm{sign} (h^B_i)  \cdot \log{h^B_i} \end{array}\f$
460
461
and \f$h^A_i, h^B_i\f$ are the Hu moments of \f$A\f$ and \f$B\f$ , respectively.
462
*/
463
enum ShapeMatchModes {
464
    CONTOURS_MATCH_I1  =1, //!< \f[I_1(A,B) =  \sum _{i=1...7}  \left |  \frac{1}{m^A_i} -  \frac{1}{m^B_i} \right |\f]
465
    CONTOURS_MATCH_I2  =2, //!< \f[I_2(A,B) =  \sum _{i=1...7}  \left | m^A_i - m^B_i  \right |\f]
466
    CONTOURS_MATCH_I3  =3  //!< \f[I_3(A,B) =  \max _{i=1...7}  \frac{ \left| m^A_i - m^B_i \right| }{ \left| m^A_i \right| }\f]
467
};
468
469
//! @} imgproc_shape
470
471
//! @addtogroup imgproc_feature
472
//! @{
473
474
//! Variants of a Hough transform
475
enum HoughModes {
476
477
    /** classical or standard Hough transform. Every line is represented by two floating-point
478
    numbers \f$(\rho, \theta)\f$ , where \f$\rho\f$ is a distance between (0,0) point and the line,
479
    and \f$\theta\f$ is the angle between x-axis and the normal to the line. Thus, the matrix must
480
    be (the created sequence will be) of CV_32FC2 type */
481
    HOUGH_STANDARD      = 0,
482
    /** probabilistic Hough transform (more efficient in case if the picture contains a few long
483
    linear segments). It returns line segments rather than the whole line. Each segment is
484
    represented by starting and ending points, and the matrix must be (the created sequence will
485
    be) of the CV_32SC4 type. */
486
    HOUGH_PROBABILISTIC = 1,
487
    /** multi-scale variant of the classical Hough transform. The lines are encoded the same way as
488
    HOUGH_STANDARD. */
489
    HOUGH_MULTI_SCALE   = 2,
490
    HOUGH_GRADIENT      = 3, //!< basically *21HT*, described in @cite Yuen90
491
    HOUGH_GRADIENT_ALT  = 4, //!< variation of HOUGH_GRADIENT to get better accuracy
492
};
493
494
//! Variants of Line Segment %Detector
495
enum LineSegmentDetectorModes {
496
    LSD_REFINE_NONE = 0, //!< No refinement applied
497
    LSD_REFINE_STD  = 1, //!< Standard refinement is applied. E.g. breaking arches into smaller straighter line approximations.
498
    LSD_REFINE_ADV  = 2  //!< Advanced refinement. Number of false alarms is calculated, lines are
499
                         //!< refined through increase of precision, decrement in size, etc.
500
};
501
502
//! @} imgproc_feature
503
504
/** Histogram comparison methods
505
  @ingroup imgproc_hist
506
*/
507
enum HistCompMethods {
508
    /** Correlation
509
    \f[d(H_1,H_2) =  \frac{\sum_I (H_1(I) - \bar{H_1}) (H_2(I) - \bar{H_2})}{\sqrt{\sum_I(H_1(I) - \bar{H_1})^2 \sum_I(H_2(I) - \bar{H_2})^2}}\f]
510
    where
511
    \f[\bar{H_k} =  \frac{1}{N} \sum _J H_k(J)\f]
512
    and \f$N\f$ is a total number of histogram bins. */
513
    HISTCMP_CORREL        = 0,
514
    /** Chi-Square
515
    \f[d(H_1,H_2) =  \sum _I  \frac{\left(H_1(I)-H_2(I)\right)^2}{H_1(I)}\f] */
516
    HISTCMP_CHISQR        = 1,
517
    /** Intersection
518
    \f[d(H_1,H_2) =  \sum _I  \min (H_1(I), H_2(I))\f] */
519
    HISTCMP_INTERSECT     = 2,
520
    /** Bhattacharyya distance
521
    (In fact, OpenCV computes Hellinger distance, which is related to Bhattacharyya coefficient.)
522
    \f[d(H_1,H_2) =  \sqrt{1 - \frac{1}{\sqrt{\bar{H_1} \bar{H_2} N^2}} \sum_I \sqrt{H_1(I) \cdot H_2(I)}}\f] */
523
    HISTCMP_BHATTACHARYYA = 3,
524
    HISTCMP_HELLINGER     = HISTCMP_BHATTACHARYYA, //!< Synonym for HISTCMP_BHATTACHARYYA
525
    /** Alternative Chi-Square
526
    \f[d(H_1,H_2) =  2 * \sum _I  \frac{\left(H_1(I)-H_2(I)\right)^2}{H_1(I)+H_2(I)}\f]
527
    This alternative formula is regularly used for texture comparison. See e.g. @cite Puzicha1997 */
528
    HISTCMP_CHISQR_ALT    = 4,
529
    /** Kullback-Leibler divergence
530
    \f[d(H_1,H_2) = \sum _I H_1(I) \log \left(\frac{H_1(I)}{H_2(I)}\right)\f] */
531
    HISTCMP_KL_DIV        = 5
532
};
533
534
/** the color conversion codes
535
@see @ref imgproc_color_conversions
536
@ingroup imgproc_color_conversions
537
 */
538
enum ColorConversionCodes {
539
    COLOR_BGR2BGRA     = 0, //!< add alpha channel to RGB or BGR image
540
    COLOR_RGB2RGBA     = COLOR_BGR2BGRA,
541
542
    COLOR_BGRA2BGR     = 1, //!< remove alpha channel from RGB or BGR image
543
    COLOR_RGBA2RGB     = COLOR_BGRA2BGR,
544
545
    COLOR_BGR2RGBA     = 2, //!< convert between RGB and BGR color spaces (with or without alpha channel)
546
    COLOR_RGB2BGRA     = COLOR_BGR2RGBA,
547
548
    COLOR_RGBA2BGR     = 3,
549
    COLOR_BGRA2RGB     = COLOR_RGBA2BGR,
550
551
    COLOR_BGR2RGB      = 4,
552
    COLOR_RGB2BGR      = COLOR_BGR2RGB,
553
554
    COLOR_BGRA2RGBA    = 5,
555
    COLOR_RGBA2BGRA    = COLOR_BGRA2RGBA,
556
557
    COLOR_BGR2GRAY     = 6, //!< convert between RGB/BGR and grayscale, @ref color_convert_rgb_gray "color conversions"
558
    COLOR_RGB2GRAY     = 7,
559
    COLOR_GRAY2BGR     = 8,
560
    COLOR_GRAY2RGB     = COLOR_GRAY2BGR,
561
    COLOR_GRAY2BGRA    = 9,
562
    COLOR_GRAY2RGBA    = COLOR_GRAY2BGRA,
563
    COLOR_BGRA2GRAY    = 10,
564
    COLOR_RGBA2GRAY    = 11,
565
566
    COLOR_BGR2BGR565   = 12, //!< convert between RGB/BGR and BGR565 (16-bit images)
567
    COLOR_RGB2BGR565   = 13,
568
    COLOR_BGR5652BGR   = 14,
569
    COLOR_BGR5652RGB   = 15,
570
    COLOR_BGRA2BGR565  = 16,
571
    COLOR_RGBA2BGR565  = 17,
572
    COLOR_BGR5652BGRA  = 18,
573
    COLOR_BGR5652RGBA  = 19,
574
575
    COLOR_GRAY2BGR565  = 20, //!< convert between grayscale to BGR565 (16-bit images)
576
    COLOR_BGR5652GRAY  = 21,
577
578
    COLOR_BGR2BGR555   = 22,  //!< convert between RGB/BGR and BGR555 (16-bit images)
579
    COLOR_RGB2BGR555   = 23,
580
    COLOR_BGR5552BGR   = 24,
581
    COLOR_BGR5552RGB   = 25,
582
    COLOR_BGRA2BGR555  = 26,
583
    COLOR_RGBA2BGR555  = 27,
584
    COLOR_BGR5552BGRA  = 28,
585
    COLOR_BGR5552RGBA  = 29,
586
587
    COLOR_GRAY2BGR555  = 30, //!< convert between grayscale and BGR555 (16-bit images)
588
    COLOR_BGR5552GRAY  = 31,
589
590
    COLOR_BGR2XYZ      = 32, //!< convert RGB/BGR to CIE XYZ, @ref color_convert_rgb_xyz "color conversions"
591
    COLOR_RGB2XYZ      = 33,
592
    COLOR_XYZ2BGR      = 34,
593
    COLOR_XYZ2RGB      = 35,
594
595
    COLOR_BGR2YCrCb    = 36, //!< convert RGB/BGR to luma-chroma (aka YCC), @ref color_convert_rgb_ycrcb "color conversions"
596
    COLOR_RGB2YCrCb    = 37,
597
    COLOR_YCrCb2BGR    = 38,
598
    COLOR_YCrCb2RGB    = 39,
599
600
    COLOR_BGR2HSV      = 40, //!< convert RGB/BGR to HSV (hue saturation value) with H range 0..180 if 8 bit image, @ref color_convert_rgb_hsv "color conversions"
601
    COLOR_RGB2HSV      = 41,
602
603
    COLOR_BGR2Lab      = 44, //!< convert RGB/BGR to CIE Lab, @ref color_convert_rgb_lab "color conversions"
604
    COLOR_RGB2Lab      = 45,
605
606
    COLOR_BGR2Luv      = 50, //!< convert RGB/BGR to CIE Luv, @ref color_convert_rgb_luv "color conversions"
607
    COLOR_RGB2Luv      = 51,
608
    COLOR_BGR2HLS      = 52, //!< convert RGB/BGR to HLS (hue lightness saturation) with H range 0..180 if 8 bit image, @ref color_convert_rgb_hls "color conversions"
609
    COLOR_RGB2HLS      = 53,
610
611
    COLOR_HSV2BGR      = 54, //!< backward conversions HSV to RGB/BGR with H range 0..180 if 8 bit image
612
    COLOR_HSV2RGB      = 55,
613
614
    COLOR_Lab2BGR      = 56,
615
    COLOR_Lab2RGB      = 57,
616
    COLOR_Luv2BGR      = 58,
617
    COLOR_Luv2RGB      = 59,
618
    COLOR_HLS2BGR      = 60, //!< backward conversions HLS to RGB/BGR with H range 0..180 if 8 bit image
619
    COLOR_HLS2RGB      = 61,
620
621
    COLOR_BGR2HSV_FULL = 66, //!< convert RGB/BGR to HSV (hue saturation value) with H range 0..255 if 8 bit image, @ref color_convert_rgb_hsv "color conversions"
622
    COLOR_RGB2HSV_FULL = 67,
623
    COLOR_BGR2HLS_FULL = 68, //!< convert RGB/BGR to HLS (hue lightness saturation) with H range 0..255 if 8 bit image, @ref color_convert_rgb_hls "color conversions"
624
    COLOR_RGB2HLS_FULL = 69,
625
626
    COLOR_HSV2BGR_FULL = 70, //!< backward conversions HSV to RGB/BGR with H range 0..255 if 8 bit image
627
    COLOR_HSV2RGB_FULL = 71,
628
    COLOR_HLS2BGR_FULL = 72, //!< backward conversions HLS to RGB/BGR with H range 0..255 if 8 bit image
629
    COLOR_HLS2RGB_FULL = 73,
630
631
    COLOR_LBGR2Lab     = 74,
632
    COLOR_LRGB2Lab     = 75,
633
    COLOR_LBGR2Luv     = 76,
634
    COLOR_LRGB2Luv     = 77,
635
636
    COLOR_Lab2LBGR     = 78,
637
    COLOR_Lab2LRGB     = 79,
638
    COLOR_Luv2LBGR     = 80,
639
    COLOR_Luv2LRGB     = 81,
640
641
    COLOR_BGR2YUV      = 82, //!< convert between RGB/BGR and YUV
642
    COLOR_RGB2YUV      = 83,
643
    COLOR_YUV2BGR      = 84,
644
    COLOR_YUV2RGB      = 85,
645
646
    COLOR_YUV2RGB_NV12  = 90, //!< convert between 4:2:0-subsampled YUV NV12 and RGB, two planes (in one or separate arrays): Y and U/V interleaved, see @ref color_convert_rgb_yuv_42x
647
    COLOR_YUV2BGR_NV12  = 91, //!< convert between 4:2:0-subsampled YUV NV12 and BGR, two planes (in one or separate arrays): Y and U/V interleaved, see @ref color_convert_rgb_yuv_42x
648
    COLOR_YUV2RGB_NV21  = 92, //!< convert between 4:2:0-subsampled YUV NV21 and RGB, two planes (in one or separate arrays): Y and V/U interleaved, see @ref color_convert_rgb_yuv_42x
649
    COLOR_YUV2BGR_NV21  = 93, //!< convert between 4:2:0-subsampled YUV NV21 and BGR, two planes (in one or separate arrays): Y and V/U interleaved, see @ref color_convert_rgb_yuv_42x
650
    COLOR_YUV420sp2RGB  = COLOR_YUV2RGB_NV21, //!< synonym to NV21
651
    COLOR_YUV420sp2BGR  = COLOR_YUV2BGR_NV21, //!< synonym to NV21
652
653
    COLOR_YUV2RGBA_NV12 = 94, //!< convert between 4:2:0-subsampled YUV NV12 and RGBA, two planes (in one or separate arrays): Y and U/V interleaved, see @ref color_convert_rgb_yuv_42x
654
    COLOR_YUV2BGRA_NV12 = 95, //!< convert between 4:2:0-subsampled YUV NV12 and BGRA, two planes (in one or separate arrays): Y and U/V interleaved, see @ref color_convert_rgb_yuv_42x
655
    COLOR_YUV2RGBA_NV21 = 96, //!< convert between 4:2:0-subsampled YUV NV21 and RGBA, two planes (in one or separate arrays): Y and V/U interleaved, see @ref color_convert_rgb_yuv_42x
656
    COLOR_YUV2BGRA_NV21 = 97, //!< convert between 4:2:0-subsampled YUV NV21 and BGRA, two planes (in one or separate arrays): Y and V/U interleaved, see @ref color_convert_rgb_yuv_42x
657
    COLOR_YUV420sp2RGBA = COLOR_YUV2RGBA_NV21, //!< synonym to NV21
658
    COLOR_YUV420sp2BGRA = COLOR_YUV2BGRA_NV21, //!< synonym to NV21
659
660
    COLOR_YUV2RGB_YV12  =  98, //!< convert between 4:2:0-subsampled YUV YV12 and RGB, three planes in one array: Y, V and U, see @ref color_convert_rgb_yuv_42x
661
    COLOR_YUV2BGR_YV12  =  99, //!< convert between 4:2:0-subsampled YUV YV12 and BGR, three planes in one array: Y, V and U, see @ref color_convert_rgb_yuv_42x
662
    COLOR_YUV2RGB_IYUV  = 100, //!< convert between 4:2:0-subsampled YUV IYUV and RGB, three planes in one array: Y, U and V, see @ref color_convert_rgb_yuv_42x
663
    COLOR_YUV2BGR_IYUV  = 101, //!< convert between 4:2:0-subsampled YUV IYUV and BGR, three planes in one array: Y, U and V, see @ref color_convert_rgb_yuv_42x
664
    COLOR_YUV2RGB_I420  = COLOR_YUV2RGB_IYUV, //!< synonym to IYUV
665
    COLOR_YUV2BGR_I420  = COLOR_YUV2BGR_IYUV, //!< synonym to IYUV
666
    COLOR_YUV420p2RGB   = COLOR_YUV2RGB_YV12, //!< synonym to YV12
667
    COLOR_YUV420p2BGR   = COLOR_YUV2BGR_YV12, //!< synonym to YV12
668
669
    COLOR_YUV2RGBA_YV12 = 102, //!< convert between 4:2:0-subsampled YUV YV12 and RGBA, three planes in one array: Y, V and U, see @ref color_convert_rgb_yuv_42x
670
    COLOR_YUV2BGRA_YV12 = 103, //!< convert between 4:2:0-subsampled YUV YV12 and BGRA, three planes in one array: Y, V and U, see @ref color_convert_rgb_yuv_42x
671
    COLOR_YUV2RGBA_IYUV = 104, //!< convert between 4:2:0-subsampled YUV YV12 and RGBA, three planes in one array: Y, U and V, see @ref color_convert_rgb_yuv_42x
672
    COLOR_YUV2BGRA_IYUV = 105, //!< convert between 4:2:0-subsampled YUV YV12 and BGRA, three planes in one array: Y, U and V, see @ref color_convert_rgb_yuv_42x
673
    COLOR_YUV2RGBA_I420 = COLOR_YUV2RGBA_IYUV, //!< synonym to IYUV
674
    COLOR_YUV2BGRA_I420 = COLOR_YUV2BGRA_IYUV, //!< synonym to IYUV
675
    COLOR_YUV420p2RGBA  = COLOR_YUV2RGBA_YV12, //!< synonym to YV12
676
    COLOR_YUV420p2BGRA  = COLOR_YUV2BGRA_YV12, //!< synonym to YV12
677
678
    COLOR_YUV2GRAY_420  = 106, //!< extract Y channel from YUV 4:2:0 image
679
    COLOR_YUV2GRAY_NV21 = COLOR_YUV2GRAY_420, //!< synonym to COLOR_YUV2GRAY_420
680
    COLOR_YUV2GRAY_NV12 = COLOR_YUV2GRAY_420, //!< synonym to COLOR_YUV2GRAY_420
681
    COLOR_YUV2GRAY_YV12 = COLOR_YUV2GRAY_420, //!< synonym to COLOR_YUV2GRAY_420
682
    COLOR_YUV2GRAY_IYUV = COLOR_YUV2GRAY_420, //!< synonym to COLOR_YUV2GRAY_420
683
    COLOR_YUV2GRAY_I420 = COLOR_YUV2GRAY_420, //!< synonym to COLOR_YUV2GRAY_420
684
    COLOR_YUV420sp2GRAY = COLOR_YUV2GRAY_420, //!< synonym to COLOR_YUV2GRAY_420
685
    COLOR_YUV420p2GRAY  = COLOR_YUV2GRAY_420, //!< synonym to COLOR_YUV2GRAY_420
686
687
    COLOR_YUV2RGB_UYVY = 107, //!< convert between YUV UYVY and RGB, YUV is 4:2:2-subsampled and interleaved as U/Y1/V/Y2, see @ref color_convert_rgb_yuv_42x
688
    COLOR_YUV2BGR_UYVY = 108, //!< convert between YUV UYVY and BGR, YUV is 4:2:2-subsampled and interleaved as U/Y1/V/Y2, see @ref color_convert_rgb_yuv_42x
689
    //COLOR_YUV2RGB_VYUY = 109, //!< convert between YUV VYUY and RGB, YUV is 4:2:2-subsampled and interleaved as V/Y1/U/Y2, see @ref color_convert_rgb_yuv_42x
690
    //COLOR_YUV2BGR_VYUY = 110, //!< convert between YUV VYUY and BGR, YUV is 4:2:2-subsampled and interleaved as V/Y1/U/Y2, see @ref color_convert_rgb_yuv_42x
691
    COLOR_YUV2RGB_Y422 = COLOR_YUV2RGB_UYVY, //!< synonym to UYVY
692
    COLOR_YUV2BGR_Y422 = COLOR_YUV2BGR_UYVY, //!< synonym to UYVY
693
    COLOR_YUV2RGB_UYNV = COLOR_YUV2RGB_UYVY, //!< synonym to UYVY
694
    COLOR_YUV2BGR_UYNV = COLOR_YUV2BGR_UYVY, //!< synonym to UYVY
695
696
    COLOR_YUV2RGBA_UYVY = 111, //!< convert between YUV UYVY and RGBA, YUV is 4:2:2-subsampled and interleaved as U/Y1/V/Y2, see @ref color_convert_rgb_yuv_42x
697
    COLOR_YUV2BGRA_UYVY = 112, //!< convert between YUV UYVY and BGRA, YUV is 4:2:2-subsampled and interleaved as U/Y1/V/Y2, see @ref color_convert_rgb_yuv_42x
698
    //COLOR_YUV2RGBA_VYUY = 113, //!< convert between YUV VYUY and RGBA, YUV is 4:2:2-subsampled and interleaved as V/Y1/U/Y2, see @ref color_convert_rgb_yuv_42x
699
    //COLOR_YUV2BGRA_VYUY = 114, //!< convert between YUV VYUY and BGRA, YUV is 4:2:2-subsampled and interleaved as V/Y1/U/Y2, see @ref color_convert_rgb_yuv_42x
700
    COLOR_YUV2RGBA_Y422 = COLOR_YUV2RGBA_UYVY, //!< synonym to UYVY
701
    COLOR_YUV2BGRA_Y422 = COLOR_YUV2BGRA_UYVY, //!< synonym to UYVY
702
    COLOR_YUV2RGBA_UYNV = COLOR_YUV2RGBA_UYVY, //!< synonym to UYVY
703
    COLOR_YUV2BGRA_UYNV = COLOR_YUV2BGRA_UYVY, //!< synonym to UYVY
704
705
    COLOR_YUV2RGB_YUY2 = 115, //!< convert between YUV YUY2 and RGB, YUV is 4:2:2-subsampled and interleaved as Y1/U/Y2/V, see @ref color_convert_rgb_yuv_42x
706
    COLOR_YUV2BGR_YUY2 = 116, //!< convert between YUV YUY2 and BGR, YUV is 4:2:2-subsampled and interleaved as Y1/U/Y2/V, see @ref color_convert_rgb_yuv_42x
707
    COLOR_YUV2RGB_YVYU = 117, //!< convert between YUV YVYU and RGB, YUV is 4:2:2-subsampled and interleaved as Y1/V/Y2/U, see @ref color_convert_rgb_yuv_42x
708
    COLOR_YUV2BGR_YVYU = 118, //!< convert between YUV YVYU and BGR, YUV is 4:2:2-subsampled and interleaved as Y1/V/Y2/U, see @ref color_convert_rgb_yuv_42x
709
    COLOR_YUV2RGB_YUYV = COLOR_YUV2RGB_YUY2, //!< synonym to YUY2
710
    COLOR_YUV2BGR_YUYV = COLOR_YUV2BGR_YUY2, //!< synonym to YUY2
711
    COLOR_YUV2RGB_YUNV = COLOR_YUV2RGB_YUY2, //!< synonym to YUY2
712
    COLOR_YUV2BGR_YUNV = COLOR_YUV2BGR_YUY2, //!< synonym to YUY2
713
714
    COLOR_YUV2RGBA_YUY2 = 119, //!< convert between YUV YUY2 and RGBA, YUV is 4:2:2-subsampled and interleaved as Y1/U/Y2/V, see @ref color_convert_rgb_yuv_42x
715
    COLOR_YUV2BGRA_YUY2 = 120, //!< convert between YUV YUY2 and BGRA, YUV is 4:2:2-subsampled and interleaved as Y1/U/Y2/V, see @ref color_convert_rgb_yuv_42x
716
    COLOR_YUV2RGBA_YVYU = 121, //!< convert between YUV YVYU and RGBA, YUV is 4:2:2-subsampled and interleaved as Y1/V/Y2/U, see @ref color_convert_rgb_yuv_42x
717
    COLOR_YUV2BGRA_YVYU = 122, //!< convert between YUV YVYU and BGRA, YUV is 4:2:2-subsampled and interleaved as Y1/V/Y2/U, see @ref color_convert_rgb_yuv_42x
718
    COLOR_YUV2RGBA_YUYV = COLOR_YUV2RGBA_YUY2, //!< synonym to YUY2
719
    COLOR_YUV2BGRA_YUYV = COLOR_YUV2BGRA_YUY2, //!< synonym to YUY2
720
    COLOR_YUV2RGBA_YUNV = COLOR_YUV2RGBA_YUY2, //!< synonym to YUY2
721
    COLOR_YUV2BGRA_YUNV = COLOR_YUV2BGRA_YUY2, //!< synonym to YUY2
722
723
    COLOR_YUV2GRAY_UYVY = 123, //!< extract Y channel from YUV 4:2:2 image
724
    COLOR_YUV2GRAY_YUY2 = 124, //!< extract Y channel from YUV 4:2:2 image
725
    //CV_YUV2GRAY_VYUY  = CV_YUV2GRAY_UYVY, //!< synonym to COLOR_YUV2GRAY_UYVY
726
    COLOR_YUV2GRAY_Y422 = COLOR_YUV2GRAY_UYVY, //!< synonym to COLOR_YUV2GRAY_UYVY
727
    COLOR_YUV2GRAY_UYNV = COLOR_YUV2GRAY_UYVY, //!< synonym to COLOR_YUV2GRAY_UYVY
728
    COLOR_YUV2GRAY_YVYU = COLOR_YUV2GRAY_YUY2, //!< synonym to COLOR_YUV2GRAY_YUY2
729
    COLOR_YUV2GRAY_YUYV = COLOR_YUV2GRAY_YUY2, //!< synonym to COLOR_YUV2GRAY_YUY2
730
    COLOR_YUV2GRAY_YUNV = COLOR_YUV2GRAY_YUY2, //!< synonym to COLOR_YUV2GRAY_YUY2
731
732
    //! alpha premultiplication
733
    COLOR_RGBA2mRGBA    = 125,
734
    COLOR_mRGBA2RGBA    = 126,
735
736
    COLOR_RGB2YUV_I420  = 127, //!< convert between RGB and 4:2:0-subsampled YUV I420, three planes in one array: Y, U and V, see @ref color_convert_rgb_yuv_42x
737
    COLOR_BGR2YUV_I420  = 128, //!< convert between BGR and 4:2:0-subsampled YUV I420, three planes in one array: Y, U and V, see @ref color_convert_rgb_yuv_42x
738
    COLOR_RGB2YUV_IYUV  = COLOR_RGB2YUV_I420, //!< synonym to I420
739
    COLOR_BGR2YUV_IYUV  = COLOR_BGR2YUV_I420, //!< synonym to I420
740
741
    COLOR_RGBA2YUV_I420 = 129, //!< convert between RGBA and 4:2:0-subsampled YUV I420, three planes in one array: Y, U and V, see @ref color_convert_rgb_yuv_42x
742
    COLOR_BGRA2YUV_I420 = 130, //!< convert between BGRA and 4:2:0-subsampled YUV I420, three planes in one array: Y, U and V, see @ref color_convert_rgb_yuv_42x
743
    COLOR_RGBA2YUV_IYUV = COLOR_RGBA2YUV_I420, //!< synonym to I420
744
    COLOR_BGRA2YUV_IYUV = COLOR_BGRA2YUV_I420, //!< synonym to I420
745
    COLOR_RGB2YUV_YV12  = 131, //!< convert between RGB and 4:2:0-subsampled YUV YV12, three planes in one array: Y, V and U, see @ref color_convert_rgb_yuv_42x
746
    COLOR_BGR2YUV_YV12  = 132, //!< convert between BGR and 4:2:0-subsampled YUV YV12, three planes in one array: Y, V and U, see @ref color_convert_rgb_yuv_42x
747
    COLOR_RGBA2YUV_YV12 = 133, //!< convert between RGBA and 4:2:0-subsampled YUV YV12, three planes in one array: Y, V and U, see @ref color_convert_rgb_yuv_42x
748
    COLOR_BGRA2YUV_YV12 = 134, //!< convert between BGRA and 4:2:0-subsampled YUV YV12, three planes in one array: Y, V and U, see @ref color_convert_rgb_yuv_42x
749
750
    //! Demosaicing, see @ref color_convert_bayer "color conversions" for additional information
751
    COLOR_BayerBG2BGR = 46, //!< equivalent to RGGB Bayer pattern
752
    COLOR_BayerGB2BGR = 47, //!< equivalent to GRBG Bayer pattern
753
    COLOR_BayerRG2BGR = 48, //!< equivalent to BGGR Bayer pattern
754
    COLOR_BayerGR2BGR = 49, //!< equivalent to GBRG Bayer pattern
755
756
    COLOR_BayerRGGB2BGR = COLOR_BayerBG2BGR,
757
    COLOR_BayerGRBG2BGR = COLOR_BayerGB2BGR,
758
    COLOR_BayerBGGR2BGR = COLOR_BayerRG2BGR,
759
    COLOR_BayerGBRG2BGR = COLOR_BayerGR2BGR,
760
761
    COLOR_BayerRGGB2RGB = COLOR_BayerBGGR2BGR,
762
    COLOR_BayerGRBG2RGB = COLOR_BayerGBRG2BGR,
763
    COLOR_BayerBGGR2RGB = COLOR_BayerRGGB2BGR,
764
    COLOR_BayerGBRG2RGB = COLOR_BayerGRBG2BGR,
765
766
    COLOR_BayerBG2RGB = COLOR_BayerRG2BGR, //!< equivalent to RGGB Bayer pattern
767
    COLOR_BayerGB2RGB = COLOR_BayerGR2BGR, //!< equivalent to GRBG Bayer pattern
768
    COLOR_BayerRG2RGB = COLOR_BayerBG2BGR, //!< equivalent to BGGR Bayer pattern
769
    COLOR_BayerGR2RGB = COLOR_BayerGB2BGR, //!< equivalent to GBRG Bayer pattern
770
771
    COLOR_BayerBG2GRAY = 86, //!< equivalent to RGGB Bayer pattern
772
    COLOR_BayerGB2GRAY = 87, //!< equivalent to GRBG Bayer pattern
773
    COLOR_BayerRG2GRAY = 88, //!< equivalent to BGGR Bayer pattern
774
    COLOR_BayerGR2GRAY = 89, //!< equivalent to GBRG Bayer pattern
775
776
    COLOR_BayerRGGB2GRAY = COLOR_BayerBG2GRAY,
777
    COLOR_BayerGRBG2GRAY = COLOR_BayerGB2GRAY,
778
    COLOR_BayerBGGR2GRAY = COLOR_BayerRG2GRAY,
779
    COLOR_BayerGBRG2GRAY = COLOR_BayerGR2GRAY,
780
781
    //! Demosaicing using Variable Number of Gradients
782
    COLOR_BayerBG2BGR_VNG = 62, //!< equivalent to RGGB Bayer pattern
783
    COLOR_BayerGB2BGR_VNG = 63, //!< equivalent to GRBG Bayer pattern
784
    COLOR_BayerRG2BGR_VNG = 64, //!< equivalent to BGGR Bayer pattern
785
    COLOR_BayerGR2BGR_VNG = 65, //!< equivalent to GBRG Bayer pattern
786
787
    COLOR_BayerRGGB2BGR_VNG = COLOR_BayerBG2BGR_VNG,
788
    COLOR_BayerGRBG2BGR_VNG = COLOR_BayerGB2BGR_VNG,
789
    COLOR_BayerBGGR2BGR_VNG = COLOR_BayerRG2BGR_VNG,
790
    COLOR_BayerGBRG2BGR_VNG = COLOR_BayerGR2BGR_VNG,
791
792
    COLOR_BayerRGGB2RGB_VNG = COLOR_BayerBGGR2BGR_VNG,
793
    COLOR_BayerGRBG2RGB_VNG = COLOR_BayerGBRG2BGR_VNG,
794
    COLOR_BayerBGGR2RGB_VNG = COLOR_BayerRGGB2BGR_VNG,
795
    COLOR_BayerGBRG2RGB_VNG = COLOR_BayerGRBG2BGR_VNG,
796
797
    COLOR_BayerBG2RGB_VNG = COLOR_BayerRG2BGR_VNG, //!< equivalent to RGGB Bayer pattern
798
    COLOR_BayerGB2RGB_VNG = COLOR_BayerGR2BGR_VNG, //!< equivalent to GRBG Bayer pattern
799
    COLOR_BayerRG2RGB_VNG = COLOR_BayerBG2BGR_VNG, //!< equivalent to BGGR Bayer pattern
800
    COLOR_BayerGR2RGB_VNG = COLOR_BayerGB2BGR_VNG, //!< equivalent to GBRG Bayer pattern
801
802
    //! Edge-Aware Demosaicing
803
    COLOR_BayerBG2BGR_EA  = 135, //!< equivalent to RGGB Bayer pattern
804
    COLOR_BayerGB2BGR_EA  = 136, //!< equivalent to GRBG Bayer pattern
805
    COLOR_BayerRG2BGR_EA  = 137, //!< equivalent to BGGR Bayer pattern
806
    COLOR_BayerGR2BGR_EA  = 138, //!< equivalent to GBRG Bayer pattern
807
808
    COLOR_BayerRGGB2BGR_EA  = COLOR_BayerBG2BGR_EA,
809
    COLOR_BayerGRBG2BGR_EA  = COLOR_BayerGB2BGR_EA,
810
    COLOR_BayerBGGR2BGR_EA  = COLOR_BayerRG2BGR_EA,
811
    COLOR_BayerGBRG2BGR_EA  = COLOR_BayerGR2BGR_EA,
812
813
    COLOR_BayerRGGB2RGB_EA  = COLOR_BayerBGGR2BGR_EA,
814
    COLOR_BayerGRBG2RGB_EA  = COLOR_BayerGBRG2BGR_EA,
815
    COLOR_BayerBGGR2RGB_EA  = COLOR_BayerRGGB2BGR_EA,
816
    COLOR_BayerGBRG2RGB_EA  = COLOR_BayerGRBG2BGR_EA,
817
818
    COLOR_BayerBG2RGB_EA  = COLOR_BayerRG2BGR_EA, //!< equivalent to RGGB Bayer pattern
819
    COLOR_BayerGB2RGB_EA  = COLOR_BayerGR2BGR_EA, //!< equivalent to GRBG Bayer pattern
820
    COLOR_BayerRG2RGB_EA  = COLOR_BayerBG2BGR_EA, //!< equivalent to BGGR Bayer pattern
821
    COLOR_BayerGR2RGB_EA  = COLOR_BayerGB2BGR_EA, //!< equivalent to GBRG Bayer pattern
822
823
    //! Demosaicing with alpha channel
824
    COLOR_BayerBG2BGRA = 139, //!< equivalent to RGGB Bayer pattern
825
    COLOR_BayerGB2BGRA = 140, //!< equivalent to GRBG Bayer pattern
826
    COLOR_BayerRG2BGRA = 141, //!< equivalent to BGGR Bayer pattern
827
    COLOR_BayerGR2BGRA = 142, //!< equivalent to GBRG Bayer pattern
828
829
    COLOR_BayerRGGB2BGRA = COLOR_BayerBG2BGRA,
830
    COLOR_BayerGRBG2BGRA = COLOR_BayerGB2BGRA,
831
    COLOR_BayerBGGR2BGRA = COLOR_BayerRG2BGRA,
832
    COLOR_BayerGBRG2BGRA = COLOR_BayerGR2BGRA,
833
834
    COLOR_BayerRGGB2RGBA = COLOR_BayerBGGR2BGRA,
835
    COLOR_BayerGRBG2RGBA = COLOR_BayerGBRG2BGRA,
836
    COLOR_BayerBGGR2RGBA = COLOR_BayerRGGB2BGRA,
837
    COLOR_BayerGBRG2RGBA = COLOR_BayerGRBG2BGRA,
838
839
    COLOR_BayerBG2RGBA = COLOR_BayerRG2BGRA, //!< equivalent to RGGB Bayer pattern
840
    COLOR_BayerGB2RGBA = COLOR_BayerGR2BGRA, //!< equivalent to GRBG Bayer pattern
841
    COLOR_BayerRG2RGBA = COLOR_BayerBG2BGRA, //!< equivalent to BGGR Bayer pattern
842
    COLOR_BayerGR2RGBA = COLOR_BayerGB2BGRA, //!< equivalent to GBRG Bayer pattern
843
844
    COLOR_RGB2YUV_UYVY = 143, //!< convert between RGB and YUV UYVU, YUV is 4:2:2 and interleaved as U/Y1/V/Y2, see @ref color_convert_rgb_yuv_42x
845
    COLOR_BGR2YUV_UYVY = 144, //!< convert between BGR and YUV UYVU, YUV is 4:2:2 and interleaved as U/Y1/V/Y2, see @ref color_convert_rgb_yuv_42x
846
    COLOR_RGB2YUV_Y422 = COLOR_RGB2YUV_UYVY, //!< synonym to UYVY
847
    COLOR_BGR2YUV_Y422 = COLOR_BGR2YUV_UYVY, //!< synonym to UYVY
848
    COLOR_RGB2YUV_UYNV = COLOR_RGB2YUV_UYVY, //!< synonym to UYVY
849
    COLOR_BGR2YUV_UYNV = COLOR_BGR2YUV_UYVY, //!< synonym to UYVY
850
851
    COLOR_RGBA2YUV_UYVY = 145, //!< convert between RGBA and YUV UYVU, YUV is 4:2:2 and interleaved as U/Y1/V/Y2, see @ref color_convert_rgb_yuv_42x
852
    COLOR_BGRA2YUV_UYVY = 146, //!< convert between BGRA and YUV UYVU, YUV is 4:2:2 and interleaved as U/Y1/V/Y2, see @ref color_convert_rgb_yuv_42x
853
    COLOR_RGBA2YUV_Y422 = COLOR_RGBA2YUV_UYVY, //!< synonym to UYVY
854
    COLOR_BGRA2YUV_Y422 = COLOR_BGRA2YUV_UYVY, //!< synonym to UYVY
855
    COLOR_RGBA2YUV_UYNV = COLOR_RGBA2YUV_UYVY, //!< synonym to UYVY
856
    COLOR_BGRA2YUV_UYNV = COLOR_BGRA2YUV_UYVY, //!< synonym to UYVY
857
858
    COLOR_RGB2YUV_YUY2 = 147, //!< convert between RGB and YUV YUY2, YUV is 4:2:2 and interleaved as Y1/U/Y2/V, see @ref color_convert_rgb_yuv_42x
859
    COLOR_BGR2YUV_YUY2 = 148, //!< convert between BGR and YUV YUY2, YUV is 4:2:2 and interleaved as Y1/U/Y2/V, see @ref color_convert_rgb_yuv_42x
860
    COLOR_RGB2YUV_YVYU = 149, //!< convert between RGB and YUV YVYU, YUV is 4:2:2 and interleaved as Y1/V/Y2/U, see @ref color_convert_rgb_yuv_42x
861
    COLOR_BGR2YUV_YVYU = 150, //!< convert between BGR and YUV YVYU, YUV is 4:2:2 and interleaved as Y1/V/Y2/U, see @ref color_convert_rgb_yuv_42x
862
    COLOR_RGB2YUV_YUYV = COLOR_RGB2YUV_YUY2, //!< synonym to YUY2
863
    COLOR_BGR2YUV_YUYV = COLOR_BGR2YUV_YUY2, //!< synonym to YUY2
864
    COLOR_RGB2YUV_YUNV = COLOR_RGB2YUV_YUY2, //!< synonym to YUY2
865
    COLOR_BGR2YUV_YUNV = COLOR_BGR2YUV_YUY2, //!< synonym to YUY2
866
867
    COLOR_RGBA2YUV_YUY2 = 151, //!< convert between RGBA and YUV YUY2, YUV is 4:2:2 and interleaved as Y1/U/Y2/V, see @ref color_convert_rgb_yuv_42x
868
    COLOR_BGRA2YUV_YUY2 = 152, //!< convert between BGRA and YUV YUY2, YUV is 4:2:2 and interleaved as Y1/U/Y2/V, see @ref color_convert_rgb_yuv_42x
869
    COLOR_RGBA2YUV_YVYU = 153, //!< convert between RGBA and YUV YVYU, YUV is 4:2:2 and interleaved as Y1/V/Y2/U, see @ref color_convert_rgb_yuv_42x
870
    COLOR_BGRA2YUV_YVYU = 154, //!< convert between BGRA and YUV YVYU, YUV is 4:2:2 and interleaved as Y1/V/Y2/U, see @ref color_convert_rgb_yuv_42x
871
    COLOR_RGBA2YUV_YUYV = COLOR_RGBA2YUV_YUY2, //!< synonym to YUY2
872
    COLOR_BGRA2YUV_YUYV = COLOR_BGRA2YUV_YUY2, //!< synonym to YUY2
873
    COLOR_RGBA2YUV_YUNV = COLOR_RGBA2YUV_YUY2, //!< synonym to YUY2
874
    COLOR_BGRA2YUV_YUNV = COLOR_BGRA2YUV_YUY2, //!< synonym to YUY2
875
876
    COLOR_COLORCVT_MAX  = 155
877
};
878
879
//! @addtogroup imgproc_shape
880
//! @{
881
882
//! types of intersection between rectangles
883
enum RectanglesIntersectTypes {
884
    INTERSECT_NONE = 0, //!< No intersection
885
    INTERSECT_PARTIAL  = 1, //!< There is a partial intersection
886
    INTERSECT_FULL  = 2 //!< One of the rectangle is fully enclosed in the other
887
};
888
889
/** types of line
890
@ingroup imgproc_draw
891
*/
892
enum LineTypes {
893
    FILLED  = -1,
894
    LINE_4  = 4, //!< 4-connected line
895
    LINE_8  = 8, //!< 8-connected line
896
    LINE_AA = 16 //!< antialiased line
897
};
898
899
/** Only a subset of Hershey fonts <https://en.wikipedia.org/wiki/Hershey_fonts> are supported
900
@ingroup imgproc_draw
901
*/
902
enum HersheyFonts {
903
    FONT_HERSHEY_SIMPLEX        = 0, //!< normal size sans-serif font
904
    FONT_HERSHEY_PLAIN          = 1, //!< small size sans-serif font
905
    FONT_HERSHEY_DUPLEX         = 2, //!< normal size sans-serif font (more complex than FONT_HERSHEY_SIMPLEX)
906
    FONT_HERSHEY_COMPLEX        = 3, //!< normal size serif font
907
    FONT_HERSHEY_TRIPLEX        = 4, //!< normal size serif font (more complex than FONT_HERSHEY_COMPLEX)
908
    FONT_HERSHEY_COMPLEX_SMALL  = 5, //!< smaller version of FONT_HERSHEY_COMPLEX
909
    FONT_HERSHEY_SCRIPT_SIMPLEX = 6, //!< hand-writing style font
910
    FONT_HERSHEY_SCRIPT_COMPLEX = 7, //!< more complex variant of FONT_HERSHEY_SCRIPT_SIMPLEX
911
    FONT_ITALIC                 = 16 //!< flag for italic font
912
};
913
914
/** Possible set of marker types used for the cv::drawMarker function
915
@ingroup imgproc_draw
916
*/
917
enum MarkerTypes
918
{
919
    MARKER_CROSS = 0,           //!< A crosshair marker shape
920
    MARKER_TILTED_CROSS = 1,    //!< A 45 degree tilted crosshair marker shape
921
    MARKER_STAR = 2,            //!< A star marker shape, combination of cross and tilted cross
922
    MARKER_DIAMOND = 3,         //!< A diamond marker shape
923
    MARKER_SQUARE = 4,          //!< A square marker shape
924
    MARKER_TRIANGLE_UP = 5,     //!< An upwards pointing triangle marker shape
925
    MARKER_TRIANGLE_DOWN = 6    //!< A downwards pointing triangle marker shape
926
};
927
928
/** @brief finds arbitrary template in the grayscale image using Generalized Hough Transform
929
*/
930
class CV_EXPORTS_W GeneralizedHough : public Algorithm
931
{
932
public:
933
    //! set template to search
934
    CV_WRAP virtual void setTemplate(InputArray templ, Point templCenter = Point(-1, -1)) = 0;
935
    CV_WRAP virtual void setTemplate(InputArray edges, InputArray dx, InputArray dy, Point templCenter = Point(-1, -1)) = 0;
936
937
    //! find template on image
938
    CV_WRAP virtual void detect(InputArray image, OutputArray positions, OutputArray votes = noArray()) = 0;
939
    CV_WRAP virtual void detect(InputArray edges, InputArray dx, InputArray dy, OutputArray positions, OutputArray votes = noArray()) = 0;
940
941
    //! Canny low threshold.
942
    CV_WRAP virtual void setCannyLowThresh(int cannyLowThresh) = 0;
943
    CV_WRAP virtual int getCannyLowThresh() const = 0;
944
945
    //! Canny high threshold.
946
    CV_WRAP virtual void setCannyHighThresh(int cannyHighThresh) = 0;
947
    CV_WRAP virtual int getCannyHighThresh() const = 0;
948
949
    //! Minimum distance between the centers of the detected objects.
950
    CV_WRAP virtual void setMinDist(double minDist) = 0;
951
    CV_WRAP virtual double getMinDist() const = 0;
952
953
    //! Inverse ratio of the accumulator resolution to the image resolution.
954
    CV_WRAP virtual void setDp(double dp) = 0;
955
    CV_WRAP virtual double getDp() const = 0;
956
957
    //! Maximal size of inner buffers.
958
    CV_WRAP virtual void setMaxBufferSize(int maxBufferSize) = 0;
959
    CV_WRAP virtual int getMaxBufferSize() const = 0;
960
};
961
962
/** @brief finds arbitrary template in the grayscale image using Generalized Hough Transform
963
964
Detects position only without translation and rotation @cite Ballard1981 .
965
*/
966
class CV_EXPORTS_W GeneralizedHoughBallard : public GeneralizedHough
967
{
968
public:
969
    //! R-Table levels.
970
    CV_WRAP virtual void setLevels(int levels) = 0;
971
    CV_WRAP virtual int getLevels() const = 0;
972
973
    //! The accumulator threshold for the template centers at the detection stage. The smaller it is, the more false positions may be detected.
974
    CV_WRAP virtual void setVotesThreshold(int votesThreshold) = 0;
975
    CV_WRAP virtual int getVotesThreshold() const = 0;
976
};
977
978
/** @brief finds arbitrary template in the grayscale image using Generalized Hough Transform
979
980
Detects position, translation and rotation @cite Guil1999 .
981
*/
982
class CV_EXPORTS_W GeneralizedHoughGuil : public GeneralizedHough
983
{
984
public:
985
    //! Angle difference in degrees between two points in feature.
986
    CV_WRAP virtual void setXi(double xi) = 0;
987
    CV_WRAP virtual double getXi() const = 0;
988
989
    //! Feature table levels.
990
    CV_WRAP virtual void setLevels(int levels) = 0;
991
    CV_WRAP virtual int getLevels() const = 0;
992
993
    //! Maximal difference between angles that treated as equal.
994
    CV_WRAP virtual void setAngleEpsilon(double angleEpsilon) = 0;
995
    CV_WRAP virtual double getAngleEpsilon() const = 0;
996
997
    //! Minimal rotation angle to detect in degrees.
998
    CV_WRAP virtual void setMinAngle(double minAngle) = 0;
999
    CV_WRAP virtual double getMinAngle() const = 0;
1000
1001
    //! Maximal rotation angle to detect in degrees.
1002
    CV_WRAP virtual void setMaxAngle(double maxAngle) = 0;
1003
    CV_WRAP virtual double getMaxAngle() const = 0;
1004
1005
    //! Angle step in degrees.
1006
    CV_WRAP virtual void setAngleStep(double angleStep) = 0;
1007
    CV_WRAP virtual double getAngleStep() const = 0;
1008
1009
    //! Angle votes threshold.
1010
    CV_WRAP virtual void setAngleThresh(int angleThresh) = 0;
1011
    CV_WRAP virtual int getAngleThresh() const = 0;
1012
1013
    //! Minimal scale to detect.
1014
    CV_WRAP virtual void setMinScale(double minScale) = 0;
1015
    CV_WRAP virtual double getMinScale() const = 0;
1016
1017
    //! Maximal scale to detect.
1018
    CV_WRAP virtual void setMaxScale(double maxScale) = 0;
1019
    CV_WRAP virtual double getMaxScale() const = 0;
1020
1021
    //! Scale step.
1022
    CV_WRAP virtual void setScaleStep(double scaleStep) = 0;
1023
    CV_WRAP virtual double getScaleStep() const = 0;
1024
1025
    //! Scale votes threshold.
1026
    CV_WRAP virtual void setScaleThresh(int scaleThresh) = 0;
1027
    CV_WRAP virtual int getScaleThresh() const = 0;
1028
1029
    //! Position votes threshold.
1030
    CV_WRAP virtual void setPosThresh(int posThresh) = 0;
1031
    CV_WRAP virtual int getPosThresh() const = 0;
1032
};
1033
1034
//! @} imgproc_shape
1035
1036
//! @addtogroup imgproc_hist
1037
//! @{
1038
1039
/** @brief Base class for Contrast Limited Adaptive Histogram Equalization.
1040
*/
1041
class CV_EXPORTS_W CLAHE : public Algorithm
1042
{
1043
public:
1044
    /** @brief Equalizes the histogram of a grayscale image using Contrast Limited Adaptive Histogram Equalization.
1045
1046
    @param src Source image of type CV_8UC1 or CV_16UC1.
1047
    @param dst Destination image.
1048
     */
1049
    CV_WRAP virtual void apply(InputArray src, OutputArray dst) = 0;
1050
1051
    /** @brief Sets threshold for contrast limiting.
1052
1053
    @param clipLimit threshold value.
1054
    */
1055
    CV_WRAP virtual void setClipLimit(double clipLimit) = 0;
1056
1057
    //! Returns threshold value for contrast limiting.
1058
    CV_WRAP virtual double getClipLimit() const = 0;
1059
1060
    /** @brief Sets size of grid for histogram equalization. Input image will be divided into
1061
    equally sized rectangular tiles.
1062
1063
    @param tileGridSize defines the number of tiles in row and column.
1064
    */
1065
    CV_WRAP virtual void setTilesGridSize(Size tileGridSize) = 0;
1066
1067
    //!@brief Returns Size defines the number of tiles in row and column.
1068
    CV_WRAP virtual Size getTilesGridSize() const = 0;
1069
1070
    CV_WRAP virtual void collectGarbage() = 0;
1071
};
1072
1073
//! @} imgproc_hist
1074
1075
//! @addtogroup imgproc_subdiv2d
1076
//! @{
1077
1078
class CV_EXPORTS_W Subdiv2D
1079
{
1080
public:
1081
    /** Subdiv2D point location cases */
1082
    enum { PTLOC_ERROR        = -2, //!< Point location error
1083
           PTLOC_OUTSIDE_RECT = -1, //!< Point outside the subdivision bounding rect
1084
           PTLOC_INSIDE       = 0, //!< Point inside some facet
1085
           PTLOC_VERTEX       = 1, //!< Point coincides with one of the subdivision vertices
1086
           PTLOC_ON_EDGE      = 2  //!< Point on some edge
1087
         };
1088
1089
    /** Subdiv2D edge type navigation (see: getEdge()) */
1090
    enum { NEXT_AROUND_ORG   = 0x00,
1091
           NEXT_AROUND_DST   = 0x22,
1092
           PREV_AROUND_ORG   = 0x11,
1093
           PREV_AROUND_DST   = 0x33,
1094
           NEXT_AROUND_LEFT  = 0x13,
1095
           NEXT_AROUND_RIGHT = 0x31,
1096
           PREV_AROUND_LEFT  = 0x20,
1097
           PREV_AROUND_RIGHT = 0x02
1098
         };
1099
1100
    /** creates an empty Subdiv2D object.
1101
    To create a new empty Delaunay subdivision you need to use the #initDelaunay function.
1102
     */
1103
    CV_WRAP Subdiv2D();
1104
1105
    /** @overload
1106
1107
    @param rect Rectangle that includes all of the 2D points that are to be added to the subdivision.
1108
1109
    The function creates an empty Delaunay subdivision where 2D points can be added using the function
1110
    insert() . All of the points to be added must be within the specified rectangle, otherwise a runtime
1111
    error is raised.
1112
     */
1113
    CV_WRAP Subdiv2D(Rect rect);
1114
1115
    /** @overload */
1116
    CV_WRAP Subdiv2D(Rect2f rect2f);
1117
1118
    /** @overload
1119
1120
    @brief Creates a new empty Delaunay subdivision
1121
1122
    @param rect Rectangle that includes all of the 2D points that are to be added to the subdivision.
1123
1124
     */
1125
    CV_WRAP void initDelaunay(Rect rect);
1126
1127
    /** @overload
1128
1129
    @brief Creates a new empty Delaunay subdivision
1130
1131
    @param rect Rectangle that includes all of the 2d points that are to be added to the subdivision.
1132
1133
     */
1134
    CV_WRAP_AS(initDelaunay2f) CV_WRAP void initDelaunay(Rect2f rect);
1135
1136
    /** @brief Insert a single point into a Delaunay triangulation.
1137
1138
    @param pt Point to insert.
1139
1140
    The function inserts a single point into a subdivision and modifies the subdivision topology
1141
    appropriately. If a point with the same coordinates exists already, no new point is added.
1142
    @returns the ID of the point.
1143
1144
    @note If the point is outside of the triangulation specified rect a runtime error is raised.
1145
     */
1146
    CV_WRAP int insert(Point2f pt);
1147
1148
    /** @brief Insert multiple points into a Delaunay triangulation.
1149
1150
    @param ptvec Points to insert.
1151
1152
    The function inserts a vector of points into a subdivision and modifies the subdivision topology
1153
    appropriately.
1154
     */
1155
    CV_WRAP void insert(const std::vector<Point2f>& ptvec);
1156
1157
    /** @brief Returns the location of a point within a Delaunay triangulation.
1158
1159
    @param pt Point to locate.
1160
    @param edge Output edge that the point belongs to or is located to the right of it.
1161
    @param vertex Optional output vertex the input point coincides with.
1162
1163
    The function locates the input point within the subdivision and gives one of the triangle edges
1164
    or vertices.
1165
1166
    @returns an integer which specify one of the following five cases for point location:
1167
    -  The point falls into some facet. The function returns #PTLOC_INSIDE and edge will contain one of
1168
       edges of the facet.
1169
    -  The point falls onto the edge. The function returns #PTLOC_ON_EDGE and edge will contain this edge.
1170
    -  The point coincides with one of the subdivision vertices. The function returns #PTLOC_VERTEX and
1171
       vertex will contain a pointer to the vertex.
1172
    -  The point is outside the subdivision reference rectangle. The function returns #PTLOC_OUTSIDE_RECT
1173
       and no pointers are filled.
1174
    -  One of input arguments is invalid. A runtime error is raised or, if silent or "parent" error
1175
       processing mode is selected, #PTLOC_ERROR is returned.
1176
     */
1177
    CV_WRAP int locate(Point2f pt, CV_OUT int& edge, CV_OUT int& vertex);
1178
1179
    /** @brief Finds the subdivision vertex closest to the given point.
1180
1181
    @param pt Input point.
1182
    @param nearestPt Output subdivision vertex point.
1183
1184
    The function is another function that locates the input point within the subdivision. It finds the
1185
    subdivision vertex that is the closest to the input point. It is not necessarily one of vertices
1186
    of the facet containing the input point, though the facet (located using locate() ) is used as a
1187
    starting point.
1188
1189
    @returns vertex ID.
1190
     */
1191
    CV_WRAP int findNearest(Point2f pt, CV_OUT Point2f* nearestPt = 0);
1192
1193
    /** @brief Returns a list of all edges.
1194
1195
    @param edgeList Output vector.
1196
1197
    The function gives each edge as a 4 numbers vector, where each two are one of the edge
1198
    vertices. i.e. org_x = v[0], org_y = v[1], dst_x = v[2], dst_y = v[3].
1199
     */
1200
    CV_WRAP void getEdgeList(CV_OUT std::vector<Vec4f>& edgeList) const;
1201
1202
    /** @brief Returns a list of the leading edge ID connected to each triangle.
1203
1204
    @param leadingEdgeList Output vector.
1205
1206
    The function gives one edge ID for each triangle.
1207
     */
1208
    CV_WRAP void getLeadingEdgeList(CV_OUT std::vector<int>& leadingEdgeList) const;
1209
1210
    /** @brief Returns a list of all triangles.
1211
1212
    @param triangleList Output vector.
1213
1214
    The function gives each triangle as a 6 numbers vector, where each two are one of the triangle
1215
    vertices. i.e. p1_x = v[0], p1_y = v[1], p2_x = v[2], p2_y = v[3], p3_x = v[4], p3_y = v[5].
1216
     */
1217
    CV_WRAP void getTriangleList(CV_OUT std::vector<Vec6f>& triangleList) const;
1218
1219
    /** @brief Returns a list of all Voronoi facets.
1220
1221
    @param idx Vector of vertices IDs to consider. For all vertices you can pass empty vector.
1222
    @param facetList Output vector of the Voronoi facets.
1223
    @param facetCenters Output vector of the Voronoi facets center points.
1224
1225
     */
1226
    CV_WRAP void getVoronoiFacetList(const std::vector<int>& idx, CV_OUT std::vector<std::vector<Point2f> >& facetList,
1227
                                     CV_OUT std::vector<Point2f>& facetCenters);
1228
1229
    /** @brief Returns vertex location from vertex ID.
1230
1231
    @param vertex vertex ID.
1232
    @param firstEdge Optional. The first edge ID which is connected to the vertex.
1233
    @returns vertex (x,y)
1234
1235
     */
1236
    CV_WRAP Point2f getVertex(int vertex, CV_OUT int* firstEdge = 0) const;
1237
1238
    /** @brief Returns one of the edges related to the given edge.
1239
1240
    @param edge Subdivision edge ID.
1241
    @param nextEdgeType Parameter specifying which of the related edges to return.
1242
    The following values are possible:
1243
    -   NEXT_AROUND_ORG next around the edge origin ( eOnext on the picture below if e is the input edge)
1244
    -   NEXT_AROUND_DST next around the edge vertex ( eDnext )
1245
    -   PREV_AROUND_ORG previous around the edge origin (reversed eRnext )
1246
    -   PREV_AROUND_DST previous around the edge destination (reversed eLnext )
1247
    -   NEXT_AROUND_LEFT next around the left facet ( eLnext )
1248
    -   NEXT_AROUND_RIGHT next around the right facet ( eRnext )
1249
    -   PREV_AROUND_LEFT previous around the left facet (reversed eOnext )
1250
    -   PREV_AROUND_RIGHT previous around the right facet (reversed eDnext )
1251
1252
    ![sample output](pics/quadedge.png)
1253
1254
    @returns edge ID related to the input edge.
1255
     */
1256
    CV_WRAP int getEdge( int edge, int nextEdgeType ) const;
1257
1258
    /** @brief Returns next edge around the edge origin.
1259
1260
    @param edge Subdivision edge ID.
1261
1262
    @returns an integer which is next edge ID around the edge origin: eOnext on the
1263
    picture above if e is the input edge).
1264
     */
1265
    CV_WRAP int nextEdge(int edge) const;
1266
1267
    /** @brief Returns another edge of the same quad-edge.
1268
1269
    @param edge Subdivision edge ID.
1270
    @param rotate Parameter specifying which of the edges of the same quad-edge as the input
1271
    one to return. The following values are possible:
1272
    -   0 - the input edge ( e on the picture below if e is the input edge)
1273
    -   1 - the rotated edge ( eRot )
1274
    -   2 - the reversed edge (reversed e (in green))
1275
    -   3 - the reversed rotated edge (reversed eRot (in green))
1276
1277
    @returns one of the edges ID of the same quad-edge as the input edge.
1278
     */
1279
    CV_WRAP int rotateEdge(int edge, int rotate) const;
1280
    CV_WRAP int symEdge(int edge) const;
1281
1282
    /** @brief Returns the edge origin.
1283
1284
    @param edge Subdivision edge ID.
1285
    @param orgpt Output vertex location.
1286
1287
    @returns vertex ID.
1288
     */
1289
    CV_WRAP int edgeOrg(int edge, CV_OUT Point2f* orgpt = 0) const;
1290
1291
    /** @brief Returns the edge destination.
1292
1293
    @param edge Subdivision edge ID.
1294
    @param dstpt Output vertex location.
1295
1296
    @returns vertex ID.
1297
     */
1298
    CV_WRAP int edgeDst(int edge, CV_OUT Point2f* dstpt = 0) const;
1299
1300
protected:
1301
    int newEdge();
1302
    void deleteEdge(int edge);
1303
    int newPoint(Point2f pt, bool isvirtual, int firstEdge = 0);
1304
    void deletePoint(int vtx);
1305
    void setEdgePoints( int edge, int orgPt, int dstPt );
1306
    void splice( int edgeA, int edgeB );
1307
    int connectEdges( int edgeA, int edgeB );
1308
    void swapEdges( int edge );
1309
    int isRightOf(Point2f pt, int edge) const;
1310
    void calcVoronoi();
1311
    void clearVoronoi();
1312
    void checkSubdiv() const;
1313
1314
    struct CV_EXPORTS Vertex
1315
    {
1316
        Vertex();
1317
        Vertex(Point2f pt, bool isvirtual, int firstEdge=0);
1318
        bool isvirtual() const;
1319
        bool isfree() const;
1320
1321
        int firstEdge;
1322
        int type;
1323
        Point2f pt;
1324
    };
1325
1326
    struct CV_EXPORTS QuadEdge
1327
    {
1328
        QuadEdge();
1329
        QuadEdge(int edgeidx);
1330
        bool isfree() const;
1331
1332
        int next[4];
1333
        int pt[4];
1334
    };
1335
1336
    //! All of the vertices
1337
    std::vector<Vertex> vtx;
1338
    //! All of the edges
1339
    std::vector<QuadEdge> qedges;
1340
    int freeQEdge;
1341
    int freePoint;
1342
    bool validGeometry;
1343
1344
    int recentEdge;
1345
    //! Top left corner of the bounding rect
1346
    Point2f topLeft;
1347
    //! Bottom right corner of the bounding rect
1348
    Point2f bottomRight;
1349
};
1350
1351
//! @} imgproc_subdiv2d
1352
1353
//! @addtogroup imgproc_feature
1354
//! @{
1355
1356
/** @example samples/cpp/lsd_lines.cpp
1357
An example using the LineSegmentDetector
1358
\image html building_lsd.png "Sample output image" width=434 height=300
1359
*/
1360
1361
/** @brief Line segment detector class
1362
1363
following the algorithm described at @cite Rafael12 .
1364
1365
@note Implementation has been removed from OpenCV version 3.4.6 to 3.4.15 and version 4.1.0 to 4.5.3 due original code license conflict.
1366
restored again after [Computation of a NFA](https://github.com/rafael-grompone-von-gioi/binomial_nfa) code published under the MIT license.
1367
*/
1368
class CV_EXPORTS_W LineSegmentDetector : public Algorithm
1369
{
1370
public:
1371
1372
    /** @brief Finds lines in the input image.
1373
1374
    This is the output of the default parameters of the algorithm on the above shown image.
1375
1376
    ![image](pics/building_lsd.png)
1377
1378
    @param image A grayscale (CV_8UC1) input image. If only a roi needs to be selected, use:
1379
    `lsd_ptr-\>detect(image(roi), lines, ...); lines += Scalar(roi.x, roi.y, roi.x, roi.y);`
1380
    @param lines A vector of Vec4f elements specifying the beginning and ending point of a line. Where
1381
    Vec4f is (x1, y1, x2, y2), point 1 is the start, point 2 - end. Returned lines are strictly
1382
    oriented depending on the gradient.
1383
    @param width Vector of widths of the regions, where the lines are found. E.g. Width of line.
1384
    @param prec Vector of precisions with which the lines are found.
1385
    @param nfa Vector containing number of false alarms in the line region, with precision of 10%. The
1386
    bigger the value, logarithmically better the detection.
1387
    - -1 corresponds to 10 mean false alarms
1388
    - 0 corresponds to 1 mean false alarm
1389
    - 1 corresponds to 0.1 mean false alarms
1390
    This vector will be calculated only when the objects type is #LSD_REFINE_ADV.
1391
    */
1392
    CV_WRAP virtual void detect(InputArray image, OutputArray lines,
1393
                        OutputArray width = noArray(), OutputArray prec = noArray(),
1394
                        OutputArray nfa = noArray()) = 0;
1395
1396
    /** @brief Draws the line segments on a given image.
1397
    @param image The image, where the lines will be drawn. Should be bigger or equal to the image,
1398
    where the lines were found.
1399
    @param lines A vector of the lines that needed to be drawn.
1400
     */
1401
    CV_WRAP virtual void drawSegments(InputOutputArray image, InputArray lines) = 0;
1402
1403
    /** @brief Draws two groups of lines in blue and red, counting the non overlapping (mismatching) pixels.
1404
1405
    @param size The size of the image, where lines1 and lines2 were found.
1406
    @param lines1 The first group of lines that needs to be drawn. It is visualized in blue color.
1407
    @param lines2 The second group of lines. They visualized in red color.
1408
    @param image Optional image, where the lines will be drawn. The image should be color(3-channel)
1409
    in order for lines1 and lines2 to be drawn in the above mentioned colors.
1410
     */
1411
    CV_WRAP virtual int compareSegments(const Size& size, InputArray lines1, InputArray lines2, InputOutputArray image = noArray()) = 0;
1412
1413
0
    virtual ~LineSegmentDetector() { }
1414
};
1415
1416
/** @brief Creates a smart pointer to a LineSegmentDetector object and initializes it.
1417
1418
The LineSegmentDetector algorithm is defined using the standard values. Only advanced users may want
1419
to edit those, as to tailor it for their own application.
1420
1421
@param refine The way found lines will be refined, see #LineSegmentDetectorModes
1422
@param scale The scale of the image that will be used to find the lines. Range (0..1].
1423
@param sigma_scale Sigma for Gaussian filter. It is computed as sigma = sigma_scale/scale.
1424
@param quant Bound to the quantization error on the gradient norm.
1425
@param ang_th Gradient angle tolerance in degrees.
1426
@param log_eps Detection threshold: -log10(NFA) \> log_eps. Used only when advance refinement is chosen.
1427
@param density_th Minimal density of aligned region points in the enclosing rectangle.
1428
@param n_bins Number of bins in pseudo-ordering of gradient modulus.
1429
 */
1430
CV_EXPORTS_W Ptr<LineSegmentDetector> createLineSegmentDetector(
1431
    int refine = LSD_REFINE_STD, double scale = 0.8,
1432
    double sigma_scale = 0.6, double quant = 2.0, double ang_th = 22.5,
1433
    double log_eps = 0, double density_th = 0.7, int n_bins = 1024);
1434
1435
//! @} imgproc_feature
1436
1437
//! @addtogroup imgproc_filter
1438
//! @{
1439
1440
/** @brief Returns Gaussian filter coefficients.
1441
1442
The function computes and returns the \f$\texttt{ksize} \times 1\f$ matrix of Gaussian filter
1443
coefficients:
1444
1445
\f[G_i= \alpha *e^{-(i-( \texttt{ksize} -1)/2)^2/(2* \texttt{sigma}^2)},\f]
1446
1447
where \f$i=0..\texttt{ksize}-1\f$ and \f$\alpha\f$ is the scale factor chosen so that \f$\sum_i G_i=1\f$.
1448
1449
Two of such generated kernels can be passed to sepFilter2D. Those functions automatically recognize
1450
smoothing kernels (a symmetrical kernel with sum of weights equal to 1) and handle them accordingly.
1451
You may also use the higher-level GaussianBlur.
1452
@param ksize Aperture size. It should be odd ( \f$\texttt{ksize} \mod 2 = 1\f$ ) and positive.
1453
@param sigma Gaussian standard deviation. If it is non-positive, it is computed from ksize as
1454
`sigma = 0.3*((ksize-1)*0.5 - 1) + 0.8`.
1455
@param ktype Type of filter coefficients. It can be CV_32F or CV_64F .
1456
@sa  sepFilter2D, getDerivKernels, getStructuringElement, GaussianBlur
1457
 */
1458
CV_EXPORTS_W Mat getGaussianKernel( int ksize, double sigma, int ktype = CV_64F );
1459
1460
/** @brief Returns filter coefficients for computing spatial image derivatives.
1461
1462
The function computes and returns the filter coefficients for spatial image derivatives. When
1463
`ksize=FILTER_SCHARR`, the Scharr \f$3 \times 3\f$ kernels are generated (see #Scharr). Otherwise, Sobel
1464
kernels are generated (see #Sobel). The filters are normally passed to #sepFilter2D or to
1465
1466
@param kx Output matrix of row filter coefficients. It has the type ktype .
1467
@param ky Output matrix of column filter coefficients. It has the type ktype .
1468
@param dx Derivative order in respect of x.
1469
@param dy Derivative order in respect of y.
1470
@param ksize Aperture size. It can be FILTER_SCHARR, 1, 3, 5, or 7.
1471
@param normalize Flag indicating whether to normalize (scale down) the filter coefficients or not.
1472
Theoretically, the coefficients should have the denominator \f$=2^{ksize*2-dx-dy-2}\f$. If you are
1473
going to filter floating-point images, you are likely to use the normalized kernels. But if you
1474
compute derivatives of an 8-bit image, store the results in a 16-bit image, and wish to preserve
1475
all the fractional bits, you may want to set normalize=false .
1476
@param ktype Type of filter coefficients. It can be CV_32f or CV_64F .
1477
 */
1478
CV_EXPORTS_W void getDerivKernels( OutputArray kx, OutputArray ky,
1479
                                   int dx, int dy, int ksize,
1480
                                   bool normalize = false, int ktype = CV_32F );
1481
1482
/** @brief Returns Gabor filter coefficients.
1483
1484
For more details about gabor filter equations and parameters, see: [Gabor
1485
Filter](https://en.wikipedia.org/wiki/Gabor_filter).
1486
1487
@param ksize Size of the filter returned.
1488
@param sigma Standard deviation of the gaussian envelope.
1489
@param theta Orientation of the normal to the parallel stripes of a Gabor function.
1490
@param lambd Wavelength of the sinusoidal factor.
1491
@param gamma Spatial aspect ratio.
1492
@param psi Phase offset.
1493
@param ktype Type of filter coefficients. It can be CV_32F or CV_64F .
1494
 */
1495
CV_EXPORTS_W Mat getGaborKernel( Size ksize, double sigma, double theta, double lambd,
1496
                                 double gamma, double psi = CV_PI*0.5, int ktype = CV_64F );
1497
1498
//! returns "magic" border value for erosion and dilation. It is automatically transformed to Scalar::all(-DBL_MAX) for dilation.
1499
0
static inline Scalar morphologyDefaultBorderValue() { return Scalar::all(DBL_MAX); }
Unexecuted instantiation: generateusergallerycollage_fuzzer.cc:cv::morphologyDefaultBorderValue()
Unexecuted instantiation: imread_fuzzer.cc:cv::morphologyDefaultBorderValue()
Unexecuted instantiation: imdecode_fuzzer.cc:cv::morphologyDefaultBorderValue()
Unexecuted instantiation: filestorage_read_string_fuzzer.cc:cv::morphologyDefaultBorderValue()
Unexecuted instantiation: filestorage_read_file_fuzzer.cc:cv::morphologyDefaultBorderValue()
Unexecuted instantiation: core_fuzzer.cc:cv::morphologyDefaultBorderValue()
Unexecuted instantiation: imencode_fuzzer.cc:cv::morphologyDefaultBorderValue()
Unexecuted instantiation: filestorage_read_filename_fuzzer.cc:cv::morphologyDefaultBorderValue()
1500
1501
/** @brief Returns a structuring element of the specified size and shape for morphological operations.
1502
1503
The function constructs and returns the structuring element that can be further passed to #erode,
1504
#dilate or #morphologyEx. But you can also construct an arbitrary binary mask yourself and use it as
1505
the structuring element.
1506
1507
@param shape Element shape that could be one of #MorphShapes
1508
@param ksize Size of the structuring element.
1509
@param anchor Anchor position within the element. The default value \f$(-1, -1)\f$ means that the
1510
anchor is at the center. Note that only the shape of a cross-shaped element depends on the anchor
1511
position. In other cases the anchor just regulates how much the result of the morphological
1512
operation is shifted.
1513
 */
1514
CV_EXPORTS_W Mat getStructuringElement(int shape, Size ksize, Point anchor = Point(-1,-1));
1515
1516
/** @example samples/cpp/tutorial_code/ImgProc/Smoothing/Smoothing.cpp
1517
Sample code for simple filters
1518
![Sample screenshot](Smoothing_Tutorial_Result_Median_Filter.jpg)
1519
Check @ref tutorial_gausian_median_blur_bilateral_filter "the corresponding tutorial" for more details
1520
 */
1521
1522
/** @brief Blurs an image using the median filter.
1523
1524
The function smoothes an image using the median filter with the \f$\texttt{ksize} \times
1525
\texttt{ksize}\f$ aperture. Each channel of a multi-channel image is processed independently.
1526
In-place operation is supported.
1527
1528
@note The median filter uses #BORDER_REPLICATE internally to cope with border pixels, see #BorderTypes
1529
1530
@param src input 1-, 3-, or 4-channel image; when ksize is 3 or 5, the image depth should be
1531
CV_8U, CV_16U, or CV_32F, for larger aperture sizes, it can only be CV_8U.
1532
@param dst destination array of the same size and type as src.
1533
@param ksize aperture linear size; it must be odd and greater than 1, for example: 3, 5, 7 ...
1534
@sa  bilateralFilter, blur, boxFilter, GaussianBlur
1535
 */
1536
CV_EXPORTS_W void medianBlur( InputArray src, OutputArray dst, int ksize );
1537
1538
/** @brief Blurs an image using a Gaussian filter.
1539
1540
The function convolves the source image with the specified Gaussian kernel. In-place filtering is
1541
supported.
1542
1543
@param src input image; the image can have any number of channels, which are processed
1544
independently, but the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
1545
@param dst output image of the same size and type as src.
1546
@param ksize Gaussian kernel size. ksize.width and ksize.height can differ but they both must be
1547
positive and odd. Or, they can be zero's and then they are computed from sigma.
1548
@param sigmaX Gaussian kernel standard deviation in X direction.
1549
@param sigmaY Gaussian kernel standard deviation in Y direction; if sigmaY is zero, it is set to be
1550
equal to sigmaX, if both sigmas are zeros, they are computed from ksize.width and ksize.height,
1551
respectively (see #getGaussianKernel for details); to fully control the result regardless of
1552
possible future modifications of all this semantics, it is recommended to specify all of ksize,
1553
sigmaX, and sigmaY.
1554
@param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
1555
@param hint Implementation modfication flags. See #AlgorithmHint
1556
1557
@sa  sepFilter2D, filter2D, blur, boxFilter, bilateralFilter, medianBlur
1558
 */
1559
CV_EXPORTS_W void GaussianBlur( InputArray src, OutputArray dst, Size ksize,
1560
                                double sigmaX, double sigmaY = 0,
1561
                                int borderType = BORDER_DEFAULT,
1562
                                AlgorithmHint hint = cv::ALGO_HINT_DEFAULT );
1563
1564
/** @brief Applies the bilateral filter to an image.
1565
1566
The function applies bilateral filtering to the input image, as described in
1567
https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html
1568
bilateralFilter can reduce unwanted noise very well while keeping edges fairly sharp. However, it is
1569
very slow compared to most filters.
1570
1571
_Sigma values_: For simplicity, you can set the 2 sigma values to be the same. If they are small (\<
1572
10), the filter will not have much effect, whereas if they are large (\> 150), they will have a very
1573
strong effect, making the image look "cartoonish".
1574
1575
_Filter size_: Large filters (d \> 5) are very slow, so it is recommended to use d=5 for real-time
1576
applications, and perhaps d=9 for offline applications that need heavy noise filtering.
1577
1578
This filter does not work inplace.
1579
@param src Source 8-bit or floating-point, 1-channel or 3-channel image.
1580
@param dst Destination image of the same size and type as src .
1581
@param d Diameter of each pixel neighborhood that is used during filtering. If it is non-positive,
1582
it is computed from sigmaSpace.
1583
@param sigmaColor Filter sigma in the color space. A larger value of the parameter means that
1584
farther colors within the pixel neighborhood (see sigmaSpace) will be mixed together, resulting
1585
in larger areas of semi-equal color.
1586
@param sigmaSpace Filter sigma in the coordinate space. A larger value of the parameter means that
1587
farther pixels will influence each other as long as their colors are close enough (see sigmaColor
1588
). When d\>0, it specifies the neighborhood size regardless of sigmaSpace. Otherwise, d is
1589
proportional to sigmaSpace.
1590
@param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes
1591
 */
1592
CV_EXPORTS_W void bilateralFilter( InputArray src, OutputArray dst, int d,
1593
                                   double sigmaColor, double sigmaSpace,
1594
                                   int borderType = BORDER_DEFAULT );
1595
1596
/** @brief Blurs an image using the box filter.
1597
1598
The function smooths an image using the kernel:
1599
1600
\f[\texttt{K} =  \alpha \begin{bmatrix} 1 & 1 & 1 &  \cdots & 1 & 1  \\ 1 & 1 & 1 &  \cdots & 1 & 1  \\ \hdotsfor{6} \\ 1 & 1 & 1 &  \cdots & 1 & 1 \end{bmatrix}\f]
1601
1602
where
1603
1604
\f[\alpha = \begin{cases} \frac{1}{\texttt{ksize.width*ksize.height}} & \texttt{when } \texttt{normalize=true}  \\1 & \texttt{otherwise}\end{cases}\f]
1605
1606
Unnormalized box filter is useful for computing various integral characteristics over each pixel
1607
neighborhood, such as covariance matrices of image derivatives (used in dense optical flow
1608
algorithms, and so on). If you need to compute pixel sums over variable-size windows, use #integral.
1609
1610
@param src input image.
1611
@param dst output image of the same size and type as src.
1612
@param ddepth the output image depth (-1 to use src.depth()).
1613
@param ksize blurring kernel size.
1614
@param anchor anchor point; default value Point(-1,-1) means that the anchor is at the kernel
1615
center.
1616
@param normalize flag, specifying whether the kernel is normalized by its area or not.
1617
@param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes. #BORDER_WRAP is not supported.
1618
@sa  blur, bilateralFilter, GaussianBlur, medianBlur, integral
1619
 */
1620
CV_EXPORTS_W void boxFilter( InputArray src, OutputArray dst, int ddepth,
1621
                             Size ksize, Point anchor = Point(-1,-1),
1622
                             bool normalize = true,
1623
                             int borderType = BORDER_DEFAULT );
1624
1625
/** @brief Calculates the normalized sum of squares of the pixel values overlapping the filter.
1626
1627
For every pixel \f$ (x, y) \f$ in the source image, the function calculates the sum of squares of those neighboring
1628
pixel values which overlap the filter placed over the pixel \f$ (x, y) \f$.
1629
1630
The unnormalized square box filter can be useful in computing local image statistics such as the local
1631
variance and standard deviation around the neighborhood of a pixel.
1632
1633
@param src input image
1634
@param dst output image of the same size and type as src
1635
@param ddepth the output image depth (-1 to use src.depth())
1636
@param ksize kernel size
1637
@param anchor kernel anchor point. The default value of Point(-1, -1) denotes that the anchor is at the kernel
1638
center.
1639
@param normalize flag, specifying whether the kernel is to be normalized by it's area or not.
1640
@param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes. #BORDER_WRAP is not supported.
1641
@sa boxFilter
1642
*/
1643
CV_EXPORTS_W void sqrBoxFilter( InputArray src, OutputArray dst, int ddepth,
1644
                                Size ksize, Point anchor = Point(-1, -1),
1645
                                bool normalize = true,
1646
                                int borderType = BORDER_DEFAULT );
1647
1648
/** @brief Blurs an image using the normalized box filter.
1649
1650
The function smooths an image using the kernel:
1651
1652
\f[\texttt{K} =  \frac{1}{\texttt{ksize.width*ksize.height}} \begin{bmatrix} 1 & 1 & 1 &  \cdots & 1 & 1  \\ 1 & 1 & 1 &  \cdots & 1 & 1  \\ \hdotsfor{6} \\ 1 & 1 & 1 &  \cdots & 1 & 1  \\ \end{bmatrix}\f]
1653
1654
The call `blur(src, dst, ksize, anchor, borderType)` is equivalent to `boxFilter(src, dst, src.type(), ksize,
1655
anchor, true, borderType)`.
1656
1657
@param src input image; it can have any number of channels, which are processed independently, but
1658
the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
1659
@param dst output image of the same size and type as src.
1660
@param ksize blurring kernel size.
1661
@param anchor anchor point; default value Point(-1,-1) means that the anchor is at the kernel
1662
center.
1663
@param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes. #BORDER_WRAP is not supported.
1664
@sa  boxFilter, bilateralFilter, GaussianBlur, medianBlur
1665
 */
1666
CV_EXPORTS_W void blur( InputArray src, OutputArray dst,
1667
                        Size ksize, Point anchor = Point(-1,-1),
1668
                        int borderType = BORDER_DEFAULT );
1669
1670
/** @brief Blurs an image using the stackBlur.
1671
1672
The function applies and stackBlur to an image.
1673
stackBlur can generate similar results as Gaussian blur, and the time consumption does not increase with the increase of kernel size.
1674
It creates a kind of moving stack of colors whilst scanning through the image. Thereby it just has to add one new block of color to the right side
1675
of the stack and remove the leftmost color. The remaining colors on the topmost layer of the stack are either added on or reduced by one,
1676
depending on if they are on the right or on the left side of the stack. The only supported borderType is BORDER_REPLICATE.
1677
Original paper was proposed by Mario Klingemann, which can be found https://underdestruction.com/2004/02/25/stackblur-2004.
1678
1679
@param src input image. The number of channels can be arbitrary, but the depth should be one of
1680
CV_8U, CV_16U, CV_16S or CV_32F.
1681
@param dst output image of the same size and type as src.
1682
@param ksize stack-blurring kernel size. The ksize.width and ksize.height can differ but they both must be
1683
positive and odd.
1684
*/
1685
CV_EXPORTS_W void stackBlur(InputArray src, OutputArray dst, Size ksize);
1686
1687
/** @brief Convolves an image with the kernel.
1688
1689
The function applies an arbitrary linear filter to an image. In-place operation is supported. When
1690
the aperture is partially outside the image, the function interpolates outlier pixel values
1691
according to the specified border mode.
1692
1693
The function does actually compute correlation, not the convolution:
1694
1695
\f[\texttt{dst} (x,y) =  \sum _{ \substack{0\leq x' < \texttt{kernel.cols}\\{0\leq y' < \texttt{kernel.rows}}}}  \texttt{kernel} (x',y')* \texttt{src} (x+x'- \texttt{anchor.x} ,y+y'- \texttt{anchor.y} )\f]
1696
1697
That is, the kernel is not mirrored around the anchor point. If you need a real convolution, flip
1698
the kernel using #flip and set the new anchor to `(kernel.cols - anchor.x - 1, kernel.rows -
1699
anchor.y - 1)`.
1700
1701
The function uses the DFT-based algorithm in case of sufficiently large kernels (~`11 x 11` or
1702
larger) and the direct algorithm for small kernels.
1703
1704
@param src input image.
1705
@param dst output image of the same size and the same number of channels as src.
1706
@param ddepth desired depth of the destination image, see @ref filter_depths "combinations"
1707
@param kernel convolution kernel (or rather a correlation kernel), a single-channel floating point
1708
matrix; if you want to apply different kernels to different channels, split the image into
1709
separate color planes using split and process them individually.
1710
@param anchor anchor of the kernel that indicates the relative position of a filtered point within
1711
the kernel; the anchor should lie within the kernel; default value (-1,-1) means that the anchor
1712
is at the kernel center.
1713
@param delta optional value added to the filtered pixels before storing them in dst.
1714
@param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
1715
@sa  sepFilter2D, dft, matchTemplate
1716
 */
1717
CV_EXPORTS_W void filter2D( InputArray src, OutputArray dst, int ddepth,
1718
                            InputArray kernel, Point anchor = Point(-1,-1),
1719
                            double delta = 0, int borderType = BORDER_DEFAULT );
1720
1721
/** @brief Applies a separable linear filter to an image.
1722
1723
The function applies a separable linear filter to the image. That is, first, every row of src is
1724
filtered with the 1D kernel kernelX. Then, every column of the result is filtered with the 1D
1725
kernel kernelY. The final result shifted by delta is stored in dst .
1726
1727
@param src Source image.
1728
@param dst Destination image of the same size and the same number of channels as src .
1729
@param ddepth Destination image depth, see @ref filter_depths "combinations"
1730
@param kernelX Coefficients for filtering each row.
1731
@param kernelY Coefficients for filtering each column.
1732
@param anchor Anchor position within the kernel. The default value \f$(-1,-1)\f$ means that the anchor
1733
is at the kernel center.
1734
@param delta Value added to the filtered results before storing them.
1735
@param borderType Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
1736
@sa  filter2D, Sobel, GaussianBlur, boxFilter, blur
1737
 */
1738
CV_EXPORTS_W void sepFilter2D( InputArray src, OutputArray dst, int ddepth,
1739
                               InputArray kernelX, InputArray kernelY,
1740
                               Point anchor = Point(-1,-1),
1741
                               double delta = 0, int borderType = BORDER_DEFAULT );
1742
1743
/** @example samples/cpp/tutorial_code/ImgTrans/Sobel_Demo.cpp
1744
Sample code using Sobel and/or Scharr OpenCV functions to make a simple Edge Detector
1745
![Sample screenshot](Sobel_Derivatives_Tutorial_Result.jpg)
1746
Check @ref tutorial_sobel_derivatives "the corresponding tutorial" for more details
1747
*/
1748
1749
/** @brief Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator.
1750
1751
In all cases except one, the \f$\texttt{ksize} \times \texttt{ksize}\f$ separable kernel is used to
1752
calculate the derivative. When \f$\texttt{ksize = 1}\f$, the \f$3 \times 1\f$ or \f$1 \times 3\f$
1753
kernel is used (that is, no Gaussian smoothing is done). `ksize = 1` can only be used for the first
1754
or the second x- or y- derivatives.
1755
1756
There is also the special value `ksize = #FILTER_SCHARR (-1)` that corresponds to the \f$3\times3\f$ Scharr
1757
filter that may give more accurate results than the \f$3\times3\f$ Sobel. The Scharr aperture is
1758
1759
\f[\vecthreethree{-3}{0}{3}{-10}{0}{10}{-3}{0}{3}\f]
1760
1761
for the x-derivative, or transposed for the y-derivative.
1762
1763
The function calculates an image derivative by convolving the image with the appropriate kernel:
1764
1765
\f[\texttt{dst} =  \frac{\partial^{xorder+yorder} \texttt{src}}{\partial x^{xorder} \partial y^{yorder}}\f]
1766
1767
The Sobel operators combine Gaussian smoothing and differentiation, so the result is more or less
1768
resistant to the noise. Most often, the function is called with ( xorder = 1, yorder = 0, ksize = 3)
1769
or ( xorder = 0, yorder = 1, ksize = 3) to calculate the first x- or y- image derivative. The first
1770
case corresponds to a kernel of:
1771
1772
\f[\vecthreethree{-1}{0}{1}{-2}{0}{2}{-1}{0}{1}\f]
1773
1774
The second case corresponds to a kernel of:
1775
1776
\f[\vecthreethree{-1}{-2}{-1}{0}{0}{0}{1}{2}{1}\f]
1777
1778
@param src input image.
1779
@param dst output image of the same size and the same number of channels as src .
1780
@param ddepth output image depth, see @ref filter_depths "combinations"; in the case of
1781
    8-bit input images it will result in truncated derivatives.
1782
@param dx order of the derivative x.
1783
@param dy order of the derivative y.
1784
@param ksize size of the extended Sobel kernel; it must be 1, 3, 5, or 7.
1785
@param scale optional scale factor for the computed derivative values; by default, no scaling is
1786
applied (see #getDerivKernels for details).
1787
@param delta optional delta value that is added to the results prior to storing them in dst.
1788
@param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
1789
@sa  Scharr, Laplacian, sepFilter2D, filter2D, GaussianBlur, cartToPolar
1790
 */
1791
CV_EXPORTS_W void Sobel( InputArray src, OutputArray dst, int ddepth,
1792
                         int dx, int dy, int ksize = 3,
1793
                         double scale = 1, double delta = 0,
1794
                         int borderType = BORDER_DEFAULT );
1795
1796
/** @brief Calculates the first order image derivative in both x and y using a Sobel operator
1797
1798
Equivalent to calling:
1799
1800
@code
1801
Sobel( src, dx, CV_16SC1, 1, 0, 3 );
1802
Sobel( src, dy, CV_16SC1, 0, 1, 3 );
1803
@endcode
1804
1805
@param src input image.
1806
@param dx output image with first-order derivative in x.
1807
@param dy output image with first-order derivative in y.
1808
@param ksize size of Sobel kernel. It must be 3.
1809
@param borderType pixel extrapolation method, see #BorderTypes.
1810
                  Only #BORDER_DEFAULT=#BORDER_REFLECT_101 and #BORDER_REPLICATE are supported.
1811
1812
@sa Sobel
1813
 */
1814
1815
CV_EXPORTS_W void spatialGradient( InputArray src, OutputArray dx,
1816
                                   OutputArray dy, int ksize = 3,
1817
                                   int borderType = BORDER_DEFAULT );
1818
1819
/** @brief Calculates the first x- or y- image derivative using Scharr operator.
1820
1821
The function computes the first x- or y- spatial image derivative using the Scharr operator. The
1822
call
1823
1824
\f[\texttt{Scharr(src, dst, ddepth, dx, dy, scale, delta, borderType)}\f]
1825
1826
is equivalent to
1827
1828
\f[\texttt{Sobel(src, dst, ddepth, dx, dy, FILTER_SCHARR, scale, delta, borderType)} .\f]
1829
1830
@param src input image.
1831
@param dst output image of the same size and the same number of channels as src.
1832
@param ddepth output image depth, see @ref filter_depths "combinations"
1833
@param dx order of the derivative x.
1834
@param dy order of the derivative y.
1835
@param scale optional scale factor for the computed derivative values; by default, no scaling is
1836
applied (see #getDerivKernels for details).
1837
@param delta optional delta value that is added to the results prior to storing them in dst.
1838
@param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
1839
@sa  cartToPolar
1840
 */
1841
CV_EXPORTS_W void Scharr( InputArray src, OutputArray dst, int ddepth,
1842
                          int dx, int dy, double scale = 1, double delta = 0,
1843
                          int borderType = BORDER_DEFAULT );
1844
1845
/** @example samples/cpp/laplace.cpp
1846
An example using Laplace transformations for edge detection
1847
*/
1848
1849
/** @brief Calculates the Laplacian of an image.
1850
1851
The function calculates the Laplacian of the source image by adding up the second x and y
1852
derivatives calculated using the Sobel operator:
1853
1854
\f[\texttt{dst} =  \Delta \texttt{src} =  \frac{\partial^2 \texttt{src}}{\partial x^2} +  \frac{\partial^2 \texttt{src}}{\partial y^2}\f]
1855
1856
This is done when `ksize > 1`. When `ksize == 1`, the Laplacian is computed by filtering the image
1857
with the following \f$3 \times 3\f$ aperture:
1858
1859
\f[\vecthreethree {0}{1}{0}{1}{-4}{1}{0}{1}{0}\f]
1860
1861
@param src Source image.
1862
@param dst Destination image of the same size and the same number of channels as src .
1863
@param ddepth Desired depth of the destination image, see @ref filter_depths "combinations".
1864
@param ksize Aperture size used to compute the second-derivative filters. See #getDerivKernels for
1865
details. The size must be positive and odd.
1866
@param scale Optional scale factor for the computed Laplacian values. By default, no scaling is
1867
applied. See #getDerivKernels for details.
1868
@param delta Optional delta value that is added to the results prior to storing them in dst .
1869
@param borderType Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
1870
@sa  Sobel, Scharr
1871
 */
1872
CV_EXPORTS_W void Laplacian( InputArray src, OutputArray dst, int ddepth,
1873
                             int ksize = 1, double scale = 1, double delta = 0,
1874
                             int borderType = BORDER_DEFAULT );
1875
1876
//! @} imgproc_filter
1877
1878
//! @addtogroup imgproc_feature
1879
//! @{
1880
1881
/** @example samples/cpp/edge.cpp
1882
This program demonstrates usage of the Canny edge detector
1883
1884
Check @ref tutorial_canny_detector "the corresponding tutorial" for more details
1885
*/
1886
1887
/** @brief Finds edges in an image using the Canny algorithm @cite Canny86 .
1888
1889
The function finds edges in the input image and marks them in the output map edges using the
1890
Canny algorithm. The smallest value between threshold1 and threshold2 is used for edge linking. The
1891
largest value is used to find initial segments of strong edges. See
1892
<https://en.wikipedia.org/wiki/Canny_edge_detector>
1893
1894
@param image 8-bit input image.
1895
@param edges output edge map; single channels 8-bit image, which has the same size as image .
1896
@param threshold1 first threshold for the hysteresis procedure.
1897
@param threshold2 second threshold for the hysteresis procedure.
1898
@param apertureSize aperture size for the Sobel operator.
1899
@param L2gradient a flag, indicating whether a more accurate \f$L_2\f$ norm
1900
\f$=\sqrt{(dI/dx)^2 + (dI/dy)^2}\f$ should be used to calculate the image gradient magnitude (
1901
L2gradient=true ), or whether the default \f$L_1\f$ norm \f$=|dI/dx|+|dI/dy|\f$ is enough (
1902
L2gradient=false ).
1903
 */
1904
CV_EXPORTS_W void Canny( InputArray image, OutputArray edges,
1905
                         double threshold1, double threshold2,
1906
                         int apertureSize = 3, bool L2gradient = false );
1907
1908
/** \overload
1909
1910
Finds edges in an image using the Canny algorithm with custom image gradient.
1911
1912
@param dx 16-bit x derivative of input image (CV_16SC1 or CV_16SC3).
1913
@param dy 16-bit y derivative of input image (same type as dx).
1914
@param edges output edge map; single channels 8-bit image, which has the same size as image .
1915
@param threshold1 first threshold for the hysteresis procedure.
1916
@param threshold2 second threshold for the hysteresis procedure.
1917
@param L2gradient a flag, indicating whether a more accurate \f$L_2\f$ norm
1918
\f$=\sqrt{(dI/dx)^2 + (dI/dy)^2}\f$ should be used to calculate the image gradient magnitude (
1919
L2gradient=true ), or whether the default \f$L_1\f$ norm \f$=|dI/dx|+|dI/dy|\f$ is enough (
1920
L2gradient=false ).
1921
 */
1922
CV_EXPORTS_W void Canny( InputArray dx, InputArray dy,
1923
                         OutputArray edges,
1924
                         double threshold1, double threshold2,
1925
                         bool L2gradient = false );
1926
1927
/** @brief Calculates the minimal eigenvalue of gradient matrices for corner detection.
1928
1929
The function is similar to cornerEigenValsAndVecs but it calculates and stores only the minimal
1930
eigenvalue of the covariance matrix of derivatives, that is, \f$\min(\lambda_1, \lambda_2)\f$ in terms
1931
of the formulae in the cornerEigenValsAndVecs description.
1932
1933
@param src Input single-channel 8-bit or floating-point image.
1934
@param dst Image to store the minimal eigenvalues. It has the type CV_32FC1 and the same size as
1935
src .
1936
@param blockSize Neighborhood size (see the details on #cornerEigenValsAndVecs ).
1937
@param ksize Aperture parameter for the Sobel operator.
1938
@param borderType Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported.
1939
 */
1940
CV_EXPORTS_W void cornerMinEigenVal( InputArray src, OutputArray dst,
1941
                                     int blockSize, int ksize = 3,
1942
                                     int borderType = BORDER_DEFAULT );
1943
1944
/** @brief Harris corner detector.
1945
1946
The function runs the Harris corner detector on the image. Similarly to cornerMinEigenVal and
1947
cornerEigenValsAndVecs , for each pixel \f$(x, y)\f$ it calculates a \f$2\times2\f$ gradient covariance
1948
matrix \f$M^{(x,y)}\f$ over a \f$\texttt{blockSize} \times \texttt{blockSize}\f$ neighborhood. Then, it
1949
computes the following characteristic:
1950
1951
\f[\texttt{dst} (x,y) =  \mathrm{det} M^{(x,y)} - k  \cdot \left ( \mathrm{tr} M^{(x,y)} \right )^2\f]
1952
1953
Corners in the image can be found as the local maxima of this response map.
1954
1955
@param src Input single-channel 8-bit or floating-point image.
1956
@param dst Image to store the Harris detector responses. It has the type CV_32FC1 and the same
1957
size as src .
1958
@param blockSize Neighborhood size (see the details on #cornerEigenValsAndVecs ).
1959
@param ksize Aperture parameter for the Sobel operator.
1960
@param k Harris detector free parameter. See the formula above.
1961
@param borderType Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported.
1962
 */
1963
CV_EXPORTS_W void cornerHarris( InputArray src, OutputArray dst, int blockSize,
1964
                                int ksize, double k,
1965
                                int borderType = BORDER_DEFAULT );
1966
1967
/** @brief Calculates eigenvalues and eigenvectors of image blocks for corner detection.
1968
1969
For every pixel \f$p\f$ , the function cornerEigenValsAndVecs considers a blockSize \f$\times\f$ blockSize
1970
neighborhood \f$S(p)\f$ . It calculates the covariation matrix of derivatives over the neighborhood as:
1971
1972
\f[M =  \begin{bmatrix} \sum _{S(p)}(dI/dx)^2 &  \sum _{S(p)}dI/dx dI/dy  \\ \sum _{S(p)}dI/dx dI/dy &  \sum _{S(p)}(dI/dy)^2 \end{bmatrix}\f]
1973
1974
where the derivatives are computed using the Sobel operator.
1975
1976
After that, it finds eigenvectors and eigenvalues of \f$M\f$ and stores them in the destination image as
1977
\f$(\lambda_1, \lambda_2, x_1, y_1, x_2, y_2)\f$ where
1978
1979
-   \f$\lambda_1, \lambda_2\f$ are the non-sorted eigenvalues of \f$M\f$
1980
-   \f$x_1, y_1\f$ are the eigenvectors corresponding to \f$\lambda_1\f$
1981
-   \f$x_2, y_2\f$ are the eigenvectors corresponding to \f$\lambda_2\f$
1982
1983
The output of the function can be used for robust edge or corner detection.
1984
1985
@param src Input single-channel 8-bit or floating-point image.
1986
@param dst Image to store the results. It has the same size as src and the type CV_32FC(6) .
1987
@param blockSize Neighborhood size (see details below).
1988
@param ksize Aperture parameter for the Sobel operator.
1989
@param borderType Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported.
1990
1991
@sa  cornerMinEigenVal, cornerHarris, preCornerDetect
1992
 */
1993
CV_EXPORTS_W void cornerEigenValsAndVecs( InputArray src, OutputArray dst,
1994
                                          int blockSize, int ksize,
1995
                                          int borderType = BORDER_DEFAULT );
1996
1997
/** @brief Calculates a feature map for corner detection.
1998
1999
The function calculates the complex spatial derivative-based function of the source image
2000
2001
\f[\texttt{dst} = (D_x  \texttt{src} )^2  \cdot D_{yy}  \texttt{src} + (D_y  \texttt{src} )^2  \cdot D_{xx}  \texttt{src} - 2 D_x  \texttt{src} \cdot D_y  \texttt{src} \cdot D_{xy}  \texttt{src}\f]
2002
2003
where \f$D_x\f$,\f$D_y\f$ are the first image derivatives, \f$D_{xx}\f$,\f$D_{yy}\f$ are the second image
2004
derivatives, and \f$D_{xy}\f$ is the mixed derivative.
2005
2006
The corners can be found as local maximums of the functions, as shown below:
2007
@code
2008
    Mat corners, dilated_corners;
2009
    preCornerDetect(image, corners, 3);
2010
    // dilation with 3x3 rectangular structuring element
2011
    dilate(corners, dilated_corners, Mat(), 1);
2012
    Mat corner_mask = corners == dilated_corners;
2013
@endcode
2014
2015
@param src Source single-channel 8-bit of floating-point image.
2016
@param dst Output image that has the type CV_32F and the same size as src .
2017
@param ksize %Aperture size of the Sobel .
2018
@param borderType Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported.
2019
 */
2020
CV_EXPORTS_W void preCornerDetect( InputArray src, OutputArray dst, int ksize,
2021
                                   int borderType = BORDER_DEFAULT );
2022
2023
/** @brief Refines the corner locations.
2024
2025
The function iterates to find the sub-pixel accurate location of corners or radial saddle
2026
points as described in @cite forstner1987fast, and as shown on the figure below.
2027
2028
![image](pics/cornersubpix.png)
2029
2030
Sub-pixel accurate corner locator is based on the observation that every vector from the center \f$q\f$
2031
to a point \f$p\f$ located within a neighborhood of \f$q\f$ is orthogonal to the image gradient at \f$p\f$
2032
subject to image and measurement noise. Consider the expression:
2033
2034
\f[\epsilon _i = {DI_{p_i}}^T  \cdot (q - p_i)\f]
2035
2036
where \f${DI_{p_i}}\f$ is an image gradient at one of the points \f$p_i\f$ in a neighborhood of \f$q\f$ . The
2037
value of \f$q\f$ is to be found so that \f$\epsilon_i\f$ is minimized. A system of equations may be set up
2038
with \f$\epsilon_i\f$ set to zero:
2039
2040
\f[\sum _i(DI_{p_i}  \cdot {DI_{p_i}}^T) \cdot q -  \sum _i(DI_{p_i}  \cdot {DI_{p_i}}^T  \cdot p_i)\f]
2041
2042
where the gradients are summed within a neighborhood ("search window") of \f$q\f$ . Calling the first
2043
gradient term \f$G\f$ and the second gradient term \f$b\f$ gives:
2044
2045
\f[q = G^{-1}  \cdot b\f]
2046
2047
The algorithm sets the center of the neighborhood window at this new center \f$q\f$ and then iterates
2048
until the center stays within a set threshold.
2049
2050
@param image Input single-channel, 8-bit or float image.
2051
@param corners Initial coordinates of the input corners and refined coordinates provided for
2052
output.
2053
@param winSize Half of the side length of the search window. For example, if winSize=Size(5,5) ,
2054
then a \f$(5*2+1) \times (5*2+1) = 11 \times 11\f$ search window is used.
2055
@param zeroZone Half of the size of the dead region in the middle of the search zone over which
2056
the summation in the formula below is not done. It is used sometimes to avoid possible
2057
singularities of the autocorrelation matrix. The value of (-1,-1) indicates that there is no such
2058
a size.
2059
@param criteria Criteria for termination of the iterative process of corner refinement. That is,
2060
the process of corner position refinement stops either after criteria.maxCount iterations or when
2061
the corner position moves by less than criteria.epsilon on some iteration.
2062
 */
2063
CV_EXPORTS_W void cornerSubPix( InputArray image, InputOutputArray corners,
2064
                                Size winSize, Size zeroZone,
2065
                                TermCriteria criteria );
2066
2067
/** @brief Determines strong corners on an image.
2068
2069
The function finds the most prominent corners in the image or in the specified image region, as
2070
described in @cite Shi94
2071
2072
-   Function calculates the corner quality measure at every source image pixel using the
2073
    #cornerMinEigenVal or #cornerHarris .
2074
-   Function performs a non-maximum suppression (the local maximums in *3 x 3* neighborhood are
2075
    retained).
2076
-   The corners with the minimal eigenvalue less than
2077
    \f$\texttt{qualityLevel} \cdot \max_{x,y} qualityMeasureMap(x,y)\f$ are rejected.
2078
-   The remaining corners are sorted by the quality measure in the descending order.
2079
-   Function throws away each corner for which there is a stronger corner at a distance less than
2080
    maxDistance.
2081
2082
The function can be used to initialize a point-based tracker of an object.
2083
2084
@note If the function is called with different values A and B of the parameter qualityLevel , and
2085
A \> B, the vector of returned corners with qualityLevel=A will be the prefix of the output vector
2086
with qualityLevel=B .
2087
2088
@param image Input 8-bit or floating-point 32-bit, single-channel image.
2089
@param corners Output vector of detected corners.
2090
@param maxCorners Maximum number of corners to return. If there are more corners than are found,
2091
the strongest of them is returned. `maxCorners <= 0` implies that no limit on the maximum is set
2092
and all detected corners are returned.
2093
@param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The
2094
parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
2095
(see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the
2096
quality measure less than the product are rejected. For example, if the best corner has the
2097
quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
2098
less than 15 are rejected.
2099
@param minDistance Minimum possible Euclidean distance between the returned corners.
2100
@param mask Optional region of interest. If the image is not empty (it needs to have the type
2101
CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected.
2102
@param blockSize Size of an average block for computing a derivative covariation matrix over each
2103
pixel neighborhood. See cornerEigenValsAndVecs .
2104
@param useHarrisDetector Parameter indicating whether to use a Harris detector (see #cornerHarris)
2105
or #cornerMinEigenVal.
2106
@param k Free parameter of the Harris detector.
2107
2108
@sa  cornerMinEigenVal, cornerHarris, calcOpticalFlowPyrLK, estimateRigidTransform,
2109
 */
2110
2111
CV_EXPORTS_W void goodFeaturesToTrack( InputArray image, OutputArray corners,
2112
                                     int maxCorners, double qualityLevel, double minDistance,
2113
                                     InputArray mask = noArray(), int blockSize = 3,
2114
                                     bool useHarrisDetector = false, double k = 0.04 );
2115
2116
CV_EXPORTS_W void goodFeaturesToTrack( InputArray image, OutputArray corners,
2117
                                     int maxCorners, double qualityLevel, double minDistance,
2118
                                     InputArray mask, int blockSize,
2119
                                     int gradientSize, bool useHarrisDetector = false,
2120
                                     double k = 0.04 );
2121
2122
/** @brief Same as above, but returns also quality measure of the detected corners.
2123
2124
@param image Input 8-bit or floating-point 32-bit, single-channel image.
2125
@param corners Output vector of detected corners.
2126
@param maxCorners Maximum number of corners to return. If there are more corners than are found,
2127
the strongest of them is returned. `maxCorners <= 0` implies that no limit on the maximum is set
2128
and all detected corners are returned.
2129
@param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The
2130
parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
2131
(see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the
2132
quality measure less than the product are rejected. For example, if the best corner has the
2133
quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
2134
less than 15 are rejected.
2135
@param minDistance Minimum possible Euclidean distance between the returned corners.
2136
@param mask Region of interest. If the image is not empty (it needs to have the type
2137
CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected.
2138
@param cornersQuality Output vector of quality measure of the detected corners.
2139
@param blockSize Size of an average block for computing a derivative covariation matrix over each
2140
pixel neighborhood. See cornerEigenValsAndVecs .
2141
@param gradientSize Aperture parameter for the Sobel operator used for derivatives computation.
2142
See cornerEigenValsAndVecs .
2143
@param useHarrisDetector Parameter indicating whether to use a Harris detector (see #cornerHarris)
2144
or #cornerMinEigenVal.
2145
@param k Free parameter of the Harris detector.
2146
 */
2147
CV_EXPORTS CV_WRAP_AS(goodFeaturesToTrackWithQuality) void goodFeaturesToTrack(
2148
        InputArray image, OutputArray corners,
2149
        int maxCorners, double qualityLevel, double minDistance,
2150
        InputArray mask, OutputArray cornersQuality, int blockSize = 3,
2151
        int gradientSize = 3, bool useHarrisDetector = false, double k = 0.04);
2152
2153
/** @example samples/cpp/tutorial_code/ImgTrans/houghlines.cpp
2154
An example using the Hough line detector
2155
![Sample input image](Hough_Lines_Tutorial_Original_Image.jpg) ![Output image](Hough_Lines_Tutorial_Result.jpg)
2156
*/
2157
2158
/** @brief Finds lines in a binary image using the standard Hough transform.
2159
2160
The function implements the standard or standard multi-scale Hough transform algorithm for line
2161
detection. See <https://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm> for a good explanation of Hough
2162
transform.
2163
2164
@param image 8-bit, single-channel binary source image. The image may be modified by the function.
2165
@param lines Output vector of lines. Each line is represented by a 2 or 3 element vector
2166
\f$(\rho, \theta)\f$ or \f$(\rho, \theta, \textrm{votes})\f$, where \f$\rho\f$ is the distance from
2167
the coordinate origin \f$(0,0)\f$ (top-left corner of the image), \f$\theta\f$ is the line rotation
2168
angle in radians ( \f$0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}\f$ ), and
2169
\f$\textrm{votes}\f$ is the value of accumulator.
2170
@param rho Distance resolution of the accumulator in pixels.
2171
@param theta Angle resolution of the accumulator in radians.
2172
@param threshold %Accumulator threshold parameter. Only those lines are returned that get enough
2173
votes ( \f$>\texttt{threshold}\f$ ).
2174
@param srn For the multi-scale Hough transform, it is a divisor for the distance resolution rho.
2175
The coarse accumulator distance resolution is rho and the accurate accumulator resolution is
2176
rho/srn. If both srn=0 and stn=0, the classical Hough transform is used. Otherwise, both these
2177
parameters should be positive.
2178
@param stn For the multi-scale Hough transform, it is a divisor for the distance resolution theta.
2179
@param min_theta For standard and multi-scale Hough transform, minimum angle to check for lines.
2180
Must fall between 0 and max_theta.
2181
@param max_theta For standard and multi-scale Hough transform, an upper bound for the angle.
2182
Must fall between min_theta and CV_PI. The actual maximum angle in the accumulator may be slightly
2183
less than max_theta, depending on the parameters min_theta and theta.
2184
@param use_edgeval True if you want to use weighted Hough transform.
2185
 */
2186
CV_EXPORTS_W void HoughLines( InputArray image, OutputArray lines,
2187
                              double rho, double theta, int threshold,
2188
                              double srn = 0, double stn = 0,
2189
                              double min_theta = 0, double max_theta = CV_PI,
2190
                              bool use_edgeval = false );
2191
2192
/** @brief Finds line segments in a binary image using the probabilistic Hough transform.
2193
2194
The function implements the probabilistic Hough transform algorithm for line detection, described
2195
in @cite Matas00
2196
2197
See the line detection example below:
2198
@include snippets/imgproc_HoughLinesP.cpp
2199
This is a sample picture the function parameters have been tuned for:
2200
2201
![image](pics/building.jpg)
2202
2203
And this is the output of the above program in case of the probabilistic Hough transform:
2204
2205
![image](pics/houghp.png)
2206
2207
@param image 8-bit, single-channel binary source image. The image may be modified by the function.
2208
@param lines Output vector of lines. Each line is represented by a 4-element vector
2209
\f$(x_1, y_1, x_2, y_2)\f$ , where \f$(x_1,y_1)\f$ and \f$(x_2, y_2)\f$ are the ending points of each detected
2210
line segment.
2211
@param rho Distance resolution of the accumulator in pixels.
2212
@param theta Angle resolution of the accumulator in radians.
2213
@param threshold %Accumulator threshold parameter. Only those lines are returned that get enough
2214
votes ( \f$>\texttt{threshold}\f$ ).
2215
@param minLineLength Minimum line length. Line segments shorter than that are rejected.
2216
@param maxLineGap Maximum allowed gap between points on the same line to link them.
2217
2218
@sa LineSegmentDetector
2219
 */
2220
CV_EXPORTS_W void HoughLinesP( InputArray image, OutputArray lines,
2221
                               double rho, double theta, int threshold,
2222
                               double minLineLength = 0, double maxLineGap = 0 );
2223
2224
/** @brief Finds lines in a set of points using the standard Hough transform.
2225
2226
The function finds lines in a set of points using a modification of the Hough transform.
2227
@include snippets/imgproc_HoughLinesPointSet.cpp
2228
@param point Input vector of points. Each vector must be encoded as a Point vector \f$(x,y)\f$. Type must be CV_32FC2 or CV_32SC2.
2229
@param lines Output vector of found lines. Each vector is encoded as a vector<Vec3d> \f$(votes, rho, theta)\f$.
2230
The larger the value of 'votes', the higher the reliability of the Hough line.
2231
@param lines_max Max count of Hough lines.
2232
@param threshold %Accumulator threshold parameter. Only those lines are returned that get enough
2233
votes ( \f$>\texttt{threshold}\f$ ).
2234
@param min_rho Minimum value for \f$\rho\f$ for the accumulator (Note: \f$\rho\f$ can be negative. The absolute value \f$|\rho|\f$ is the distance of a line to the origin.).
2235
@param max_rho Maximum value for \f$\rho\f$ for the accumulator.
2236
@param rho_step Distance resolution of the accumulator.
2237
@param min_theta Minimum angle value of the accumulator in radians.
2238
@param max_theta Upper bound for the angle value of the accumulator in radians. The actual maximum
2239
angle may be slightly less than max_theta, depending on the parameters min_theta and theta_step.
2240
@param theta_step Angle resolution of the accumulator in radians.
2241
 */
2242
CV_EXPORTS_W void HoughLinesPointSet( InputArray point, OutputArray lines, int lines_max, int threshold,
2243
                                      double min_rho, double max_rho, double rho_step,
2244
                                      double min_theta, double max_theta, double theta_step );
2245
2246
/** @example samples/cpp/tutorial_code/ImgTrans/houghcircles.cpp
2247
An example using the Hough circle detector
2248
*/
2249
2250
/** @brief Finds circles in a grayscale image using the Hough transform.
2251
2252
The function finds circles in a grayscale image using a modification of the Hough transform.
2253
2254
Example: :
2255
@include snippets/imgproc_HoughLinesCircles.cpp
2256
2257
@note Usually the function detects the centers of circles well. However, it may fail to find correct
2258
radii. You can assist to the function by specifying the radius range ( minRadius and maxRadius ) if
2259
you know it. Or, in the case of #HOUGH_GRADIENT method you may set maxRadius to a negative number
2260
to return centers only without radius search, and find the correct radius using an additional procedure.
2261
2262
It also helps to smooth image a bit unless it's already soft. For example,
2263
GaussianBlur() with 7x7 kernel and 1.5x1.5 sigma or similar blurring may help.
2264
2265
@param image 8-bit, single-channel, grayscale input image.
2266
@param circles Output vector of found circles. Each vector is encoded as  3 or 4 element
2267
floating-point vector \f$(x, y, radius)\f$ or \f$(x, y, radius, votes)\f$ .
2268
@param method Detection method, see #HoughModes. The available methods are #HOUGH_GRADIENT and #HOUGH_GRADIENT_ALT.
2269
@param dp Inverse ratio of the accumulator resolution to the image resolution. For example, if
2270
dp=1 , the accumulator has the same resolution as the input image. If dp=2 , the accumulator has
2271
half as big width and height. For #HOUGH_GRADIENT_ALT the recommended value is dp=1.5,
2272
unless some small very circles need to be detected.
2273
@param minDist Minimum distance between the centers of the detected circles. If the parameter is
2274
too small, multiple neighbor circles may be falsely detected in addition to a true one. If it is
2275
too large, some circles may be missed.
2276
@param param1 First method-specific parameter. In case of #HOUGH_GRADIENT and #HOUGH_GRADIENT_ALT,
2277
it is the higher threshold of the two passed to the Canny edge detector (the lower one is twice smaller).
2278
Note that #HOUGH_GRADIENT_ALT uses #Scharr algorithm to compute image derivatives, so the threshold value
2279
should normally be higher, such as 300 or normally exposed and contrasty images.
2280
@param param2 Second method-specific parameter. In case of #HOUGH_GRADIENT, it is the
2281
accumulator threshold for the circle centers at the detection stage. The smaller it is, the more
2282
false circles may be detected. Circles, corresponding to the larger accumulator values, will be
2283
returned first. In the case of #HOUGH_GRADIENT_ALT algorithm, this is the circle "perfectness" measure.
2284
The closer it to 1, the better shaped circles algorithm selects. In most cases 0.9 should be fine.
2285
If you want get better detection of small circles, you may decrease it to 0.85, 0.8 or even less.
2286
But then also try to limit the search range [minRadius, maxRadius] to avoid many false circles.
2287
@param minRadius Minimum circle radius.
2288
@param maxRadius Maximum circle radius. If <= 0, uses the maximum image dimension. If < 0, #HOUGH_GRADIENT returns
2289
centers without finding the radius. #HOUGH_GRADIENT_ALT always computes circle radiuses.
2290
2291
@sa fitEllipse, minEnclosingCircle
2292
 */
2293
CV_EXPORTS_W void HoughCircles( InputArray image, OutputArray circles,
2294
                               int method, double dp, double minDist,
2295
                               double param1 = 100, double param2 = 100,
2296
                               int minRadius = 0, int maxRadius = 0 );
2297
2298
//! @} imgproc_feature
2299
2300
//! @addtogroup imgproc_filter
2301
//! @{
2302
2303
/** @example samples/cpp/tutorial_code/ImgProc/Morphology_2.cpp
2304
Advanced morphology Transformations sample code
2305
![Sample screenshot](Morphology_2_Tutorial_Result.jpg)
2306
Check @ref tutorial_opening_closing_hats "the corresponding tutorial" for more details
2307
*/
2308
2309
/** @brief Erodes an image by using a specific structuring element.
2310
2311
The function erodes the source image using the specified structuring element that determines the
2312
shape of a pixel neighborhood over which the minimum is taken:
2313
2314
\f[\texttt{dst} (x,y) =  \min _{(x',y'):  \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\f]
2315
2316
The function supports the in-place mode. Erosion can be applied several ( iterations ) times. In
2317
case of multi-channel images, each channel is processed independently.
2318
2319
@param src input image; the number of channels can be arbitrary, but the depth should be one of
2320
CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
2321
@param dst output image of the same size and type as src.
2322
@param kernel structuring element used for erosion; if `element=Mat()`, a `3 x 3` rectangular
2323
structuring element is used. Kernel can be created using #getStructuringElement.
2324
@param anchor position of the anchor within the element; default value (-1, -1) means that the
2325
anchor is at the element center.
2326
@param iterations number of times erosion is applied.
2327
@param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
2328
@param borderValue border value in case of a constant border
2329
@sa  dilate, morphologyEx, getStructuringElement
2330
 */
2331
CV_EXPORTS_W void erode( InputArray src, OutputArray dst, InputArray kernel,
2332
                         Point anchor = Point(-1,-1), int iterations = 1,
2333
                         int borderType = BORDER_CONSTANT,
2334
                         const Scalar& borderValue = morphologyDefaultBorderValue() );
2335
2336
/** @example samples/cpp/tutorial_code/ImgProc/Morphology_1.cpp
2337
Erosion and Dilation sample code
2338
![Sample Screenshot-Erosion](Morphology_1_Tutorial_Erosion_Result.jpg)![Sample Screenshot-Dilation](Morphology_1_Tutorial_Dilation_Result.jpg)
2339
Check @ref tutorial_erosion_dilatation "the corresponding tutorial" for more details
2340
*/
2341
2342
/** @brief Dilates an image by using a specific structuring element.
2343
2344
The function dilates the source image using the specified structuring element that determines the
2345
shape of a pixel neighborhood over which the maximum is taken:
2346
\f[\texttt{dst} (x,y) =  \max _{(x',y'):  \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\f]
2347
2348
The function supports the in-place mode. Dilation can be applied several ( iterations ) times. In
2349
case of multi-channel images, each channel is processed independently.
2350
2351
@param src input image; the number of channels can be arbitrary, but the depth should be one of
2352
CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
2353
@param dst output image of the same size and type as src.
2354
@param kernel structuring element used for dilation; if element=Mat(), a 3 x 3 rectangular
2355
structuring element is used. Kernel can be created using #getStructuringElement
2356
@param anchor position of the anchor within the element; default value (-1, -1) means that the
2357
anchor is at the element center.
2358
@param iterations number of times dilation is applied.
2359
@param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not suported.
2360
@param borderValue border value in case of a constant border
2361
@sa  erode, morphologyEx, getStructuringElement
2362
 */
2363
CV_EXPORTS_W void dilate( InputArray src, OutputArray dst, InputArray kernel,
2364
                          Point anchor = Point(-1,-1), int iterations = 1,
2365
                          int borderType = BORDER_CONSTANT,
2366
                          const Scalar& borderValue = morphologyDefaultBorderValue() );
2367
2368
/** @brief Performs advanced morphological transformations.
2369
2370
The function cv::morphologyEx can perform advanced morphological transformations using an erosion and dilation as
2371
basic operations.
2372
2373
Any of the operations can be done in-place. In case of multi-channel images, each channel is
2374
processed independently.
2375
2376
@param src Source image. The number of channels can be arbitrary. The depth should be one of
2377
CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
2378
@param dst Destination image of the same size and type as source image.
2379
@param op Type of a morphological operation, see #MorphTypes
2380
@param kernel Structuring element. It can be created using #getStructuringElement.
2381
@param anchor Anchor position with the kernel. Negative values mean that the anchor is at the
2382
kernel center.
2383
@param iterations Number of times erosion and dilation are applied.
2384
@param borderType Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
2385
@param borderValue Border value in case of a constant border. The default value has a special
2386
meaning.
2387
@sa  dilate, erode, getStructuringElement
2388
@note The number of iterations is the number of times erosion or dilatation operation will be applied.
2389
For instance, an opening operation (#MORPH_OPEN) with two iterations is equivalent to apply
2390
successively: erode -> erode -> dilate -> dilate (and not erode -> dilate -> erode -> dilate).
2391
 */
2392
CV_EXPORTS_W void morphologyEx( InputArray src, OutputArray dst,
2393
                                int op, InputArray kernel,
2394
                                Point anchor = Point(-1,-1), int iterations = 1,
2395
                                int borderType = BORDER_CONSTANT,
2396
                                const Scalar& borderValue = morphologyDefaultBorderValue() );
2397
2398
//! @} imgproc_filter
2399
2400
//! @addtogroup imgproc_transform
2401
//! @{
2402
2403
/** @brief Resizes an image.
2404
2405
The function resize resizes the image src down to or up to the specified size. Note that the
2406
initial dst type or size are not taken into account. Instead, the size and type are derived from
2407
the `src`,`dsize`,`fx`, and `fy`. If you want to resize src so that it fits the pre-created dst,
2408
you may call the function as follows:
2409
@code
2410
    // explicitly specify dsize=dst.size(); fx and fy will be computed from that.
2411
    resize(src, dst, dst.size(), 0, 0, interpolation);
2412
@endcode
2413
If you want to decimate the image by factor of 2 in each direction, you can call the function this
2414
way:
2415
@code
2416
    // specify fx and fy and let the function compute the destination image size.
2417
    resize(src, dst, Size(), 0.5, 0.5, interpolation);
2418
@endcode
2419
To shrink an image, it will generally look best with #INTER_AREA interpolation, whereas to
2420
enlarge an image, it will generally look best with #INTER_CUBIC (slow) or #INTER_LINEAR
2421
(faster but still looks OK).
2422
2423
@param src input image.
2424
@param dst output image; it has the size dsize (when it is non-zero) or the size computed from
2425
src.size(), fx, and fy; the type of dst is the same as of src.
2426
@param dsize output image size; if it equals zero (`None` in Python), it is computed as:
2427
 \f[\texttt{dsize = Size(round(fx*src.cols), round(fy*src.rows))}\f]
2428
 Either dsize or both fx and fy must be non-zero.
2429
@param fx scale factor along the horizontal axis; when it equals 0, it is computed as
2430
\f[\texttt{(double)dsize.width/src.cols}\f]
2431
@param fy scale factor along the vertical axis; when it equals 0, it is computed as
2432
\f[\texttt{(double)dsize.height/src.rows}\f]
2433
@param interpolation interpolation method, see #InterpolationFlags
2434
2435
@sa  warpAffine, warpPerspective, remap
2436
 */
2437
CV_EXPORTS_W void resize( InputArray src, OutputArray dst,
2438
                          Size dsize, double fx = 0, double fy = 0,
2439
                          int interpolation = INTER_LINEAR );
2440
2441
/** @brief Applies an affine transformation to an image.
2442
2443
The function warpAffine transforms the source image using the specified matrix:
2444
2445
\f[\texttt{dst} (x,y) =  \texttt{src} ( \texttt{M} _{11} x +  \texttt{M} _{12} y +  \texttt{M} _{13}, \texttt{M} _{21} x +  \texttt{M} _{22} y +  \texttt{M} _{23})\f]
2446
2447
when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted
2448
with #invertAffineTransform and then put in the formula above instead of M. The function cannot
2449
operate in-place.
2450
2451
@param src input image.
2452
@param dst output image that has the size dsize and the same type as src .
2453
@param M \f$2\times 3\f$ transformation matrix.
2454
@param dsize size of the output image.
2455
@param flags combination of interpolation methods (see #InterpolationFlags) and the optional
2456
flag #WARP_INVERSE_MAP that means that M is the inverse transformation (
2457
\f$\texttt{dst}\rightarrow\texttt{src}\f$ ).
2458
@param borderMode pixel extrapolation method (see #BorderTypes); when
2459
borderMode=#BORDER_TRANSPARENT, it means that the pixels in the destination image corresponding to
2460
the "outliers" in the source image are not modified by the function.
2461
@param borderValue value used in case of a constant border; by default, it is 0.
2462
2463
@sa  warpPerspective, resize, remap, getRectSubPix, transform
2464
 */
2465
CV_EXPORTS_W void warpAffine( InputArray src, OutputArray dst,
2466
                              InputArray M, Size dsize,
2467
                              int flags = INTER_LINEAR,
2468
                              int borderMode = BORDER_CONSTANT,
2469
                              const Scalar& borderValue = Scalar());
2470
2471
/** @example samples/cpp/warpPerspective_demo.cpp
2472
An example program shows using cv::getPerspectiveTransform and cv::warpPerspective for image warping
2473
*/
2474
2475
/** @brief Applies a perspective transformation to an image.
2476
2477
The function warpPerspective transforms the source image using the specified matrix:
2478
2479
\f[\texttt{dst} (x,y) =  \texttt{src} \left ( \frac{M_{11} x + M_{12} y + M_{13}}{M_{31} x + M_{32} y + M_{33}} ,
2480
     \frac{M_{21} x + M_{22} y + M_{23}}{M_{31} x + M_{32} y + M_{33}} \right )\f]
2481
2482
when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted with invert
2483
and then put in the formula above instead of M. The function cannot operate in-place.
2484
2485
@param src input image.
2486
@param dst output image that has the size dsize and the same type as src .
2487
@param M \f$3\times 3\f$ transformation matrix.
2488
@param dsize size of the output image.
2489
@param flags combination of interpolation methods (#INTER_LINEAR or #INTER_NEAREST) and the
2490
optional flag #WARP_INVERSE_MAP, that sets M as the inverse transformation (
2491
\f$\texttt{dst}\rightarrow\texttt{src}\f$ ).
2492
@param borderMode pixel extrapolation method (#BORDER_CONSTANT or #BORDER_REPLICATE).
2493
@param borderValue value used in case of a constant border; by default, it equals 0.
2494
2495
@sa  warpAffine, resize, remap, getRectSubPix, perspectiveTransform
2496
 */
2497
CV_EXPORTS_W void warpPerspective( InputArray src, OutputArray dst,
2498
                                   InputArray M, Size dsize,
2499
                                   int flags = INTER_LINEAR,
2500
                                   int borderMode = BORDER_CONSTANT,
2501
                                   const Scalar& borderValue = Scalar());
2502
2503
/** @brief Applies a generic geometrical transformation to an image.
2504
2505
The function remap transforms the source image using the specified map:
2506
2507
\f[\texttt{dst} (x,y) =  \texttt{src} (map_x(x,y),map_y(x,y))\f]
2508
2509
with the WARP_RELATIVE_MAP flag :
2510
2511
\f[\texttt{dst} (x,y) =  \texttt{src} (x+map_x(x,y),y+map_y(x,y))\f]
2512
2513
where values of pixels with non-integer coordinates are computed using one of available
2514
interpolation methods. \f$map_x\f$ and \f$map_y\f$ can be encoded as separate floating-point maps
2515
in \f$map_1\f$ and \f$map_2\f$ respectively, or interleaved floating-point maps of \f$(x,y)\f$ in
2516
\f$map_1\f$, or fixed-point maps created by using #convertMaps. The reason you might want to
2517
convert from floating to fixed-point representations of a map is that they can yield much faster
2518
(\~2x) remapping operations. In the converted case, \f$map_1\f$ contains pairs (cvFloor(x),
2519
cvFloor(y)) and \f$map_2\f$ contains indices in a table of interpolation coefficients.
2520
2521
This function cannot operate in-place.
2522
2523
@param src Source image.
2524
@param dst Destination image. It has the same size as map1 and the same type as src .
2525
@param map1 The first map of either (x,y) points or just x values having the type CV_16SC2 ,
2526
CV_32FC1, or CV_32FC2. See #convertMaps for details on converting a floating point
2527
representation to fixed-point for speed.
2528
@param map2 The second map of y values having the type CV_16UC1, CV_32FC1, or none (empty map
2529
if map1 is (x,y) points), respectively.
2530
@param interpolation Interpolation method (see #InterpolationFlags). The methods #INTER_AREA
2531
#INTER_LINEAR_EXACT and #INTER_NEAREST_EXACT are not supported by this function.
2532
The extra flag WARP_RELATIVE_MAP can be ORed to the interpolation method
2533
(e.g. INTER_LINEAR | WARP_RELATIVE_MAP)
2534
@param borderMode Pixel extrapolation method (see #BorderTypes). When
2535
borderMode=#BORDER_TRANSPARENT, it means that the pixels in the destination image that
2536
corresponds to the "outliers" in the source image are not modified by the function.
2537
@param borderValue Value used in case of a constant border. By default, it is 0.
2538
@note
2539
Due to current implementation limitations the size of an input and output images should be less than 32767x32767.
2540
 */
2541
CV_EXPORTS_W void remap( InputArray src, OutputArray dst,
2542
                         InputArray map1, InputArray map2,
2543
                         int interpolation, int borderMode = BORDER_CONSTANT,
2544
                         const Scalar& borderValue = Scalar());
2545
2546
/** @brief Converts image transformation maps from one representation to another.
2547
2548
The function converts a pair of maps for remap from one representation to another. The following
2549
options ( (map1.type(), map2.type()) \f$\rightarrow\f$ (dstmap1.type(), dstmap2.type()) ) are
2550
supported:
2551
2552
- \f$\texttt{(CV_32FC1, CV_32FC1)} \rightarrow \texttt{(CV_16SC2, CV_16UC1)}\f$. This is the
2553
most frequently used conversion operation, in which the original floating-point maps (see #remap)
2554
are converted to a more compact and much faster fixed-point representation. The first output array
2555
contains the rounded coordinates and the second array (created only when nninterpolation=false )
2556
contains indices in the interpolation tables.
2557
2558
- \f$\texttt{(CV_32FC2)} \rightarrow \texttt{(CV_16SC2, CV_16UC1)}\f$. The same as above but
2559
the original maps are stored in one 2-channel matrix.
2560
2561
- Reverse conversion. Obviously, the reconstructed floating-point maps will not be exactly the same
2562
as the originals.
2563
2564
@param map1 The first input map of type CV_16SC2, CV_32FC1, or CV_32FC2 .
2565
@param map2 The second input map of type CV_16UC1, CV_32FC1, or none (empty matrix),
2566
respectively.
2567
@param dstmap1 The first output map that has the type dstmap1type and the same size as src .
2568
@param dstmap2 The second output map.
2569
@param dstmap1type Type of the first output map that should be CV_16SC2, CV_32FC1, or
2570
CV_32FC2 .
2571
@param nninterpolation Flag indicating whether the fixed-point maps are used for the
2572
nearest-neighbor or for a more complex interpolation.
2573
2574
@sa  remap, undistort, initUndistortRectifyMap
2575
 */
2576
CV_EXPORTS_W void convertMaps( InputArray map1, InputArray map2,
2577
                               OutputArray dstmap1, OutputArray dstmap2,
2578
                               int dstmap1type, bool nninterpolation = false );
2579
2580
/** @brief Calculates an affine matrix of 2D rotation.
2581
2582
The function calculates the following matrix:
2583
2584
\f[\begin{bmatrix} \alpha &  \beta & (1- \alpha )  \cdot \texttt{center.x} -  \beta \cdot \texttt{center.y} \\ - \beta &  \alpha &  \beta \cdot \texttt{center.x} + (1- \alpha )  \cdot \texttt{center.y} \end{bmatrix}\f]
2585
2586
where
2587
2588
\f[\begin{array}{l} \alpha =  \texttt{scale} \cdot \cos \texttt{angle} , \\ \beta =  \texttt{scale} \cdot \sin \texttt{angle} \end{array}\f]
2589
2590
The transformation maps the rotation center to itself. If this is not the target, adjust the shift.
2591
2592
@param center Center of the rotation in the source image.
2593
@param angle Rotation angle in degrees. Positive values mean counter-clockwise rotation (the
2594
coordinate origin is assumed to be the top-left corner).
2595
@param scale Isotropic scale factor.
2596
2597
@sa  getAffineTransform, warpAffine, transform
2598
 */
2599
CV_EXPORTS_W Mat getRotationMatrix2D(Point2f center, double angle, double scale);
2600
2601
/** @sa getRotationMatrix2D */
2602
CV_EXPORTS Matx23d getRotationMatrix2D_(Point2f center, double angle, double scale);
2603
2604
inline
2605
Mat getRotationMatrix2D(Point2f center, double angle, double scale)
2606
0
{
2607
0
    return Mat(getRotationMatrix2D_(center, angle, scale), true);
2608
0
}
2609
2610
/** @brief Calculates an affine transform from three pairs of the corresponding points.
2611
2612
The function calculates the \f$2 \times 3\f$ matrix of an affine transform so that:
2613
2614
\f[\begin{bmatrix} x'_i \\ y'_i \end{bmatrix} = \texttt{map_matrix} \cdot \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}\f]
2615
2616
where
2617
2618
\f[dst(i)=(x'_i,y'_i), src(i)=(x_i, y_i), i=0,1,2\f]
2619
2620
@param src Coordinates of triangle vertices in the source image.
2621
@param dst Coordinates of the corresponding triangle vertices in the destination image.
2622
2623
@sa  warpAffine, transform
2624
 */
2625
CV_EXPORTS Mat getAffineTransform( const Point2f src[], const Point2f dst[] );
2626
2627
/** @brief Inverts an affine transformation.
2628
2629
The function computes an inverse affine transformation represented by \f$2 \times 3\f$ matrix M:
2630
2631
\f[\begin{bmatrix} a_{11} & a_{12} & b_1  \\ a_{21} & a_{22} & b_2 \end{bmatrix}\f]
2632
2633
The result is also a \f$2 \times 3\f$ matrix of the same type as M.
2634
2635
@param M Original affine transformation.
2636
@param iM Output reverse affine transformation.
2637
 */
2638
CV_EXPORTS_W void invertAffineTransform( InputArray M, OutputArray iM );
2639
2640
/** @brief Calculates a perspective transform from four pairs of the corresponding points.
2641
2642
The function calculates the \f$3 \times 3\f$ matrix of a perspective transform so that:
2643
2644
\f[\begin{bmatrix} t_i x'_i \\ t_i y'_i \\ t_i \end{bmatrix} = \texttt{map_matrix} \cdot \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}\f]
2645
2646
where
2647
2648
\f[dst(i)=(x'_i,y'_i), src(i)=(x_i, y_i), i=0,1,2,3\f]
2649
2650
@param src Coordinates of quadrangle vertices in the source image.
2651
@param dst Coordinates of the corresponding quadrangle vertices in the destination image.
2652
@param solveMethod method passed to cv::solve (#DecompTypes)
2653
2654
@sa  findHomography, warpPerspective, perspectiveTransform
2655
 */
2656
CV_EXPORTS_W Mat getPerspectiveTransform(InputArray src, InputArray dst, int solveMethod = DECOMP_LU);
2657
2658
/** @overload */
2659
CV_EXPORTS Mat getPerspectiveTransform(const Point2f src[], const Point2f dst[], int solveMethod = DECOMP_LU);
2660
2661
2662
CV_EXPORTS_W Mat getAffineTransform( InputArray src, InputArray dst );
2663
2664
/** @brief Retrieves a pixel rectangle from an image with sub-pixel accuracy.
2665
2666
The function getRectSubPix extracts pixels from src:
2667
2668
\f[patch(x, y) = src(x +  \texttt{center.x} - ( \texttt{dst.cols} -1)*0.5, y +  \texttt{center.y} - ( \texttt{dst.rows} -1)*0.5)\f]
2669
2670
where the values of the pixels at non-integer coordinates are retrieved using bilinear
2671
interpolation. Every channel of multi-channel images is processed independently. Also
2672
the image should be a single channel or three channel image. While the center of the
2673
rectangle must be inside the image, parts of the rectangle may be outside.
2674
2675
@param image Source image.
2676
@param patchSize Size of the extracted patch.
2677
@param center Floating point coordinates of the center of the extracted rectangle within the
2678
source image. The center must be inside the image.
2679
@param patch Extracted patch that has the size patchSize and the same number of channels as src .
2680
@param patchType Depth of the extracted pixels. By default, they have the same depth as src .
2681
2682
@sa  warpAffine, warpPerspective
2683
 */
2684
CV_EXPORTS_W void getRectSubPix( InputArray image, Size patchSize,
2685
                                 Point2f center, OutputArray patch, int patchType = -1 );
2686
2687
/** @example samples/cpp/polar_transforms.cpp
2688
An example using the cv::linearPolar and cv::logPolar operations
2689
*/
2690
2691
/** @brief Remaps an image to semilog-polar coordinates space.
2692
2693
@deprecated This function produces same result as cv::warpPolar(src, dst, src.size(), center, maxRadius, flags+WARP_POLAR_LOG);
2694
2695
@internal
2696
Transform the source image using the following transformation (See @ref polar_remaps_reference_image "Polar remaps reference image d)"):
2697
\f[\begin{array}{l}
2698
  dst( \rho , \phi ) = src(x,y) \\
2699
  dst.size() \leftarrow src.size()
2700
\end{array}\f]
2701
2702
where
2703
\f[\begin{array}{l}
2704
  I = (dx,dy) = (x - center.x,y - center.y) \\
2705
  \rho = M \cdot log_e(\texttt{magnitude} (I)) ,\\
2706
  \phi = Kangle \cdot \texttt{angle} (I) \\
2707
\end{array}\f]
2708
2709
and
2710
\f[\begin{array}{l}
2711
  M = src.cols / log_e(maxRadius) \\
2712
  Kangle = src.rows / 2\Pi \\
2713
\end{array}\f]
2714
2715
The function emulates the human "foveal" vision and can be used for fast scale and
2716
rotation-invariant template matching, for object tracking and so forth.
2717
@param src Source image
2718
@param dst Destination image. It will have same size and type as src.
2719
@param center The transformation center; where the output precision is maximal
2720
@param M Magnitude scale parameter. It determines the radius of the bounding circle to transform too.
2721
@param flags A combination of interpolation methods, see #InterpolationFlags
2722
2723
@note
2724
-   The function can not operate in-place.
2725
-   To calculate magnitude and angle in degrees #cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees.
2726
2727
@sa cv::linearPolar
2728
@endinternal
2729
*/
2730
CV_EXPORTS_W void logPolar( InputArray src, OutputArray dst,
2731
                            Point2f center, double M, int flags );
2732
2733
/** @brief Remaps an image to polar coordinates space.
2734
2735
@deprecated This function produces same result as cv::warpPolar(src, dst, src.size(), center, maxRadius, flags)
2736
2737
@internal
2738
Transform the source image using the following transformation (See @ref polar_remaps_reference_image "Polar remaps reference image c)"):
2739
\f[\begin{array}{l}
2740
  dst( \rho , \phi ) = src(x,y) \\
2741
  dst.size() \leftarrow src.size()
2742
\end{array}\f]
2743
2744
where
2745
\f[\begin{array}{l}
2746
  I = (dx,dy) = (x - center.x,y - center.y) \\
2747
  \rho = Kmag \cdot \texttt{magnitude} (I) ,\\
2748
  \phi = angle \cdot \texttt{angle} (I)
2749
\end{array}\f]
2750
2751
and
2752
\f[\begin{array}{l}
2753
  Kx = src.cols / maxRadius \\
2754
  Ky = src.rows / 2\Pi
2755
\end{array}\f]
2756
2757
2758
@param src Source image
2759
@param dst Destination image. It will have same size and type as src.
2760
@param center The transformation center;
2761
@param maxRadius The radius of the bounding circle to transform. It determines the inverse magnitude scale parameter too.
2762
@param flags A combination of interpolation methods, see #InterpolationFlags
2763
2764
@note
2765
-   The function can not operate in-place.
2766
-   To calculate magnitude and angle in degrees #cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees.
2767
2768
@sa cv::logPolar
2769
@endinternal
2770
*/
2771
CV_EXPORTS_W void linearPolar( InputArray src, OutputArray dst,
2772
                               Point2f center, double maxRadius, int flags );
2773
2774
2775
/** \brief Remaps an image to polar or semilog-polar coordinates space
2776
2777
@anchor polar_remaps_reference_image
2778
![Polar remaps reference](pics/polar_remap_doc.png)
2779
2780
Transform the source image using the following transformation:
2781
\f[
2782
dst(\rho , \phi ) = src(x,y)
2783
\f]
2784
2785
where
2786
\f[
2787
\begin{array}{l}
2788
\vec{I} = (x - center.x, \;y - center.y) \\
2789
\phi = Kangle \cdot \texttt{angle} (\vec{I}) \\
2790
\rho = \left\{\begin{matrix}
2791
Klin \cdot \texttt{magnitude} (\vec{I}) & default \\
2792
Klog \cdot log_e(\texttt{magnitude} (\vec{I})) & if \; semilog \\
2793
\end{matrix}\right.
2794
\end{array}
2795
\f]
2796
2797
and
2798
\f[
2799
\begin{array}{l}
2800
Kangle = dsize.height / 2\Pi \\
2801
Klin = dsize.width / maxRadius \\
2802
Klog = dsize.width / log_e(maxRadius) \\
2803
\end{array}
2804
\f]
2805
2806
2807
\par Linear vs semilog mapping
2808
2809
Polar mapping can be linear or semi-log. Add one of #WarpPolarMode to `flags` to specify the polar mapping mode.
2810
2811
Linear is the default mode.
2812
2813
The semilog mapping emulates the human "foveal" vision that permit very high acuity on the line of sight (central vision)
2814
in contrast to peripheral vision where acuity is minor.
2815
2816
\par Option on `dsize`:
2817
2818
- if both values in `dsize <=0 ` (default),
2819
the destination image will have (almost) same area of source bounding circle:
2820
\f[\begin{array}{l}
2821
dsize.area  \leftarrow (maxRadius^2 \cdot \Pi) \\
2822
dsize.width = \texttt{cvRound}(maxRadius) \\
2823
dsize.height = \texttt{cvRound}(maxRadius \cdot \Pi) \\
2824
\end{array}\f]
2825
2826
2827
- if only `dsize.height <= 0`,
2828
the destination image area will be proportional to the bounding circle area but scaled by `Kx * Kx`:
2829
\f[\begin{array}{l}
2830
dsize.height = \texttt{cvRound}(dsize.width \cdot \Pi) \\
2831
\end{array}
2832
\f]
2833
2834
- if both values in `dsize > 0 `,
2835
the destination image will have the given size therefore the area of the bounding circle will be scaled to `dsize`.
2836
2837
2838
\par Reverse mapping
2839
2840
You can get reverse mapping adding #WARP_INVERSE_MAP to `flags`
2841
\snippet polar_transforms.cpp InverseMap
2842
2843
In addiction, to calculate the original coordinate from a polar mapped coordinate \f$(rho, phi)->(x, y)\f$:
2844
\snippet polar_transforms.cpp InverseCoordinate
2845
2846
@param src Source image.
2847
@param dst Destination image. It will have same type as src.
2848
@param dsize The destination image size (see description for valid options).
2849
@param center The transformation center.
2850
@param maxRadius The radius of the bounding circle to transform. It determines the inverse magnitude scale parameter too.
2851
@param flags A combination of interpolation methods, #InterpolationFlags + #WarpPolarMode.
2852
            - Add #WARP_POLAR_LINEAR to select linear polar mapping (default)
2853
            - Add #WARP_POLAR_LOG to select semilog polar mapping
2854
            - Add #WARP_INVERSE_MAP for reverse mapping.
2855
@note
2856
-  The function can not operate in-place.
2857
-  To calculate magnitude and angle in degrees #cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees.
2858
-  This function uses #remap. Due to current implementation limitations the size of an input and output images should be less than 32767x32767.
2859
2860
@sa cv::remap
2861
*/
2862
CV_EXPORTS_W void warpPolar(InputArray src, OutputArray dst, Size dsize,
2863
                            Point2f center, double maxRadius, int flags);
2864
2865
2866
//! @} imgproc_transform
2867
2868
//! @addtogroup imgproc_misc
2869
//! @{
2870
2871
/** @brief Calculates the integral of an image.
2872
2873
The function calculates one or more integral images for the source image as follows:
2874
2875
\f[\texttt{sum} (X,Y) =  \sum _{x<X,y<Y}  \texttt{image} (x,y)\f]
2876
2877
\f[\texttt{sqsum} (X,Y) =  \sum _{x<X,y<Y}  \texttt{image} (x,y)^2\f]
2878
2879
\f[\texttt{tilted} (X,Y) =  \sum _{y<Y,abs(x-X+1) \leq Y-y-1}  \texttt{image} (x,y)\f]
2880
2881
Using these integral images, you can calculate sum, mean, and standard deviation over a specific
2882
up-right or rotated rectangular region of the image in a constant time, for example:
2883
2884
\f[\sum _{x_1 \leq x < x_2,  \, y_1  \leq y < y_2}  \texttt{image} (x,y) =  \texttt{sum} (x_2,y_2)- \texttt{sum} (x_1,y_2)- \texttt{sum} (x_2,y_1)+ \texttt{sum} (x_1,y_1)\f]
2885
2886
It makes possible to do a fast blurring or fast block correlation with a variable window size, for
2887
example. In case of multi-channel images, sums for each channel are accumulated independently.
2888
2889
As a practical example, the next figure shows the calculation of the integral of a straight
2890
rectangle Rect(4,4,3,2) and of a tilted rectangle Rect(5,1,2,3) . The selected pixels in the
2891
original image are shown, as well as the relative pixels in the integral images sum and tilted .
2892
2893
![integral calculation example](pics/integral.png)
2894
2895
@param src input image as \f$W \times H\f$, 8-bit or floating-point (32f or 64f).
2896
@param sum integral image as \f$(W+1)\times (H+1)\f$ , 32-bit integer or floating-point (32f or 64f).
2897
@param sqsum integral image for squared pixel values; it is \f$(W+1)\times (H+1)\f$, double-precision
2898
floating-point (64f) array.
2899
@param tilted integral for the image rotated by 45 degrees; it is \f$(W+1)\times (H+1)\f$ array with
2900
the same data type as sum.
2901
@param sdepth desired depth of the integral and the tilted integral images, CV_32S, CV_32F, or
2902
CV_64F.
2903
@param sqdepth desired depth of the integral image of squared pixel values, CV_32F or CV_64F.
2904
 */
2905
CV_EXPORTS_AS(integral3) void integral( InputArray src, OutputArray sum,
2906
                                        OutputArray sqsum, OutputArray tilted,
2907
                                        int sdepth = -1, int sqdepth = -1 );
2908
2909
/** @overload */
2910
CV_EXPORTS_W void integral( InputArray src, OutputArray sum, int sdepth = -1 );
2911
2912
/** @overload */
2913
CV_EXPORTS_AS(integral2) void integral( InputArray src, OutputArray sum,
2914
                                        OutputArray sqsum, int sdepth = -1, int sqdepth = -1 );
2915
2916
//! @} imgproc_misc
2917
2918
//! @addtogroup imgproc_motion
2919
//! @{
2920
2921
/** @brief Adds an image to the accumulator image.
2922
2923
The function adds src or some of its elements to dst :
2924
2925
\f[\texttt{dst} (x,y)  \leftarrow \texttt{dst} (x,y) +  \texttt{src} (x,y)  \quad \text{if} \quad \texttt{mask} (x,y)  \ne 0\f]
2926
2927
The function supports multi-channel images. Each channel is processed independently.
2928
2929
The function cv::accumulate can be used, for example, to collect statistics of a scene background
2930
viewed by a still camera and for the further foreground-background segmentation.
2931
2932
@param src Input image of type CV_8UC(n), CV_16UC(n), CV_32FC(n) or CV_64FC(n), where n is a positive integer.
2933
@param dst %Accumulator image with the same number of channels as input image, and a depth of CV_32F or CV_64F.
2934
@param mask Optional operation mask.
2935
2936
@sa  accumulateSquare, accumulateProduct, accumulateWeighted
2937
 */
2938
CV_EXPORTS_W void accumulate( InputArray src, InputOutputArray dst,
2939
                              InputArray mask = noArray() );
2940
2941
/** @brief Adds the square of a source image to the accumulator image.
2942
2943
The function adds the input image src or its selected region, raised to a power of 2, to the
2944
accumulator dst :
2945
2946
\f[\texttt{dst} (x,y)  \leftarrow \texttt{dst} (x,y) +  \texttt{src} (x,y)^2  \quad \text{if} \quad \texttt{mask} (x,y)  \ne 0\f]
2947
2948
The function supports multi-channel images. Each channel is processed independently.
2949
2950
@param src Input image as 1- or 3-channel, 8-bit or 32-bit floating point.
2951
@param dst %Accumulator image with the same number of channels as input image, 32-bit or 64-bit
2952
floating-point.
2953
@param mask Optional operation mask.
2954
2955
@sa  accumulateSquare, accumulateProduct, accumulateWeighted
2956
 */
2957
CV_EXPORTS_W void accumulateSquare( InputArray src, InputOutputArray dst,
2958
                                    InputArray mask = noArray() );
2959
2960
/** @brief Adds the per-element product of two input images to the accumulator image.
2961
2962
The function adds the product of two images or their selected regions to the accumulator dst :
2963
2964
\f[\texttt{dst} (x,y)  \leftarrow \texttt{dst} (x,y) +  \texttt{src1} (x,y)  \cdot \texttt{src2} (x,y)  \quad \text{if} \quad \texttt{mask} (x,y)  \ne 0\f]
2965
2966
The function supports multi-channel images. Each channel is processed independently.
2967
2968
@param src1 First input image, 1- or 3-channel, 8-bit or 32-bit floating point.
2969
@param src2 Second input image of the same type and the same size as src1 .
2970
@param dst %Accumulator image with the same number of channels as input images, 32-bit or 64-bit
2971
floating-point.
2972
@param mask Optional operation mask.
2973
2974
@sa  accumulate, accumulateSquare, accumulateWeighted
2975
 */
2976
CV_EXPORTS_W void accumulateProduct( InputArray src1, InputArray src2,
2977
                                     InputOutputArray dst, InputArray mask=noArray() );
2978
2979
/** @brief Updates a running average.
2980
2981
The function calculates the weighted sum of the input image src and the accumulator dst so that dst
2982
becomes a running average of a frame sequence:
2983
2984
\f[\texttt{dst} (x,y)  \leftarrow (1- \texttt{alpha} )  \cdot \texttt{dst} (x,y) +  \texttt{alpha} \cdot \texttt{src} (x,y)  \quad \text{if} \quad \texttt{mask} (x,y)  \ne 0\f]
2985
2986
That is, alpha regulates the update speed (how fast the accumulator "forgets" about earlier images).
2987
The function supports multi-channel images. Each channel is processed independently.
2988
2989
@param src Input image as 1- or 3-channel, 8-bit or 32-bit floating point.
2990
@param dst %Accumulator image with the same number of channels as input image, 32-bit or 64-bit
2991
floating-point.
2992
@param alpha Weight of the input image.
2993
@param mask Optional operation mask.
2994
2995
@sa  accumulate, accumulateSquare, accumulateProduct
2996
 */
2997
CV_EXPORTS_W void accumulateWeighted( InputArray src, InputOutputArray dst,
2998
                                      double alpha, InputArray mask = noArray() );
2999
3000
/** @brief The function is used to detect translational shifts that occur between two images.
3001
3002
The operation takes advantage of the Fourier shift theorem for detecting the translational shift in
3003
the frequency domain. It can be used for fast image registration as well as motion estimation. For
3004
more information please see <https://en.wikipedia.org/wiki/Phase_correlation>
3005
3006
Calculates the cross-power spectrum of two supplied source arrays. The arrays are padded if needed
3007
with getOptimalDFTSize.
3008
3009
The function performs the following equations:
3010
- First it applies a Hanning window to each image to remove possible edge effects, if it's provided
3011
by user. See @ref createHanningWindow and <https://en.wikipedia.org/wiki/Hann_function>. This window may
3012
be cached until the array size changes to speed up processing time.
3013
- Next it computes the forward DFTs of each source array:
3014
\f[\mathbf{G}_a = \mathcal{F}\{src_1\}, \; \mathbf{G}_b = \mathcal{F}\{src_2\}\f]
3015
where \f$\mathcal{F}\f$ is the forward DFT.
3016
- It then computes the cross-power spectrum of each frequency domain array:
3017
\f[R = \frac{ \mathbf{G}_a \mathbf{G}_b^*}{|\mathbf{G}_a \mathbf{G}_b^*|}\f]
3018
- Next the cross-correlation is converted back into the time domain via the inverse DFT:
3019
\f[r = \mathcal{F}^{-1}\{R\}\f]
3020
- Finally, it computes the peak location and computes a 5x5 weighted centroid around the peak to
3021
achieve sub-pixel accuracy.
3022
\f[(\Delta x, \Delta y) = \texttt{weightedCentroid} \{\arg \max_{(x, y)}\{r\}\}\f]
3023
- If non-zero, the response parameter is computed as the sum of the elements of r within the 5x5
3024
centroid around the peak location. It is normalized to a maximum of 1 (meaning there is a single
3025
peak) and will be smaller when there are multiple peaks.
3026
3027
@param src1 Source floating point array (CV_32FC1 or CV_64FC1)
3028
@param src2 Source floating point array (CV_32FC1 or CV_64FC1)
3029
@param window Floating point array with windowing coefficients to reduce edge effects (optional).
3030
@param response Signal power within the 5x5 centroid around the peak, between 0 and 1 (optional).
3031
@returns detected phase shift (sub-pixel) between the two arrays.
3032
3033
@sa dft, getOptimalDFTSize, idft, mulSpectrums createHanningWindow
3034
 */
3035
CV_EXPORTS_W Point2d phaseCorrelate(InputArray src1, InputArray src2,
3036
                                    InputArray window = noArray(), CV_OUT double* response = 0);
3037
3038
/** @brief This function computes a Hanning window coefficients in two dimensions.
3039
3040
See (https://en.wikipedia.org/wiki/Hann_function) and (https://en.wikipedia.org/wiki/Window_function)
3041
for more information.
3042
3043
An example is shown below:
3044
@code
3045
    // create hanning window of size 100x100 and type CV_32F
3046
    Mat hann;
3047
    createHanningWindow(hann, Size(100, 100), CV_32F);
3048
@endcode
3049
@param dst Destination array to place Hann coefficients in
3050
@param winSize The window size specifications (both width and height must be > 1)
3051
@param type Created array type
3052
 */
3053
CV_EXPORTS_W void createHanningWindow(OutputArray dst, Size winSize, int type);
3054
3055
/** @brief Performs the per-element division of the first Fourier spectrum by the second Fourier spectrum.
3056
3057
The function cv::divSpectrums performs the per-element division of the first array by the second array.
3058
The arrays are CCS-packed or complex matrices that are results of a real or complex Fourier transform.
3059
3060
@param a first input array.
3061
@param b second input array of the same size and type as src1 .
3062
@param c output array of the same size and type as src1 .
3063
@param flags operation flags; currently, the only supported flag is cv::DFT_ROWS, which indicates that
3064
each row of src1 and src2 is an independent 1D Fourier spectrum. If you do not want to use this flag, then simply add a `0` as value.
3065
@param conjB optional flag that conjugates the second input array before the multiplication (true)
3066
or not (false).
3067
*/
3068
CV_EXPORTS_W void divSpectrums(InputArray a, InputArray b, OutputArray c,
3069
                               int flags, bool conjB = false);
3070
3071
//! @} imgproc_motion
3072
3073
//! @addtogroup imgproc_misc
3074
//! @{
3075
3076
/** @brief Applies a fixed-level threshold to each array element.
3077
3078
The function applies fixed-level thresholding to a multiple-channel array. The function is typically
3079
used to get a bi-level (binary) image out of a grayscale image ( #compare could be also used for
3080
this purpose) or for removing a noise, that is, filtering out pixels with too small or too large
3081
values. There are several types of thresholding supported by the function. They are determined by
3082
type parameter.
3083
3084
Also, the special values #THRESH_OTSU or #THRESH_TRIANGLE may be combined with one of the
3085
above values. In these cases, the function determines the optimal threshold value using the Otsu's
3086
or Triangle algorithm and uses it instead of the specified thresh.
3087
3088
@note Currently, the Otsu's method is implemented only for CV_8UC1 and CV_16UC1 images,
3089
and the Triangle's method is implemented only for CV_8UC1 images.
3090
3091
@param src input array (multiple-channel, CV_8U, CV_16S, CV_16U, CV_32F or CV_64F).
3092
@param dst output array of the same size  and type and the same number of channels as src.
3093
@param thresh threshold value.
3094
@param maxval maximum value to use with the #THRESH_BINARY and #THRESH_BINARY_INV thresholding
3095
types.
3096
@param type thresholding type (see #ThresholdTypes).
3097
@return the computed threshold value if Otsu's or Triangle methods used.
3098
3099
@sa  thresholdWithMask, adaptiveThreshold, findContours, compare, min, max
3100
 */
3101
CV_EXPORTS_W double threshold( InputArray src, OutputArray dst,
3102
                               double thresh, double maxval, int type );
3103
3104
/** @brief Same as #threshold, but with an optional mask
3105
3106
@note If the mask is empty, #thresholdWithMask is equivalent to #threshold.
3107
If the mask is not empty, dst *must* be of the same size and type as src, so that
3108
outliers pixels are left as-is
3109
3110
@param src input array (multiple-channel, 8-bit or 32-bit floating point).
3111
@param dst output array of the same size  and type and the same number of channels as src.
3112
@param mask optional mask (same size as src, 8-bit).
3113
@param thresh threshold value.
3114
@param maxval maximum value to use with the #THRESH_BINARY and #THRESH_BINARY_INV thresholding
3115
types.
3116
@param type thresholding type (see #ThresholdTypes).
3117
@return the computed threshold value if Otsu's or Triangle methods used.
3118
3119
@sa  threshold, adaptiveThreshold, findContours, compare, min, max
3120
*/
3121
CV_EXPORTS_W double thresholdWithMask( InputArray src, InputOutputArray dst, InputArray mask,
3122
                                       double thresh, double maxval, int type );
3123
3124
/** @brief Applies an adaptive threshold to an array.
3125
3126
The function transforms a grayscale image to a binary image according to the formulae:
3127
-   **THRESH_BINARY**
3128
    \f[dst(x,y) =  \fork{\texttt{maxValue}}{if \(src(x,y) > T(x,y)\)}{0}{otherwise}\f]
3129
-   **THRESH_BINARY_INV**
3130
    \f[dst(x,y) =  \fork{0}{if \(src(x,y) > T(x,y)\)}{\texttt{maxValue}}{otherwise}\f]
3131
where \f$T(x,y)\f$ is a threshold calculated individually for each pixel (see adaptiveMethod parameter).
3132
3133
The function can process the image in-place.
3134
3135
@param src Source 8-bit single-channel image.
3136
@param dst Destination image of the same size and the same type as src.
3137
@param maxValue Non-zero value assigned to the pixels for which the condition is satisfied
3138
@param adaptiveMethod Adaptive thresholding algorithm to use, see #AdaptiveThresholdTypes.
3139
The #BORDER_REPLICATE | #BORDER_ISOLATED is used to process boundaries.
3140
@param thresholdType Thresholding type that must be either #THRESH_BINARY or #THRESH_BINARY_INV,
3141
see #ThresholdTypes.
3142
@param blockSize Size of a pixel neighborhood that is used to calculate a threshold value for the
3143
pixel: 3, 5, 7, and so on.
3144
@param C Constant subtracted from the mean or weighted mean (see the details below). Normally, it
3145
is positive but may be zero or negative as well.
3146
3147
@sa  threshold, blur, GaussianBlur
3148
 */
3149
CV_EXPORTS_W void adaptiveThreshold( InputArray src, OutputArray dst,
3150
                                     double maxValue, int adaptiveMethod,
3151
                                     int thresholdType, int blockSize, double C );
3152
3153
//! @} imgproc_misc
3154
3155
//! @addtogroup imgproc_filter
3156
//! @{
3157
3158
/** @example samples/cpp/tutorial_code/ImgProc/Pyramids/Pyramids.cpp
3159
An example using pyrDown and pyrUp functions
3160
*/
3161
3162
/** @brief Blurs an image and downsamples it.
3163
3164
By default, size of the output image is computed as `Size((src.cols+1)/2, (src.rows+1)/2)`, but in
3165
any case, the following conditions should be satisfied:
3166
3167
\f[\begin{array}{l} | \texttt{dstsize.width} *2-src.cols| \leq 2 \\ | \texttt{dstsize.height} *2-src.rows| \leq 2 \end{array}\f]
3168
3169
The function performs the downsampling step of the Gaussian pyramid construction. First, it
3170
convolves the source image with the kernel:
3171
3172
\f[\frac{1}{256} \begin{bmatrix} 1 & 4 & 6 & 4 & 1  \\ 4 & 16 & 24 & 16 & 4  \\ 6 & 24 & 36 & 24 & 6  \\ 4 & 16 & 24 & 16 & 4  \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix}\f]
3173
3174
Then, it downsamples the image by rejecting even rows and columns.
3175
3176
@param src input image.
3177
@param dst output image; it has the specified size and the same type as src.
3178
@param dstsize size of the output image.
3179
@param borderType Pixel extrapolation method, see #BorderTypes (#BORDER_CONSTANT isn't supported)
3180
 */
3181
CV_EXPORTS_W void pyrDown( InputArray src, OutputArray dst,
3182
                           const Size& dstsize = Size(), int borderType = BORDER_DEFAULT );
3183
3184
/** @brief Upsamples an image and then blurs it.
3185
3186
By default, size of the output image is computed as `Size(src.cols\*2, (src.rows\*2)`, but in any
3187
case, the following conditions should be satisfied:
3188
3189
\f[\begin{array}{l} | \texttt{dstsize.width} -src.cols*2| \leq  ( \texttt{dstsize.width}   \mod  2)  \\ | \texttt{dstsize.height} -src.rows*2| \leq  ( \texttt{dstsize.height}   \mod  2) \end{array}\f]
3190
3191
The function performs the upsampling step of the Gaussian pyramid construction, though it can
3192
actually be used to construct the Laplacian pyramid. First, it upsamples the source image by
3193
injecting even zero rows and columns and then convolves the result with the same kernel as in
3194
pyrDown multiplied by 4.
3195
3196
@param src input image.
3197
@param dst output image. It has the specified size and the same type as src .
3198
@param dstsize size of the output image.
3199
@param borderType Pixel extrapolation method, see #BorderTypes (only #BORDER_DEFAULT is supported)
3200
 */
3201
CV_EXPORTS_W void pyrUp( InputArray src, OutputArray dst,
3202
                         const Size& dstsize = Size(), int borderType = BORDER_DEFAULT );
3203
3204
/** @brief Constructs the Gaussian pyramid for an image.
3205
3206
The function constructs a vector of images and builds the Gaussian pyramid by recursively applying
3207
pyrDown to the previously built pyramid layers, starting from `dst[0]==src`.
3208
3209
@param src Source image. Check pyrDown for the list of supported types.
3210
@param dst Destination vector of maxlevel+1 images of the same type as src. dst[0] will be the
3211
same as src. dst[1] is the next pyramid layer, a smoothed and down-sized src, and so on.
3212
@param maxlevel 0-based index of the last (the smallest) pyramid layer. It must be non-negative.
3213
@param borderType Pixel extrapolation method, see #BorderTypes (#BORDER_CONSTANT isn't supported)
3214
 */
3215
CV_EXPORTS void buildPyramid( InputArray src, OutputArrayOfArrays dst,
3216
                              int maxlevel, int borderType = BORDER_DEFAULT );
3217
3218
//! @} imgproc_filter
3219
3220
//! @addtogroup imgproc_hist
3221
//! @{
3222
3223
/** @example samples/cpp/demhist.cpp
3224
An example for creating histograms of an image
3225
*/
3226
3227
/** @brief Calculates a histogram of a set of arrays.
3228
3229
The function cv::calcHist calculates the histogram of one or more arrays. The elements of a tuple used
3230
to increment a histogram bin are taken from the corresponding input arrays at the same location. The
3231
sample below shows how to compute a 2D Hue-Saturation histogram for a color image. :
3232
@include snippets/imgproc_calcHist.cpp
3233
3234
@param images Source arrays. They all should have the same depth, CV_8U, CV_16U or CV_32F , and the same
3235
size. Each of them can have an arbitrary number of channels.
3236
@param nimages Number of source images.
3237
@param channels List of the dims channels used to compute the histogram. The first array channels
3238
are numerated from 0 to images[0].channels()-1 , the second array channels are counted from
3239
images[0].channels() to images[0].channels() + images[1].channels()-1, and so on.
3240
@param mask Optional mask. If the matrix is not empty, it must be an 8-bit array of the same size
3241
as images[i] . The non-zero mask elements mark the array elements counted in the histogram.
3242
@param hist Output histogram, which is a dense or sparse dims -dimensional array.
3243
@param dims Histogram dimensionality that must be positive and not greater than CV_MAX_DIMS
3244
(equal to 32 in the current OpenCV version).
3245
@param histSize Array of histogram sizes in each dimension.
3246
@param ranges Array of the dims arrays of the histogram bin boundaries in each dimension. When the
3247
histogram is uniform ( uniform =true), then for each dimension i it is enough to specify the lower
3248
(inclusive) boundary \f$L_0\f$ of the 0-th histogram bin and the upper (exclusive) boundary
3249
\f$U_{\texttt{histSize}[i]-1}\f$ for the last histogram bin histSize[i]-1 . That is, in case of a
3250
uniform histogram each of ranges[i] is an array of 2 elements. When the histogram is not uniform (
3251
uniform=false ), then each of ranges[i] contains histSize[i]+1 elements:
3252
\f$L_0, U_0=L_1, U_1=L_2, ..., U_{\texttt{histSize[i]}-2}=L_{\texttt{histSize[i]}-1}, U_{\texttt{histSize[i]}-1}\f$
3253
. The array elements, that are not between \f$L_0\f$ and \f$U_{\texttt{histSize[i]}-1}\f$ , are not
3254
counted in the histogram.
3255
@param uniform Flag indicating whether the histogram is uniform or not (see above).
3256
@param accumulate Accumulation flag. If it is set, the histogram is not cleared in the beginning
3257
when it is allocated. This feature enables you to compute a single histogram from several sets of
3258
arrays, or to update the histogram in time.
3259
*/
3260
CV_EXPORTS void calcHist( const Mat* images, int nimages,
3261
                          const int* channels, InputArray mask,
3262
                          OutputArray hist, int dims, const int* histSize,
3263
                          const float** ranges, bool uniform = true, bool accumulate = false );
3264
3265
/** @overload
3266
3267
this variant uses %SparseMat for output
3268
*/
3269
CV_EXPORTS void calcHist( const Mat* images, int nimages,
3270
                          const int* channels, InputArray mask,
3271
                          SparseMat& hist, int dims,
3272
                          const int* histSize, const float** ranges,
3273
                          bool uniform = true, bool accumulate = false );
3274
3275
/** @overload
3276
3277
this variant supports only uniform histograms.
3278
3279
ranges argument is either empty vector or a flattened vector of histSize.size()*2 elements
3280
(histSize.size() element pairs). The first and second elements of each pair specify the lower and
3281
upper boundaries.
3282
*/
3283
CV_EXPORTS_W void calcHist( InputArrayOfArrays images,
3284
                            const std::vector<int>& channels,
3285
                            InputArray mask, OutputArray hist,
3286
                            const std::vector<int>& histSize,
3287
                            const std::vector<float>& ranges,
3288
                            bool accumulate = false );
3289
3290
/** @brief Calculates the back projection of a histogram.
3291
3292
The function cv::calcBackProject calculates the back project of the histogram. That is, similarly to
3293
#calcHist , at each location (x, y) the function collects the values from the selected channels
3294
in the input images and finds the corresponding histogram bin. But instead of incrementing it, the
3295
function reads the bin value, scales it by scale , and stores in backProject(x,y) . In terms of
3296
statistics, the function computes probability of each element value in respect with the empirical
3297
probability distribution represented by the histogram. See how, for example, you can find and track
3298
a bright-colored object in a scene:
3299
3300
- Before tracking, show the object to the camera so that it covers almost the whole frame.
3301
Calculate a hue histogram. The histogram may have strong maximums, corresponding to the dominant
3302
colors in the object.
3303
3304
- When tracking, calculate a back projection of a hue plane of each input video frame using that
3305
pre-computed histogram. Threshold the back projection to suppress weak colors. It may also make
3306
sense to suppress pixels with non-sufficient color saturation and too dark or too bright pixels.
3307
3308
- Find connected components in the resulting picture and choose, for example, the largest
3309
component.
3310
3311
This is an approximate algorithm of the CamShift color object tracker.
3312
3313
@param images Source arrays. They all should have the same depth, CV_8U, CV_16U or CV_32F , and the same
3314
size. Each of them can have an arbitrary number of channels.
3315
@param nimages Number of source images.
3316
@param channels The list of channels used to compute the back projection. The number of channels
3317
must match the histogram dimensionality. The first array channels are numerated from 0 to
3318
images[0].channels()-1 , the second array channels are counted from images[0].channels() to
3319
images[0].channels() + images[1].channels()-1, and so on.
3320
@param hist Input histogram that can be dense or sparse.
3321
@param backProject Destination back projection array that is a single-channel array of the same
3322
size and depth as images[0] .
3323
@param ranges Array of arrays of the histogram bin boundaries in each dimension. See #calcHist .
3324
@param scale Optional scale factor for the output back projection.
3325
@param uniform Flag indicating whether the histogram is uniform or not (see #calcHist).
3326
3327
@sa calcHist, compareHist
3328
 */
3329
CV_EXPORTS void calcBackProject( const Mat* images, int nimages,
3330
                                 const int* channels, InputArray hist,
3331
                                 OutputArray backProject, const float** ranges,
3332
                                 double scale = 1, bool uniform = true );
3333
3334
/** @overload */
3335
CV_EXPORTS void calcBackProject( const Mat* images, int nimages,
3336
                                 const int* channels, const SparseMat& hist,
3337
                                 OutputArray backProject, const float** ranges,
3338
                                 double scale = 1, bool uniform = true );
3339
3340
/** @overload */
3341
CV_EXPORTS_W void calcBackProject( InputArrayOfArrays images, const std::vector<int>& channels,
3342
                                   InputArray hist, OutputArray dst,
3343
                                   const std::vector<float>& ranges,
3344
                                   double scale );
3345
3346
/** @brief Compares two histograms.
3347
3348
The function cv::compareHist compares two dense or two sparse histograms using the specified method.
3349
3350
The function returns \f$d(H_1, H_2)\f$ .
3351
3352
While the function works well with 1-, 2-, 3-dimensional dense histograms, it may not be suitable
3353
for high-dimensional sparse histograms. In such histograms, because of aliasing and sampling
3354
problems, the coordinates of non-zero histogram bins can slightly shift. To compare such histograms
3355
or more general sparse configurations of weighted points, consider using the #EMD function.
3356
3357
@param H1 First compared histogram.
3358
@param H2 Second compared histogram of the same size as H1 .
3359
@param method Comparison method, see #HistCompMethods
3360
 */
3361
CV_EXPORTS_W double compareHist( InputArray H1, InputArray H2, int method );
3362
3363
/** @overload */
3364
CV_EXPORTS double compareHist( const SparseMat& H1, const SparseMat& H2, int method );
3365
3366
/** @brief Equalizes the histogram of a grayscale image.
3367
3368
The function equalizes the histogram of the input image using the following algorithm:
3369
3370
- Calculate the histogram \f$H\f$ for src .
3371
- Normalize the histogram so that the sum of histogram bins is 255.
3372
- Compute the integral of the histogram:
3373
\f[H'_i =  \sum _{0  \le j < i} H(j)\f]
3374
- Transform the image using \f$H'\f$ as a look-up table: \f$\texttt{dst}(x,y) = H'(\texttt{src}(x,y))\f$
3375
3376
The algorithm normalizes the brightness and increases the contrast of the image.
3377
3378
@param src Source 8-bit single channel image.
3379
@param dst Destination image of the same size and type as src .
3380
 */
3381
CV_EXPORTS_W void equalizeHist( InputArray src, OutputArray dst );
3382
3383
/** @brief Creates a smart pointer to a cv::CLAHE class and initializes it.
3384
3385
@param clipLimit Threshold for contrast limiting.
3386
@param tileGridSize Size of grid for histogram equalization. Input image will be divided into
3387
equally sized rectangular tiles. tileGridSize defines the number of tiles in row and column.
3388
 */
3389
CV_EXPORTS_W Ptr<CLAHE> createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8));
3390
3391
/** @brief Computes the "minimal work" distance between two weighted point configurations.
3392
3393
The function computes the earth mover distance and/or a lower boundary of the distance between the
3394
two weighted point configurations. One of the applications described in @cite RubnerSept98,
3395
@cite Rubner2000 is multi-dimensional histogram comparison for image retrieval. EMD is a transportation
3396
problem that is solved using some modification of a simplex algorithm, thus the complexity is
3397
exponential in the worst case, though, on average it is much faster. In the case of a real metric
3398
the lower boundary can be calculated even faster (using linear-time algorithm) and it can be used
3399
to determine roughly whether the two signatures are far enough so that they cannot relate to the
3400
same object.
3401
3402
@param signature1 First signature, a \f$\texttt{size1}\times \texttt{dims}+1\f$ floating-point matrix.
3403
Each row stores the point weight followed by the point coordinates. The matrix is allowed to have
3404
a single column (weights only) if the user-defined cost matrix is used. The weights must be
3405
non-negative and have at least one non-zero value.
3406
@param signature2 Second signature of the same format as signature1 , though the number of rows
3407
may be different. The total weights may be different. In this case an extra "dummy" point is added
3408
to either signature1 or signature2. The weights must be non-negative and have at least one non-zero
3409
value.
3410
@param distType Used metric. See #DistanceTypes.
3411
@param cost User-defined \f$\texttt{size1}\times \texttt{size2}\f$ cost matrix. Also, if a cost matrix
3412
is used, lower boundary lowerBound cannot be calculated because it needs a metric function.
3413
@param lowerBound Optional input/output parameter: lower boundary of a distance between the two
3414
signatures that is a distance between mass centers. The lower boundary may not be calculated if
3415
the user-defined cost matrix is used, the total weights of point configurations are not equal, or
3416
if the signatures consist of weights only (the signature matrices have a single column). You
3417
**must** initialize \*lowerBound . If the calculated distance between mass centers is greater or
3418
equal to \*lowerBound (it means that the signatures are far enough), the function does not
3419
calculate EMD. In any case \*lowerBound is set to the calculated distance between mass centers on
3420
return. Thus, if you want to calculate both distance between mass centers and EMD, \*lowerBound
3421
should be set to 0.
3422
@param flow Resultant \f$\texttt{size1} \times \texttt{size2}\f$ flow matrix: \f$\texttt{flow}_{i,j}\f$ is
3423
a flow from \f$i\f$ -th point of signature1 to \f$j\f$ -th point of signature2 .
3424
 */
3425
CV_EXPORTS float EMD( InputArray signature1, InputArray signature2,
3426
                      int distType, InputArray cost=noArray(),
3427
                      float* lowerBound = 0, OutputArray flow = noArray() );
3428
3429
CV_EXPORTS_AS(EMD) float wrapperEMD( InputArray signature1, InputArray signature2,
3430
                      int distType, InputArray cost=noArray(),
3431
                      CV_IN_OUT Ptr<float> lowerBound = Ptr<float>(), OutputArray flow = noArray() );
3432
3433
//! @} imgproc_hist
3434
3435
//! @addtogroup imgproc_segmentation
3436
//! @{
3437
3438
/** @example samples/cpp/watershed.cpp
3439
An example using the watershed algorithm
3440
*/
3441
3442
/** @brief Performs a marker-based image segmentation using the watershed algorithm.
3443
3444
The function implements one of the variants of watershed, non-parametric marker-based segmentation
3445
algorithm, described in @cite Meyer92 .
3446
3447
Before passing the image to the function, you have to roughly outline the desired regions in the
3448
image markers with positive (\>0) indices. So, every region is represented as one or more connected
3449
components with the pixel values 1, 2, 3, and so on. Such markers can be retrieved from a binary
3450
mask using #findContours and #drawContours (see the watershed.cpp demo). The markers are "seeds" of
3451
the future image regions. All the other pixels in markers , whose relation to the outlined regions
3452
is not known and should be defined by the algorithm, should be set to 0's. In the function output,
3453
each pixel in markers is set to a value of the "seed" components or to -1 at boundaries between the
3454
regions.
3455
3456
@note Any two neighbor connected components are not necessarily separated by a watershed boundary
3457
(-1's pixels); for example, they can touch each other in the initial marker image passed to the
3458
function.
3459
3460
@param image Input 8-bit 3-channel image.
3461
@param markers Input/output 32-bit single-channel image (map) of markers. It should have the same
3462
size as image .
3463
3464
@sa findContours
3465
 */
3466
CV_EXPORTS_W void watershed( InputArray image, InputOutputArray markers );
3467
3468
//! @} imgproc_segmentation
3469
3470
//! @addtogroup imgproc_filter
3471
//! @{
3472
3473
/** @brief Performs initial step of meanshift segmentation of an image.
3474
3475
The function implements the filtering stage of meanshift segmentation, that is, the output of the
3476
function is the filtered "posterized" image with color gradients and fine-grain texture flattened.
3477
At every pixel (X,Y) of the input image (or down-sized input image, see below) the function executes
3478
meanshift iterations, that is, the pixel (X,Y) neighborhood in the joint space-color hyperspace is
3479
considered:
3480
3481
\f[(x,y): X- \texttt{sp} \le x  \le X+ \texttt{sp} , Y- \texttt{sp} \le y  \le Y+ \texttt{sp} , ||(R,G,B)-(r,g,b)||   \le \texttt{sr}\f]
3482
3483
where (R,G,B) and (r,g,b) are the vectors of color components at (X,Y) and (x,y), respectively
3484
(though, the algorithm does not depend on the color space used, so any 3-component color space can
3485
be used instead). Over the neighborhood the average spatial value (X',Y') and average color vector
3486
(R',G',B') are found and they act as the neighborhood center on the next iteration:
3487
3488
\f[(X,Y)~(X',Y'), (R,G,B)~(R',G',B').\f]
3489
3490
After the iterations over, the color components of the initial pixel (that is, the pixel from where
3491
the iterations started) are set to the final value (average color at the last iteration):
3492
3493
\f[I(X,Y) <- (R*,G*,B*)\f]
3494
3495
When maxLevel \> 0, the gaussian pyramid of maxLevel+1 levels is built, and the above procedure is
3496
run on the smallest layer first. After that, the results are propagated to the larger layer and the
3497
iterations are run again only on those pixels where the layer colors differ by more than sr from the
3498
lower-resolution layer of the pyramid. That makes boundaries of color regions sharper. Note that the
3499
results will be actually different from the ones obtained by running the meanshift procedure on the
3500
whole original image (i.e. when maxLevel==0).
3501
3502
@param src The source 8-bit, 3-channel image.
3503
@param dst The destination image of the same format and the same size as the source.
3504
@param sp The spatial window radius.
3505
@param sr The color window radius.
3506
@param maxLevel Maximum level of the pyramid for the segmentation.
3507
@param termcrit Termination criteria: when to stop meanshift iterations.
3508
 */
3509
CV_EXPORTS_W void pyrMeanShiftFiltering( InputArray src, OutputArray dst,
3510
                                         double sp, double sr, int maxLevel = 1,
3511
                                         TermCriteria termcrit=TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS,5,1) );
3512
3513
//! @}
3514
3515
//! @addtogroup imgproc_segmentation
3516
//! @{
3517
3518
/** @example samples/cpp/grabcut.cpp
3519
An example using the GrabCut algorithm
3520
![Sample Screenshot](grabcut_output1.jpg)
3521
*/
3522
3523
/** @brief Runs the GrabCut algorithm.
3524
3525
The function implements the [GrabCut image segmentation algorithm](https://en.wikipedia.org/wiki/GrabCut).
3526
3527
@param img Input 8-bit 3-channel image.
3528
@param mask Input/output 8-bit single-channel mask. The mask is initialized by the function when
3529
mode is set to #GC_INIT_WITH_RECT. Its elements may have one of the #GrabCutClasses.
3530
@param rect ROI containing a segmented object. The pixels outside of the ROI are marked as
3531
"obvious background". The parameter is only used when mode==#GC_INIT_WITH_RECT .
3532
@param bgdModel Temporary array for the background model. Do not modify it while you are
3533
processing the same image.
3534
@param fgdModel Temporary arrays for the foreground model. Do not modify it while you are
3535
processing the same image.
3536
@param iterCount Number of iterations the algorithm should make before returning the result. Note
3537
that the result can be refined with further calls with mode==#GC_INIT_WITH_MASK or
3538
mode==GC_EVAL .
3539
@param mode Operation mode that could be one of the #GrabCutModes
3540
 */
3541
CV_EXPORTS_W void grabCut( InputArray img, InputOutputArray mask, Rect rect,
3542
                           InputOutputArray bgdModel, InputOutputArray fgdModel,
3543
                           int iterCount, int mode = GC_EVAL );
3544
3545
//! @} imgproc_segmentation
3546
3547
//! @addtogroup imgproc_misc
3548
//! @{
3549
3550
/** @example samples/cpp/distrans.cpp
3551
An example on using the distance transform
3552
*/
3553
3554
/** @brief Calculates the distance to the closest zero pixel for each pixel of the source image.
3555
3556
The function cv::distanceTransform calculates the approximate or precise distance from every binary
3557
image pixel to the nearest zero pixel. For zero image pixels, the distance will obviously be zero.
3558
3559
When maskSize == #DIST_MASK_PRECISE and distanceType == #DIST_L2 , the function runs the
3560
algorithm described in @cite Felzenszwalb04 . This algorithm is parallelized with the TBB library.
3561
3562
In other cases, the algorithm @cite Borgefors86 is used. This means that for a pixel the function
3563
finds the shortest path to the nearest zero pixel consisting of basic shifts: horizontal, vertical,
3564
diagonal, or knight's move (the latest is available for a \f$5\times 5\f$ mask). The overall
3565
distance is calculated as a sum of these basic distances. Since the distance function should be
3566
symmetric, all of the horizontal and vertical shifts must have the same cost (denoted as a ), all
3567
the diagonal shifts must have the same cost (denoted as `b`), and all knight's moves must have the
3568
same cost (denoted as `c`). For the #DIST_C and #DIST_L1 types, the distance is calculated
3569
precisely, whereas for #DIST_L2 (Euclidean distance) the distance can be calculated only with a
3570
relative error (a \f$5\times 5\f$ mask gives more accurate results). For `a`,`b`, and `c`, OpenCV
3571
uses the values suggested in the original paper:
3572
- DIST_L1: `a = 1, b = 2`
3573
- DIST_L2:
3574
    - `3 x 3`: `a=0.955, b=1.3693`
3575
    - `5 x 5`: `a=1, b=1.4, c=2.1969`
3576
- DIST_C: `a = 1, b = 1`
3577
3578
Typically, for a fast, coarse distance estimation #DIST_L2, a \f$3\times 3\f$ mask is used. For a
3579
more accurate distance estimation #DIST_L2, a \f$5\times 5\f$ mask or the precise algorithm is used.
3580
Note that both the precise and the approximate algorithms are linear on the number of pixels.
3581
3582
This variant of the function does not only compute the minimum distance for each pixel \f$(x, y)\f$
3583
but also identifies the nearest connected component consisting of zero pixels
3584
(labelType==#DIST_LABEL_CCOMP) or the nearest zero pixel (labelType==#DIST_LABEL_PIXEL). Index of the
3585
component/pixel is stored in `labels(x, y)`. When labelType==#DIST_LABEL_CCOMP, the function
3586
automatically finds connected components of zero pixels in the input image and marks them with
3587
distinct labels. When labelType==#DIST_LABEL_PIXEL, the function scans through the input image and
3588
marks all the zero pixels with distinct labels.
3589
3590
In this mode, the complexity is still linear. That is, the function provides a very fast way to
3591
compute the Voronoi diagram for a binary image. Currently, the second variant can use only the
3592
approximate distance transform algorithm, i.e. maskSize=#DIST_MASK_PRECISE is not supported
3593
yet.
3594
3595
@param src 8-bit, single-channel (binary) source image.
3596
@param dst Output image with calculated distances. It is a 8-bit or 32-bit floating-point,
3597
single-channel image of the same size as src.
3598
@param labels Output 2D array of labels (the discrete Voronoi diagram). It has the type
3599
CV_32SC1 and the same size as src.
3600
@param distanceType Type of distance, see #DistanceTypes
3601
@param maskSize Size of the distance transform mask, see #DistanceTransformMasks.
3602
#DIST_MASK_PRECISE is not supported by this variant. In case of the #DIST_L1 or #DIST_C distance type,
3603
the parameter is forced to 3 because a \f$3\times 3\f$ mask gives the same result as \f$5\times
3604
5\f$ or any larger aperture.
3605
@param labelType Type of the label array to build, see #DistanceTransformLabelTypes.
3606
 */
3607
CV_EXPORTS_AS(distanceTransformWithLabels) void distanceTransform( InputArray src, OutputArray dst,
3608
                                     OutputArray labels, int distanceType, int maskSize,
3609
                                     int labelType = DIST_LABEL_CCOMP );
3610
3611
/** @overload
3612
@param src 8-bit, single-channel (binary) source image.
3613
@param dst Output image with calculated distances. It is a 8-bit or 32-bit floating-point,
3614
single-channel image of the same size as src .
3615
@param distanceType Type of distance, see #DistanceTypes
3616
@param maskSize Size of the distance transform mask, see #DistanceTransformMasks. In case of the
3617
#DIST_L1 or #DIST_C distance type, the parameter is forced to 3 because a \f$3\times 3\f$ mask gives
3618
the same result as \f$5\times 5\f$ or any larger aperture.
3619
@param dstType Type of output image. It can be CV_8U or CV_32F. Type CV_8U can be used only for
3620
the first variant of the function and distanceType == #DIST_L1.
3621
*/
3622
CV_EXPORTS_W void distanceTransform( InputArray src, OutputArray dst,
3623
                                     int distanceType, int maskSize, int dstType=CV_32F);
3624
3625
/** @brief Fills a connected component with the given color.
3626
3627
The function cv::floodFill fills a connected component starting from the seed point with the specified
3628
color. The connectivity is determined by the color/brightness closeness of the neighbor pixels. The
3629
pixel at \f$(x,y)\f$ is considered to belong to the repainted domain if:
3630
3631
- in case of a grayscale image and floating range
3632
\f[\texttt{src} (x',y')- \texttt{loDiff} \leq \texttt{src} (x,y)  \leq \texttt{src} (x',y')+ \texttt{upDiff}\f]
3633
3634
3635
- in case of a grayscale image and fixed range
3636
\f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)- \texttt{loDiff} \leq \texttt{src} (x,y)  \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)+ \texttt{upDiff}\f]
3637
3638
3639
- in case of a color image and floating range
3640
\f[\texttt{src} (x',y')_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} (x',y')_r+ \texttt{upDiff} _r,\f]
3641
\f[\texttt{src} (x',y')_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} (x',y')_g+ \texttt{upDiff} _g\f]
3642
and
3643
\f[\texttt{src} (x',y')_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} (x',y')_b+ \texttt{upDiff} _b\f]
3644
3645
3646
- in case of a color image and fixed range
3647
\f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r+ \texttt{upDiff} _r,\f]
3648
\f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g+ \texttt{upDiff} _g\f]
3649
and
3650
\f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b+ \texttt{upDiff} _b\f]
3651
3652
3653
where \f$src(x',y')\f$ is the value of one of pixel neighbors that is already known to belong to the
3654
component. That is, to be added to the connected component, a color/brightness of the pixel should
3655
be close enough to:
3656
- Color/brightness of one of its neighbors that already belong to the connected component in case
3657
of a floating range.
3658
- Color/brightness of the seed point in case of a fixed range.
3659
3660
Use these functions to either mark a connected component with the specified color in-place, or build
3661
a mask and then extract the contour, or copy the region to another image, and so on.
3662
3663
@param image Input/output 1- or 3-channel, 8-bit, or floating-point image. It is modified by the
3664
function unless the #FLOODFILL_MASK_ONLY flag is set in the second variant of the function. See
3665
the details below.
3666
@param mask Operation mask that should be a single-channel 8-bit image, 2 pixels wider and 2 pixels
3667
taller than image. If an empty Mat is passed it will be created automatically. Since this is both an
3668
input and output parameter, you must take responsibility of initializing it.
3669
Flood-filling cannot go across non-zero pixels in the input mask. For example,
3670
an edge detector output can be used as a mask to stop filling at edges. On output, pixels in the
3671
mask corresponding to filled pixels in the image are set to 1 or to the specified value in flags
3672
as described below. Additionally, the function fills the border of the mask with ones to simplify
3673
internal processing. It is therefore possible to use the same mask in multiple calls to the function
3674
to make sure the filled areas do not overlap.
3675
@param seedPoint Starting point.
3676
@param newVal New value of the repainted domain pixels.
3677
@param loDiff Maximal lower brightness/color difference between the currently observed pixel and
3678
one of its neighbors belonging to the component, or a seed pixel being added to the component.
3679
@param upDiff Maximal upper brightness/color difference between the currently observed pixel and
3680
one of its neighbors belonging to the component, or a seed pixel being added to the component.
3681
@param rect Optional output parameter set by the function to the minimum bounding rectangle of the
3682
repainted domain.
3683
@param flags Operation flags. The first 8 bits contain a connectivity value. The default value of
3684
4 means that only the four nearest neighbor pixels (those that share an edge) are considered. A
3685
connectivity value of 8 means that the eight nearest neighbor pixels (those that share a corner)
3686
will be considered. The next 8 bits (8-16) contain a value between 1 and 255 with which to fill
3687
the mask (the default value is 1). For example, 4 | ( 255 \<\< 8 ) will consider 4 nearest
3688
neighbours and fill the mask with a value of 255. The following additional options occupy higher
3689
bits and therefore may be further combined with the connectivity and mask fill values using
3690
bit-wise or (|), see #FloodFillFlags.
3691
3692
@note Since the mask is larger than the filled image, a pixel \f$(x, y)\f$ in image corresponds to the
3693
pixel \f$(x+1, y+1)\f$ in the mask .
3694
3695
@sa findContours
3696
 */
3697
CV_EXPORTS_W int floodFill( InputOutputArray image, InputOutputArray mask,
3698
                            Point seedPoint, Scalar newVal, CV_OUT Rect* rect=0,
3699
                            Scalar loDiff = Scalar(), Scalar upDiff = Scalar(),
3700
                            int flags = 4 );
3701
3702
/** @example samples/cpp/ffilldemo.cpp
3703
An example using the FloodFill technique
3704
*/
3705
3706
/** @overload
3707
3708
variant without `mask` parameter
3709
*/
3710
CV_EXPORTS int floodFill( InputOutputArray image,
3711
                          Point seedPoint, Scalar newVal, CV_OUT Rect* rect = 0,
3712
                          Scalar loDiff = Scalar(), Scalar upDiff = Scalar(),
3713
                          int flags = 4 );
3714
3715
//! Performs linear blending of two images:
3716
//! \f[ \texttt{dst}(i,j) = \texttt{weights1}(i,j)*\texttt{src1}(i,j) + \texttt{weights2}(i,j)*\texttt{src2}(i,j) \f]
3717
//! @param src1 It has a type of CV_8UC(n) or CV_32FC(n), where n is a positive integer.
3718
//! @param src2 It has the same type and size as src1.
3719
//! @param weights1 It has a type of CV_32FC1 and the same size with src1.
3720
//! @param weights2 It has a type of CV_32FC1 and the same size with src1.
3721
//! @param dst It is created if it does not have the same size and type with src1.
3722
CV_EXPORTS_W void blendLinear(InputArray src1, InputArray src2, InputArray weights1, InputArray weights2, OutputArray dst);
3723
3724
//! @} imgproc_misc
3725
3726
//! @addtogroup imgproc_color_conversions
3727
//! @{
3728
3729
/** @brief Converts an image from one color space to another.
3730
3731
The function converts an input image from one color space to another. In case of a transformation
3732
to-from RGB color space, the order of the channels should be specified explicitly (RGB or BGR). Note
3733
that the default color format in OpenCV is often referred to as RGB but it is actually BGR (the
3734
bytes are reversed). So the first byte in a standard (24-bit) color image will be an 8-bit Blue
3735
component, the second byte will be Green, and the third byte will be Red. The fourth, fifth, and
3736
sixth bytes would then be the second pixel (Blue, then Green, then Red), and so on.
3737
3738
The conventional ranges for R, G, and B channel values are:
3739
-   0 to 255 for CV_8U images
3740
-   0 to 65535 for CV_16U images
3741
-   0 to 1 for CV_32F images
3742
3743
In case of linear transformations, the range does not matter. But in case of a non-linear
3744
transformation, an input RGB image should be normalized to the proper value range to get the correct
3745
results, for example, for RGB \f$\rightarrow\f$ L\*u\*v\* transformation. For example, if you have a
3746
32-bit floating-point image directly converted from an 8-bit image without any scaling, then it will
3747
have the 0..255 value range instead of 0..1 assumed by the function. So, before calling #cvtColor ,
3748
you need first to scale the image down:
3749
@code
3750
    img *= 1./255;
3751
    cvtColor(img, img, COLOR_BGR2Luv);
3752
@endcode
3753
If you use #cvtColor with 8-bit images, the conversion will have some information lost. For many
3754
applications, this will not be noticeable but it is recommended to use 32-bit images in applications
3755
that need the full range of colors or that convert an image before an operation and then convert
3756
back.
3757
3758
If conversion adds the alpha channel, its value will set to the maximum of corresponding channel
3759
range: 255 for CV_8U, 65535 for CV_16U, 1 for CV_32F.
3760
3761
@param src input image: 8-bit unsigned, 16-bit unsigned ( CV_16UC... ), or single-precision
3762
floating-point.
3763
@param dst output image of the same size and depth as src.
3764
@param code color space conversion code (see #ColorConversionCodes).
3765
@param dstCn number of channels in the destination image; if the parameter is 0, the number of the
3766
channels is derived automatically from src and code.
3767
@param hint Implementation modfication flags. See #AlgorithmHint
3768
3769
@see @ref imgproc_color_conversions
3770
 */
3771
CV_EXPORTS_W void cvtColor( InputArray src, OutputArray dst, int code, int dstCn = 0, AlgorithmHint hint = cv::ALGO_HINT_DEFAULT );
3772
3773
/** @brief Converts an image from one color space to another where the source image is
3774
stored in two planes.
3775
3776
This function only supports YUV420 to RGB conversion as of now.
3777
3778
@param src1 8-bit image (#CV_8U) of the Y plane.
3779
@param src2 image containing interleaved U/V plane.
3780
@param dst output image.
3781
@param code Specifies the type of conversion. It can take any of the following values:
3782
- #COLOR_YUV2BGR_NV12
3783
- #COLOR_YUV2RGB_NV12
3784
- #COLOR_YUV2BGRA_NV12
3785
- #COLOR_YUV2RGBA_NV12
3786
- #COLOR_YUV2BGR_NV21
3787
- #COLOR_YUV2RGB_NV21
3788
- #COLOR_YUV2BGRA_NV21
3789
- #COLOR_YUV2RGBA_NV21
3790
@param hint Implementation modfication flags. See #AlgorithmHint
3791
*/
3792
CV_EXPORTS_W void cvtColorTwoPlane( InputArray src1, InputArray src2, OutputArray dst, int code, AlgorithmHint hint = cv::ALGO_HINT_DEFAULT );
3793
3794
/** @brief main function for all demosaicing processes
3795
3796
@param src input image: 8-bit unsigned or 16-bit unsigned.
3797
@param dst output image of the same size and depth as src.
3798
@param code Color space conversion code (see the description below).
3799
@param dstCn number of channels in the destination image; if the parameter is 0, the number of the
3800
channels is derived automatically from src and code.
3801
3802
The function can do the following transformations:
3803
3804
-   Demosaicing using bilinear interpolation
3805
3806
    #COLOR_BayerBG2BGR , #COLOR_BayerGB2BGR , #COLOR_BayerRG2BGR , #COLOR_BayerGR2BGR
3807
3808
    #COLOR_BayerBG2GRAY , #COLOR_BayerGB2GRAY , #COLOR_BayerRG2GRAY , #COLOR_BayerGR2GRAY
3809
3810
-   Demosaicing using Variable Number of Gradients.
3811
3812
    #COLOR_BayerBG2BGR_VNG , #COLOR_BayerGB2BGR_VNG , #COLOR_BayerRG2BGR_VNG , #COLOR_BayerGR2BGR_VNG
3813
3814
-   Edge-Aware Demosaicing.
3815
3816
    #COLOR_BayerBG2BGR_EA , #COLOR_BayerGB2BGR_EA , #COLOR_BayerRG2BGR_EA , #COLOR_BayerGR2BGR_EA
3817
3818
-   Demosaicing with alpha channel
3819
3820
    #COLOR_BayerBG2BGRA , #COLOR_BayerGB2BGRA , #COLOR_BayerRG2BGRA , #COLOR_BayerGR2BGRA
3821
3822
@sa cvtColor
3823
*/
3824
CV_EXPORTS_W void demosaicing(InputArray src, OutputArray dst, int code, int dstCn = 0);
3825
3826
//! @} imgproc_color_conversions
3827
3828
//! @addtogroup imgproc_shape
3829
//! @{
3830
3831
/** @brief Calculates all of the moments up to the third order of a polygon or rasterized shape.
3832
3833
The function computes moments, up to the 3rd order, of a vector shape or a rasterized shape. The
3834
results are returned in the structure cv::Moments.
3835
3836
@param array Single chanel raster image (CV_8U, CV_16U, CV_16S, CV_32F, CV_64F) or an array (
3837
\f$1 \times N\f$ or \f$N \times 1\f$ ) of 2D points (Point or Point2f).
3838
@param binaryImage If it is true, all non-zero image pixels are treated as 1's. The parameter is
3839
used for images only.
3840
@returns moments.
3841
3842
@note Only applicable to contour moments calculations from Python bindings: Note that the numpy
3843
type for the input array should be either np.int32 or np.float32.
3844
3845
@sa  contourArea, arcLength
3846
 */
3847
CV_EXPORTS_W Moments moments( InputArray array, bool binaryImage = false );
3848
3849
/** @brief Calculates seven Hu invariants.
3850
3851
The function calculates seven Hu invariants (introduced in @cite Hu62; see also
3852
<https://en.wikipedia.org/wiki/Image_moment>) defined as:
3853
3854
\f[\begin{array}{l} hu[0]= \eta _{20}+ \eta _{02} \\ hu[1]=( \eta _{20}- \eta _{02})^{2}+4 \eta _{11}^{2} \\ hu[2]=( \eta _{30}-3 \eta _{12})^{2}+ (3 \eta _{21}- \eta _{03})^{2} \\ hu[3]=( \eta _{30}+ \eta _{12})^{2}+ ( \eta _{21}+ \eta _{03})^{2} \\ hu[4]=( \eta _{30}-3 \eta _{12})( \eta _{30}+ \eta _{12})[( \eta _{30}+ \eta _{12})^{2}-3( \eta _{21}+ \eta _{03})^{2}]+(3 \eta _{21}- \eta _{03})( \eta _{21}+ \eta _{03})[3( \eta _{30}+ \eta _{12})^{2}-( \eta _{21}+ \eta _{03})^{2}] \\ hu[5]=( \eta _{20}- \eta _{02})[( \eta _{30}+ \eta _{12})^{2}- ( \eta _{21}+ \eta _{03})^{2}]+4 \eta _{11}( \eta _{30}+ \eta _{12})( \eta _{21}+ \eta _{03}) \\ hu[6]=(3 \eta _{21}- \eta _{03})( \eta _{21}+ \eta _{03})[3( \eta _{30}+ \eta _{12})^{2}-( \eta _{21}+ \eta _{03})^{2}]-( \eta _{30}-3 \eta _{12})( \eta _{21}+ \eta _{03})[3( \eta _{30}+ \eta _{12})^{2}-( \eta _{21}+ \eta _{03})^{2}] \\ \end{array}\f]
3855
3856
where \f$\eta_{ji}\f$ stands for \f$\texttt{Moments::nu}_{ji}\f$ .
3857
3858
These values are proved to be invariants to the image scale, rotation, and reflection except the
3859
seventh one, whose sign is changed by reflection. This invariance is proved with the assumption of
3860
infinite image resolution. In case of raster images, the computed Hu invariants for the original and
3861
transformed images are a bit different.
3862
3863
@param moments Input moments computed with moments .
3864
@param hu Output Hu invariants.
3865
3866
@sa matchShapes
3867
 */
3868
CV_EXPORTS void HuMoments( const Moments& moments, double hu[7] );
3869
3870
/** @overload */
3871
CV_EXPORTS_W void HuMoments( const Moments& m, OutputArray hu );
3872
3873
//! @} imgproc_shape
3874
3875
//! @addtogroup imgproc_object
3876
//! @{
3877
3878
//! type of the template matching operation
3879
enum TemplateMatchModes {
3880
    TM_SQDIFF        = 0, /*!< \f[R(x,y)= \sum _{x',y'} (T(x',y')-I(x+x',y+y'))^2\f]
3881
                               with mask:
3882
                               \f[R(x,y)= \sum _{x',y'} \left( (T(x',y')-I(x+x',y+y')) \cdot
3883
                                  M(x',y') \right)^2\f] */
3884
    TM_SQDIFF_NORMED = 1, /*!< \f[R(x,y)= \frac{\sum_{x',y'} (T(x',y')-I(x+x',y+y'))^2}{\sqrt{\sum_{
3885
                                  x',y'}T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}\f]
3886
                               with mask:
3887
                               \f[R(x,y)= \frac{\sum _{x',y'} \left( (T(x',y')-I(x+x',y+y')) \cdot
3888
                                  M(x',y') \right)^2}{\sqrt{\sum_{x',y'} \left( T(x',y') \cdot
3889
                                  M(x',y') \right)^2 \cdot \sum_{x',y'} \left( I(x+x',y+y') \cdot
3890
                                  M(x',y') \right)^2}}\f] */
3891
    TM_CCORR         = 2, /*!< \f[R(x,y)= \sum _{x',y'} (T(x',y') \cdot I(x+x',y+y'))\f]
3892
                               with mask:
3893
                               \f[R(x,y)= \sum _{x',y'} (T(x',y') \cdot I(x+x',y+y') \cdot M(x',y')
3894
                                  ^2)\f] */
3895
    TM_CCORR_NORMED  = 3, /*!< \f[R(x,y)= \frac{\sum_{x',y'} (T(x',y') \cdot I(x+x',y+y'))}{\sqrt{
3896
                                  \sum_{x',y'}T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}\f]
3897
                               with mask:
3898
                               \f[R(x,y)= \frac{\sum_{x',y'} (T(x',y') \cdot I(x+x',y+y') \cdot
3899
                                  M(x',y')^2)}{\sqrt{\sum_{x',y'} \left( T(x',y') \cdot M(x',y')
3900
                                  \right)^2 \cdot \sum_{x',y'} \left( I(x+x',y+y') \cdot M(x',y')
3901
                                  \right)^2}}\f] */
3902
    TM_CCOEFF        = 4, /*!< \f[R(x,y)= \sum _{x',y'} (T'(x',y') \cdot I'(x+x',y+y'))\f]
3903
                               where
3904
                               \f[\begin{array}{l} T'(x',y')=T(x',y') - 1/(w \cdot h) \cdot \sum _{
3905
                                  x'',y''} T(x'',y'') \\ I'(x+x',y+y')=I(x+x',y+y') - 1/(w \cdot h)
3906
                                  \cdot \sum _{x'',y''} I(x+x'',y+y'') \end{array}\f]
3907
                               with mask:
3908
                               \f[\begin{array}{l} T'(x',y')=M(x',y') \cdot \left( T(x',y') -
3909
                                  \frac{1}{\sum _{x'',y''} M(x'',y'')} \cdot \sum _{x'',y''}
3910
                                  (T(x'',y'') \cdot M(x'',y'')) \right) \\ I'(x+x',y+y')=M(x',y')
3911
                                  \cdot \left( I(x+x',y+y') - \frac{1}{\sum _{x'',y''} M(x'',y'')}
3912
                                  \cdot \sum _{x'',y''} (I(x+x'',y+y'') \cdot M(x'',y'')) \right)
3913
                                  \end{array} \f] */
3914
    TM_CCOEFF_NORMED = 5  /*!< \f[R(x,y)= \frac{ \sum_{x',y'} (T'(x',y') \cdot I'(x+x',y+y')) }{
3915
                                  \sqrt{\sum_{x',y'}T'(x',y')^2 \cdot \sum_{x',y'} I'(x+x',y+y')^2}
3916
                                  }\f] */
3917
};
3918
3919
/** @example samples/cpp/tutorial_code/Histograms_Matching/MatchTemplate_Demo.cpp
3920
An example using Template Matching algorithm
3921
*/
3922
3923
/** @brief Compares a template against overlapped image regions.
3924
3925
The function slides through image , compares the overlapped patches of size \f$w \times h\f$ against
3926
templ using the specified method and stores the comparison results in result . #TemplateMatchModes
3927
describes the formulae for the available comparison methods ( \f$I\f$ denotes image, \f$T\f$
3928
template, \f$R\f$ result, \f$M\f$ the optional mask ). The summation is done over template and/or
3929
the image patch: \f$x' = 0...w-1, y' = 0...h-1\f$
3930
3931
After the function finishes the comparison, the best matches can be found as global minimums (when
3932
#TM_SQDIFF was used) or maximums (when #TM_CCORR or #TM_CCOEFF was used) using the
3933
#minMaxLoc function. In case of a color image, template summation in the numerator and each sum in
3934
the denominator is done over all of the channels and separate mean values are used for each channel.
3935
That is, the function can take a color template and a color image. The result will still be a
3936
single-channel image, which is easier to analyze.
3937
3938
@param image Image where the search is running. It must be 8-bit or 32-bit floating-point.
3939
@param templ Searched template. It must be not greater than the source image and have the same
3940
data type.
3941
@param result Map of comparison results. It must be single-channel 32-bit floating-point. If image
3942
is \f$W \times H\f$ and templ is \f$w \times h\f$ , then result is \f$(W-w+1) \times (H-h+1)\f$ .
3943
@param method Parameter specifying the comparison method, see #TemplateMatchModes
3944
@param mask Optional mask. It must have the same size as templ. It must either have the same number
3945
            of channels as template or only one channel, which is then used for all template and
3946
            image channels. If the data type is #CV_8U, the mask is interpreted as a binary mask,
3947
            meaning only elements where mask is nonzero are used and are kept unchanged independent
3948
            of the actual mask value (weight equals 1). For data type #CV_32F, the mask values are
3949
            used as weights. The exact formulas are documented in #TemplateMatchModes.
3950
 */
3951
CV_EXPORTS_W void matchTemplate( InputArray image, InputArray templ,
3952
                                 OutputArray result, int method, InputArray mask = noArray() );
3953
3954
//! @}
3955
3956
//! @addtogroup imgproc_shape
3957
//! @{
3958
3959
/** @example samples/cpp/connected_components.cpp
3960
This program demonstrates connected components and use of the trackbar
3961
*/
3962
3963
/** @brief computes the connected components labeled image of boolean image
3964
3965
image with 4 or 8 way connectivity - returns N, the total number of labels [0, N-1] where 0
3966
represents the background label. ltype specifies the output label image type, an important
3967
consideration based on the total number of labels or alternatively the total number of pixels in
3968
the source image. ccltype specifies the connected components labeling algorithm to use, currently
3969
Bolelli (Spaghetti) @cite Bolelli2019, Grana (BBDT) @cite Grana2010 and Wu's (SAUF) @cite Wu2009 algorithms
3970
are supported, see the #ConnectedComponentsAlgorithmsTypes for details. Note that SAUF algorithm forces
3971
a row major ordering of labels while Spaghetti and BBDT do not.
3972
This function uses parallel version of the algorithms if at least one allowed
3973
parallel framework is enabled and if the rows of the image are at least twice the number returned by #getNumberOfCPUs.
3974
3975
@param image the 8-bit single-channel image to be labeled
3976
@param labels destination labeled image
3977
@param connectivity 8 or 4 for 8-way or 4-way connectivity respectively
3978
@param ltype output image label type. Currently CV_32S and CV_16U are supported.
3979
@param ccltype connected components algorithm type (see the #ConnectedComponentsAlgorithmsTypes).
3980
*/
3981
CV_EXPORTS_AS(connectedComponentsWithAlgorithm) int connectedComponents(InputArray image, OutputArray labels,
3982
                                                                        int connectivity, int ltype, int ccltype);
3983
3984
3985
/** @overload
3986
3987
@param image the 8-bit single-channel image to be labeled
3988
@param labels destination labeled image
3989
@param connectivity 8 or 4 for 8-way or 4-way connectivity respectively
3990
@param ltype output image label type. Currently CV_32S and CV_16U are supported.
3991
*/
3992
CV_EXPORTS_W int connectedComponents(InputArray image, OutputArray labels,
3993
                                     int connectivity = 8, int ltype = CV_32S);
3994
3995
3996
/** @brief computes the connected components labeled image of boolean image and also produces a statistics output for each label
3997
3998
image with 4 or 8 way connectivity - returns N, the total number of labels [0, N-1] where 0
3999
represents the background label. ltype specifies the output label image type, an important
4000
consideration based on the total number of labels or alternatively the total number of pixels in
4001
the source image. ccltype specifies the connected components labeling algorithm to use, currently
4002
Bolelli (Spaghetti) @cite Bolelli2019, Grana (BBDT) @cite Grana2010 and Wu's (SAUF) @cite Wu2009 algorithms
4003
are supported, see the #ConnectedComponentsAlgorithmsTypes for details. Note that SAUF algorithm forces
4004
a row major ordering of labels while Spaghetti and BBDT do not.
4005
This function uses parallel version of the algorithms (statistics included) if at least one allowed
4006
parallel framework is enabled and if the rows of the image are at least twice the number returned by #getNumberOfCPUs.
4007
4008
@param image the 8-bit single-channel image to be labeled
4009
@param labels destination labeled image
4010
@param stats statistics output for each label, including the background label.
4011
Statistics are accessed via stats(label, COLUMN) where COLUMN is one of
4012
#ConnectedComponentsTypes, selecting the statistic. The data type is CV_32S.
4013
@param centroids centroid output for each label, including the background label. Centroids are
4014
accessed via centroids(label, 0) for x and centroids(label, 1) for y. The data type CV_64F.
4015
@param connectivity 8 or 4 for 8-way or 4-way connectivity respectively
4016
@param ltype output image label type. Currently CV_32S and CV_16U are supported.
4017
@param ccltype connected components algorithm type (see #ConnectedComponentsAlgorithmsTypes).
4018
*/
4019
CV_EXPORTS_AS(connectedComponentsWithStatsWithAlgorithm) int connectedComponentsWithStats(InputArray image, OutputArray labels,
4020
                                                                                          OutputArray stats, OutputArray centroids,
4021
                                                                                          int connectivity, int ltype, int ccltype);
4022
4023
/** @overload
4024
@param image the 8-bit single-channel image to be labeled
4025
@param labels destination labeled image
4026
@param stats statistics output for each label, including the background label.
4027
Statistics are accessed via stats(label, COLUMN) where COLUMN is one of
4028
#ConnectedComponentsTypes, selecting the statistic. The data type is CV_32S.
4029
@param centroids centroid output for each label, including the background label. Centroids are
4030
accessed via centroids(label, 0) for x and centroids(label, 1) for y. The data type CV_64F.
4031
@param connectivity 8 or 4 for 8-way or 4-way connectivity respectively
4032
@param ltype output image label type. Currently CV_32S and CV_16U are supported.
4033
*/
4034
CV_EXPORTS_W int connectedComponentsWithStats(InputArray image, OutputArray labels,
4035
                                              OutputArray stats, OutputArray centroids,
4036
                                              int connectivity = 8, int ltype = CV_32S);
4037
4038
4039
/** @brief Finds contours in a binary image.
4040
4041
The function retrieves contours from the binary image using the algorithm @cite Suzuki85 . The contours
4042
are a useful tool for shape analysis and object detection and recognition. See squares.cpp in the
4043
OpenCV sample directory.
4044
@note Since opencv 3.2 source image is not modified by this function.
4045
4046
@param image Source, an 8-bit single-channel image. Non-zero pixels are treated as 1's. Zero
4047
pixels remain 0's, so the image is treated as binary . You can use #compare, #inRange, #threshold ,
4048
#adaptiveThreshold, #Canny, and others to create a binary image out of a grayscale or color one.
4049
If mode equals to #RETR_CCOMP or #RETR_FLOODFILL, the input can also be a 32-bit integer image of labels (CV_32SC1).
4050
@param contours Detected contours. Each contour is stored as a vector of points (e.g.
4051
std::vector<std::vector<cv::Point> >).
4052
@param hierarchy Optional output vector (e.g. std::vector<cv::Vec4i>), containing information about the image topology. It has
4053
as many elements as the number of contours. For each i-th contour contours[i], the elements
4054
hierarchy[i][0] , hierarchy[i][1] , hierarchy[i][2] , and hierarchy[i][3] are set to 0-based indices
4055
in contours of the next and previous contours at the same hierarchical level, the first child
4056
contour and the parent contour, respectively. If for the contour i there are no next, previous,
4057
parent, or nested contours, the corresponding elements of hierarchy[i] will be negative.
4058
@note In Python, hierarchy is nested inside a top level array. Use hierarchy[0][i] to access hierarchical elements of i-th contour.
4059
@param mode Contour retrieval mode, see #RetrievalModes
4060
@param method Contour approximation method, see #ContourApproximationModes
4061
@param offset Optional offset by which every contour point is shifted. This is useful if the
4062
contours are extracted from the image ROI and then they should be analyzed in the whole image
4063
context.
4064
 */
4065
CV_EXPORTS_W void findContours( InputArray image, OutputArrayOfArrays contours,
4066
                              OutputArray hierarchy, int mode,
4067
                              int method, Point offset = Point());
4068
4069
/** @overload */
4070
CV_EXPORTS void findContours( InputArray image, OutputArrayOfArrays contours,
4071
                              int mode, int method, Point offset = Point());
4072
4073
//! @brief Find contours using link runs algorithm
4074
//!
4075
//! This function implements an algorithm different from cv::findContours:
4076
//! - doesn't allocate temporary image internally, thus it has reduced memory consumption
4077
//! - supports CV_8UC1 images only
4078
//! - outputs 2-level hierarhy only (RETR_CCOMP mode)
4079
//! - doesn't support approximation change other than CHAIN_APPROX_SIMPLE
4080
//! In all other aspects this function is compatible with cv::findContours.
4081
CV_EXPORTS_W void findContoursLinkRuns(InputArray image, OutputArrayOfArrays contours, OutputArray hierarchy);
4082
4083
//! @overload
4084
CV_EXPORTS_W void findContoursLinkRuns(InputArray image, OutputArrayOfArrays contours);
4085
4086
/** @brief Approximates a polygonal curve(s) with the specified precision.
4087
4088
The function cv::approxPolyDP approximates a curve or a polygon with another curve/polygon with less
4089
vertices so that the distance between them is less or equal to the specified precision. It uses the
4090
Douglas-Peucker algorithm <https://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm>
4091
4092
@param curve Input vector of a 2D point stored in std::vector or Mat
4093
@param approxCurve Result of the approximation. The type should match the type of the input curve.
4094
@param epsilon Parameter specifying the approximation accuracy. This is the maximum distance
4095
between the original curve and its approximation.
4096
@param closed If true, the approximated curve is closed (its first and last vertices are
4097
connected). Otherwise, it is not closed.
4098
 */
4099
CV_EXPORTS_W void approxPolyDP( InputArray curve,
4100
                                OutputArray approxCurve,
4101
                                double epsilon, bool closed );
4102
4103
/** @brief Approximates a polygon with a convex hull with a specified accuracy and number of sides.
4104
4105
The cv::approxPolyN function approximates a polygon with a convex hull
4106
so that the difference between the contour area of the original contour and the new polygon is minimal.
4107
It uses a greedy algorithm for contracting two vertices into one in such a way that the additional area is minimal.
4108
Straight lines formed by each edge of the convex contour are drawn and the areas of the resulting triangles are considered.
4109
Each vertex will lie either on the original contour or outside it.
4110
4111
The algorithm based on the paper @cite LowIlie2003 .
4112
4113
@param curve Input vector of a 2D points stored in std::vector or Mat, points must be float or integer.
4114
@param approxCurve Result of the approximation. The type is vector of a 2D point (Point2f or Point) in std::vector or Mat.
4115
@param nsides The parameter defines the number of sides of the result polygon.
4116
@param epsilon_percentage defines the percentage of the maximum of additional area.
4117
If it equals -1, it is not used. Otherwise algorithm stops if additional area is greater than contourArea(_curve) * percentage.
4118
If additional area exceeds the limit, algorithm returns as many vertices as there were at the moment the limit was exceeded.
4119
@param ensure_convex If it is true, algorithm creates a convex hull of input contour. Otherwise input vector should be convex.
4120
 */
4121
CV_EXPORTS_W void approxPolyN(InputArray curve, OutputArray approxCurve,
4122
                              int nsides, float epsilon_percentage = -1.0,
4123
                              bool ensure_convex = true);
4124
4125
/** @brief Calculates a contour perimeter or a curve length.
4126
4127
The function computes a curve length or a closed contour perimeter.
4128
4129
@param curve Input vector of 2D points, stored in std::vector or Mat.
4130
@param closed Flag indicating whether the curve is closed or not.
4131
 */
4132
CV_EXPORTS_W double arcLength( InputArray curve, bool closed );
4133
4134
/** @brief Calculates the up-right bounding rectangle of a point set or non-zero pixels of gray-scale image.
4135
4136
The function calculates and returns the minimal up-right bounding rectangle for the specified point set or
4137
non-zero pixels of gray-scale image.
4138
4139
@param array Input gray-scale image or 2D point set, stored in std::vector or Mat.
4140
 */
4141
CV_EXPORTS_W Rect boundingRect( InputArray array );
4142
4143
/** @brief Calculates a contour area.
4144
4145
The function computes a contour area. Similarly to moments , the area is computed using the Green
4146
formula. Thus, the returned area and the number of non-zero pixels, if you draw the contour using
4147
#drawContours or #fillPoly , can be different. Also, the function will most certainly give a wrong
4148
results for contours with self-intersections.
4149
4150
Example:
4151
@code
4152
    vector<Point> contour;
4153
    contour.push_back(Point2f(0, 0));
4154
    contour.push_back(Point2f(10, 0));
4155
    contour.push_back(Point2f(10, 10));
4156
    contour.push_back(Point2f(5, 4));
4157
4158
    double area0 = contourArea(contour);
4159
    vector<Point> approx;
4160
    approxPolyDP(contour, approx, 5, true);
4161
    double area1 = contourArea(approx);
4162
4163
    cout << "area0 =" << area0 << endl <<
4164
            "area1 =" << area1 << endl <<
4165
            "approx poly vertices" << approx.size() << endl;
4166
@endcode
4167
@param contour Input vector of 2D points (contour vertices), stored in std::vector or Mat.
4168
@param oriented Oriented area flag. If it is true, the function returns a signed area value,
4169
depending on the contour orientation (clockwise or counter-clockwise). Using this feature you can
4170
determine orientation of a contour by taking the sign of an area. By default, the parameter is
4171
false, which means that the absolute value is returned.
4172
 */
4173
CV_EXPORTS_W double contourArea( InputArray contour, bool oriented = false );
4174
4175
/** @brief Finds a rotated rectangle of the minimum area enclosing the input 2D point set.
4176
4177
The function calculates and returns the minimum-area bounding rectangle (possibly rotated) for a
4178
specified point set. The angle of rotation represents the angle between the line connecting the starting
4179
and ending points (based on the clockwise order with greatest index for the corner with greatest \f$y\f$)
4180
and the horizontal axis. This angle always falls between \f$[-90, 0)\f$ because, if the object
4181
rotates more than a rect angle, the next edge is used to measure the angle. The starting and ending points change
4182
as the object rotates.Developer should keep in mind that the returned RotatedRect can contain negative
4183
indices when data is close to the containing Mat element boundary.
4184
4185
@param points Input vector of 2D points, stored in std::vector\<\> or Mat
4186
 */
4187
CV_EXPORTS_W RotatedRect minAreaRect( InputArray points );
4188
4189
/** @brief Finds the four vertices of a rotated rect. Useful to draw the rotated rectangle.
4190
4191
The function finds the four vertices of a rotated rectangle. The four vertices are returned
4192
in clockwise order starting from the point with greatest \f$y\f$. If two points have the
4193
same \f$y\f$ coordinate the rightmost is the starting point. This function is useful to draw the
4194
rectangle. In C++, instead of using this function, you can directly use RotatedRect::points method. Please
4195
visit the @ref tutorial_bounding_rotated_ellipses "tutorial on Creating Bounding rotated boxes and ellipses
4196
for contours" for more information.
4197
4198
@param box The input rotated rectangle. It may be the output of @ref minAreaRect.
4199
@param points The output array of four vertices of rectangles.
4200
 */
4201
CV_EXPORTS_W void boxPoints(RotatedRect box, OutputArray points);
4202
4203
/** @brief Finds a circle of the minimum area enclosing a 2D point set.
4204
4205
The function finds the minimal enclosing circle of a 2D point set using an iterative algorithm.
4206
4207
@param points Input vector of 2D points, stored in std::vector\<\> or Mat
4208
@param center Output center of the circle.
4209
@param radius Output radius of the circle.
4210
 */
4211
CV_EXPORTS_W void minEnclosingCircle( InputArray points,
4212
                                      CV_OUT Point2f& center, CV_OUT float& radius );
4213
4214
/** @example samples/cpp/minarea.cpp
4215
*/
4216
4217
/** @brief Finds a triangle of minimum area enclosing a 2D point set and returns its area.
4218
4219
The function finds a triangle of minimum area enclosing the given set of 2D points and returns its
4220
area. The output for a given 2D point set is shown in the image below. 2D points are depicted in
4221
*red* and the enclosing triangle in *yellow*.
4222
4223
![Sample output of the minimum enclosing triangle function](pics/minenclosingtriangle.png)
4224
4225
The implementation of the algorithm is based on O'Rourke's @cite ORourke86 and Klee and Laskowski's
4226
@cite KleeLaskowski85 papers. O'Rourke provides a \f$\theta(n)\f$ algorithm for finding the minimal
4227
enclosing triangle of a 2D convex polygon with n vertices. Since the #minEnclosingTriangle function
4228
takes a 2D point set as input an additional preprocessing step of computing the convex hull of the
4229
2D point set is required. The complexity of the #convexHull function is \f$O(n log(n))\f$ which is higher
4230
than \f$\theta(n)\f$. Thus the overall complexity of the function is \f$O(n log(n))\f$.
4231
4232
@param points Input vector of 2D points with depth CV_32S or CV_32F, stored in std::vector\<\> or Mat
4233
@param triangle Output vector of three 2D points defining the vertices of the triangle. The depth
4234
of the OutputArray must be CV_32F.
4235
 */
4236
CV_EXPORTS_W double minEnclosingTriangle( InputArray points, CV_OUT OutputArray triangle );
4237
4238
4239
/**
4240
@brief Finds a convex polygon of minimum area enclosing a 2D point set and returns its area.
4241
4242
This function takes a given set of 2D points and finds the enclosing polygon with k vertices and minimal
4243
area. It takes the set of points and the parameter k as input and returns the area of the minimal
4244
enclosing polygon.
4245
4246
The Implementation is based on a paper by Aggarwal, Chang and Yap @cite Aggarwal1985. They
4247
provide a \f$\theta(n²log(n)log(k))\f$ algorighm for finding the minimal convex polygon with k
4248
vertices enclosing a 2D convex polygon with n vertices (k < n). Since the #minEnclosingConvexPolygon
4249
function takes a 2D point set as input, an additional preprocessing step of computing the convex hull
4250
of the 2D point set is required. The complexity of the #convexHull function is \f$O(n log(n))\f$ which
4251
is lower than \f$\theta(n²log(n)log(k))\f$. Thus the overall complexity of the function is
4252
\f$O(n²log(n)log(k))\f$.
4253
4254
@param points   Input vector of 2D points, stored in std::vector\<\> or Mat
4255
@param polygon  Output vector of 2D points defining the vertices of the enclosing polygon
4256
@param k        Number of vertices of the output polygon
4257
 */
4258
4259
CV_EXPORTS_W double minEnclosingConvexPolygon ( InputArray points, OutputArray polygon, int k );
4260
4261
4262
/** @brief Compares two shapes.
4263
4264
The function compares two shapes. All three implemented methods use the Hu invariants (see #HuMoments)
4265
4266
@param contour1 First contour or grayscale image.
4267
@param contour2 Second contour or grayscale image.
4268
@param method Comparison method, see #ShapeMatchModes
4269
@param parameter Method-specific parameter (not supported now).
4270
 */
4271
CV_EXPORTS_W double matchShapes( InputArray contour1, InputArray contour2,
4272
                                 int method, double parameter );
4273
4274
/** @example samples/cpp/convexhull.cpp
4275
An example using the convexHull functionality
4276
*/
4277
4278
/** @brief Finds the convex hull of a point set.
4279
4280
The function cv::convexHull finds the convex hull of a 2D point set using the Sklansky's algorithm @cite Sklansky82
4281
that has *O(N logN)* complexity in the current implementation.
4282
4283
@param points Input 2D point set, stored in std::vector or Mat.
4284
@param hull Output convex hull. It is either an integer vector of indices or vector of points. In
4285
the first case, the hull elements are 0-based indices of the convex hull points in the original
4286
array (since the set of convex hull points is a subset of the original point set). In the second
4287
case, hull elements are the convex hull points themselves.
4288
@param clockwise Orientation flag. If it is true, the output convex hull is oriented clockwise.
4289
Otherwise, it is oriented counter-clockwise. The assumed coordinate system has its X axis pointing
4290
to the right, and its Y axis pointing upwards.
4291
@param returnPoints Operation flag. In case of a matrix, when the flag is true, the function
4292
returns convex hull points. Otherwise, it returns indices of the convex hull points. When the
4293
output array is std::vector, the flag is ignored, and the output depends on the type of the
4294
vector: std::vector\<int\> implies returnPoints=false, std::vector\<Point\> implies
4295
returnPoints=true.
4296
4297
@note `points` and `hull` should be different arrays, inplace processing isn't supported.
4298
4299
Check @ref tutorial_hull "the corresponding tutorial" for more details.
4300
4301
useful links:
4302
4303
https://www.learnopencv.com/convex-hull-using-opencv-in-python-and-c/
4304
 */
4305
CV_EXPORTS_W void convexHull( InputArray points, OutputArray hull,
4306
                              bool clockwise = false, bool returnPoints = true );
4307
4308
/** @brief Finds the convexity defects of a contour.
4309
4310
The figure below displays convexity defects of a hand contour:
4311
4312
![image](pics/defects.png)
4313
4314
@param contour Input contour.
4315
@param convexhull Convex hull obtained using convexHull that should contain indices of the contour
4316
points that make the hull.
4317
@param convexityDefects The output vector of convexity defects. In C++ and the new Python/Java
4318
interface each convexity defect is represented as 4-element integer vector (a.k.a. #Vec4i):
4319
(start_index, end_index, farthest_pt_index, fixpt_depth), where indices are 0-based indices
4320
in the original contour of the convexity defect beginning, end and the farthest point, and
4321
fixpt_depth is fixed-point approximation (with 8 fractional bits) of the distance between the
4322
farthest contour point and the hull. That is, to get the floating-point value of the depth will be
4323
fixpt_depth/256.0.
4324
 */
4325
CV_EXPORTS_W void convexityDefects( InputArray contour, InputArray convexhull, OutputArray convexityDefects );
4326
4327
/** @brief Tests a contour convexity.
4328
4329
The function tests whether the input contour is convex or not. The contour must be simple, that is,
4330
without self-intersections. Otherwise, the function output is undefined.
4331
4332
@param contour Input vector of 2D points, stored in std::vector\<\> or Mat
4333
 */
4334
CV_EXPORTS_W bool isContourConvex( InputArray contour );
4335
4336
/** @example samples/cpp/intersectExample.cpp
4337
Examples of how intersectConvexConvex works
4338
*/
4339
4340
/** @brief Finds intersection of two convex polygons
4341
4342
@param p1 First polygon
4343
@param p2 Second polygon
4344
@param p12 Output polygon describing the intersecting area
4345
@param handleNested When true, an intersection is found if one of the polygons is fully enclosed in the other.
4346
When false, no intersection is found. If the polygons share a side or the vertex of one polygon lies on an edge
4347
of the other, they are not considered nested and an intersection will be found regardless of the value of handleNested.
4348
4349
@returns Area of intersecting polygon. May be negative, if algorithm has not converged, e.g. non-convex input.
4350
4351
@note intersectConvexConvex doesn't confirm that both polygons are convex and will return invalid results if they aren't.
4352
 */
4353
CV_EXPORTS_W float intersectConvexConvex( InputArray p1, InputArray p2,
4354
                                          OutputArray p12, bool handleNested = true );
4355
4356
/** @example samples/cpp/fitellipse.cpp
4357
An example using the fitEllipse technique
4358
*/
4359
4360
/** @brief Fits an ellipse around a set of 2D points.
4361
4362
The function calculates the ellipse that fits (in a least-squares sense) a set of 2D points best of
4363
all. It returns the rotated rectangle in which the ellipse is inscribed. The first algorithm described by @cite Fitzgibbon95
4364
is used. Developer should keep in mind that it is possible that the returned
4365
ellipse/rotatedRect data contains negative indices, due to the data points being close to the
4366
border of the containing Mat element.
4367
4368
@param points Input 2D point set, stored in std::vector\<\> or Mat
4369
4370
@note Input point types are @ref Point2i or @ref Point2f and at least 5 points are required.
4371
@note @ref getClosestEllipsePoints function can be used to compute the ellipse fitting error.
4372
 */
4373
CV_EXPORTS_W RotatedRect fitEllipse( InputArray points );
4374
4375
/** @brief Fits an ellipse around a set of 2D points.
4376
4377
 The function calculates the ellipse that fits a set of 2D points.
4378
 It returns the rotated rectangle in which the ellipse is inscribed.
4379
 The Approximate Mean Square (AMS) proposed by @cite Taubin1991 is used.
4380
4381
 For an ellipse, this basis set is \f$ \chi= \left(x^2, x y, y^2, x, y, 1\right) \f$,
4382
 which is a set of six free coefficients \f$ A^T=\left\{A_{\text{xx}},A_{\text{xy}},A_{\text{yy}},A_x,A_y,A_0\right\} \f$.
4383
 However, to specify an ellipse, all that is needed is five numbers; the major and minor axes lengths \f$ (a,b) \f$,
4384
 the position \f$ (x_0,y_0) \f$, and the orientation \f$ \theta \f$. This is because the basis set includes lines,
4385
 quadratics, parabolic and hyperbolic functions as well as elliptical functions as possible fits.
4386
 If the fit is found to be a parabolic or hyperbolic function then the standard #fitEllipse method is used.
4387
 The AMS method restricts the fit to parabolic, hyperbolic and elliptical curves
4388
 by imposing the condition that \f$ A^T ( D_x^T D_x  +   D_y^T D_y) A = 1 \f$ where
4389
 the matrices \f$ Dx \f$ and \f$ Dy \f$ are the partial derivatives of the design matrix \f$ D \f$ with
4390
 respect to x and y. The matrices are formed row by row applying the following to
4391
 each of the points in the set:
4392
 \f{align*}{
4393
 D(i,:)&=\left\{x_i^2, x_i y_i, y_i^2, x_i, y_i, 1\right\} &
4394
 D_x(i,:)&=\left\{2 x_i,y_i,0,1,0,0\right\} &
4395
 D_y(i,:)&=\left\{0,x_i,2 y_i,0,1,0\right\}
4396
 \f}
4397
 The AMS method minimizes the cost function
4398
 \f{equation*}{
4399
 \epsilon ^2=\frac{ A^T D^T D A }{ A^T (D_x^T D_x +  D_y^T D_y) A^T }
4400
 \f}
4401
4402
 The minimum cost is found by solving the generalized eigenvalue problem.
4403
4404
 \f{equation*}{
4405
 D^T D A = \lambda  \left( D_x^T D_x +  D_y^T D_y\right) A
4406
 \f}
4407
4408
 @param points Input 2D point set, stored in std::vector\<\> or Mat
4409
4410
 @note Input point types are @ref Point2i or @ref Point2f and at least 5 points are required.
4411
 @note @ref getClosestEllipsePoints function can be used to compute the ellipse fitting error.
4412
 */
4413
CV_EXPORTS_W RotatedRect fitEllipseAMS( InputArray points );
4414
4415
4416
/** @brief Fits an ellipse around a set of 2D points.
4417
4418
 The function calculates the ellipse that fits a set of 2D points.
4419
 It returns the rotated rectangle in which the ellipse is inscribed.
4420
 The Direct least square (Direct) method by @cite oy1998NumericallySD is used.
4421
4422
 For an ellipse, this basis set is \f$ \chi= \left(x^2, x y, y^2, x, y, 1\right) \f$,
4423
 which is a set of six free coefficients \f$ A^T=\left\{A_{\text{xx}},A_{\text{xy}},A_{\text{yy}},A_x,A_y,A_0\right\} \f$.
4424
 However, to specify an ellipse, all that is needed is five numbers; the major and minor axes lengths \f$ (a,b) \f$,
4425
 the position \f$ (x_0,y_0) \f$, and the orientation \f$ \theta \f$. This is because the basis set includes lines,
4426
 quadratics, parabolic and hyperbolic functions as well as elliptical functions as possible fits.
4427
 The Direct method confines the fit to ellipses by ensuring that \f$ 4 A_{xx} A_{yy}- A_{xy}^2 > 0 \f$.
4428
 The condition imposed is that \f$ 4 A_{xx} A_{yy}- A_{xy}^2=1 \f$ which satisfies the inequality
4429
 and as the coefficients can be arbitrarily scaled is not overly restrictive.
4430
4431
 \f{equation*}{
4432
 \epsilon ^2= A^T D^T D A \quad \text{with} \quad A^T C A =1 \quad \text{and} \quad C=\left(\begin{matrix}
4433
 0 & 0  & 2  & 0  & 0  &  0  \\
4434
 0 & -1  & 0  & 0  & 0  &  0 \\
4435
 2 & 0  & 0  & 0  & 0  &  0 \\
4436
 0 & 0  & 0  & 0  & 0  &  0 \\
4437
 0 & 0  & 0  & 0  & 0  &  0 \\
4438
 0 & 0  & 0  & 0  & 0  &  0
4439
 \end{matrix} \right)
4440
 \f}
4441
4442
 The minimum cost is found by solving the generalized eigenvalue problem.
4443
4444
 \f{equation*}{
4445
 D^T D A = \lambda  \left( C\right) A
4446
 \f}
4447
4448
 The system produces only one positive eigenvalue \f$ \lambda\f$ which is chosen as the solution
4449
 with its eigenvector \f$\mathbf{u}\f$. These are used to find the coefficients
4450
4451
 \f{equation*}{
4452
 A = \sqrt{\frac{1}{\mathbf{u}^T C \mathbf{u}}}  \mathbf{u}
4453
 \f}
4454
 The scaling factor guarantees that  \f$A^T C A =1\f$.
4455
4456
 @param points Input 2D point set, stored in std::vector\<\> or Mat
4457
4458
 @note Input point types are @ref Point2i or @ref Point2f and at least 5 points are required.
4459
 @note @ref getClosestEllipsePoints function can be used to compute the ellipse fitting error.
4460
 */
4461
CV_EXPORTS_W RotatedRect fitEllipseDirect( InputArray points );
4462
4463
/** @brief Compute for each 2d point the nearest 2d point located on a given ellipse.
4464
4465
 The function computes the nearest 2d location on a given ellipse for a vector of 2d points and is based on @cite Chatfield2017 code.
4466
 This function can be used to compute for instance the ellipse fitting error.
4467
4468
 @param ellipse_params Ellipse parameters
4469
 @param points Input 2d points
4470
 @param closest_pts For each 2d point, their corresponding closest 2d point located on a given ellipse
4471
4472
 @note Input point types are @ref Point2i or @ref Point2f
4473
 @see fitEllipse, fitEllipseAMS, fitEllipseDirect
4474
 */
4475
CV_EXPORTS_W void getClosestEllipsePoints( const RotatedRect& ellipse_params, InputArray points, OutputArray closest_pts );
4476
4477
/** @brief Fits a line to a 2D or 3D point set.
4478
4479
The function fitLine fits a line to a 2D or 3D point set by minimizing \f$\sum_i \rho(r_i)\f$ where
4480
\f$r_i\f$ is a distance between the \f$i^{th}\f$ point, the line and \f$\rho(r)\f$ is a distance function, one
4481
of the following:
4482
-  DIST_L2
4483
\f[\rho (r) = r^2/2  \quad \text{(the simplest and the fastest least-squares method)}\f]
4484
- DIST_L1
4485
\f[\rho (r) = r\f]
4486
- DIST_L12
4487
\f[\rho (r) = 2  \cdot ( \sqrt{1 + \frac{r^2}{2}} - 1)\f]
4488
- DIST_FAIR
4489
\f[\rho \left (r \right ) = C^2  \cdot \left (  \frac{r}{C} -  \log{\left(1 + \frac{r}{C}\right)} \right )  \quad \text{where} \quad C=1.3998\f]
4490
- DIST_WELSCH
4491
\f[\rho \left (r \right ) =  \frac{C^2}{2} \cdot \left ( 1 -  \exp{\left(-\left(\frac{r}{C}\right)^2\right)} \right )  \quad \text{where} \quad C=2.9846\f]
4492
- DIST_HUBER
4493
\f[\rho (r) =  \fork{r^2/2}{if \(r < C\)}{C \cdot (r-C/2)}{otherwise} \quad \text{where} \quad C=1.345\f]
4494
4495
The algorithm is based on the M-estimator ( <https://en.wikipedia.org/wiki/M-estimator> ) technique
4496
that iteratively fits the line using the weighted least-squares algorithm. After each iteration the
4497
weights \f$w_i\f$ are adjusted to be inversely proportional to \f$\rho(r_i)\f$ .
4498
4499
@param points Input vector of 2D or 3D points, stored in std::vector\<\> or Mat.
4500
@param line Output line parameters. In case of 2D fitting, it should be a vector of 4 elements
4501
(like Vec4f) - (vx, vy, x0, y0), where (vx, vy) is a normalized vector collinear to the line and
4502
(x0, y0) is a point on the line. In case of 3D fitting, it should be a vector of 6 elements (like
4503
Vec6f) - (vx, vy, vz, x0, y0, z0), where (vx, vy, vz) is a normalized vector collinear to the line
4504
and (x0, y0, z0) is a point on the line.
4505
@param distType Distance used by the M-estimator, see #DistanceTypes
4506
@param param Numerical parameter ( C ) for some types of distances. If it is 0, an optimal value
4507
is chosen.
4508
@param reps Sufficient accuracy for the radius (distance between the coordinate origin and the line).
4509
@param aeps Sufficient accuracy for the angle. 0.01 would be a good default value for reps and aeps.
4510
 */
4511
CV_EXPORTS_W void fitLine( InputArray points, OutputArray line, int distType,
4512
                           double param, double reps, double aeps );
4513
4514
/** @brief Performs a point-in-contour test.
4515
4516
The function determines whether the point is inside a contour, outside, or lies on an edge (or
4517
coincides with a vertex). It returns positive (inside), negative (outside), or zero (on an edge)
4518
value, correspondingly. When measureDist=false , the return value is +1, -1, and 0, respectively.
4519
Otherwise, the return value is a signed distance between the point and the nearest contour edge.
4520
4521
See below a sample output of the function where each image pixel is tested against the contour:
4522
4523
![sample output](pics/pointpolygon.png)
4524
4525
@param contour Input contour.
4526
@param pt Point tested against the contour.
4527
@param measureDist If true, the function estimates the signed distance from the point to the
4528
nearest contour edge. Otherwise, the function only checks if the point is inside a contour or not.
4529
 */
4530
CV_EXPORTS_W double pointPolygonTest( InputArray contour, Point2f pt, bool measureDist );
4531
4532
/** @brief Finds out if there is any intersection between two rotated rectangles.
4533
4534
If there is then the vertices of the intersecting region are returned as well.
4535
4536
Below are some examples of intersection configurations. The hatched pattern indicates the
4537
intersecting region and the red vertices are returned by the function.
4538
4539
![intersection examples](pics/intersection.png)
4540
4541
@param rect1 First rectangle
4542
@param rect2 Second rectangle
4543
@param intersectingRegion The output array of the vertices of the intersecting region. It returns
4544
at most 8 vertices. Stored as std::vector\<cv::Point2f\> or cv::Mat as Mx1 of type CV_32FC2.
4545
@returns One of #RectanglesIntersectTypes
4546
 */
4547
CV_EXPORTS_W int rotatedRectangleIntersection( const RotatedRect& rect1, const RotatedRect& rect2, OutputArray intersectingRegion  );
4548
4549
/** @brief Creates a smart pointer to a cv::GeneralizedHoughBallard class and initializes it.
4550
*/
4551
CV_EXPORTS_W Ptr<GeneralizedHoughBallard> createGeneralizedHoughBallard();
4552
4553
/** @brief Creates a smart pointer to a cv::GeneralizedHoughGuil class and initializes it.
4554
*/
4555
CV_EXPORTS_W Ptr<GeneralizedHoughGuil> createGeneralizedHoughGuil();
4556
4557
//! @} imgproc_shape
4558
4559
//! @addtogroup imgproc_colormap
4560
//! @{
4561
4562
//! GNU Octave/MATLAB equivalent colormaps
4563
enum ColormapTypes
4564
{
4565
    COLORMAP_AUTUMN = 0, //!< ![autumn](pics/colormaps/colorscale_autumn.jpg)
4566
    COLORMAP_BONE = 1, //!< ![bone](pics/colormaps/colorscale_bone.jpg)
4567
    COLORMAP_JET = 2, //!< ![jet](pics/colormaps/colorscale_jet.jpg)
4568
    COLORMAP_WINTER = 3, //!< ![winter](pics/colormaps/colorscale_winter.jpg)
4569
    COLORMAP_RAINBOW = 4, //!< ![rainbow](pics/colormaps/colorscale_rainbow.jpg)
4570
    COLORMAP_OCEAN = 5, //!< ![ocean](pics/colormaps/colorscale_ocean.jpg)
4571
    COLORMAP_SUMMER = 6, //!< ![summer](pics/colormaps/colorscale_summer.jpg)
4572
    COLORMAP_SPRING = 7, //!< ![spring](pics/colormaps/colorscale_spring.jpg)
4573
    COLORMAP_COOL = 8, //!< ![cool](pics/colormaps/colorscale_cool.jpg)
4574
    COLORMAP_HSV = 9, //!< ![HSV](pics/colormaps/colorscale_hsv.jpg)
4575
    COLORMAP_PINK = 10, //!< ![pink](pics/colormaps/colorscale_pink.jpg)
4576
    COLORMAP_HOT = 11, //!< ![hot](pics/colormaps/colorscale_hot.jpg)
4577
    COLORMAP_PARULA = 12, //!< ![parula](pics/colormaps/colorscale_parula.jpg)
4578
    COLORMAP_MAGMA = 13, //!< ![magma](pics/colormaps/colorscale_magma.jpg)
4579
    COLORMAP_INFERNO = 14, //!< ![inferno](pics/colormaps/colorscale_inferno.jpg)
4580
    COLORMAP_PLASMA = 15, //!< ![plasma](pics/colormaps/colorscale_plasma.jpg)
4581
    COLORMAP_VIRIDIS = 16, //!< ![viridis](pics/colormaps/colorscale_viridis.jpg)
4582
    COLORMAP_CIVIDIS = 17, //!< ![cividis](pics/colormaps/colorscale_cividis.jpg)
4583
    COLORMAP_TWILIGHT = 18, //!< ![twilight](pics/colormaps/colorscale_twilight.jpg)
4584
    COLORMAP_TWILIGHT_SHIFTED = 19, //!< ![twilight shifted](pics/colormaps/colorscale_twilight_shifted.jpg)
4585
    COLORMAP_TURBO = 20, //!< ![turbo](pics/colormaps/colorscale_turbo.jpg)
4586
    COLORMAP_DEEPGREEN = 21  //!< ![deepgreen](pics/colormaps/colorscale_deepgreen.jpg)
4587
};
4588
4589
/** @example samples/cpp/falsecolor.cpp
4590
An example using applyColorMap function
4591
*/
4592
4593
/** @brief Applies a GNU Octave/MATLAB equivalent colormap on a given image.
4594
4595
@param src The source image, grayscale or colored of type CV_8UC1 or CV_8UC3. If CV_8UC3, then the CV_8UC1 image is generated internally using cv::COLOR_BGR2GRAY.
4596
@param dst The result is the colormapped source image. Note: Mat::create is called on dst.
4597
@param colormap The colormap to apply, see #ColormapTypes
4598
*/
4599
CV_EXPORTS_W void applyColorMap(InputArray src, OutputArray dst, int colormap);
4600
4601
/** @brief Applies a user colormap on a given image.
4602
4603
@param src The source image, grayscale or colored of type CV_8UC1 or CV_8UC3. If CV_8UC3, then the CV_8UC1 image is generated internally using cv::COLOR_BGR2GRAY.
4604
@param dst The result is the colormapped source image of the same number of channels as userColor. Note: Mat::create is called on dst.
4605
@param userColor The colormap to apply of type CV_8UC1 or CV_8UC3 and size 256
4606
*/
4607
CV_EXPORTS_W void applyColorMap(InputArray src, OutputArray dst, InputArray userColor);
4608
4609
//! @} imgproc_colormap
4610
4611
//! @addtogroup imgproc_draw
4612
//! @{
4613
4614
4615
/** OpenCV color channel order is BGR[A] */
4616
#define CV_RGB(r, g, b)  cv::Scalar((b), (g), (r), 0)
4617
4618
/** @brief Draws a line segment connecting two points.
4619
4620
The function line draws the line segment between pt1 and pt2 points in the image. The line is
4621
clipped by the image boundaries. For non-antialiased lines with integer coordinates, the 8-connected
4622
or 4-connected Bresenham algorithm is used. Thick lines are drawn with rounding endings. Antialiased
4623
lines are drawn using Gaussian filtering.
4624
4625
@param img Image.
4626
@param pt1 First point of the line segment.
4627
@param pt2 Second point of the line segment.
4628
@param color Line color.
4629
@param thickness Line thickness.
4630
@param lineType Type of the line. See #LineTypes.
4631
@param shift Number of fractional bits in the point coordinates.
4632
 */
4633
CV_EXPORTS_W void line(InputOutputArray img, Point pt1, Point pt2, const Scalar& color,
4634
                     int thickness = 1, int lineType = LINE_8, int shift = 0);
4635
4636
/** @brief Draws an arrow segment pointing from the first point to the second one.
4637
4638
The function cv::arrowedLine draws an arrow between pt1 and pt2 points in the image. See also #line.
4639
4640
@param img Image.
4641
@param pt1 The point the arrow starts from.
4642
@param pt2 The point the arrow points to.
4643
@param color Line color.
4644
@param thickness Line thickness.
4645
@param line_type Type of the line. See #LineTypes
4646
@param shift Number of fractional bits in the point coordinates.
4647
@param tipLength The length of the arrow tip in relation to the arrow length
4648
 */
4649
CV_EXPORTS_W void arrowedLine(InputOutputArray img, Point pt1, Point pt2, const Scalar& color,
4650
                     int thickness=1, int line_type=8, int shift=0, double tipLength=0.1);
4651
4652
/** @brief Draws a simple, thick, or filled up-right rectangle.
4653
4654
The function cv::rectangle draws a rectangle outline or a filled rectangle whose two opposite corners
4655
are pt1 and pt2.
4656
4657
@param img Image.
4658
@param pt1 Vertex of the rectangle.
4659
@param pt2 Vertex of the rectangle opposite to pt1 .
4660
@param color Rectangle color or brightness (grayscale image).
4661
@param thickness Thickness of lines that make up the rectangle. Negative values, like #FILLED,
4662
mean that the function has to draw a filled rectangle.
4663
@param lineType Type of the line. See #LineTypes
4664
@param shift Number of fractional bits in the point coordinates.
4665
 */
4666
CV_EXPORTS_W void rectangle(InputOutputArray img, Point pt1, Point pt2,
4667
                          const Scalar& color, int thickness = 1,
4668
                          int lineType = LINE_8, int shift = 0);
4669
4670
/** @overload
4671
4672
use `rec` parameter as alternative specification of the drawn rectangle: `r.tl() and
4673
r.br()-Point(1,1)` are opposite corners
4674
*/
4675
CV_EXPORTS_W void rectangle(InputOutputArray img, Rect rec,
4676
                          const Scalar& color, int thickness = 1,
4677
                          int lineType = LINE_8, int shift = 0);
4678
4679
/** @example samples/cpp/tutorial_code/ImgProc/basic_drawing/Drawing_2.cpp
4680
An example using drawing functions
4681
*/
4682
4683
/** @brief Draws a circle.
4684
4685
The function cv::circle draws a simple or filled circle with a given center and radius.
4686
@param img Image where the circle is drawn.
4687
@param center Center of the circle.
4688
@param radius Radius of the circle.
4689
@param color Circle color.
4690
@param thickness Thickness of the circle outline, if positive. Negative values, like #FILLED,
4691
mean that a filled circle is to be drawn.
4692
@param lineType Type of the circle boundary. See #LineTypes
4693
@param shift Number of fractional bits in the coordinates of the center and in the radius value.
4694
 */
4695
CV_EXPORTS_W void circle(InputOutputArray img, Point center, int radius,
4696
                       const Scalar& color, int thickness = 1,
4697
                       int lineType = LINE_8, int shift = 0);
4698
4699
/** @brief Draws a simple or thick elliptic arc or fills an ellipse sector.
4700
4701
The function cv::ellipse with more parameters draws an ellipse outline, a filled ellipse, an elliptic
4702
arc, or a filled ellipse sector. The drawing code uses general parametric form.
4703
A piecewise-linear curve is used to approximate the elliptic arc
4704
boundary. If you need more control of the ellipse rendering, you can retrieve the curve using
4705
#ellipse2Poly and then render it with #polylines or fill it with #fillPoly. If you use the first
4706
variant of the function and want to draw the whole ellipse, not an arc, pass `startAngle=0` and
4707
`endAngle=360`. If `startAngle` is greater than `endAngle`, they are swapped. The figure below explains
4708
the meaning of the parameters to draw the blue arc.
4709
4710
![Parameters of Elliptic Arc](pics/ellipse.svg)
4711
4712
@param img Image.
4713
@param center Center of the ellipse.
4714
@param axes Half of the size of the ellipse main axes.
4715
@param angle Ellipse rotation angle in degrees.
4716
@param startAngle Starting angle of the elliptic arc in degrees.
4717
@param endAngle Ending angle of the elliptic arc in degrees.
4718
@param color Ellipse color.
4719
@param thickness Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that
4720
a filled ellipse sector is to be drawn.
4721
@param lineType Type of the ellipse boundary. See #LineTypes
4722
@param shift Number of fractional bits in the coordinates of the center and values of axes.
4723
 */
4724
CV_EXPORTS_W void ellipse(InputOutputArray img, Point center, Size axes,
4725
                        double angle, double startAngle, double endAngle,
4726
                        const Scalar& color, int thickness = 1,
4727
                        int lineType = LINE_8, int shift = 0);
4728
4729
/** @overload
4730
@param img Image.
4731
@param box Alternative ellipse representation via RotatedRect. This means that the function draws
4732
an ellipse inscribed in the rotated rectangle.
4733
@param color Ellipse color.
4734
@param thickness Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that
4735
a filled ellipse sector is to be drawn.
4736
@param lineType Type of the ellipse boundary. See #LineTypes
4737
*/
4738
CV_EXPORTS_W void ellipse(InputOutputArray img, const RotatedRect& box, const Scalar& color,
4739
                        int thickness = 1, int lineType = LINE_8);
4740
4741
/* ----------------------------------------------------------------------------------------- */
4742
/* ADDING A SET OF PREDEFINED MARKERS WHICH COULD BE USED TO HIGHLIGHT POSITIONS IN AN IMAGE */
4743
/* ----------------------------------------------------------------------------------------- */
4744
4745
/** @brief Draws a marker on a predefined position in an image.
4746
4747
The function cv::drawMarker draws a marker on a given position in the image. For the moment several
4748
marker types are supported, see #MarkerTypes for more information.
4749
4750
@param img Image.
4751
@param position The point where the crosshair is positioned.
4752
@param color Line color.
4753
@param markerType The specific type of marker you want to use, see #MarkerTypes
4754
@param thickness Line thickness.
4755
@param line_type Type of the line, See #LineTypes
4756
@param markerSize The length of the marker axis [default = 20 pixels]
4757
 */
4758
CV_EXPORTS_W void drawMarker(InputOutputArray img, Point position, const Scalar& color,
4759
                             int markerType = MARKER_CROSS, int markerSize=20, int thickness=1,
4760
                             int line_type=8);
4761
4762
/* ----------------------------------------------------------------------------------------- */
4763
/* END OF MARKER SECTION */
4764
/* ----------------------------------------------------------------------------------------- */
4765
4766
/** @brief Fills a convex polygon.
4767
4768
The function cv::fillConvexPoly draws a filled convex polygon. This function is much faster than the
4769
function #fillPoly . It can fill not only convex polygons but any monotonic polygon without
4770
self-intersections, that is, a polygon whose contour intersects every horizontal line (scan line)
4771
twice at the most (though, its top-most and/or the bottom edge could be horizontal).
4772
4773
@param img Image.
4774
@param points Polygon vertices.
4775
@param color Polygon color.
4776
@param lineType Type of the polygon boundaries. See #LineTypes
4777
@param shift Number of fractional bits in the vertex coordinates.
4778
 */
4779
CV_EXPORTS_W void fillConvexPoly(InputOutputArray img, InputArray points,
4780
                                 const Scalar& color, int lineType = LINE_8,
4781
                                 int shift = 0);
4782
4783
/** @overload */
4784
CV_EXPORTS void fillConvexPoly(InputOutputArray img, const Point* pts, int npts,
4785
                               const Scalar& color, int lineType = LINE_8,
4786
                               int shift = 0);
4787
4788
/** @example samples/cpp/tutorial_code/ImgProc/basic_drawing/Drawing_1.cpp
4789
An example using drawing functions
4790
Check @ref tutorial_random_generator_and_text "the corresponding tutorial" for more details
4791
*/
4792
4793
/** @brief Fills the area bounded by one or more polygons.
4794
4795
The function cv::fillPoly fills an area bounded by several polygonal contours. The function can fill
4796
complex areas, for example, areas with holes, contours with self-intersections (some of their
4797
parts), and so forth.
4798
4799
@param img Image.
4800
@param pts Array of polygons where each polygon is represented as an array of points.
4801
@param color Polygon color.
4802
@param lineType Type of the polygon boundaries. See #LineTypes
4803
@param shift Number of fractional bits in the vertex coordinates.
4804
@param offset Optional offset of all points of the contours.
4805
 */
4806
CV_EXPORTS_W void fillPoly(InputOutputArray img, InputArrayOfArrays pts,
4807
                           const Scalar& color, int lineType = LINE_8, int shift = 0,
4808
                           Point offset = Point() );
4809
4810
/** @overload */
4811
CV_EXPORTS void fillPoly(InputOutputArray img, const Point** pts,
4812
                         const int* npts, int ncontours,
4813
                         const Scalar& color, int lineType = LINE_8, int shift = 0,
4814
                         Point offset = Point() );
4815
4816
/** @brief Draws several polygonal curves.
4817
4818
@param img Image.
4819
@param pts Array of polygonal curves.
4820
@param isClosed Flag indicating whether the drawn polylines are closed or not. If they are closed,
4821
the function draws a line from the last vertex of each curve to its first vertex.
4822
@param color Polyline color.
4823
@param thickness Thickness of the polyline edges.
4824
@param lineType Type of the line segments. See #LineTypes
4825
@param shift Number of fractional bits in the vertex coordinates.
4826
4827
The function cv::polylines draws one or more polygonal curves.
4828
 */
4829
CV_EXPORTS_W void polylines(InputOutputArray img, InputArrayOfArrays pts,
4830
                            bool isClosed, const Scalar& color,
4831
                            int thickness = 1, int lineType = LINE_8, int shift = 0 );
4832
4833
/** @overload */
4834
CV_EXPORTS void polylines(InputOutputArray img, const Point* const* pts, const int* npts,
4835
                          int ncontours, bool isClosed, const Scalar& color,
4836
                          int thickness = 1, int lineType = LINE_8, int shift = 0 );
4837
4838
/** @example samples/cpp/contours2.cpp
4839
An example program illustrates the use of cv::findContours and cv::drawContours
4840
\image html WindowsQtContoursOutput.png "Screenshot of the program"
4841
*/
4842
4843
/** @example samples/cpp/segment_objects.cpp
4844
An example using drawContours to clean up a background segmentation result
4845
*/
4846
4847
/** @brief Draws contours outlines or filled contours.
4848
4849
The function draws contour outlines in the image if \f$\texttt{thickness} \ge 0\f$ or fills the area
4850
bounded by the contours if \f$\texttt{thickness}<0\f$ . The example below shows how to retrieve
4851
connected components from the binary image and label them: :
4852
@include snippets/imgproc_drawContours.cpp
4853
4854
@param image Destination image.
4855
@param contours All the input contours. Each contour is stored as a point vector.
4856
@param contourIdx Parameter indicating a contour to draw. If it is negative, all the contours are drawn.
4857
@param color Color of the contours.
4858
@param thickness Thickness of lines the contours are drawn with. If it is negative (for example,
4859
thickness=#FILLED ), the contour interiors are drawn.
4860
@param lineType Line connectivity. See #LineTypes
4861
@param hierarchy Optional information about hierarchy. It is only needed if you want to draw only
4862
some of the contours (see maxLevel ).
4863
@param maxLevel Maximal level for drawn contours. If it is 0, only the specified contour is drawn.
4864
If it is 1, the function draws the contour(s) and all the nested contours. If it is 2, the function
4865
draws the contours, all the nested contours, all the nested-to-nested contours, and so on. This
4866
parameter is only taken into account when there is hierarchy available.
4867
@param offset Optional contour shift parameter. Shift all the drawn contours by the specified
4868
\f$\texttt{offset}=(dx,dy)\f$ .
4869
@note When thickness=#FILLED, the function is designed to handle connected components with holes correctly
4870
even when no hierarchy data is provided. This is done by analyzing all the outlines together
4871
using even-odd rule. This may give incorrect results if you have a joint collection of separately retrieved
4872
contours. In order to solve this problem, you need to call #drawContours separately for each sub-group
4873
of contours, or iterate over the collection using contourIdx parameter.
4874
 */
4875
CV_EXPORTS_W void drawContours( InputOutputArray image, InputArrayOfArrays contours,
4876
                              int contourIdx, const Scalar& color,
4877
                              int thickness = 1, int lineType = LINE_8,
4878
                              InputArray hierarchy = noArray(),
4879
                              int maxLevel = INT_MAX, Point offset = Point() );
4880
4881
/** @brief Clips the line against the image rectangle.
4882
4883
The function cv::clipLine calculates a part of the line segment that is entirely within the specified
4884
rectangle. It returns false if the line segment is completely outside the rectangle. Otherwise,
4885
it returns true .
4886
@param imgSize Image size. The image rectangle is Rect(0, 0, imgSize.width, imgSize.height) .
4887
@param pt1 First line point.
4888
@param pt2 Second line point.
4889
 */
4890
CV_EXPORTS bool clipLine(Size imgSize, CV_IN_OUT Point& pt1, CV_IN_OUT Point& pt2);
4891
4892
/** @overload
4893
@param imgSize Image size. The image rectangle is Rect(0, 0, imgSize.width, imgSize.height) .
4894
@param pt1 First line point.
4895
@param pt2 Second line point.
4896
*/
4897
CV_EXPORTS bool clipLine(Size2l imgSize, CV_IN_OUT Point2l& pt1, CV_IN_OUT Point2l& pt2);
4898
4899
/** @overload
4900
@param imgRect Image rectangle.
4901
@param pt1 First line point.
4902
@param pt2 Second line point.
4903
*/
4904
CV_EXPORTS_W bool clipLine(Rect imgRect, CV_OUT CV_IN_OUT Point& pt1, CV_OUT CV_IN_OUT Point& pt2);
4905
4906
/** @brief Approximates an elliptic arc with a polyline.
4907
4908
The function ellipse2Poly computes the vertices of a polyline that approximates the specified
4909
elliptic arc. It is used by #ellipse. If `arcStart` is greater than `arcEnd`, they are swapped.
4910
4911
@param center Center of the arc.
4912
@param axes Half of the size of the ellipse main axes. See #ellipse for details.
4913
@param angle Rotation angle of the ellipse in degrees. See #ellipse for details.
4914
@param arcStart Starting angle of the elliptic arc in degrees.
4915
@param arcEnd Ending angle of the elliptic arc in degrees.
4916
@param delta Angle between the subsequent polyline vertices. It defines the approximation
4917
accuracy.
4918
@param pts Output vector of polyline vertices.
4919
 */
4920
CV_EXPORTS_W void ellipse2Poly( Point center, Size axes, int angle,
4921
                                int arcStart, int arcEnd, int delta,
4922
                                CV_OUT std::vector<Point>& pts );
4923
4924
/** @overload
4925
@param center Center of the arc.
4926
@param axes Half of the size of the ellipse main axes. See #ellipse for details.
4927
@param angle Rotation angle of the ellipse in degrees. See #ellipse for details.
4928
@param arcStart Starting angle of the elliptic arc in degrees.
4929
@param arcEnd Ending angle of the elliptic arc in degrees.
4930
@param delta Angle between the subsequent polyline vertices. It defines the approximation accuracy.
4931
@param pts Output vector of polyline vertices.
4932
*/
4933
CV_EXPORTS void ellipse2Poly(Point2d center, Size2d axes, int angle,
4934
                             int arcStart, int arcEnd, int delta,
4935
                             CV_OUT std::vector<Point2d>& pts);
4936
4937
/** @brief Draws a text string.
4938
4939
The function cv::putText renders the specified text string in the image. Symbols that cannot be rendered
4940
using the specified font are replaced by question marks. See #getTextSize for a text rendering code
4941
example.
4942
4943
The `fontScale` parameter is a scale factor that is multiplied by the base font size:
4944
- When scale > 1, the text is magnified.
4945
- When 0 < scale < 1, the text is minimized.
4946
- When scale < 0, the text is mirrored or reversed.
4947
4948
@param img Image.
4949
@param text Text string to be drawn.
4950
@param org Bottom-left corner of the text string in the image.
4951
@param fontFace Font type, see #HersheyFonts.
4952
@param fontScale Font scale factor that is multiplied by the font-specific base size.
4953
@param color Text color.
4954
@param thickness Thickness of the lines used to draw a text.
4955
@param lineType Line type. See #LineTypes
4956
@param bottomLeftOrigin When true, the image data origin is at the bottom-left corner. Otherwise,
4957
it is at the top-left corner.
4958
 */
4959
CV_EXPORTS_W void putText( InputOutputArray img, const String& text, Point org,
4960
                         int fontFace, double fontScale, Scalar color,
4961
                         int thickness = 1, int lineType = LINE_8,
4962
                         bool bottomLeftOrigin = false );
4963
4964
/** @brief Calculates the width and height of a text string.
4965
4966
The function cv::getTextSize calculates and returns the size of a box that contains the specified text.
4967
That is, the following code renders some text, the tight box surrounding it, and the baseline: :
4968
@code
4969
    String text = "Funny text inside the box";
4970
    int fontFace = FONT_HERSHEY_SCRIPT_SIMPLEX;
4971
    double fontScale = 2;
4972
    int thickness = 3;
4973
4974
    Mat img(600, 800, CV_8UC3, Scalar::all(0));
4975
4976
    int baseline=0;
4977
    Size textSize = getTextSize(text, fontFace,
4978
                                fontScale, thickness, &baseline);
4979
    baseline += thickness;
4980
4981
    // center the text
4982
    Point textOrg((img.cols - textSize.width)/2,
4983
                  (img.rows + textSize.height)/2);
4984
4985
    // draw the box
4986
    rectangle(img, textOrg + Point(0, baseline),
4987
              textOrg + Point(textSize.width, -textSize.height),
4988
              Scalar(0,0,255));
4989
    // ... and the baseline first
4990
    line(img, textOrg + Point(0, thickness),
4991
         textOrg + Point(textSize.width, thickness),
4992
         Scalar(0, 0, 255));
4993
4994
    // then put the text itself
4995
    putText(img, text, textOrg, fontFace, fontScale,
4996
            Scalar::all(255), thickness, 8);
4997
@endcode
4998
4999
@param text Input text string.
5000
@param fontFace Font to use, see #HersheyFonts.
5001
@param fontScale Font scale factor that is multiplied by the font-specific base size.
5002
@param thickness Thickness of lines used to render the text. See #putText for details.
5003
@param[out] baseLine y-coordinate of the baseline relative to the bottom-most text
5004
point.
5005
@return The size of a box that contains the specified text.
5006
5007
@see putText
5008
 */
5009
CV_EXPORTS_W Size getTextSize(const String& text, int fontFace,
5010
                            double fontScale, int thickness,
5011
                            CV_OUT int* baseLine);
5012
5013
5014
/** @brief Calculates the font-specific size to use to achieve a given height in pixels.
5015
5016
@param fontFace Font to use, see cv::HersheyFonts.
5017
@param pixelHeight Pixel height to compute the fontScale for
5018
@param thickness Thickness of lines used to render the text.See putText for details.
5019
@return The fontSize to use for cv::putText
5020
5021
@see cv::putText
5022
*/
5023
CV_EXPORTS_W double getFontScaleFromHeight(const int fontFace,
5024
                                           const int pixelHeight,
5025
                                           const int thickness = 1);
5026
5027
/** @brief Class for iterating over all pixels on a raster line segment.
5028
5029
The class LineIterator is used to get each pixel of a raster line connecting
5030
two specified points.
5031
It can be treated as a versatile implementation of the Bresenham algorithm
5032
where you can stop at each pixel and do some extra processing, for
5033
example, grab pixel values along the line or draw a line with an effect
5034
(for example, with XOR operation).
5035
5036
The number of pixels along the line is stored in LineIterator::count.
5037
The method LineIterator::pos returns the current position in the image:
5038
5039
@code{.cpp}
5040
// grabs pixels along the line (pt1, pt2)
5041
// from 8-bit 3-channel image to the buffer
5042
LineIterator it(img, pt1, pt2, 8);
5043
LineIterator it2 = it;
5044
vector<Vec3b> buf(it.count);
5045
5046
for(int i = 0; i < it.count; i++, ++it)
5047
    buf[i] = *(const Vec3b*)*it;
5048
5049
// alternative way of iterating through the line
5050
for(int i = 0; i < it2.count; i++, ++it2)
5051
{
5052
    Vec3b val = img.at<Vec3b>(it2.pos());
5053
    CV_Assert(buf[i] == val);
5054
}
5055
@endcode
5056
*/
5057
class CV_EXPORTS LineIterator
5058
{
5059
public:
5060
    /** @brief Initializes iterator object for the given line and image.
5061
5062
    The returned iterator can be used to traverse all pixels on a line that
5063
    connects the given two points.
5064
    The line will be clipped on the image boundaries.
5065
5066
    @param img Underlying image.
5067
    @param pt1 First endpoint of the line.
5068
    @param pt2 The other endpoint of the line.
5069
    @param connectivity Pixel connectivity of the iterator. Valid values are 4 (iterator can move
5070
    up, down, left and right) and 8 (iterator can also move diagonally).
5071
    @param leftToRight If true, the line is traversed from the leftmost endpoint to the rightmost
5072
    endpoint. Otherwise, the line is traversed from \p pt1 to \p pt2.
5073
    */
5074
    LineIterator( const Mat& img, Point pt1, Point pt2,
5075
                  int connectivity = 8, bool leftToRight = false )
5076
    {
5077
        init(&img, Rect(0, 0, img.cols, img.rows), pt1, pt2, connectivity, leftToRight);
5078
        ptmode = false;
5079
    }
5080
    LineIterator( Point pt1, Point pt2,
5081
                  int connectivity = 8, bool leftToRight = false )
5082
0
    {
5083
0
        init(0, Rect(std::min(pt1.x, pt2.x),
5084
0
                     std::min(pt1.y, pt2.y),
5085
0
                     std::max(pt1.x, pt2.x) - std::min(pt1.x, pt2.x) + 1,
5086
0
                     std::max(pt1.y, pt2.y) - std::min(pt1.y, pt2.y) + 1),
5087
0
             pt1, pt2, connectivity, leftToRight);
5088
0
        ptmode = true;
5089
0
    }
5090
    LineIterator( Size boundingAreaSize, Point pt1, Point pt2,
5091
                  int connectivity = 8, bool leftToRight = false )
5092
0
    {
5093
0
        init(0, Rect(0, 0, boundingAreaSize.width, boundingAreaSize.height),
5094
0
             pt1, pt2, connectivity, leftToRight);
5095
0
        ptmode = true;
5096
0
    }
5097
    LineIterator( Rect boundingAreaRect, Point pt1, Point pt2,
5098
                  int connectivity = 8, bool leftToRight = false )
5099
0
    {
5100
0
        init(0, boundingAreaRect, pt1, pt2, connectivity, leftToRight);
5101
0
        ptmode = true;
5102
0
    }
5103
    void init(const Mat* img, Rect boundingAreaRect, Point pt1, Point pt2, int connectivity, bool leftToRight);
5104
5105
    /** @brief Returns pointer to the current pixel.
5106
    */
5107
    uchar* operator *();
5108
5109
    /** @brief Moves iterator to the next pixel on the line.
5110
5111
    This is the prefix version (++it).
5112
    */
5113
    LineIterator& operator ++();
5114
5115
    /** @brief Moves iterator to the next pixel on the line.
5116
5117
    This is the postfix version (it++).
5118
    */
5119
    LineIterator operator ++(int);
5120
5121
    /** @brief Returns coordinates of the current pixel.
5122
    */
5123
    Point pos() const;
5124
5125
    uchar* ptr;
5126
    const uchar* ptr0;
5127
    int step, elemSize;
5128
    int err, count;
5129
    int minusDelta, plusDelta;
5130
    int minusStep, plusStep;
5131
    int minusShift, plusShift;
5132
    Point p;
5133
    bool ptmode;
5134
};
5135
5136
//! @cond IGNORED
5137
5138
// === LineIterator implementation ===
5139
5140
inline
5141
uchar* LineIterator::operator *()
5142
{
5143
    return ptmode ? 0 : ptr;
5144
}
5145
5146
inline
5147
LineIterator& LineIterator::operator ++()
5148
{
5149
    int mask = err < 0 ? -1 : 0;
5150
    err += minusDelta + (plusDelta & mask);
5151
    if(!ptmode)
5152
    {
5153
        ptr += minusStep + (plusStep & mask);
5154
    }
5155
    else
5156
    {
5157
        p.x += minusShift + (plusShift & mask);
5158
        p.y += minusStep + (plusStep & mask);
5159
    }
5160
    return *this;
5161
}
5162
5163
inline
5164
LineIterator LineIterator::operator ++(int)
5165
0
{
5166
0
    LineIterator it = *this;
5167
0
    ++(*this);
5168
0
    return it;
5169
0
}
5170
5171
inline
5172
Point LineIterator::pos() const
5173
0
{
5174
0
    if(!ptmode)
5175
0
    {
5176
0
        size_t offset = (size_t)(ptr - ptr0);
5177
0
        int y = (int)(offset/step);
5178
0
        int x = (int)((offset - (size_t)y*step)/elemSize);
5179
0
        return Point(x, y);
5180
0
    }
5181
0
    return p;
5182
0
}
5183
5184
//! @endcond
5185
5186
//! @} imgproc_draw
5187
5188
//! @} imgproc
5189
5190
} // cv
5191
5192
5193
#include "./imgproc/segmentation.hpp"
5194
5195
5196
#endif