Coverage Report

Created: 2025-12-31 06:53

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/work/install-coverage/include/opencv4/opencv2/calib3d.hpp
Line
Count
Source
1
/*M///////////////////////////////////////////////////////////////////////////////////////
2
//
3
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4
//
5
//  By downloading, copying, installing or using the software you agree to this license.
6
//  If you do not agree to this license, do not download, install,
7
//  copy or use the software.
8
//
9
//
10
//                          License Agreement
11
//                For Open Source Computer Vision Library
12
//
13
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
16
// Third party copyrights are property of their respective owners.
17
//
18
// Redistribution and use in source and binary forms, with or without modification,
19
// are permitted provided that the following conditions are met:
20
//
21
//   * Redistribution's of source code must retain the above copyright notice,
22
//     this list of conditions and the following disclaimer.
23
//
24
//   * Redistribution's in binary form must reproduce the above copyright notice,
25
//     this list of conditions and the following disclaimer in the documentation
26
//     and/or other materials provided with the distribution.
27
//
28
//   * The name of the copyright holders may not be used to endorse or promote products
29
//     derived from this software without specific prior written permission.
30
//
31
// This software is provided by the copyright holders and contributors "as is" and
32
// any express or implied warranties, including, but not limited to, the implied
33
// warranties of merchantability and fitness for a particular purpose are disclaimed.
34
// In no event shall the Intel Corporation or contributors be liable for any direct,
35
// indirect, incidental, special, exemplary, or consequential damages
36
// (including, but not limited to, procurement of substitute goods or services;
37
// loss of use, data, or profits; or business interruption) however caused
38
// and on any theory of liability, whether in contract, strict liability,
39
// or tort (including negligence or otherwise) arising in any way out of
40
// the use of this software, even if advised of the possibility of such damage.
41
//
42
//M*/
43
44
#ifndef OPENCV_CALIB3D_HPP
45
#define OPENCV_CALIB3D_HPP
46
47
#include "opencv2/core.hpp"
48
#include "opencv2/core/types.hpp"
49
#include "opencv2/features2d.hpp"
50
#include "opencv2/core/affine.hpp"
51
#include "opencv2/core/utils/logger.hpp"
52
53
/**
54
  @defgroup calib3d Camera Calibration and 3D Reconstruction
55
56
The functions in this section use a so-called pinhole camera model. The view of a scene
57
is obtained by projecting a scene's 3D point \f$P_w\f$ into the image plane using a perspective
58
transformation which forms the corresponding pixel \f$p\f$. Both \f$P_w\f$ and \f$p\f$ are
59
represented in homogeneous coordinates, i.e. as 3D and 2D homogeneous vector respectively. You will
60
find a brief introduction to projective geometry, homogeneous vectors and homogeneous
61
transformations at the end of this section's introduction. For more succinct notation, we often drop
62
the 'homogeneous' and say vector instead of homogeneous vector.
63
64
The distortion-free projective transformation given by a  pinhole camera model is shown below.
65
66
\f[s \; p = A \begin{bmatrix} R|t \end{bmatrix} P_w,\f]
67
68
where \f$P_w\f$ is a 3D point expressed with respect to the world coordinate system,
69
\f$p\f$ is a 2D pixel in the image plane, \f$A\f$ is the camera intrinsic matrix,
70
\f$R\f$ and \f$t\f$ are the rotation and translation that describe the change of coordinates from
71
world to camera coordinate systems (or camera frame) and \f$s\f$ is the projective transformation's
72
arbitrary scaling and not part of the camera model.
73
74
The camera intrinsic matrix \f$A\f$ (notation used as in @cite Zhang2000 and also generally notated
75
as \f$K\f$) projects 3D points given in the camera coordinate system to 2D pixel coordinates, i.e.
76
77
\f[p = A P_c.\f]
78
79
The camera intrinsic matrix \f$A\f$ is composed of the focal lengths \f$f_x\f$ and \f$f_y\f$, which are
80
expressed in pixel units, and the principal point \f$(c_x, c_y)\f$, that is usually close to the
81
image center:
82
83
\f[A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1},\f]
84
85
and thus
86
87
\f[s \vecthree{u}{v}{1} = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1} \vecthree{X_c}{Y_c}{Z_c}.\f]
88
89
The matrix of intrinsic parameters does not depend on the scene viewed. So, once estimated, it can
90
be re-used as long as the focal length is fixed (in case of a zoom lens). Thus, if an image from the
91
camera is scaled by a factor, all of these parameters need to be scaled (multiplied/divided,
92
respectively) by the same factor.
93
94
The joint rotation-translation matrix \f$[R|t]\f$ is the matrix product of a projective
95
transformation and a homogeneous transformation. The 3-by-4 projective transformation maps 3D points
96
represented in camera coordinates to 2D points in the image plane and represented in normalized
97
camera coordinates \f$x' = X_c / Z_c\f$ and \f$y' = Y_c / Z_c\f$:
98
99
\f[Z_c \begin{bmatrix}
100
x' \\
101
y' \\
102
1
103
\end{bmatrix} = \begin{bmatrix}
104
1 & 0 & 0 & 0 \\
105
0 & 1 & 0 & 0 \\
106
0 & 0 & 1 & 0
107
\end{bmatrix}
108
\begin{bmatrix}
109
X_c \\
110
Y_c \\
111
Z_c \\
112
1
113
\end{bmatrix}.\f]
114
115
The homogeneous transformation is encoded by the extrinsic parameters \f$R\f$ and \f$t\f$ and
116
represents the change of basis from world coordinate system \f$w\f$ to the camera coordinate sytem
117
\f$c\f$. Thus, given the representation of the point \f$P\f$ in world coordinates, \f$P_w\f$, we
118
obtain \f$P\f$'s representation in the camera coordinate system, \f$P_c\f$, by
119
120
\f[P_c = \begin{bmatrix}
121
R & t \\
122
0 & 1
123
\end{bmatrix} P_w,\f]
124
125
This homogeneous transformation is composed out of \f$R\f$, a 3-by-3 rotation matrix, and \f$t\f$, a
126
3-by-1 translation vector:
127
128
\f[\begin{bmatrix}
129
R & t \\
130
0 & 1
131
\end{bmatrix} = \begin{bmatrix}
132
r_{11} & r_{12} & r_{13} & t_x \\
133
r_{21} & r_{22} & r_{23} & t_y \\
134
r_{31} & r_{32} & r_{33} & t_z \\
135
0 & 0 & 0 & 1
136
\end{bmatrix},
137
\f]
138
139
and therefore
140
141
\f[\begin{bmatrix}
142
X_c \\
143
Y_c \\
144
Z_c \\
145
1
146
\end{bmatrix} = \begin{bmatrix}
147
r_{11} & r_{12} & r_{13} & t_x \\
148
r_{21} & r_{22} & r_{23} & t_y \\
149
r_{31} & r_{32} & r_{33} & t_z \\
150
0 & 0 & 0 & 1
151
\end{bmatrix}
152
\begin{bmatrix}
153
X_w \\
154
Y_w \\
155
Z_w \\
156
1
157
\end{bmatrix}.\f]
158
159
Combining the projective transformation and the homogeneous transformation, we obtain the projective
160
transformation that maps 3D points in world coordinates into 2D points in the image plane and in
161
normalized camera coordinates:
162
163
\f[Z_c \begin{bmatrix}
164
x' \\
165
y' \\
166
1
167
\end{bmatrix} = \begin{bmatrix} R|t \end{bmatrix} \begin{bmatrix}
168
X_w \\
169
Y_w \\
170
Z_w \\
171
1
172
\end{bmatrix} = \begin{bmatrix}
173
r_{11} & r_{12} & r_{13} & t_x \\
174
r_{21} & r_{22} & r_{23} & t_y \\
175
r_{31} & r_{32} & r_{33} & t_z
176
\end{bmatrix}
177
\begin{bmatrix}
178
X_w \\
179
Y_w \\
180
Z_w \\
181
1
182
\end{bmatrix},\f]
183
184
with \f$x' = X_c / Z_c\f$ and \f$y' = Y_c / Z_c\f$. Putting the equations for instrincs and extrinsics together, we can write out
185
\f$s \; p = A \begin{bmatrix} R|t \end{bmatrix} P_w\f$ as
186
187
\f[s \vecthree{u}{v}{1} = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}
188
\begin{bmatrix}
189
r_{11} & r_{12} & r_{13} & t_x \\
190
r_{21} & r_{22} & r_{23} & t_y \\
191
r_{31} & r_{32} & r_{33} & t_z
192
\end{bmatrix}
193
\begin{bmatrix}
194
X_w \\
195
Y_w \\
196
Z_w \\
197
1
198
\end{bmatrix}.\f]
199
200
If \f$Z_c \ne 0\f$, the transformation above is equivalent to the following,
201
202
\f[\begin{bmatrix}
203
u \\
204
v
205
\end{bmatrix} = \begin{bmatrix}
206
f_x X_c/Z_c + c_x \\
207
f_y Y_c/Z_c + c_y
208
\end{bmatrix}\f]
209
210
with
211
212
\f[\vecthree{X_c}{Y_c}{Z_c} = \begin{bmatrix}
213
R|t
214
\end{bmatrix} \begin{bmatrix}
215
X_w \\
216
Y_w \\
217
Z_w \\
218
1
219
\end{bmatrix}.\f]
220
221
The following figure illustrates the pinhole camera model.
222
223
![Pinhole camera model](pics/pinhole_camera_model.png)
224
225
Real lenses usually have some distortion, mostly radial distortion, and slight tangential distortion.
226
So, the above model is extended as:
227
228
\f[\begin{bmatrix}
229
u \\
230
v
231
\end{bmatrix} = \begin{bmatrix}
232
f_x x'' + c_x \\
233
f_y y'' + c_y
234
\end{bmatrix}\f]
235
236
where
237
238
\f[\begin{bmatrix}
239
x'' \\
240
y''
241
\end{bmatrix} = \begin{bmatrix}
242
x' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} + 2 p_1 x' y' + p_2(r^2 + 2 x'^2) + s_1 r^2 + s_2 r^4 \\
243
y' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} + p_1 (r^2 + 2 y'^2) + 2 p_2 x' y' + s_3 r^2 + s_4 r^4 \\
244
\end{bmatrix}\f]
245
246
with
247
248
\f[r^2 = x'^2 + y'^2\f]
249
250
and
251
252
\f[\begin{bmatrix}
253
x'\\
254
y'
255
\end{bmatrix} = \begin{bmatrix}
256
X_c/Z_c \\
257
Y_c/Z_c
258
\end{bmatrix},\f]
259
260
if \f$Z_c \ne 0\f$.
261
262
The distortion parameters are the radial coefficients \f$k_1\f$, \f$k_2\f$, \f$k_3\f$, \f$k_4\f$, \f$k_5\f$, and \f$k_6\f$
263
,\f$p_1\f$ and \f$p_2\f$ are the tangential distortion coefficients, and \f$s_1\f$, \f$s_2\f$, \f$s_3\f$, and \f$s_4\f$,
264
are the thin prism distortion coefficients. Higher-order coefficients are not considered in OpenCV.
265
266
The next figures show two common types of radial distortion: barrel distortion
267
(\f$ 1 + k_1 r^2 + k_2 r^4 + k_3 r^6 \f$ monotonically decreasing)
268
and pincushion distortion (\f$ 1 + k_1 r^2 + k_2 r^4 + k_3 r^6 \f$ monotonically increasing).
269
Radial distortion is always monotonic for real lenses,
270
and if the estimator produces a non-monotonic result,
271
this should be considered a calibration failure.
272
More generally, radial distortion must be monotonic and the distortion function must be bijective.
273
A failed estimation result may look deceptively good near the image center
274
but will work poorly in e.g. AR/SFM applications.
275
The optimization method used in OpenCV camera calibration does not include these constraints as
276
the framework does not support the required integer programming and polynomial inequalities.
277
See [issue #15992](https://github.com/opencv/opencv/issues/15992) for additional information.
278
279
![](pics/distortion_examples.png)
280
![](pics/distortion_examples2.png)
281
282
In some cases, the image sensor may be tilted in order to focus an oblique plane in front of the
283
camera (Scheimpflug principle). This can be useful for particle image velocimetry (PIV) or
284
triangulation with a laser fan. The tilt causes a perspective distortion of \f$x''\f$ and
285
\f$y''\f$. This distortion can be modeled in the following way, see e.g. @cite Louhichi07.
286
287
\f[\begin{bmatrix}
288
u \\
289
v
290
\end{bmatrix} = \begin{bmatrix}
291
f_x x''' + c_x \\
292
f_y y''' + c_y
293
\end{bmatrix},\f]
294
295
where
296
297
\f[s\vecthree{x'''}{y'''}{1} =
298
\vecthreethree{R_{33}(\tau_x, \tau_y)}{0}{-R_{13}(\tau_x, \tau_y)}
299
{0}{R_{33}(\tau_x, \tau_y)}{-R_{23}(\tau_x, \tau_y)}
300
{0}{0}{1} R(\tau_x, \tau_y) \vecthree{x''}{y''}{1}\f]
301
302
and the matrix \f$R(\tau_x, \tau_y)\f$ is defined by two rotations with angular parameter
303
\f$\tau_x\f$ and \f$\tau_y\f$, respectively,
304
305
\f[
306
R(\tau_x, \tau_y) =
307
\vecthreethree{\cos(\tau_y)}{0}{-\sin(\tau_y)}{0}{1}{0}{\sin(\tau_y)}{0}{\cos(\tau_y)}
308
\vecthreethree{1}{0}{0}{0}{\cos(\tau_x)}{\sin(\tau_x)}{0}{-\sin(\tau_x)}{\cos(\tau_x)} =
309
\vecthreethree{\cos(\tau_y)}{\sin(\tau_y)\sin(\tau_x)}{-\sin(\tau_y)\cos(\tau_x)}
310
{0}{\cos(\tau_x)}{\sin(\tau_x)}
311
{\sin(\tau_y)}{-\cos(\tau_y)\sin(\tau_x)}{\cos(\tau_y)\cos(\tau_x)}.
312
\f]
313
314
In the functions below the coefficients are passed or returned as
315
316
\f[(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f]
317
318
vector. That is, if the vector contains four elements, it means that \f$k_3=0\f$ . The distortion
319
coefficients do not depend on the scene viewed. Thus, they also belong to the intrinsic camera
320
parameters. And they remain the same regardless of the captured image resolution. If, for example, a
321
camera has been calibrated on images of 320 x 240 resolution, absolutely the same distortion
322
coefficients can be used for 640 x 480 images from the same camera while \f$f_x\f$, \f$f_y\f$,
323
\f$c_x\f$, and \f$c_y\f$ need to be scaled appropriately.
324
325
The functions below use the above model to do the following:
326
327
-   Project 3D points to the image plane given intrinsic and extrinsic parameters.
328
-   Compute extrinsic parameters given intrinsic parameters, a few 3D points, and their
329
projections.
330
-   Estimate intrinsic and extrinsic camera parameters from several views of a known calibration
331
pattern (every view is described by several 3D-2D point correspondences).
332
-   Estimate the relative position and orientation of the stereo camera "heads" and compute the
333
*rectification* transformation that makes the camera optical axes parallel.
334
335
<B> Homogeneous Coordinates </B><br>
336
Homogeneous Coordinates are a system of coordinates that are used in projective geometry. Their use
337
allows to represent points at infinity by finite coordinates and simplifies formulas when compared
338
to the cartesian counterparts, e.g. they have the advantage that affine transformations can be
339
expressed as linear homogeneous transformation.
340
341
One obtains the homogeneous vector \f$P_h\f$ by appending a 1 along an n-dimensional cartesian
342
vector \f$P\f$ e.g. for a 3D cartesian vector the mapping \f$P \rightarrow P_h\f$ is:
343
344
\f[\begin{bmatrix}
345
X \\
346
Y \\
347
Z
348
\end{bmatrix} \rightarrow \begin{bmatrix}
349
X \\
350
Y \\
351
Z \\
352
1
353
\end{bmatrix}.\f]
354
355
For the inverse mapping \f$P_h \rightarrow P\f$, one divides all elements of the homogeneous vector
356
by its last element, e.g. for a 3D homogeneous vector one gets its 2D cartesian counterpart by:
357
358
\f[\begin{bmatrix}
359
X \\
360
Y \\
361
W
362
\end{bmatrix} \rightarrow \begin{bmatrix}
363
X / W \\
364
Y / W
365
\end{bmatrix},\f]
366
367
if \f$W \ne 0\f$.
368
369
Due to this mapping, all multiples \f$k P_h\f$, for \f$k \ne 0\f$, of a homogeneous point represent
370
the same point \f$P_h\f$. An intuitive understanding of this property is that under a projective
371
transformation, all multiples of \f$P_h\f$ are mapped to the same point. This is the physical
372
observation one does for pinhole cameras, as all points along a ray through the camera's pinhole are
373
projected to the same image point, e.g. all points along the red ray in the image of the pinhole
374
camera model above would be mapped to the same image coordinate. This property is also the source
375
for the scale ambiguity s in the equation of the pinhole camera model.
376
377
As mentioned, by using homogeneous coordinates we can express any change of basis parameterized by
378
\f$R\f$ and \f$t\f$ as a linear transformation, e.g. for the change of basis from coordinate system
379
0 to coordinate system 1 becomes:
380
381
\f[P_1 = R P_0 + t \rightarrow P_{h_1} = \begin{bmatrix}
382
R & t \\
383
0 & 1
384
\end{bmatrix} P_{h_0}.\f]
385
386
<B> Homogeneous Transformations, Object frame / Camera frame </B><br>
387
Change of basis or computing the 3D coordinates from one frame to another frame can be achieved easily using
388
the following notation:
389
390
\f[
391
\mathbf{X}_c = \hspace{0.2em}
392
{}^{c}\mathbf{T}_o \hspace{0.2em} \mathbf{X}_o
393
\f]
394
395
\f[
396
\begin{bmatrix}
397
X_c \\
398
Y_c \\
399
Z_c \\
400
1
401
\end{bmatrix} =
402
\begin{bmatrix}
403
{}^{c}\mathbf{R}_o & {}^{c}\mathbf{t}_o \\
404
0_{1 \times 3} & 1
405
\end{bmatrix}
406
\begin{bmatrix}
407
X_o \\
408
Y_o \\
409
Z_o \\
410
1
411
\end{bmatrix}
412
\f]
413
414
For a 3D points (\f$ \mathbf{X}_o \f$) expressed in the object frame, the homogeneous transformation matrix
415
\f$ {}^{c}\mathbf{T}_o \f$ allows computing the corresponding coordinate (\f$ \mathbf{X}_c \f$) in the camera frame.
416
This transformation matrix is composed of a 3x3 rotation matrix \f$ {}^{c}\mathbf{R}_o \f$ and a 3x1 translation vector
417
\f$ {}^{c}\mathbf{t}_o \f$.
418
The 3x1 translation vector \f$ {}^{c}\mathbf{t}_o \f$ is the position of the object frame in the camera frame and the
419
3x3 rotation matrix \f$ {}^{c}\mathbf{R}_o \f$ the orientation of the object frame in the camera frame.
420
421
With this simple notation, it is easy to chain the transformations. For instance, to compute the 3D coordinates of a point
422
expressed in the object frame in the world frame can be done with:
423
424
\f[
425
\mathbf{X}_w = \hspace{0.2em}
426
{}^{w}\mathbf{T}_c \hspace{0.2em} {}^{c}\mathbf{T}_o \hspace{0.2em}
427
\mathbf{X}_o =
428
{}^{w}\mathbf{T}_o \hspace{0.2em} \mathbf{X}_o
429
\f]
430
431
Similarly, computing the inverse transformation can be done with:
432
433
\f[
434
\mathbf{X}_o = \hspace{0.2em}
435
{}^{o}\mathbf{T}_c \hspace{0.2em} \mathbf{X}_c =
436
\left( {}^{c}\mathbf{T}_o \right)^{-1} \hspace{0.2em} \mathbf{X}_c
437
\f]
438
439
The inverse of an homogeneous transformation matrix is then:
440
441
\f[
442
{}^{o}\mathbf{T}_c = \left( {}^{c}\mathbf{T}_o \right)^{-1} =
443
\begin{bmatrix}
444
{}^{c}\mathbf{R}^{\top}_o & - \hspace{0.2em} {}^{c}\mathbf{R}^{\top}_o \hspace{0.2em} {}^{c}\mathbf{t}_o \\
445
0_{1 \times 3} & 1
446
\end{bmatrix}
447
\f]
448
449
One can note that the inverse of a 3x3 rotation matrix is directly its matrix transpose.
450
451
![Perspective projection, from object to camera frame](pics/pinhole_homogeneous_transformation.png)
452
453
This figure summarizes the whole process. The object pose returned for instance by the @ref solvePnP function
454
or pose from fiducial marker detection is this \f$ {}^{c}\mathbf{T}_o \f$ transformation.
455
456
The camera intrinsic matrix \f$ \mathbf{K} \f$ allows projecting the 3D point expressed in the camera frame onto the image plane
457
assuming a perspective projection model (pinhole camera model). Image coordinates extracted from classical image processing functions
458
assume a (u,v) top-left coordinates frame.
459
460
\note
461
- for an online video course on this topic, see for instance:
462
  - ["3.3.1. Homogeneous Transformation Matrices", Modern Robotics, Kevin M. Lynch and Frank C. Park](https://modernrobotics.northwestern.edu/nu-gm-book-resource/3-3-1-homogeneous-transformation-matrices/)
463
- the 3x3 rotation matrix is composed of 9 values but describes a 3 dof transformation
464
- some additional properties of the 3x3 rotation matrix are:
465
  - \f$ \mathrm{det} \left( \mathbf{R} \right) = 1 \f$
466
  - \f$ \mathbf{R} \mathbf{R}^{\top} = \mathbf{R}^{\top} \mathbf{R} = \mathrm{I}_{3 \times 3} \f$
467
  - interpolating rotation can be done using the [Slerp (spherical linear interpolation)](https://en.wikipedia.org/wiki/Slerp) method
468
- quick conversions between the different rotation formalisms can be done using this [online tool](https://www.andre-gaschler.com/rotationconverter/)
469
470
<B> Intrinsic parameters from camera lens specifications </B><br>
471
When dealing with industrial cameras, the camera intrinsic matrix or more precisely \f$ \left(f_x, f_y \right) \f$
472
can be deduced, approximated from the camera specifications:
473
474
\f[
475
f_x = \frac{f_{\text{mm}}}{\text{pixel_size_in_mm}} = \frac{f_{\text{mm}}}{\text{sensor_size_in_mm} / \text{nb_pixels}}
476
\f]
477
478
In a same way, the physical focal length can be deduced from the angular field of view:
479
480
\f[
481
f_{\text{mm}} = \frac{\text{sensor_size_in_mm}}{2 \times \tan{\frac{\text{fov}}{2}}}
482
\f]
483
484
This latter conversion can be useful when using a rendering software to mimic a physical camera device.
485
486
@note
487
    -    See also #calibrationMatrixValues
488
489
<B> Additional references, notes </B><br>
490
@note
491
    -   Many functions in this module take a camera intrinsic matrix as an input parameter. Although all
492
        functions assume the same structure of this parameter, they may name it differently. The
493
        parameter's description, however, will be clear in that a camera intrinsic matrix with the structure
494
        shown above is required.
495
    -   A calibration sample for 3 cameras in a horizontal position can be found at
496
        opencv_source_code/samples/cpp/3calibration.cpp
497
    -   A calibration sample based on a sequence of images can be found at
498
        opencv_source_code/samples/cpp/calibration.cpp
499
    -   A calibration sample in order to do 3D reconstruction can be found at
500
        opencv_source_code/samples/cpp/build3dmodel.cpp
501
    -   A calibration example on stereo calibration can be found at
502
        opencv_source_code/samples/cpp/stereo_calib.cpp
503
    -   A calibration example on stereo matching can be found at
504
        opencv_source_code/samples/cpp/stereo_match.cpp
505
    -   (Python) A camera calibration sample can be found at
506
        opencv_source_code/samples/python/calibrate.py
507
508
  @{
509
    @defgroup calib3d_fisheye Fisheye camera model
510
511
    Definitions: Let P be a point in 3D of coordinates X in the world reference frame (stored in the
512
    matrix X) The coordinate vector of P in the camera reference frame is:
513
514
    \f[Xc = R X + T\f]
515
516
    where R is the rotation matrix corresponding to the rotation vector om: R = rodrigues(om); call x, y
517
    and z the 3 coordinates of Xc:
518
519
    \f[\begin{array}{l} x = Xc_1 \\ y = Xc_2 \\ z = Xc_3 \end{array} \f]
520
521
    The pinhole projection coordinates of P is [a; b] where
522
523
    \f[\begin{array}{l} a = x / z \ and \ b = y / z \\ r^2 = a^2 + b^2 \\ \theta = atan(r) \end{array} \f]
524
525
    Fisheye distortion:
526
527
    \f[\theta_d = \theta (1 + k_1 \theta^2 + k_2 \theta^4 + k_3 \theta^6 + k_4 \theta^8)\f]
528
529
    The distorted point coordinates are [x'; y'] where
530
531
    \f[\begin{array}{l} x' = (\theta_d / r) a \\ y' = (\theta_d / r) b \end{array} \f]
532
533
    Finally, conversion into pixel coordinates: The final pixel coordinates vector [u; v] where:
534
535
    \f[\begin{array}{l} u = f_x (x' + \alpha y') + c_x \\
536
    v = f_y y' + c_y \end{array} \f]
537
538
    Summary:
539
    Generic camera model @cite Kannala2006 with perspective projection and without distortion correction
540
541
  @}
542
 */
543
544
namespace cv
545
{
546
547
//! @addtogroup calib3d
548
//! @{
549
550
//! type of the robust estimation algorithm
551
enum { LMEDS  = 4,  //!< least-median of squares algorithm
552
       RANSAC = 8,  //!< RANSAC algorithm
553
       RHO    = 16, //!< RHO algorithm
554
       USAC_DEFAULT  = 32, //!< USAC algorithm, default settings
555
       USAC_PARALLEL = 33, //!< USAC, parallel version
556
       USAC_FM_8PTS = 34,  //!< USAC, fundamental matrix 8 points
557
       USAC_FAST = 35,     //!< USAC, fast settings
558
       USAC_ACCURATE = 36, //!< USAC, accurate settings
559
       USAC_PROSAC = 37,   //!< USAC, sorted points, runs PROSAC
560
       USAC_MAGSAC = 38    //!< USAC, runs MAGSAC++
561
     };
562
563
enum SolvePnPMethod {
564
    SOLVEPNP_ITERATIVE   = 0, //!< Pose refinement using non-linear Levenberg-Marquardt minimization scheme @cite Madsen04 @cite Eade13 \n
565
                              //!< Initial solution for non-planar "objectPoints" needs at least 6 points and uses the DLT algorithm. \n
566
                              //!< Initial solution for planar "objectPoints" needs at least 4 points and uses pose from homography decomposition.
567
    SOLVEPNP_EPNP        = 1, //!< EPnP: Efficient Perspective-n-Point Camera Pose Estimation @cite lepetit2009epnp
568
    SOLVEPNP_P3P         = 2, //!< Revisiting the P3P Problem @cite ding2023revisiting
569
    SOLVEPNP_DLS         = 3, //!< **Broken implementation. Using this flag will fallback to EPnP.** \n
570
                              //!< A Direct Least-Squares (DLS) Method for PnP @cite hesch2011direct
571
    SOLVEPNP_UPNP        = 4, //!< **Broken implementation. Using this flag will fallback to EPnP.** \n
572
                              //!< Exhaustive Linearization for Robust Camera Pose and Focal Length Estimation @cite penate2013exhaustive
573
    SOLVEPNP_AP3P        = 5, //!< An Efficient Algebraic Solution to the Perspective-Three-Point Problem @cite Ke17
574
    SOLVEPNP_IPPE        = 6, //!< Infinitesimal Plane-Based Pose Estimation @cite Collins14 \n
575
                              //!< Object points must be coplanar.
576
    SOLVEPNP_IPPE_SQUARE = 7, //!< Infinitesimal Plane-Based Pose Estimation @cite Collins14 \n
577
                              //!< This is a special case suitable for marker pose estimation.\n
578
                              //!< 4 coplanar object points must be defined in the following order:
579
                              //!<   - point 0: [-squareLength / 2,  squareLength / 2, 0]
580
                              //!<   - point 1: [ squareLength / 2,  squareLength / 2, 0]
581
                              //!<   - point 2: [ squareLength / 2, -squareLength / 2, 0]
582
                              //!<   - point 3: [-squareLength / 2, -squareLength / 2, 0]
583
    SOLVEPNP_SQPNP       = 8, //!< SQPnP: A Consistently Fast and Globally OptimalSolution to the Perspective-n-Point Problem @cite Terzakis2020SQPnP
584
#ifndef CV_DOXYGEN
585
    SOLVEPNP_MAX_COUNT        //!< Used for count
586
#endif
587
};
588
589
enum { CALIB_CB_ADAPTIVE_THRESH = 1,
590
       CALIB_CB_NORMALIZE_IMAGE = 2,
591
       CALIB_CB_FILTER_QUADS    = 4,
592
       CALIB_CB_FAST_CHECK      = 8,
593
       CALIB_CB_EXHAUSTIVE      = 16,
594
       CALIB_CB_ACCURACY        = 32,
595
       CALIB_CB_LARGER          = 64,
596
       CALIB_CB_MARKER          = 128,
597
       CALIB_CB_PLAIN           = 256
598
     };
599
600
enum { CALIB_CB_SYMMETRIC_GRID  = 1,
601
       CALIB_CB_ASYMMETRIC_GRID = 2,
602
       CALIB_CB_CLUSTERING      = 4
603
     };
604
605
enum { CALIB_NINTRINSIC          = 18,
606
       CALIB_USE_INTRINSIC_GUESS = 0x00001,
607
       CALIB_FIX_ASPECT_RATIO    = 0x00002,
608
       CALIB_FIX_PRINCIPAL_POINT = 0x00004,
609
       CALIB_ZERO_TANGENT_DIST   = 0x00008,
610
       CALIB_FIX_FOCAL_LENGTH    = 0x00010,
611
       CALIB_FIX_K1              = 0x00020,
612
       CALIB_FIX_K2              = 0x00040,
613
       CALIB_FIX_K3              = 0x00080,
614
       CALIB_FIX_K4              = 0x00800,
615
       CALIB_FIX_K5              = 0x01000,
616
       CALIB_FIX_K6              = 0x02000,
617
       CALIB_RATIONAL_MODEL      = 0x04000,
618
       CALIB_THIN_PRISM_MODEL    = 0x08000,
619
       CALIB_FIX_S1_S2_S3_S4     = 0x10000,
620
       CALIB_TILTED_MODEL        = 0x40000,
621
       CALIB_FIX_TAUX_TAUY       = 0x80000,
622
       CALIB_USE_QR              = 0x100000, //!< use QR instead of SVD decomposition for solving. Faster but potentially less precise
623
       CALIB_FIX_TANGENT_DIST    = 0x200000,
624
       // only for stereo
625
       CALIB_FIX_INTRINSIC       = 0x00100,
626
       CALIB_SAME_FOCAL_LENGTH   = 0x00200,
627
       // for stereo rectification
628
       CALIB_ZERO_DISPARITY      = 0x00400,
629
       CALIB_USE_LU              = (1 << 17), //!< use LU instead of SVD decomposition for solving. much faster but potentially less precise
630
       CALIB_USE_EXTRINSIC_GUESS = (1 << 22)  //!< for stereoCalibrate
631
     };
632
633
//! the algorithm for finding fundamental matrix
634
enum { FM_7POINT = 1, //!< 7-point algorithm
635
       FM_8POINT = 2, //!< 8-point algorithm
636
       FM_LMEDS  = 4, //!< least-median algorithm. 7-point algorithm is used.
637
       FM_RANSAC = 8  //!< RANSAC algorithm. It needs at least 15 points. 7-point algorithm is used.
638
     };
639
640
enum HandEyeCalibrationMethod
641
{
642
    CALIB_HAND_EYE_TSAI         = 0, //!< A New Technique for Fully Autonomous and Efficient 3D Robotics Hand/Eye Calibration @cite Tsai89
643
    CALIB_HAND_EYE_PARK         = 1, //!< Robot Sensor Calibration: Solving AX = XB on the Euclidean Group @cite Park94
644
    CALIB_HAND_EYE_HORAUD       = 2, //!< Hand-eye Calibration @cite Horaud95
645
    CALIB_HAND_EYE_ANDREFF      = 3, //!< On-line Hand-Eye Calibration @cite Andreff99
646
    CALIB_HAND_EYE_DANIILIDIS   = 4  //!< Hand-Eye Calibration Using Dual Quaternions @cite Daniilidis98
647
};
648
649
enum RobotWorldHandEyeCalibrationMethod
650
{
651
    CALIB_ROBOT_WORLD_HAND_EYE_SHAH = 0, //!< Solving the robot-world/hand-eye calibration problem using the kronecker product @cite Shah2013SolvingTR
652
    CALIB_ROBOT_WORLD_HAND_EYE_LI   = 1  //!< Simultaneous robot-world and hand-eye calibration using dual-quaternions and kronecker product @cite Li2010SimultaneousRA
653
};
654
655
enum SamplingMethod { SAMPLING_UNIFORM=0, SAMPLING_PROGRESSIVE_NAPSAC=1, SAMPLING_NAPSAC=2,
656
        SAMPLING_PROSAC=3 };
657
enum LocalOptimMethod {LOCAL_OPTIM_NULL=0, LOCAL_OPTIM_INNER_LO=1, LOCAL_OPTIM_INNER_AND_ITER_LO=2,
658
        LOCAL_OPTIM_GC=3, LOCAL_OPTIM_SIGMA=4};
659
enum ScoreMethod {SCORE_METHOD_RANSAC=0, SCORE_METHOD_MSAC=1, SCORE_METHOD_MAGSAC=2, SCORE_METHOD_LMEDS=3};
660
enum NeighborSearchMethod { NEIGH_FLANN_KNN=0, NEIGH_GRID=1, NEIGH_FLANN_RADIUS=2 };
661
enum PolishingMethod { NONE_POLISHER=0, LSQ_POLISHER=1, MAGSAC=2, COV_POLISHER=3 };
662
663
struct CV_EXPORTS_W_SIMPLE UsacParams
664
{ // in alphabetical order
665
    CV_WRAP UsacParams();
666
    CV_PROP_RW double confidence;
667
    CV_PROP_RW bool isParallel;
668
    CV_PROP_RW int loIterations;
669
    CV_PROP_RW LocalOptimMethod loMethod;
670
    CV_PROP_RW int loSampleSize;
671
    CV_PROP_RW int maxIterations;
672
    CV_PROP_RW NeighborSearchMethod neighborsSearch;
673
    CV_PROP_RW int randomGeneratorState;
674
    CV_PROP_RW SamplingMethod sampler;
675
    CV_PROP_RW ScoreMethod score;
676
    CV_PROP_RW double threshold;
677
    CV_PROP_RW PolishingMethod final_polisher;
678
    CV_PROP_RW int final_polisher_iterations;
679
};
680
681
/** @brief Converts a rotation matrix to a rotation vector or vice versa.
682
683
@param src Input rotation vector (3x1 or 1x3) or rotation matrix (3x3).
684
@param dst Output rotation matrix (3x3) or rotation vector (3x1 or 1x3), respectively.
685
@param jacobian Optional output Jacobian matrix, 3x9 or 9x3, which is a matrix of partial
686
derivatives of the output array components with respect to the input array components.
687
688
\f[\begin{array}{l} \theta \leftarrow norm(r) \\ r  \leftarrow r/ \theta \\ R =  \cos(\theta) I + (1- \cos{\theta} ) r r^T +  \sin(\theta) \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} \end{array}\f]
689
690
Inverse transformation can be also done easily, since
691
692
\f[\sin ( \theta ) \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} = \frac{R - R^T}{2}\f]
693
694
A rotation vector is a convenient and most compact representation of a rotation matrix (since any
695
rotation matrix has just 3 degrees of freedom). The representation is used in the global 3D geometry
696
optimization procedures like @ref calibrateCamera, @ref stereoCalibrate, or @ref solvePnP .
697
698
@note More information about the computation of the derivative of a 3D rotation matrix with respect to its exponential coordinate
699
can be found in:
700
    - A Compact Formula for the Derivative of a 3-D Rotation in Exponential Coordinates, Guillermo Gallego, Anthony J. Yezzi @cite Gallego2014ACF
701
702
@note Useful information on SE(3) and Lie Groups can be found in:
703
    - A tutorial on SE(3) transformation parameterizations and on-manifold optimization, Jose-Luis Blanco @cite blanco2010tutorial
704
    - Lie Groups for 2D and 3D Transformation, Ethan Eade @cite Eade17
705
    - A micro Lie theory for state estimation in robotics, Joan Solà, Jérémie Deray, Dinesh Atchuthan @cite Sol2018AML
706
 */
707
CV_EXPORTS_W void Rodrigues( InputArray src, OutputArray dst, OutputArray jacobian = noArray() );
708
709
710
711
/** Levenberg-Marquardt solver. Starting with the specified vector of parameters it
712
    optimizes the target vector criteria "err"
713
    (finds local minima of each target vector component absolute value).
714
715
    When needed, it calls user-provided callback.
716
*/
717
class CV_EXPORTS LMSolver : public Algorithm
718
{
719
public:
720
    class CV_EXPORTS Callback
721
    {
722
    public:
723
0
        virtual ~Callback() {}
724
        /**
725
         computes error and Jacobian for the specified vector of parameters
726
727
         @param param the current vector of parameters
728
         @param err output vector of errors: err_i = actual_f_i - ideal_f_i
729
         @param J output Jacobian: J_ij = d(ideal_f_i)/d(param_j)
730
731
         when J=noArray(), it means that it does not need to be computed.
732
         Dimensionality of error vector and param vector can be different.
733
         The callback should explicitly allocate (with "create" method) each output array
734
         (unless it's noArray()).
735
        */
736
        virtual bool compute(InputArray param, OutputArray err, OutputArray J) const = 0;
737
    };
738
739
    /**
740
       Runs Levenberg-Marquardt algorithm using the passed vector of parameters as the start point.
741
       The final vector of parameters (whether the algorithm converged or not) is stored at the same
742
       vector. The method returns the number of iterations used. If it's equal to the previously specified
743
       maxIters, there is a big chance the algorithm did not converge.
744
745
       @param param initial/final vector of parameters.
746
747
       Note that the dimensionality of parameter space is defined by the size of param vector,
748
       and the dimensionality of optimized criteria is defined by the size of err vector
749
       computed by the callback.
750
    */
751
    virtual int run(InputOutputArray param) const = 0;
752
753
    /**
754
       Sets the maximum number of iterations
755
       @param maxIters the number of iterations
756
    */
757
    virtual void setMaxIters(int maxIters) = 0;
758
    /**
759
       Retrieves the current maximum number of iterations
760
    */
761
    virtual int getMaxIters() const = 0;
762
763
    /**
764
       Creates Levenberg-Marquard solver
765
766
       @param cb callback
767
       @param maxIters maximum number of iterations that can be further
768
         modified using setMaxIters() method.
769
    */
770
    static Ptr<LMSolver> create(const Ptr<LMSolver::Callback>& cb, int maxIters);
771
    static Ptr<LMSolver> create(const Ptr<LMSolver::Callback>& cb, int maxIters, double eps);
772
};
773
774
775
776
/** @example samples/cpp/tutorial_code/features2D/Homography/pose_from_homography.cpp
777
An example program about pose estimation from coplanar points
778
779
Check @ref tutorial_homography "the corresponding tutorial" for more details
780
*/
781
782
/** @brief Finds a perspective transformation between two planes.
783
784
@param srcPoints Coordinates of the points in the original plane, a matrix of the type CV_32FC2
785
or vector\<Point2f\> .
786
@param dstPoints Coordinates of the points in the target plane, a matrix of the type CV_32FC2 or
787
a vector\<Point2f\> .
788
@param method Method used to compute a homography matrix. The following methods are possible:
789
-   **0** - a regular method using all the points, i.e., the least squares method
790
-   @ref RANSAC - RANSAC-based robust method
791
-   @ref LMEDS - Least-Median robust method
792
-   @ref RHO - PROSAC-based robust method
793
@param ransacReprojThreshold Maximum allowed reprojection error to treat a point pair as an inlier
794
(used in the RANSAC and RHO methods only). That is, if
795
\f[\| \texttt{dstPoints} _i -  \texttt{convertPointsHomogeneous} ( \texttt{H} \cdot \texttt{srcPoints} _i) \|_2  >  \texttt{ransacReprojThreshold}\f]
796
then the point \f$i\f$ is considered as an outlier. If srcPoints and dstPoints are measured in pixels,
797
it usually makes sense to set this parameter somewhere in the range of 1 to 10.
798
@param mask Optional output mask set by a robust method ( RANSAC or LMeDS ). Note that the input
799
mask values are ignored.
800
@param maxIters The maximum number of RANSAC iterations.
801
@param confidence Confidence level, between 0 and 1.
802
803
The function finds and returns the perspective transformation \f$H\f$ between the source and the
804
destination planes:
805
806
\f[s_i  \vecthree{x'_i}{y'_i}{1} \sim H  \vecthree{x_i}{y_i}{1}\f]
807
808
so that the back-projection error
809
810
\f[\sum _i \left ( x'_i- \frac{h_{11} x_i + h_{12} y_i + h_{13}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2+ \left ( y'_i- \frac{h_{21} x_i + h_{22} y_i + h_{23}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2\f]
811
812
is minimized. If the parameter method is set to the default value 0, the function uses all the point
813
pairs to compute an initial homography estimate with a simple least-squares scheme.
814
815
However, if not all of the point pairs ( \f$srcPoints_i\f$, \f$dstPoints_i\f$ ) fit the rigid perspective
816
transformation (that is, there are some outliers), this initial estimate will be poor. In this case,
817
you can use one of the three robust methods. The methods RANSAC, LMeDS and RHO try many different
818
random subsets of the corresponding point pairs (of four pairs each, collinear pairs are discarded), estimate the homography matrix
819
using this subset and a simple least-squares algorithm, and then compute the quality/goodness of the
820
computed homography (which is the number of inliers for RANSAC or the least median re-projection error for
821
LMeDS). The best subset is then used to produce the initial estimate of the homography matrix and
822
the mask of inliers/outliers.
823
824
Regardless of the method, robust or not, the computed homography matrix is refined further (using
825
inliers only in case of a robust method) with the Levenberg-Marquardt method to reduce the
826
re-projection error even more.
827
828
The methods RANSAC and RHO can handle practically any ratio of outliers but need a threshold to
829
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
830
correctly only when there are more than 50% of inliers. Finally, if there are no outliers and the
831
noise is rather small, use the default method (method=0).
832
833
The function is used to find initial intrinsic and extrinsic matrices. Homography matrix is
834
determined up to a scale. If \f$h_{33}\f$ is non-zero, the matrix is normalized so that \f$h_{33}=1\f$.
835
@note Whenever an \f$H\f$ matrix cannot be estimated, an empty one will be returned.
836
837
@sa
838
getAffineTransform, estimateAffine2D, estimateAffinePartial2D, getPerspectiveTransform, warpPerspective,
839
perspectiveTransform
840
 */
841
CV_EXPORTS_W Mat findHomography( InputArray srcPoints, InputArray dstPoints,
842
                                 int method = 0, double ransacReprojThreshold = 3,
843
                                 OutputArray mask=noArray(), const int maxIters = 2000,
844
                                 const double confidence = 0.995);
845
846
/** @overload */
847
CV_EXPORTS Mat findHomography( InputArray srcPoints, InputArray dstPoints,
848
                               OutputArray mask, int method = 0, double ransacReprojThreshold = 3 );
849
850
851
CV_EXPORTS_W Mat findHomography(InputArray srcPoints, InputArray dstPoints, OutputArray mask,
852
                   const UsacParams &params);
853
854
/** @brief Computes an RQ decomposition of 3x3 matrices.
855
856
@param src 3x3 input matrix.
857
@param mtxR Output 3x3 upper-triangular matrix.
858
@param mtxQ Output 3x3 orthogonal matrix.
859
@param Qx Optional output 3x3 rotation matrix around x-axis.
860
@param Qy Optional output 3x3 rotation matrix around y-axis.
861
@param Qz Optional output 3x3 rotation matrix around z-axis.
862
863
The function computes a RQ decomposition using the given rotations. This function is used in
864
#decomposeProjectionMatrix to decompose the left 3x3 submatrix of a projection matrix into a camera
865
and a rotation matrix.
866
867
It optionally returns three rotation matrices, one for each axis, and the three Euler angles in
868
degrees (as the return value) that could be used in OpenGL. Note, there is always more than one
869
sequence of rotations about the three principal axes that results in the same orientation of an
870
object, e.g. see @cite Slabaugh . Returned three rotation matrices and corresponding three Euler angles
871
are only one of the possible solutions.
872
 */
873
CV_EXPORTS_W Vec3d RQDecomp3x3( InputArray src, OutputArray mtxR, OutputArray mtxQ,
874
                                OutputArray Qx = noArray(),
875
                                OutputArray Qy = noArray(),
876
                                OutputArray Qz = noArray());
877
878
/** @brief Decomposes a projection matrix into a rotation matrix and a camera intrinsic matrix.
879
880
@param projMatrix 3x4 input projection matrix P.
881
@param cameraMatrix Output 3x3 camera intrinsic matrix \f$\cameramatrix{A}\f$.
882
@param rotMatrix Output 3x3 external rotation matrix R.
883
@param transVect Output 4x1 translation vector T.
884
@param rotMatrixX Optional 3x3 rotation matrix around x-axis.
885
@param rotMatrixY Optional 3x3 rotation matrix around y-axis.
886
@param rotMatrixZ Optional 3x3 rotation matrix around z-axis.
887
@param eulerAngles Optional three-element vector containing three Euler angles of rotation in
888
degrees.
889
890
The function computes a decomposition of a projection matrix into a calibration and a rotation
891
matrix and the position of a camera.
892
893
It optionally returns three rotation matrices, one for each axis, and three Euler angles that could
894
be used in OpenGL. Note, there is always more than one sequence of rotations about the three
895
principal axes that results in the same orientation of an object, e.g. see @cite Slabaugh . Returned
896
three rotation matrices and corresponding three Euler angles are only one of the possible solutions.
897
898
The function is based on #RQDecomp3x3 .
899
 */
900
CV_EXPORTS_W void decomposeProjectionMatrix( InputArray projMatrix, OutputArray cameraMatrix,
901
                                             OutputArray rotMatrix, OutputArray transVect,
902
                                             OutputArray rotMatrixX = noArray(),
903
                                             OutputArray rotMatrixY = noArray(),
904
                                             OutputArray rotMatrixZ = noArray(),
905
                                             OutputArray eulerAngles =noArray() );
906
907
/** @brief Computes partial derivatives of the matrix product for each multiplied matrix.
908
909
@param A First multiplied matrix.
910
@param B Second multiplied matrix.
911
@param dABdA First output derivative matrix d(A\*B)/dA of size
912
\f$\texttt{A.rows*B.cols} \times {A.rows*A.cols}\f$ .
913
@param dABdB Second output derivative matrix d(A\*B)/dB of size
914
\f$\texttt{A.rows*B.cols} \times {B.rows*B.cols}\f$ .
915
916
The function computes partial derivatives of the elements of the matrix product \f$A*B\f$ with regard to
917
the elements of each of the two input matrices. The function is used to compute the Jacobian
918
matrices in #stereoCalibrate but can also be used in any other similar optimization function.
919
 */
920
CV_EXPORTS_W void matMulDeriv( InputArray A, InputArray B, OutputArray dABdA, OutputArray dABdB );
921
922
/** @brief Combines two rotation-and-shift transformations.
923
924
@param rvec1 First rotation vector.
925
@param tvec1 First translation vector.
926
@param rvec2 Second rotation vector.
927
@param tvec2 Second translation vector.
928
@param rvec3 Output rotation vector of the superposition.
929
@param tvec3 Output translation vector of the superposition.
930
@param dr3dr1 Optional output derivative of rvec3 with regard to rvec1
931
@param dr3dt1 Optional output derivative of rvec3 with regard to tvec1
932
@param dr3dr2 Optional output derivative of rvec3 with regard to rvec2
933
@param dr3dt2 Optional output derivative of rvec3 with regard to tvec2
934
@param dt3dr1 Optional output derivative of tvec3 with regard to rvec1
935
@param dt3dt1 Optional output derivative of tvec3 with regard to tvec1
936
@param dt3dr2 Optional output derivative of tvec3 with regard to rvec2
937
@param dt3dt2 Optional output derivative of tvec3 with regard to tvec2
938
939
The functions compute:
940
941
\f[\begin{array}{l} \texttt{rvec3} =  \mathrm{rodrigues} ^{-1} \left ( \mathrm{rodrigues} ( \texttt{rvec2} )  \cdot \mathrm{rodrigues} ( \texttt{rvec1} ) \right )  \\ \texttt{tvec3} =  \mathrm{rodrigues} ( \texttt{rvec2} )  \cdot \texttt{tvec1} +  \texttt{tvec2} \end{array} ,\f]
942
943
where \f$\mathrm{rodrigues}\f$ denotes a rotation vector to a rotation matrix transformation, and
944
\f$\mathrm{rodrigues}^{-1}\f$ denotes the inverse transformation. See #Rodrigues for details.
945
946
Also, the functions can compute the derivatives of the output vectors with regards to the input
947
vectors (see #matMulDeriv ). The functions are used inside #stereoCalibrate but can also be used in
948
your own code where Levenberg-Marquardt or another gradient-based solver is used to optimize a
949
function that contains a matrix multiplication.
950
 */
951
CV_EXPORTS_W void composeRT( InputArray rvec1, InputArray tvec1,
952
                             InputArray rvec2, InputArray tvec2,
953
                             OutputArray rvec3, OutputArray tvec3,
954
                             OutputArray dr3dr1 = noArray(), OutputArray dr3dt1 = noArray(),
955
                             OutputArray dr3dr2 = noArray(), OutputArray dr3dt2 = noArray(),
956
                             OutputArray dt3dr1 = noArray(), OutputArray dt3dt1 = noArray(),
957
                             OutputArray dt3dr2 = noArray(), OutputArray dt3dt2 = noArray() );
958
959
/** @brief Projects 3D points to an image plane.
960
961
@param objectPoints Array of object points expressed wrt. the world coordinate frame. A 3xN/Nx3
962
1-channel or 1xN/Nx1 3-channel (or vector\<Point3f\> ), where N is the number of points in the view.
963
@param rvec The rotation vector (@ref Rodrigues) that, together with tvec, performs a change of
964
basis from world to camera coordinate system, see @ref calibrateCamera for details.
965
@param tvec The translation vector, see parameter description above.
966
@param cameraMatrix Camera intrinsic matrix \f$\cameramatrix{A}\f$ .
967
@param distCoeffs Input vector of distortion coefficients
968
\f$\distcoeffs\f$ . If the vector is empty, the zero distortion coefficients are assumed.
969
@param imagePoints Output array of image points, 1xN/Nx1 2-channel, or
970
vector\<Point2f\> .
971
@param jacobian Optional output 2Nx(10+\<numDistCoeffs\>) jacobian matrix of derivatives of image
972
points with respect to components of the rotation vector, translation vector, focal lengths,
973
coordinates of the principal point and the distortion coefficients. In the old interface different
974
components of the jacobian are returned via different output parameters.
975
@param aspectRatio Optional "fixed aspect ratio" parameter. If the parameter is not 0, the
976
function assumes that the aspect ratio (\f$f_x / f_y\f$) is fixed and correspondingly adjusts the
977
jacobian matrix.
978
979
The function computes the 2D projections of 3D points to the image plane, given intrinsic and
980
extrinsic camera parameters. Optionally, the function computes Jacobians -matrices of partial
981
derivatives of image points coordinates (as functions of all the input parameters) with respect to
982
the particular parameters, intrinsic and/or extrinsic. The Jacobians are used during the global
983
optimization in @ref calibrateCamera, @ref solvePnP, and @ref stereoCalibrate. The function itself
984
can also be used to compute a re-projection error, given the current intrinsic and extrinsic
985
parameters.
986
987
@note By setting rvec = tvec = \f$[0, 0, 0]\f$, or by setting cameraMatrix to a 3x3 identity matrix,
988
or by passing zero distortion coefficients, one can get various useful partial cases of the
989
function. This means, one can compute the distorted coordinates for a sparse set of points or apply
990
a perspective transformation (and also compute the derivatives) in the ideal zero-distortion setup.
991
 */
992
CV_EXPORTS_W void projectPoints( InputArray objectPoints,
993
                                 InputArray rvec, InputArray tvec,
994
                                 InputArray cameraMatrix, InputArray distCoeffs,
995
                                 OutputArray imagePoints,
996
                                 OutputArray jacobian = noArray(),
997
                                 double aspectRatio = 0 );
998
999
/** @example samples/cpp/tutorial_code/features2D/Homography/homography_from_camera_displacement.cpp
1000
An example program about homography from the camera displacement
1001
1002
Check @ref tutorial_homography "the corresponding tutorial" for more details
1003
*/
1004
1005
/** @brief Finds an object pose \f$ {}^{c}\mathbf{T}_o \f$ from 3D-2D point correspondences:
1006
1007
![Perspective projection, from object to camera frame](pics/pinhole_homogeneous_transformation.png){ width=50% }
1008
1009
@see @ref calib3d_solvePnP
1010
1011
This function returns the rotation and the translation vectors that transform a 3D point expressed in the object
1012
coordinate frame to the camera coordinate frame, using different methods:
1013
- P3P methods (@ref SOLVEPNP_P3P, @ref SOLVEPNP_AP3P): need 4 input points to return a unique solution.
1014
- @ref SOLVEPNP_IPPE Input points must be >= 4 and object points must be coplanar.
1015
- @ref SOLVEPNP_IPPE_SQUARE Special case suitable for marker pose estimation.
1016
Number of input points must be 4. Object points must be defined in the following order:
1017
  - point 0: [-squareLength / 2,  squareLength / 2, 0]
1018
  - point 1: [ squareLength / 2,  squareLength / 2, 0]
1019
  - point 2: [ squareLength / 2, -squareLength / 2, 0]
1020
  - point 3: [-squareLength / 2, -squareLength / 2, 0]
1021
- for all the other flags, number of input points must be >= 4 and object points can be in any configuration.
1022
1023
@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or
1024
1xN/Nx1 3-channel, where N is the number of points. vector\<Point3d\> can be also passed here.
1025
@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
1026
where N is the number of points. vector\<Point2d\> can be also passed here.
1027
@param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ .
1028
@param distCoeffs Input vector of distortion coefficients
1029
\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are
1030
assumed.
1031
@param rvec Output rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from
1032
the model coordinate system to the camera coordinate system.
1033
@param tvec Output translation vector.
1034
@param useExtrinsicGuess Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses
1035
the provided rvec and tvec values as initial approximations of the rotation and translation
1036
vectors, respectively, and further optimizes them.
1037
@param flags Method for solving a PnP problem: see @ref calib3d_solvePnP_flags
1038
1039
More information about Perspective-n-Points is described in @ref calib3d_solvePnP
1040
1041
@note
1042
   -   An example of how to use solvePnP for planar augmented reality can be found at
1043
        opencv_source_code/samples/python/plane_ar.py
1044
   -   If you are using Python:
1045
        - Numpy array slices won't work as input because solvePnP requires contiguous
1046
        arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of
1047
        modules/calib3d/src/solvepnp.cpp version 2.4.9)
1048
        - The P3P algorithm requires image points to be in an array of shape (N,1,2) due
1049
        to its calling of #undistortPoints (around line 75 of modules/calib3d/src/solvepnp.cpp version 2.4.9)
1050
        which requires 2-channel information.
1051
        - Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of
1052
        it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints =
1053
        np.ascontiguousarray(D[:,:2]).reshape((N,1,2))
1054
   -   The methods @ref SOLVEPNP_DLS and @ref SOLVEPNP_UPNP cannot be used as the current implementations are
1055
       unstable and sometimes give completely wrong results. If you pass one of these two
1056
       flags, @ref SOLVEPNP_EPNP method will be used instead.
1057
   -   The minimum number of points is 4 in the general case. In the case of @ref SOLVEPNP_P3P and @ref SOLVEPNP_AP3P
1058
       methods, it is required to use exactly 4 points (the first 3 points are used to estimate all the solutions
1059
       of the P3P problem, the last one is used to retain the best solution that minimizes the reprojection error).
1060
   -   With @ref SOLVEPNP_ITERATIVE method and `useExtrinsicGuess=true`, the minimum number of points is 3 (3 points
1061
       are sufficient to compute a pose but there are up to 4 solutions). The initial solution should be close to the
1062
       global solution to converge. The function returns true if some solution is found. User code is responsible for
1063
       solution quality assessment.
1064
   -   With @ref SOLVEPNP_IPPE input points must be >= 4 and object points must be coplanar.
1065
   -   With @ref SOLVEPNP_IPPE_SQUARE this is a special case suitable for marker pose estimation.
1066
       Number of input points must be 4. Object points must be defined in the following order:
1067
         - point 0: [-squareLength / 2,  squareLength / 2, 0]
1068
         - point 1: [ squareLength / 2,  squareLength / 2, 0]
1069
         - point 2: [ squareLength / 2, -squareLength / 2, 0]
1070
         - point 3: [-squareLength / 2, -squareLength / 2, 0]
1071
   -   With @ref SOLVEPNP_SQPNP input points must be >= 3
1072
 */
1073
CV_EXPORTS_W bool solvePnP( InputArray objectPoints, InputArray imagePoints,
1074
                            InputArray cameraMatrix, InputArray distCoeffs,
1075
                            OutputArray rvec, OutputArray tvec,
1076
                            bool useExtrinsicGuess = false, int flags = SOLVEPNP_ITERATIVE );
1077
1078
/** @brief Finds an object pose \f$ {}^{c}\mathbf{T}_o \f$ from 3D-2D point correspondences using the RANSAC scheme to deal with bad matches.
1079
1080
![Perspective projection, from object to camera frame](pics/pinhole_homogeneous_transformation.png){ width=50% }
1081
1082
@see @ref calib3d_solvePnP
1083
1084
@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or
1085
1xN/Nx1 3-channel, where N is the number of points. vector\<Point3d\> can be also passed here.
1086
@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
1087
where N is the number of points. vector\<Point2d\> can be also passed here.
1088
@param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ .
1089
@param distCoeffs Input vector of distortion coefficients
1090
\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are
1091
assumed.
1092
@param rvec Output rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from
1093
the model coordinate system to the camera coordinate system.
1094
@param tvec Output translation vector.
1095
@param useExtrinsicGuess Parameter used for @ref SOLVEPNP_ITERATIVE. If true (1), the function uses
1096
the provided rvec and tvec values as initial approximations of the rotation and translation
1097
vectors, respectively, and further optimizes them.
1098
@param iterationsCount Number of iterations.
1099
@param reprojectionError Inlier threshold value used by the RANSAC procedure. The parameter value
1100
is the maximum allowed distance between the observed and computed point projections to consider it
1101
an inlier.
1102
@param confidence The probability that the algorithm produces a useful result.
1103
@param inliers Output vector that contains indices of inliers in objectPoints and imagePoints .
1104
@param flags Method for solving a PnP problem (see @ref solvePnP ).
1105
1106
The function estimates an object pose given a set of object points, their corresponding image
1107
projections, as well as the camera intrinsic matrix and the distortion coefficients. This function finds such
1108
a pose that minimizes reprojection error, that is, the sum of squared distances between the observed
1109
projections imagePoints and the projected (using @ref projectPoints ) objectPoints. The use of RANSAC
1110
makes the function resistant to outliers.
1111
1112
@note
1113
   -   An example of how to use solvePnPRansac for object detection can be found at
1114
        @ref tutorial_real_time_pose
1115
   -   The default method used to estimate the camera pose for the Minimal Sample Sets step
1116
       is #SOLVEPNP_EPNP. Exceptions are:
1117
         - if you choose #SOLVEPNP_P3P or #SOLVEPNP_AP3P, these methods will be used.
1118
         - if the number of input points is equal to 4, #SOLVEPNP_P3P is used.
1119
   -   The method used to estimate the camera pose using all the inliers is defined by the
1120
       flags parameters unless it is equal to #SOLVEPNP_P3P or #SOLVEPNP_AP3P. In this case,
1121
       the method #SOLVEPNP_EPNP will be used instead.
1122
 */
1123
CV_EXPORTS_W bool solvePnPRansac( InputArray objectPoints, InputArray imagePoints,
1124
                                  InputArray cameraMatrix, InputArray distCoeffs,
1125
                                  OutputArray rvec, OutputArray tvec,
1126
                                  bool useExtrinsicGuess = false, int iterationsCount = 100,
1127
                                  float reprojectionError = 8.0, double confidence = 0.99,
1128
                                  OutputArray inliers = noArray(), int flags = SOLVEPNP_ITERATIVE );
1129
1130
1131
/*
1132
Finds rotation and translation vector.
1133
If cameraMatrix is given then run P3P. Otherwise run linear P6P and output cameraMatrix too.
1134
*/
1135
CV_EXPORTS_W bool solvePnPRansac( InputArray objectPoints, InputArray imagePoints,
1136
                     InputOutputArray cameraMatrix, InputArray distCoeffs,
1137
                     OutputArray rvec, OutputArray tvec, OutputArray inliers,
1138
                     const UsacParams &params=UsacParams());
1139
1140
/** @brief Finds an object pose \f$ {}^{c}\mathbf{T}_o \f$ from **3** 3D-2D point correspondences.
1141
1142
![Perspective projection, from object to camera frame](pics/pinhole_homogeneous_transformation.png){ width=50% }
1143
1144
@see @ref calib3d_solvePnP
1145
1146
@param objectPoints Array of object points in the object coordinate space, 3x3 1-channel or
1147
1x3/3x1 3-channel. vector\<Point3f\> can be also passed here.
1148
@param imagePoints Array of corresponding image points, 3x2 1-channel or 1x3/3x1 2-channel.
1149
 vector\<Point2f\> can be also passed here.
1150
@param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ .
1151
@param distCoeffs Input vector of distortion coefficients
1152
\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are
1153
assumed.
1154
@param rvecs Output rotation vectors (see @ref Rodrigues ) that, together with tvecs, brings points from
1155
the model coordinate system to the camera coordinate system. A P3P problem has up to 4 solutions.
1156
@param tvecs Output translation vectors.
1157
@param flags Method for solving a P3P problem:
1158
-   @ref SOLVEPNP_P3P Method is based on the paper of Ding, Y., Yang, J., Larsson, V., Olsson, C., & â„«strom, K.
1159
"Revisiting the P3P Problem" (@cite ding2023revisiting).
1160
-   @ref SOLVEPNP_AP3P Method is based on the paper of T. Ke and S. Roumeliotis.
1161
"An Efficient Algebraic Solution to the Perspective-Three-Point Problem" (@cite Ke17).
1162
1163
The function estimates the object pose given 3 object points, their corresponding image
1164
projections, as well as the camera intrinsic matrix and the distortion coefficients.
1165
1166
@note
1167
The solutions are sorted by reprojection errors (lowest to highest).
1168
 */
1169
CV_EXPORTS_W int solveP3P( InputArray objectPoints, InputArray imagePoints,
1170
                           InputArray cameraMatrix, InputArray distCoeffs,
1171
                           OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
1172
                           int flags );
1173
1174
/** @brief Refine a pose (the translation and the rotation that transform a 3D point expressed in the object coordinate frame
1175
to the camera coordinate frame) from a 3D-2D point correspondences and starting from an initial solution.
1176
1177
@see @ref calib3d_solvePnP
1178
1179
@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or 1xN/Nx1 3-channel,
1180
where N is the number of points. vector\<Point3d\> can also be passed here.
1181
@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
1182
where N is the number of points. vector\<Point2d\> can also be passed here.
1183
@param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ .
1184
@param distCoeffs Input vector of distortion coefficients
1185
\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are
1186
assumed.
1187
@param rvec Input/Output rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from
1188
the model coordinate system to the camera coordinate system. Input values are used as an initial solution.
1189
@param tvec Input/Output translation vector. Input values are used as an initial solution.
1190
@param criteria Criteria when to stop the Levenberg-Marquard iterative algorithm.
1191
1192
The function refines the object pose given at least 3 object points, their corresponding image
1193
projections, an initial solution for the rotation and translation vector,
1194
as well as the camera intrinsic matrix and the distortion coefficients.
1195
The function minimizes the projection error with respect to the rotation and the translation vectors, according
1196
to a Levenberg-Marquardt iterative minimization @cite Madsen04 @cite Eade13 process.
1197
 */
1198
CV_EXPORTS_W void solvePnPRefineLM( InputArray objectPoints, InputArray imagePoints,
1199
                                    InputArray cameraMatrix, InputArray distCoeffs,
1200
                                    InputOutputArray rvec, InputOutputArray tvec,
1201
                                    TermCriteria criteria = TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 20, FLT_EPSILON));
1202
1203
/** @brief Refine a pose (the translation and the rotation that transform a 3D point expressed in the object coordinate frame
1204
to the camera coordinate frame) from a 3D-2D point correspondences and starting from an initial solution.
1205
1206
@see @ref calib3d_solvePnP
1207
1208
@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or 1xN/Nx1 3-channel,
1209
where N is the number of points. vector\<Point3d\> can also be passed here.
1210
@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
1211
where N is the number of points. vector\<Point2d\> can also be passed here.
1212
@param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ .
1213
@param distCoeffs Input vector of distortion coefficients
1214
\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are
1215
assumed.
1216
@param rvec Input/Output rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from
1217
the model coordinate system to the camera coordinate system. Input values are used as an initial solution.
1218
@param tvec Input/Output translation vector. Input values are used as an initial solution.
1219
@param criteria Criteria when to stop the Levenberg-Marquard iterative algorithm.
1220
@param VVSlambda Gain for the virtual visual servoing control law, equivalent to the \f$\alpha\f$
1221
gain in the Damped Gauss-Newton formulation.
1222
1223
The function refines the object pose given at least 3 object points, their corresponding image
1224
projections, an initial solution for the rotation and translation vector,
1225
as well as the camera intrinsic matrix and the distortion coefficients.
1226
The function minimizes the projection error with respect to the rotation and the translation vectors, using a
1227
virtual visual servoing (VVS) @cite Chaumette06 @cite Marchand16 scheme.
1228
 */
1229
CV_EXPORTS_W void solvePnPRefineVVS( InputArray objectPoints, InputArray imagePoints,
1230
                                     InputArray cameraMatrix, InputArray distCoeffs,
1231
                                     InputOutputArray rvec, InputOutputArray tvec,
1232
                                     TermCriteria criteria = TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 20, FLT_EPSILON),
1233
                                     double VVSlambda = 1);
1234
1235
/** @brief Finds an object pose \f$ {}^{c}\mathbf{T}_o \f$ from 3D-2D point correspondences.
1236
1237
![Perspective projection, from object to camera frame](pics/pinhole_homogeneous_transformation.png){ width=50% }
1238
1239
@see @ref calib3d_solvePnP
1240
1241
This function returns a list of all the possible solutions (a solution is a <rotation vector, translation vector>
1242
couple), depending on the number of input points and the chosen method:
1243
- P3P methods (@ref SOLVEPNP_P3P, @ref SOLVEPNP_AP3P): 3 or 4 input points. Number of returned solutions can be between 0 and 4 with 3 input points.
1244
- @ref SOLVEPNP_IPPE Input points must be >= 4 and object points must be coplanar. Returns 2 solutions.
1245
- @ref SOLVEPNP_IPPE_SQUARE Special case suitable for marker pose estimation.
1246
Number of input points must be 4 and 2 solutions are returned. Object points must be defined in the following order:
1247
  - point 0: [-squareLength / 2,  squareLength / 2, 0]
1248
  - point 1: [ squareLength / 2,  squareLength / 2, 0]
1249
  - point 2: [ squareLength / 2, -squareLength / 2, 0]
1250
  - point 3: [-squareLength / 2, -squareLength / 2, 0]
1251
- for all the other flags, number of input points must be >= 4 and object points can be in any configuration.
1252
Only 1 solution is returned.
1253
1254
@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or
1255
1xN/Nx1 3-channel, where N is the number of points. vector\<Point3d\> can be also passed here.
1256
@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
1257
where N is the number of points. vector\<Point2d\> can be also passed here.
1258
@param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ .
1259
@param distCoeffs Input vector of distortion coefficients
1260
\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are
1261
assumed.
1262
@param rvecs Vector of output rotation vectors (see @ref Rodrigues ) that, together with tvecs, brings points from
1263
the model coordinate system to the camera coordinate system.
1264
@param tvecs Vector of output translation vectors.
1265
@param useExtrinsicGuess Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses
1266
the provided rvec and tvec values as initial approximations of the rotation and translation
1267
vectors, respectively, and further optimizes them.
1268
@param flags Method for solving a PnP problem: see @ref calib3d_solvePnP_flags
1269
@param rvec Rotation vector used to initialize an iterative PnP refinement algorithm, when flag is @ref SOLVEPNP_ITERATIVE
1270
and useExtrinsicGuess is set to true.
1271
@param tvec Translation vector used to initialize an iterative PnP refinement algorithm, when flag is @ref SOLVEPNP_ITERATIVE
1272
and useExtrinsicGuess is set to true.
1273
@param reprojectionError Optional vector of reprojection error, that is the RMS error
1274
(\f$ \text{RMSE} = \sqrt{\frac{\sum_{i}^{N} \left ( \hat{y_i} - y_i \right )^2}{N}} \f$) between the input image points
1275
and the 3D object points projected with the estimated pose.
1276
1277
More information is described in @ref calib3d_solvePnP
1278
1279
@note
1280
   -   An example of how to use solvePnP for planar augmented reality can be found at
1281
        opencv_source_code/samples/python/plane_ar.py
1282
   -   If you are using Python:
1283
        - Numpy array slices won't work as input because solvePnP requires contiguous
1284
        arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of
1285
        modules/calib3d/src/solvepnp.cpp version 2.4.9)
1286
        - The P3P algorithm requires image points to be in an array of shape (N,1,2) due
1287
        to its calling of #undistortPoints (around line 75 of modules/calib3d/src/solvepnp.cpp version 2.4.9)
1288
        which requires 2-channel information.
1289
        - Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of
1290
        it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints =
1291
        np.ascontiguousarray(D[:,:2]).reshape((N,1,2))
1292
   -   The methods @ref SOLVEPNP_DLS and @ref SOLVEPNP_UPNP cannot be used as the current implementations are
1293
       unstable and sometimes give completely wrong results. If you pass one of these two
1294
       flags, @ref SOLVEPNP_EPNP method will be used instead.
1295
   -   The minimum number of points is 4 in the general case. In the case of @ref SOLVEPNP_P3P and @ref SOLVEPNP_AP3P
1296
       methods, it is required to use exactly 4 points (the first 3 points are used to estimate all the solutions
1297
       of the P3P problem, the last one is used to retain the best solution that minimizes the reprojection error).
1298
   -   With @ref SOLVEPNP_ITERATIVE method and `useExtrinsicGuess=true`, the minimum number of points is 3 (3 points
1299
       are sufficient to compute a pose but there are up to 4 solutions). The initial solution should be close to the
1300
       global solution to converge.
1301
   -   With @ref SOLVEPNP_IPPE input points must be >= 4 and object points must be coplanar.
1302
   -   With @ref SOLVEPNP_IPPE_SQUARE this is a special case suitable for marker pose estimation.
1303
       Number of input points must be 4. Object points must be defined in the following order:
1304
         - point 0: [-squareLength / 2,  squareLength / 2, 0]
1305
         - point 1: [ squareLength / 2,  squareLength / 2, 0]
1306
         - point 2: [ squareLength / 2, -squareLength / 2, 0]
1307
         - point 3: [-squareLength / 2, -squareLength / 2, 0]
1308
   -   With @ref SOLVEPNP_SQPNP input points must be >= 3
1309
 */
1310
CV_EXPORTS_W int solvePnPGeneric( InputArray objectPoints, InputArray imagePoints,
1311
                                  InputArray cameraMatrix, InputArray distCoeffs,
1312
                                  OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
1313
                                  bool useExtrinsicGuess = false, SolvePnPMethod flags = SOLVEPNP_ITERATIVE,
1314
                                  InputArray rvec = noArray(), InputArray tvec = noArray(),
1315
                                  OutputArray reprojectionError = noArray() );
1316
1317
/** @brief Finds an initial camera intrinsic matrix from 3D-2D point correspondences.
1318
1319
@param objectPoints Vector of vectors of the calibration pattern points in the calibration pattern
1320
coordinate space. In the old interface all the per-view vectors are concatenated. See
1321
#calibrateCamera for details.
1322
@param imagePoints Vector of vectors of the projections of the calibration pattern points. In the
1323
old interface all the per-view vectors are concatenated.
1324
@param imageSize Image size in pixels used to initialize the principal point.
1325
@param aspectRatio If it is zero or negative, both \f$f_x\f$ and \f$f_y\f$ are estimated independently.
1326
Otherwise, \f$f_x = f_y \cdot \texttt{aspectRatio}\f$ .
1327
1328
The function estimates and returns an initial camera intrinsic matrix for the camera calibration process.
1329
Currently, the function only supports planar calibration patterns, which are patterns where each
1330
object point has z-coordinate =0.
1331
 */
1332
CV_EXPORTS_W Mat initCameraMatrix2D( InputArrayOfArrays objectPoints,
1333
                                     InputArrayOfArrays imagePoints,
1334
                                     Size imageSize, double aspectRatio = 1.0 );
1335
1336
/** @brief Finds the positions of internal corners of the chessboard.
1337
1338
@param image Source chessboard view. It must be an 8-bit grayscale or color image.
1339
@param patternSize Number of inner corners per a chessboard row and column
1340
( patternSize = cv::Size(points_per_row,points_per_colum) = cv::Size(columns,rows) ).
1341
@param corners Output array of detected corners.
1342
@param flags Various operation flags that can be zero or a combination of the following values:
1343
-   @ref CALIB_CB_ADAPTIVE_THRESH Use adaptive thresholding to convert the image to black
1344
and white, rather than a fixed threshold level (computed from the average image brightness).
1345
-   @ref CALIB_CB_NORMALIZE_IMAGE Normalize the image gamma with #equalizeHist before
1346
applying fixed or adaptive thresholding.
1347
-   @ref CALIB_CB_FILTER_QUADS Use additional criteria (like contour area, perimeter,
1348
square-like shape) to filter out false quads extracted at the contour retrieval stage.
1349
-   @ref CALIB_CB_FAST_CHECK Run a fast check on the image that looks for chessboard corners,
1350
and shortcut the call if none is found. This can drastically speed up the call in the
1351
degenerate condition when no chessboard is observed.
1352
-   @ref CALIB_CB_PLAIN All other flags are ignored. The input image is taken as is.
1353
No image processing is done to improve to find the checkerboard. This has the effect of speeding up the
1354
execution of the function but could lead to not recognizing the checkerboard if the image
1355
is not previously binarized in the appropriate manner.
1356
1357
The function attempts to determine whether the input image is a view of the chessboard pattern and
1358
locate the internal chessboard corners. The function returns a non-zero value if all of the corners
1359
are found and they are placed in a certain order (row by row, left to right in every row).
1360
Otherwise, if the function fails to find all the corners or reorder them, it returns 0. For example,
1361
a regular chessboard has 8 x 8 squares and 7 x 7 internal corners, that is, points where the black
1362
squares touch each other. The detected coordinates are approximate, and to determine their positions
1363
more accurately, the function calls #cornerSubPix. You also may use the function #cornerSubPix with
1364
different parameters if returned coordinates are not accurate enough.
1365
1366
Sample usage of detecting and drawing chessboard corners: :
1367
@code
1368
    Size patternsize(8,6); //interior number of corners
1369
    Mat gray = ....; //source image
1370
    vector<Point2f> corners; //this will be filled by the detected corners
1371
1372
    //CALIB_CB_FAST_CHECK saves a lot of time on images
1373
    //that do not contain any chessboard corners
1374
    bool patternfound = findChessboardCorners(gray, patternsize, corners,
1375
            CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE
1376
            + CALIB_CB_FAST_CHECK);
1377
1378
    if(patternfound)
1379
      cornerSubPix(gray, corners, Size(11, 11), Size(-1, -1),
1380
        TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 30, 0.1));
1381
1382
    drawChessboardCorners(img, patternsize, Mat(corners), patternfound);
1383
@endcode
1384
@note The function requires white space (like a square-thick border, the wider the better) around
1385
the board to make the detection more robust in various environments. Otherwise, if there is no
1386
border and the background is dark, the outer black squares cannot be segmented properly and so the
1387
square grouping and ordering algorithm fails.
1388
1389
Use the `generate_pattern.py` Python script (@ref tutorial_camera_calibration_pattern)
1390
to create the desired checkerboard pattern.
1391
 */
1392
CV_EXPORTS_W bool findChessboardCorners( InputArray image, Size patternSize, OutputArray corners,
1393
                                         int flags = CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE );
1394
1395
/*
1396
   Checks whether the image contains chessboard of the specific size or not.
1397
   If yes, nonzero value is returned.
1398
*/
1399
CV_EXPORTS_W bool checkChessboard(InputArray img, Size size);
1400
1401
/** @brief Finds the positions of internal corners of the chessboard using a sector based approach.
1402
1403
@param image Source chessboard view. It must be an 8-bit grayscale or color image.
1404
@param patternSize Number of inner corners per a chessboard row and column
1405
( patternSize = cv::Size(points_per_row,points_per_colum) = cv::Size(columns,rows) ).
1406
@param corners Output array of detected corners.
1407
@param flags Various operation flags that can be zero or a combination of the following values:
1408
-   @ref CALIB_CB_NORMALIZE_IMAGE Normalize the image gamma with equalizeHist before detection.
1409
-   @ref CALIB_CB_EXHAUSTIVE Run an exhaustive search to improve detection rate.
1410
-   @ref CALIB_CB_ACCURACY Up sample input image to improve sub-pixel accuracy due to aliasing effects.
1411
-   @ref CALIB_CB_LARGER The detected pattern is allowed to be larger than patternSize (see description).
1412
-   @ref CALIB_CB_MARKER The detected pattern must have a marker (see description).
1413
This should be used if an accurate camera calibration is required.
1414
@param meta Optional output array of detected corners (CV_8UC1 and size = cv::Size(columns,rows)).
1415
Each entry stands for one corner of the pattern and can have one of the following values:
1416
-   0 = no meta data attached
1417
-   1 = left-top corner of a black cell
1418
-   2 = left-top corner of a white cell
1419
-   3 = left-top corner of a black cell with a white marker dot
1420
-   4 = left-top corner of a white cell with a black marker dot (pattern origin in case of markers otherwise first corner)
1421
1422
The function is analog to #findChessboardCorners but uses a localized radon
1423
transformation approximated by box filters being more robust to all sort of
1424
noise, faster on larger images and is able to directly return the sub-pixel
1425
position of the internal chessboard corners. The Method is based on the paper
1426
@cite duda2018 "Accurate Detection and Localization of Checkerboard Corners for
1427
Calibration" demonstrating that the returned sub-pixel positions are more
1428
accurate than the one returned by cornerSubPix allowing a precise camera
1429
calibration for demanding applications.
1430
1431
In the case, the flags @ref CALIB_CB_LARGER or @ref CALIB_CB_MARKER are given,
1432
the result can be recovered from the optional meta array. Both flags are
1433
helpful to use calibration patterns exceeding the field of view of the camera.
1434
These oversized patterns allow more accurate calibrations as corners can be
1435
utilized, which are as close as possible to the image borders.  For a
1436
consistent coordinate system across all images, the optional marker (see image
1437
below) can be used to move the origin of the board to the location where the
1438
black circle is located.
1439
1440
@note The function requires a white boarder with roughly the same width as one
1441
of the checkerboard fields around the whole board to improve the detection in
1442
various environments. In addition, because of the localized radon
1443
transformation it is beneficial to use round corners for the field corners
1444
which are located on the outside of the board. The following figure illustrates
1445
a sample checkerboard optimized for the detection. However, any other checkerboard
1446
can be used as well.
1447
1448
Use the `generate_pattern.py` Python script (@ref tutorial_camera_calibration_pattern)
1449
to create the corresponding checkerboard pattern:
1450
\image html pics/checkerboard_radon.png width=60%
1451
 */
1452
CV_EXPORTS_AS(findChessboardCornersSBWithMeta)
1453
bool findChessboardCornersSB(InputArray image,Size patternSize, OutputArray corners,
1454
                             int flags,OutputArray meta);
1455
/** @overload */
1456
CV_EXPORTS_W inline
1457
bool findChessboardCornersSB(InputArray image, Size patternSize, OutputArray corners,
1458
                             int flags = 0)
1459
0
{
1460
0
    return findChessboardCornersSB(image, patternSize, corners, flags, noArray());
1461
0
}
1462
1463
/** @brief Estimates the sharpness of a detected chessboard.
1464
1465
Image sharpness, as well as brightness, are a critical parameter for accuracte
1466
camera calibration. For accessing these parameters for filtering out
1467
problematic calibraiton images, this method calculates edge profiles by traveling from
1468
black to white chessboard cell centers. Based on this, the number of pixels is
1469
calculated required to transit from black to white. This width of the
1470
transition area is a good indication of how sharp the chessboard is imaged
1471
and should be below ~3.0 pixels.
1472
1473
@param image Gray image used to find chessboard corners
1474
@param patternSize Size of a found chessboard pattern
1475
@param corners Corners found by #findChessboardCornersSB
1476
@param rise_distance Rise distance 0.8 means 10% ... 90% of the final signal strength
1477
@param vertical By default edge responses for horizontal lines are calculated
1478
@param sharpness Optional output array with a sharpness value for calculated edge responses (see description)
1479
1480
The optional sharpness array is of type CV_32FC1 and has for each calculated
1481
profile one row with the following five entries:
1482
* 0 = x coordinate of the underlying edge in the image
1483
* 1 = y coordinate of the underlying edge in the image
1484
* 2 = width of the transition area (sharpness)
1485
* 3 = signal strength in the black cell (min brightness)
1486
* 4 = signal strength in the white cell (max brightness)
1487
1488
@return Scalar(average sharpness, average min brightness, average max brightness,0)
1489
*/
1490
CV_EXPORTS_W Scalar estimateChessboardSharpness(InputArray image, Size patternSize, InputArray corners,
1491
                                                float rise_distance=0.8F,bool vertical=false,
1492
                                                OutputArray sharpness=noArray());
1493
1494
1495
//! finds subpixel-accurate positions of the chessboard corners
1496
CV_EXPORTS_W bool find4QuadCornerSubpix( InputArray img, InputOutputArray corners, Size region_size );
1497
1498
/** @brief Renders the detected chessboard corners.
1499
1500
@param image Destination image. It must be an 8-bit color image.
1501
@param patternSize Number of inner corners per a chessboard row and column
1502
(patternSize = cv::Size(points_per_row,points_per_column)).
1503
@param corners Array of detected corners, the output of #findChessboardCorners.
1504
@param patternWasFound Parameter indicating whether the complete board was found or not. The
1505
return value of #findChessboardCorners should be passed here.
1506
1507
The function draws individual chessboard corners detected either as red circles if the board was not
1508
found, or as colored corners connected with lines if the board was found.
1509
 */
1510
CV_EXPORTS_W void drawChessboardCorners( InputOutputArray image, Size patternSize,
1511
                                         InputArray corners, bool patternWasFound );
1512
1513
/** @brief Draw axes of the world/object coordinate system from pose estimation. @sa solvePnP
1514
1515
@param image Input/output image. It must have 1 or 3 channels. The number of channels is not altered.
1516
@param cameraMatrix Input 3x3 floating-point matrix of camera intrinsic parameters.
1517
\f$\cameramatrix{A}\f$
1518
@param distCoeffs Input vector of distortion coefficients
1519
\f$\distcoeffs\f$. If the vector is empty, the zero distortion coefficients are assumed.
1520
@param rvec Rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from
1521
the model coordinate system to the camera coordinate system.
1522
@param tvec Translation vector.
1523
@param length Length of the painted axes in the same unit than tvec (usually in meters).
1524
@param thickness Line thickness of the painted axes.
1525
1526
This function draws the axes of the world/object coordinate system w.r.t. to the camera frame.
1527
OX is drawn in red, OY in green and OZ in blue.
1528
 */
1529
CV_EXPORTS_W void drawFrameAxes(InputOutputArray image, InputArray cameraMatrix, InputArray distCoeffs,
1530
                                InputArray rvec, InputArray tvec, float length, int thickness=3);
1531
1532
struct CV_EXPORTS_W_SIMPLE CirclesGridFinderParameters
1533
{
1534
    CV_WRAP CirclesGridFinderParameters();
1535
    CV_PROP_RW cv::Size2f densityNeighborhoodSize;
1536
    CV_PROP_RW float minDensity;
1537
    CV_PROP_RW int kmeansAttempts;
1538
    CV_PROP_RW int minDistanceToAddKeypoint;
1539
    CV_PROP_RW int keypointScale;
1540
    CV_PROP_RW float minGraphConfidence;
1541
    CV_PROP_RW float vertexGain;
1542
    CV_PROP_RW float vertexPenalty;
1543
    CV_PROP_RW float existingVertexGain;
1544
    CV_PROP_RW float edgeGain;
1545
    CV_PROP_RW float edgePenalty;
1546
    CV_PROP_RW float convexHullFactor;
1547
    CV_PROP_RW float minRNGEdgeSwitchDist;
1548
1549
    enum GridType
1550
    {
1551
      SYMMETRIC_GRID, ASYMMETRIC_GRID
1552
    };
1553
    CV_PROP_RW GridType gridType;
1554
1555
    CV_PROP_RW float squareSize; //!< Distance between two adjacent points. Used by CALIB_CB_CLUSTERING.
1556
    CV_PROP_RW float maxRectifiedDistance; //!< Max deviation from prediction. Used by CALIB_CB_CLUSTERING.
1557
};
1558
1559
#ifndef DISABLE_OPENCV_3_COMPATIBILITY
1560
typedef CirclesGridFinderParameters CirclesGridFinderParameters2;
1561
#endif
1562
1563
/** @brief Finds centers in the grid of circles.
1564
1565
@param image grid view of input circles; it must be an 8-bit grayscale or color image.
1566
@param patternSize number of circles per row and column
1567
( patternSize = Size(points_per_row, points_per_colum) ).
1568
@param centers output array of detected centers.
1569
@param flags various operation flags that can be one of the following values:
1570
-   @ref CALIB_CB_SYMMETRIC_GRID uses symmetric pattern of circles.
1571
-   @ref CALIB_CB_ASYMMETRIC_GRID uses asymmetric pattern of circles.
1572
-   @ref CALIB_CB_CLUSTERING uses a special algorithm for grid detection. It is more robust to
1573
perspective distortions but much more sensitive to background clutter.
1574
@param blobDetector feature detector that finds blobs like dark circles on light background.
1575
                    If `blobDetector` is NULL then `image` represents Point2f array of candidates.
1576
@param parameters struct for finding circles in a grid pattern.
1577
1578
The function attempts to determine whether the input image contains a grid of circles. If it is, the
1579
function locates centers of the circles. The function returns a non-zero value if all of the centers
1580
have been found and they have been placed in a certain order (row by row, left to right in every
1581
row). Otherwise, if the function fails to find all the corners or reorder them, it returns 0.
1582
1583
Sample usage of detecting and drawing the centers of circles: :
1584
@code
1585
    Size patternsize(7,7); //number of centers
1586
    Mat gray = ...; //source image
1587
    vector<Point2f> centers; //this will be filled by the detected centers
1588
1589
    bool patternfound = findCirclesGrid(gray, patternsize, centers);
1590
1591
    drawChessboardCorners(img, patternsize, Mat(centers), patternfound);
1592
@endcode
1593
@note The function requires white space (like a square-thick border, the wider the better) around
1594
the board to make the detection more robust in various environments.
1595
 */
1596
CV_EXPORTS_W bool findCirclesGrid( InputArray image, Size patternSize,
1597
                                   OutputArray centers, int flags,
1598
                                   const Ptr<FeatureDetector> &blobDetector,
1599
                                   const CirclesGridFinderParameters& parameters);
1600
1601
/** @overload */
1602
CV_EXPORTS_W bool findCirclesGrid( InputArray image, Size patternSize,
1603
                                   OutputArray centers, int flags = CALIB_CB_SYMMETRIC_GRID,
1604
                                   const Ptr<FeatureDetector> &blobDetector = SimpleBlobDetector::create());
1605
1606
/** @brief Finds the camera intrinsic and extrinsic parameters from several views of a calibration
1607
pattern.
1608
1609
@param objectPoints In the new interface it is a vector of vectors of calibration pattern points in
1610
the calibration pattern coordinate space (e.g. std::vector<std::vector<cv::Vec3f>>). The outer
1611
vector contains as many elements as the number of pattern views. If the same calibration pattern
1612
is shown in each view and it is fully visible, all the vectors will be the same. Although, it is
1613
possible to use partially occluded patterns or even different patterns in different views. Then,
1614
the vectors will be different. Although the points are 3D, they all lie in the calibration pattern's
1615
XY coordinate plane (thus 0 in the Z-coordinate), if the used calibration pattern is a planar rig.
1616
In the old interface all the vectors of object points from different views are concatenated
1617
together.
1618
@param imagePoints In the new interface it is a vector of vectors of the projections of calibration
1619
pattern points (e.g. std::vector<std::vector<cv::Vec2f>>). imagePoints.size() and
1620
objectPoints.size(), and imagePoints[i].size() and objectPoints[i].size() for each i, must be equal,
1621
respectively. In the old interface all the vectors of object points from different views are
1622
concatenated together.
1623
@param imageSize Size of the image used only to initialize the camera intrinsic matrix.
1624
@param cameraMatrix Input/output 3x3 floating-point camera intrinsic matrix
1625
\f$\cameramatrix{A}\f$ . If @ref CALIB_USE_INTRINSIC_GUESS
1626
and/or @ref CALIB_FIX_ASPECT_RATIO, @ref CALIB_FIX_PRINCIPAL_POINT or @ref CALIB_FIX_FOCAL_LENGTH
1627
are specified, some or all of fx, fy, cx, cy must be initialized before calling the function.
1628
@param distCoeffs Input/output vector of distortion coefficients
1629
\f$\distcoeffs\f$.
1630
@param rvecs Output vector of rotation vectors (@ref Rodrigues ) estimated for each pattern view
1631
(e.g. std::vector<cv::Mat>>). That is, each i-th rotation vector together with the corresponding
1632
i-th translation vector (see the next output parameter description) brings the calibration pattern
1633
from the object coordinate space (in which object points are specified) to the camera coordinate
1634
space. In more technical terms, the tuple of the i-th rotation and translation vector performs
1635
a change of basis from object coordinate space to camera coordinate space. Due to its duality, this
1636
tuple is equivalent to the position of the calibration pattern with respect to the camera coordinate
1637
space.
1638
@param tvecs Output vector of translation vectors estimated for each pattern view, see parameter
1639
describtion above.
1640
@param stdDeviationsIntrinsics Output vector of standard deviations estimated for intrinsic
1641
parameters. Order of deviations values:
1642
\f$(f_x, f_y, c_x, c_y, k_1, k_2, p_1, p_2, k_3, k_4, k_5, k_6 , s_1, s_2, s_3,
1643
 s_4, \tau_x, \tau_y)\f$ If one of parameters is not estimated, it's deviation is equals to zero.
1644
@param stdDeviationsExtrinsics Output vector of standard deviations estimated for extrinsic
1645
parameters. Order of deviations values: \f$(R_0, T_0, \dotsc , R_{M - 1}, T_{M - 1})\f$ where M is
1646
the number of pattern views. \f$R_i, T_i\f$ are concatenated 1x3 vectors.
1647
 @param perViewErrors Output vector of the RMS re-projection error estimated for each pattern view.
1648
@param flags Different flags that may be zero or a combination of the following values:
1649
-   @ref CALIB_USE_INTRINSIC_GUESS cameraMatrix contains valid initial values of
1650
fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
1651
center ( imageSize is used), and focal distances are computed in a least-squares fashion.
1652
Note, that if intrinsic parameters are known, there is no need to use this function just to
1653
estimate extrinsic parameters. Use @ref solvePnP instead.
1654
-   @ref CALIB_FIX_PRINCIPAL_POINT The principal point is not changed during the global
1655
optimization. It stays at the center or at a different location specified when
1656
 @ref CALIB_USE_INTRINSIC_GUESS is set too.
1657
-   @ref CALIB_FIX_ASPECT_RATIO The functions consider only fy as a free parameter. The
1658
ratio fx/fy stays the same as in the input cameraMatrix . When
1659
 @ref CALIB_USE_INTRINSIC_GUESS is not set, the actual input values of fx and fy are
1660
ignored, only their ratio is computed and used further.
1661
-   @ref CALIB_ZERO_TANGENT_DIST Tangential distortion coefficients \f$(p_1, p_2)\f$ are set
1662
to zeros and stay zero.
1663
-   @ref CALIB_FIX_FOCAL_LENGTH The focal length is not changed during the global optimization if
1664
 @ref CALIB_USE_INTRINSIC_GUESS is set.
1665
-   @ref CALIB_FIX_K1,..., @ref CALIB_FIX_K6 The corresponding radial distortion
1666
coefficient is not changed during the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is
1667
set, the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
1668
-   @ref CALIB_RATIONAL_MODEL Coefficients k4, k5, and k6 are enabled. To provide the
1669
backward compatibility, this extra flag should be explicitly specified to make the
1670
calibration function use the rational model and return 8 coefficients or more.
1671
-   @ref CALIB_THIN_PRISM_MODEL Coefficients s1, s2, s3 and s4 are enabled. To provide the
1672
backward compatibility, this extra flag should be explicitly specified to make the
1673
calibration function use the thin prism model and return 12 coefficients or more.
1674
-   @ref CALIB_FIX_S1_S2_S3_S4 The thin prism distortion coefficients are not changed during
1675
the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
1676
supplied distCoeffs matrix is used. Otherwise, it is set to 0.
1677
-   @ref CALIB_TILTED_MODEL Coefficients tauX and tauY are enabled. To provide the
1678
backward compatibility, this extra flag should be explicitly specified to make the
1679
calibration function use the tilted sensor model and return 14 coefficients.
1680
-   @ref CALIB_FIX_TAUX_TAUY The coefficients of the tilted sensor model are not changed during
1681
the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
1682
supplied distCoeffs matrix is used. Otherwise, it is set to 0.
1683
@param criteria Termination criteria for the iterative optimization algorithm.
1684
1685
@return the overall RMS re-projection error.
1686
1687
The function estimates the intrinsic camera parameters and extrinsic parameters for each of the
1688
views. The algorithm is based on @cite Zhang2000 and @cite BouguetMCT . The coordinates of 3D object
1689
points and their corresponding 2D projections in each view must be specified. That may be achieved
1690
by using an object with known geometry and easily detectable feature points. Such an object is
1691
called a calibration rig or calibration pattern, and OpenCV has built-in support for a chessboard as
1692
a calibration rig (see @ref findChessboardCorners). Currently, initialization of intrinsic
1693
parameters (when @ref CALIB_USE_INTRINSIC_GUESS is not set) is only implemented for planar calibration
1694
patterns (where Z-coordinates of the object points must be all zeros). 3D calibration rigs can also
1695
be used as long as initial cameraMatrix is provided.
1696
1697
The algorithm performs the following steps:
1698
1699
-   Compute the initial intrinsic parameters (the option only available for planar calibration
1700
    patterns) or read them from the input parameters. The distortion coefficients are all set to
1701
    zeros initially unless some of CALIB_FIX_K? are specified.
1702
1703
-   Estimate the initial camera pose as if the intrinsic parameters have been already known. This is
1704
    done using @ref solvePnP .
1705
1706
-   Run the global Levenberg-Marquardt optimization algorithm to minimize the reprojection error,
1707
    that is, the total sum of squared distances between the observed feature points imagePoints and
1708
    the projected (using the current estimates for camera parameters and the poses) object points
1709
    objectPoints. See @ref projectPoints for details.
1710
1711
@note
1712
    If you use a non-square (i.e. non-N-by-N) grid and @ref findChessboardCorners for calibration,
1713
    and @ref calibrateCamera returns bad values (zero distortion coefficients, \f$c_x\f$ and
1714
    \f$c_y\f$ very far from the image center, and/or large differences between \f$f_x\f$ and
1715
    \f$f_y\f$ (ratios of 10:1 or more)), then you are probably using patternSize=cvSize(rows,cols)
1716
    instead of using patternSize=cvSize(cols,rows) in @ref findChessboardCorners.
1717
1718
@note
1719
    The function may throw exceptions, if unsupported combination of parameters is provided or
1720
    the system is underconstrained.
1721
1722
@sa
1723
   calibrateCameraRO, findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate,
1724
   undistort
1725
 */
1726
CV_EXPORTS_AS(calibrateCameraExtended) double calibrateCamera( InputArrayOfArrays objectPoints,
1727
                                     InputArrayOfArrays imagePoints, Size imageSize,
1728
                                     InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
1729
                                     OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
1730
                                     OutputArray stdDeviationsIntrinsics,
1731
                                     OutputArray stdDeviationsExtrinsics,
1732
                                     OutputArray perViewErrors,
1733
                                     int flags = 0, TermCriteria criteria = TermCriteria(
1734
                                        TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) );
1735
1736
/** @overload */
1737
CV_EXPORTS_W double calibrateCamera( InputArrayOfArrays objectPoints,
1738
                                     InputArrayOfArrays imagePoints, Size imageSize,
1739
                                     InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
1740
                                     OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
1741
                                     int flags = 0, TermCriteria criteria = TermCriteria(
1742
                                        TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) );
1743
1744
/** @brief Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern.
1745
1746
This function is an extension of #calibrateCamera with the method of releasing object which was
1747
proposed in @cite strobl2011iccv. In many common cases with inaccurate, unmeasured, roughly planar
1748
targets (calibration plates), this method can dramatically improve the precision of the estimated
1749
camera parameters. Both the object-releasing method and standard method are supported by this
1750
function. Use the parameter **iFixedPoint** for method selection. In the internal implementation,
1751
#calibrateCamera is a wrapper for this function.
1752
1753
@param objectPoints Vector of vectors of calibration pattern points in the calibration pattern
1754
coordinate space. See #calibrateCamera for details. If the method of releasing object to be used,
1755
the identical calibration board must be used in each view and it must be fully visible, and all
1756
objectPoints[i] must be the same and all points should be roughly close to a plane. **The calibration
1757
target has to be rigid, or at least static if the camera (rather than the calibration target) is
1758
shifted for grabbing images.**
1759
@param imagePoints Vector of vectors of the projections of calibration pattern points. See
1760
#calibrateCamera for details.
1761
@param imageSize Size of the image used only to initialize the intrinsic camera matrix.
1762
@param iFixedPoint The index of the 3D object point in objectPoints[0] to be fixed. It also acts as
1763
a switch for calibration method selection. If object-releasing method to be used, pass in the
1764
parameter in the range of [1, objectPoints[0].size()-2], otherwise a value out of this range will
1765
make standard calibration method selected. Usually the top-right corner point of the calibration
1766
board grid is recommended to be fixed when object-releasing method being utilized. According to
1767
\cite strobl2011iccv, two other points are also fixed. In this implementation, objectPoints[0].front
1768
and objectPoints[0].back.z are used. With object-releasing method, accurate rvecs, tvecs and
1769
newObjPoints are only possible if coordinates of these three fixed points are accurate enough.
1770
@param cameraMatrix Output 3x3 floating-point camera matrix. See #calibrateCamera for details.
1771
@param distCoeffs Output vector of distortion coefficients. See #calibrateCamera for details.
1772
@param rvecs Output vector of rotation vectors estimated for each pattern view. See #calibrateCamera
1773
for details.
1774
@param tvecs Output vector of translation vectors estimated for each pattern view.
1775
@param newObjPoints The updated output vector of calibration pattern points. The coordinates might
1776
be scaled based on three fixed points. The returned coordinates are accurate only if the above
1777
mentioned three fixed points are accurate. If not needed, noArray() can be passed in. This parameter
1778
is ignored with standard calibration method.
1779
@param stdDeviationsIntrinsics Output vector of standard deviations estimated for intrinsic parameters.
1780
See #calibrateCamera for details.
1781
@param stdDeviationsExtrinsics Output vector of standard deviations estimated for extrinsic parameters.
1782
See #calibrateCamera for details.
1783
@param stdDeviationsObjPoints Output vector of standard deviations estimated for refined coordinates
1784
of calibration pattern points. It has the same size and order as objectPoints[0] vector. This
1785
parameter is ignored with standard calibration method.
1786
 @param perViewErrors Output vector of the RMS re-projection error estimated for each pattern view.
1787
@param flags Different flags that may be zero or a combination of some predefined values. See
1788
#calibrateCamera for details. If the method of releasing object is used, the calibration time may
1789
be much longer. CALIB_USE_QR or CALIB_USE_LU could be used for faster calibration with potentially
1790
less precise and less stable in some rare cases.
1791
@param criteria Termination criteria for the iterative optimization algorithm.
1792
1793
@return the overall RMS re-projection error.
1794
1795
The function estimates the intrinsic camera parameters and extrinsic parameters for each of the
1796
views. The algorithm is based on @cite Zhang2000, @cite BouguetMCT and @cite strobl2011iccv. See
1797
#calibrateCamera for other detailed explanations.
1798
@sa
1799
   calibrateCamera, findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate, undistort
1800
 */
1801
CV_EXPORTS_AS(calibrateCameraROExtended) double calibrateCameraRO( InputArrayOfArrays objectPoints,
1802
                                     InputArrayOfArrays imagePoints, Size imageSize, int iFixedPoint,
1803
                                     InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
1804
                                     OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
1805
                                     OutputArray newObjPoints,
1806
                                     OutputArray stdDeviationsIntrinsics,
1807
                                     OutputArray stdDeviationsExtrinsics,
1808
                                     OutputArray stdDeviationsObjPoints,
1809
                                     OutputArray perViewErrors,
1810
                                     int flags = 0, TermCriteria criteria = TermCriteria(
1811
                                        TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) );
1812
1813
/** @overload */
1814
CV_EXPORTS_W double calibrateCameraRO( InputArrayOfArrays objectPoints,
1815
                                     InputArrayOfArrays imagePoints, Size imageSize, int iFixedPoint,
1816
                                     InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
1817
                                     OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
1818
                                     OutputArray newObjPoints,
1819
                                     int flags = 0, TermCriteria criteria = TermCriteria(
1820
                                        TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) );
1821
1822
/** @brief Computes useful camera characteristics from the camera intrinsic matrix.
1823
1824
@param cameraMatrix Input camera intrinsic matrix that can be estimated by #calibrateCamera or
1825
#stereoCalibrate .
1826
@param imageSize Input image size in pixels.
1827
@param apertureWidth Physical width in mm of the sensor.
1828
@param apertureHeight Physical height in mm of the sensor.
1829
@param fovx Output field of view in degrees along the horizontal sensor axis.
1830
@param fovy Output field of view in degrees along the vertical sensor axis.
1831
@param focalLength Focal length of the lens in mm.
1832
@param principalPoint Principal point in mm.
1833
@param aspectRatio \f$f_y/f_x\f$
1834
1835
The function computes various useful camera characteristics from the previously estimated camera
1836
matrix.
1837
1838
@note
1839
   Do keep in mind that the unity measure 'mm' stands for whatever unit of measure one chooses for
1840
    the chessboard pitch (it can thus be any value).
1841
 */
1842
CV_EXPORTS_W void calibrationMatrixValues( InputArray cameraMatrix, Size imageSize,
1843
                                           double apertureWidth, double apertureHeight,
1844
                                           CV_OUT double& fovx, CV_OUT double& fovy,
1845
                                           CV_OUT double& focalLength, CV_OUT Point2d& principalPoint,
1846
                                           CV_OUT double& aspectRatio );
1847
1848
/** @brief Calibrates a stereo camera set up. This function finds the intrinsic parameters
1849
for each of the two cameras and the extrinsic parameters between the two cameras.
1850
1851
@param objectPoints Vector of vectors of the calibration pattern points. The same structure as
1852
in @ref calibrateCamera. For each pattern view, both cameras need to see the same object
1853
points. Therefore, objectPoints.size(), imagePoints1.size(), and imagePoints2.size() need to be
1854
equal as well as objectPoints[i].size(), imagePoints1[i].size(), and imagePoints2[i].size() need to
1855
be equal for each i.
1856
@param imagePoints1 Vector of vectors of the projections of the calibration pattern points,
1857
observed by the first camera. The same structure as in @ref calibrateCamera.
1858
@param imagePoints2 Vector of vectors of the projections of the calibration pattern points,
1859
observed by the second camera. The same structure as in @ref calibrateCamera.
1860
@param cameraMatrix1 Input/output camera intrinsic matrix for the first camera, the same as in
1861
@ref calibrateCamera. Furthermore, for the stereo case, additional flags may be used, see below.
1862
@param distCoeffs1 Input/output vector of distortion coefficients, the same as in
1863
@ref calibrateCamera.
1864
@param cameraMatrix2 Input/output second camera intrinsic matrix for the second camera. See description for
1865
cameraMatrix1.
1866
@param distCoeffs2 Input/output lens distortion coefficients for the second camera. See
1867
description for distCoeffs1.
1868
@param imageSize Size of the image used only to initialize the camera intrinsic matrices.
1869
@param R Output rotation matrix. Together with the translation vector T, this matrix brings
1870
points given in the first camera's coordinate system to points in the second camera's
1871
coordinate system. In more technical terms, the tuple of R and T performs a change of basis
1872
from the first camera's coordinate system to the second camera's coordinate system. Due to its
1873
duality, this tuple is equivalent to the position of the first camera with respect to the
1874
second camera coordinate system.
1875
@param T Output translation vector, see description above.
1876
@param E Output essential matrix.
1877
@param F Output fundamental matrix.
1878
@param rvecs Output vector of rotation vectors ( @ref Rodrigues ) estimated for each pattern view in the
1879
coordinate system of the first camera of the stereo pair (e.g. std::vector<cv::Mat>). More in detail, each
1880
i-th rotation vector together with the corresponding i-th translation vector (see the next output parameter
1881
description) brings the calibration pattern from the object coordinate space (in which object points are
1882
specified) to the camera coordinate space of the first camera of the stereo pair. In more technical terms,
1883
the tuple of the i-th rotation and translation vector performs a change of basis from object coordinate space
1884
to camera coordinate space of the first camera of the stereo pair.
1885
@param tvecs Output vector of translation vectors estimated for each pattern view, see parameter description
1886
of previous output parameter ( rvecs ).
1887
@param perViewErrors Output vector of the RMS re-projection error estimated for each pattern view.
1888
@param flags Different flags that may be zero or a combination of the following values:
1889
-   @ref CALIB_FIX_INTRINSIC Fix cameraMatrix? and distCoeffs? so that only R, T, E, and F
1890
matrices are estimated.
1891
-   @ref CALIB_USE_INTRINSIC_GUESS Optimize some or all of the intrinsic parameters
1892
according to the specified flags. Initial values are provided by the user.
1893
-   @ref CALIB_USE_EXTRINSIC_GUESS R and T contain valid initial values that are optimized further.
1894
Otherwise R and T are initialized to the median value of the pattern views (each dimension separately).
1895
-   @ref CALIB_FIX_PRINCIPAL_POINT Fix the principal points during the optimization.
1896
-   @ref CALIB_FIX_FOCAL_LENGTH Fix \f$f^{(j)}_x\f$ and \f$f^{(j)}_y\f$ .
1897
-   @ref CALIB_FIX_ASPECT_RATIO Optimize \f$f^{(j)}_y\f$ . Fix the ratio \f$f^{(j)}_x/f^{(j)}_y\f$
1898
.
1899
-   @ref CALIB_SAME_FOCAL_LENGTH Enforce \f$f^{(0)}_x=f^{(1)}_x\f$ and \f$f^{(0)}_y=f^{(1)}_y\f$ .
1900
-   @ref CALIB_ZERO_TANGENT_DIST Set tangential distortion coefficients for each camera to
1901
zeros and fix there.
1902
-   @ref CALIB_FIX_K1,..., @ref CALIB_FIX_K6 Do not change the corresponding radial
1903
distortion coefficient during the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set,
1904
the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
1905
-   @ref CALIB_RATIONAL_MODEL Enable coefficients k4, k5, and k6. To provide the backward
1906
compatibility, this extra flag should be explicitly specified to make the calibration
1907
function use the rational model and return 8 coefficients. If the flag is not set, the
1908
function computes and returns only 5 distortion coefficients.
1909
-   @ref CALIB_THIN_PRISM_MODEL Coefficients s1, s2, s3 and s4 are enabled. To provide the
1910
backward compatibility, this extra flag should be explicitly specified to make the
1911
calibration function use the thin prism model and return 12 coefficients. If the flag is not
1912
set, the function computes and returns only 5 distortion coefficients.
1913
-   @ref CALIB_FIX_S1_S2_S3_S4 The thin prism distortion coefficients are not changed during
1914
the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
1915
supplied distCoeffs matrix is used. Otherwise, it is set to 0.
1916
-   @ref CALIB_TILTED_MODEL Coefficients tauX and tauY are enabled. To provide the
1917
backward compatibility, this extra flag should be explicitly specified to make the
1918
calibration function use the tilted sensor model and return 14 coefficients. If the flag is not
1919
set, the function computes and returns only 5 distortion coefficients.
1920
-   @ref CALIB_FIX_TAUX_TAUY The coefficients of the tilted sensor model are not changed during
1921
the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
1922
supplied distCoeffs matrix is used. Otherwise, it is set to 0.
1923
@param criteria Termination criteria for the iterative optimization algorithm.
1924
1925
The function estimates the transformation between two cameras making a stereo pair. If one computes
1926
the poses of an object relative to the first camera and to the second camera,
1927
( \f$R_1\f$,\f$T_1\f$ ) and (\f$R_2\f$,\f$T_2\f$), respectively, for a stereo camera where the
1928
relative position and orientation between the two cameras are fixed, then those poses definitely
1929
relate to each other. This means, if the relative position and orientation (\f$R\f$,\f$T\f$) of the
1930
two cameras is known, it is possible to compute (\f$R_2\f$,\f$T_2\f$) when (\f$R_1\f$,\f$T_1\f$) is
1931
given. This is what the described function does. It computes (\f$R\f$,\f$T\f$) such that:
1932
1933
\f[R_2=R R_1\f]
1934
\f[T_2=R T_1 + T.\f]
1935
1936
Therefore, one can compute the coordinate representation of a 3D point for the second camera's
1937
coordinate system when given the point's coordinate representation in the first camera's coordinate
1938
system:
1939
1940
\f[\begin{bmatrix}
1941
X_2 \\
1942
Y_2 \\
1943
Z_2 \\
1944
1
1945
\end{bmatrix} = \begin{bmatrix}
1946
R & T \\
1947
0 & 1
1948
\end{bmatrix} \begin{bmatrix}
1949
X_1 \\
1950
Y_1 \\
1951
Z_1 \\
1952
1
1953
\end{bmatrix}.\f]
1954
1955
1956
Optionally, it computes the essential matrix E:
1957
1958
\f[E= \vecthreethree{0}{-T_2}{T_1}{T_2}{0}{-T_0}{-T_1}{T_0}{0} R\f]
1959
1960
where \f$T_i\f$ are components of the translation vector \f$T\f$ : \f$T=[T_0, T_1, T_2]^T\f$ .
1961
And the function can also compute the fundamental matrix F:
1962
1963
\f[F = cameraMatrix2^{-T}\cdot E \cdot cameraMatrix1^{-1}\f]
1964
1965
Besides the stereo-related information, the function can also perform a full calibration of each of
1966
the two cameras. However, due to the high dimensionality of the parameter space and noise in the
1967
input data, the function can diverge from the correct solution. If the intrinsic parameters can be
1968
estimated with high accuracy for each of the cameras individually (for example, using
1969
#calibrateCamera ), you are recommended to do so and then pass @ref CALIB_FIX_INTRINSIC flag to the
1970
function along with the computed intrinsic parameters. Otherwise, if all the parameters are
1971
estimated at once, it makes sense to restrict some parameters, for example, pass
1972
 @ref CALIB_SAME_FOCAL_LENGTH and @ref CALIB_ZERO_TANGENT_DIST flags, which is usually a
1973
reasonable assumption.
1974
1975
Similarly to #calibrateCamera, the function minimizes the total re-projection error for all the
1976
points in all the available views from both cameras. The function returns the final value of the
1977
re-projection error.
1978
 */
1979
CV_EXPORTS_AS(stereoCalibrateExtended) double stereoCalibrate( InputArrayOfArrays objectPoints,
1980
                                     InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
1981
                                     InputOutputArray cameraMatrix1, InputOutputArray distCoeffs1,
1982
                                     InputOutputArray cameraMatrix2, InputOutputArray distCoeffs2,
1983
                                     Size imageSize, InputOutputArray R, InputOutputArray T, OutputArray E, OutputArray F,
1984
                                     OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, OutputArray perViewErrors, int flags = CALIB_FIX_INTRINSIC,
1985
                                     TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6) );
1986
1987
/// @overload
1988
CV_EXPORTS_W double stereoCalibrate( InputArrayOfArrays objectPoints,
1989
                                     InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
1990
                                     InputOutputArray cameraMatrix1, InputOutputArray distCoeffs1,
1991
                                     InputOutputArray cameraMatrix2, InputOutputArray distCoeffs2,
1992
                                     Size imageSize, OutputArray R,OutputArray T, OutputArray E, OutputArray F,
1993
                                     int flags = CALIB_FIX_INTRINSIC,
1994
                                     TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6) );
1995
1996
/// @overload
1997
CV_EXPORTS_W double stereoCalibrate( InputArrayOfArrays objectPoints,
1998
                                     InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
1999
                                     InputOutputArray cameraMatrix1, InputOutputArray distCoeffs1,
2000
                                     InputOutputArray cameraMatrix2, InputOutputArray distCoeffs2,
2001
                                     Size imageSize, InputOutputArray R, InputOutputArray T, OutputArray E, OutputArray F,
2002
                                     OutputArray perViewErrors, int flags = CALIB_FIX_INTRINSIC,
2003
                                     TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6) );
2004
2005
/** @brief Computes rectification transforms for each head of a calibrated stereo camera.
2006
2007
@param cameraMatrix1 First camera intrinsic matrix.
2008
@param distCoeffs1 First camera distortion parameters.
2009
@param cameraMatrix2 Second camera intrinsic matrix.
2010
@param distCoeffs2 Second camera distortion parameters.
2011
@param imageSize Size of the image used for stereo calibration.
2012
@param R Rotation matrix from the coordinate system of the first camera to the second camera,
2013
see @ref stereoCalibrate.
2014
@param T Translation vector from the coordinate system of the first camera to the second camera,
2015
see @ref stereoCalibrate.
2016
@param R1 Output 3x3 rectification transform (rotation matrix) for the first camera. This matrix
2017
brings points given in the unrectified first camera's coordinate system to points in the rectified
2018
first camera's coordinate system. In more technical terms, it performs a change of basis from the
2019
unrectified first camera's coordinate system to the rectified first camera's coordinate system.
2020
@param R2 Output 3x3 rectification transform (rotation matrix) for the second camera. This matrix
2021
brings points given in the unrectified second camera's coordinate system to points in the rectified
2022
second camera's coordinate system. In more technical terms, it performs a change of basis from the
2023
unrectified second camera's coordinate system to the rectified second camera's coordinate system.
2024
@param P1 Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
2025
camera, i.e. it projects points given in the rectified first camera coordinate system into the
2026
rectified first camera's image.
2027
@param P2 Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
2028
camera, i.e. it projects points given in the rectified first camera coordinate system into the
2029
rectified second camera's image.
2030
@param Q Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see @ref reprojectImageTo3D).
2031
@param flags Operation flags that may be zero or @ref CALIB_ZERO_DISPARITY . If the flag is set,
2032
the function makes the principal points of each camera have the same pixel coordinates in the
2033
rectified views. And if the flag is not set, the function may still shift the images in the
2034
horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
2035
useful image area.
2036
@param alpha Free scaling parameter. If it is -1 or absent, the function performs the default
2037
scaling. Otherwise, the parameter should be between 0 and 1. alpha=0 means that the rectified
2038
images are zoomed and shifted so that only valid pixels are visible (no black areas after
2039
rectification). alpha=1 means that the rectified image is decimated and shifted so that all the
2040
pixels from the original images from the cameras are retained in the rectified images (no source
2041
image pixels are lost). Any intermediate value yields an intermediate result between
2042
those two extreme cases.
2043
@param newImageSize New image resolution after rectification. The same size should be passed to
2044
#initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
2045
is passed (default), it is set to the original imageSize . Setting it to a larger value can help you
2046
preserve details in the original image, especially when there is a big radial distortion.
2047
@param validPixROI1 Optional output rectangles inside the rectified images where all the pixels
2048
are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
2049
(see the picture below).
2050
@param validPixROI2 Optional output rectangles inside the rectified images where all the pixels
2051
are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
2052
(see the picture below).
2053
2054
The function computes the rotation matrices for each camera that (virtually) make both camera image
2055
planes the same plane. Consequently, this makes all the epipolar lines parallel and thus simplifies
2056
the dense stereo correspondence problem. The function takes the matrices computed by #stereoCalibrate
2057
as input. As output, it provides two rotation matrices and also two projection matrices in the new
2058
coordinates. The function distinguishes the following two cases:
2059
2060
-   **Horizontal stereo**: the first and the second camera views are shifted relative to each other
2061
    mainly along the x-axis (with possible small vertical shift). In the rectified images, the
2062
    corresponding epipolar lines in the left and right cameras are horizontal and have the same
2063
    y-coordinate. P1 and P2 look like:
2064
2065
    \f[\texttt{P1} = \begin{bmatrix}
2066
                        f & 0 & cx_1 & 0 \\
2067
                        0 & f & cy & 0 \\
2068
                        0 & 0 & 1 & 0
2069
                     \end{bmatrix}\f]
2070
2071
    \f[\texttt{P2} = \begin{bmatrix}
2072
                        f & 0 & cx_2 & T_x \cdot f \\
2073
                        0 & f & cy & 0 \\
2074
                        0 & 0 & 1 & 0
2075
                     \end{bmatrix} ,\f]
2076
2077
    \f[\texttt{Q} = \begin{bmatrix}
2078
                        1 & 0 & 0 & -cx_1 \\
2079
                        0 & 1 & 0 & -cy \\
2080
                        0 & 0 & 0 & f \\
2081
                        0 & 0 & -\frac{1}{T_x} & \frac{cx_1 - cx_2}{T_x}
2082
                    \end{bmatrix} \f]
2083
2084
    where \f$T_x\f$ is a horizontal shift between the cameras and \f$cx_1=cx_2\f$ if
2085
    @ref CALIB_ZERO_DISPARITY is set.
2086
2087
-   **Vertical stereo**: the first and the second camera views are shifted relative to each other
2088
    mainly in the vertical direction (and probably a bit in the horizontal direction too). The epipolar
2089
    lines in the rectified images are vertical and have the same x-coordinate. P1 and P2 look like:
2090
2091
    \f[\texttt{P1} = \begin{bmatrix}
2092
                        f & 0 & cx & 0 \\
2093
                        0 & f & cy_1 & 0 \\
2094
                        0 & 0 & 1 & 0
2095
                     \end{bmatrix}\f]
2096
2097
    \f[\texttt{P2} = \begin{bmatrix}
2098
                        f & 0 & cx & 0 \\
2099
                        0 & f & cy_2 & T_y \cdot f \\
2100
                        0 & 0 & 1 & 0
2101
                     \end{bmatrix},\f]
2102
2103
    \f[\texttt{Q} = \begin{bmatrix}
2104
                        1 & 0 & 0 & -cx \\
2105
                        0 & 1 & 0 & -cy_1 \\
2106
                        0 & 0 & 0 & f \\
2107
                        0 & 0 & -\frac{1}{T_y} & \frac{cy_1 - cy_2}{T_y}
2108
                    \end{bmatrix} \f]
2109
2110
    where \f$T_y\f$ is a vertical shift between the cameras and \f$cy_1=cy_2\f$ if
2111
    @ref CALIB_ZERO_DISPARITY is set.
2112
2113
As you can see, the first three columns of P1 and P2 will effectively be the new "rectified" camera
2114
matrices. The matrices, together with R1 and R2 , can then be passed to #initUndistortRectifyMap to
2115
initialize the rectification map for each camera.
2116
2117
See below the screenshot from the stereo_calib.cpp sample. Some red horizontal lines pass through
2118
the corresponding image regions. This means that the images are well rectified, which is what most
2119
stereo correspondence algorithms rely on. The green rectangles are roi1 and roi2 . You see that
2120
their interiors are all valid pixels.
2121
2122
![image](pics/stereo_undistort.jpg)
2123
 */
2124
CV_EXPORTS_W void stereoRectify( InputArray cameraMatrix1, InputArray distCoeffs1,
2125
                                 InputArray cameraMatrix2, InputArray distCoeffs2,
2126
                                 Size imageSize, InputArray R, InputArray T,
2127
                                 OutputArray R1, OutputArray R2,
2128
                                 OutputArray P1, OutputArray P2,
2129
                                 OutputArray Q, int flags = CALIB_ZERO_DISPARITY,
2130
                                 double alpha = -1, Size newImageSize = Size(),
2131
                                 CV_OUT Rect* validPixROI1 = 0, CV_OUT Rect* validPixROI2 = 0 );
2132
2133
/** @brief Computes a rectification transform for an uncalibrated stereo camera.
2134
2135
@param points1 Array of feature points in the first image.
2136
@param points2 The corresponding points in the second image. The same formats as in
2137
#findFundamentalMat are supported.
2138
@param F Input fundamental matrix. It can be computed from the same set of point pairs using
2139
#findFundamentalMat .
2140
@param imgSize Size of the image.
2141
@param H1 Output rectification homography matrix for the first image.
2142
@param H2 Output rectification homography matrix for the second image.
2143
@param threshold Optional threshold used to filter out the outliers. If the parameter is greater
2144
than zero, all the point pairs that do not comply with the epipolar geometry (that is, the points
2145
for which \f$|\texttt{points2[i]}^T \cdot \texttt{F} \cdot \texttt{points1[i]}|>\texttt{threshold}\f$ )
2146
are rejected prior to computing the homographies. Otherwise, all the points are considered inliers.
2147
2148
The function computes the rectification transformations without knowing intrinsic parameters of the
2149
cameras and their relative position in the space, which explains the suffix "uncalibrated". Another
2150
related difference from #stereoRectify is that the function outputs not the rectification
2151
transformations in the object (3D) space, but the planar perspective transformations encoded by the
2152
homography matrices H1 and H2 . The function implements the algorithm @cite Hartley99 .
2153
2154
@note
2155
   While the algorithm does not need to know the intrinsic parameters of the cameras, it heavily
2156
    depends on the epipolar geometry. Therefore, if the camera lenses have a significant distortion,
2157
    it would be better to correct it before computing the fundamental matrix and calling this
2158
    function. For example, distortion coefficients can be estimated for each head of stereo camera
2159
    separately by using #calibrateCamera . Then, the images can be corrected using #undistort , or
2160
    just the point coordinates can be corrected with #undistortPoints .
2161
 */
2162
CV_EXPORTS_W bool stereoRectifyUncalibrated( InputArray points1, InputArray points2,
2163
                                             InputArray F, Size imgSize,
2164
                                             OutputArray H1, OutputArray H2,
2165
                                             double threshold = 5 );
2166
2167
//! computes the rectification transformations for 3-head camera, where all the heads are on the same line.
2168
CV_EXPORTS_W float rectify3Collinear( InputArray cameraMatrix1, InputArray distCoeffs1,
2169
                                      InputArray cameraMatrix2, InputArray distCoeffs2,
2170
                                      InputArray cameraMatrix3, InputArray distCoeffs3,
2171
                                      InputArrayOfArrays imgpt1, InputArrayOfArrays imgpt3,
2172
                                      Size imageSize, InputArray R12, InputArray T12,
2173
                                      InputArray R13, InputArray T13,
2174
                                      OutputArray R1, OutputArray R2, OutputArray R3,
2175
                                      OutputArray P1, OutputArray P2, OutputArray P3,
2176
                                      OutputArray Q, double alpha, Size newImgSize,
2177
                                      CV_OUT Rect* roi1, CV_OUT Rect* roi2, int flags );
2178
2179
/** @brief Returns the new camera intrinsic matrix based on the free scaling parameter.
2180
2181
@param cameraMatrix Input camera intrinsic matrix.
2182
@param distCoeffs Input vector of distortion coefficients
2183
\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are
2184
assumed.
2185
@param imageSize Original image size.
2186
@param alpha Free scaling parameter between 0 (when all the pixels in the undistorted image are
2187
valid) and 1 (when all the source image pixels are retained in the undistorted image). See
2188
#stereoRectify for details.
2189
@param newImgSize Image size after rectification. By default, it is set to imageSize .
2190
@param validPixROI Optional output rectangle that outlines all-good-pixels region in the
2191
undistorted image. See roi1, roi2 description in #stereoRectify .
2192
@param centerPrincipalPoint Optional flag that indicates whether in the new camera intrinsic matrix the
2193
principal point should be at the image center or not. By default, the principal point is chosen to
2194
best fit a subset of the source image (determined by alpha) to the corrected image.
2195
@return new_camera_matrix Output new camera intrinsic matrix.
2196
2197
The function computes and returns the optimal new camera intrinsic matrix based on the free scaling parameter.
2198
By varying this parameter, you may retrieve only sensible pixels alpha=0 , keep all the original
2199
image pixels if there is valuable information in the corners alpha=1 , or get something in between.
2200
When alpha\>0 , the undistorted result is likely to have some black pixels corresponding to
2201
"virtual" pixels outside of the captured distorted image. The original camera intrinsic matrix, distortion
2202
coefficients, the computed new camera intrinsic matrix, and newImageSize should be passed to
2203
#initUndistortRectifyMap to produce the maps for #remap .
2204
 */
2205
CV_EXPORTS_W Mat getOptimalNewCameraMatrix( InputArray cameraMatrix, InputArray distCoeffs,
2206
                                            Size imageSize, double alpha, Size newImgSize = Size(),
2207
                                            CV_OUT Rect* validPixROI = 0,
2208
                                            bool centerPrincipalPoint = false);
2209
2210
/** @brief Computes Hand-Eye calibration: \f$_{}^{g}\textrm{T}_c\f$
2211
2212
@param[in] R_gripper2base Rotation part extracted from the homogeneous matrix that transforms a point
2213
expressed in the gripper frame to the robot base frame (\f$_{}^{b}\textrm{T}_g\f$).
2214
This is a vector (`vector<Mat>`) that contains the rotation, `(3x3)` rotation matrices or `(3x1)` rotation vectors,
2215
for all the transformations from gripper frame to robot base frame.
2216
@param[in] t_gripper2base Translation part extracted from the homogeneous matrix that transforms a point
2217
expressed in the gripper frame to the robot base frame (\f$_{}^{b}\textrm{T}_g\f$).
2218
This is a vector (`vector<Mat>`) that contains the `(3x1)` translation vectors for all the transformations
2219
from gripper frame to robot base frame.
2220
@param[in] R_target2cam Rotation part extracted from the homogeneous matrix that transforms a point
2221
expressed in the target frame to the camera frame (\f$_{}^{c}\textrm{T}_t\f$).
2222
This is a vector (`vector<Mat>`) that contains the rotation, `(3x3)` rotation matrices or `(3x1)` rotation vectors,
2223
for all the transformations from calibration target frame to camera frame.
2224
@param[in] t_target2cam Rotation part extracted from the homogeneous matrix that transforms a point
2225
expressed in the target frame to the camera frame (\f$_{}^{c}\textrm{T}_t\f$).
2226
This is a vector (`vector<Mat>`) that contains the `(3x1)` translation vectors for all the transformations
2227
from calibration target frame to camera frame.
2228
@param[out] R_cam2gripper Estimated `(3x3)` rotation part extracted from the homogeneous matrix that transforms a point
2229
expressed in the camera frame to the gripper frame (\f$_{}^{g}\textrm{T}_c\f$).
2230
@param[out] t_cam2gripper Estimated `(3x1)` translation part extracted from the homogeneous matrix that transforms a point
2231
expressed in the camera frame to the gripper frame (\f$_{}^{g}\textrm{T}_c\f$).
2232
@param[in] method One of the implemented Hand-Eye calibration method, see cv::HandEyeCalibrationMethod
2233
2234
The function performs the Hand-Eye calibration using various methods. One approach consists in estimating the
2235
rotation then the translation (separable solutions) and the following methods are implemented:
2236
  - R. Tsai, R. Lenz A New Technique for Fully Autonomous and Efficient 3D Robotics Hand/EyeCalibration \cite Tsai89
2237
  - F. Park, B. Martin Robot Sensor Calibration: Solving AX = XB on the Euclidean Group \cite Park94
2238
  - R. Horaud, F. Dornaika Hand-Eye Calibration \cite Horaud95
2239
2240
Another approach consists in estimating simultaneously the rotation and the translation (simultaneous solutions),
2241
with the following implemented methods:
2242
  - N. Andreff, R. Horaud, B. Espiau On-line Hand-Eye Calibration \cite Andreff99
2243
  - K. Daniilidis Hand-Eye Calibration Using Dual Quaternions \cite Daniilidis98
2244
2245
The following picture describes the Hand-Eye calibration problem where the transformation between a camera ("eye")
2246
mounted on a robot gripper ("hand") has to be estimated. This configuration is called eye-in-hand.
2247
2248
The eye-to-hand configuration consists in a static camera observing a calibration pattern mounted on the robot
2249
end-effector. The transformation from the camera to the robot base frame can then be estimated by inputting
2250
the suitable transformations to the function, see below.
2251
2252
![](pics/hand-eye_figure.png)
2253
2254
The calibration procedure is the following:
2255
  - a static calibration pattern is used to estimate the transformation between the target frame
2256
  and the camera frame
2257
  - the robot gripper is moved in order to acquire several poses
2258
  - for each pose, the homogeneous transformation between the gripper frame and the robot base frame is recorded using for
2259
  instance the robot kinematics
2260
\f[
2261
    \begin{bmatrix}
2262
    X_b\\
2263
    Y_b\\
2264
    Z_b\\
2265
    1
2266
    \end{bmatrix}
2267
    =
2268
    \begin{bmatrix}
2269
    _{}^{b}\textrm{R}_g & _{}^{b}\textrm{t}_g \\
2270
    0_{1 \times 3} & 1
2271
    \end{bmatrix}
2272
    \begin{bmatrix}
2273
    X_g\\
2274
    Y_g\\
2275
    Z_g\\
2276
    1
2277
    \end{bmatrix}
2278
\f]
2279
  - for each pose, the homogeneous transformation between the calibration target frame and the camera frame is recorded using
2280
  for instance a pose estimation method (PnP) from 2D-3D point correspondences
2281
\f[
2282
    \begin{bmatrix}
2283
    X_c\\
2284
    Y_c\\
2285
    Z_c\\
2286
    1
2287
    \end{bmatrix}
2288
    =
2289
    \begin{bmatrix}
2290
    _{}^{c}\textrm{R}_t & _{}^{c}\textrm{t}_t \\
2291
    0_{1 \times 3} & 1
2292
    \end{bmatrix}
2293
    \begin{bmatrix}
2294
    X_t\\
2295
    Y_t\\
2296
    Z_t\\
2297
    1
2298
    \end{bmatrix}
2299
\f]
2300
2301
The Hand-Eye calibration procedure returns the following homogeneous transformation
2302
\f[
2303
    \begin{bmatrix}
2304
    X_g\\
2305
    Y_g\\
2306
    Z_g\\
2307
    1
2308
    \end{bmatrix}
2309
    =
2310
    \begin{bmatrix}
2311
    _{}^{g}\textrm{R}_c & _{}^{g}\textrm{t}_c \\
2312
    0_{1 \times 3} & 1
2313
    \end{bmatrix}
2314
    \begin{bmatrix}
2315
    X_c\\
2316
    Y_c\\
2317
    Z_c\\
2318
    1
2319
    \end{bmatrix}
2320
\f]
2321
2322
This problem is also known as solving the \f$\mathbf{A}\mathbf{X}=\mathbf{X}\mathbf{B}\f$ equation:
2323
  - for an eye-in-hand configuration
2324
\f[
2325
    \begin{align*}
2326
    ^{b}{\textrm{T}_g}^{(1)} \hspace{0.2em} ^{g}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(1)} &=
2327
    \hspace{0.1em} ^{b}{\textrm{T}_g}^{(2)} \hspace{0.2em} ^{g}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(2)} \\
2328
2329
    (^{b}{\textrm{T}_g}^{(2)})^{-1} \hspace{0.2em} ^{b}{\textrm{T}_g}^{(1)} \hspace{0.2em} ^{g}\textrm{T}_c &=
2330
    \hspace{0.1em} ^{g}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(2)} (^{c}{\textrm{T}_t}^{(1)})^{-1} \\
2331
2332
    \textrm{A}_i \textrm{X} &= \textrm{X} \textrm{B}_i \\
2333
    \end{align*}
2334
\f]
2335
2336
  - for an eye-to-hand configuration
2337
\f[
2338
    \begin{align*}
2339
    ^{g}{\textrm{T}_b}^{(1)} \hspace{0.2em} ^{b}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(1)} &=
2340
    \hspace{0.1em} ^{g}{\textrm{T}_b}^{(2)} \hspace{0.2em} ^{b}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(2)} \\
2341
2342
    (^{g}{\textrm{T}_b}^{(2)})^{-1} \hspace{0.2em} ^{g}{\textrm{T}_b}^{(1)} \hspace{0.2em} ^{b}\textrm{T}_c &=
2343
    \hspace{0.1em} ^{b}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(2)} (^{c}{\textrm{T}_t}^{(1)})^{-1} \\
2344
2345
    \textrm{A}_i \textrm{X} &= \textrm{X} \textrm{B}_i \\
2346
    \end{align*}
2347
\f]
2348
2349
\note
2350
Additional information can be found on this [website](http://campar.in.tum.de/Chair/HandEyeCalibration).
2351
\note
2352
A minimum of 2 motions with non parallel rotation axes are necessary to determine the hand-eye transformation.
2353
So at least 3 different poses are required, but it is strongly recommended to use many more poses.
2354
2355
 */
2356
CV_EXPORTS_W void calibrateHandEye( InputArrayOfArrays R_gripper2base, InputArrayOfArrays t_gripper2base,
2357
                                    InputArrayOfArrays R_target2cam, InputArrayOfArrays t_target2cam,
2358
                                    OutputArray R_cam2gripper, OutputArray t_cam2gripper,
2359
                                    HandEyeCalibrationMethod method=CALIB_HAND_EYE_TSAI );
2360
2361
/** @brief Computes Robot-World/Hand-Eye calibration: \f$_{}^{w}\textrm{T}_b\f$ and \f$_{}^{c}\textrm{T}_g\f$
2362
2363
@param[in] R_world2cam Rotation part extracted from the homogeneous matrix that transforms a point
2364
expressed in the world frame to the camera frame (\f$_{}^{c}\textrm{T}_w\f$).
2365
This is a vector (`vector<Mat>`) that contains the rotation, `(3x3)` rotation matrices or `(3x1)` rotation vectors,
2366
for all the transformations from world frame to the camera frame.
2367
@param[in] t_world2cam Translation part extracted from the homogeneous matrix that transforms a point
2368
expressed in the world frame to the camera frame (\f$_{}^{c}\textrm{T}_w\f$).
2369
This is a vector (`vector<Mat>`) that contains the `(3x1)` translation vectors for all the transformations
2370
from world frame to the camera frame.
2371
@param[in] R_base2gripper Rotation part extracted from the homogeneous matrix that transforms a point
2372
expressed in the robot base frame to the gripper frame (\f$_{}^{g}\textrm{T}_b\f$).
2373
This is a vector (`vector<Mat>`) that contains the rotation, `(3x3)` rotation matrices or `(3x1)` rotation vectors,
2374
for all the transformations from robot base frame to the gripper frame.
2375
@param[in] t_base2gripper Rotation part extracted from the homogeneous matrix that transforms a point
2376
expressed in the robot base frame to the gripper frame (\f$_{}^{g}\textrm{T}_b\f$).
2377
This is a vector (`vector<Mat>`) that contains the `(3x1)` translation vectors for all the transformations
2378
from robot base frame to the gripper frame.
2379
@param[out] R_base2world Estimated `(3x3)` rotation part extracted from the homogeneous matrix that transforms a point
2380
expressed in the robot base frame to the world frame (\f$_{}^{w}\textrm{T}_b\f$).
2381
@param[out] t_base2world Estimated `(3x1)` translation part extracted from the homogeneous matrix that transforms a point
2382
expressed in the robot base frame to the world frame (\f$_{}^{w}\textrm{T}_b\f$).
2383
@param[out] R_gripper2cam Estimated `(3x3)` rotation part extracted from the homogeneous matrix that transforms a point
2384
expressed in the gripper frame to the camera frame (\f$_{}^{c}\textrm{T}_g\f$).
2385
@param[out] t_gripper2cam Estimated `(3x1)` translation part extracted from the homogeneous matrix that transforms a point
2386
expressed in the gripper frame to the camera frame (\f$_{}^{c}\textrm{T}_g\f$).
2387
@param[in] method One of the implemented Robot-World/Hand-Eye calibration method, see cv::RobotWorldHandEyeCalibrationMethod
2388
2389
The function performs the Robot-World/Hand-Eye calibration using various methods. One approach consists in estimating the
2390
rotation then the translation (separable solutions):
2391
  - M. Shah, Solving the robot-world/hand-eye calibration problem using the kronecker product \cite Shah2013SolvingTR
2392
2393
Another approach consists in estimating simultaneously the rotation and the translation (simultaneous solutions),
2394
with the following implemented method:
2395
  - A. Li, L. Wang, and D. Wu, Simultaneous robot-world and hand-eye calibration using dual-quaternions and kronecker product \cite Li2010SimultaneousRA
2396
2397
The following picture describes the Robot-World/Hand-Eye calibration problem where the transformations between a robot and a world frame
2398
and between a robot gripper ("hand") and a camera ("eye") mounted at the robot end-effector have to be estimated.
2399
2400
![](pics/robot-world_hand-eye_figure.png)
2401
2402
The calibration procedure is the following:
2403
  - a static calibration pattern is used to estimate the transformation between the target frame
2404
  and the camera frame
2405
  - the robot gripper is moved in order to acquire several poses
2406
  - for each pose, the homogeneous transformation between the gripper frame and the robot base frame is recorded using for
2407
  instance the robot kinematics
2408
\f[
2409
    \begin{bmatrix}
2410
    X_g\\
2411
    Y_g\\
2412
    Z_g\\
2413
    1
2414
    \end{bmatrix}
2415
    =
2416
    \begin{bmatrix}
2417
    _{}^{g}\textrm{R}_b & _{}^{g}\textrm{t}_b \\
2418
    0_{1 \times 3} & 1
2419
    \end{bmatrix}
2420
    \begin{bmatrix}
2421
    X_b\\
2422
    Y_b\\
2423
    Z_b\\
2424
    1
2425
    \end{bmatrix}
2426
\f]
2427
  - for each pose, the homogeneous transformation between the calibration target frame (the world frame) and the camera frame is recorded using
2428
  for instance a pose estimation method (PnP) from 2D-3D point correspondences
2429
\f[
2430
    \begin{bmatrix}
2431
    X_c\\
2432
    Y_c\\
2433
    Z_c\\
2434
    1
2435
    \end{bmatrix}
2436
    =
2437
    \begin{bmatrix}
2438
    _{}^{c}\textrm{R}_w & _{}^{c}\textrm{t}_w \\
2439
    0_{1 \times 3} & 1
2440
    \end{bmatrix}
2441
    \begin{bmatrix}
2442
    X_w\\
2443
    Y_w\\
2444
    Z_w\\
2445
    1
2446
    \end{bmatrix}
2447
\f]
2448
2449
The Robot-World/Hand-Eye calibration procedure returns the following homogeneous transformations
2450
\f[
2451
    \begin{bmatrix}
2452
    X_w\\
2453
    Y_w\\
2454
    Z_w\\
2455
    1
2456
    \end{bmatrix}
2457
    =
2458
    \begin{bmatrix}
2459
    _{}^{w}\textrm{R}_b & _{}^{w}\textrm{t}_b \\
2460
    0_{1 \times 3} & 1
2461
    \end{bmatrix}
2462
    \begin{bmatrix}
2463
    X_b\\
2464
    Y_b\\
2465
    Z_b\\
2466
    1
2467
    \end{bmatrix}
2468
\f]
2469
\f[
2470
    \begin{bmatrix}
2471
    X_c\\
2472
    Y_c\\
2473
    Z_c\\
2474
    1
2475
    \end{bmatrix}
2476
    =
2477
    \begin{bmatrix}
2478
    _{}^{c}\textrm{R}_g & _{}^{c}\textrm{t}_g \\
2479
    0_{1 \times 3} & 1
2480
    \end{bmatrix}
2481
    \begin{bmatrix}
2482
    X_g\\
2483
    Y_g\\
2484
    Z_g\\
2485
    1
2486
    \end{bmatrix}
2487
\f]
2488
2489
This problem is also known as solving the \f$\mathbf{A}\mathbf{X}=\mathbf{Z}\mathbf{B}\f$ equation, with:
2490
  - \f$\mathbf{A} \Leftrightarrow \hspace{0.1em} _{}^{c}\textrm{T}_w\f$
2491
  - \f$\mathbf{X} \Leftrightarrow \hspace{0.1em} _{}^{w}\textrm{T}_b\f$
2492
  - \f$\mathbf{Z} \Leftrightarrow \hspace{0.1em} _{}^{c}\textrm{T}_g\f$
2493
  - \f$\mathbf{B} \Leftrightarrow \hspace{0.1em} _{}^{g}\textrm{T}_b\f$
2494
2495
\note
2496
At least 3 measurements are required (input vectors size must be greater or equal to 3).
2497
2498
 */
2499
CV_EXPORTS_W void calibrateRobotWorldHandEye( InputArrayOfArrays R_world2cam, InputArrayOfArrays t_world2cam,
2500
                                              InputArrayOfArrays R_base2gripper, InputArrayOfArrays t_base2gripper,
2501
                                              OutputArray R_base2world, OutputArray t_base2world,
2502
                                              OutputArray R_gripper2cam, OutputArray t_gripper2cam,
2503
                                              RobotWorldHandEyeCalibrationMethod method=CALIB_ROBOT_WORLD_HAND_EYE_SHAH );
2504
2505
/** @brief Converts points from Euclidean to homogeneous space.
2506
2507
@param src Input vector of N-dimensional points.
2508
@param dst Output vector of N+1-dimensional points.
2509
2510
The function converts points from Euclidean to homogeneous space by appending 1's to the tuple of
2511
point coordinates. That is, each point (x1, x2, ..., xn) is converted to (x1, x2, ..., xn, 1).
2512
 */
2513
CV_EXPORTS_W void convertPointsToHomogeneous( InputArray src, OutputArray dst );
2514
2515
/** @brief Converts points from homogeneous to Euclidean space.
2516
2517
@param src Input vector of N-dimensional points.
2518
@param dst Output vector of N-1-dimensional points.
2519
2520
The function converts points homogeneous to Euclidean space using perspective projection. That is,
2521
each point (x1, x2, ... x(n-1), xn) is converted to (x1/xn, x2/xn, ..., x(n-1)/xn). When xn=0, the
2522
output point coordinates will be (0,0,0,...).
2523
 */
2524
CV_EXPORTS_W void convertPointsFromHomogeneous( InputArray src, OutputArray dst );
2525
2526
/** @brief Converts points to/from homogeneous coordinates.
2527
2528
@param src Input array or vector of 2D, 3D, or 4D points.
2529
@param dst Output vector of 2D, 3D, or 4D points.
2530
2531
The function converts 2D or 3D points from/to homogeneous coordinates by calling either
2532
#convertPointsToHomogeneous or #convertPointsFromHomogeneous.
2533
2534
@note The function is obsolete. Use one of the previous two functions instead.
2535
 */
2536
CV_EXPORTS void convertPointsHomogeneous( InputArray src, OutputArray dst );
2537
2538
/** @brief Calculates a fundamental matrix from the corresponding points in two images.
2539
2540
@param points1 Array of N points from the first image. The point coordinates should be
2541
floating-point (single or double precision).
2542
@param points2 Array of the second image points of the same size and format as points1 .
2543
@param method Method for computing a fundamental matrix.
2544
-   @ref FM_7POINT for a 7-point algorithm. \f$N = 7\f$
2545
-   @ref FM_8POINT for an 8-point algorithm. \f$N \ge 8\f$
2546
-   @ref FM_RANSAC for the RANSAC algorithm. \f$N \ge 8\f$
2547
-   @ref FM_LMEDS for the LMedS algorithm. \f$N \ge 8\f$
2548
@param ransacReprojThreshold Parameter used only for RANSAC. It is the maximum distance from a point to an epipolar
2549
line in pixels, beyond which the point is considered an outlier and is not used for computing the
2550
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
2551
point localization, image resolution, and the image noise.
2552
@param confidence Parameter used for the RANSAC and LMedS methods only. It specifies a desirable level
2553
of confidence (probability) that the estimated matrix is correct.
2554
@param[out] mask optional output mask
2555
@param maxIters The maximum number of robust method iterations.
2556
2557
The epipolar geometry is described by the following equation:
2558
2559
\f[[p_2; 1]^T F [p_1; 1] = 0\f]
2560
2561
where \f$F\f$ is a fundamental matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the
2562
second images, respectively.
2563
2564
The function calculates the fundamental matrix using one of four methods listed above and returns
2565
the found fundamental matrix. Normally just one matrix is found. But in case of the 7-point
2566
algorithm, the function may return up to 3 solutions ( \f$9 \times 3\f$ matrix that stores all 3
2567
matrices sequentially).
2568
2569
The calculated fundamental matrix may be passed further to #computeCorrespondEpilines that finds the
2570
epipolar lines corresponding to the specified points. It can also be passed to
2571
#stereoRectifyUncalibrated to compute the rectification transformation. :
2572
@code
2573
    // Example. Estimation of fundamental matrix using the RANSAC algorithm
2574
    int point_count = 100;
2575
    vector<Point2f> points1(point_count);
2576
    vector<Point2f> points2(point_count);
2577
2578
    // initialize the points here ...
2579
    for( int i = 0; i < point_count; i++ )
2580
    {
2581
        points1[i] = ...;
2582
        points2[i] = ...;
2583
    }
2584
2585
    Mat fundamental_matrix =
2586
     findFundamentalMat(points1, points2, FM_RANSAC, 3, 0.99);
2587
@endcode
2588
 */
2589
CV_EXPORTS_W Mat findFundamentalMat( InputArray points1, InputArray points2,
2590
                                     int method, double ransacReprojThreshold, double confidence,
2591
                                     int maxIters, OutputArray mask = noArray() );
2592
2593
/** @overload */
2594
CV_EXPORTS_W Mat findFundamentalMat( InputArray points1, InputArray points2,
2595
                                     int method = FM_RANSAC,
2596
                                     double ransacReprojThreshold = 3., double confidence = 0.99,
2597
                                     OutputArray mask = noArray() );
2598
2599
/** @overload */
2600
CV_EXPORTS Mat findFundamentalMat( InputArray points1, InputArray points2,
2601
                                   OutputArray mask, int method = FM_RANSAC,
2602
                                   double ransacReprojThreshold = 3., double confidence = 0.99 );
2603
2604
2605
CV_EXPORTS_W Mat findFundamentalMat( InputArray points1, InputArray points2,
2606
                        OutputArray mask, const UsacParams &params);
2607
2608
/** @brief Calculates an essential matrix from the corresponding points in two images.
2609
2610
@param points1 Array of N (N \>= 5) 2D points from the first image. The point coordinates should
2611
be floating-point (single or double precision).
2612
@param points2 Array of the second image points of the same size and format as points1.
2613
@param cameraMatrix Camera intrinsic matrix \f$\cameramatrix{A}\f$ .
2614
Note that this function assumes that points1 and points2 are feature points from cameras with the
2615
same camera intrinsic matrix. If this assumption does not hold for your use case, use another
2616
function overload or #undistortPoints with `P = cv::NoArray()` for both cameras to transform image
2617
points to normalized image coordinates, which are valid for the identity camera intrinsic matrix.
2618
When passing these coordinates, pass the identity matrix for this parameter.
2619
@param method Method for computing an essential matrix.
2620
-   @ref RANSAC for the RANSAC algorithm.
2621
-   @ref LMEDS for the LMedS algorithm.
2622
@param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
2623
confidence (probability) that the estimated matrix is correct.
2624
@param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
2625
line in pixels, beyond which the point is considered an outlier and is not used for computing the
2626
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
2627
point localization, image resolution, and the image noise.
2628
@param mask Output array of N elements, every element of which is set to 0 for outliers and to 1
2629
for the other points. The array is computed only in the RANSAC and LMedS methods.
2630
@param maxIters The maximum number of robust method iterations.
2631
2632
This function estimates essential matrix based on the five-point algorithm solver in @cite Nister03 .
2633
@cite SteweniusCFS is also a related. The epipolar geometry is described by the following equation:
2634
2635
\f[[p_2; 1]^T K^{-T} E K^{-1} [p_1; 1] = 0\f]
2636
2637
where \f$E\f$ is an essential matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the
2638
second images, respectively. The result of this function may be passed further to
2639
#decomposeEssentialMat or #recoverPose to recover the relative pose between cameras.
2640
 */
2641
CV_EXPORTS_W
2642
Mat findEssentialMat(
2643
    InputArray points1, InputArray points2,
2644
    InputArray cameraMatrix, int method = RANSAC,
2645
    double prob = 0.999, double threshold = 1.0,
2646
    int maxIters = 1000, OutputArray mask = noArray()
2647
);
2648
2649
/** @overload */
2650
CV_EXPORTS
2651
Mat findEssentialMat(
2652
    InputArray points1, InputArray points2,
2653
    InputArray cameraMatrix, int method,
2654
    double prob, double threshold,
2655
    OutputArray mask
2656
);  // TODO remove from OpenCV 5.0
2657
2658
/** @overload
2659
@param points1 Array of N (N \>= 5) 2D points from the first image. The point coordinates should
2660
be floating-point (single or double precision).
2661
@param points2 Array of the second image points of the same size and format as points1 .
2662
@param focal focal length of the camera. Note that this function assumes that points1 and points2
2663
are feature points from cameras with same focal length and principal point.
2664
@param pp principal point of the camera.
2665
@param method Method for computing a fundamental matrix.
2666
-   @ref RANSAC for the RANSAC algorithm.
2667
-   @ref LMEDS for the LMedS algorithm.
2668
@param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
2669
line in pixels, beyond which the point is considered an outlier and is not used for computing the
2670
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
2671
point localization, image resolution, and the image noise.
2672
@param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
2673
confidence (probability) that the estimated matrix is correct.
2674
@param mask Output array of N elements, every element of which is set to 0 for outliers and to 1
2675
for the other points. The array is computed only in the RANSAC and LMedS methods.
2676
@param maxIters The maximum number of robust method iterations.
2677
2678
This function differs from the one above that it computes camera intrinsic matrix from focal length and
2679
principal point:
2680
2681
\f[A =
2682
\begin{bmatrix}
2683
f & 0 & x_{pp}  \\
2684
0 & f & y_{pp}  \\
2685
0 & 0 & 1
2686
\end{bmatrix}\f]
2687
 */
2688
CV_EXPORTS_W
2689
Mat findEssentialMat(
2690
    InputArray points1, InputArray points2,
2691
    double focal = 1.0, Point2d pp = Point2d(0, 0),
2692
    int method = RANSAC, double prob = 0.999,
2693
    double threshold = 1.0, int maxIters = 1000,
2694
    OutputArray mask = noArray()
2695
);
2696
2697
/** @overload */
2698
CV_EXPORTS
2699
Mat findEssentialMat(
2700
    InputArray points1, InputArray points2,
2701
    double focal, Point2d pp,
2702
    int method, double prob,
2703
    double threshold, OutputArray mask
2704
);  // TODO remove from OpenCV 5.0
2705
2706
/** @brief Calculates an essential matrix from the corresponding points in two images from potentially two different cameras.
2707
2708
@param points1 Array of N (N \>= 5) 2D points from the first image. The point coordinates should
2709
be floating-point (single or double precision).
2710
@param points2 Array of the second image points of the same size and format as points1.
2711
@param cameraMatrix1 Camera matrix for the first camera \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
2712
@param cameraMatrix2 Camera matrix for the second camera \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
2713
@param distCoeffs1 Input vector of distortion coefficients for the first camera
2714
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
2715
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
2716
@param distCoeffs2 Input vector of distortion coefficients for the second camera
2717
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
2718
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
2719
@param method Method for computing an essential matrix.
2720
-   @ref RANSAC for the RANSAC algorithm.
2721
-   @ref LMEDS for the LMedS algorithm.
2722
@param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
2723
confidence (probability) that the estimated matrix is correct.
2724
@param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
2725
line in pixels, beyond which the point is considered an outlier and is not used for computing the
2726
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
2727
point localization, image resolution, and the image noise.
2728
@param mask Output array of N elements, every element of which is set to 0 for outliers and to 1
2729
for the other points. The array is computed only in the RANSAC and LMedS methods.
2730
2731
This function estimates essential matrix based on the five-point algorithm solver in @cite Nister03 .
2732
@cite SteweniusCFS is also a related. The epipolar geometry is described by the following equation:
2733
2734
\f[[p_2; 1]^T K^{-T} E K^{-1} [p_1; 1] = 0\f]
2735
2736
where \f$E\f$ is an essential matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the
2737
second images, respectively. The result of this function may be passed further to
2738
#decomposeEssentialMat or  #recoverPose to recover the relative pose between cameras.
2739
 */
2740
CV_EXPORTS_W Mat findEssentialMat( InputArray points1, InputArray points2,
2741
                                 InputArray cameraMatrix1, InputArray distCoeffs1,
2742
                                 InputArray cameraMatrix2, InputArray distCoeffs2,
2743
                                 int method = RANSAC,
2744
                                 double prob = 0.999, double threshold = 1.0,
2745
                                 OutputArray mask = noArray() );
2746
2747
2748
CV_EXPORTS_W Mat findEssentialMat( InputArray points1, InputArray points2,
2749
                      InputArray cameraMatrix1, InputArray cameraMatrix2,
2750
                      InputArray dist_coeff1, InputArray dist_coeff2, OutputArray mask,
2751
                      const UsacParams &params);
2752
2753
/** @brief Decompose an essential matrix to possible rotations and translation.
2754
2755
@param E The input essential matrix.
2756
@param R1 One possible rotation matrix.
2757
@param R2 Another possible rotation matrix.
2758
@param t One possible translation.
2759
2760
This function decomposes the essential matrix E using svd decomposition @cite HartleyZ00. In
2761
general, four possible poses exist for the decomposition of E. They are \f$[R_1, t]\f$,
2762
\f$[R_1, -t]\f$, \f$[R_2, t]\f$, \f$[R_2, -t]\f$.
2763
2764
If E gives the epipolar constraint \f$[p_2; 1]^T A^{-T} E A^{-1} [p_1; 1] = 0\f$ between the image
2765
points \f$p_1\f$ in the first image and \f$p_2\f$ in second image, then any of the tuples
2766
\f$[R_1, t]\f$, \f$[R_1, -t]\f$, \f$[R_2, t]\f$, \f$[R_2, -t]\f$ is a change of basis from the first
2767
camera's coordinate system to the second camera's coordinate system. However, by decomposing E, one
2768
can only get the direction of the translation. For this reason, the translation t is returned with
2769
unit length.
2770
 */
2771
CV_EXPORTS_W void decomposeEssentialMat( InputArray E, OutputArray R1, OutputArray R2, OutputArray t );
2772
2773
/** @brief Recovers the relative camera rotation and the translation from corresponding points in two images from two different cameras, using cheirality check. Returns the number of
2774
inliers that pass the check.
2775
2776
@param points1 Array of N 2D points from the first image. The point coordinates should be
2777
floating-point (single or double precision).
2778
@param points2 Array of the second image points of the same size and format as points1 .
2779
@param cameraMatrix1 Input/output camera matrix for the first camera, the same as in
2780
@ref calibrateCamera. Furthermore, for the stereo case, additional flags may be used, see below.
2781
@param distCoeffs1 Input/output vector of distortion coefficients, the same as in
2782
@ref calibrateCamera.
2783
@param cameraMatrix2 Input/output camera matrix for the first camera, the same as in
2784
@ref calibrateCamera. Furthermore, for the stereo case, additional flags may be used, see below.
2785
@param distCoeffs2 Input/output vector of distortion coefficients, the same as in
2786
@ref calibrateCamera.
2787
@param E The output essential matrix.
2788
@param R Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
2789
that performs a change of basis from the first camera's coordinate system to the second camera's
2790
coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
2791
described below.
2792
@param t Output translation vector. This vector is obtained by @ref decomposeEssentialMat and
2793
therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
2794
length.
2795
@param method Method for computing an essential matrix.
2796
-   @ref RANSAC for the RANSAC algorithm.
2797
-   @ref LMEDS for the LMedS algorithm.
2798
@param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
2799
confidence (probability) that the estimated matrix is correct.
2800
@param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
2801
line in pixels, beyond which the point is considered an outlier and is not used for computing the
2802
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
2803
point localization, image resolution, and the image noise.
2804
@param mask Input/output mask for inliers in points1 and points2. If it is not empty, then it marks
2805
inliers in points1 and points2 for then given essential matrix E. Only these inliers will be used to
2806
recover pose. In the output mask only inliers which pass the cheirality check.
2807
2808
This function decomposes an essential matrix using @ref decomposeEssentialMat and then verifies
2809
possible pose hypotheses by doing cheirality check. The cheirality check means that the
2810
triangulated 3D points should have positive depth. Some details can be found in @cite Nister03.
2811
2812
This function can be used to process the output E and mask from @ref findEssentialMat. In this
2813
scenario, points1 and points2 are the same input for findEssentialMat.:
2814
@code
2815
    // Example. Estimation of fundamental matrix using the RANSAC algorithm
2816
    int point_count = 100;
2817
    vector<Point2f> points1(point_count);
2818
    vector<Point2f> points2(point_count);
2819
2820
    // initialize the points here ...
2821
    for( int i = 0; i < point_count; i++ )
2822
    {
2823
        points1[i] = ...;
2824
        points2[i] = ...;
2825
    }
2826
2827
    // Input: camera calibration of both cameras, for example using intrinsic chessboard calibration.
2828
    Mat cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2;
2829
2830
    // Output: Essential matrix, relative rotation and relative translation.
2831
    Mat E, R, t, mask;
2832
2833
    recoverPose(points1, points2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, E, R, t, mask);
2834
@endcode
2835
 */
2836
CV_EXPORTS_W int recoverPose( InputArray points1, InputArray points2,
2837
                            InputArray cameraMatrix1, InputArray distCoeffs1,
2838
                            InputArray cameraMatrix2, InputArray distCoeffs2,
2839
                            OutputArray E, OutputArray R, OutputArray t,
2840
                            int method = cv::RANSAC, double prob = 0.999, double threshold = 1.0,
2841
                            InputOutputArray mask = noArray());
2842
2843
/** @brief Recovers the relative camera rotation and the translation from an estimated essential
2844
matrix and the corresponding points in two images, using chirality check. Returns the number of
2845
inliers that pass the check.
2846
2847
@param E The input essential matrix.
2848
@param points1 Array of N 2D points from the first image. The point coordinates should be
2849
floating-point (single or double precision).
2850
@param points2 Array of the second image points of the same size and format as points1 .
2851
@param cameraMatrix Camera intrinsic matrix \f$\cameramatrix{A}\f$ .
2852
Note that this function assumes that points1 and points2 are feature points from cameras with the
2853
same camera intrinsic matrix.
2854
@param R Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
2855
that performs a change of basis from the first camera's coordinate system to the second camera's
2856
coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
2857
described below.
2858
@param t Output translation vector. This vector is obtained by @ref decomposeEssentialMat and
2859
therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
2860
length.
2861
@param mask Input/output mask for inliers in points1 and points2. If it is not empty, then it marks
2862
inliers in points1 and points2 for the given essential matrix E. Only these inliers will be used to
2863
recover pose. In the output mask only inliers which pass the chirality check.
2864
2865
This function decomposes an essential matrix using @ref decomposeEssentialMat and then verifies
2866
possible pose hypotheses by doing chirality check. The chirality check means that the
2867
triangulated 3D points should have positive depth. Some details can be found in @cite Nister03.
2868
2869
This function can be used to process the output E and mask from @ref findEssentialMat. In this
2870
scenario, points1 and points2 are the same input for #findEssentialMat :
2871
@code
2872
    // Example. Estimation of fundamental matrix using the RANSAC algorithm
2873
    int point_count = 100;
2874
    vector<Point2f> points1(point_count);
2875
    vector<Point2f> points2(point_count);
2876
2877
    // initialize the points here ...
2878
    for( int i = 0; i < point_count; i++ )
2879
    {
2880
        points1[i] = ...;
2881
        points2[i] = ...;
2882
    }
2883
2884
    // cametra matrix with both focal lengths = 1, and principal point = (0, 0)
2885
    Mat cameraMatrix = Mat::eye(3, 3, CV_64F);
2886
2887
    Mat E, R, t, mask;
2888
2889
    E = findEssentialMat(points1, points2, cameraMatrix, RANSAC, 0.999, 1.0, mask);
2890
    recoverPose(E, points1, points2, cameraMatrix, R, t, mask);
2891
@endcode
2892
 */
2893
CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2,
2894
                            InputArray cameraMatrix, OutputArray R, OutputArray t,
2895
                            InputOutputArray mask = noArray() );
2896
2897
/** @overload
2898
@param E The input essential matrix.
2899
@param points1 Array of N 2D points from the first image. The point coordinates should be
2900
floating-point (single or double precision).
2901
@param points2 Array of the second image points of the same size and format as points1 .
2902
@param R Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
2903
that performs a change of basis from the first camera's coordinate system to the second camera's
2904
coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
2905
description below.
2906
@param t Output translation vector. This vector is obtained by @ref decomposeEssentialMat and
2907
therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
2908
length.
2909
@param focal Focal length of the camera. Note that this function assumes that points1 and points2
2910
are feature points from cameras with same focal length and principal point.
2911
@param pp principal point of the camera.
2912
@param mask Input/output mask for inliers in points1 and points2. If it is not empty, then it marks
2913
inliers in points1 and points2 for the given essential matrix E. Only these inliers will be used to
2914
recover pose. In the output mask only inliers which pass the chirality check.
2915
2916
This function differs from the one above that it computes camera intrinsic matrix from focal length and
2917
principal point:
2918
2919
\f[A =
2920
\begin{bmatrix}
2921
f & 0 & x_{pp}  \\
2922
0 & f & y_{pp}  \\
2923
0 & 0 & 1
2924
\end{bmatrix}\f]
2925
 */
2926
CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2,
2927
                            OutputArray R, OutputArray t,
2928
                            double focal = 1.0, Point2d pp = Point2d(0, 0),
2929
                            InputOutputArray mask = noArray() );
2930
2931
/** @overload
2932
@param E The input essential matrix.
2933
@param points1 Array of N 2D points from the first image. The point coordinates should be
2934
floating-point (single or double precision).
2935
@param points2 Array of the second image points of the same size and format as points1.
2936
@param cameraMatrix Camera intrinsic matrix \f$\cameramatrix{A}\f$ .
2937
Note that this function assumes that points1 and points2 are feature points from cameras with the
2938
same camera intrinsic matrix.
2939
@param R Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
2940
that performs a change of basis from the first camera's coordinate system to the second camera's
2941
coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
2942
description below.
2943
@param t Output translation vector. This vector is obtained by @ref decomposeEssentialMat and
2944
therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
2945
length.
2946
@param distanceThresh threshold distance which is used to filter out far away points (i.e. infinite
2947
points).
2948
@param mask Input/output mask for inliers in points1 and points2. If it is not empty, then it marks
2949
inliers in points1 and points2 for the given essential matrix E. Only these inliers will be used to
2950
recover pose. In the output mask only inliers which pass the chirality check.
2951
@param triangulatedPoints 3D points which were reconstructed by triangulation.
2952
2953
This function differs from the one above that it outputs the triangulated 3D point that are used for
2954
the chirality check.
2955
 */
2956
CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2,
2957
                            InputArray cameraMatrix, OutputArray R, OutputArray t, double distanceThresh, InputOutputArray mask = noArray(),
2958
                            OutputArray triangulatedPoints = noArray());
2959
2960
/** @brief For points in an image of a stereo pair, computes the corresponding epilines in the other image.
2961
2962
@param points Input points. \f$N \times 1\f$ or \f$1 \times N\f$ matrix of type CV_32FC2 or
2963
vector\<Point2f\> .
2964
@param whichImage Index of the image (1 or 2) that contains the points .
2965
@param F Fundamental matrix that can be estimated using #findFundamentalMat or #stereoRectify .
2966
@param lines Output vector of the epipolar lines corresponding to the points in the other image.
2967
Each line \f$ax + by + c=0\f$ is encoded by 3 numbers \f$(a, b, c)\f$ .
2968
2969
For every point in one of the two images of a stereo pair, the function finds the equation of the
2970
corresponding epipolar line in the other image.
2971
2972
From the fundamental matrix definition (see #findFundamentalMat ), line \f$l^{(2)}_i\f$ in the second
2973
image for the point \f$p^{(1)}_i\f$ in the first image (when whichImage=1 ) is computed as:
2974
2975
\f[l^{(2)}_i = F p^{(1)}_i\f]
2976
2977
And vice versa, when whichImage=2, \f$l^{(1)}_i\f$ is computed from \f$p^{(2)}_i\f$ as:
2978
2979
\f[l^{(1)}_i = F^T p^{(2)}_i\f]
2980
2981
Line coefficients are defined up to a scale. They are normalized so that \f$a_i^2+b_i^2=1\f$ .
2982
 */
2983
CV_EXPORTS_W void computeCorrespondEpilines( InputArray points, int whichImage,
2984
                                             InputArray F, OutputArray lines );
2985
2986
/** @brief This function reconstructs 3-dimensional points (in homogeneous coordinates) by using
2987
their observations with a stereo camera.
2988
2989
@param projMatr1 3x4 projection matrix of the first camera, i.e. this matrix projects 3D points
2990
given in the world's coordinate system into the first image.
2991
@param projMatr2 3x4 projection matrix of the second camera, i.e. this matrix projects 3D points
2992
given in the world's coordinate system into the second image.
2993
@param projPoints1 2xN array of feature points in the first image. In the case of the c++ version,
2994
it can be also a vector of feature points or two-channel matrix of size 1xN or Nx1.
2995
@param projPoints2 2xN array of corresponding points in the second image. In the case of the c++
2996
version, it can be also a vector of feature points or two-channel matrix of size 1xN or Nx1.
2997
@param points4D 4xN array of reconstructed points in homogeneous coordinates. These points are
2998
returned in the world's coordinate system.
2999
3000
@note
3001
   Keep in mind that all input data should be of float type in order for this function to work.
3002
3003
@note
3004
   If the projection matrices from @ref stereoRectify are used, then the returned points are
3005
   represented in the first camera's rectified coordinate system.
3006
3007
@sa
3008
   reprojectImageTo3D
3009
 */
3010
CV_EXPORTS_W void triangulatePoints( InputArray projMatr1, InputArray projMatr2,
3011
                                     InputArray projPoints1, InputArray projPoints2,
3012
                                     OutputArray points4D );
3013
3014
/** @brief Refines coordinates of corresponding points.
3015
3016
@param F 3x3 fundamental matrix.
3017
@param points1 1xN array containing the first set of points.
3018
@param points2 1xN array containing the second set of points.
3019
@param newPoints1 The optimized points1.
3020
@param newPoints2 The optimized points2.
3021
3022
The function implements the Optimal Triangulation Method (see Multiple View Geometry @cite HartleyZ00 for details).
3023
For each given point correspondence points1[i] \<-\> points2[i], and a fundamental matrix F, it
3024
computes the corrected correspondences newPoints1[i] \<-\> newPoints2[i] that minimize the geometric
3025
error \f$d(points1[i], newPoints1[i])^2 + d(points2[i],newPoints2[i])^2\f$ (where \f$d(a,b)\f$ is the
3026
geometric distance between points \f$a\f$ and \f$b\f$ ) subject to the epipolar constraint
3027
\f$newPoints2^T \cdot F \cdot newPoints1 = 0\f$ .
3028
 */
3029
CV_EXPORTS_W void correctMatches( InputArray F, InputArray points1, InputArray points2,
3030
                                  OutputArray newPoints1, OutputArray newPoints2 );
3031
3032
/** @brief Filters off small noise blobs (speckles) in the disparity map
3033
3034
@param img The input 16-bit signed disparity image
3035
@param newVal The disparity value used to paint-off the speckles
3036
@param maxSpeckleSize The maximum speckle size to consider it a speckle. Larger blobs are not
3037
affected by the algorithm
3038
@param maxDiff Maximum difference between neighbor disparity pixels to put them into the same
3039
blob. Note that since StereoBM, StereoSGBM and may be other algorithms return a fixed-point
3040
disparity map, where disparity values are multiplied by 16, this scale factor should be taken into
3041
account when specifying this parameter value.
3042
@param buf The optional temporary buffer to avoid memory allocation within the function.
3043
 */
3044
CV_EXPORTS_W void filterSpeckles( InputOutputArray img, double newVal,
3045
                                  int maxSpeckleSize, double maxDiff,
3046
                                  InputOutputArray buf = noArray() );
3047
3048
//! computes valid disparity ROI from the valid ROIs of the rectified images (that are returned by #stereoRectify)
3049
CV_EXPORTS_W Rect getValidDisparityROI( Rect roi1, Rect roi2,
3050
                                        int minDisparity, int numberOfDisparities,
3051
                                        int blockSize );
3052
3053
//! validates disparity using the left-right check. The matrix "cost" should be computed by the stereo correspondence algorithm
3054
CV_EXPORTS_W void validateDisparity( InputOutputArray disparity, InputArray cost,
3055
                                     int minDisparity, int numberOfDisparities,
3056
                                     int disp12MaxDisp = 1 );
3057
3058
/** @brief Reprojects a disparity image to 3D space.
3059
3060
@param disparity Input single-channel 8-bit unsigned, 16-bit signed, 32-bit signed or 32-bit
3061
floating-point disparity image. The values of 8-bit / 16-bit signed formats are assumed to have no
3062
fractional bits. If the disparity is 16-bit signed format, as computed by @ref StereoBM or
3063
@ref StereoSGBM and maybe other algorithms, it should be divided by 16 (and scaled to float) before
3064
being used here.
3065
@param _3dImage Output 3-channel floating-point image of the same size as disparity. Each element of
3066
_3dImage(x,y) contains 3D coordinates of the point (x,y) computed from the disparity map. If one
3067
uses Q obtained by @ref stereoRectify, then the returned points are represented in the first
3068
camera's rectified coordinate system.
3069
@param Q \f$4 \times 4\f$ perspective transformation matrix that can be obtained with
3070
@ref stereoRectify.
3071
@param handleMissingValues Indicates, whether the function should handle missing values (i.e.
3072
points where the disparity was not computed). If handleMissingValues=true, then pixels with the
3073
minimal disparity that corresponds to the outliers (see StereoMatcher::compute ) are transformed
3074
to 3D points with a very large Z value (currently set to 10000).
3075
@param ddepth The optional output array depth. If it is -1, the output image will have CV_32F
3076
depth. ddepth can also be set to CV_16S, CV_32S or CV_32F.
3077
3078
The function transforms a single-channel disparity map to a 3-channel image representing a 3D
3079
surface. That is, for each pixel (x,y) and the corresponding disparity d=disparity(x,y) , it
3080
computes:
3081
3082
\f[\begin{bmatrix}
3083
X \\
3084
Y \\
3085
Z \\
3086
W
3087
\end{bmatrix} = Q \begin{bmatrix}
3088
x \\
3089
y \\
3090
\texttt{disparity} (x,y) \\
3091
1
3092
\end{bmatrix}.\f]
3093
3094
@sa
3095
   To reproject a sparse set of points {(x,y,d),...} to 3D space, use perspectiveTransform.
3096
 */
3097
CV_EXPORTS_W void reprojectImageTo3D( InputArray disparity,
3098
                                      OutputArray _3dImage, InputArray Q,
3099
                                      bool handleMissingValues = false,
3100
                                      int ddepth = -1 );
3101
3102
/** @brief Calculates the Sampson Distance between two points.
3103
3104
The function cv::sampsonDistance calculates and returns the first order approximation of the geometric error as:
3105
\f[
3106
sd( \texttt{pt1} , \texttt{pt2} )=
3107
\frac{(\texttt{pt2}^t \cdot \texttt{F} \cdot \texttt{pt1})^2}
3108
{((\texttt{F} \cdot \texttt{pt1})(0))^2 +
3109
((\texttt{F} \cdot \texttt{pt1})(1))^2 +
3110
((\texttt{F}^t \cdot \texttt{pt2})(0))^2 +
3111
((\texttt{F}^t \cdot \texttt{pt2})(1))^2}
3112
\f]
3113
The fundamental matrix may be calculated using the #findFundamentalMat function. See @cite HartleyZ00 11.4.3 for details.
3114
@param pt1 first homogeneous 2d point
3115
@param pt2 second homogeneous 2d point
3116
@param F fundamental matrix
3117
@return The computed Sampson distance.
3118
*/
3119
CV_EXPORTS_W double sampsonDistance(InputArray pt1, InputArray pt2, InputArray F);
3120
3121
/** @brief Computes an optimal affine transformation between two 3D point sets.
3122
3123
It computes
3124
\f[
3125
\begin{bmatrix}
3126
x\\
3127
y\\
3128
z\\
3129
\end{bmatrix}
3130
=
3131
\begin{bmatrix}
3132
a_{11} & a_{12} & a_{13}\\
3133
a_{21} & a_{22} & a_{23}\\
3134
a_{31} & a_{32} & a_{33}\\
3135
\end{bmatrix}
3136
\begin{bmatrix}
3137
X\\
3138
Y\\
3139
Z\\
3140
\end{bmatrix}
3141
+
3142
\begin{bmatrix}
3143
b_1\\
3144
b_2\\
3145
b_3\\
3146
\end{bmatrix}
3147
\f]
3148
3149
@param src First input 3D point set containing \f$(X,Y,Z)\f$.
3150
@param dst Second input 3D point set containing \f$(x,y,z)\f$.
3151
@param out Output 3D affine transformation matrix \f$3 \times 4\f$ of the form
3152
\f[
3153
\begin{bmatrix}
3154
a_{11} & a_{12} & a_{13} & b_1\\
3155
a_{21} & a_{22} & a_{23} & b_2\\
3156
a_{31} & a_{32} & a_{33} & b_3\\
3157
\end{bmatrix}
3158
\f]
3159
@param inliers Output vector indicating which points are inliers (1-inlier, 0-outlier).
3160
@param ransacThreshold Maximum reprojection error in the RANSAC algorithm to consider a point as
3161
an inlier.
3162
@param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
3163
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
3164
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
3165
3166
The function estimates an optimal 3D affine transformation between two 3D point sets using the
3167
RANSAC algorithm.
3168
 */
3169
CV_EXPORTS_W  int estimateAffine3D(InputArray src, InputArray dst,
3170
                                   OutputArray out, OutputArray inliers,
3171
                                   double ransacThreshold = 3, double confidence = 0.99);
3172
3173
/** @brief Computes an optimal affine transformation between two 3D point sets.
3174
3175
It computes \f$R,s,t\f$ minimizing \f$\sum{i} dst_i - c \cdot R \cdot src_i \f$
3176
where \f$R\f$ is a 3x3 rotation matrix, \f$t\f$ is a 3x1 translation vector and \f$s\f$ is a
3177
scalar size value. This is an implementation of the algorithm by Umeyama \cite umeyama1991least .
3178
The estimated affine transform has a homogeneous scale which is a subclass of affine
3179
transformations with 7 degrees of freedom. The paired point sets need to comprise at least 3
3180
points each.
3181
3182
@param src First input 3D point set.
3183
@param dst Second input 3D point set.
3184
@param scale If null is passed, the scale parameter c will be assumed to be 1.0.
3185
Else the pointed-to variable will be set to the optimal scale.
3186
@param force_rotation If true, the returned rotation will never be a reflection.
3187
This might be unwanted, e.g. when optimizing a transform between a right- and a
3188
left-handed coordinate system.
3189
@return 3D affine transformation matrix \f$3 \times 4\f$ of the form
3190
\f[T =
3191
\begin{bmatrix}
3192
R & t\\
3193
\end{bmatrix}
3194
\f]
3195
3196
 */
3197
CV_EXPORTS_W   cv::Mat estimateAffine3D(InputArray src, InputArray dst,
3198
                                        CV_OUT double* scale = nullptr, bool force_rotation = true);
3199
3200
/** @brief Computes an optimal translation between two 3D point sets.
3201
 *
3202
 * It computes
3203
 * \f[
3204
 * \begin{bmatrix}
3205
 * x\\
3206
 * y\\
3207
 * z\\
3208
 * \end{bmatrix}
3209
 * =
3210
 * \begin{bmatrix}
3211
 * X\\
3212
 * Y\\
3213
 * Z\\
3214
 * \end{bmatrix}
3215
 * +
3216
 * \begin{bmatrix}
3217
 * b_1\\
3218
 * b_2\\
3219
 * b_3\\
3220
 * \end{bmatrix}
3221
 * \f]
3222
 *
3223
 * @param src First input 3D point set containing \f$(X,Y,Z)\f$.
3224
 * @param dst Second input 3D point set containing \f$(x,y,z)\f$.
3225
 * @param out Output 3D translation vector \f$3 \times 1\f$ of the form
3226
 * \f[
3227
 * \begin{bmatrix}
3228
 * b_1 \\
3229
 * b_2 \\
3230
 * b_3 \\
3231
 * \end{bmatrix}
3232
 * \f]
3233
 * @param inliers Output vector indicating which points are inliers (1-inlier, 0-outlier).
3234
 * @param ransacThreshold Maximum reprojection error in the RANSAC algorithm to consider a point as
3235
 * an inlier.
3236
 * @param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
3237
 * between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
3238
 * significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
3239
 *
3240
 * The function estimates an optimal 3D translation between two 3D point sets using the
3241
 * RANSAC algorithm.
3242
 *  */
3243
CV_EXPORTS_W  int estimateTranslation3D(InputArray src, InputArray dst,
3244
                                        OutputArray out, OutputArray inliers,
3245
                                        double ransacThreshold = 3, double confidence = 0.99);
3246
3247
/** @brief Computes an optimal affine transformation between two 2D point sets.
3248
3249
It computes
3250
\f[
3251
\begin{bmatrix}
3252
x\\
3253
y\\
3254
\end{bmatrix}
3255
=
3256
\begin{bmatrix}
3257
a_{11} & a_{12}\\
3258
a_{21} & a_{22}\\
3259
\end{bmatrix}
3260
\begin{bmatrix}
3261
X\\
3262
Y\\
3263
\end{bmatrix}
3264
+
3265
\begin{bmatrix}
3266
b_1\\
3267
b_2\\
3268
\end{bmatrix}
3269
\f]
3270
3271
@param from First input 2D point set containing \f$(X,Y)\f$.
3272
@param to Second input 2D point set containing \f$(x,y)\f$.
3273
@param inliers Output vector indicating which points are inliers (1-inlier, 0-outlier).
3274
@param method Robust method used to compute transformation. The following methods are possible:
3275
-   @ref RANSAC - RANSAC-based robust method
3276
-   @ref LMEDS - Least-Median robust method
3277
RANSAC is the default method.
3278
@param ransacReprojThreshold Maximum reprojection error in the RANSAC algorithm to consider
3279
a point as an inlier. Applies only to RANSAC.
3280
@param maxIters The maximum number of robust method iterations.
3281
@param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
3282
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
3283
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
3284
@param refineIters Maximum number of iterations of refining algorithm (Levenberg-Marquardt).
3285
Passing 0 will disable refining, so the output matrix will be output of robust method.
3286
3287
@return Output 2D affine transformation matrix \f$2 \times 3\f$ or empty matrix if transformation
3288
could not be estimated. The returned matrix has the following form:
3289
\f[
3290
\begin{bmatrix}
3291
a_{11} & a_{12} & b_1\\
3292
a_{21} & a_{22} & b_2\\
3293
\end{bmatrix}
3294
\f]
3295
3296
The function estimates an optimal 2D affine transformation between two 2D point sets using the
3297
selected robust algorithm.
3298
3299
The computed transformation is then refined further (using only inliers) with the
3300
Levenberg-Marquardt method to reduce the re-projection error even more.
3301
3302
@note
3303
The RANSAC method can handle practically any ratio of outliers but needs a threshold to
3304
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
3305
correctly only when there are more than 50% of inliers.
3306
3307
@sa estimateAffinePartial2D, getAffineTransform
3308
*/
3309
CV_EXPORTS_W cv::Mat estimateAffine2D(InputArray from, InputArray to, OutputArray inliers = noArray(),
3310
                                  int method = RANSAC, double ransacReprojThreshold = 3,
3311
                                  size_t maxIters = 2000, double confidence = 0.99,
3312
                                  size_t refineIters = 10);
3313
3314
3315
CV_EXPORTS_W cv::Mat estimateAffine2D(InputArray pts1, InputArray pts2, OutputArray inliers,
3316
                     const UsacParams &params);
3317
3318
/** @brief Computes an optimal limited affine transformation with 4 degrees of freedom between
3319
two 2D point sets.
3320
3321
@param from First input 2D point set.
3322
@param to Second input 2D point set.
3323
@param inliers Output vector indicating which points are inliers.
3324
@param method Robust method used to compute transformation. The following methods are possible:
3325
-   @ref RANSAC - RANSAC-based robust method
3326
-   @ref LMEDS - Least-Median robust method
3327
RANSAC is the default method.
3328
@param ransacReprojThreshold Maximum reprojection error in the RANSAC algorithm to consider
3329
a point as an inlier. Applies only to RANSAC.
3330
@param maxIters The maximum number of robust method iterations.
3331
@param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
3332
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
3333
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
3334
@param refineIters Maximum number of iterations of refining algorithm (Levenberg-Marquardt).
3335
Passing 0 will disable refining, so the output matrix will be output of robust method.
3336
3337
@return Output 2D affine transformation (4 degrees of freedom) matrix \f$2 \times 3\f$ or
3338
empty matrix if transformation could not be estimated.
3339
3340
The function estimates an optimal 2D affine transformation with 4 degrees of freedom limited to
3341
combinations of translation, rotation, and uniform scaling. Uses the selected algorithm for robust
3342
estimation.
3343
3344
The computed transformation is then refined further (using only inliers) with the
3345
Levenberg-Marquardt method to reduce the re-projection error even more.
3346
3347
Estimated transformation matrix is:
3348
\f[ \begin{bmatrix} \cos(\theta) \cdot s & -\sin(\theta) \cdot s & t_x \\
3349
                \sin(\theta) \cdot s & \cos(\theta) \cdot s & t_y
3350
\end{bmatrix} \f]
3351
Where \f$ \theta \f$ is the rotation angle, \f$ s \f$ the scaling factor and \f$ t_x, t_y \f$ are
3352
translations in \f$ x, y \f$ axes respectively.
3353
3354
@note
3355
The RANSAC method can handle practically any ratio of outliers but need a threshold to
3356
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
3357
correctly only when there are more than 50% of inliers.
3358
3359
@sa estimateAffine2D, getAffineTransform
3360
*/
3361
CV_EXPORTS_W cv::Mat estimateAffinePartial2D(InputArray from, InputArray to, OutputArray inliers = noArray(),
3362
                                  int method = RANSAC, double ransacReprojThreshold = 3,
3363
                                  size_t maxIters = 2000, double confidence = 0.99,
3364
                                  size_t refineIters = 10);
3365
3366
/** @brief Computes a pure 2D translation between two 2D point sets.
3367
3368
It computes
3369
\f[
3370
\begin{bmatrix}
3371
x\\
3372
y
3373
\end{bmatrix}
3374
=
3375
\begin{bmatrix}
3376
1 & 0\\
3377
0 & 1
3378
\end{bmatrix}
3379
\begin{bmatrix}
3380
X\\
3381
Y
3382
\end{bmatrix}
3383
+
3384
\begin{bmatrix}
3385
t_x\\
3386
t_y
3387
\end{bmatrix}.
3388
\f]
3389
3390
@param from First input 2D point set containing \f$(X,Y)\f$.
3391
@param to Second input 2D point set containing \f$(x,y)\f$.
3392
@param inliers Output vector indicating which points are inliers (1-inlier, 0-outlier).
3393
@param method Robust method used to compute the transformation. The following methods are possible:
3394
-   @ref RANSAC - RANSAC-based robust method
3395
-   @ref LMEDS - Least-Median robust method
3396
RANSAC is the default method.
3397
@param ransacReprojThreshold Maximum reprojection error in the RANSAC algorithm to consider
3398
a point as an inlier. Applies only to RANSAC.
3399
@param maxIters The maximum number of robust method iterations.
3400
@param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
3401
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
3402
significantly. Values lower than 0.8–0.9 can result in an incorrectly estimated transformation.
3403
@param refineIters Maximum number of iterations of the refining algorithm. For pure translation
3404
the least-squares solution on inliers is closed-form, so passing 0 is recommended (no additional refine).
3405
3406
@return A 2D translation vector \f$[t_x, t_y]^T\f$ as `cv::Vec2d`. If the translation could not be
3407
estimated, both components are set to NaN and, if @p inliers is provided, the mask is filled with zeros.
3408
3409
\par Converting to a 2x3 transformation matrix:
3410
\f[
3411
\begin{bmatrix}
3412
1 & 0 & t_x\\
3413
0 & 1 & t_y
3414
\end{bmatrix}
3415
\f]
3416
3417
@code{.cpp}
3418
cv::Vec2d t = cv::estimateTranslation2D(from, to, inliers);
3419
cv::Mat T = (cv::Mat_<double>(2,3) << 1,0,t[0], 0,1,t[1]);
3420
@endcode
3421
3422
The function estimates a pure 2D translation between two 2D point sets using the selected robust
3423
algorithm. Inliers are determined by the reprojection error threshold.
3424
3425
@note
3426
The RANSAC method can handle practically any ratio of outliers but needs a threshold to
3427
distinguish inliers from outliers. The method LMeDS does not need any threshold but works
3428
correctly only when there are more than 50% inliers.
3429
3430
@sa estimateAffine2D, estimateAffinePartial2D, getAffineTransform
3431
*/
3432
CV_EXPORTS_W cv::Vec2d estimateTranslation2D(InputArray from, InputArray to, OutputArray inliers = noArray(),
3433
                                             int method = RANSAC,
3434
                                             double ransacReprojThreshold = 3,
3435
                                             size_t maxIters = 2000, double confidence = 0.99,
3436
                                             size_t refineIters = 0);
3437
3438
/** @example samples/cpp/tutorial_code/features2D/Homography/decompose_homography.cpp
3439
An example program with homography decomposition.
3440
3441
Check @ref tutorial_homography "the corresponding tutorial" for more details.
3442
*/
3443
3444
/** @brief Decompose a homography matrix to rotation(s), translation(s) and plane normal(s).
3445
3446
@param H The input homography matrix between two images.
3447
@param K The input camera intrinsic matrix.
3448
@param rotations Array of rotation matrices.
3449
@param translations Array of translation matrices.
3450
@param normals Array of plane normal matrices.
3451
3452
This function extracts relative camera motion between two views of a planar object and returns up to
3453
four mathematical solution tuples of rotation, translation, and plane normal. The decomposition of
3454
the homography matrix H is described in detail in @cite Malis2007.
3455
3456
If the homography H, induced by the plane, gives the constraint
3457
\f[s_i \vecthree{x'_i}{y'_i}{1} \sim H \vecthree{x_i}{y_i}{1}\f] on the source image points
3458
\f$p_i\f$ and the destination image points \f$p'_i\f$, then the tuple of rotations[k] and
3459
translations[k] is a change of basis from the source camera's coordinate system to the destination
3460
camera's coordinate system. However, by decomposing H, one can only get the translation normalized
3461
by the (typically unknown) depth of the scene, i.e. its direction but with normalized length.
3462
3463
If point correspondences are available, at least two solutions may further be invalidated, by
3464
applying positive depth constraint, i.e. all points must be in front of the camera.
3465
 */
3466
CV_EXPORTS_W int decomposeHomographyMat(InputArray H,
3467
                                        InputArray K,
3468
                                        OutputArrayOfArrays rotations,
3469
                                        OutputArrayOfArrays translations,
3470
                                        OutputArrayOfArrays normals);
3471
3472
/** @brief Filters homography decompositions based on additional information.
3473
3474
@param rotations Vector of rotation matrices.
3475
@param normals Vector of plane normal matrices.
3476
@param beforePoints Vector of (rectified) visible reference points before the homography is applied
3477
@param afterPoints Vector of (rectified) visible reference points after the homography is applied
3478
@param possibleSolutions Vector of int indices representing the viable solution set after filtering
3479
@param pointsMask optional Mat/Vector of 8u type representing the mask for the inliers as given by the #findHomography function
3480
3481
This function is intended to filter the output of the #decomposeHomographyMat based on additional
3482
information as described in @cite Malis2007 . The summary of the method: the #decomposeHomographyMat function
3483
returns 2 unique solutions and their "opposites" for a total of 4 solutions. If we have access to the
3484
sets of points visible in the camera frame before and after the homography transformation is applied,
3485
we can determine which are the true potential solutions and which are the opposites by verifying which
3486
homographies are consistent with all visible reference points being in front of the camera. The inputs
3487
are left unchanged; the filtered solution set is returned as indices into the existing one.
3488
3489
*/
3490
CV_EXPORTS_W void filterHomographyDecompByVisibleRefpoints(InputArrayOfArrays rotations,
3491
                                                           InputArrayOfArrays normals,
3492
                                                           InputArray beforePoints,
3493
                                                           InputArray afterPoints,
3494
                                                           OutputArray possibleSolutions,
3495
                                                           InputArray pointsMask = noArray());
3496
3497
/** @brief The base class for stereo correspondence algorithms.
3498
 */
3499
class CV_EXPORTS_W StereoMatcher : public Algorithm
3500
{
3501
public:
3502
    enum { DISP_SHIFT = 4,
3503
           DISP_SCALE = (1 << DISP_SHIFT)
3504
         };
3505
3506
    /** @brief Computes disparity map for the specified stereo pair
3507
3508
    @param left Left 8-bit single-channel image.
3509
    @param right Right image of the same size and the same type as the left one.
3510
    @param disparity Output disparity map. It has the same size as the input images. Some algorithms,
3511
    like StereoBM or StereoSGBM compute 16-bit fixed-point disparity map (where each disparity value
3512
    has 4 fractional bits), whereas other algorithms output 32-bit floating-point disparity map.
3513
     */
3514
    CV_WRAP virtual void compute( InputArray left, InputArray right,
3515
                                  OutputArray disparity ) = 0;
3516
3517
    CV_WRAP virtual int getMinDisparity() const = 0;
3518
    CV_WRAP virtual void setMinDisparity(int minDisparity) = 0;
3519
3520
    CV_WRAP virtual int getNumDisparities() const = 0;
3521
    CV_WRAP virtual void setNumDisparities(int numDisparities) = 0;
3522
3523
    CV_WRAP virtual int getBlockSize() const = 0;
3524
    CV_WRAP virtual void setBlockSize(int blockSize) = 0;
3525
3526
    CV_WRAP virtual int getSpeckleWindowSize() const = 0;
3527
    CV_WRAP virtual void setSpeckleWindowSize(int speckleWindowSize) = 0;
3528
3529
    CV_WRAP virtual int getSpeckleRange() const = 0;
3530
    CV_WRAP virtual void setSpeckleRange(int speckleRange) = 0;
3531
3532
    CV_WRAP virtual int getDisp12MaxDiff() const = 0;
3533
    CV_WRAP virtual void setDisp12MaxDiff(int disp12MaxDiff) = 0;
3534
};
3535
3536
3537
/**
3538
 * @brief Class for computing stereo correspondence using the block matching algorithm, introduced and contributed to OpenCV by K. Konolige.
3539
 * @details This class implements a block matching algorithm for stereo correspondence, which is used to compute disparity maps from stereo image pairs. It provides methods to fine-tune parameters such as pre-filtering, texture thresholds, uniqueness ratios, and regions of interest (ROIs) to optimize performance and accuracy.
3540
 */
3541
class CV_EXPORTS_W StereoBM : public StereoMatcher
3542
{
3543
public:
3544
    /**
3545
     * @brief Pre-filter types for the stereo matching algorithm.
3546
     * @details These constants define the type of pre-filtering applied to the images before computing the disparity map.
3547
     * - PREFILTER_NORMALIZED_RESPONSE: Uses normalized response for pre-filtering.
3548
     * - PREFILTER_XSOBEL: Uses the X-Sobel operator for pre-filtering.
3549
     */
3550
    enum {
3551
        PREFILTER_NORMALIZED_RESPONSE = 0,  ///< Normalized response pre-filter
3552
        PREFILTER_XSOBEL              = 1   ///< X-Sobel pre-filter
3553
    };
3554
3555
    /**
3556
     * @brief Gets the type of pre-filtering currently used in the algorithm.
3557
     * @return The current pre-filter type: 0 for PREFILTER_NORMALIZED_RESPONSE or 1 for PREFILTER_XSOBEL.
3558
     */
3559
    CV_WRAP virtual int getPreFilterType() const = 0;
3560
3561
    /**
3562
     * @brief Sets the type of pre-filtering used in the algorithm.
3563
     * @param preFilterType The type of pre-filter to use. Possible values are:
3564
     * - PREFILTER_NORMALIZED_RESPONSE (0): Uses normalized response for pre-filtering.
3565
     * - PREFILTER_XSOBEL (1): Uses the X-Sobel operator for pre-filtering.
3566
     * @details The pre-filter type affects how the images are prepared before computing the disparity map. Different pre-filtering methods can enhance specific image features or reduce noise, influencing the quality of the disparity map.
3567
     */
3568
    CV_WRAP virtual void setPreFilterType(int preFilterType) = 0;
3569
3570
    /**
3571
     * @brief Gets the current size of the pre-filter kernel.
3572
     * @return The current pre-filter size.
3573
     */
3574
    CV_WRAP virtual int getPreFilterSize() const = 0;
3575
3576
    /**
3577
     * @brief Sets the size of the pre-filter kernel.
3578
     * @param preFilterSize The size of the pre-filter kernel. Must be an odd integer, typically between 5 and 255.
3579
     * @details The pre-filter size determines the spatial extent of the pre-filtering operation, which prepares the images for disparity computation by normalizing brightness and enhancing texture. Larger sizes reduce noise but may blur details, while smaller sizes preserve details but are more susceptible to noise.
3580
     */
3581
    CV_WRAP virtual void setPreFilterSize(int preFilterSize) = 0;
3582
3583
    /**
3584
     * @brief Gets the current truncation value for prefiltered pixels.
3585
     * @return The current pre-filter cap value.
3586
     */
3587
    CV_WRAP virtual int getPreFilterCap() const = 0;
3588
3589
    /**
3590
     * @brief Sets the truncation value for prefiltered pixels.
3591
     * @param preFilterCap The truncation value. Typically in the range [1, 63].
3592
     * @details This value caps the output of the pre-filter to [-preFilterCap, preFilterCap], helping to reduce the impact of noise and outliers in the pre-filtered image.
3593
     */
3594
    CV_WRAP virtual void setPreFilterCap(int preFilterCap) = 0;
3595
3596
    /**
3597
     * @brief Gets the current texture threshold value.
3598
     * @return The current texture threshold.
3599
     */
3600
    CV_WRAP virtual int getTextureThreshold() const = 0;
3601
3602
    /**
3603
     * @brief Sets the threshold for filtering low-texture regions.
3604
     * @param textureThreshold The threshold value. Must be non-negative.
3605
     * @details This parameter filters out regions with low texture, where establishing correspondences is difficult, thus reducing noise in the disparity map. Higher values filter more aggressively but may discard valid information.
3606
     */
3607
    CV_WRAP virtual void setTextureThreshold(int textureThreshold) = 0;
3608
3609
    /**
3610
     * @brief Gets the current uniqueness ratio value.
3611
     * @return The current uniqueness ratio.
3612
     */
3613
    CV_WRAP virtual int getUniquenessRatio() const = 0;
3614
3615
    /**
3616
     * @brief Sets the uniqueness ratio for filtering ambiguous matches.
3617
     * @param uniquenessRatio The uniqueness ratio value. Typically in the range [5, 15], but can be from 0 to 100.
3618
     * @details This parameter ensures that the best match is sufficiently better than the next best match, reducing false positives. Higher values are stricter but may filter out valid matches in difficult regions.
3619
     */
3620
    CV_WRAP virtual void setUniquenessRatio(int uniquenessRatio) = 0;
3621
3622
    /**
3623
     * @brief Gets the current size of the smaller block used for texture check.
3624
     * @return The current smaller block size.
3625
     */
3626
    CV_WRAP virtual int getSmallerBlockSize() const = 0;
3627
3628
    /**
3629
     * @brief Sets the size of the smaller block used for texture check.
3630
     * @param blockSize The size of the smaller block. Must be an odd integer between 5 and 255.
3631
     * @details This parameter determines the size of the block used to compute texture variance. Smaller blocks capture finer details but are more sensitive to noise, while larger blocks are more robust but may miss fine details.
3632
     */
3633
    CV_WRAP virtual void setSmallerBlockSize(int blockSize) = 0;
3634
3635
    /**
3636
     * @brief Gets the current Region of Interest (ROI) for the left image.
3637
     * @return The current ROI for the left image.
3638
     */
3639
    CV_WRAP virtual Rect getROI1() const = 0;
3640
3641
    /**
3642
     * @brief Sets the Region of Interest (ROI) for the left image.
3643
     * @param roi1 The ROI rectangle for the left image.
3644
     * @details By setting the ROI, the stereo matching computation is limited to the specified region, improving performance and potentially accuracy by focusing on relevant parts of the image.
3645
     */
3646
    CV_WRAP virtual void setROI1(Rect roi1) = 0;
3647
3648
    /**
3649
     * @brief Gets the current Region of Interest (ROI) for the right image.
3650
     * @return The current ROI for the right image.
3651
     */
3652
    CV_WRAP virtual Rect getROI2() const = 0;
3653
3654
    /**
3655
     * @brief Sets the Region of Interest (ROI) for the right image.
3656
     * @param roi2 The ROI rectangle for the right image.
3657
     * @details Similar to setROI1, this limits the computation to the specified region in the right image.
3658
     */
3659
    CV_WRAP virtual void setROI2(Rect roi2) = 0;
3660
3661
    /**
3662
     * @brief Creates StereoBM object
3663
     * @param numDisparities The disparity search range. For each pixel, the algorithm will find the best disparity from 0 (default minimum disparity) to numDisparities. The search range can be shifted by changing the minimum disparity.
3664
     * @param blockSize The linear size of the blocks compared by the algorithm. The size should be odd (as the block is centered at the current pixel). Larger block size implies smoother, though less accurate disparity map. Smaller block size gives more detailed disparity map, but there is a higher chance for the algorithm to find a wrong correspondence.
3665
     * @return A pointer to the created StereoBM object.
3666
     * @details The function creates a StereoBM object. You can then call StereoBM::compute() to compute disparity for a specific stereo pair.
3667
     */
3668
    CV_WRAP static Ptr<StereoBM> create(int numDisparities = 0, int blockSize = 21);
3669
};
3670
3671
/** @brief The class implements the modified H. Hirschmuller algorithm @cite HH08 that differs from the original
3672
one as follows:
3673
3674
-   By default, the algorithm is single-pass, which means that you consider only 5 directions
3675
instead of 8. Set mode=StereoSGBM::MODE_HH in createStereoSGBM to run the full variant of the
3676
algorithm but beware that it may consume a lot of memory.
3677
-   The algorithm matches blocks, not individual pixels. Though, setting blockSize=1 reduces the
3678
blocks to single pixels.
3679
-   Mutual information cost function is not implemented. Instead, a simpler Birchfield-Tomasi
3680
sub-pixel metric from @cite BT98 is used. Though, the color images are supported as well.
3681
-   Some pre- and post- processing steps from K. Konolige algorithm StereoBM are included, for
3682
example: pre-filtering (StereoBM::PREFILTER_XSOBEL type) and post-filtering (uniqueness
3683
check, quadratic interpolation and speckle filtering).
3684
3685
@note
3686
   -   (Python) An example illustrating the use of the StereoSGBM matching algorithm can be found
3687
        at opencv_source_code/samples/python/stereo_match.py
3688
 */
3689
class CV_EXPORTS_W StereoSGBM : public StereoMatcher
3690
{
3691
public:
3692
    enum
3693
    {
3694
        MODE_SGBM = 0,
3695
        MODE_HH   = 1,
3696
        MODE_SGBM_3WAY = 2,
3697
        MODE_HH4  = 3
3698
    };
3699
3700
    CV_WRAP virtual int getPreFilterCap() const = 0;
3701
    CV_WRAP virtual void setPreFilterCap(int preFilterCap) = 0;
3702
3703
    CV_WRAP virtual int getUniquenessRatio() const = 0;
3704
    CV_WRAP virtual void setUniquenessRatio(int uniquenessRatio) = 0;
3705
3706
    CV_WRAP virtual int getP1() const = 0;
3707
    CV_WRAP virtual void setP1(int P1) = 0;
3708
3709
    CV_WRAP virtual int getP2() const = 0;
3710
    CV_WRAP virtual void setP2(int P2) = 0;
3711
3712
    CV_WRAP virtual int getMode() const = 0;
3713
    CV_WRAP virtual void setMode(int mode) = 0;
3714
3715
    /** @brief Creates StereoSGBM object
3716
3717
    @param minDisparity Minimum possible disparity value. Normally, it is zero but sometimes
3718
    rectification algorithms can shift images, so this parameter needs to be adjusted accordingly.
3719
    @param numDisparities Maximum disparity minus minimum disparity. The value is always greater than
3720
    zero. In the current implementation, this parameter must be divisible by 16.
3721
    @param blockSize Matched block size. It must be an odd number \>=1 . Normally, it should be
3722
    somewhere in the 3..11 range.
3723
    @param P1 The first parameter controlling the disparity smoothness. See below.
3724
    @param P2 The second parameter controlling the disparity smoothness. The larger the values are,
3725
    the smoother the disparity is. P1 is the penalty on the disparity change by plus or minus 1
3726
    between neighbor pixels. P2 is the penalty on the disparity change by more than 1 between neighbor
3727
    pixels. The algorithm requires P2 \> P1 . See stereo_match.cpp sample where some reasonably good
3728
    P1 and P2 values are shown (like 8\*number_of_image_channels\*blockSize\*blockSize and
3729
    32\*number_of_image_channels\*blockSize\*blockSize , respectively).
3730
    @param disp12MaxDiff Maximum allowed difference (in integer pixel units) in the left-right
3731
    disparity check. Set it to a non-positive value to disable the check.
3732
    @param preFilterCap Truncation value for the prefiltered image pixels. The algorithm first
3733
    computes x-derivative at each pixel and clips its value by [-preFilterCap, preFilterCap] interval.
3734
    The result values are passed to the Birchfield-Tomasi pixel cost function.
3735
    @param uniquenessRatio Margin in percentage by which the best (minimum) computed cost function
3736
    value should "win" the second best value to consider the found match correct. Normally, a value
3737
    within the 5-15 range is good enough.
3738
    @param speckleWindowSize Maximum size of smooth disparity regions to consider their noise speckles
3739
    and invalidate. Set it to 0 to disable speckle filtering. Otherwise, set it somewhere in the
3740
    50-200 range.
3741
    @param speckleRange Maximum disparity variation within each connected component. If you do speckle
3742
    filtering, set the parameter to a positive value, it will be implicitly multiplied by 16.
3743
    Normally, 1 or 2 is good enough.
3744
    @param mode Set it to StereoSGBM::MODE_HH to run the full-scale two-pass dynamic programming
3745
    algorithm. It will consume O(W\*H\*numDisparities) bytes, which is large for 640x480 stereo and
3746
    huge for HD-size pictures. By default, it is set to false .
3747
3748
    The first constructor initializes StereoSGBM with all the default parameters. So, you only have to
3749
    set StereoSGBM::numDisparities at minimum. The second constructor enables you to set each parameter
3750
    to a custom value.
3751
     */
3752
    CV_WRAP static Ptr<StereoSGBM> create(int minDisparity = 0, int numDisparities = 16, int blockSize = 3,
3753
                                          int P1 = 0, int P2 = 0, int disp12MaxDiff = 0,
3754
                                          int preFilterCap = 0, int uniquenessRatio = 0,
3755
                                          int speckleWindowSize = 0, int speckleRange = 0,
3756
                                          int mode = StereoSGBM::MODE_SGBM);
3757
};
3758
3759
3760
//! cv::undistort mode
3761
enum UndistortTypes
3762
{
3763
    PROJ_SPHERICAL_ORTHO  = 0,
3764
    PROJ_SPHERICAL_EQRECT = 1
3765
};
3766
3767
/** @brief Transforms an image to compensate for lens distortion.
3768
3769
The function transforms an image to compensate radial and tangential lens distortion.
3770
3771
The function is simply a combination of #initUndistortRectifyMap (with unity R ) and #remap
3772
(with bilinear interpolation). See the former function for details of the transformation being
3773
performed.
3774
3775
Those pixels in the destination image, for which there is no correspondent pixels in the source
3776
image, are filled with zeros (black color).
3777
3778
A particular subset of the source image that will be visible in the corrected image can be regulated
3779
by newCameraMatrix. You can use #getOptimalNewCameraMatrix to compute the appropriate
3780
newCameraMatrix depending on your requirements.
3781
3782
The camera matrix and the distortion parameters can be determined using #calibrateCamera. If
3783
the resolution of images is different from the resolution used at the calibration stage, \f$f_x,
3784
f_y, c_x\f$ and \f$c_y\f$ need to be scaled accordingly, while the distortion coefficients remain
3785
the same.
3786
3787
@param src Input (distorted) image.
3788
@param dst Output (corrected) image that has the same size and type as src .
3789
@param cameraMatrix Input camera matrix \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
3790
@param distCoeffs Input vector of distortion coefficients
3791
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
3792
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
3793
@param newCameraMatrix Camera matrix of the distorted image. By default, it is the same as
3794
cameraMatrix but you may additionally scale and shift the result by using a different matrix.
3795
 */
3796
CV_EXPORTS_W void undistort( InputArray src, OutputArray dst,
3797
                             InputArray cameraMatrix,
3798
                             InputArray distCoeffs,
3799
                             InputArray newCameraMatrix = noArray() );
3800
3801
/** @brief Computes the undistortion and rectification transformation map.
3802
3803
The function computes the joint undistortion and rectification transformation and represents the
3804
result in the form of maps for #remap. The undistorted image looks like original, as if it is
3805
captured with a camera using the camera matrix =newCameraMatrix and zero distortion. In case of a
3806
monocular camera, newCameraMatrix is usually equal to cameraMatrix, or it can be computed by
3807
#getOptimalNewCameraMatrix for a better control over scaling. In case of a stereo camera,
3808
newCameraMatrix is normally set to P1 or P2 computed by #stereoRectify .
3809
3810
Also, this new camera is oriented differently in the coordinate space, according to R. That, for
3811
example, helps to align two heads of a stereo camera so that the epipolar lines on both images
3812
become horizontal and have the same y- coordinate (in case of a horizontally aligned stereo camera).
3813
3814
The function actually builds the maps for the inverse mapping algorithm that is used by #remap. That
3815
is, for each pixel \f$(u, v)\f$ in the destination (corrected and rectified) image, the function
3816
computes the corresponding coordinates in the source image (that is, in the original image from
3817
camera). The following process is applied:
3818
\f[
3819
\begin{array}{l}
3820
x  \leftarrow (u - {c'}_x)/{f'}_x  \\
3821
y  \leftarrow (v - {c'}_y)/{f'}_y  \\
3822
{[X\,Y\,W]} ^T  \leftarrow R^{-1}*[x \, y \, 1]^T  \\
3823
x'  \leftarrow X/W  \\
3824
y'  \leftarrow Y/W  \\
3825
r^2  \leftarrow x'^2 + y'^2 \\
3826
x''  \leftarrow x' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6}
3827
+ 2p_1 x' y' + p_2(r^2 + 2 x'^2)  + s_1 r^2 + s_2 r^4\\
3828
y''  \leftarrow y' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6}
3829
+ p_1 (r^2 + 2 y'^2) + 2 p_2 x' y' + s_3 r^2 + s_4 r^4 \\
3830
s\vecthree{x'''}{y'''}{1} =
3831
\vecthreethree{R_{33}(\tau_x, \tau_y)}{0}{-R_{13}((\tau_x, \tau_y)}
3832
{0}{R_{33}(\tau_x, \tau_y)}{-R_{23}(\tau_x, \tau_y)}
3833
{0}{0}{1} R(\tau_x, \tau_y) \vecthree{x''}{y''}{1}\\
3834
map_x(u,v)  \leftarrow x''' f_x + c_x  \\
3835
map_y(u,v)  \leftarrow y''' f_y + c_y
3836
\end{array}
3837
\f]
3838
where \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
3839
are the distortion coefficients.
3840
3841
In case of a stereo camera, this function is called twice: once for each camera head, after
3842
#stereoRectify, which in its turn is called after #stereoCalibrate. But if the stereo camera
3843
was not calibrated, it is still possible to compute the rectification transformations directly from
3844
the fundamental matrix using #stereoRectifyUncalibrated. For each camera, the function computes
3845
homography H as the rectification transformation in a pixel domain, not a rotation matrix R in 3D
3846
space. R can be computed from H as
3847
\f[\texttt{R} = \texttt{cameraMatrix} ^{-1} \cdot \texttt{H} \cdot \texttt{cameraMatrix}\f]
3848
where cameraMatrix can be chosen arbitrarily.
3849
3850
@param cameraMatrix Input camera matrix \f$A=\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
3851
@param distCoeffs Input vector of distortion coefficients
3852
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
3853
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
3854
@param R Optional rectification transformation in the object space (3x3 matrix). R1 or R2 ,
3855
computed by #stereoRectify can be passed here. If the matrix is empty, the identity transformation
3856
is assumed. In #initUndistortRectifyMap R assumed to be an identity matrix.
3857
@param newCameraMatrix New camera matrix \f$A'=\vecthreethree{f_x'}{0}{c_x'}{0}{f_y'}{c_y'}{0}{0}{1}\f$.
3858
@param size Undistorted image size.
3859
@param m1type Type of the first output map that can be CV_32FC1, CV_32FC2 or CV_16SC2, see #convertMaps
3860
@param map1 The first output map.
3861
@param map2 The second output map.
3862
 */
3863
CV_EXPORTS_W
3864
void initUndistortRectifyMap(InputArray cameraMatrix, InputArray distCoeffs,
3865
                             InputArray R, InputArray newCameraMatrix,
3866
                             Size size, int m1type, OutputArray map1, OutputArray map2);
3867
3868
/** @brief Computes the projection and inverse-rectification transformation map. In essense, this is the inverse of
3869
#initUndistortRectifyMap to accomodate stereo-rectification of projectors ('inverse-cameras') in projector-camera pairs.
3870
3871
The function computes the joint projection and inverse rectification transformation and represents the
3872
result in the form of maps for #remap. The projected image looks like a distorted version of the original which,
3873
once projected by a projector, should visually match the original. In case of a monocular camera, newCameraMatrix
3874
is usually equal to cameraMatrix, or it can be computed by
3875
#getOptimalNewCameraMatrix for a better control over scaling. In case of a projector-camera pair,
3876
newCameraMatrix is normally set to P1 or P2 computed by #stereoRectify .
3877
3878
The projector is oriented differently in the coordinate space, according to R. In case of projector-camera pairs,
3879
this helps align the projector (in the same manner as #initUndistortRectifyMap for the camera) to create a stereo-rectified pair. This
3880
allows epipolar lines on both images to become horizontal and have the same y-coordinate (in case of a horizontally aligned projector-camera pair).
3881
3882
The function builds the maps for the inverse mapping algorithm that is used by #remap. That
3883
is, for each pixel \f$(u, v)\f$ in the destination (projected and inverse-rectified) image, the function
3884
computes the corresponding coordinates in the source image (that is, in the original digital image). The following process is applied:
3885
3886
\f[
3887
\begin{array}{l}
3888
\text{newCameraMatrix}\\
3889
x  \leftarrow (u - {c'}_x)/{f'}_x  \\
3890
y  \leftarrow (v - {c'}_y)/{f'}_y  \\
3891
3892
\\\text{Undistortion}
3893
\\\scriptsize{\textit{though equation shown is for radial undistortion, function implements cv::undistortPoints()}}\\
3894
r^2  \leftarrow x^2 + y^2 \\
3895
\theta \leftarrow \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6}\\
3896
x' \leftarrow \frac{x}{\theta} \\
3897
y'  \leftarrow \frac{y}{\theta} \\
3898
3899
\\\text{Rectification}\\
3900
{[X\,Y\,W]} ^T  \leftarrow R*[x' \, y' \, 1]^T  \\
3901
x''  \leftarrow X/W  \\
3902
y''  \leftarrow Y/W  \\
3903
3904
\\\text{cameraMatrix}\\
3905
map_x(u,v)  \leftarrow x'' f_x + c_x  \\
3906
map_y(u,v)  \leftarrow y'' f_y + c_y
3907
\end{array}
3908
\f]
3909
where \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
3910
are the distortion coefficients vector distCoeffs.
3911
3912
In case of a stereo-rectified projector-camera pair, this function is called for the projector while #initUndistortRectifyMap is called for the camera head.
3913
This is done after #stereoRectify, which in turn is called after #stereoCalibrate. If the projector-camera pair
3914
is not calibrated, it is still possible to compute the rectification transformations directly from
3915
the fundamental matrix using #stereoRectifyUncalibrated. For the projector and camera, the function computes
3916
homography H as the rectification transformation in a pixel domain, not a rotation matrix R in 3D
3917
space. R can be computed from H as
3918
\f[\texttt{R} = \texttt{cameraMatrix} ^{-1} \cdot \texttt{H} \cdot \texttt{cameraMatrix}\f]
3919
where cameraMatrix can be chosen arbitrarily.
3920
3921
@param cameraMatrix Input camera matrix \f$A=\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
3922
@param distCoeffs Input vector of distortion coefficients
3923
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
3924
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
3925
@param R Optional rectification transformation in the object space (3x3 matrix). R1 or R2,
3926
computed by #stereoRectify can be passed here. If the matrix is empty, the identity transformation
3927
is assumed.
3928
@param newCameraMatrix New camera matrix \f$A'=\vecthreethree{f_x'}{0}{c_x'}{0}{f_y'}{c_y'}{0}{0}{1}\f$.
3929
@param size Distorted image size.
3930
@param m1type Type of the first output map. Can be CV_32FC1, CV_32FC2 or CV_16SC2, see #convertMaps
3931
@param map1 The first output map for #remap.
3932
@param map2 The second output map for #remap.
3933
 */
3934
CV_EXPORTS_W
3935
void initInverseRectificationMap( InputArray cameraMatrix, InputArray distCoeffs,
3936
                           InputArray R, InputArray newCameraMatrix,
3937
                           const Size& size, int m1type, OutputArray map1, OutputArray map2 );
3938
3939
//! initializes maps for #remap for wide-angle
3940
CV_EXPORTS
3941
float initWideAngleProjMap(InputArray cameraMatrix, InputArray distCoeffs,
3942
                           Size imageSize, int destImageWidth,
3943
                           int m1type, OutputArray map1, OutputArray map2,
3944
                           enum UndistortTypes projType = PROJ_SPHERICAL_EQRECT, double alpha = 0);
3945
static inline
3946
float initWideAngleProjMap(InputArray cameraMatrix, InputArray distCoeffs,
3947
                           Size imageSize, int destImageWidth,
3948
                           int m1type, OutputArray map1, OutputArray map2,
3949
                           int projType, double alpha = 0)
3950
0
{
3951
0
    return initWideAngleProjMap(cameraMatrix, distCoeffs, imageSize, destImageWidth,
3952
0
                                m1type, map1, map2, (UndistortTypes)projType, alpha);
3953
0
}
Unexecuted instantiation: generateusergallerycollage_fuzzer.cc:cv::initWideAngleProjMap(cv::_InputArray const&, cv::_InputArray const&, cv::Size_<int>, int, int, cv::_OutputArray const&, cv::_OutputArray const&, int, double)
Unexecuted instantiation: imread_fuzzer.cc:cv::initWideAngleProjMap(cv::_InputArray const&, cv::_InputArray const&, cv::Size_<int>, int, int, cv::_OutputArray const&, cv::_OutputArray const&, int, double)
Unexecuted instantiation: imdecode_fuzzer.cc:cv::initWideAngleProjMap(cv::_InputArray const&, cv::_InputArray const&, cv::Size_<int>, int, int, cv::_OutputArray const&, cv::_OutputArray const&, int, double)
Unexecuted instantiation: filestorage_read_string_fuzzer.cc:cv::initWideAngleProjMap(cv::_InputArray const&, cv::_InputArray const&, cv::Size_<int>, int, int, cv::_OutputArray const&, cv::_OutputArray const&, int, double)
Unexecuted instantiation: filestorage_read_file_fuzzer.cc:cv::initWideAngleProjMap(cv::_InputArray const&, cv::_InputArray const&, cv::Size_<int>, int, int, cv::_OutputArray const&, cv::_OutputArray const&, int, double)
Unexecuted instantiation: core_fuzzer.cc:cv::initWideAngleProjMap(cv::_InputArray const&, cv::_InputArray const&, cv::Size_<int>, int, int, cv::_OutputArray const&, cv::_OutputArray const&, int, double)
Unexecuted instantiation: imencode_fuzzer.cc:cv::initWideAngleProjMap(cv::_InputArray const&, cv::_InputArray const&, cv::Size_<int>, int, int, cv::_OutputArray const&, cv::_OutputArray const&, int, double)
Unexecuted instantiation: filestorage_read_filename_fuzzer.cc:cv::initWideAngleProjMap(cv::_InputArray const&, cv::_InputArray const&, cv::Size_<int>, int, int, cv::_OutputArray const&, cv::_OutputArray const&, int, double)
3954
3955
/** @brief Returns the default new camera matrix.
3956
3957
The function returns the camera matrix that is either an exact copy of the input cameraMatrix (when
3958
centerPrinicipalPoint=false ), or the modified one (when centerPrincipalPoint=true).
3959
3960
In the latter case, the new camera matrix will be:
3961
3962
\f[\begin{bmatrix} f_x && 0 && ( \texttt{imgSize.width} -1)*0.5  \\ 0 && f_y && ( \texttt{imgSize.height} -1)*0.5  \\ 0 && 0 && 1 \end{bmatrix} ,\f]
3963
3964
where \f$f_x\f$ and \f$f_y\f$ are \f$(0,0)\f$ and \f$(1,1)\f$ elements of cameraMatrix, respectively.
3965
3966
By default, the undistortion functions in OpenCV (see #initUndistortRectifyMap, #undistort) do not
3967
move the principal point. However, when you work with stereo, it is important to move the principal
3968
points in both views to the same y-coordinate (which is required by most of stereo correspondence
3969
algorithms), and may be to the same x-coordinate too. So, you can form the new camera matrix for
3970
each view where the principal points are located at the center.
3971
3972
@param cameraMatrix Input camera matrix.
3973
@param imgsize Camera view image size in pixels.
3974
@param centerPrincipalPoint Location of the principal point in the new camera matrix. The
3975
parameter indicates whether this location should be at the image center or not.
3976
 */
3977
CV_EXPORTS_W
3978
Mat getDefaultNewCameraMatrix(InputArray cameraMatrix, Size imgsize = Size(),
3979
                              bool centerPrincipalPoint = false);
3980
3981
/** @brief Computes the ideal point coordinates from the observed point coordinates.
3982
3983
The function is similar to #undistort and #initUndistortRectifyMap but it operates on a
3984
sparse set of points instead of a raster image. Also the function performs a reverse transformation
3985
to  #projectPoints. In case of a 3D object, it does not reconstruct its 3D coordinates, but for a
3986
planar object, it does, up to a translation vector, if the proper R is specified.
3987
3988
For each observed point coordinate \f$(u, v)\f$ the function computes:
3989
\f[
3990
\begin{array}{l}
3991
x^{"}  \leftarrow (u - c_x)/f_x  \\
3992
y^{"}  \leftarrow (v - c_y)/f_y  \\
3993
(x',y') = undistort(x^{"},y^{"}, \texttt{distCoeffs}) \\
3994
{[X\,Y\,W]} ^T  \leftarrow R*[x' \, y' \, 1]^T  \\
3995
x  \leftarrow X/W  \\
3996
y  \leftarrow Y/W  \\
3997
\text{only performed if P is specified:} \\
3998
u'  \leftarrow x {f'}_x + {c'}_x  \\
3999
v'  \leftarrow y {f'}_y + {c'}_y
4000
\end{array}
4001
\f]
4002
4003
where *undistort* is an approximate iterative algorithm that estimates the normalized original
4004
point coordinates out of the normalized distorted point coordinates ("normalized" means that the
4005
coordinates do not depend on the camera matrix).
4006
4007
The function can be used for both a stereo camera head or a monocular camera (when R is empty).
4008
@param src Observed point coordinates, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel (CV_32FC2 or CV_64FC2) (or
4009
vector\<Point2f\> ).
4010
@param dst Output ideal point coordinates (1xN/Nx1 2-channel or vector\<Point2f\> ) after undistortion and reverse perspective
4011
transformation. If matrix P is identity or omitted, dst will contain normalized point coordinates.
4012
@param cameraMatrix Camera matrix \f$\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
4013
@param distCoeffs Input vector of distortion coefficients
4014
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
4015
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
4016
@param R Rectification transformation in the object space (3x3 matrix). R1 or R2 computed by
4017
#stereoRectify can be passed here. If the matrix is empty, the identity transformation is used.
4018
@param P New camera matrix (3x3) or new projection matrix (3x4) \f$\begin{bmatrix} {f'}_x & 0 & {c'}_x & t_x \\ 0 & {f'}_y & {c'}_y & t_y \\ 0 & 0 & 1 & t_z \end{bmatrix}\f$. P1 or P2 computed by
4019
#stereoRectify can be passed here. If the matrix is empty, the identity new camera matrix is used.
4020
 */
4021
CV_EXPORTS_W
4022
void undistortPoints(InputArray src, OutputArray dst,
4023
                     InputArray cameraMatrix, InputArray distCoeffs,
4024
                     InputArray R = noArray(), InputArray P = noArray());
4025
/** @overload
4026
    @note Default version of #undistortPoints does 5 iterations to compute undistorted points.
4027
 */
4028
CV_EXPORTS_AS(undistortPointsIter)
4029
void undistortPoints(InputArray src, OutputArray dst,
4030
                     InputArray cameraMatrix, InputArray distCoeffs,
4031
                     InputArray R, InputArray P, TermCriteria criteria);
4032
4033
/**
4034
 * @brief Compute undistorted image points position
4035
 *
4036
 * @param src Observed points position, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel (CV_32FC2 or
4037
CV_64FC2) (or vector\<Point2f\> ).
4038
 * @param dst Output undistorted points position (1xN/Nx1 2-channel or vector\<Point2f\> ).
4039
 * @param cameraMatrix Camera matrix \f$\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
4040
 * @param distCoeffs Distortion coefficients
4041
 */
4042
CV_EXPORTS_W
4043
void undistortImagePoints(InputArray src, OutputArray dst, InputArray cameraMatrix,
4044
                          InputArray distCoeffs,
4045
                          TermCriteria = TermCriteria(TermCriteria::MAX_ITER, 5, 0.01));
4046
4047
//! @} calib3d
4048
4049
/** @brief The methods in this namespace use a so-called fisheye camera model.
4050
  @ingroup calib3d_fisheye
4051
*/
4052
namespace fisheye
4053
{
4054
//! @addtogroup calib3d_fisheye
4055
//! @{
4056
4057
    enum{
4058
        CALIB_USE_INTRINSIC_GUESS   = 1 << 0,
4059
        CALIB_RECOMPUTE_EXTRINSIC   = 1 << 1,
4060
        CALIB_CHECK_COND            = 1 << 2,
4061
        CALIB_FIX_SKEW              = 1 << 3,
4062
        CALIB_FIX_K1                = 1 << 4,
4063
        CALIB_FIX_K2                = 1 << 5,
4064
        CALIB_FIX_K3                = 1 << 6,
4065
        CALIB_FIX_K4                = 1 << 7,
4066
        CALIB_FIX_INTRINSIC         = 1 << 8,
4067
        CALIB_FIX_PRINCIPAL_POINT   = 1 << 9,
4068
        CALIB_ZERO_DISPARITY        = 1 << 10,
4069
        CALIB_FIX_FOCAL_LENGTH      = 1 << 11
4070
    };
4071
4072
    /** @brief Projects points using fisheye model
4073
4074
    @param objectPoints Array of object points, 1xN/Nx1 3-channel (or vector\<Point3f\> ), where N is
4075
    the number of points in the view.
4076
    @param imagePoints Output array of image points, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel, or
4077
    vector\<Point2f\>.
4078
    @param affine
4079
    @param K Camera intrinsic matrix \f$\cameramatrix{K}\f$.
4080
    @param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.
4081
    @param alpha The skew coefficient.
4082
    @param jacobian Optional output 2Nx15 jacobian matrix of derivatives of image points with respect
4083
    to components of the focal lengths, coordinates of the principal point, distortion coefficients,
4084
    rotation vector, translation vector, and the skew. In the old interface different components of
4085
    the jacobian are returned via different output parameters.
4086
4087
    The function computes projections of 3D points to the image plane given intrinsic and extrinsic
4088
    camera parameters. Optionally, the function computes Jacobians - matrices of partial derivatives of
4089
    image points coordinates (as functions of all the input parameters) with respect to the particular
4090
    parameters, intrinsic and/or extrinsic.
4091
     */
4092
    CV_EXPORTS void projectPoints(InputArray objectPoints, OutputArray imagePoints, const Affine3d& affine,
4093
        InputArray K, InputArray D, double alpha = 0, OutputArray jacobian = noArray());
4094
4095
    /** @overload */
4096
    CV_EXPORTS_W void projectPoints(InputArray objectPoints, OutputArray imagePoints, InputArray rvec, InputArray tvec,
4097
        InputArray K, InputArray D, double alpha = 0, OutputArray jacobian = noArray());
4098
4099
    /** @brief Distorts 2D points using fisheye model.
4100
4101
    @param undistorted Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is
4102
    the number of points in the view.
4103
    @param K Camera intrinsic matrix \f$\cameramatrix{K}\f$.
4104
    @param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.
4105
    @param alpha The skew coefficient.
4106
    @param distorted Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> .
4107
4108
    Note that the function assumes the camera intrinsic matrix of the undistorted points to be identity.
4109
    This means if you want to distort image points you have to multiply them with \f$K^{-1}\f$ or
4110
    use another function overload.
4111
     */
4112
    CV_EXPORTS_W void distortPoints(InputArray undistorted, OutputArray distorted, InputArray K, InputArray D, double alpha = 0);
4113
4114
    /** @overload
4115
    Overload of distortPoints function to handle cases when undistorted points are obtained with non-identity
4116
    camera matrix, e.g. output of #estimateNewCameraMatrixForUndistortRectify.
4117
    @param undistorted Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is
4118
    the number of points in the view.
4119
    @param Kundistorted Camera intrinsic matrix used as new camera matrix for undistortion.
4120
    @param K Camera intrinsic matrix \f$\cameramatrix{K}\f$.
4121
    @param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.
4122
    @param alpha The skew coefficient.
4123
    @param distorted Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> .
4124
    @sa estimateNewCameraMatrixForUndistortRectify
4125
    */
4126
    CV_EXPORTS_W void distortPoints(InputArray undistorted, OutputArray distorted, InputArray Kundistorted, InputArray K, InputArray D, double alpha = 0);
4127
4128
    /** @brief Undistorts 2D points using fisheye model
4129
4130
    @param distorted Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is the
4131
    number of points in the view.
4132
    @param K Camera intrinsic matrix \f$\cameramatrix{K}\f$.
4133
    @param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.
4134
    @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
4135
    1-channel or 1x1 3-channel
4136
    @param P New camera intrinsic matrix (3x3) or new projection matrix (3x4)
4137
    @param criteria Termination criteria
4138
    @param undistorted Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> .
4139
     */
4140
    CV_EXPORTS_W void undistortPoints(InputArray distorted, OutputArray undistorted,
4141
        InputArray K, InputArray D, InputArray R = noArray(), InputArray P  = noArray(),
4142
                TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 10, 1e-8));
4143
4144
    /** @brief Computes undistortion and rectification maps for image transform by #remap. If D is empty zero
4145
    distortion is used, if R or P is empty identity matrixes are used.
4146
4147
    @param K Camera intrinsic matrix \f$\cameramatrix{K}\f$.
4148
    @param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.
4149
    @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
4150
    1-channel or 1x1 3-channel
4151
    @param P New camera intrinsic matrix (3x3) or new projection matrix (3x4)
4152
    @param size Undistorted image size.
4153
    @param m1type Type of the first output map that can be CV_32FC1 or CV_16SC2 . See #convertMaps
4154
    for details.
4155
    @param map1 The first output map.
4156
    @param map2 The second output map.
4157
     */
4158
    CV_EXPORTS_W void initUndistortRectifyMap(InputArray K, InputArray D, InputArray R, InputArray P,
4159
        const cv::Size& size, int m1type, OutputArray map1, OutputArray map2);
4160
4161
    /** @brief Transforms an image to compensate for fisheye lens distortion.
4162
4163
    @param distorted image with fisheye lens distortion.
4164
    @param undistorted Output image with compensated fisheye lens distortion.
4165
    @param K Camera intrinsic matrix \f$\cameramatrix{K}\f$.
4166
    @param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.
4167
    @param Knew Camera intrinsic matrix of the distorted image. By default, it is the identity matrix but you
4168
    may additionally scale and shift the result by using a different matrix.
4169
    @param new_size the new size
4170
4171
    The function transforms an image to compensate radial lens distortion.
4172
4173
    The function is simply a combination of #fisheye::initUndistortRectifyMap (with unity R ) and #remap
4174
    (with bilinear interpolation). See the former function for details of the transformation being
4175
    performed.
4176
4177
    See below the results of undistortImage.
4178
       -   a\) result of undistort of perspective camera model (all possible coefficients (k_1, k_2, k_3,
4179
            k_4, k_5, k_6) of distortion were optimized under calibration)
4180
        -   b\) result of #fisheye::undistortImage of fisheye camera model (all possible coefficients (k_1, k_2,
4181
            k_3, k_4) of fisheye distortion were optimized under calibration)
4182
        -   c\) original image was captured with fisheye lens
4183
4184
    Pictures a) and b) almost the same. But if we consider points of image located far from the center
4185
    of image, we can notice that on image a) these points are distorted.
4186
4187
    ![image](pics/fisheye_undistorted.jpg)
4188
     */
4189
    CV_EXPORTS_W void undistortImage(InputArray distorted, OutputArray undistorted,
4190
        InputArray K, InputArray D, InputArray Knew = cv::noArray(), const Size& new_size = Size());
4191
4192
    /** @brief Estimates new camera intrinsic matrix for undistortion or rectification.
4193
4194
    @param K Camera intrinsic matrix \f$\cameramatrix{K}\f$.
4195
    @param image_size Size of the image
4196
    @param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.
4197
    @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
4198
    1-channel or 1x1 3-channel
4199
    @param P New camera intrinsic matrix (3x3) or new projection matrix (3x4)
4200
    @param balance Sets the new focal length in range between the min focal length and the max focal
4201
    length. Balance is in range of [0, 1].
4202
    @param new_size the new size
4203
    @param fov_scale Divisor for new focal length.
4204
     */
4205
    CV_EXPORTS_W void estimateNewCameraMatrixForUndistortRectify(InputArray K, InputArray D, const Size &image_size, InputArray R,
4206
        OutputArray P, double balance = 0.0, const Size& new_size = Size(), double fov_scale = 1.0);
4207
4208
    /** @brief Performs camera calibration
4209
4210
    @param objectPoints vector of vectors of calibration pattern points in the calibration pattern
4211
    coordinate space.
4212
    @param imagePoints vector of vectors of the projections of calibration pattern points.
4213
    imagePoints.size() and objectPoints.size() and imagePoints[i].size() must be equal to
4214
    objectPoints[i].size() for each i.
4215
    @param image_size Size of the image used only to initialize the camera intrinsic matrix.
4216
    @param K Output 3x3 floating-point camera intrinsic matrix
4217
    \f$\cameramatrix{A}\f$ . If
4218
    @ref fisheye::CALIB_USE_INTRINSIC_GUESS is specified, some or all of fx, fy, cx, cy must be
4219
    initialized before calling the function.
4220
    @param D Output vector of distortion coefficients \f$\distcoeffsfisheye\f$.
4221
    @param rvecs Output vector of rotation vectors (see @ref Rodrigues ) estimated for each pattern view.
4222
    That is, each k-th rotation vector together with the corresponding k-th translation vector (see
4223
    the next output parameter description) brings the calibration pattern from the model coordinate
4224
    space (in which object points are specified) to the world coordinate space, that is, a real
4225
    position of the calibration pattern in the k-th pattern view (k=0.. *M* -1).
4226
    @param tvecs Output vector of translation vectors estimated for each pattern view.
4227
    @param flags Different flags that may be zero or a combination of the following values:
4228
    -    @ref fisheye::CALIB_USE_INTRINSIC_GUESS  cameraMatrix contains valid initial values of
4229
    fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
4230
    center ( imageSize is used), and focal distances are computed in a least-squares fashion.
4231
    -    @ref fisheye::CALIB_RECOMPUTE_EXTRINSIC  Extrinsic will be recomputed after each iteration
4232
    of intrinsic optimization.
4233
    -    @ref fisheye::CALIB_CHECK_COND  The functions will check validity of condition number.
4234
    -    @ref fisheye::CALIB_FIX_SKEW  Skew coefficient (alpha) is set to zero and stay zero.
4235
    -    @ref fisheye::CALIB_FIX_K1,..., @ref fisheye::CALIB_FIX_K4 Selected distortion coefficients
4236
    are set to zeros and stay zero.
4237
    -    @ref fisheye::CALIB_FIX_PRINCIPAL_POINT  The principal point is not changed during the global
4238
optimization. It stays at the center or at a different location specified when @ref fisheye::CALIB_USE_INTRINSIC_GUESS is set too.
4239
    -    @ref fisheye::CALIB_FIX_FOCAL_LENGTH The focal length is not changed during the global
4240
optimization. It is the \f$max(width,height)/\pi\f$ or the provided \f$f_x\f$, \f$f_y\f$ when @ref fisheye::CALIB_USE_INTRINSIC_GUESS is set too.
4241
    @param criteria Termination criteria for the iterative optimization algorithm.
4242
     */
4243
    CV_EXPORTS_W double calibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, const Size& image_size,
4244
        InputOutputArray K, InputOutputArray D, OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, int flags = 0,
4245
            TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON));
4246
4247
    /** @brief Stereo rectification for fisheye camera model
4248
4249
    @param K1 First camera intrinsic matrix.
4250
    @param D1 First camera distortion parameters.
4251
    @param K2 Second camera intrinsic matrix.
4252
    @param D2 Second camera distortion parameters.
4253
    @param imageSize Size of the image used for stereo calibration.
4254
    @param R Rotation matrix between the coordinate systems of the first and the second
4255
    cameras.
4256
    @param tvec Translation vector between coordinate systems of the cameras.
4257
    @param R1 Output 3x3 rectification transform (rotation matrix) for the first camera.
4258
    @param R2 Output 3x3 rectification transform (rotation matrix) for the second camera.
4259
    @param P1 Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
4260
    camera.
4261
    @param P2 Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
4262
    camera.
4263
    @param Q Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see #reprojectImageTo3D ).
4264
    @param flags Operation flags that may be zero or @ref fisheye::CALIB_ZERO_DISPARITY . If the flag is set,
4265
    the function makes the principal points of each camera have the same pixel coordinates in the
4266
    rectified views. And if the flag is not set, the function may still shift the images in the
4267
    horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
4268
    useful image area.
4269
    @param newImageSize New image resolution after rectification. The same size should be passed to
4270
    #initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
4271
    is passed (default), it is set to the original imageSize . Setting it to larger value can help you
4272
    preserve details in the original image, especially when there is a big radial distortion.
4273
    @param balance Sets the new focal length in range between the min focal length and the max focal
4274
    length. Balance is in range of [0, 1].
4275
    @param fov_scale Divisor for new focal length.
4276
     */
4277
    CV_EXPORTS_W void stereoRectify(InputArray K1, InputArray D1, InputArray K2, InputArray D2, const Size &imageSize, InputArray R, InputArray tvec,
4278
        OutputArray R1, OutputArray R2, OutputArray P1, OutputArray P2, OutputArray Q, int flags, const Size &newImageSize = Size(),
4279
        double balance = 0.0, double fov_scale = 1.0);
4280
4281
    /** @brief Performs stereo calibration
4282
4283
    @param objectPoints Vector of vectors of the calibration pattern points.
4284
    @param imagePoints1 Vector of vectors of the projections of the calibration pattern points,
4285
    observed by the first camera.
4286
    @param imagePoints2 Vector of vectors of the projections of the calibration pattern points,
4287
    observed by the second camera.
4288
    @param K1 Input/output first camera intrinsic matrix:
4289
    \f$\vecthreethree{f_x^{(j)}}{0}{c_x^{(j)}}{0}{f_y^{(j)}}{c_y^{(j)}}{0}{0}{1}\f$ , \f$j = 0,\, 1\f$ . If
4290
    any of @ref fisheye::CALIB_USE_INTRINSIC_GUESS , @ref fisheye::CALIB_FIX_INTRINSIC are specified,
4291
    some or all of the matrix components must be initialized.
4292
    @param D1 Input/output vector of distortion coefficients \f$\distcoeffsfisheye\f$ of 4 elements.
4293
    @param K2 Input/output second camera intrinsic matrix. The parameter is similar to K1 .
4294
    @param D2 Input/output lens distortion coefficients for the second camera. The parameter is
4295
    similar to D1 .
4296
    @param imageSize Size of the image used only to initialize camera intrinsic matrix.
4297
    @param R Output rotation matrix between the 1st and the 2nd camera coordinate systems.
4298
    @param T Output translation vector between the coordinate systems of the cameras.
4299
    @param rvecs Output vector of rotation vectors ( @ref Rodrigues ) estimated for each pattern view in the
4300
    coordinate system of the first camera of the stereo pair (e.g. std::vector<cv::Mat>). More in detail, each
4301
    i-th rotation vector together with the corresponding i-th translation vector (see the next output parameter
4302
    description) brings the calibration pattern from the object coordinate space (in which object points are
4303
    specified) to the camera coordinate space of the first camera of the stereo pair. In more technical terms,
4304
    the tuple of the i-th rotation and translation vector performs a change of basis from object coordinate space
4305
    to camera coordinate space of the first camera of the stereo pair.
4306
    @param tvecs Output vector of translation vectors estimated for each pattern view, see parameter description
4307
    of previous output parameter ( rvecs ).
4308
    @param flags Different flags that may be zero or a combination of the following values:
4309
    -    @ref fisheye::CALIB_FIX_INTRINSIC  Fix K1, K2? and D1, D2? so that only R, T matrices
4310
    are estimated.
4311
    -    @ref fisheye::CALIB_USE_INTRINSIC_GUESS  K1, K2 contains valid initial values of
4312
    fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
4313
    center (imageSize is used), and focal distances are computed in a least-squares fashion.
4314
    -    @ref fisheye::CALIB_RECOMPUTE_EXTRINSIC  Extrinsic will be recomputed after each iteration
4315
    of intrinsic optimization.
4316
    -    @ref fisheye::CALIB_CHECK_COND  The functions will check validity of condition number.
4317
    -    @ref fisheye::CALIB_FIX_SKEW  Skew coefficient (alpha) is set to zero and stay zero.
4318
    -   @ref fisheye::CALIB_FIX_K1,..., @ref fisheye::CALIB_FIX_K4 Selected distortion coefficients are set to zeros and stay
4319
    zero.
4320
    @param criteria Termination criteria for the iterative optimization algorithm.
4321
     */
4322
    CV_EXPORTS_W double stereoCalibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
4323
                                  InputOutputArray K1, InputOutputArray D1, InputOutputArray K2, InputOutputArray D2, Size imageSize,
4324
                                  OutputArray R, OutputArray T, OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, int flags = fisheye::CALIB_FIX_INTRINSIC,
4325
                                  TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON));
4326
4327
    /// @overload
4328
    CV_EXPORTS_W double stereoCalibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
4329
                                  InputOutputArray K1, InputOutputArray D1, InputOutputArray K2, InputOutputArray D2, Size imageSize,
4330
                                  OutputArray R, OutputArray T, int flags = fisheye::CALIB_FIX_INTRINSIC,
4331
                                  TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON));
4332
4333
    /**
4334
    @brief Finds an object pose from 3D-2D point correspondences for fisheye camera model.
4335
4336
    @param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or
4337
    1xN/Nx1 3-channel, where N is the number of points. vector\<Point3d\> can also be passed here.
4338
    @param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
4339
    where N is the number of points. vector\<Point2d\> can also be passed here.
4340
    @param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ .
4341
    @param distCoeffs Input vector of distortion coefficients (4x1/1x4).
4342
    @param rvec Output rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from
4343
    the model coordinate system to the camera coordinate system.
4344
    @param tvec Output translation vector.
4345
    @param useExtrinsicGuess Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses
4346
    the provided rvec and tvec values as initial approximations of the rotation and translation
4347
    vectors, respectively, and further optimizes them.
4348
    @param flags Method for solving a PnP problem: see @ref calib3d_solvePnP_flags
4349
    @param criteria Termination criteria for internal undistortPoints call.
4350
    The function internally undistorts points with @ref undistortPoints and call @ref cv::solvePnP,
4351
    thus the input are very similar. More information about Perspective-n-Points is described in @ref calib3d_solvePnP
4352
    for more information.
4353
    */
4354
    CV_EXPORTS_W bool solvePnP( InputArray objectPoints, InputArray imagePoints,
4355
                                InputArray cameraMatrix, InputArray distCoeffs,
4356
                                OutputArray rvec, OutputArray tvec,
4357
                                bool useExtrinsicGuess = false, int flags = SOLVEPNP_ITERATIVE,
4358
                                TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 10, 1e-8)
4359
                              );
4360
4361
    /**
4362
    @brief Finds an object pose from 3D-2D point correspondences using the RANSAC scheme for fisheye camera moodel.
4363
4364
    @param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or
4365
    1xN/Nx1 3-channel, where N is the number of points. vector\<Point3d\> can be also passed here.
4366
    @param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
4367
    where N is the number of points. vector\<Point2d\> can be also passed here.
4368
    @param cameraMatrix Input camera intrinsic matrix \f$\cameramatrix{A}\f$ .
4369
    @param distCoeffs Input vector of distortion coefficients (4x1/1x4).
4370
    @param rvec Output rotation vector (see @ref Rodrigues ) that, together with tvec, brings points from
4371
    the model coordinate system to the camera coordinate system.
4372
    @param tvec Output translation vector.
4373
    @param useExtrinsicGuess Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses
4374
    the provided rvec and tvec values as initial approximations of the rotation and translation
4375
    vectors, respectively, and further optimizes them.
4376
    @param iterationsCount Number of iterations.
4377
    @param reprojectionError Inlier threshold value used by the RANSAC procedure. The parameter value
4378
    is the maximum allowed distance between the observed and computed point projections to consider it
4379
    an inlier.
4380
    @param confidence The probability that the algorithm produces a useful result.
4381
    @param inliers Output vector that contains indices of inliers in objectPoints and imagePoints .
4382
    @param flags Method for solving a PnP problem: see @ref calib3d_solvePnP_flags
4383
    This function returns the rotation and the translation vectors that transform a 3D point expressed in the object
4384
    coordinate frame to the camera coordinate frame, using different methods:
4385
    - P3P methods (@ref SOLVEPNP_P3P, @ref SOLVEPNP_AP3P): need 4 input points to return a unique solution.
4386
    - @ref SOLVEPNP_IPPE Input points must be >= 4 and object points must be coplanar.
4387
    - @ref SOLVEPNP_IPPE_SQUARE Special case suitable for marker pose estimation.
4388
    Number of input points must be 4. Object points must be defined in the following order:
4389
    - point 0: [-squareLength / 2,  squareLength / 2, 0]
4390
    - point 1: [ squareLength / 2,  squareLength / 2, 0]
4391
    - point 2: [ squareLength / 2, -squareLength / 2, 0]
4392
    - point 3: [-squareLength / 2, -squareLength / 2, 0]
4393
    - for all the other flags, number of input points must be >= 4 and object points can be in any configuration.
4394
    @param criteria Termination criteria for internal undistortPoints call.
4395
    The function interally undistorts points with @ref undistortPoints and call @ref cv::solvePnP,
4396
    thus the input are very similar. More information about Perspective-n-Points is described in @ref calib3d_solvePnP
4397
    for more information.
4398
    */
4399
    CV_EXPORTS_W bool solvePnPRansac( InputArray objectPoints, InputArray imagePoints,
4400
                                      InputArray cameraMatrix, InputArray distCoeffs,
4401
                                      OutputArray rvec, OutputArray tvec,
4402
                                      bool useExtrinsicGuess = false, int iterationsCount = 100,
4403
                                      float reprojectionError = 8.0, double confidence = 0.99,
4404
                                      OutputArray inliers = noArray(), int flags = SOLVEPNP_ITERATIVE,
4405
                                      TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 10, 1e-8)
4406
                                    );
4407
4408
//! @} calib3d_fisheye
4409
} // end namespace fisheye
4410
4411
} //end namespace cv
4412
4413
#if 0 //def __cplusplus
4414
//////////////////////////////////////////////////////////////////////////////////////////
4415
class CV_EXPORTS CvLevMarq
4416
{
4417
public:
4418
    CvLevMarq();
4419
    CvLevMarq( int nparams, int nerrs, CvTermCriteria criteria=
4420
              cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON),
4421
              bool completeSymmFlag=false );
4422
    ~CvLevMarq();
4423
    void init( int nparams, int nerrs, CvTermCriteria criteria=
4424
              cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON),
4425
              bool completeSymmFlag=false );
4426
    bool update( const CvMat*& param, CvMat*& J, CvMat*& err );
4427
    bool updateAlt( const CvMat*& param, CvMat*& JtJ, CvMat*& JtErr, double*& errNorm );
4428
4429
    void clear();
4430
    void step();
4431
    enum { DONE=0, STARTED=1, CALC_J=2, CHECK_ERR=3 };
4432
4433
    cv::Ptr<CvMat> mask;
4434
    cv::Ptr<CvMat> prevParam;
4435
    cv::Ptr<CvMat> param;
4436
    cv::Ptr<CvMat> J;
4437
    cv::Ptr<CvMat> err;
4438
    cv::Ptr<CvMat> JtJ;
4439
    cv::Ptr<CvMat> JtJN;
4440
    cv::Ptr<CvMat> JtErr;
4441
    cv::Ptr<CvMat> JtJV;
4442
    cv::Ptr<CvMat> JtJW;
4443
    double prevErrNorm, errNorm;
4444
    int lambdaLg10;
4445
    CvTermCriteria criteria;
4446
    int state;
4447
    int iters;
4448
    bool completeSymmFlag;
4449
    int solveMethod;
4450
};
4451
#endif
4452
4453
#endif