Coverage Report

Created: 2023-06-07 07:10

/src/openssh/openbsd-compat/sha2.c
Line
Count
Source (jump to first uncovered line)
1
/*  $OpenBSD: sha2.c,v 1.28 2019/07/23 12:35:22 dtucker Exp $ */
2
3
/*
4
 * FILE:  sha2.c
5
 * AUTHOR:  Aaron D. Gifford <me@aarongifford.com>
6
 * 
7
 * Copyright (c) 2000-2001, Aaron D. Gifford
8
 * All rights reserved.
9
 *
10
 * Redistribution and use in source and binary forms, with or without
11
 * modification, are permitted provided that the following conditions
12
 * are met:
13
 * 1. Redistributions of source code must retain the above copyright
14
 *    notice, this list of conditions and the following disclaimer.
15
 * 2. Redistributions in binary form must reproduce the above copyright
16
 *    notice, this list of conditions and the following disclaimer in the
17
 *    documentation and/or other materials provided with the distribution.
18
 * 3. Neither the name of the copyright holder nor the names of contributors
19
 *    may be used to endorse or promote products derived from this software
20
 *    without specific prior written permission.
21
 * 
22
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
23
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
26
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32
 * SUCH DAMAGE.
33
 *
34
 * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
35
 */
36
37
/* OPENBSD ORIGINAL: lib/libc/hash/sha2.c */
38
39
#include "includes.h"
40
41
#if !defined(HAVE_SHA256UPDATE) || !defined(HAVE_SHA384UPDATE) || \
42
    !defined(HAVE_SHA512UPDATE)
43
44
/* no-op out, similar to DEF_WEAK but only needed here */
45
#define MAKE_CLONE(x, y)  void __ssh_compat_make_clone_##x_##y(void)
46
47
#include <string.h>
48
#include "openbsd-compat/sha2.h"
49
50
/*
51
 * UNROLLED TRANSFORM LOOP NOTE:
52
 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
53
 * loop version for the hash transform rounds (defined using macros
54
 * later in this file).  Either define on the command line, for example:
55
 *
56
 *   cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
57
 *
58
 * or define below:
59
 *
60
 *   #define SHA2_UNROLL_TRANSFORM
61
 *
62
 */
63
#ifndef SHA2_SMALL
64
#if defined(__amd64__) || defined(__i386__)
65
#define SHA2_UNROLL_TRANSFORM
66
#endif
67
#endif
68
69
/*** SHA-224/256/384/512 Machine Architecture Definitions *****************/
70
/*
71
 * BYTE_ORDER NOTE:
72
 *
73
 * Please make sure that your system defines BYTE_ORDER.  If your
74
 * architecture is little-endian, make sure it also defines
75
 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
76
 * equivalent.
77
 *
78
 * If your system does not define the above, then you can do so by
79
 * hand like this:
80
 *
81
 *   #define LITTLE_ENDIAN 1234
82
 *   #define BIG_ENDIAN    4321
83
 *
84
 * And for little-endian machines, add:
85
 *
86
 *   #define BYTE_ORDER LITTLE_ENDIAN 
87
 *
88
 * Or for big-endian machines:
89
 *
90
 *   #define BYTE_ORDER BIG_ENDIAN
91
 *
92
 * The FreeBSD machine this was written on defines BYTE_ORDER
93
 * appropriately by including <sys/types.h> (which in turn includes
94
 * <machine/endian.h> where the appropriate definitions are actually
95
 * made).
96
 */
97
#if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
98
#error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
99
#endif
100
101
102
/*** SHA-224/256/384/512 Various Length Definitions ***********************/
103
/* NOTE: Most of these are in sha2.h */
104
#define SHA224_SHORT_BLOCK_LENGTH (SHA224_BLOCK_LENGTH - 8)
105
0
#define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
106
#define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
107
0
#define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
108
109
/*** ENDIAN SPECIFIC COPY MACROS **************************************/
110
0
#define BE_8_TO_32(dst, cp) do {         \
111
0
  (dst) = (u_int32_t)(cp)[3] | ((u_int32_t)(cp)[2] << 8) |  \
112
0
      ((u_int32_t)(cp)[1] << 16) | ((u_int32_t)(cp)[0] << 24);  \
113
0
} while(0)
114
115
0
#define BE_8_TO_64(dst, cp) do {         \
116
0
  (dst) = (u_int64_t)(cp)[7] | ((u_int64_t)(cp)[6] << 8) |  \
117
0
      ((u_int64_t)(cp)[5] << 16) | ((u_int64_t)(cp)[4] << 24) | \
118
0
      ((u_int64_t)(cp)[3] << 32) | ((u_int64_t)(cp)[2] << 40) | \
119
0
      ((u_int64_t)(cp)[1] << 48) | ((u_int64_t)(cp)[0] << 56);  \
120
0
} while (0)
121
122
0
#define BE_64_TO_8(cp, src) do {         \
123
0
  (cp)[0] = (src) >> 56;            \
124
0
        (cp)[1] = (src) >> 48;            \
125
0
  (cp)[2] = (src) >> 40;            \
126
0
  (cp)[3] = (src) >> 32;            \
127
0
  (cp)[4] = (src) >> 24;            \
128
0
  (cp)[5] = (src) >> 16;            \
129
0
  (cp)[6] = (src) >> 8;           \
130
0
  (cp)[7] = (src);            \
131
0
} while (0)
132
133
0
#define BE_32_TO_8(cp, src) do {         \
134
0
  (cp)[0] = (src) >> 24;            \
135
0
  (cp)[1] = (src) >> 16;            \
136
0
  (cp)[2] = (src) >> 8;           \
137
0
  (cp)[3] = (src);            \
138
0
} while (0)
139
140
/*
141
 * Macro for incrementally adding the unsigned 64-bit integer n to the
142
 * unsigned 128-bit integer (represented using a two-element array of
143
 * 64-bit words):
144
 */
145
0
#define ADDINC128(w,n) do {           \
146
0
  (w)[0] += (u_int64_t)(n);         \
147
0
  if ((w)[0] < (n)) {           \
148
0
    (w)[1]++;           \
149
0
  }                \
150
0
} while (0)
151
152
/*** THE SIX LOGICAL FUNCTIONS ****************************************/
153
/*
154
 * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
155
 *
156
 *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
157
 *   S is a ROTATION) because the SHA-224/256/384/512 description document
158
 *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
159
 *   same "backwards" definition.
160
 */
161
/* Shift-right (used in SHA-224, SHA-256, SHA-384, and SHA-512): */
162
0
#define R(b,x)    ((x) >> (b))
163
/* 32-bit Rotate-right (used in SHA-224 and SHA-256): */
164
0
#define S32(b,x)  (((x) >> (b)) | ((x) << (32 - (b))))
165
/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
166
0
#define S64(b,x)  (((x) >> (b)) | ((x) << (64 - (b))))
167
168
/* Two of six logical functions used in SHA-224, SHA-256, SHA-384, and SHA-512: */
169
0
#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
170
0
#define Maj(x,y,z)  (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
171
172
/* Four of six logical functions used in SHA-224 and SHA-256: */
173
0
#define Sigma0_256(x) (S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
174
0
#define Sigma1_256(x) (S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
175
0
#define sigma0_256(x) (S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
176
0
#define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))
177
178
/* Four of six logical functions used in SHA-384 and SHA-512: */
179
0
#define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
180
0
#define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
181
0
#define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
182
0
#define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))
183
184
185
/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
186
/* Hash constant words K for SHA-224 and SHA-256: */
187
static const u_int32_t K256[64] = {
188
  0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
189
  0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
190
  0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
191
  0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
192
  0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
193
  0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
194
  0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
195
  0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
196
  0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
197
  0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
198
  0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
199
  0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
200
  0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
201
  0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
202
  0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
203
  0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
204
};
205
206
/* Initial hash value H for SHA-256: */
207
static const u_int32_t sha256_initial_hash_value[8] = {
208
  0x6a09e667UL,
209
  0xbb67ae85UL,
210
  0x3c6ef372UL,
211
  0xa54ff53aUL,
212
  0x510e527fUL,
213
  0x9b05688cUL,
214
  0x1f83d9abUL,
215
  0x5be0cd19UL
216
};
217
218
/* Hash constant words K for SHA-384 and SHA-512: */
219
static const u_int64_t K512[80] = {
220
  0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
221
  0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
222
  0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
223
  0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
224
  0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
225
  0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
226
  0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
227
  0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
228
  0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
229
  0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
230
  0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
231
  0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
232
  0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
233
  0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
234
  0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
235
  0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
236
  0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
237
  0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
238
  0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
239
  0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
240
  0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
241
  0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
242
  0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
243
  0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
244
  0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
245
  0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
246
  0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
247
  0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
248
  0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
249
  0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
250
  0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
251
  0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
252
  0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
253
  0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
254
  0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
255
  0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
256
  0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
257
  0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
258
  0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
259
  0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
260
};
261
262
/* Initial hash value H for SHA-512 */
263
static const u_int64_t sha512_initial_hash_value[8] = {
264
  0x6a09e667f3bcc908ULL,
265
  0xbb67ae8584caa73bULL,
266
  0x3c6ef372fe94f82bULL,
267
  0xa54ff53a5f1d36f1ULL,
268
  0x510e527fade682d1ULL,
269
  0x9b05688c2b3e6c1fULL,
270
  0x1f83d9abfb41bd6bULL,
271
  0x5be0cd19137e2179ULL
272
};
273
274
#if !defined(SHA2_SMALL)
275
#if 0
276
/* Initial hash value H for SHA-224: */
277
static const u_int32_t sha224_initial_hash_value[8] = {
278
  0xc1059ed8UL,
279
  0x367cd507UL,
280
  0x3070dd17UL,
281
  0xf70e5939UL,
282
  0xffc00b31UL,
283
  0x68581511UL,
284
  0x64f98fa7UL,
285
  0xbefa4fa4UL
286
};
287
#endif /* 0 */
288
289
/* Initial hash value H for SHA-384 */
290
static const u_int64_t sha384_initial_hash_value[8] = {
291
  0xcbbb9d5dc1059ed8ULL,
292
  0x629a292a367cd507ULL,
293
  0x9159015a3070dd17ULL,
294
  0x152fecd8f70e5939ULL,
295
  0x67332667ffc00b31ULL,
296
  0x8eb44a8768581511ULL,
297
  0xdb0c2e0d64f98fa7ULL,
298
  0x47b5481dbefa4fa4ULL
299
};
300
301
#if 0
302
/* Initial hash value H for SHA-512-256 */
303
static const u_int64_t sha512_256_initial_hash_value[8] = {
304
  0x22312194fc2bf72cULL,
305
  0x9f555fa3c84c64c2ULL,
306
  0x2393b86b6f53b151ULL,
307
  0x963877195940eabdULL,
308
  0x96283ee2a88effe3ULL,
309
  0xbe5e1e2553863992ULL,
310
  0x2b0199fc2c85b8aaULL,
311
  0x0eb72ddc81c52ca2ULL
312
};
313
314
/*** SHA-224: *********************************************************/
315
void
316
SHA224Init(SHA2_CTX *context)
317
{
318
  memcpy(context->state.st32, sha224_initial_hash_value,
319
      sizeof(sha224_initial_hash_value));
320
  memset(context->buffer, 0, sizeof(context->buffer));
321
  context->bitcount[0] = 0;
322
}
323
DEF_WEAK(SHA224Init);
324
325
MAKE_CLONE(SHA224Transform, SHA256Transform);
326
MAKE_CLONE(SHA224Update, SHA256Update);
327
MAKE_CLONE(SHA224Pad, SHA256Pad);
328
DEF_WEAK(SHA224Transform);
329
DEF_WEAK(SHA224Update);
330
DEF_WEAK(SHA224Pad);
331
332
void
333
SHA224Final(u_int8_t digest[SHA224_DIGEST_LENGTH], SHA2_CTX *context)
334
{
335
  SHA224Pad(context);
336
337
#if BYTE_ORDER == LITTLE_ENDIAN
338
  int i;
339
340
  /* Convert TO host byte order */
341
  for (i = 0; i < 7; i++)
342
    BE_32_TO_8(digest + i * 4, context->state.st32[i]);
343
#else
344
  memcpy(digest, context->state.st32, SHA224_DIGEST_LENGTH);
345
#endif
346
  explicit_bzero(context, sizeof(*context));
347
}
348
DEF_WEAK(SHA224Final);
349
#endif /* !defined(SHA2_SMALL) */
350
#endif /* 0 */
351
352
/*** SHA-256: *********************************************************/
353
void
354
SHA256Init(SHA2_CTX *context)
355
0
{
356
0
  memcpy(context->state.st32, sha256_initial_hash_value,
357
0
      sizeof(sha256_initial_hash_value));
358
0
  memset(context->buffer, 0, sizeof(context->buffer));
359
0
  context->bitcount[0] = 0;
360
0
}
361
DEF_WEAK(SHA256Init);
362
363
#ifdef SHA2_UNROLL_TRANSFORM
364
365
/* Unrolled SHA-256 round macros: */
366
367
0
#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do {           \
368
0
  BE_8_TO_32(W256[j], data);              \
369
0
  data += 4;                  \
370
0
  T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \
371
0
  (d) += T1;                  \
372
0
  (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c));        \
373
0
  j++;                    \
374
0
} while(0)
375
376
0
#define ROUND256(a,b,c,d,e,f,g,h) do {             \
377
0
  s0 = W256[(j+1)&0x0f];                \
378
0
  s0 = sigma0_256(s0);               \
379
0
  s1 = W256[(j+14)&0x0f];               \
380
0
  s1 = sigma1_256(s1);               \
381
0
  T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] +     \
382
0
       (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);        \
383
0
  (d) += T1;                  \
384
0
  (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c));        \
385
0
  j++;                    \
386
0
} while(0)
387
388
void
389
SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH])
390
0
{
391
0
  u_int32_t a, b, c, d, e, f, g, h, s0, s1;
392
0
  u_int32_t T1, W256[16];
393
0
  int   j;
394
395
  /* Initialize registers with the prev. intermediate value */
396
0
  a = state[0];
397
0
  b = state[1];
398
0
  c = state[2];
399
0
  d = state[3];
400
0
  e = state[4];
401
0
  f = state[5];
402
0
  g = state[6];
403
0
  h = state[7];
404
405
0
  j = 0;
406
0
  do {
407
    /* Rounds 0 to 15 (unrolled): */
408
0
    ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
409
0
    ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
410
0
    ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
411
0
    ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
412
0
    ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
413
0
    ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
414
0
    ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
415
0
    ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
416
0
  } while (j < 16);
417
418
  /* Now for the remaining rounds up to 63: */
419
0
  do {
420
0
    ROUND256(a,b,c,d,e,f,g,h);
421
0
    ROUND256(h,a,b,c,d,e,f,g);
422
0
    ROUND256(g,h,a,b,c,d,e,f);
423
0
    ROUND256(f,g,h,a,b,c,d,e);
424
0
    ROUND256(e,f,g,h,a,b,c,d);
425
0
    ROUND256(d,e,f,g,h,a,b,c);
426
0
    ROUND256(c,d,e,f,g,h,a,b);
427
0
    ROUND256(b,c,d,e,f,g,h,a);
428
0
  } while (j < 64);
429
430
  /* Compute the current intermediate hash value */
431
0
  state[0] += a;
432
0
  state[1] += b;
433
0
  state[2] += c;
434
0
  state[3] += d;
435
0
  state[4] += e;
436
0
  state[5] += f;
437
0
  state[6] += g;
438
0
  state[7] += h;
439
440
  /* Clean up */
441
0
  a = b = c = d = e = f = g = h = T1 = 0;
442
0
}
443
444
#else /* SHA2_UNROLL_TRANSFORM */
445
446
void
447
SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH])
448
{
449
  u_int32_t a, b, c, d, e, f, g, h, s0, s1;
450
  u_int32_t T1, T2, W256[16];
451
  int   j;
452
453
  /* Initialize registers with the prev. intermediate value */
454
  a = state[0];
455
  b = state[1];
456
  c = state[2];
457
  d = state[3];
458
  e = state[4];
459
  f = state[5];
460
  g = state[6];
461
  h = state[7];
462
463
  j = 0;
464
  do {
465
    BE_8_TO_32(W256[j], data);
466
    data += 4;
467
    /* Apply the SHA-256 compression function to update a..h */
468
    T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
469
    T2 = Sigma0_256(a) + Maj(a, b, c);
470
    h = g;
471
    g = f;
472
    f = e;
473
    e = d + T1;
474
    d = c;
475
    c = b;
476
    b = a;
477
    a = T1 + T2;
478
479
    j++;
480
  } while (j < 16);
481
482
  do {
483
    /* Part of the message block expansion: */
484
    s0 = W256[(j+1)&0x0f];
485
    s0 = sigma0_256(s0);
486
    s1 = W256[(j+14)&0x0f]; 
487
    s1 = sigma1_256(s1);
488
489
    /* Apply the SHA-256 compression function to update a..h */
490
    T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + 
491
         (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
492
    T2 = Sigma0_256(a) + Maj(a, b, c);
493
    h = g;
494
    g = f;
495
    f = e;
496
    e = d + T1;
497
    d = c;
498
    c = b;
499
    b = a;
500
    a = T1 + T2;
501
502
    j++;
503
  } while (j < 64);
504
505
  /* Compute the current intermediate hash value */
506
  state[0] += a;
507
  state[1] += b;
508
  state[2] += c;
509
  state[3] += d;
510
  state[4] += e;
511
  state[5] += f;
512
  state[6] += g;
513
  state[7] += h;
514
515
  /* Clean up */
516
  a = b = c = d = e = f = g = h = T1 = T2 = 0;
517
}
518
519
#endif /* SHA2_UNROLL_TRANSFORM */
520
DEF_WEAK(SHA256Transform);
521
522
void
523
SHA256Update(SHA2_CTX *context, const u_int8_t *data, size_t len)
524
0
{
525
0
  u_int64_t freespace, usedspace;
526
527
  /* Calling with no data is valid (we do nothing) */
528
0
  if (len == 0)
529
0
    return;
530
531
0
  usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH;
532
0
  if (usedspace > 0) {
533
    /* Calculate how much free space is available in the buffer */
534
0
    freespace = SHA256_BLOCK_LENGTH - usedspace;
535
536
0
    if (len >= freespace) {
537
      /* Fill the buffer completely and process it */
538
0
      memcpy(&context->buffer[usedspace], data, freespace);
539
0
      context->bitcount[0] += freespace << 3;
540
0
      len -= freespace;
541
0
      data += freespace;
542
0
      SHA256Transform(context->state.st32, context->buffer);
543
0
    } else {
544
      /* The buffer is not yet full */
545
0
      memcpy(&context->buffer[usedspace], data, len);
546
0
      context->bitcount[0] += (u_int64_t)len << 3;
547
      /* Clean up: */
548
0
      usedspace = freespace = 0;
549
0
      return;
550
0
    }
551
0
  }
552
0
  while (len >= SHA256_BLOCK_LENGTH) {
553
    /* Process as many complete blocks as we can */
554
0
    SHA256Transform(context->state.st32, data);
555
0
    context->bitcount[0] += SHA256_BLOCK_LENGTH << 3;
556
0
    len -= SHA256_BLOCK_LENGTH;
557
0
    data += SHA256_BLOCK_LENGTH;
558
0
  }
559
0
  if (len > 0) {
560
    /* There's left-overs, so save 'em */
561
0
    memcpy(context->buffer, data, len);
562
0
    context->bitcount[0] += len << 3;
563
0
  }
564
  /* Clean up: */
565
0
  usedspace = freespace = 0;
566
0
}
567
DEF_WEAK(SHA256Update);
568
569
void
570
SHA256Pad(SHA2_CTX *context)
571
0
{
572
0
  unsigned int  usedspace;
573
574
0
  usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH;
575
0
  if (usedspace > 0) {
576
    /* Begin padding with a 1 bit: */
577
0
    context->buffer[usedspace++] = 0x80;
578
579
0
    if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
580
      /* Set-up for the last transform: */
581
0
      memset(&context->buffer[usedspace], 0,
582
0
          SHA256_SHORT_BLOCK_LENGTH - usedspace);
583
0
    } else {
584
0
      if (usedspace < SHA256_BLOCK_LENGTH) {
585
0
        memset(&context->buffer[usedspace], 0,
586
0
            SHA256_BLOCK_LENGTH - usedspace);
587
0
      }
588
      /* Do second-to-last transform: */
589
0
      SHA256Transform(context->state.st32, context->buffer);
590
591
      /* Prepare for last transform: */
592
0
      memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
593
0
    }
594
0
  } else {
595
    /* Set-up for the last transform: */
596
0
    memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
597
598
    /* Begin padding with a 1 bit: */
599
0
    *context->buffer = 0x80;
600
0
  }
601
  /* Store the length of input data (in bits) in big endian format: */
602
0
  BE_64_TO_8(&context->buffer[SHA256_SHORT_BLOCK_LENGTH],
603
0
      context->bitcount[0]);
604
605
  /* Final transform: */
606
0
  SHA256Transform(context->state.st32, context->buffer);
607
608
  /* Clean up: */
609
0
  usedspace = 0;
610
0
}
611
DEF_WEAK(SHA256Pad);
612
613
void
614
SHA256Final(u_int8_t digest[SHA256_DIGEST_LENGTH], SHA2_CTX *context)
615
0
{
616
0
  SHA256Pad(context);
617
618
0
#if BYTE_ORDER == LITTLE_ENDIAN
619
0
  int i;
620
621
  /* Convert TO host byte order */
622
0
  for (i = 0; i < 8; i++)
623
0
    BE_32_TO_8(digest + i * 4, context->state.st32[i]);
624
#else
625
  memcpy(digest, context->state.st32, SHA256_DIGEST_LENGTH);
626
#endif
627
0
  explicit_bzero(context, sizeof(*context));
628
0
}
629
DEF_WEAK(SHA256Final);
630
631
632
/*** SHA-512: *********************************************************/
633
void
634
SHA512Init(SHA2_CTX *context)
635
0
{
636
0
  memcpy(context->state.st64, sha512_initial_hash_value,
637
0
      sizeof(sha512_initial_hash_value));
638
0
  memset(context->buffer, 0, sizeof(context->buffer));
639
0
  context->bitcount[0] = context->bitcount[1] =  0;
640
0
}
641
DEF_WEAK(SHA512Init);
642
643
#ifdef SHA2_UNROLL_TRANSFORM
644
645
/* Unrolled SHA-512 round macros: */
646
647
0
#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do {           \
648
0
  BE_8_TO_64(W512[j], data);              \
649
0
  data += 8;                  \
650
0
  T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \
651
0
  (d) += T1;                  \
652
0
  (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c));        \
653
0
  j++;                    \
654
0
} while(0)
655
656
657
0
#define ROUND512(a,b,c,d,e,f,g,h) do {             \
658
0
  s0 = W512[(j+1)&0x0f];                \
659
0
  s0 = sigma0_512(s0);               \
660
0
  s1 = W512[(j+14)&0x0f];               \
661
0
  s1 = sigma1_512(s1);               \
662
0
  T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] +     \
663
0
             (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);        \
664
0
  (d) += T1;                  \
665
0
  (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c));        \
666
0
  j++;                    \
667
0
} while(0)
668
669
void
670
SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
671
0
{
672
0
  u_int64_t a, b, c, d, e, f, g, h, s0, s1;
673
0
  u_int64_t T1, W512[16];
674
0
  int   j;
675
676
  /* Initialize registers with the prev. intermediate value */
677
0
  a = state[0];
678
0
  b = state[1];
679
0
  c = state[2];
680
0
  d = state[3];
681
0
  e = state[4];
682
0
  f = state[5];
683
0
  g = state[6];
684
0
  h = state[7];
685
686
0
  j = 0;
687
0
  do {
688
    /* Rounds 0 to 15 (unrolled): */
689
0
    ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
690
0
    ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
691
0
    ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
692
0
    ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
693
0
    ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
694
0
    ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
695
0
    ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
696
0
    ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
697
0
  } while (j < 16);
698
699
  /* Now for the remaining rounds up to 79: */
700
0
  do {
701
0
    ROUND512(a,b,c,d,e,f,g,h);
702
0
    ROUND512(h,a,b,c,d,e,f,g);
703
0
    ROUND512(g,h,a,b,c,d,e,f);
704
0
    ROUND512(f,g,h,a,b,c,d,e);
705
0
    ROUND512(e,f,g,h,a,b,c,d);
706
0
    ROUND512(d,e,f,g,h,a,b,c);
707
0
    ROUND512(c,d,e,f,g,h,a,b);
708
0
    ROUND512(b,c,d,e,f,g,h,a);
709
0
  } while (j < 80);
710
711
  /* Compute the current intermediate hash value */
712
0
  state[0] += a;
713
0
  state[1] += b;
714
0
  state[2] += c;
715
0
  state[3] += d;
716
0
  state[4] += e;
717
0
  state[5] += f;
718
0
  state[6] += g;
719
0
  state[7] += h;
720
721
  /* Clean up */
722
0
  a = b = c = d = e = f = g = h = T1 = 0;
723
0
}
724
725
#else /* SHA2_UNROLL_TRANSFORM */
726
727
void
728
SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
729
{
730
  u_int64_t a, b, c, d, e, f, g, h, s0, s1;
731
  u_int64_t T1, T2, W512[16];
732
  int   j;
733
734
  /* Initialize registers with the prev. intermediate value */
735
  a = state[0];
736
  b = state[1];
737
  c = state[2];
738
  d = state[3];
739
  e = state[4];
740
  f = state[5];
741
  g = state[6];
742
  h = state[7];
743
744
  j = 0;
745
  do {
746
    BE_8_TO_64(W512[j], data);
747
    data += 8;
748
    /* Apply the SHA-512 compression function to update a..h */
749
    T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
750
    T2 = Sigma0_512(a) + Maj(a, b, c);
751
    h = g;
752
    g = f;
753
    f = e;
754
    e = d + T1;
755
    d = c;
756
    c = b;
757
    b = a;
758
    a = T1 + T2;
759
760
    j++;
761
  } while (j < 16);
762
763
  do {
764
    /* Part of the message block expansion: */
765
    s0 = W512[(j+1)&0x0f];
766
    s0 = sigma0_512(s0);
767
    s1 = W512[(j+14)&0x0f];
768
    s1 =  sigma1_512(s1);
769
770
    /* Apply the SHA-512 compression function to update a..h */
771
    T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
772
         (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
773
    T2 = Sigma0_512(a) + Maj(a, b, c);
774
    h = g;
775
    g = f;
776
    f = e;
777
    e = d + T1;
778
    d = c;
779
    c = b;
780
    b = a;
781
    a = T1 + T2;
782
783
    j++;
784
  } while (j < 80);
785
786
  /* Compute the current intermediate hash value */
787
  state[0] += a;
788
  state[1] += b;
789
  state[2] += c;
790
  state[3] += d;
791
  state[4] += e;
792
  state[5] += f;
793
  state[6] += g;
794
  state[7] += h;
795
796
  /* Clean up */
797
  a = b = c = d = e = f = g = h = T1 = T2 = 0;
798
}
799
800
#endif /* SHA2_UNROLL_TRANSFORM */
801
DEF_WEAK(SHA512Transform);
802
803
void
804
SHA512Update(SHA2_CTX *context, const u_int8_t *data, size_t len)
805
0
{
806
0
  size_t  freespace, usedspace;
807
808
  /* Calling with no data is valid (we do nothing) */
809
0
  if (len == 0)
810
0
    return;
811
812
0
  usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
813
0
  if (usedspace > 0) {
814
    /* Calculate how much free space is available in the buffer */
815
0
    freespace = SHA512_BLOCK_LENGTH - usedspace;
816
817
0
    if (len >= freespace) {
818
      /* Fill the buffer completely and process it */
819
0
      memcpy(&context->buffer[usedspace], data, freespace);
820
0
      ADDINC128(context->bitcount, freespace << 3);
821
0
      len -= freespace;
822
0
      data += freespace;
823
0
      SHA512Transform(context->state.st64, context->buffer);
824
0
    } else {
825
      /* The buffer is not yet full */
826
0
      memcpy(&context->buffer[usedspace], data, len);
827
0
      ADDINC128(context->bitcount, len << 3);
828
      /* Clean up: */
829
0
      usedspace = freespace = 0;
830
0
      return;
831
0
    }
832
0
  }
833
0
  while (len >= SHA512_BLOCK_LENGTH) {
834
    /* Process as many complete blocks as we can */
835
0
    SHA512Transform(context->state.st64, data);
836
0
    ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
837
0
    len -= SHA512_BLOCK_LENGTH;
838
0
    data += SHA512_BLOCK_LENGTH;
839
0
  }
840
0
  if (len > 0) {
841
    /* There's left-overs, so save 'em */
842
0
    memcpy(context->buffer, data, len);
843
0
    ADDINC128(context->bitcount, len << 3);
844
0
  }
845
  /* Clean up: */
846
0
  usedspace = freespace = 0;
847
0
}
848
DEF_WEAK(SHA512Update);
849
850
void
851
SHA512Pad(SHA2_CTX *context)
852
0
{
853
0
  unsigned int  usedspace;
854
855
0
  usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
856
0
  if (usedspace > 0) {
857
    /* Begin padding with a 1 bit: */
858
0
    context->buffer[usedspace++] = 0x80;
859
860
0
    if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
861
      /* Set-up for the last transform: */
862
0
      memset(&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH - usedspace);
863
0
    } else {
864
0
      if (usedspace < SHA512_BLOCK_LENGTH) {
865
0
        memset(&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH - usedspace);
866
0
      }
867
      /* Do second-to-last transform: */
868
0
      SHA512Transform(context->state.st64, context->buffer);
869
870
      /* And set-up for the last transform: */
871
0
      memset(context->buffer, 0, SHA512_BLOCK_LENGTH - 2);
872
0
    }
873
0
  } else {
874
    /* Prepare for final transform: */
875
0
    memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH);
876
877
    /* Begin padding with a 1 bit: */
878
0
    *context->buffer = 0x80;
879
0
  }
880
  /* Store the length of input data (in bits) in big endian format: */
881
0
  BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH],
882
0
      context->bitcount[1]);
883
0
  BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8],
884
0
      context->bitcount[0]);
885
886
  /* Final transform: */
887
0
  SHA512Transform(context->state.st64, context->buffer);
888
889
  /* Clean up: */
890
0
  usedspace = 0;
891
0
}
892
DEF_WEAK(SHA512Pad);
893
894
void
895
SHA512Final(u_int8_t digest[SHA512_DIGEST_LENGTH], SHA2_CTX *context)
896
0
{
897
0
  SHA512Pad(context);
898
899
0
#if BYTE_ORDER == LITTLE_ENDIAN
900
0
  int i;
901
902
  /* Convert TO host byte order */
903
0
  for (i = 0; i < 8; i++)
904
0
    BE_64_TO_8(digest + i * 8, context->state.st64[i]);
905
#else
906
  memcpy(digest, context->state.st64, SHA512_DIGEST_LENGTH);
907
#endif
908
0
  explicit_bzero(context, sizeof(*context));
909
0
}
910
DEF_WEAK(SHA512Final);
911
912
#if !defined(SHA2_SMALL)
913
914
/*** SHA-384: *********************************************************/
915
void
916
SHA384Init(SHA2_CTX *context)
917
0
{
918
0
  memcpy(context->state.st64, sha384_initial_hash_value,
919
0
      sizeof(sha384_initial_hash_value));
920
0
  memset(context->buffer, 0, sizeof(context->buffer));
921
0
  context->bitcount[0] = context->bitcount[1] = 0;
922
0
}
923
DEF_WEAK(SHA384Init);
924
925
MAKE_CLONE(SHA384Transform, SHA512Transform);
926
MAKE_CLONE(SHA384Update, SHA512Update);
927
MAKE_CLONE(SHA384Pad, SHA512Pad);
928
DEF_WEAK(SHA384Transform);
929
DEF_WEAK(SHA384Update);
930
DEF_WEAK(SHA384Pad);
931
932
/* Equivalent of MAKE_CLONE (which is a no-op) for SHA384 funcs */
933
void
934
SHA384Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
935
0
{
936
0
  SHA512Transform(state, data);
937
0
}
938
939
void
940
SHA384Update(SHA2_CTX *context, const u_int8_t *data, size_t len)
941
0
{
942
0
  SHA512Update(context, data, len);
943
0
}
944
945
void
946
SHA384Pad(SHA2_CTX *context)
947
0
{
948
0
  SHA512Pad(context);
949
0
}
950
951
void
952
SHA384Final(u_int8_t digest[SHA384_DIGEST_LENGTH], SHA2_CTX *context)
953
0
{
954
0
  SHA384Pad(context);
955
956
0
#if BYTE_ORDER == LITTLE_ENDIAN
957
0
  int i;
958
959
  /* Convert TO host byte order */
960
0
  for (i = 0; i < 6; i++)
961
0
    BE_64_TO_8(digest + i * 8, context->state.st64[i]);
962
#else
963
  memcpy(digest, context->state.st64, SHA384_DIGEST_LENGTH);
964
#endif
965
  /* Zero out state data */
966
0
  explicit_bzero(context, sizeof(*context));
967
0
}
968
DEF_WEAK(SHA384Final);
969
970
#if 0
971
/*** SHA-512/256: *********************************************************/
972
void
973
SHA512_256Init(SHA2_CTX *context)
974
{
975
  memcpy(context->state.st64, sha512_256_initial_hash_value,
976
      sizeof(sha512_256_initial_hash_value));
977
  memset(context->buffer, 0, sizeof(context->buffer));
978
  context->bitcount[0] = context->bitcount[1] = 0;
979
}
980
DEF_WEAK(SHA512_256Init);
981
982
MAKE_CLONE(SHA512_256Transform, SHA512Transform);
983
MAKE_CLONE(SHA512_256Update, SHA512Update);
984
MAKE_CLONE(SHA512_256Pad, SHA512Pad);
985
DEF_WEAK(SHA512_256Transform);
986
DEF_WEAK(SHA512_256Update);
987
DEF_WEAK(SHA512_256Pad);
988
989
void
990
SHA512_256Final(u_int8_t digest[SHA512_256_DIGEST_LENGTH], SHA2_CTX *context)
991
{
992
  SHA512_256Pad(context);
993
994
#if BYTE_ORDER == LITTLE_ENDIAN
995
  int i;
996
997
  /* Convert TO host byte order */
998
  for (i = 0; i < 4; i++)
999
    BE_64_TO_8(digest + i * 8, context->state.st64[i]);
1000
#else
1001
  memcpy(digest, context->state.st64, SHA512_256_DIGEST_LENGTH);
1002
#endif
1003
  /* Zero out state data */
1004
  explicit_bzero(context, sizeof(*context));
1005
}
1006
DEF_WEAK(SHA512_256Final);
1007
#endif /* !defined(SHA2_SMALL) */
1008
#endif /* 0 */
1009
1010
#endif /* HAVE_SHA{256,384,512}UPDATE */