Line | Count | Source (jump to first uncovered line) |
1 | | /* $OpenBSD: umac.c,v 1.23 2023/03/07 01:30:52 djm Exp $ */ |
2 | | /* ----------------------------------------------------------------------- |
3 | | * |
4 | | * umac.c -- C Implementation UMAC Message Authentication |
5 | | * |
6 | | * Version 0.93b of rfc4418.txt -- 2006 July 18 |
7 | | * |
8 | | * For a full description of UMAC message authentication see the UMAC |
9 | | * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac |
10 | | * Please report bugs and suggestions to the UMAC webpage. |
11 | | * |
12 | | * Copyright (c) 1999-2006 Ted Krovetz |
13 | | * |
14 | | * Permission to use, copy, modify, and distribute this software and |
15 | | * its documentation for any purpose and with or without fee, is hereby |
16 | | * granted provided that the above copyright notice appears in all copies |
17 | | * and in supporting documentation, and that the name of the copyright |
18 | | * holder not be used in advertising or publicity pertaining to |
19 | | * distribution of the software without specific, written prior permission. |
20 | | * |
21 | | * Comments should be directed to Ted Krovetz (tdk@acm.org) |
22 | | * |
23 | | * ---------------------------------------------------------------------- */ |
24 | | |
25 | | /* ////////////////////// IMPORTANT NOTES ///////////////////////////////// |
26 | | * |
27 | | * 1) This version does not work properly on messages larger than 16MB |
28 | | * |
29 | | * 2) If you set the switch to use SSE2, then all data must be 16-byte |
30 | | * aligned |
31 | | * |
32 | | * 3) When calling the function umac(), it is assumed that msg is in |
33 | | * a writable buffer of length divisible by 32 bytes. The message itself |
34 | | * does not have to fill the entire buffer, but bytes beyond msg may be |
35 | | * zeroed. |
36 | | * |
37 | | * 4) Three free AES implementations are supported by this implementation of |
38 | | * UMAC. Paulo Barreto's version is in the public domain and can be found |
39 | | * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for |
40 | | * "Barreto"). The only two files needed are rijndael-alg-fst.c and |
41 | | * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU |
42 | | * Public license at http://fp.gladman.plus.com/AES/index.htm. It |
43 | | * includes a fast IA-32 assembly version. The OpenSSL crypo library is |
44 | | * the third. |
45 | | * |
46 | | * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes |
47 | | * produced under gcc with optimizations set -O3 or higher. Dunno why. |
48 | | * |
49 | | /////////////////////////////////////////////////////////////////////// */ |
50 | | |
51 | | /* ---------------------------------------------------------------------- */ |
52 | | /* --- User Switches ---------------------------------------------------- */ |
53 | | /* ---------------------------------------------------------------------- */ |
54 | | |
55 | | #ifndef UMAC_OUTPUT_LEN |
56 | 24.6k | #define UMAC_OUTPUT_LEN 8 /* Alowable: 4, 8, 12, 16 */ |
57 | | #endif |
58 | | |
59 | | #if UMAC_OUTPUT_LEN != 4 && UMAC_OUTPUT_LEN != 8 && \ |
60 | | UMAC_OUTPUT_LEN != 12 && UMAC_OUTPUT_LEN != 16 |
61 | | # error UMAC_OUTPUT_LEN must be defined to 4, 8, 12 or 16 |
62 | | #endif |
63 | | |
64 | | /* #define FORCE_C_ONLY 1 ANSI C and 64-bit integers req'd */ |
65 | | /* #define AES_IMPLEMENTAION 1 1 = OpenSSL, 2 = Barreto, 3 = Gladman */ |
66 | | /* #define SSE2 0 Is SSE2 is available? */ |
67 | | /* #define RUN_TESTS 0 Run basic correctness/speed tests */ |
68 | | /* #define UMAC_AE_SUPPORT 0 Enable authenticated encryption */ |
69 | | |
70 | | /* ---------------------------------------------------------------------- */ |
71 | | /* -- Global Includes --------------------------------------------------- */ |
72 | | /* ---------------------------------------------------------------------- */ |
73 | | |
74 | | #include "includes.h" |
75 | | #include <sys/types.h> |
76 | | #include <string.h> |
77 | | #include <stdarg.h> |
78 | | #include <stdio.h> |
79 | | #include <stdlib.h> |
80 | | #include <stddef.h> |
81 | | |
82 | | #include "xmalloc.h" |
83 | | #include "umac.h" |
84 | | #include "misc.h" |
85 | | |
86 | | /* ---------------------------------------------------------------------- */ |
87 | | /* --- Primitive Data Types --- */ |
88 | | /* ---------------------------------------------------------------------- */ |
89 | | |
90 | | /* The following assumptions may need change on your system */ |
91 | | typedef u_int8_t UINT8; /* 1 byte */ |
92 | | typedef u_int16_t UINT16; /* 2 byte */ |
93 | | typedef u_int32_t UINT32; /* 4 byte */ |
94 | | typedef u_int64_t UINT64; /* 8 bytes */ |
95 | | typedef unsigned int UWORD; /* Register */ |
96 | | |
97 | | /* ---------------------------------------------------------------------- */ |
98 | | /* --- Constants -------------------------------------------------------- */ |
99 | | /* ---------------------------------------------------------------------- */ |
100 | | |
101 | 2.74k | #define UMAC_KEY_LEN 16 /* UMAC takes 16 bytes of external key */ |
102 | | |
103 | | /* Message "words" are read from memory in an endian-specific manner. */ |
104 | | /* For this implementation to behave correctly, __LITTLE_ENDIAN__ must */ |
105 | | /* be set true if the host computer is little-endian. */ |
106 | | |
107 | | #if BYTE_ORDER == LITTLE_ENDIAN |
108 | | #define __LITTLE_ENDIAN__ 1 |
109 | | #else |
110 | | #define __LITTLE_ENDIAN__ 0 |
111 | | #endif |
112 | | |
113 | | /* ---------------------------------------------------------------------- */ |
114 | | /* ---------------------------------------------------------------------- */ |
115 | | /* ----- Architecture Specific ------------------------------------------ */ |
116 | | /* ---------------------------------------------------------------------- */ |
117 | | /* ---------------------------------------------------------------------- */ |
118 | | |
119 | | |
120 | | /* ---------------------------------------------------------------------- */ |
121 | | /* ---------------------------------------------------------------------- */ |
122 | | /* ----- Primitive Routines --------------------------------------------- */ |
123 | | /* ---------------------------------------------------------------------- */ |
124 | | /* ---------------------------------------------------------------------- */ |
125 | | |
126 | | |
127 | | /* ---------------------------------------------------------------------- */ |
128 | | /* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */ |
129 | | /* ---------------------------------------------------------------------- */ |
130 | | |
131 | 8.85M | #define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b))) |
132 | | |
133 | | /* ---------------------------------------------------------------------- */ |
134 | | /* --- Endian Conversion --- Forcing assembly on some platforms */ |
135 | | /* ---------------------------------------------------------------------- */ |
136 | | |
137 | | #if (__LITTLE_ENDIAN__) |
138 | 272k | #define LOAD_UINT32_REVERSED(p) get_u32(p) |
139 | | #define STORE_UINT32_REVERSED(p,v) put_u32(p,v) |
140 | | #else |
141 | | #define LOAD_UINT32_REVERSED(p) get_u32_le(p) |
142 | | #define STORE_UINT32_REVERSED(p,v) put_u32_le(p,v) |
143 | | #endif |
144 | | |
145 | 5.57M | #define LOAD_UINT32_LITTLE(p) (get_u32_le(p)) |
146 | 655k | #define STORE_UINT32_BIG(p,v) put_u32(p, v) |
147 | | |
148 | | /* ---------------------------------------------------------------------- */ |
149 | | /* ---------------------------------------------------------------------- */ |
150 | | /* ----- Begin KDF & PDF Section ---------------------------------------- */ |
151 | | /* ---------------------------------------------------------------------- */ |
152 | | /* ---------------------------------------------------------------------- */ |
153 | | |
154 | | /* UMAC uses AES with 16 byte block and key lengths */ |
155 | 454k | #define AES_BLOCK_LEN 16 |
156 | | |
157 | | /* OpenSSL's AES */ |
158 | | #ifdef WITH_OPENSSL |
159 | | #include "openbsd-compat/openssl-compat.h" |
160 | | #ifndef USE_BUILTIN_RIJNDAEL |
161 | | # include <openssl/aes.h> |
162 | | #endif |
163 | | typedef AES_KEY aes_int_key[1]; |
164 | | #define aes_encryption(in,out,int_key) \ |
165 | 253k | AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key) |
166 | | #define aes_key_setup(key,int_key) \ |
167 | 1.82k | AES_set_encrypt_key((const u_char *)(key),UMAC_KEY_LEN*8,int_key) |
168 | | #else |
169 | | #include "rijndael.h" |
170 | | #define AES_ROUNDS ((UMAC_KEY_LEN / 4) + 6) |
171 | | typedef UINT8 aes_int_key[AES_ROUNDS+1][4][4]; /* AES internal */ |
172 | | #define aes_encryption(in,out,int_key) \ |
173 | | rijndaelEncrypt((u32 *)(int_key), AES_ROUNDS, (u8 *)(in), (u8 *)(out)) |
174 | | #define aes_key_setup(key,int_key) \ |
175 | | rijndaelKeySetupEnc((u32 *)(int_key), (const unsigned char *)(key), \ |
176 | | UMAC_KEY_LEN*8) |
177 | | #endif |
178 | | |
179 | | /* The user-supplied UMAC key is stretched using AES in a counter |
180 | | * mode to supply all random bits needed by UMAC. The kdf function takes |
181 | | * an AES internal key representation 'key' and writes a stream of |
182 | | * 'nbytes' bytes to the memory pointed at by 'bufp'. Each distinct |
183 | | * 'ndx' causes a distinct byte stream. |
184 | | */ |
185 | | static void kdf(void *bufp, aes_int_key key, UINT8 ndx, int nbytes) |
186 | 4.57k | { |
187 | 4.57k | UINT8 in_buf[AES_BLOCK_LEN] = {0}; |
188 | 4.57k | UINT8 out_buf[AES_BLOCK_LEN]; |
189 | 4.57k | UINT8 *dst_buf = (UINT8 *)bufp; |
190 | 4.57k | int i; |
191 | | |
192 | | /* Setup the initial value */ |
193 | 4.57k | in_buf[AES_BLOCK_LEN-9] = ndx; |
194 | 4.57k | in_buf[AES_BLOCK_LEN-1] = i = 1; |
195 | | |
196 | 92.6k | while (nbytes >= AES_BLOCK_LEN) { |
197 | 88.1k | aes_encryption(in_buf, out_buf, key); |
198 | 88.1k | memcpy(dst_buf,out_buf,AES_BLOCK_LEN); |
199 | 88.1k | in_buf[AES_BLOCK_LEN-1] = ++i; |
200 | 88.1k | nbytes -= AES_BLOCK_LEN; |
201 | 88.1k | dst_buf += AES_BLOCK_LEN; |
202 | 88.1k | } |
203 | 4.57k | if (nbytes) { |
204 | 413 | aes_encryption(in_buf, out_buf, key); |
205 | 413 | memcpy(dst_buf,out_buf,nbytes); |
206 | 413 | } |
207 | 4.57k | explicit_bzero(in_buf, sizeof(in_buf)); |
208 | 4.57k | explicit_bzero(out_buf, sizeof(out_buf)); |
209 | 4.57k | } Line | Count | Source | 186 | 2.06k | { | 187 | 2.06k | UINT8 in_buf[AES_BLOCK_LEN] = {0}; | 188 | 2.06k | UINT8 out_buf[AES_BLOCK_LEN]; | 189 | 2.06k | UINT8 *dst_buf = (UINT8 *)bufp; | 190 | 2.06k | int i; | 191 | | | 192 | | /* Setup the initial value */ | 193 | 2.06k | in_buf[AES_BLOCK_LEN-9] = ndx; | 194 | 2.06k | in_buf[AES_BLOCK_LEN-1] = i = 1; | 195 | | | 196 | 37.5k | while (nbytes >= AES_BLOCK_LEN) { | 197 | 35.5k | aes_encryption(in_buf, out_buf, key); | 198 | 35.5k | memcpy(dst_buf,out_buf,AES_BLOCK_LEN); | 199 | 35.5k | in_buf[AES_BLOCK_LEN-1] = ++i; | 200 | 35.5k | nbytes -= AES_BLOCK_LEN; | 201 | 35.5k | dst_buf += AES_BLOCK_LEN; | 202 | 35.5k | } | 203 | 2.06k | if (nbytes) { | 204 | 413 | aes_encryption(in_buf, out_buf, key); | 205 | 413 | memcpy(dst_buf,out_buf,nbytes); | 206 | 413 | } | 207 | 2.06k | explicit_bzero(in_buf, sizeof(in_buf)); | 208 | 2.06k | explicit_bzero(out_buf, sizeof(out_buf)); | 209 | 2.06k | } |
Line | Count | Source | 186 | 2.50k | { | 187 | 2.50k | UINT8 in_buf[AES_BLOCK_LEN] = {0}; | 188 | 2.50k | UINT8 out_buf[AES_BLOCK_LEN]; | 189 | 2.50k | UINT8 *dst_buf = (UINT8 *)bufp; | 190 | 2.50k | int i; | 191 | | | 192 | | /* Setup the initial value */ | 193 | 2.50k | in_buf[AES_BLOCK_LEN-9] = ndx; | 194 | 2.50k | in_buf[AES_BLOCK_LEN-1] = i = 1; | 195 | | | 196 | 55.1k | while (nbytes >= AES_BLOCK_LEN) { | 197 | 52.6k | aes_encryption(in_buf, out_buf, key); | 198 | 52.6k | memcpy(dst_buf,out_buf,AES_BLOCK_LEN); | 199 | 52.6k | in_buf[AES_BLOCK_LEN-1] = ++i; | 200 | 52.6k | nbytes -= AES_BLOCK_LEN; | 201 | 52.6k | dst_buf += AES_BLOCK_LEN; | 202 | 52.6k | } | 203 | 2.50k | if (nbytes) { | 204 | 0 | aes_encryption(in_buf, out_buf, key); | 205 | 0 | memcpy(dst_buf,out_buf,nbytes); | 206 | 0 | } | 207 | 2.50k | explicit_bzero(in_buf, sizeof(in_buf)); | 208 | 2.50k | explicit_bzero(out_buf, sizeof(out_buf)); | 209 | 2.50k | } |
|
210 | | |
211 | | /* The final UHASH result is XOR'd with the output of a pseudorandom |
212 | | * function. Here, we use AES to generate random output and |
213 | | * xor the appropriate bytes depending on the last bits of nonce. |
214 | | * This scheme is optimized for sequential, increasing big-endian nonces. |
215 | | */ |
216 | | |
217 | | typedef struct { |
218 | | UINT8 cache[AES_BLOCK_LEN]; /* Previous AES output is saved */ |
219 | | UINT8 nonce[AES_BLOCK_LEN]; /* The AES input making above cache */ |
220 | | aes_int_key prf_key; /* Expanded AES key for PDF */ |
221 | | } pdf_ctx; |
222 | | |
223 | | static void pdf_init(pdf_ctx *pc, aes_int_key prf_key) |
224 | 914 | { |
225 | 914 | UINT8 buf[UMAC_KEY_LEN]; |
226 | | |
227 | 914 | kdf(buf, prf_key, 0, UMAC_KEY_LEN); |
228 | 914 | aes_key_setup(buf, pc->prf_key); |
229 | | |
230 | | /* Initialize pdf and cache */ |
231 | 914 | memset(pc->nonce, 0, sizeof(pc->nonce)); |
232 | 914 | aes_encryption(pc->nonce, pc->cache, pc->prf_key); |
233 | 914 | explicit_bzero(buf, sizeof(buf)); |
234 | 914 | } Line | Count | Source | 224 | 413 | { | 225 | 413 | UINT8 buf[UMAC_KEY_LEN]; | 226 | | | 227 | 413 | kdf(buf, prf_key, 0, UMAC_KEY_LEN); | 228 | 413 | aes_key_setup(buf, pc->prf_key); | 229 | | | 230 | | /* Initialize pdf and cache */ | 231 | 413 | memset(pc->nonce, 0, sizeof(pc->nonce)); | 232 | 413 | aes_encryption(pc->nonce, pc->cache, pc->prf_key); | 233 | 413 | explicit_bzero(buf, sizeof(buf)); | 234 | 413 | } |
Line | Count | Source | 224 | 501 | { | 225 | 501 | UINT8 buf[UMAC_KEY_LEN]; | 226 | | | 227 | 501 | kdf(buf, prf_key, 0, UMAC_KEY_LEN); | 228 | 501 | aes_key_setup(buf, pc->prf_key); | 229 | | | 230 | | /* Initialize pdf and cache */ | 231 | 501 | memset(pc->nonce, 0, sizeof(pc->nonce)); | 232 | 501 | aes_encryption(pc->nonce, pc->cache, pc->prf_key); | 233 | 501 | explicit_bzero(buf, sizeof(buf)); | 234 | 501 | } |
|
235 | | |
236 | | static void pdf_gen_xor(pdf_ctx *pc, const UINT8 nonce[8], |
237 | | UINT8 buf[UMAC_OUTPUT_LEN]) |
238 | 225k | { |
239 | | /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes |
240 | | * of the AES output. If last time around we returned the ndx-1st |
241 | | * element, then we may have the result in the cache already. |
242 | | */ |
243 | | |
244 | | #if (UMAC_OUTPUT_LEN == 4) |
245 | | #define LOW_BIT_MASK 3 |
246 | | #elif (UMAC_OUTPUT_LEN == 8) |
247 | 245k | #define LOW_BIT_MASK 1 |
248 | | #elif (UMAC_OUTPUT_LEN > 8) |
249 | 102k | #define LOW_BIT_MASK 0 |
250 | | #endif |
251 | 225k | union { |
252 | 225k | UINT8 tmp_nonce_lo[4]; |
253 | 225k | UINT32 align; |
254 | 225k | } t; |
255 | | #if LOW_BIT_MASK != 0 |
256 | 122k | int ndx = nonce[7] & LOW_BIT_MASK; |
257 | | #endif |
258 | 225k | *(UINT32 *)t.tmp_nonce_lo = ((const UINT32 *)nonce)[1]; |
259 | 225k | t.tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */ |
260 | | |
261 | 225k | if ( (((UINT32 *)t.tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) || |
262 | 225k | (((const UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) ) |
263 | 163k | { |
264 | 163k | ((UINT32 *)pc->nonce)[0] = ((const UINT32 *)nonce)[0]; |
265 | 163k | ((UINT32 *)pc->nonce)[1] = ((UINT32 *)t.tmp_nonce_lo)[0]; |
266 | 163k | aes_encryption(pc->nonce, pc->cache, pc->prf_key); |
267 | 163k | } |
268 | | |
269 | | #if (UMAC_OUTPUT_LEN == 4) |
270 | | *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx]; |
271 | | #elif (UMAC_OUTPUT_LEN == 8) |
272 | | *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx]; |
273 | | #elif (UMAC_OUTPUT_LEN == 12) |
274 | | ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0]; |
275 | | ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2]; |
276 | | #elif (UMAC_OUTPUT_LEN == 16) |
277 | | ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0]; |
278 | | ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1]; |
279 | | #endif |
280 | 225k | } Line | Count | Source | 238 | 122k | { | 239 | | /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes | 240 | | * of the AES output. If last time around we returned the ndx-1st | 241 | | * element, then we may have the result in the cache already. | 242 | | */ | 243 | | | 244 | | #if (UMAC_OUTPUT_LEN == 4) | 245 | | #define LOW_BIT_MASK 3 | 246 | | #elif (UMAC_OUTPUT_LEN == 8) | 247 | 122k | #define LOW_BIT_MASK 1 | 248 | | #elif (UMAC_OUTPUT_LEN > 8) | 249 | | #define LOW_BIT_MASK 0 | 250 | | #endif | 251 | 122k | union { | 252 | 122k | UINT8 tmp_nonce_lo[4]; | 253 | 122k | UINT32 align; | 254 | 122k | } t; | 255 | 122k | #if LOW_BIT_MASK != 0 | 256 | 122k | int ndx = nonce[7] & LOW_BIT_MASK; | 257 | 122k | #endif | 258 | 122k | *(UINT32 *)t.tmp_nonce_lo = ((const UINT32 *)nonce)[1]; | 259 | 122k | t.tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */ | 260 | | | 261 | 122k | if ( (((UINT32 *)t.tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) || | 262 | 122k | (((const UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) ) | 263 | 61.5k | { | 264 | 61.5k | ((UINT32 *)pc->nonce)[0] = ((const UINT32 *)nonce)[0]; | 265 | 61.5k | ((UINT32 *)pc->nonce)[1] = ((UINT32 *)t.tmp_nonce_lo)[0]; | 266 | 61.5k | aes_encryption(pc->nonce, pc->cache, pc->prf_key); | 267 | 61.5k | } | 268 | | | 269 | | #if (UMAC_OUTPUT_LEN == 4) | 270 | | *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx]; | 271 | | #elif (UMAC_OUTPUT_LEN == 8) | 272 | 122k | *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx]; | 273 | | #elif (UMAC_OUTPUT_LEN == 12) | 274 | | ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0]; | 275 | | ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2]; | 276 | | #elif (UMAC_OUTPUT_LEN == 16) | 277 | | ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0]; | 278 | | ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1]; | 279 | | #endif | 280 | 122k | } |
Line | Count | Source | 238 | 102k | { | 239 | | /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes | 240 | | * of the AES output. If last time around we returned the ndx-1st | 241 | | * element, then we may have the result in the cache already. | 242 | | */ | 243 | | | 244 | | #if (UMAC_OUTPUT_LEN == 4) | 245 | | #define LOW_BIT_MASK 3 | 246 | | #elif (UMAC_OUTPUT_LEN == 8) | 247 | | #define LOW_BIT_MASK 1 | 248 | | #elif (UMAC_OUTPUT_LEN > 8) | 249 | 102k | #define LOW_BIT_MASK 0 | 250 | 102k | #endif | 251 | 102k | union { | 252 | 102k | UINT8 tmp_nonce_lo[4]; | 253 | 102k | UINT32 align; | 254 | 102k | } t; | 255 | | #if LOW_BIT_MASK != 0 | 256 | | int ndx = nonce[7] & LOW_BIT_MASK; | 257 | | #endif | 258 | 102k | *(UINT32 *)t.tmp_nonce_lo = ((const UINT32 *)nonce)[1]; | 259 | 102k | t.tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */ | 260 | | | 261 | 102k | if ( (((UINT32 *)t.tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) || | 262 | 102k | (((const UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) ) | 263 | 102k | { | 264 | 102k | ((UINT32 *)pc->nonce)[0] = ((const UINT32 *)nonce)[0]; | 265 | 102k | ((UINT32 *)pc->nonce)[1] = ((UINT32 *)t.tmp_nonce_lo)[0]; | 266 | 102k | aes_encryption(pc->nonce, pc->cache, pc->prf_key); | 267 | 102k | } | 268 | | | 269 | | #if (UMAC_OUTPUT_LEN == 4) | 270 | | *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx]; | 271 | | #elif (UMAC_OUTPUT_LEN == 8) | 272 | | *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx]; | 273 | | #elif (UMAC_OUTPUT_LEN == 12) | 274 | | ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0]; | 275 | | ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2]; | 276 | | #elif (UMAC_OUTPUT_LEN == 16) | 277 | 102k | ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0]; | 278 | 102k | ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1]; | 279 | 102k | #endif | 280 | 102k | } |
|
281 | | |
282 | | /* ---------------------------------------------------------------------- */ |
283 | | /* ---------------------------------------------------------------------- */ |
284 | | /* ----- Begin NH Hash Section ------------------------------------------ */ |
285 | | /* ---------------------------------------------------------------------- */ |
286 | | /* ---------------------------------------------------------------------- */ |
287 | | |
288 | | /* The NH-based hash functions used in UMAC are described in the UMAC paper |
289 | | * and specification, both of which can be found at the UMAC website. |
290 | | * The interface to this implementation has two |
291 | | * versions, one expects the entire message being hashed to be passed |
292 | | * in a single buffer and returns the hash result immediately. The second |
293 | | * allows the message to be passed in a sequence of buffers. In the |
294 | | * multiple-buffer interface, the client calls the routine nh_update() as |
295 | | * many times as necessary. When there is no more data to be fed to the |
296 | | * hash, the client calls nh_final() which calculates the hash output. |
297 | | * Before beginning another hash calculation the nh_reset() routine |
298 | | * must be called. The single-buffer routine, nh(), is equivalent to |
299 | | * the sequence of calls nh_update() and nh_final(); however it is |
300 | | * optimized and should be preferred whenever the multiple-buffer interface |
301 | | * is not necessary. When using either interface, it is the client's |
302 | | * responsibility to pass no more than L1_KEY_LEN bytes per hash result. |
303 | | * |
304 | | * The routine nh_init() initializes the nh_ctx data structure and |
305 | | * must be called once, before any other PDF routine. |
306 | | */ |
307 | | |
308 | | /* The "nh_aux" routines do the actual NH hashing work. They |
309 | | * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines |
310 | | * produce output for all STREAMS NH iterations in one call, |
311 | | * allowing the parallel implementation of the streams. |
312 | | */ |
313 | | |
314 | 83.9k | #define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied */ |
315 | 539k | #define L1_KEY_LEN 1024 /* Internal key bytes */ |
316 | | #define L1_KEY_SHIFT 16 /* Toeplitz key shift between streams */ |
317 | 450k | #define L1_PAD_BOUNDARY 32 /* pad message to boundary multiple */ |
318 | 5.48k | #define ALLOC_BOUNDARY 16 /* Keep buffers aligned to this */ |
319 | 225k | #define HASH_BUF_BYTES 64 /* nh_aux_hb buffer multiple */ |
320 | | |
321 | | typedef struct { |
322 | | UINT8 nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */ |
323 | | UINT8 data [HASH_BUF_BYTES]; /* Incoming data buffer */ |
324 | | int next_data_empty; /* Bookkeeping variable for data buffer. */ |
325 | | int bytes_hashed; /* Bytes (out of L1_KEY_LEN) incorporated. */ |
326 | | UINT64 state[STREAMS]; /* on-line state */ |
327 | | } nh_ctx; |
328 | | |
329 | | |
330 | | #if (UMAC_OUTPUT_LEN == 4) |
331 | | |
332 | | static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) |
333 | | /* NH hashing primitive. Previous (partial) hash result is loaded and |
334 | | * then stored via hp pointer. The length of the data pointed at by "dp", |
335 | | * "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32). Key |
336 | | * is expected to be endian compensated in memory at key setup. |
337 | | */ |
338 | | { |
339 | | UINT64 h; |
340 | | UWORD c = dlen / 32; |
341 | | UINT32 *k = (UINT32 *)kp; |
342 | | const UINT32 *d = (const UINT32 *)dp; |
343 | | UINT32 d0,d1,d2,d3,d4,d5,d6,d7; |
344 | | UINT32 k0,k1,k2,k3,k4,k5,k6,k7; |
345 | | |
346 | | h = *((UINT64 *)hp); |
347 | | do { |
348 | | d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); |
349 | | d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); |
350 | | d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); |
351 | | d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); |
352 | | k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); |
353 | | k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); |
354 | | h += MUL64((k0 + d0), (k4 + d4)); |
355 | | h += MUL64((k1 + d1), (k5 + d5)); |
356 | | h += MUL64((k2 + d2), (k6 + d6)); |
357 | | h += MUL64((k3 + d3), (k7 + d7)); |
358 | | |
359 | | d += 8; |
360 | | k += 8; |
361 | | } while (--c); |
362 | | *((UINT64 *)hp) = h; |
363 | | } |
364 | | |
365 | | #elif (UMAC_OUTPUT_LEN == 8) |
366 | | |
367 | | static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) |
368 | | /* Same as previous nh_aux, but two streams are handled in one pass, |
369 | | * reading and writing 16 bytes of hash-state per call. |
370 | | */ |
371 | 128k | { |
372 | 128k | UINT64 h1,h2; |
373 | 128k | UWORD c = dlen / 32; |
374 | 128k | UINT32 *k = (UINT32 *)kp; |
375 | 128k | const UINT32 *d = (const UINT32 *)dp; |
376 | 128k | UINT32 d0,d1,d2,d3,d4,d5,d6,d7; |
377 | 128k | UINT32 k0,k1,k2,k3,k4,k5,k6,k7, |
378 | 128k | k8,k9,k10,k11; |
379 | | |
380 | 128k | h1 = *((UINT64 *)hp); |
381 | 128k | h2 = *((UINT64 *)hp + 1); |
382 | 128k | k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); |
383 | 310k | do { |
384 | 310k | d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); |
385 | 310k | d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); |
386 | 310k | d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); |
387 | 310k | d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); |
388 | 310k | k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); |
389 | 310k | k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); |
390 | | |
391 | 310k | h1 += MUL64((k0 + d0), (k4 + d4)); |
392 | 310k | h2 += MUL64((k4 + d0), (k8 + d4)); |
393 | | |
394 | 310k | h1 += MUL64((k1 + d1), (k5 + d5)); |
395 | 310k | h2 += MUL64((k5 + d1), (k9 + d5)); |
396 | | |
397 | 310k | h1 += MUL64((k2 + d2), (k6 + d6)); |
398 | 310k | h2 += MUL64((k6 + d2), (k10 + d6)); |
399 | | |
400 | 310k | h1 += MUL64((k3 + d3), (k7 + d7)); |
401 | 310k | h2 += MUL64((k7 + d3), (k11 + d7)); |
402 | | |
403 | 310k | k0 = k8; k1 = k9; k2 = k10; k3 = k11; |
404 | | |
405 | 310k | d += 8; |
406 | 310k | k += 8; |
407 | 310k | } while (--c); |
408 | 128k | ((UINT64 *)hp)[0] = h1; |
409 | 128k | ((UINT64 *)hp)[1] = h2; |
410 | 128k | } |
411 | | |
412 | | #elif (UMAC_OUTPUT_LEN == 12) |
413 | | |
414 | | static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) |
415 | | /* Same as previous nh_aux, but two streams are handled in one pass, |
416 | | * reading and writing 24 bytes of hash-state per call. |
417 | | */ |
418 | | { |
419 | | UINT64 h1,h2,h3; |
420 | | UWORD c = dlen / 32; |
421 | | UINT32 *k = (UINT32 *)kp; |
422 | | const UINT32 *d = (const UINT32 *)dp; |
423 | | UINT32 d0,d1,d2,d3,d4,d5,d6,d7; |
424 | | UINT32 k0,k1,k2,k3,k4,k5,k6,k7, |
425 | | k8,k9,k10,k11,k12,k13,k14,k15; |
426 | | |
427 | | h1 = *((UINT64 *)hp); |
428 | | h2 = *((UINT64 *)hp + 1); |
429 | | h3 = *((UINT64 *)hp + 2); |
430 | | k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); |
431 | | k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); |
432 | | do { |
433 | | d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); |
434 | | d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); |
435 | | d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); |
436 | | d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); |
437 | | k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); |
438 | | k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15); |
439 | | |
440 | | h1 += MUL64((k0 + d0), (k4 + d4)); |
441 | | h2 += MUL64((k4 + d0), (k8 + d4)); |
442 | | h3 += MUL64((k8 + d0), (k12 + d4)); |
443 | | |
444 | | h1 += MUL64((k1 + d1), (k5 + d5)); |
445 | | h2 += MUL64((k5 + d1), (k9 + d5)); |
446 | | h3 += MUL64((k9 + d1), (k13 + d5)); |
447 | | |
448 | | h1 += MUL64((k2 + d2), (k6 + d6)); |
449 | | h2 += MUL64((k6 + d2), (k10 + d6)); |
450 | | h3 += MUL64((k10 + d2), (k14 + d6)); |
451 | | |
452 | | h1 += MUL64((k3 + d3), (k7 + d7)); |
453 | | h2 += MUL64((k7 + d3), (k11 + d7)); |
454 | | h3 += MUL64((k11 + d3), (k15 + d7)); |
455 | | |
456 | | k0 = k8; k1 = k9; k2 = k10; k3 = k11; |
457 | | k4 = k12; k5 = k13; k6 = k14; k7 = k15; |
458 | | |
459 | | d += 8; |
460 | | k += 8; |
461 | | } while (--c); |
462 | | ((UINT64 *)hp)[0] = h1; |
463 | | ((UINT64 *)hp)[1] = h2; |
464 | | ((UINT64 *)hp)[2] = h3; |
465 | | } |
466 | | |
467 | | #elif (UMAC_OUTPUT_LEN == 16) |
468 | | |
469 | | static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) |
470 | | /* Same as previous nh_aux, but two streams are handled in one pass, |
471 | | * reading and writing 24 bytes of hash-state per call. |
472 | | */ |
473 | 111k | { |
474 | 111k | UINT64 h1,h2,h3,h4; |
475 | 111k | UWORD c = dlen / 32; |
476 | 111k | UINT32 *k = (UINT32 *)kp; |
477 | 111k | const UINT32 *d = (const UINT32 *)dp; |
478 | 111k | UINT32 d0,d1,d2,d3,d4,d5,d6,d7; |
479 | 111k | UINT32 k0,k1,k2,k3,k4,k5,k6,k7, |
480 | 111k | k8,k9,k10,k11,k12,k13,k14,k15, |
481 | 111k | k16,k17,k18,k19; |
482 | | |
483 | 111k | h1 = *((UINT64 *)hp); |
484 | 111k | h2 = *((UINT64 *)hp + 1); |
485 | 111k | h3 = *((UINT64 *)hp + 2); |
486 | 111k | h4 = *((UINT64 *)hp + 3); |
487 | 111k | k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); |
488 | 111k | k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); |
489 | 385k | do { |
490 | 385k | d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); |
491 | 385k | d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); |
492 | 385k | d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); |
493 | 385k | d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); |
494 | 385k | k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); |
495 | 385k | k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15); |
496 | 385k | k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19); |
497 | | |
498 | 385k | h1 += MUL64((k0 + d0), (k4 + d4)); |
499 | 385k | h2 += MUL64((k4 + d0), (k8 + d4)); |
500 | 385k | h3 += MUL64((k8 + d0), (k12 + d4)); |
501 | 385k | h4 += MUL64((k12 + d0), (k16 + d4)); |
502 | | |
503 | 385k | h1 += MUL64((k1 + d1), (k5 + d5)); |
504 | 385k | h2 += MUL64((k5 + d1), (k9 + d5)); |
505 | 385k | h3 += MUL64((k9 + d1), (k13 + d5)); |
506 | 385k | h4 += MUL64((k13 + d1), (k17 + d5)); |
507 | | |
508 | 385k | h1 += MUL64((k2 + d2), (k6 + d6)); |
509 | 385k | h2 += MUL64((k6 + d2), (k10 + d6)); |
510 | 385k | h3 += MUL64((k10 + d2), (k14 + d6)); |
511 | 385k | h4 += MUL64((k14 + d2), (k18 + d6)); |
512 | | |
513 | 385k | h1 += MUL64((k3 + d3), (k7 + d7)); |
514 | 385k | h2 += MUL64((k7 + d3), (k11 + d7)); |
515 | 385k | h3 += MUL64((k11 + d3), (k15 + d7)); |
516 | 385k | h4 += MUL64((k15 + d3), (k19 + d7)); |
517 | | |
518 | 385k | k0 = k8; k1 = k9; k2 = k10; k3 = k11; |
519 | 385k | k4 = k12; k5 = k13; k6 = k14; k7 = k15; |
520 | 385k | k8 = k16; k9 = k17; k10 = k18; k11 = k19; |
521 | | |
522 | 385k | d += 8; |
523 | 385k | k += 8; |
524 | 385k | } while (--c); |
525 | 111k | ((UINT64 *)hp)[0] = h1; |
526 | 111k | ((UINT64 *)hp)[1] = h2; |
527 | 111k | ((UINT64 *)hp)[2] = h3; |
528 | 111k | ((UINT64 *)hp)[3] = h4; |
529 | 111k | } |
530 | | |
531 | | /* ---------------------------------------------------------------------- */ |
532 | | #endif /* UMAC_OUTPUT_LENGTH */ |
533 | | /* ---------------------------------------------------------------------- */ |
534 | | |
535 | | |
536 | | /* ---------------------------------------------------------------------- */ |
537 | | |
538 | | static void nh_transform(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes) |
539 | | /* This function is a wrapper for the primitive NH hash functions. It takes |
540 | | * as argument "hc" the current hash context and a buffer which must be a |
541 | | * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset |
542 | | * appropriately according to how much message has been hashed already. |
543 | | */ |
544 | 225k | { |
545 | 225k | UINT8 *key; |
546 | | |
547 | 225k | key = hc->nh_key + hc->bytes_hashed; |
548 | 225k | nh_aux(key, buf, hc->state, nbytes); |
549 | 225k | } Line | Count | Source | 544 | 122k | { | 545 | 122k | UINT8 *key; | 546 | | | 547 | 122k | key = hc->nh_key + hc->bytes_hashed; | 548 | 122k | nh_aux(key, buf, hc->state, nbytes); | 549 | 122k | } |
Line | Count | Source | 544 | 102k | { | 545 | 102k | UINT8 *key; | 546 | | | 547 | 102k | key = hc->nh_key + hc->bytes_hashed; | 548 | 102k | nh_aux(key, buf, hc->state, nbytes); | 549 | 102k | } |
|
550 | | |
551 | | /* ---------------------------------------------------------------------- */ |
552 | | |
553 | | #if (__LITTLE_ENDIAN__) |
554 | | static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes) |
555 | | /* We endian convert the keys on little-endian computers to */ |
556 | | /* compensate for the lack of big-endian memory reads during hashing. */ |
557 | 5.57k | { |
558 | 5.57k | UWORD iters = num_bytes / bpw; |
559 | 5.57k | if (bpw == 4) { |
560 | 1.82k | UINT32 *p = (UINT32 *)buf; |
561 | 244k | do { |
562 | 244k | *p = LOAD_UINT32_REVERSED(p); |
563 | 244k | p++; |
564 | 244k | } while (--iters); |
565 | 3.74k | } else if (bpw == 8) { |
566 | 3.74k | UINT32 *p = (UINT32 *)buf; |
567 | 3.74k | UINT32 t; |
568 | 14.1k | do { |
569 | 14.1k | t = LOAD_UINT32_REVERSED(p+1); |
570 | 14.1k | p[1] = LOAD_UINT32_REVERSED(p); |
571 | 14.1k | p[0] = t; |
572 | 14.1k | p += 2; |
573 | 14.1k | } while (--iters); |
574 | 3.74k | } |
575 | 5.57k | } Line | Count | Source | 557 | 2.06k | { | 558 | 2.06k | UWORD iters = num_bytes / bpw; | 559 | 2.06k | if (bpw == 4) { | 560 | 826 | UINT32 *p = (UINT32 *)buf; | 561 | 108k | do { | 562 | 108k | *p = LOAD_UINT32_REVERSED(p); | 563 | 108k | p++; | 564 | 108k | } while (--iters); | 565 | 1.23k | } else if (bpw == 8) { | 566 | 1.23k | UINT32 *p = (UINT32 *)buf; | 567 | 1.23k | UINT32 t; | 568 | 4.13k | do { | 569 | 4.13k | t = LOAD_UINT32_REVERSED(p+1); | 570 | 4.13k | p[1] = LOAD_UINT32_REVERSED(p); | 571 | 4.13k | p[0] = t; | 572 | 4.13k | p += 2; | 573 | 4.13k | } while (--iters); | 574 | 1.23k | } | 575 | 2.06k | } |
Line | Count | Source | 557 | 3.50k | { | 558 | 3.50k | UWORD iters = num_bytes / bpw; | 559 | 3.50k | if (bpw == 4) { | 560 | 1.00k | UINT32 *p = (UINT32 *)buf; | 561 | 136k | do { | 562 | 136k | *p = LOAD_UINT32_REVERSED(p); | 563 | 136k | p++; | 564 | 136k | } while (--iters); | 565 | 2.50k | } else if (bpw == 8) { | 566 | 2.50k | UINT32 *p = (UINT32 *)buf; | 567 | 2.50k | UINT32 t; | 568 | 10.0k | do { | 569 | 10.0k | t = LOAD_UINT32_REVERSED(p+1); | 570 | 10.0k | p[1] = LOAD_UINT32_REVERSED(p); | 571 | 10.0k | p[0] = t; | 572 | 10.0k | p += 2; | 573 | 10.0k | } while (--iters); | 574 | 2.50k | } | 575 | 3.50k | } |
|
576 | 5.57k | #define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z)) |
577 | | #else |
578 | | #define endian_convert_if_le(x,y,z) do{}while(0) /* Do nothing */ |
579 | | #endif |
580 | | |
581 | | /* ---------------------------------------------------------------------- */ |
582 | | |
583 | | static void nh_reset(nh_ctx *hc) |
584 | | /* Reset nh_ctx to ready for hashing of new data */ |
585 | 451k | { |
586 | 451k | hc->bytes_hashed = 0; |
587 | 451k | hc->next_data_empty = 0; |
588 | 451k | hc->state[0] = 0; |
589 | 451k | #if (UMAC_OUTPUT_LEN >= 8) |
590 | 451k | hc->state[1] = 0; |
591 | 451k | #endif |
592 | | #if (UMAC_OUTPUT_LEN >= 12) |
593 | | hc->state[2] = 0; |
594 | | #endif |
595 | | #if (UMAC_OUTPUT_LEN == 16) |
596 | | hc->state[3] = 0; |
597 | | #endif |
598 | | |
599 | 451k | } Line | Count | Source | 585 | 246k | { | 586 | 246k | hc->bytes_hashed = 0; | 587 | 246k | hc->next_data_empty = 0; | 588 | 246k | hc->state[0] = 0; | 589 | 246k | #if (UMAC_OUTPUT_LEN >= 8) | 590 | 246k | hc->state[1] = 0; | 591 | 246k | #endif | 592 | | #if (UMAC_OUTPUT_LEN >= 12) | 593 | | hc->state[2] = 0; | 594 | | #endif | 595 | | #if (UMAC_OUTPUT_LEN == 16) | 596 | | hc->state[3] = 0; | 597 | | #endif | 598 | | | 599 | 246k | } |
Line | Count | Source | 585 | 205k | { | 586 | 205k | hc->bytes_hashed = 0; | 587 | 205k | hc->next_data_empty = 0; | 588 | 205k | hc->state[0] = 0; | 589 | 205k | #if (UMAC_OUTPUT_LEN >= 8) | 590 | 205k | hc->state[1] = 0; | 591 | 205k | #endif | 592 | 205k | #if (UMAC_OUTPUT_LEN >= 12) | 593 | 205k | hc->state[2] = 0; | 594 | 205k | #endif | 595 | 205k | #if (UMAC_OUTPUT_LEN == 16) | 596 | 205k | hc->state[3] = 0; | 597 | 205k | #endif | 598 | | | 599 | 205k | } |
|
600 | | |
601 | | /* ---------------------------------------------------------------------- */ |
602 | | |
603 | | static void nh_init(nh_ctx *hc, aes_int_key prf_key) |
604 | | /* Generate nh_key, endian convert and reset to be ready for hashing. */ |
605 | 914 | { |
606 | 914 | kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key)); |
607 | 914 | endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key)); |
608 | 914 | nh_reset(hc); |
609 | 914 | } Line | Count | Source | 605 | 413 | { | 606 | 413 | kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key)); | 607 | 413 | endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key)); | 608 | 413 | nh_reset(hc); | 609 | 413 | } |
Line | Count | Source | 605 | 501 | { | 606 | 501 | kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key)); | 607 | 501 | endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key)); | 608 | 501 | nh_reset(hc); | 609 | 501 | } |
|
610 | | |
611 | | /* ---------------------------------------------------------------------- */ |
612 | | |
613 | | static void nh_update(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes) |
614 | | /* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an */ |
615 | | /* even multiple of HASH_BUF_BYTES. */ |
616 | 225k | { |
617 | 225k | UINT32 i,j; |
618 | | |
619 | 225k | j = hc->next_data_empty; |
620 | 225k | if ((j + nbytes) >= HASH_BUF_BYTES) { |
621 | 149 | if (j) { |
622 | 0 | i = HASH_BUF_BYTES - j; |
623 | 0 | memcpy(hc->data+j, buf, i); |
624 | 0 | nh_transform(hc,hc->data,HASH_BUF_BYTES); |
625 | 0 | nbytes -= i; |
626 | 0 | buf += i; |
627 | 0 | hc->bytes_hashed += HASH_BUF_BYTES; |
628 | 0 | } |
629 | 149 | if (nbytes >= HASH_BUF_BYTES) { |
630 | 149 | i = nbytes & ~(HASH_BUF_BYTES - 1); |
631 | 149 | nh_transform(hc, buf, i); |
632 | 149 | nbytes -= i; |
633 | 149 | buf += i; |
634 | 149 | hc->bytes_hashed += i; |
635 | 149 | } |
636 | 149 | j = 0; |
637 | 149 | } |
638 | 225k | memcpy(hc->data + j, buf, nbytes); |
639 | 225k | hc->next_data_empty = j + nbytes; |
640 | 225k | } Line | Count | Source | 616 | 122k | { | 617 | 122k | UINT32 i,j; | 618 | | | 619 | 122k | j = hc->next_data_empty; | 620 | 122k | if ((j + nbytes) >= HASH_BUF_BYTES) { | 621 | 66 | if (j) { | 622 | 0 | i = HASH_BUF_BYTES - j; | 623 | 0 | memcpy(hc->data+j, buf, i); | 624 | 0 | nh_transform(hc,hc->data,HASH_BUF_BYTES); | 625 | 0 | nbytes -= i; | 626 | 0 | buf += i; | 627 | 0 | hc->bytes_hashed += HASH_BUF_BYTES; | 628 | 0 | } | 629 | 66 | if (nbytes >= HASH_BUF_BYTES) { | 630 | 66 | i = nbytes & ~(HASH_BUF_BYTES - 1); | 631 | 66 | nh_transform(hc, buf, i); | 632 | 66 | nbytes -= i; | 633 | 66 | buf += i; | 634 | 66 | hc->bytes_hashed += i; | 635 | 66 | } | 636 | 66 | j = 0; | 637 | 66 | } | 638 | 122k | memcpy(hc->data + j, buf, nbytes); | 639 | 122k | hc->next_data_empty = j + nbytes; | 640 | 122k | } |
Line | Count | Source | 616 | 102k | { | 617 | 102k | UINT32 i,j; | 618 | | | 619 | 102k | j = hc->next_data_empty; | 620 | 102k | if ((j + nbytes) >= HASH_BUF_BYTES) { | 621 | 83 | if (j) { | 622 | 0 | i = HASH_BUF_BYTES - j; | 623 | 0 | memcpy(hc->data+j, buf, i); | 624 | 0 | nh_transform(hc,hc->data,HASH_BUF_BYTES); | 625 | 0 | nbytes -= i; | 626 | 0 | buf += i; | 627 | 0 | hc->bytes_hashed += HASH_BUF_BYTES; | 628 | 0 | } | 629 | 83 | if (nbytes >= HASH_BUF_BYTES) { | 630 | 83 | i = nbytes & ~(HASH_BUF_BYTES - 1); | 631 | 83 | nh_transform(hc, buf, i); | 632 | 83 | nbytes -= i; | 633 | 83 | buf += i; | 634 | 83 | hc->bytes_hashed += i; | 635 | 83 | } | 636 | 83 | j = 0; | 637 | 83 | } | 638 | 102k | memcpy(hc->data + j, buf, nbytes); | 639 | 102k | hc->next_data_empty = j + nbytes; | 640 | 102k | } |
|
641 | | |
642 | | /* ---------------------------------------------------------------------- */ |
643 | | |
644 | | static void zero_pad(UINT8 *p, int nbytes) |
645 | 225k | { |
646 | | /* Write "nbytes" of zeroes, beginning at "p" */ |
647 | 225k | if (nbytes >= (int)sizeof(UWORD)) { |
648 | 225k | while ((ptrdiff_t)p % sizeof(UWORD)) { |
649 | 0 | *p = 0; |
650 | 0 | nbytes--; |
651 | 0 | p++; |
652 | 0 | } |
653 | 1.02M | while (nbytes >= (int)sizeof(UWORD)) { |
654 | 799k | *(UWORD *)p = 0; |
655 | 799k | nbytes -= sizeof(UWORD); |
656 | 799k | p += sizeof(UWORD); |
657 | 799k | } |
658 | 225k | } |
659 | 225k | while (nbytes) { |
660 | 0 | *p = 0; |
661 | 0 | nbytes--; |
662 | 0 | p++; |
663 | 0 | } |
664 | 225k | } Line | Count | Source | 645 | 122k | { | 646 | | /* Write "nbytes" of zeroes, beginning at "p" */ | 647 | 122k | if (nbytes >= (int)sizeof(UWORD)) { | 648 | 122k | while ((ptrdiff_t)p % sizeof(UWORD)) { | 649 | 0 | *p = 0; | 650 | 0 | nbytes--; | 651 | 0 | p++; | 652 | 0 | } | 653 | 600k | while (nbytes >= (int)sizeof(UWORD)) { | 654 | 478k | *(UWORD *)p = 0; | 655 | 478k | nbytes -= sizeof(UWORD); | 656 | 478k | p += sizeof(UWORD); | 657 | 478k | } | 658 | 122k | } | 659 | 122k | while (nbytes) { | 660 | 0 | *p = 0; | 661 | 0 | nbytes--; | 662 | 0 | p++; | 663 | 0 | } | 664 | 122k | } |
Line | Count | Source | 645 | 102k | { | 646 | | /* Write "nbytes" of zeroes, beginning at "p" */ | 647 | 102k | if (nbytes >= (int)sizeof(UWORD)) { | 648 | 102k | while ((ptrdiff_t)p % sizeof(UWORD)) { | 649 | 0 | *p = 0; | 650 | 0 | nbytes--; | 651 | 0 | p++; | 652 | 0 | } | 653 | 423k | while (nbytes >= (int)sizeof(UWORD)) { | 654 | 321k | *(UWORD *)p = 0; | 655 | 321k | nbytes -= sizeof(UWORD); | 656 | 321k | p += sizeof(UWORD); | 657 | 321k | } | 658 | 102k | } | 659 | 102k | while (nbytes) { | 660 | 0 | *p = 0; | 661 | 0 | nbytes--; | 662 | 0 | p++; | 663 | 0 | } | 664 | 102k | } |
|
665 | | |
666 | | /* ---------------------------------------------------------------------- */ |
667 | | |
668 | | static void nh_final(nh_ctx *hc, UINT8 *result) |
669 | | /* After passing some number of data buffers to nh_update() for integration |
670 | | * into an NH context, nh_final is called to produce a hash result. If any |
671 | | * bytes are in the buffer hc->data, incorporate them into the |
672 | | * NH context. Finally, add into the NH accumulation "state" the total number |
673 | | * of bits hashed. The resulting numbers are written to the buffer "result". |
674 | | * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated. |
675 | | */ |
676 | 225k | { |
677 | 225k | int nh_len, nbits; |
678 | | |
679 | 225k | if (hc->next_data_empty != 0) { |
680 | 225k | nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) & |
681 | 225k | ~(L1_PAD_BOUNDARY - 1)); |
682 | 225k | zero_pad(hc->data + hc->next_data_empty, |
683 | 225k | nh_len - hc->next_data_empty); |
684 | 225k | nh_transform(hc, hc->data, nh_len); |
685 | 225k | hc->bytes_hashed += hc->next_data_empty; |
686 | 225k | } else if (hc->bytes_hashed == 0) { |
687 | 0 | nh_len = L1_PAD_BOUNDARY; |
688 | 0 | zero_pad(hc->data, L1_PAD_BOUNDARY); |
689 | 0 | nh_transform(hc, hc->data, nh_len); |
690 | 0 | } |
691 | | |
692 | 225k | nbits = (hc->bytes_hashed << 3); |
693 | 225k | ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits; |
694 | 225k | #if (UMAC_OUTPUT_LEN >= 8) |
695 | 225k | ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits; |
696 | 225k | #endif |
697 | | #if (UMAC_OUTPUT_LEN >= 12) |
698 | | ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits; |
699 | | #endif |
700 | | #if (UMAC_OUTPUT_LEN == 16) |
701 | | ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits; |
702 | | #endif |
703 | 225k | nh_reset(hc); |
704 | 225k | } Line | Count | Source | 676 | 122k | { | 677 | 122k | int nh_len, nbits; | 678 | | | 679 | 122k | if (hc->next_data_empty != 0) { | 680 | 122k | nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) & | 681 | 122k | ~(L1_PAD_BOUNDARY - 1)); | 682 | 122k | zero_pad(hc->data + hc->next_data_empty, | 683 | 122k | nh_len - hc->next_data_empty); | 684 | 122k | nh_transform(hc, hc->data, nh_len); | 685 | 122k | hc->bytes_hashed += hc->next_data_empty; | 686 | 122k | } else if (hc->bytes_hashed == 0) { | 687 | 0 | nh_len = L1_PAD_BOUNDARY; | 688 | 0 | zero_pad(hc->data, L1_PAD_BOUNDARY); | 689 | 0 | nh_transform(hc, hc->data, nh_len); | 690 | 0 | } | 691 | | | 692 | 122k | nbits = (hc->bytes_hashed << 3); | 693 | 122k | ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits; | 694 | 122k | #if (UMAC_OUTPUT_LEN >= 8) | 695 | 122k | ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits; | 696 | 122k | #endif | 697 | | #if (UMAC_OUTPUT_LEN >= 12) | 698 | | ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits; | 699 | | #endif | 700 | | #if (UMAC_OUTPUT_LEN == 16) | 701 | | ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits; | 702 | | #endif | 703 | 122k | nh_reset(hc); | 704 | 122k | } |
Line | Count | Source | 676 | 102k | { | 677 | 102k | int nh_len, nbits; | 678 | | | 679 | 102k | if (hc->next_data_empty != 0) { | 680 | 102k | nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) & | 681 | 102k | ~(L1_PAD_BOUNDARY - 1)); | 682 | 102k | zero_pad(hc->data + hc->next_data_empty, | 683 | 102k | nh_len - hc->next_data_empty); | 684 | 102k | nh_transform(hc, hc->data, nh_len); | 685 | 102k | hc->bytes_hashed += hc->next_data_empty; | 686 | 102k | } else if (hc->bytes_hashed == 0) { | 687 | 0 | nh_len = L1_PAD_BOUNDARY; | 688 | 0 | zero_pad(hc->data, L1_PAD_BOUNDARY); | 689 | 0 | nh_transform(hc, hc->data, nh_len); | 690 | 0 | } | 691 | | | 692 | 102k | nbits = (hc->bytes_hashed << 3); | 693 | 102k | ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits; | 694 | 102k | #if (UMAC_OUTPUT_LEN >= 8) | 695 | 102k | ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits; | 696 | 102k | #endif | 697 | 102k | #if (UMAC_OUTPUT_LEN >= 12) | 698 | 102k | ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits; | 699 | 102k | #endif | 700 | 102k | #if (UMAC_OUTPUT_LEN == 16) | 701 | 102k | ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits; | 702 | 102k | #endif | 703 | 102k | nh_reset(hc); | 704 | 102k | } |
|
705 | | |
706 | | /* ---------------------------------------------------------------------- */ |
707 | | |
708 | | static void nh(nh_ctx *hc, const UINT8 *buf, UINT32 padded_len, |
709 | | UINT32 unpadded_len, UINT8 *result) |
710 | | /* All-in-one nh_update() and nh_final() equivalent. |
711 | | * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is |
712 | | * well aligned |
713 | | */ |
714 | 14.6k | { |
715 | 14.6k | UINT32 nbits; |
716 | | |
717 | | /* Initialize the hash state */ |
718 | 14.6k | nbits = (unpadded_len << 3); |
719 | | |
720 | 14.6k | ((UINT64 *)result)[0] = nbits; |
721 | 14.6k | #if (UMAC_OUTPUT_LEN >= 8) |
722 | 14.6k | ((UINT64 *)result)[1] = nbits; |
723 | 14.6k | #endif |
724 | | #if (UMAC_OUTPUT_LEN >= 12) |
725 | | ((UINT64 *)result)[2] = nbits; |
726 | | #endif |
727 | | #if (UMAC_OUTPUT_LEN == 16) |
728 | | ((UINT64 *)result)[3] = nbits; |
729 | | #endif |
730 | | |
731 | 14.6k | nh_aux(hc->nh_key, buf, result, padded_len); |
732 | 14.6k | } Line | Count | Source | 714 | 5.82k | { | 715 | 5.82k | UINT32 nbits; | 716 | | | 717 | | /* Initialize the hash state */ | 718 | 5.82k | nbits = (unpadded_len << 3); | 719 | | | 720 | 5.82k | ((UINT64 *)result)[0] = nbits; | 721 | 5.82k | #if (UMAC_OUTPUT_LEN >= 8) | 722 | 5.82k | ((UINT64 *)result)[1] = nbits; | 723 | 5.82k | #endif | 724 | | #if (UMAC_OUTPUT_LEN >= 12) | 725 | | ((UINT64 *)result)[2] = nbits; | 726 | | #endif | 727 | | #if (UMAC_OUTPUT_LEN == 16) | 728 | | ((UINT64 *)result)[3] = nbits; | 729 | | #endif | 730 | | | 731 | 5.82k | nh_aux(hc->nh_key, buf, result, padded_len); | 732 | 5.82k | } |
Line | Count | Source | 714 | 8.80k | { | 715 | 8.80k | UINT32 nbits; | 716 | | | 717 | | /* Initialize the hash state */ | 718 | 8.80k | nbits = (unpadded_len << 3); | 719 | | | 720 | 8.80k | ((UINT64 *)result)[0] = nbits; | 721 | 8.80k | #if (UMAC_OUTPUT_LEN >= 8) | 722 | 8.80k | ((UINT64 *)result)[1] = nbits; | 723 | 8.80k | #endif | 724 | 8.80k | #if (UMAC_OUTPUT_LEN >= 12) | 725 | 8.80k | ((UINT64 *)result)[2] = nbits; | 726 | 8.80k | #endif | 727 | 8.80k | #if (UMAC_OUTPUT_LEN == 16) | 728 | 8.80k | ((UINT64 *)result)[3] = nbits; | 729 | 8.80k | #endif | 730 | | | 731 | 8.80k | nh_aux(hc->nh_key, buf, result, padded_len); | 732 | 8.80k | } |
|
733 | | |
734 | | /* ---------------------------------------------------------------------- */ |
735 | | /* ---------------------------------------------------------------------- */ |
736 | | /* ----- Begin UHASH Section -------------------------------------------- */ |
737 | | /* ---------------------------------------------------------------------- */ |
738 | | /* ---------------------------------------------------------------------- */ |
739 | | |
740 | | /* UHASH is a multi-layered algorithm. Data presented to UHASH is first |
741 | | * hashed by NH. The NH output is then hashed by a polynomial-hash layer |
742 | | * unless the initial data to be hashed is short. After the polynomial- |
743 | | * layer, an inner-product hash is used to produce the final UHASH output. |
744 | | * |
745 | | * UHASH provides two interfaces, one all-at-once and another where data |
746 | | * buffers are presented sequentially. In the sequential interface, the |
747 | | * UHASH client calls the routine uhash_update() as many times as necessary. |
748 | | * When there is no more data to be fed to UHASH, the client calls |
749 | | * uhash_final() which |
750 | | * calculates the UHASH output. Before beginning another UHASH calculation |
751 | | * the uhash_reset() routine must be called. The all-at-once UHASH routine, |
752 | | * uhash(), is equivalent to the sequence of calls uhash_update() and |
753 | | * uhash_final(); however it is optimized and should be |
754 | | * used whenever the sequential interface is not necessary. |
755 | | * |
756 | | * The routine uhash_init() initializes the uhash_ctx data structure and |
757 | | * must be called once, before any other UHASH routine. |
758 | | */ |
759 | | |
760 | | /* ---------------------------------------------------------------------- */ |
761 | | /* ----- Constants and uhash_ctx ---------------------------------------- */ |
762 | | /* ---------------------------------------------------------------------- */ |
763 | | |
764 | | /* ---------------------------------------------------------------------- */ |
765 | | /* ----- Poly hash and Inner-Product hash Constants --------------------- */ |
766 | | /* ---------------------------------------------------------------------- */ |
767 | | |
768 | | /* Primes and masks */ |
769 | 666k | #define p36 ((UINT64)0x0000000FFFFFFFFBull) /* 2^36 - 5 */ |
770 | 698 | #define p64 ((UINT64)0xFFFFFFFFFFFFFFC5ull) /* 2^64 - 59 */ |
771 | 655k | #define m36 ((UINT64)0x0000000FFFFFFFFFull) /* The low 36 of 64 bits */ |
772 | | |
773 | | |
774 | | /* ---------------------------------------------------------------------- */ |
775 | | |
776 | | typedef struct uhash_ctx { |
777 | | nh_ctx hash; /* Hash context for L1 NH hash */ |
778 | | UINT64 poly_key_8[STREAMS]; /* p64 poly keys */ |
779 | | UINT64 poly_accum[STREAMS]; /* poly hash result */ |
780 | | UINT64 ip_keys[STREAMS*4]; /* Inner-product keys */ |
781 | | UINT32 ip_trans[STREAMS]; /* Inner-product translation */ |
782 | | UINT32 msg_len; /* Total length of data passed */ |
783 | | /* to uhash */ |
784 | | } uhash_ctx; |
785 | | typedef struct uhash_ctx *uhash_ctx_t; |
786 | | |
787 | | /* ---------------------------------------------------------------------- */ |
788 | | |
789 | | |
790 | | /* The polynomial hashes use Horner's rule to evaluate a polynomial one |
791 | | * word at a time. As described in the specification, poly32 and poly64 |
792 | | * require keys from special domains. The following implementations exploit |
793 | | * the special domains to avoid overflow. The results are not guaranteed to |
794 | | * be within Z_p32 and Z_p64, but the Inner-Product hash implementation |
795 | | * patches any errant values. |
796 | | */ |
797 | | |
798 | | static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data) |
799 | 47.5k | { |
800 | 47.5k | UINT32 key_hi = (UINT32)(key >> 32), |
801 | 47.5k | key_lo = (UINT32)key, |
802 | 47.5k | cur_hi = (UINT32)(cur >> 32), |
803 | 47.5k | cur_lo = (UINT32)cur, |
804 | 47.5k | x_lo, |
805 | 47.5k | x_hi; |
806 | 47.5k | UINT64 X,T,res; |
807 | | |
808 | 47.5k | X = MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo); |
809 | 47.5k | x_lo = (UINT32)X; |
810 | 47.5k | x_hi = (UINT32)(X >> 32); |
811 | | |
812 | 47.5k | res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo); |
813 | | |
814 | 47.5k | T = ((UINT64)x_lo << 32); |
815 | 47.5k | res += T; |
816 | 47.5k | if (res < T) |
817 | 5.65k | res += 59; |
818 | | |
819 | 47.5k | res += data; |
820 | 47.5k | if (res < data) |
821 | 23.3k | res += 59; |
822 | | |
823 | 47.5k | return res; |
824 | 47.5k | } Line | Count | Source | 799 | 11.8k | { | 800 | 11.8k | UINT32 key_hi = (UINT32)(key >> 32), | 801 | 11.8k | key_lo = (UINT32)key, | 802 | 11.8k | cur_hi = (UINT32)(cur >> 32), | 803 | 11.8k | cur_lo = (UINT32)cur, | 804 | 11.8k | x_lo, | 805 | 11.8k | x_hi; | 806 | 11.8k | UINT64 X,T,res; | 807 | | | 808 | 11.8k | X = MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo); | 809 | 11.8k | x_lo = (UINT32)X; | 810 | 11.8k | x_hi = (UINT32)(X >> 32); | 811 | | | 812 | 11.8k | res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo); | 813 | | | 814 | 11.8k | T = ((UINT64)x_lo << 32); | 815 | 11.8k | res += T; | 816 | 11.8k | if (res < T) | 817 | 1.38k | res += 59; | 818 | | | 819 | 11.8k | res += data; | 820 | 11.8k | if (res < data) | 821 | 5.83k | res += 59; | 822 | | | 823 | 11.8k | return res; | 824 | 11.8k | } |
Line | Count | Source | 799 | 35.6k | { | 800 | 35.6k | UINT32 key_hi = (UINT32)(key >> 32), | 801 | 35.6k | key_lo = (UINT32)key, | 802 | 35.6k | cur_hi = (UINT32)(cur >> 32), | 803 | 35.6k | cur_lo = (UINT32)cur, | 804 | 35.6k | x_lo, | 805 | 35.6k | x_hi; | 806 | 35.6k | UINT64 X,T,res; | 807 | | | 808 | 35.6k | X = MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo); | 809 | 35.6k | x_lo = (UINT32)X; | 810 | 35.6k | x_hi = (UINT32)(X >> 32); | 811 | | | 812 | 35.6k | res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo); | 813 | | | 814 | 35.6k | T = ((UINT64)x_lo << 32); | 815 | 35.6k | res += T; | 816 | 35.6k | if (res < T) | 817 | 4.27k | res += 59; | 818 | | | 819 | 35.6k | res += data; | 820 | 35.6k | if (res < data) | 821 | 17.5k | res += 59; | 822 | | | 823 | 35.6k | return res; | 824 | 35.6k | } |
|
825 | | |
826 | | |
827 | | /* Although UMAC is specified to use a ramped polynomial hash scheme, this |
828 | | * implementation does not handle all ramp levels. Because we don't handle |
829 | | * the ramp up to p128 modulus in this implementation, we are limited to |
830 | | * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24 |
831 | | * bytes input to UMAC per tag, ie. 16MB). |
832 | | */ |
833 | | static void poly_hash(uhash_ctx_t hc, UINT32 data_in[]) |
834 | 14.8k | { |
835 | 14.8k | int i; |
836 | 14.8k | UINT64 *data=(UINT64*)data_in; |
837 | | |
838 | 62.3k | for (i = 0; i < STREAMS; i++) { |
839 | 47.5k | if ((UINT32)(data[i] >> 32) == 0xfffffffful) { |
840 | 0 | hc->poly_accum[i] = poly64(hc->poly_accum[i], |
841 | 0 | hc->poly_key_8[i], p64 - 1); |
842 | 0 | hc->poly_accum[i] = poly64(hc->poly_accum[i], |
843 | 0 | hc->poly_key_8[i], (data[i] - 59)); |
844 | 47.5k | } else { |
845 | 47.5k | hc->poly_accum[i] = poly64(hc->poly_accum[i], |
846 | 47.5k | hc->poly_key_8[i], data[i]); |
847 | 47.5k | } |
848 | 47.5k | } |
849 | 14.8k | } Line | Count | Source | 834 | 5.92k | { | 835 | 5.92k | int i; | 836 | 5.92k | UINT64 *data=(UINT64*)data_in; | 837 | | | 838 | 17.7k | for (i = 0; i < STREAMS; i++) { | 839 | 11.8k | if ((UINT32)(data[i] >> 32) == 0xfffffffful) { | 840 | 0 | hc->poly_accum[i] = poly64(hc->poly_accum[i], | 841 | 0 | hc->poly_key_8[i], p64 - 1); | 842 | 0 | hc->poly_accum[i] = poly64(hc->poly_accum[i], | 843 | 0 | hc->poly_key_8[i], (data[i] - 59)); | 844 | 11.8k | } else { | 845 | 11.8k | hc->poly_accum[i] = poly64(hc->poly_accum[i], | 846 | 11.8k | hc->poly_key_8[i], data[i]); | 847 | 11.8k | } | 848 | 11.8k | } | 849 | 5.92k | } |
Line | Count | Source | 834 | 8.92k | { | 835 | 8.92k | int i; | 836 | 8.92k | UINT64 *data=(UINT64*)data_in; | 837 | | | 838 | 44.6k | for (i = 0; i < STREAMS; i++) { | 839 | 35.6k | if ((UINT32)(data[i] >> 32) == 0xfffffffful) { | 840 | 0 | hc->poly_accum[i] = poly64(hc->poly_accum[i], | 841 | 0 | hc->poly_key_8[i], p64 - 1); | 842 | 0 | hc->poly_accum[i] = poly64(hc->poly_accum[i], | 843 | 0 | hc->poly_key_8[i], (data[i] - 59)); | 844 | 35.6k | } else { | 845 | 35.6k | hc->poly_accum[i] = poly64(hc->poly_accum[i], | 846 | 35.6k | hc->poly_key_8[i], data[i]); | 847 | 35.6k | } | 848 | 35.6k | } | 849 | 8.92k | } |
|
850 | | |
851 | | |
852 | | /* ---------------------------------------------------------------------- */ |
853 | | |
854 | | |
855 | | /* The final step in UHASH is an inner-product hash. The poly hash |
856 | | * produces a result not necessarily WORD_LEN bytes long. The inner- |
857 | | * product hash breaks the polyhash output into 16-bit chunks and |
858 | | * multiplies each with a 36 bit key. |
859 | | */ |
860 | | |
861 | | static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data) |
862 | 655k | { |
863 | 655k | t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48); |
864 | 655k | t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32); |
865 | 655k | t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16); |
866 | 655k | t = t + ipkp[3] * (UINT64)(UINT16)(data); |
867 | | |
868 | 655k | return t; |
869 | 655k | } Line | Count | Source | 862 | 245k | { | 863 | 245k | t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48); | 864 | 245k | t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32); | 865 | 245k | t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16); | 866 | 245k | t = t + ipkp[3] * (UINT64)(UINT16)(data); | 867 | | | 868 | 245k | return t; | 869 | 245k | } |
Line | Count | Source | 862 | 409k | { | 863 | 409k | t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48); | 864 | 409k | t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32); | 865 | 409k | t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16); | 866 | 409k | t = t + ipkp[3] * (UINT64)(UINT16)(data); | 867 | | | 868 | 409k | return t; | 869 | 409k | } |
|
870 | | |
871 | | static UINT32 ip_reduce_p36(UINT64 t) |
872 | 655k | { |
873 | | /* Divisionless modular reduction */ |
874 | 655k | UINT64 ret; |
875 | | |
876 | 655k | ret = (t & m36) + 5 * (t >> 36); |
877 | 655k | if (ret >= p36) |
878 | 7 | ret -= p36; |
879 | | |
880 | | /* return least significant 32 bits */ |
881 | 655k | return (UINT32)(ret); |
882 | 655k | } Line | Count | Source | 872 | 245k | { | 873 | | /* Divisionless modular reduction */ | 874 | 245k | UINT64 ret; | 875 | | | 876 | 245k | ret = (t & m36) + 5 * (t >> 36); | 877 | 245k | if (ret >= p36) | 878 | 4 | ret -= p36; | 879 | | | 880 | | /* return least significant 32 bits */ | 881 | 245k | return (UINT32)(ret); | 882 | 245k | } |
Line | Count | Source | 872 | 409k | { | 873 | | /* Divisionless modular reduction */ | 874 | 409k | UINT64 ret; | 875 | | | 876 | 409k | ret = (t & m36) + 5 * (t >> 36); | 877 | 409k | if (ret >= p36) | 878 | 3 | ret -= p36; | 879 | | | 880 | | /* return least significant 32 bits */ | 881 | 409k | return (UINT32)(ret); | 882 | 409k | } |
|
883 | | |
884 | | |
885 | | /* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then |
886 | | * the polyhash stage is skipped and ip_short is applied directly to the |
887 | | * NH output. |
888 | | */ |
889 | | static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res) |
890 | 224k | { |
891 | 224k | UINT64 t; |
892 | 224k | UINT64 *nhp = (UINT64 *)nh_res; |
893 | | |
894 | 224k | t = ip_aux(0,ahc->ip_keys, nhp[0]); |
895 | 224k | STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]); |
896 | 224k | #if (UMAC_OUTPUT_LEN >= 8) |
897 | 224k | t = ip_aux(0,ahc->ip_keys+4, nhp[1]); |
898 | 224k | STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]); |
899 | 224k | #endif |
900 | | #if (UMAC_OUTPUT_LEN >= 12) |
901 | | t = ip_aux(0,ahc->ip_keys+8, nhp[2]); |
902 | 102k | STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]); |
903 | | #endif |
904 | | #if (UMAC_OUTPUT_LEN == 16) |
905 | | t = ip_aux(0,ahc->ip_keys+12, nhp[3]); |
906 | 102k | STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]); |
907 | | #endif |
908 | 224k | } Line | Count | Source | 890 | 122k | { | 891 | 122k | UINT64 t; | 892 | 122k | UINT64 *nhp = (UINT64 *)nh_res; | 893 | | | 894 | 122k | t = ip_aux(0,ahc->ip_keys, nhp[0]); | 895 | 122k | STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]); | 896 | 122k | #if (UMAC_OUTPUT_LEN >= 8) | 897 | 122k | t = ip_aux(0,ahc->ip_keys+4, nhp[1]); | 898 | 122k | STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]); | 899 | 122k | #endif | 900 | | #if (UMAC_OUTPUT_LEN >= 12) | 901 | | t = ip_aux(0,ahc->ip_keys+8, nhp[2]); | 902 | | STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]); | 903 | | #endif | 904 | | #if (UMAC_OUTPUT_LEN == 16) | 905 | | t = ip_aux(0,ahc->ip_keys+12, nhp[3]); | 906 | | STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]); | 907 | | #endif | 908 | 122k | } |
Line | Count | Source | 890 | 102k | { | 891 | 102k | UINT64 t; | 892 | 102k | UINT64 *nhp = (UINT64 *)nh_res; | 893 | | | 894 | 102k | t = ip_aux(0,ahc->ip_keys, nhp[0]); | 895 | 102k | STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]); | 896 | 102k | #if (UMAC_OUTPUT_LEN >= 8) | 897 | 102k | t = ip_aux(0,ahc->ip_keys+4, nhp[1]); | 898 | 102k | STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]); | 899 | 102k | #endif | 900 | 102k | #if (UMAC_OUTPUT_LEN >= 12) | 901 | 102k | t = ip_aux(0,ahc->ip_keys+8, nhp[2]); | 902 | 102k | STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]); | 903 | 102k | #endif | 904 | 102k | #if (UMAC_OUTPUT_LEN == 16) | 905 | 102k | t = ip_aux(0,ahc->ip_keys+12, nhp[3]); | 906 | 102k | STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]); | 907 | 102k | #endif | 908 | 102k | } |
|
909 | | |
910 | | /* If the data being hashed by UHASH is longer than L1_KEY_LEN, then |
911 | | * the polyhash stage is not skipped and ip_long is applied to the |
912 | | * polyhash output. |
913 | | */ |
914 | | static void ip_long(uhash_ctx_t ahc, u_char *res) |
915 | 226 | { |
916 | 226 | int i; |
917 | 226 | UINT64 t; |
918 | | |
919 | 924 | for (i = 0; i < STREAMS; i++) { |
920 | | /* fix polyhash output not in Z_p64 */ |
921 | 698 | if (ahc->poly_accum[i] >= p64) |
922 | 0 | ahc->poly_accum[i] -= p64; |
923 | 698 | t = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]); |
924 | 698 | STORE_UINT32_BIG((UINT32 *)res+i, |
925 | 698 | ip_reduce_p36(t) ^ ahc->ip_trans[i]); |
926 | 698 | } |
927 | 226 | } Line | Count | Source | 915 | 103 | { | 916 | 103 | int i; | 917 | 103 | UINT64 t; | 918 | | | 919 | 309 | for (i = 0; i < STREAMS; i++) { | 920 | | /* fix polyhash output not in Z_p64 */ | 921 | 206 | if (ahc->poly_accum[i] >= p64) | 922 | 0 | ahc->poly_accum[i] -= p64; | 923 | 206 | t = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]); | 924 | 206 | STORE_UINT32_BIG((UINT32 *)res+i, | 925 | 206 | ip_reduce_p36(t) ^ ahc->ip_trans[i]); | 926 | 206 | } | 927 | 103 | } |
Line | Count | Source | 915 | 123 | { | 916 | 123 | int i; | 917 | 123 | UINT64 t; | 918 | | | 919 | 615 | for (i = 0; i < STREAMS; i++) { | 920 | | /* fix polyhash output not in Z_p64 */ | 921 | 492 | if (ahc->poly_accum[i] >= p64) | 922 | 0 | ahc->poly_accum[i] -= p64; | 923 | 492 | t = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]); | 924 | 492 | STORE_UINT32_BIG((UINT32 *)res+i, | 925 | 492 | ip_reduce_p36(t) ^ ahc->ip_trans[i]); | 926 | 492 | } | 927 | 123 | } |
|
928 | | |
929 | | |
930 | | /* ---------------------------------------------------------------------- */ |
931 | | |
932 | | /* ---------------------------------------------------------------------- */ |
933 | | |
934 | | /* Reset uhash context for next hash session */ |
935 | | static int uhash_reset(uhash_ctx_t pc) |
936 | 225k | { |
937 | 225k | nh_reset(&pc->hash); |
938 | 225k | pc->msg_len = 0; |
939 | 225k | pc->poly_accum[0] = 1; |
940 | 225k | #if (UMAC_OUTPUT_LEN >= 8) |
941 | 225k | pc->poly_accum[1] = 1; |
942 | 225k | #endif |
943 | | #if (UMAC_OUTPUT_LEN >= 12) |
944 | | pc->poly_accum[2] = 1; |
945 | | #endif |
946 | | #if (UMAC_OUTPUT_LEN == 16) |
947 | | pc->poly_accum[3] = 1; |
948 | | #endif |
949 | 225k | return 1; |
950 | 225k | } Line | Count | Source | 936 | 122k | { | 937 | 122k | nh_reset(&pc->hash); | 938 | 122k | pc->msg_len = 0; | 939 | 122k | pc->poly_accum[0] = 1; | 940 | 122k | #if (UMAC_OUTPUT_LEN >= 8) | 941 | 122k | pc->poly_accum[1] = 1; | 942 | 122k | #endif | 943 | | #if (UMAC_OUTPUT_LEN >= 12) | 944 | | pc->poly_accum[2] = 1; | 945 | | #endif | 946 | | #if (UMAC_OUTPUT_LEN == 16) | 947 | | pc->poly_accum[3] = 1; | 948 | | #endif | 949 | 122k | return 1; | 950 | 122k | } |
Line | Count | Source | 936 | 102k | { | 937 | 102k | nh_reset(&pc->hash); | 938 | 102k | pc->msg_len = 0; | 939 | 102k | pc->poly_accum[0] = 1; | 940 | 102k | #if (UMAC_OUTPUT_LEN >= 8) | 941 | 102k | pc->poly_accum[1] = 1; | 942 | 102k | #endif | 943 | 102k | #if (UMAC_OUTPUT_LEN >= 12) | 944 | 102k | pc->poly_accum[2] = 1; | 945 | 102k | #endif | 946 | 102k | #if (UMAC_OUTPUT_LEN == 16) | 947 | 102k | pc->poly_accum[3] = 1; | 948 | 102k | #endif | 949 | 102k | return 1; | 950 | 102k | } |
|
951 | | |
952 | | /* ---------------------------------------------------------------------- */ |
953 | | |
954 | | /* Given a pointer to the internal key needed by kdf() and a uhash context, |
955 | | * initialize the NH context and generate keys needed for poly and inner- |
956 | | * product hashing. All keys are endian adjusted in memory so that native |
957 | | * loads cause correct keys to be in registers during calculation. |
958 | | */ |
959 | | static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key) |
960 | 914 | { |
961 | 914 | int i; |
962 | 914 | UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)]; |
963 | | |
964 | | /* Zero the entire uhash context */ |
965 | 914 | memset(ahc, 0, sizeof(uhash_ctx)); |
966 | | |
967 | | /* Initialize the L1 hash */ |
968 | 914 | nh_init(&ahc->hash, prf_key); |
969 | | |
970 | | /* Setup L2 hash variables */ |
971 | 914 | kdf(buf, prf_key, 2, sizeof(buf)); /* Fill buffer with index 1 key */ |
972 | 3.74k | for (i = 0; i < STREAMS; i++) { |
973 | | /* Fill keys from the buffer, skipping bytes in the buffer not |
974 | | * used by this implementation. Endian reverse the keys if on a |
975 | | * little-endian computer. |
976 | | */ |
977 | 2.83k | memcpy(ahc->poly_key_8+i, buf+24*i, 8); |
978 | 2.83k | endian_convert_if_le(ahc->poly_key_8+i, 8, 8); |
979 | | /* Mask the 64-bit keys to their special domain */ |
980 | 2.83k | ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu; |
981 | 2.83k | ahc->poly_accum[i] = 1; /* Our polyhash prepends a non-zero word */ |
982 | 2.83k | } |
983 | | |
984 | | /* Setup L3-1 hash variables */ |
985 | 914 | kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */ |
986 | 3.74k | for (i = 0; i < STREAMS; i++) |
987 | 2.83k | memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64), |
988 | 2.83k | 4*sizeof(UINT64)); |
989 | 914 | endian_convert_if_le(ahc->ip_keys, sizeof(UINT64), |
990 | 914 | sizeof(ahc->ip_keys)); |
991 | 12.2k | for (i = 0; i < STREAMS*4; i++) |
992 | 11.3k | ahc->ip_keys[i] %= p36; /* Bring into Z_p36 */ |
993 | | |
994 | | /* Setup L3-2 hash variables */ |
995 | | /* Fill buffer with index 4 key */ |
996 | 914 | kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32)); |
997 | 914 | endian_convert_if_le(ahc->ip_trans, sizeof(UINT32), |
998 | 914 | STREAMS * sizeof(UINT32)); |
999 | 914 | explicit_bzero(buf, sizeof(buf)); |
1000 | 914 | } Line | Count | Source | 960 | 413 | { | 961 | 413 | int i; | 962 | 413 | UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)]; | 963 | | | 964 | | /* Zero the entire uhash context */ | 965 | 413 | memset(ahc, 0, sizeof(uhash_ctx)); | 966 | | | 967 | | /* Initialize the L1 hash */ | 968 | 413 | nh_init(&ahc->hash, prf_key); | 969 | | | 970 | | /* Setup L2 hash variables */ | 971 | 413 | kdf(buf, prf_key, 2, sizeof(buf)); /* Fill buffer with index 1 key */ | 972 | 1.23k | for (i = 0; i < STREAMS; i++) { | 973 | | /* Fill keys from the buffer, skipping bytes in the buffer not | 974 | | * used by this implementation. Endian reverse the keys if on a | 975 | | * little-endian computer. | 976 | | */ | 977 | 826 | memcpy(ahc->poly_key_8+i, buf+24*i, 8); | 978 | 826 | endian_convert_if_le(ahc->poly_key_8+i, 8, 8); | 979 | | /* Mask the 64-bit keys to their special domain */ | 980 | 826 | ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu; | 981 | 826 | ahc->poly_accum[i] = 1; /* Our polyhash prepends a non-zero word */ | 982 | 826 | } | 983 | | | 984 | | /* Setup L3-1 hash variables */ | 985 | 413 | kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */ | 986 | 1.23k | for (i = 0; i < STREAMS; i++) | 987 | 826 | memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64), | 988 | 826 | 4*sizeof(UINT64)); | 989 | 413 | endian_convert_if_le(ahc->ip_keys, sizeof(UINT64), | 990 | 413 | sizeof(ahc->ip_keys)); | 991 | 3.71k | for (i = 0; i < STREAMS*4; i++) | 992 | 3.30k | ahc->ip_keys[i] %= p36; /* Bring into Z_p36 */ | 993 | | | 994 | | /* Setup L3-2 hash variables */ | 995 | | /* Fill buffer with index 4 key */ | 996 | 413 | kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32)); | 997 | 413 | endian_convert_if_le(ahc->ip_trans, sizeof(UINT32), | 998 | 413 | STREAMS * sizeof(UINT32)); | 999 | 413 | explicit_bzero(buf, sizeof(buf)); | 1000 | 413 | } |
Line | Count | Source | 960 | 501 | { | 961 | 501 | int i; | 962 | 501 | UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)]; | 963 | | | 964 | | /* Zero the entire uhash context */ | 965 | 501 | memset(ahc, 0, sizeof(uhash_ctx)); | 966 | | | 967 | | /* Initialize the L1 hash */ | 968 | 501 | nh_init(&ahc->hash, prf_key); | 969 | | | 970 | | /* Setup L2 hash variables */ | 971 | 501 | kdf(buf, prf_key, 2, sizeof(buf)); /* Fill buffer with index 1 key */ | 972 | 2.50k | for (i = 0; i < STREAMS; i++) { | 973 | | /* Fill keys from the buffer, skipping bytes in the buffer not | 974 | | * used by this implementation. Endian reverse the keys if on a | 975 | | * little-endian computer. | 976 | | */ | 977 | 2.00k | memcpy(ahc->poly_key_8+i, buf+24*i, 8); | 978 | 2.00k | endian_convert_if_le(ahc->poly_key_8+i, 8, 8); | 979 | | /* Mask the 64-bit keys to their special domain */ | 980 | 2.00k | ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu; | 981 | 2.00k | ahc->poly_accum[i] = 1; /* Our polyhash prepends a non-zero word */ | 982 | 2.00k | } | 983 | | | 984 | | /* Setup L3-1 hash variables */ | 985 | 501 | kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */ | 986 | 2.50k | for (i = 0; i < STREAMS; i++) | 987 | 2.00k | memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64), | 988 | 2.00k | 4*sizeof(UINT64)); | 989 | 501 | endian_convert_if_le(ahc->ip_keys, sizeof(UINT64), | 990 | 501 | sizeof(ahc->ip_keys)); | 991 | 8.51k | for (i = 0; i < STREAMS*4; i++) | 992 | 8.01k | ahc->ip_keys[i] %= p36; /* Bring into Z_p36 */ | 993 | | | 994 | | /* Setup L3-2 hash variables */ | 995 | | /* Fill buffer with index 4 key */ | 996 | 501 | kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32)); | 997 | 501 | endian_convert_if_le(ahc->ip_trans, sizeof(UINT32), | 998 | 501 | STREAMS * sizeof(UINT32)); | 999 | 501 | explicit_bzero(buf, sizeof(buf)); | 1000 | 501 | } |
|
1001 | | |
1002 | | /* ---------------------------------------------------------------------- */ |
1003 | | |
1004 | | #if 0 |
1005 | | static uhash_ctx_t uhash_alloc(u_char key[]) |
1006 | | { |
1007 | | /* Allocate memory and force to a 16-byte boundary. */ |
1008 | | uhash_ctx_t ctx; |
1009 | | u_char bytes_to_add; |
1010 | | aes_int_key prf_key; |
1011 | | |
1012 | | ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY); |
1013 | | if (ctx) { |
1014 | | if (ALLOC_BOUNDARY) { |
1015 | | bytes_to_add = ALLOC_BOUNDARY - |
1016 | | ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1)); |
1017 | | ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add); |
1018 | | *((u_char *)ctx - 1) = bytes_to_add; |
1019 | | } |
1020 | | aes_key_setup(key,prf_key); |
1021 | | uhash_init(ctx, prf_key); |
1022 | | } |
1023 | | return (ctx); |
1024 | | } |
1025 | | #endif |
1026 | | |
1027 | | /* ---------------------------------------------------------------------- */ |
1028 | | |
1029 | | #if 0 |
1030 | | static int uhash_free(uhash_ctx_t ctx) |
1031 | | { |
1032 | | /* Free memory allocated by uhash_alloc */ |
1033 | | u_char bytes_to_sub; |
1034 | | |
1035 | | if (ctx) { |
1036 | | if (ALLOC_BOUNDARY) { |
1037 | | bytes_to_sub = *((u_char *)ctx - 1); |
1038 | | ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub); |
1039 | | } |
1040 | | free(ctx); |
1041 | | } |
1042 | | return (1); |
1043 | | } |
1044 | | #endif |
1045 | | /* ---------------------------------------------------------------------- */ |
1046 | | |
1047 | | static int uhash_update(uhash_ctx_t ctx, const u_char *input, long len) |
1048 | | /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and |
1049 | | * hash each one with NH, calling the polyhash on each NH output. |
1050 | | */ |
1051 | 225k | { |
1052 | 225k | UWORD bytes_hashed, bytes_remaining; |
1053 | 225k | UINT64 result_buf[STREAMS]; |
1054 | 225k | UINT8 *nh_result = (UINT8 *)&result_buf; |
1055 | | |
1056 | 225k | if (ctx->msg_len + len <= L1_KEY_LEN) { |
1057 | 224k | nh_update(&ctx->hash, (const UINT8 *)input, len); |
1058 | 224k | ctx->msg_len += len; |
1059 | 224k | } else { |
1060 | | |
1061 | 226 | bytes_hashed = ctx->msg_len % L1_KEY_LEN; |
1062 | 226 | if (ctx->msg_len == L1_KEY_LEN) |
1063 | 0 | bytes_hashed = L1_KEY_LEN; |
1064 | | |
1065 | 226 | if (bytes_hashed + len >= L1_KEY_LEN) { |
1066 | | |
1067 | | /* If some bytes have been passed to the hash function */ |
1068 | | /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */ |
1069 | | /* bytes to complete the current nh_block. */ |
1070 | 226 | if (bytes_hashed) { |
1071 | 0 | bytes_remaining = (L1_KEY_LEN - bytes_hashed); |
1072 | 0 | nh_update(&ctx->hash, (const UINT8 *)input, bytes_remaining); |
1073 | 0 | nh_final(&ctx->hash, nh_result); |
1074 | 0 | ctx->msg_len += bytes_remaining; |
1075 | 0 | poly_hash(ctx,(UINT32 *)nh_result); |
1076 | 0 | len -= bytes_remaining; |
1077 | 0 | input += bytes_remaining; |
1078 | 0 | } |
1079 | | |
1080 | | /* Hash directly from input stream if enough bytes */ |
1081 | 14.8k | while (len >= L1_KEY_LEN) { |
1082 | 14.6k | nh(&ctx->hash, (const UINT8 *)input, L1_KEY_LEN, |
1083 | 14.6k | L1_KEY_LEN, nh_result); |
1084 | 14.6k | ctx->msg_len += L1_KEY_LEN; |
1085 | 14.6k | len -= L1_KEY_LEN; |
1086 | 14.6k | input += L1_KEY_LEN; |
1087 | 14.6k | poly_hash(ctx,(UINT32 *)nh_result); |
1088 | 14.6k | } |
1089 | 226 | } |
1090 | | |
1091 | | /* pass remaining < L1_KEY_LEN bytes of input data to NH */ |
1092 | 226 | if (len) { |
1093 | 221 | nh_update(&ctx->hash, (const UINT8 *)input, len); |
1094 | 221 | ctx->msg_len += len; |
1095 | 221 | } |
1096 | 226 | } |
1097 | | |
1098 | 225k | return (1); |
1099 | 225k | } Line | Count | Source | 1051 | 122k | { | 1052 | 122k | UWORD bytes_hashed, bytes_remaining; | 1053 | 122k | UINT64 result_buf[STREAMS]; | 1054 | 122k | UINT8 *nh_result = (UINT8 *)&result_buf; | 1055 | | | 1056 | 122k | if (ctx->msg_len + len <= L1_KEY_LEN) { | 1057 | 122k | nh_update(&ctx->hash, (const UINT8 *)input, len); | 1058 | 122k | ctx->msg_len += len; | 1059 | 122k | } else { | 1060 | | | 1061 | 103 | bytes_hashed = ctx->msg_len % L1_KEY_LEN; | 1062 | 103 | if (ctx->msg_len == L1_KEY_LEN) | 1063 | 0 | bytes_hashed = L1_KEY_LEN; | 1064 | | | 1065 | 103 | if (bytes_hashed + len >= L1_KEY_LEN) { | 1066 | | | 1067 | | /* If some bytes have been passed to the hash function */ | 1068 | | /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */ | 1069 | | /* bytes to complete the current nh_block. */ | 1070 | 103 | if (bytes_hashed) { | 1071 | 0 | bytes_remaining = (L1_KEY_LEN - bytes_hashed); | 1072 | 0 | nh_update(&ctx->hash, (const UINT8 *)input, bytes_remaining); | 1073 | 0 | nh_final(&ctx->hash, nh_result); | 1074 | 0 | ctx->msg_len += bytes_remaining; | 1075 | 0 | poly_hash(ctx,(UINT32 *)nh_result); | 1076 | 0 | len -= bytes_remaining; | 1077 | 0 | input += bytes_remaining; | 1078 | 0 | } | 1079 | | | 1080 | | /* Hash directly from input stream if enough bytes */ | 1081 | 5.92k | while (len >= L1_KEY_LEN) { | 1082 | 5.82k | nh(&ctx->hash, (const UINT8 *)input, L1_KEY_LEN, | 1083 | 5.82k | L1_KEY_LEN, nh_result); | 1084 | 5.82k | ctx->msg_len += L1_KEY_LEN; | 1085 | 5.82k | len -= L1_KEY_LEN; | 1086 | 5.82k | input += L1_KEY_LEN; | 1087 | 5.82k | poly_hash(ctx,(UINT32 *)nh_result); | 1088 | 5.82k | } | 1089 | 103 | } | 1090 | | | 1091 | | /* pass remaining < L1_KEY_LEN bytes of input data to NH */ | 1092 | 103 | if (len) { | 1093 | 99 | nh_update(&ctx->hash, (const UINT8 *)input, len); | 1094 | 99 | ctx->msg_len += len; | 1095 | 99 | } | 1096 | 103 | } | 1097 | | | 1098 | 122k | return (1); | 1099 | 122k | } |
Line | Count | Source | 1051 | 102k | { | 1052 | 102k | UWORD bytes_hashed, bytes_remaining; | 1053 | 102k | UINT64 result_buf[STREAMS]; | 1054 | 102k | UINT8 *nh_result = (UINT8 *)&result_buf; | 1055 | | | 1056 | 102k | if (ctx->msg_len + len <= L1_KEY_LEN) { | 1057 | 102k | nh_update(&ctx->hash, (const UINT8 *)input, len); | 1058 | 102k | ctx->msg_len += len; | 1059 | 102k | } else { | 1060 | | | 1061 | 123 | bytes_hashed = ctx->msg_len % L1_KEY_LEN; | 1062 | 123 | if (ctx->msg_len == L1_KEY_LEN) | 1063 | 0 | bytes_hashed = L1_KEY_LEN; | 1064 | | | 1065 | 123 | if (bytes_hashed + len >= L1_KEY_LEN) { | 1066 | | | 1067 | | /* If some bytes have been passed to the hash function */ | 1068 | | /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */ | 1069 | | /* bytes to complete the current nh_block. */ | 1070 | 123 | if (bytes_hashed) { | 1071 | 0 | bytes_remaining = (L1_KEY_LEN - bytes_hashed); | 1072 | 0 | nh_update(&ctx->hash, (const UINT8 *)input, bytes_remaining); | 1073 | 0 | nh_final(&ctx->hash, nh_result); | 1074 | 0 | ctx->msg_len += bytes_remaining; | 1075 | 0 | poly_hash(ctx,(UINT32 *)nh_result); | 1076 | 0 | len -= bytes_remaining; | 1077 | 0 | input += bytes_remaining; | 1078 | 0 | } | 1079 | | | 1080 | | /* Hash directly from input stream if enough bytes */ | 1081 | 8.92k | while (len >= L1_KEY_LEN) { | 1082 | 8.80k | nh(&ctx->hash, (const UINT8 *)input, L1_KEY_LEN, | 1083 | 8.80k | L1_KEY_LEN, nh_result); | 1084 | 8.80k | ctx->msg_len += L1_KEY_LEN; | 1085 | 8.80k | len -= L1_KEY_LEN; | 1086 | 8.80k | input += L1_KEY_LEN; | 1087 | 8.80k | poly_hash(ctx,(UINT32 *)nh_result); | 1088 | 8.80k | } | 1089 | 123 | } | 1090 | | | 1091 | | /* pass remaining < L1_KEY_LEN bytes of input data to NH */ | 1092 | 123 | if (len) { | 1093 | 122 | nh_update(&ctx->hash, (const UINT8 *)input, len); | 1094 | 122 | ctx->msg_len += len; | 1095 | 122 | } | 1096 | 123 | } | 1097 | | | 1098 | 102k | return (1); | 1099 | 102k | } |
|
1100 | | |
1101 | | /* ---------------------------------------------------------------------- */ |
1102 | | |
1103 | | static int uhash_final(uhash_ctx_t ctx, u_char *res) |
1104 | | /* Incorporate any pending data, pad, and generate tag */ |
1105 | 225k | { |
1106 | 225k | UINT64 result_buf[STREAMS]; |
1107 | 225k | UINT8 *nh_result = (UINT8 *)&result_buf; |
1108 | | |
1109 | 225k | if (ctx->msg_len > L1_KEY_LEN) { |
1110 | 226 | if (ctx->msg_len % L1_KEY_LEN) { |
1111 | 221 | nh_final(&ctx->hash, nh_result); |
1112 | 221 | poly_hash(ctx,(UINT32 *)nh_result); |
1113 | 221 | } |
1114 | 226 | ip_long(ctx, res); |
1115 | 224k | } else { |
1116 | 224k | nh_final(&ctx->hash, nh_result); |
1117 | 224k | ip_short(ctx,nh_result, res); |
1118 | 224k | } |
1119 | 225k | uhash_reset(ctx); |
1120 | 225k | return (1); |
1121 | 225k | } Line | Count | Source | 1105 | 122k | { | 1106 | 122k | UINT64 result_buf[STREAMS]; | 1107 | 122k | UINT8 *nh_result = (UINT8 *)&result_buf; | 1108 | | | 1109 | 122k | if (ctx->msg_len > L1_KEY_LEN) { | 1110 | 103 | if (ctx->msg_len % L1_KEY_LEN) { | 1111 | 99 | nh_final(&ctx->hash, nh_result); | 1112 | 99 | poly_hash(ctx,(UINT32 *)nh_result); | 1113 | 99 | } | 1114 | 103 | ip_long(ctx, res); | 1115 | 122k | } else { | 1116 | 122k | nh_final(&ctx->hash, nh_result); | 1117 | 122k | ip_short(ctx,nh_result, res); | 1118 | 122k | } | 1119 | 122k | uhash_reset(ctx); | 1120 | 122k | return (1); | 1121 | 122k | } |
Line | Count | Source | 1105 | 102k | { | 1106 | 102k | UINT64 result_buf[STREAMS]; | 1107 | 102k | UINT8 *nh_result = (UINT8 *)&result_buf; | 1108 | | | 1109 | 102k | if (ctx->msg_len > L1_KEY_LEN) { | 1110 | 123 | if (ctx->msg_len % L1_KEY_LEN) { | 1111 | 122 | nh_final(&ctx->hash, nh_result); | 1112 | 122 | poly_hash(ctx,(UINT32 *)nh_result); | 1113 | 122 | } | 1114 | 123 | ip_long(ctx, res); | 1115 | 102k | } else { | 1116 | 102k | nh_final(&ctx->hash, nh_result); | 1117 | 102k | ip_short(ctx,nh_result, res); | 1118 | 102k | } | 1119 | 102k | uhash_reset(ctx); | 1120 | 102k | return (1); | 1121 | 102k | } |
|
1122 | | |
1123 | | /* ---------------------------------------------------------------------- */ |
1124 | | |
1125 | | #if 0 |
1126 | | static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res) |
1127 | | /* assumes that msg is in a writable buffer of length divisible by */ |
1128 | | /* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed. */ |
1129 | | { |
1130 | | UINT8 nh_result[STREAMS*sizeof(UINT64)]; |
1131 | | UINT32 nh_len; |
1132 | | int extra_zeroes_needed; |
1133 | | |
1134 | | /* If the message to be hashed is no longer than L1_HASH_LEN, we skip |
1135 | | * the polyhash. |
1136 | | */ |
1137 | | if (len <= L1_KEY_LEN) { |
1138 | | if (len == 0) /* If zero length messages will not */ |
1139 | | nh_len = L1_PAD_BOUNDARY; /* be seen, comment out this case */ |
1140 | | else |
1141 | | nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1)); |
1142 | | extra_zeroes_needed = nh_len - len; |
1143 | | zero_pad((UINT8 *)msg + len, extra_zeroes_needed); |
1144 | | nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result); |
1145 | | ip_short(ahc,nh_result, res); |
1146 | | } else { |
1147 | | /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH |
1148 | | * output to poly_hash(). |
1149 | | */ |
1150 | | do { |
1151 | | nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result); |
1152 | | poly_hash(ahc,(UINT32 *)nh_result); |
1153 | | len -= L1_KEY_LEN; |
1154 | | msg += L1_KEY_LEN; |
1155 | | } while (len >= L1_KEY_LEN); |
1156 | | if (len) { |
1157 | | nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1)); |
1158 | | extra_zeroes_needed = nh_len - len; |
1159 | | zero_pad((UINT8 *)msg + len, extra_zeroes_needed); |
1160 | | nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result); |
1161 | | poly_hash(ahc,(UINT32 *)nh_result); |
1162 | | } |
1163 | | |
1164 | | ip_long(ahc, res); |
1165 | | } |
1166 | | |
1167 | | uhash_reset(ahc); |
1168 | | return 1; |
1169 | | } |
1170 | | #endif |
1171 | | |
1172 | | /* ---------------------------------------------------------------------- */ |
1173 | | /* ---------------------------------------------------------------------- */ |
1174 | | /* ----- Begin UMAC Section --------------------------------------------- */ |
1175 | | /* ---------------------------------------------------------------------- */ |
1176 | | /* ---------------------------------------------------------------------- */ |
1177 | | |
1178 | | /* The UMAC interface has two interfaces, an all-at-once interface where |
1179 | | * the entire message to be authenticated is passed to UMAC in one buffer, |
1180 | | * and a sequential interface where the message is presented a little at a |
1181 | | * time. The all-at-once is more optimized than the sequential version and |
1182 | | * should be preferred when the sequential interface is not required. |
1183 | | */ |
1184 | | struct umac_ctx { |
1185 | | uhash_ctx hash; /* Hash function for message compression */ |
1186 | | pdf_ctx pdf; /* PDF for hashed output */ |
1187 | | void *free_ptr; /* Address to free this struct via */ |
1188 | | } umac_ctx; |
1189 | | |
1190 | | /* ---------------------------------------------------------------------- */ |
1191 | | |
1192 | | #if 0 |
1193 | | int umac_reset(struct umac_ctx *ctx) |
1194 | | /* Reset the hash function to begin a new authentication. */ |
1195 | | { |
1196 | | uhash_reset(&ctx->hash); |
1197 | | return (1); |
1198 | | } |
1199 | | #endif |
1200 | | |
1201 | | /* ---------------------------------------------------------------------- */ |
1202 | | |
1203 | | int umac_delete(struct umac_ctx *ctx) |
1204 | | /* Deallocate the ctx structure */ |
1205 | 914 | { |
1206 | 914 | if (ctx) { |
1207 | 914 | if (ALLOC_BOUNDARY) |
1208 | 914 | ctx = (struct umac_ctx *)ctx->free_ptr; |
1209 | 914 | freezero(ctx, sizeof(*ctx) + ALLOC_BOUNDARY); |
1210 | 914 | } |
1211 | 914 | return (1); |
1212 | 914 | } Line | Count | Source | 1205 | 413 | { | 1206 | 413 | if (ctx) { | 1207 | 413 | if (ALLOC_BOUNDARY) | 1208 | 413 | ctx = (struct umac_ctx *)ctx->free_ptr; | 1209 | 413 | freezero(ctx, sizeof(*ctx) + ALLOC_BOUNDARY); | 1210 | 413 | } | 1211 | 413 | return (1); | 1212 | 413 | } |
Line | Count | Source | 1205 | 501 | { | 1206 | 501 | if (ctx) { | 1207 | 501 | if (ALLOC_BOUNDARY) | 1208 | 501 | ctx = (struct umac_ctx *)ctx->free_ptr; | 1209 | 501 | freezero(ctx, sizeof(*ctx) + ALLOC_BOUNDARY); | 1210 | 501 | } | 1211 | 501 | return (1); | 1212 | 501 | } |
|
1213 | | |
1214 | | /* ---------------------------------------------------------------------- */ |
1215 | | |
1216 | | struct umac_ctx *umac_new(const u_char key[]) |
1217 | | /* Dynamically allocate a umac_ctx struct, initialize variables, |
1218 | | * generate subkeys from key. Align to 16-byte boundary. |
1219 | | */ |
1220 | 914 | { |
1221 | 914 | struct umac_ctx *ctx, *octx; |
1222 | 914 | size_t bytes_to_add; |
1223 | 914 | aes_int_key prf_key; |
1224 | | |
1225 | 914 | octx = ctx = xcalloc(1, sizeof(*ctx) + ALLOC_BOUNDARY); |
1226 | 914 | if (ctx) { |
1227 | 914 | if (ALLOC_BOUNDARY) { |
1228 | 914 | bytes_to_add = ALLOC_BOUNDARY - |
1229 | 914 | ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1)); |
1230 | 914 | ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add); |
1231 | 914 | } |
1232 | 914 | ctx->free_ptr = octx; |
1233 | 914 | aes_key_setup(key, prf_key); |
1234 | 914 | pdf_init(&ctx->pdf, prf_key); |
1235 | 914 | uhash_init(&ctx->hash, prf_key); |
1236 | 914 | explicit_bzero(prf_key, sizeof(prf_key)); |
1237 | 914 | } |
1238 | | |
1239 | 914 | return (ctx); |
1240 | 914 | } Line | Count | Source | 1220 | 413 | { | 1221 | 413 | struct umac_ctx *ctx, *octx; | 1222 | 413 | size_t bytes_to_add; | 1223 | 413 | aes_int_key prf_key; | 1224 | | | 1225 | 413 | octx = ctx = xcalloc(1, sizeof(*ctx) + ALLOC_BOUNDARY); | 1226 | 413 | if (ctx) { | 1227 | 413 | if (ALLOC_BOUNDARY) { | 1228 | 413 | bytes_to_add = ALLOC_BOUNDARY - | 1229 | 413 | ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1)); | 1230 | 413 | ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add); | 1231 | 413 | } | 1232 | 413 | ctx->free_ptr = octx; | 1233 | 413 | aes_key_setup(key, prf_key); | 1234 | 413 | pdf_init(&ctx->pdf, prf_key); | 1235 | 413 | uhash_init(&ctx->hash, prf_key); | 1236 | 413 | explicit_bzero(prf_key, sizeof(prf_key)); | 1237 | 413 | } | 1238 | | | 1239 | 413 | return (ctx); | 1240 | 413 | } |
Line | Count | Source | 1220 | 501 | { | 1221 | 501 | struct umac_ctx *ctx, *octx; | 1222 | 501 | size_t bytes_to_add; | 1223 | 501 | aes_int_key prf_key; | 1224 | | | 1225 | 501 | octx = ctx = xcalloc(1, sizeof(*ctx) + ALLOC_BOUNDARY); | 1226 | 501 | if (ctx) { | 1227 | 501 | if (ALLOC_BOUNDARY) { | 1228 | 501 | bytes_to_add = ALLOC_BOUNDARY - | 1229 | 501 | ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1)); | 1230 | 501 | ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add); | 1231 | 501 | } | 1232 | 501 | ctx->free_ptr = octx; | 1233 | 501 | aes_key_setup(key, prf_key); | 1234 | 501 | pdf_init(&ctx->pdf, prf_key); | 1235 | 501 | uhash_init(&ctx->hash, prf_key); | 1236 | 501 | explicit_bzero(prf_key, sizeof(prf_key)); | 1237 | 501 | } | 1238 | | | 1239 | 501 | return (ctx); | 1240 | 501 | } |
|
1241 | | |
1242 | | /* ---------------------------------------------------------------------- */ |
1243 | | |
1244 | | int umac_final(struct umac_ctx *ctx, u_char tag[], const u_char nonce[8]) |
1245 | | /* Incorporate any pending data, pad, and generate tag */ |
1246 | 225k | { |
1247 | 225k | uhash_final(&ctx->hash, (u_char *)tag); |
1248 | 225k | pdf_gen_xor(&ctx->pdf, (const UINT8 *)nonce, (UINT8 *)tag); |
1249 | | |
1250 | 225k | return (1); |
1251 | 225k | } Line | Count | Source | 1246 | 122k | { | 1247 | 122k | uhash_final(&ctx->hash, (u_char *)tag); | 1248 | 122k | pdf_gen_xor(&ctx->pdf, (const UINT8 *)nonce, (UINT8 *)tag); | 1249 | | | 1250 | 122k | return (1); | 1251 | 122k | } |
Line | Count | Source | 1246 | 102k | { | 1247 | 102k | uhash_final(&ctx->hash, (u_char *)tag); | 1248 | 102k | pdf_gen_xor(&ctx->pdf, (const UINT8 *)nonce, (UINT8 *)tag); | 1249 | | | 1250 | 102k | return (1); | 1251 | 102k | } |
|
1252 | | |
1253 | | /* ---------------------------------------------------------------------- */ |
1254 | | |
1255 | | int umac_update(struct umac_ctx *ctx, const u_char *input, long len) |
1256 | | /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and */ |
1257 | | /* hash each one, calling the PDF on the hashed output whenever the hash- */ |
1258 | | /* output buffer is full. */ |
1259 | 225k | { |
1260 | 225k | uhash_update(&ctx->hash, input, len); |
1261 | 225k | return (1); |
1262 | 225k | } Line | Count | Source | 1259 | 122k | { | 1260 | 122k | uhash_update(&ctx->hash, input, len); | 1261 | 122k | return (1); | 1262 | 122k | } |
Line | Count | Source | 1259 | 102k | { | 1260 | 102k | uhash_update(&ctx->hash, input, len); | 1261 | 102k | return (1); | 1262 | 102k | } |
|
1263 | | |
1264 | | /* ---------------------------------------------------------------------- */ |
1265 | | |
1266 | | #if 0 |
1267 | | int umac(struct umac_ctx *ctx, u_char *input, |
1268 | | long len, u_char tag[], |
1269 | | u_char nonce[8]) |
1270 | | /* All-in-one version simply calls umac_update() and umac_final(). */ |
1271 | | { |
1272 | | uhash(&ctx->hash, input, len, (u_char *)tag); |
1273 | | pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag); |
1274 | | |
1275 | | return (1); |
1276 | | } |
1277 | | #endif |
1278 | | |
1279 | | /* ---------------------------------------------------------------------- */ |
1280 | | /* ---------------------------------------------------------------------- */ |
1281 | | /* ----- End UMAC Section ----------------------------------------------- */ |
1282 | | /* ---------------------------------------------------------------------- */ |
1283 | | /* ---------------------------------------------------------------------- */ |