/work/_deps/imath-src/src/Imath/ImathFun.h
Line | Count | Source (jump to first uncovered line) |
1 | | // |
2 | | // SPDX-License-Identifier: BSD-3-Clause |
3 | | // Copyright Contributors to the OpenEXR Project. |
4 | | // |
5 | | |
6 | | #ifndef INCLUDED_IMATHFUN_H |
7 | | #define INCLUDED_IMATHFUN_H |
8 | | |
9 | | //----------------------------------------------------------------------------- |
10 | | // |
11 | | // Miscellaneous utility functions |
12 | | // |
13 | | //----------------------------------------------------------------------------- |
14 | | |
15 | | #include <cstdint> |
16 | | #include <limits> |
17 | | |
18 | | #include "ImathExport.h" |
19 | | #include "ImathNamespace.h" |
20 | | #include "ImathPlatform.h" |
21 | | |
22 | | IMATH_INTERNAL_NAMESPACE_HEADER_ENTER |
23 | | |
24 | | template <class T> |
25 | | IMATH_HOSTDEVICE constexpr inline T |
26 | | abs (T a) IMATH_NOEXCEPT |
27 | 0 | { |
28 | 0 | return (a > T (0)) ? a : -a; |
29 | 0 | } |
30 | | |
31 | | template <class T> |
32 | | IMATH_HOSTDEVICE constexpr inline int |
33 | | sign (T a) IMATH_NOEXCEPT |
34 | | { |
35 | | return (a > T (0)) ? 1 : ((a < T (0)) ? -1 : 0); |
36 | | } |
37 | | |
38 | | template <class T, class Q> |
39 | | IMATH_HOSTDEVICE constexpr inline T |
40 | | lerp (T a, T b, Q t) IMATH_NOEXCEPT |
41 | | { |
42 | | return (T) (a * (1 - t) + b * t); |
43 | | } |
44 | | |
45 | | template <class T, class Q> |
46 | | IMATH_HOSTDEVICE constexpr inline T |
47 | | ulerp (T a, T b, Q t) IMATH_NOEXCEPT |
48 | | { |
49 | | return (T) ((a > b) ? (a - (a - b) * t) : (a + (b - a) * t)); |
50 | | } |
51 | | |
52 | | template <class T> |
53 | | IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline T |
54 | | lerpfactor (T m, T a, T b) IMATH_NOEXCEPT |
55 | | { |
56 | | // |
57 | | // Return how far m is between a and b, that is return t such that |
58 | | // if: |
59 | | // t = lerpfactor(m, a, b); |
60 | | // then: |
61 | | // m = lerp(a, b, t); |
62 | | // |
63 | | // If a==b, return 0. |
64 | | // |
65 | | |
66 | | T d = b - a; |
67 | | T n = m - a; |
68 | | |
69 | | if (abs (d) > T (1) || abs (n) < std::numeric_limits<T>::max () * abs (d)) |
70 | | return n / d; |
71 | | |
72 | | return T (0); |
73 | | } |
74 | | |
75 | | template <class T> |
76 | | IMATH_HOSTDEVICE constexpr inline T |
77 | | clamp (T a, T l, T h) IMATH_NOEXCEPT |
78 | | { |
79 | | return (a < l) ? l : ((a > h) ? h : a); |
80 | | } |
81 | | |
82 | | template <class T> |
83 | | IMATH_HOSTDEVICE constexpr inline int |
84 | | cmp (T a, T b) IMATH_NOEXCEPT |
85 | | { |
86 | | return IMATH_INTERNAL_NAMESPACE::sign (a - b); |
87 | | } |
88 | | |
89 | | template <class T> |
90 | | IMATH_HOSTDEVICE constexpr inline int |
91 | | cmpt (T a, T b, T t) IMATH_NOEXCEPT |
92 | | { |
93 | | return (IMATH_INTERNAL_NAMESPACE::abs (a - b) <= t) ? 0 : cmp (a, b); |
94 | | } |
95 | | |
96 | | template <class T> |
97 | | IMATH_HOSTDEVICE constexpr inline bool |
98 | | iszero (T a, T t) IMATH_NOEXCEPT |
99 | | { |
100 | | return (IMATH_INTERNAL_NAMESPACE::abs (a) <= t) ? 1 : 0; |
101 | | } |
102 | | |
103 | | template <class T1, class T2, class T3> |
104 | | IMATH_HOSTDEVICE constexpr inline bool |
105 | | equal (T1 a, T2 b, T3 t) IMATH_NOEXCEPT |
106 | | { |
107 | | return IMATH_INTERNAL_NAMESPACE::abs (a - b) <= t; |
108 | | } |
109 | | |
110 | | template <class T> |
111 | | IMATH_HOSTDEVICE constexpr inline int |
112 | | floor (T x) IMATH_NOEXCEPT |
113 | | { |
114 | | return (x >= 0) ? int (x) : -(int (-x) + (-x > int (-x))); |
115 | | } |
116 | | |
117 | | template <class T> |
118 | | IMATH_HOSTDEVICE constexpr inline int |
119 | | ceil (T x) IMATH_NOEXCEPT |
120 | | { |
121 | | return -floor (-x); |
122 | | } |
123 | | |
124 | | template <class T> |
125 | | IMATH_HOSTDEVICE constexpr inline int |
126 | | trunc (T x) IMATH_NOEXCEPT |
127 | | { |
128 | | return (x >= 0) ? int (x) : -int (-x); |
129 | | } |
130 | | |
131 | | // |
132 | | // Integer division and remainder where the |
133 | | // remainder of x/y has the same sign as x: |
134 | | // |
135 | | // divs(x,y) == (abs(x) / abs(y)) * (sign(x) * sign(y)) |
136 | | // mods(x,y) == x - y * divs(x,y) |
137 | | // |
138 | | |
139 | | IMATH_HOSTDEVICE constexpr inline int |
140 | | divs (int x, int y) IMATH_NOEXCEPT |
141 | 0 | { |
142 | 0 | return (x >= 0) ? ((y >= 0) ? (x / y) : -(x / -y)) |
143 | 0 | : ((y >= 0) ? -(-x / y) : (-x / -y)); |
144 | 0 | } |
145 | | |
146 | | IMATH_HOSTDEVICE constexpr inline int |
147 | | mods (int x, int y) IMATH_NOEXCEPT |
148 | 0 | { |
149 | 0 | return (x >= 0) ? ((y >= 0) ? (x % y) : (x % -y)) |
150 | 0 | : ((y >= 0) ? -(-x % y) : -(-x % -y)); |
151 | 0 | } |
152 | | |
153 | | // |
154 | | // Integer division and remainder where the |
155 | | // remainder of x/y is always positive: |
156 | | // |
157 | | // divp(x,y) == floor (double(x) / double (y)) |
158 | | // modp(x,y) == x - y * divp(x,y) |
159 | | // |
160 | | |
161 | | IMATH_HOSTDEVICE constexpr inline int |
162 | | divp (int x, int y) IMATH_NOEXCEPT |
163 | 4.86M | { |
164 | 4.86M | return (x >= 0) ? ((y >= 0) ? (x / y) : -(x / -y)) |
165 | 4.86M | : ((y >= 0) ? -((y - 1 - x) / y) : ((-y - 1 - x) / -y)); |
166 | 4.86M | } |
167 | | |
168 | | IMATH_HOSTDEVICE constexpr inline int |
169 | | modp (int x, int y) IMATH_NOEXCEPT |
170 | 3.58M | { |
171 | 3.58M | return x - y * divp (x, y); |
172 | 3.58M | } |
173 | | |
174 | | //---------------------------------------------------------- |
175 | | // Successor and predecessor for floating-point numbers: |
176 | | // |
177 | | // succf(f) returns float(f+e), where e is the smallest |
178 | | // positive number such that float(f+e) != f. |
179 | | // |
180 | | // predf(f) returns float(f-e), where e is the smallest |
181 | | // positive number such that float(f-e) != f. |
182 | | // |
183 | | // succd(d) returns double(d+e), where e is the smallest |
184 | | // positive number such that double(d+e) != d. |
185 | | // |
186 | | // predd(d) returns double(d-e), where e is the smallest |
187 | | // positive number such that double(d-e) != d. |
188 | | // |
189 | | // Exceptions: If the input value is an infinity or a nan, |
190 | | // succf(), predf(), succd(), and predd() all |
191 | | // return the input value without changing it. |
192 | | // |
193 | | //---------------------------------------------------------- |
194 | | |
195 | | IMATH_EXPORT float succf (float f) IMATH_NOEXCEPT; |
196 | | IMATH_EXPORT float predf (float f) IMATH_NOEXCEPT; |
197 | | |
198 | | IMATH_EXPORT double succd (double d) IMATH_NOEXCEPT; |
199 | | IMATH_EXPORT double predd (double d) IMATH_NOEXCEPT; |
200 | | |
201 | | // |
202 | | // Return true if the number is not a NaN or Infinity. |
203 | | // |
204 | | |
205 | | IMATH_HOSTDEVICE inline bool |
206 | | finitef (float f) IMATH_NOEXCEPT |
207 | 0 | { |
208 | 0 | union |
209 | 0 | { |
210 | 0 | float f; |
211 | 0 | int i; |
212 | 0 | } u; |
213 | 0 | u.f = f; |
214 | 0 |
|
215 | 0 | return (u.i & 0x7f800000) != 0x7f800000; |
216 | 0 | } |
217 | | |
218 | | IMATH_HOSTDEVICE inline bool |
219 | | finited (double d) IMATH_NOEXCEPT |
220 | 0 | { |
221 | 0 | union |
222 | 0 | { |
223 | 0 | double d; |
224 | 0 | uint64_t i; |
225 | 0 | } u; |
226 | 0 | u.d = d; |
227 | 0 |
|
228 | 0 | return (u.i & 0x7ff0000000000000LL) != 0x7ff0000000000000LL; |
229 | 0 | } |
230 | | |
231 | | IMATH_INTERNAL_NAMESPACE_HEADER_EXIT |
232 | | |
233 | | #endif // INCLUDED_IMATHFUN_H |