Line | Count | Source (jump to first uncovered line) |
1 | | /* $OpenBSD: umac.c,v 1.26 2025/05/24 02:33:33 dtucker Exp $ */ |
2 | | /* ----------------------------------------------------------------------- |
3 | | * |
4 | | * umac.c -- C Implementation UMAC Message Authentication |
5 | | * |
6 | | * Version 0.93b of rfc4418.txt -- 2006 July 18 |
7 | | * |
8 | | * For a full description of UMAC message authentication see the UMAC |
9 | | * world-wide-web page at https://fastcrypto.org/umac/ |
10 | | * Please report bugs and suggestions to the UMAC webpage. |
11 | | * |
12 | | * Copyright (c) 1999-2006 Ted Krovetz |
13 | | * |
14 | | * Permission to use, copy, modify, and distribute this software and |
15 | | * its documentation for any purpose and with or without fee, is hereby |
16 | | * granted provided that the above copyright notice appears in all copies |
17 | | * and in supporting documentation, and that the name of the copyright |
18 | | * holder not be used in advertising or publicity pertaining to |
19 | | * distribution of the software without specific, written prior permission. |
20 | | * |
21 | | * Comments should be directed to Ted Krovetz (tdk@acm.org) |
22 | | * |
23 | | * ---------------------------------------------------------------------- */ |
24 | | |
25 | | /* ////////////////////// IMPORTANT NOTES ///////////////////////////////// |
26 | | * |
27 | | * 1) This version does not work properly on messages larger than 16MB |
28 | | * |
29 | | * 2) If you set the switch to use SSE2, then all data must be 16-byte |
30 | | * aligned |
31 | | * |
32 | | * 3) When calling the function umac(), it is assumed that msg is in |
33 | | * a writable buffer of length divisible by 32 bytes. The message itself |
34 | | * does not have to fill the entire buffer, but bytes beyond msg may be |
35 | | * zeroed. |
36 | | * |
37 | | * 4) Three free AES implementations are supported by this implementation of |
38 | | * UMAC. Paulo Barreto's version is in the public domain and can be found |
39 | | * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for |
40 | | * "Barreto"). The only two files needed are rijndael-alg-fst.c and |
41 | | * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU |
42 | | * Public license at http://fp.gladman.plus.com/AES/index.htm. It |
43 | | * includes a fast IA-32 assembly version. The OpenSSL crypo library is |
44 | | * the third. |
45 | | * |
46 | | * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes |
47 | | * produced under gcc with optimizations set -O3 or higher. Dunno why. |
48 | | * |
49 | | /////////////////////////////////////////////////////////////////////// */ |
50 | | |
51 | | /* ---------------------------------------------------------------------- */ |
52 | | /* --- User Switches ---------------------------------------------------- */ |
53 | | /* ---------------------------------------------------------------------- */ |
54 | | |
55 | | #ifndef UMAC_OUTPUT_LEN |
56 | 19.8k | #define UMAC_OUTPUT_LEN 8 /* Alowable: 4, 8, 12, 16 */ |
57 | | #endif |
58 | | |
59 | | #if UMAC_OUTPUT_LEN != 4 && UMAC_OUTPUT_LEN != 8 && \ |
60 | | UMAC_OUTPUT_LEN != 12 && UMAC_OUTPUT_LEN != 16 |
61 | | # error UMAC_OUTPUT_LEN must be defined to 4, 8, 12 or 16 |
62 | | #endif |
63 | | |
64 | | /* #define FORCE_C_ONLY 1 ANSI C and 64-bit integers req'd */ |
65 | | /* #define AES_IMPLEMENTAION 1 1 = OpenSSL, 2 = Barreto, 3 = Gladman */ |
66 | | /* #define SSE2 0 Is SSE2 is available? */ |
67 | | /* #define RUN_TESTS 0 Run basic correctness/speed tests */ |
68 | | /* #define UMAC_AE_SUPPORT 0 Enable authenticated encryption */ |
69 | | |
70 | | /* ---------------------------------------------------------------------- */ |
71 | | /* -- Global Includes --------------------------------------------------- */ |
72 | | /* ---------------------------------------------------------------------- */ |
73 | | |
74 | | #include "includes.h" |
75 | | #include <sys/types.h> |
76 | | #include <string.h> |
77 | | #include <stdarg.h> |
78 | | #include <stdio.h> |
79 | | #ifdef HAVE_STDINT_H |
80 | | #include <stdint.h> |
81 | | #endif |
82 | | #include <stdlib.h> |
83 | | #include <stddef.h> |
84 | | |
85 | | #include "xmalloc.h" |
86 | | #include "umac.h" |
87 | | #include "misc.h" |
88 | | |
89 | | /* ---------------------------------------------------------------------- */ |
90 | | /* --- Primitive Data Types --- */ |
91 | | /* ---------------------------------------------------------------------- */ |
92 | | |
93 | | /* The following assumptions may need change on your system */ |
94 | | typedef u_int8_t UINT8; /* 1 byte */ |
95 | | typedef u_int16_t UINT16; /* 2 byte */ |
96 | | typedef u_int32_t UINT32; /* 4 byte */ |
97 | | typedef u_int64_t UINT64; /* 8 bytes */ |
98 | | typedef unsigned int UWORD; /* Register */ |
99 | | |
100 | | /* ---------------------------------------------------------------------- */ |
101 | | /* --- Constants -------------------------------------------------------- */ |
102 | | /* ---------------------------------------------------------------------- */ |
103 | | |
104 | 2.34k | #define UMAC_KEY_LEN 16 /* UMAC takes 16 bytes of external key */ |
105 | | |
106 | | /* Message "words" are read from memory in an endian-specific manner. */ |
107 | | /* For this implementation to behave correctly, __LITTLE_ENDIAN__ must */ |
108 | | /* be set true if the host computer is little-endian. */ |
109 | | |
110 | | #if BYTE_ORDER == LITTLE_ENDIAN |
111 | | #define __LITTLE_ENDIAN__ 1 |
112 | | #else |
113 | | #define __LITTLE_ENDIAN__ 0 |
114 | | #endif |
115 | | |
116 | | /* ---------------------------------------------------------------------- */ |
117 | | /* ---------------------------------------------------------------------- */ |
118 | | /* ----- Architecture Specific ------------------------------------------ */ |
119 | | /* ---------------------------------------------------------------------- */ |
120 | | /* ---------------------------------------------------------------------- */ |
121 | | |
122 | | |
123 | | /* ---------------------------------------------------------------------- */ |
124 | | /* ---------------------------------------------------------------------- */ |
125 | | /* ----- Primitive Routines --------------------------------------------- */ |
126 | | /* ---------------------------------------------------------------------- */ |
127 | | /* ---------------------------------------------------------------------- */ |
128 | | |
129 | | |
130 | | /* ---------------------------------------------------------------------- */ |
131 | | /* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */ |
132 | | /* ---------------------------------------------------------------------- */ |
133 | | |
134 | 11.9M | #define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b))) |
135 | | |
136 | | /* ---------------------------------------------------------------------- */ |
137 | | /* --- Endian Conversion --- Forcing assembly on some platforms */ |
138 | | /* ---------------------------------------------------------------------- */ |
139 | | |
140 | | #if (__LITTLE_ENDIAN__) |
141 | 233k | #define LOAD_UINT32_REVERSED(p) get_u32(p) |
142 | | #define STORE_UINT32_REVERSED(p,v) put_u32(p,v) |
143 | | #else |
144 | | #define LOAD_UINT32_REVERSED(p) get_u32_le(p) |
145 | | #define STORE_UINT32_REVERSED(p,v) put_u32_le(p,v) |
146 | | #endif |
147 | | |
148 | 7.54M | #define LOAD_UINT32_LITTLE(p) (get_u32_le(p)) |
149 | 1.84M | #define STORE_UINT32_BIG(p,v) put_u32(p, v) |
150 | | |
151 | | /* ---------------------------------------------------------------------- */ |
152 | | /* ---------------------------------------------------------------------- */ |
153 | | /* ----- Begin KDF & PDF Section ---------------------------------------- */ |
154 | | /* ---------------------------------------------------------------------- */ |
155 | | /* ---------------------------------------------------------------------- */ |
156 | | |
157 | | /* UMAC uses AES with 16 byte block and key lengths */ |
158 | 388k | #define AES_BLOCK_LEN 16 |
159 | | |
160 | | /* OpenSSL's AES */ |
161 | | #ifdef WITH_OPENSSL |
162 | | #include "openbsd-compat/openssl-compat.h" |
163 | | #ifndef USE_BUILTIN_RIJNDAEL |
164 | | # include <openssl/aes.h> |
165 | | #endif |
166 | | typedef AES_KEY aes_int_key[1]; |
167 | | #define aes_encryption(in,out,int_key) \ |
168 | 538k | AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key) |
169 | | #define aes_key_setup(key,int_key) \ |
170 | 1.56k | AES_set_encrypt_key((const u_char *)(key),UMAC_KEY_LEN*8,int_key) |
171 | | #else |
172 | | #include "rijndael.h" |
173 | | #define AES_ROUNDS ((UMAC_KEY_LEN / 4) + 6) |
174 | | typedef UINT8 aes_int_key[AES_ROUNDS+1][4][4]; /* AES internal */ |
175 | | #define aes_encryption(in,out,int_key) \ |
176 | | rijndaelEncrypt((u32 *)(int_key), AES_ROUNDS, (u8 *)(in), (u8 *)(out)) |
177 | | #define aes_key_setup(key,int_key) \ |
178 | | rijndaelKeySetupEnc((u32 *)(int_key), (const unsigned char *)(key), \ |
179 | | UMAC_KEY_LEN*8) |
180 | | #endif |
181 | | |
182 | | /* The user-supplied UMAC key is stretched using AES in a counter |
183 | | * mode to supply all random bits needed by UMAC. The kdf function takes |
184 | | * an AES internal key representation 'key' and writes a stream of |
185 | | * 'nbytes' bytes to the memory pointed at by 'bufp'. Each distinct |
186 | | * 'ndx' causes a distinct byte stream. |
187 | | */ |
188 | | static void kdf(void *bufp, aes_int_key key, UINT8 ndx, int nbytes) |
189 | 3.90k | { |
190 | 3.90k | UINT8 in_buf[AES_BLOCK_LEN] = {0}; |
191 | 3.90k | UINT8 out_buf[AES_BLOCK_LEN]; |
192 | 3.90k | UINT8 *dst_buf = (UINT8 *)bufp; |
193 | 3.90k | int i; |
194 | | |
195 | | /* Setup the initial value */ |
196 | 3.90k | in_buf[AES_BLOCK_LEN-9] = ndx; |
197 | 3.90k | in_buf[AES_BLOCK_LEN-1] = i = 1; |
198 | | |
199 | 79.3k | while (nbytes >= AES_BLOCK_LEN) { |
200 | 75.4k | aes_encryption(in_buf, out_buf, key); |
201 | 75.4k | memcpy(dst_buf,out_buf,AES_BLOCK_LEN); |
202 | 75.4k | in_buf[AES_BLOCK_LEN-1] = ++i; |
203 | 75.4k | nbytes -= AES_BLOCK_LEN; |
204 | 75.4k | dst_buf += AES_BLOCK_LEN; |
205 | 75.4k | } |
206 | 3.90k | if (nbytes) { |
207 | 347 | aes_encryption(in_buf, out_buf, key); |
208 | 347 | memcpy(dst_buf,out_buf,nbytes); |
209 | 347 | } |
210 | 3.90k | explicit_bzero(in_buf, sizeof(in_buf)); |
211 | 3.90k | explicit_bzero(out_buf, sizeof(out_buf)); |
212 | 3.90k | } Line | Count | Source | 189 | 1.73k | { | 190 | 1.73k | UINT8 in_buf[AES_BLOCK_LEN] = {0}; | 191 | 1.73k | UINT8 out_buf[AES_BLOCK_LEN]; | 192 | 1.73k | UINT8 *dst_buf = (UINT8 *)bufp; | 193 | 1.73k | int i; | 194 | | | 195 | | /* Setup the initial value */ | 196 | 1.73k | in_buf[AES_BLOCK_LEN-9] = ndx; | 197 | 1.73k | in_buf[AES_BLOCK_LEN-1] = i = 1; | 198 | | | 199 | 31.5k | while (nbytes >= AES_BLOCK_LEN) { | 200 | 29.8k | aes_encryption(in_buf, out_buf, key); | 201 | 29.8k | memcpy(dst_buf,out_buf,AES_BLOCK_LEN); | 202 | 29.8k | in_buf[AES_BLOCK_LEN-1] = ++i; | 203 | 29.8k | nbytes -= AES_BLOCK_LEN; | 204 | 29.8k | dst_buf += AES_BLOCK_LEN; | 205 | 29.8k | } | 206 | 1.73k | if (nbytes) { | 207 | 347 | aes_encryption(in_buf, out_buf, key); | 208 | 347 | memcpy(dst_buf,out_buf,nbytes); | 209 | 347 | } | 210 | 1.73k | explicit_bzero(in_buf, sizeof(in_buf)); | 211 | 1.73k | explicit_bzero(out_buf, sizeof(out_buf)); | 212 | 1.73k | } |
Line | Count | Source | 189 | 2.17k | { | 190 | 2.17k | UINT8 in_buf[AES_BLOCK_LEN] = {0}; | 191 | 2.17k | UINT8 out_buf[AES_BLOCK_LEN]; | 192 | 2.17k | UINT8 *dst_buf = (UINT8 *)bufp; | 193 | 2.17k | int i; | 194 | | | 195 | | /* Setup the initial value */ | 196 | 2.17k | in_buf[AES_BLOCK_LEN-9] = ndx; | 197 | 2.17k | in_buf[AES_BLOCK_LEN-1] = i = 1; | 198 | | | 199 | 47.7k | while (nbytes >= AES_BLOCK_LEN) { | 200 | 45.5k | aes_encryption(in_buf, out_buf, key); | 201 | 45.5k | memcpy(dst_buf,out_buf,AES_BLOCK_LEN); | 202 | 45.5k | in_buf[AES_BLOCK_LEN-1] = ++i; | 203 | 45.5k | nbytes -= AES_BLOCK_LEN; | 204 | 45.5k | dst_buf += AES_BLOCK_LEN; | 205 | 45.5k | } | 206 | 2.17k | if (nbytes) { | 207 | 0 | aes_encryption(in_buf, out_buf, key); | 208 | 0 | memcpy(dst_buf,out_buf,nbytes); | 209 | 0 | } | 210 | 2.17k | explicit_bzero(in_buf, sizeof(in_buf)); | 211 | 2.17k | explicit_bzero(out_buf, sizeof(out_buf)); | 212 | 2.17k | } |
|
213 | | |
214 | | /* The final UHASH result is XOR'd with the output of a pseudorandom |
215 | | * function. Here, we use AES to generate random output and |
216 | | * xor the appropriate bytes depending on the last bits of nonce. |
217 | | * This scheme is optimized for sequential, increasing big-endian nonces. |
218 | | */ |
219 | | |
220 | | typedef struct { |
221 | | UINT8 cache[AES_BLOCK_LEN]; /* Previous AES output is saved */ |
222 | | UINT8 nonce[AES_BLOCK_LEN]; /* The AES input making above cache */ |
223 | | aes_int_key prf_key; /* Expanded AES key for PDF */ |
224 | | } pdf_ctx; |
225 | | |
226 | | static void pdf_init(pdf_ctx *pc, aes_int_key prf_key) |
227 | 781 | { |
228 | 781 | UINT8 buf[UMAC_KEY_LEN]; |
229 | | |
230 | 781 | kdf(buf, prf_key, 0, UMAC_KEY_LEN); |
231 | 781 | aes_key_setup(buf, pc->prf_key); |
232 | | |
233 | | /* Initialize pdf and cache */ |
234 | 781 | memset(pc->nonce, 0, sizeof(pc->nonce)); |
235 | 781 | aes_encryption(pc->nonce, pc->cache, pc->prf_key); |
236 | 781 | explicit_bzero(buf, sizeof(buf)); |
237 | 781 | } Line | Count | Source | 227 | 347 | { | 228 | 347 | UINT8 buf[UMAC_KEY_LEN]; | 229 | | | 230 | 347 | kdf(buf, prf_key, 0, UMAC_KEY_LEN); | 231 | 347 | aes_key_setup(buf, pc->prf_key); | 232 | | | 233 | | /* Initialize pdf and cache */ | 234 | 347 | memset(pc->nonce, 0, sizeof(pc->nonce)); | 235 | 347 | aes_encryption(pc->nonce, pc->cache, pc->prf_key); | 236 | 347 | explicit_bzero(buf, sizeof(buf)); | 237 | 347 | } |
Line | Count | Source | 227 | 434 | { | 228 | 434 | UINT8 buf[UMAC_KEY_LEN]; | 229 | | | 230 | 434 | kdf(buf, prf_key, 0, UMAC_KEY_LEN); | 231 | 434 | aes_key_setup(buf, pc->prf_key); | 232 | | | 233 | | /* Initialize pdf and cache */ | 234 | 434 | memset(pc->nonce, 0, sizeof(pc->nonce)); | 235 | 434 | aes_encryption(pc->nonce, pc->cache, pc->prf_key); | 236 | 434 | explicit_bzero(buf, sizeof(buf)); | 237 | 434 | } |
|
238 | | |
239 | | static void pdf_gen_xor(pdf_ctx *pc, const UINT8 nonce[8], |
240 | | UINT8 buf[UMAC_OUTPUT_LEN]) |
241 | 591k | { |
242 | | /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes |
243 | | * of the AES output. If last time around we returned the ndx-1st |
244 | | * element, then we may have the result in the cache already. |
245 | | */ |
246 | | |
247 | | #if (UMAC_OUTPUT_LEN == 4) |
248 | | #define LOW_BIT_MASK 3 |
249 | | #elif (UMAC_OUTPUT_LEN == 8) |
250 | 518k | #define LOW_BIT_MASK 1 |
251 | | #elif (UMAC_OUTPUT_LEN > 8) |
252 | 332k | #define LOW_BIT_MASK 0 |
253 | | #endif |
254 | 591k | union { |
255 | 591k | UINT8 tmp_nonce_lo[4]; |
256 | 591k | UINT32 align; |
257 | 591k | } t; |
258 | | #if LOW_BIT_MASK != 0 |
259 | 259k | int ndx = nonce[7] & LOW_BIT_MASK; |
260 | | #endif |
261 | 591k | *(UINT32 *)t.tmp_nonce_lo = ((const UINT32 *)nonce)[1]; |
262 | 591k | t.tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */ |
263 | | |
264 | 591k | if ( (((UINT32 *)t.tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) || |
265 | 591k | (((const UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) ) |
266 | 461k | { |
267 | 461k | ((UINT32 *)pc->nonce)[0] = ((const UINT32 *)nonce)[0]; |
268 | 461k | ((UINT32 *)pc->nonce)[1] = ((UINT32 *)t.tmp_nonce_lo)[0]; |
269 | 461k | aes_encryption(pc->nonce, pc->cache, pc->prf_key); |
270 | 461k | } |
271 | | |
272 | | #if (UMAC_OUTPUT_LEN == 4) |
273 | | *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx]; |
274 | | #elif (UMAC_OUTPUT_LEN == 8) |
275 | | *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx]; |
276 | | #elif (UMAC_OUTPUT_LEN == 12) |
277 | | ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0]; |
278 | | ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2]; |
279 | | #elif (UMAC_OUTPUT_LEN == 16) |
280 | | ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0]; |
281 | | ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1]; |
282 | | #endif |
283 | 591k | } Line | Count | Source | 241 | 259k | { | 242 | | /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes | 243 | | * of the AES output. If last time around we returned the ndx-1st | 244 | | * element, then we may have the result in the cache already. | 245 | | */ | 246 | | | 247 | | #if (UMAC_OUTPUT_LEN == 4) | 248 | | #define LOW_BIT_MASK 3 | 249 | | #elif (UMAC_OUTPUT_LEN == 8) | 250 | | #define LOW_BIT_MASK 1 | 251 | | #elif (UMAC_OUTPUT_LEN > 8) | 252 | | #define LOW_BIT_MASK 0 | 253 | | #endif | 254 | 259k | union { | 255 | 259k | UINT8 tmp_nonce_lo[4]; | 256 | 259k | UINT32 align; | 257 | 259k | } t; | 258 | 259k | #if LOW_BIT_MASK != 0 | 259 | 259k | int ndx = nonce[7] & LOW_BIT_MASK; | 260 | 259k | #endif | 261 | 259k | *(UINT32 *)t.tmp_nonce_lo = ((const UINT32 *)nonce)[1]; | 262 | 259k | t.tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */ | 263 | | | 264 | 259k | if ( (((UINT32 *)t.tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) || | 265 | 259k | (((const UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) ) | 266 | 129k | { | 267 | 129k | ((UINT32 *)pc->nonce)[0] = ((const UINT32 *)nonce)[0]; | 268 | 129k | ((UINT32 *)pc->nonce)[1] = ((UINT32 *)t.tmp_nonce_lo)[0]; | 269 | 129k | aes_encryption(pc->nonce, pc->cache, pc->prf_key); | 270 | 129k | } | 271 | | | 272 | | #if (UMAC_OUTPUT_LEN == 4) | 273 | | *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx]; | 274 | | #elif (UMAC_OUTPUT_LEN == 8) | 275 | | *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx]; | 276 | | #elif (UMAC_OUTPUT_LEN == 12) | 277 | | ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0]; | 278 | | ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2]; | 279 | | #elif (UMAC_OUTPUT_LEN == 16) | 280 | | ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0]; | 281 | | ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1]; | 282 | | #endif | 283 | 259k | } |
Line | Count | Source | 241 | 332k | { | 242 | | /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes | 243 | | * of the AES output. If last time around we returned the ndx-1st | 244 | | * element, then we may have the result in the cache already. | 245 | | */ | 246 | | | 247 | | #if (UMAC_OUTPUT_LEN == 4) | 248 | | #define LOW_BIT_MASK 3 | 249 | | #elif (UMAC_OUTPUT_LEN == 8) | 250 | | #define LOW_BIT_MASK 1 | 251 | | #elif (UMAC_OUTPUT_LEN > 8) | 252 | | #define LOW_BIT_MASK 0 | 253 | 332k | #endif | 254 | 332k | union { | 255 | 332k | UINT8 tmp_nonce_lo[4]; | 256 | 332k | UINT32 align; | 257 | 332k | } t; | 258 | | #if LOW_BIT_MASK != 0 | 259 | | int ndx = nonce[7] & LOW_BIT_MASK; | 260 | | #endif | 261 | 332k | *(UINT32 *)t.tmp_nonce_lo = ((const UINT32 *)nonce)[1]; | 262 | 332k | t.tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */ | 263 | | | 264 | 332k | if ( (((UINT32 *)t.tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) || | 265 | 332k | (((const UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) ) | 266 | 332k | { | 267 | 332k | ((UINT32 *)pc->nonce)[0] = ((const UINT32 *)nonce)[0]; | 268 | 332k | ((UINT32 *)pc->nonce)[1] = ((UINT32 *)t.tmp_nonce_lo)[0]; | 269 | 332k | aes_encryption(pc->nonce, pc->cache, pc->prf_key); | 270 | 332k | } | 271 | | | 272 | | #if (UMAC_OUTPUT_LEN == 4) | 273 | | *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx]; | 274 | | #elif (UMAC_OUTPUT_LEN == 8) | 275 | | *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx]; | 276 | | #elif (UMAC_OUTPUT_LEN == 12) | 277 | | ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0]; | 278 | | ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2]; | 279 | | #elif (UMAC_OUTPUT_LEN == 16) | 280 | | ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0]; | 281 | 332k | ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1]; | 282 | 332k | #endif | 283 | 332k | } |
|
284 | | |
285 | | /* ---------------------------------------------------------------------- */ |
286 | | /* ---------------------------------------------------------------------- */ |
287 | | /* ----- Begin NH Hash Section ------------------------------------------ */ |
288 | | /* ---------------------------------------------------------------------- */ |
289 | | /* ---------------------------------------------------------------------- */ |
290 | | |
291 | | /* The NH-based hash functions used in UMAC are described in the UMAC paper |
292 | | * and specification, both of which can be found at the UMAC website. |
293 | | * The interface to this implementation has two |
294 | | * versions, one expects the entire message being hashed to be passed |
295 | | * in a single buffer and returns the hash result immediately. The second |
296 | | * allows the message to be passed in a sequence of buffers. In the |
297 | | * multiple-buffer interface, the client calls the routine nh_update() as |
298 | | * many times as necessary. When there is no more data to be fed to the |
299 | | * hash, the client calls nh_final() which calculates the hash output. |
300 | | * Before beginning another hash calculation the nh_reset() routine |
301 | | * must be called. The single-buffer routine, nh(), is equivalent to |
302 | | * the sequence of calls nh_update() and nh_final(); however it is |
303 | | * optimized and should be preferred whenever the multiple-buffer interface |
304 | | * is not necessary. When using either interface, it is the client's |
305 | | * responsibility to pass no more than L1_KEY_LEN bytes per hash result. |
306 | | * |
307 | | * The routine nh_init() initializes the nh_ctx data structure and |
308 | | * must be called once, before any other PDF routine. |
309 | | */ |
310 | | |
311 | | /* The "nh_aux" routines do the actual NH hashing work. They |
312 | | * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines |
313 | | * produce output for all STREAMS NH iterations in one call, |
314 | | * allowing the parallel implementation of the streams. |
315 | | */ |
316 | | |
317 | 64.1k | #define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied */ |
318 | 1.24M | #define L1_KEY_LEN 1024 /* Internal key bytes */ |
319 | | #define L1_KEY_SHIFT 16 /* Toeplitz key shift between streams */ |
320 | 1.18M | #define L1_PAD_BOUNDARY 32 /* pad message to boundary multiple */ |
321 | 4.68k | #define ALLOC_BOUNDARY 16 /* Keep buffers aligned to this */ |
322 | 591k | #define HASH_BUF_BYTES 64 /* nh_aux_hb buffer multiple */ |
323 | | |
324 | | typedef struct { |
325 | | UINT8 nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */ |
326 | | UINT8 data [HASH_BUF_BYTES]; /* Incoming data buffer */ |
327 | | int next_data_empty; /* Bookkeeping variable for data buffer. */ |
328 | | int bytes_hashed; /* Bytes (out of L1_KEY_LEN) incorporated. */ |
329 | | UINT64 state[STREAMS]; /* on-line state */ |
330 | | } nh_ctx; |
331 | | |
332 | | |
333 | | #if (UMAC_OUTPUT_LEN == 4) |
334 | | |
335 | | static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) |
336 | | /* NH hashing primitive. Previous (partial) hash result is loaded and |
337 | | * then stored via hp pointer. The length of the data pointed at by "dp", |
338 | | * "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32). Key |
339 | | * is expected to be endian compensated in memory at key setup. |
340 | | */ |
341 | | { |
342 | | UINT64 h; |
343 | | UWORD c = dlen / 32; |
344 | | UINT32 *k = (UINT32 *)kp; |
345 | | const UINT32 *d = (const UINT32 *)dp; |
346 | | UINT32 d0,d1,d2,d3,d4,d5,d6,d7; |
347 | | UINT32 k0,k1,k2,k3,k4,k5,k6,k7; |
348 | | |
349 | | h = *((UINT64 *)hp); |
350 | | do { |
351 | | d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); |
352 | | d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); |
353 | | d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); |
354 | | d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); |
355 | | k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); |
356 | | k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); |
357 | | h += MUL64((k0 + d0), (k4 + d4)); |
358 | | h += MUL64((k1 + d1), (k5 + d5)); |
359 | | h += MUL64((k2 + d2), (k6 + d6)); |
360 | | h += MUL64((k3 + d3), (k7 + d7)); |
361 | | |
362 | | d += 8; |
363 | | k += 8; |
364 | | } while (--c); |
365 | | *((UINT64 *)hp) = h; |
366 | | } |
367 | | |
368 | | #elif (UMAC_OUTPUT_LEN == 8) |
369 | | |
370 | | static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) |
371 | | /* Same as previous nh_aux, but two streams are handled in one pass, |
372 | | * reading and writing 16 bytes of hash-state per call. |
373 | | */ |
374 | 263k | { |
375 | 263k | UINT64 h1,h2; |
376 | 263k | UWORD c = dlen / 32; |
377 | 263k | UINT32 *k = (UINT32 *)kp; |
378 | 263k | const UINT32 *d = (const UINT32 *)dp; |
379 | 263k | UINT32 d0,d1,d2,d3,d4,d5,d6,d7; |
380 | 263k | UINT32 k0,k1,k2,k3,k4,k5,k6,k7, |
381 | 263k | k8,k9,k10,k11; |
382 | | |
383 | 263k | h1 = *((UINT64 *)hp); |
384 | 263k | h2 = *((UINT64 *)hp + 1); |
385 | 263k | k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); |
386 | 408k | do { |
387 | 408k | d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); |
388 | 408k | d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); |
389 | 408k | d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); |
390 | 408k | d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); |
391 | 408k | k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); |
392 | 408k | k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); |
393 | | |
394 | 408k | h1 += MUL64((k0 + d0), (k4 + d4)); |
395 | 408k | h2 += MUL64((k4 + d0), (k8 + d4)); |
396 | | |
397 | 408k | h1 += MUL64((k1 + d1), (k5 + d5)); |
398 | 408k | h2 += MUL64((k5 + d1), (k9 + d5)); |
399 | | |
400 | 408k | h1 += MUL64((k2 + d2), (k6 + d6)); |
401 | 408k | h2 += MUL64((k6 + d2), (k10 + d6)); |
402 | | |
403 | 408k | h1 += MUL64((k3 + d3), (k7 + d7)); |
404 | 408k | h2 += MUL64((k7 + d3), (k11 + d7)); |
405 | | |
406 | 408k | k0 = k8; k1 = k9; k2 = k10; k3 = k11; |
407 | | |
408 | 408k | d += 8; |
409 | 408k | k += 8; |
410 | 408k | } while (--c); |
411 | 263k | ((UINT64 *)hp)[0] = h1; |
412 | 263k | ((UINT64 *)hp)[1] = h2; |
413 | 263k | } |
414 | | |
415 | | #elif (UMAC_OUTPUT_LEN == 12) |
416 | | |
417 | | static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) |
418 | | /* Same as previous nh_aux, but two streams are handled in one pass, |
419 | | * reading and writing 24 bytes of hash-state per call. |
420 | | */ |
421 | | { |
422 | | UINT64 h1,h2,h3; |
423 | | UWORD c = dlen / 32; |
424 | | UINT32 *k = (UINT32 *)kp; |
425 | | const UINT32 *d = (const UINT32 *)dp; |
426 | | UINT32 d0,d1,d2,d3,d4,d5,d6,d7; |
427 | | UINT32 k0,k1,k2,k3,k4,k5,k6,k7, |
428 | | k8,k9,k10,k11,k12,k13,k14,k15; |
429 | | |
430 | | h1 = *((UINT64 *)hp); |
431 | | h2 = *((UINT64 *)hp + 1); |
432 | | h3 = *((UINT64 *)hp + 2); |
433 | | k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); |
434 | | k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); |
435 | | do { |
436 | | d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); |
437 | | d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); |
438 | | d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); |
439 | | d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); |
440 | | k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); |
441 | | k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15); |
442 | | |
443 | | h1 += MUL64((k0 + d0), (k4 + d4)); |
444 | | h2 += MUL64((k4 + d0), (k8 + d4)); |
445 | | h3 += MUL64((k8 + d0), (k12 + d4)); |
446 | | |
447 | | h1 += MUL64((k1 + d1), (k5 + d5)); |
448 | | h2 += MUL64((k5 + d1), (k9 + d5)); |
449 | | h3 += MUL64((k9 + d1), (k13 + d5)); |
450 | | |
451 | | h1 += MUL64((k2 + d2), (k6 + d6)); |
452 | | h2 += MUL64((k6 + d2), (k10 + d6)); |
453 | | h3 += MUL64((k10 + d2), (k14 + d6)); |
454 | | |
455 | | h1 += MUL64((k3 + d3), (k7 + d7)); |
456 | | h2 += MUL64((k7 + d3), (k11 + d7)); |
457 | | h3 += MUL64((k11 + d3), (k15 + d7)); |
458 | | |
459 | | k0 = k8; k1 = k9; k2 = k10; k3 = k11; |
460 | | k4 = k12; k5 = k13; k6 = k14; k7 = k15; |
461 | | |
462 | | d += 8; |
463 | | k += 8; |
464 | | } while (--c); |
465 | | ((UINT64 *)hp)[0] = h1; |
466 | | ((UINT64 *)hp)[1] = h2; |
467 | | ((UINT64 *)hp)[2] = h3; |
468 | | } |
469 | | |
470 | | #elif (UMAC_OUTPUT_LEN == 16) |
471 | | |
472 | | static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) |
473 | | /* Same as previous nh_aux, but two streams are handled in one pass, |
474 | | * reading and writing 24 bytes of hash-state per call. |
475 | | */ |
476 | 338k | { |
477 | 338k | UINT64 h1,h2,h3,h4; |
478 | 338k | UWORD c = dlen / 32; |
479 | 338k | UINT32 *k = (UINT32 *)kp; |
480 | 338k | const UINT32 *d = (const UINT32 *)dp; |
481 | 338k | UINT32 d0,d1,d2,d3,d4,d5,d6,d7; |
482 | 338k | UINT32 k0,k1,k2,k3,k4,k5,k6,k7, |
483 | 338k | k8,k9,k10,k11,k12,k13,k14,k15, |
484 | 338k | k16,k17,k18,k19; |
485 | | |
486 | 338k | h1 = *((UINT64 *)hp); |
487 | 338k | h2 = *((UINT64 *)hp + 1); |
488 | 338k | h3 = *((UINT64 *)hp + 2); |
489 | 338k | h4 = *((UINT64 *)hp + 3); |
490 | 338k | k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); |
491 | 338k | k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); |
492 | 533k | do { |
493 | 533k | d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); |
494 | 533k | d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); |
495 | 533k | d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); |
496 | 533k | d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); |
497 | 533k | k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); |
498 | 533k | k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15); |
499 | 533k | k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19); |
500 | | |
501 | 533k | h1 += MUL64((k0 + d0), (k4 + d4)); |
502 | 533k | h2 += MUL64((k4 + d0), (k8 + d4)); |
503 | 533k | h3 += MUL64((k8 + d0), (k12 + d4)); |
504 | 533k | h4 += MUL64((k12 + d0), (k16 + d4)); |
505 | | |
506 | 533k | h1 += MUL64((k1 + d1), (k5 + d5)); |
507 | 533k | h2 += MUL64((k5 + d1), (k9 + d5)); |
508 | 533k | h3 += MUL64((k9 + d1), (k13 + d5)); |
509 | 533k | h4 += MUL64((k13 + d1), (k17 + d5)); |
510 | | |
511 | 533k | h1 += MUL64((k2 + d2), (k6 + d6)); |
512 | 533k | h2 += MUL64((k6 + d2), (k10 + d6)); |
513 | 533k | h3 += MUL64((k10 + d2), (k14 + d6)); |
514 | 533k | h4 += MUL64((k14 + d2), (k18 + d6)); |
515 | | |
516 | 533k | h1 += MUL64((k3 + d3), (k7 + d7)); |
517 | 533k | h2 += MUL64((k7 + d3), (k11 + d7)); |
518 | 533k | h3 += MUL64((k11 + d3), (k15 + d7)); |
519 | 533k | h4 += MUL64((k15 + d3), (k19 + d7)); |
520 | | |
521 | 533k | k0 = k8; k1 = k9; k2 = k10; k3 = k11; |
522 | 533k | k4 = k12; k5 = k13; k6 = k14; k7 = k15; |
523 | 533k | k8 = k16; k9 = k17; k10 = k18; k11 = k19; |
524 | | |
525 | 533k | d += 8; |
526 | 533k | k += 8; |
527 | 533k | } while (--c); |
528 | 338k | ((UINT64 *)hp)[0] = h1; |
529 | 338k | ((UINT64 *)hp)[1] = h2; |
530 | 338k | ((UINT64 *)hp)[2] = h3; |
531 | 338k | ((UINT64 *)hp)[3] = h4; |
532 | 338k | } |
533 | | |
534 | | /* ---------------------------------------------------------------------- */ |
535 | | #endif /* UMAC_OUTPUT_LENGTH */ |
536 | | /* ---------------------------------------------------------------------- */ |
537 | | |
538 | | |
539 | | /* ---------------------------------------------------------------------- */ |
540 | | |
541 | | static void nh_transform(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes) |
542 | | /* This function is a wrapper for the primitive NH hash functions. It takes |
543 | | * as argument "hc" the current hash context and a buffer which must be a |
544 | | * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset |
545 | | * appropriately according to how much message has been hashed already. |
546 | | */ |
547 | 591k | { |
548 | 591k | UINT8 *key; |
549 | | |
550 | 591k | key = hc->nh_key + hc->bytes_hashed; |
551 | 591k | nh_aux(key, buf, hc->state, nbytes); |
552 | 591k | } Line | Count | Source | 547 | 259k | { | 548 | 259k | UINT8 *key; | 549 | | | 550 | 259k | key = hc->nh_key + hc->bytes_hashed; | 551 | 259k | nh_aux(key, buf, hc->state, nbytes); | 552 | 259k | } |
Line | Count | Source | 547 | 332k | { | 548 | 332k | UINT8 *key; | 549 | | | 550 | 332k | key = hc->nh_key + hc->bytes_hashed; | 551 | 332k | nh_aux(key, buf, hc->state, nbytes); | 552 | 332k | } |
|
553 | | |
554 | | /* ---------------------------------------------------------------------- */ |
555 | | |
556 | | #if (__LITTLE_ENDIAN__) |
557 | | static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes) |
558 | | /* We endian convert the keys on little-endian computers to */ |
559 | | /* compensate for the lack of big-endian memory reads during hashing. */ |
560 | 4.77k | { |
561 | 4.77k | UWORD iters = num_bytes / bpw; |
562 | 4.77k | if (bpw == 4) { |
563 | 1.56k | UINT32 *p = (UINT32 *)buf; |
564 | 208k | do { |
565 | 208k | *p = LOAD_UINT32_REVERSED(p); |
566 | 208k | p++; |
567 | 208k | } while (--iters); |
568 | 3.21k | } else if (bpw == 8) { |
569 | 3.21k | UINT32 *p = (UINT32 *)buf; |
570 | 3.21k | UINT32 t; |
571 | 12.1k | do { |
572 | 12.1k | t = LOAD_UINT32_REVERSED(p+1); |
573 | 12.1k | p[1] = LOAD_UINT32_REVERSED(p); |
574 | 12.1k | p[0] = t; |
575 | 12.1k | p += 2; |
576 | 12.1k | } while (--iters); |
577 | 3.21k | } |
578 | 4.77k | } Line | Count | Source | 560 | 1.73k | { | 561 | 1.73k | UWORD iters = num_bytes / bpw; | 562 | 1.73k | if (bpw == 4) { | 563 | 694 | UINT32 *p = (UINT32 *)buf; | 564 | 90.9k | do { | 565 | 90.9k | *p = LOAD_UINT32_REVERSED(p); | 566 | 90.9k | p++; | 567 | 90.9k | } while (--iters); | 568 | 1.04k | } else if (bpw == 8) { | 569 | 1.04k | UINT32 *p = (UINT32 *)buf; | 570 | 1.04k | UINT32 t; | 571 | 3.47k | do { | 572 | 3.47k | t = LOAD_UINT32_REVERSED(p+1); | 573 | 3.47k | p[1] = LOAD_UINT32_REVERSED(p); | 574 | 3.47k | p[0] = t; | 575 | 3.47k | p += 2; | 576 | 3.47k | } while (--iters); | 577 | 1.04k | } | 578 | 1.73k | } |
Line | Count | Source | 560 | 3.03k | { | 561 | 3.03k | UWORD iters = num_bytes / bpw; | 562 | 3.03k | if (bpw == 4) { | 563 | 868 | UINT32 *p = (UINT32 *)buf; | 564 | 118k | do { | 565 | 118k | *p = LOAD_UINT32_REVERSED(p); | 566 | 118k | p++; | 567 | 118k | } while (--iters); | 568 | 2.17k | } else if (bpw == 8) { | 569 | 2.17k | UINT32 *p = (UINT32 *)buf; | 570 | 2.17k | UINT32 t; | 571 | 8.68k | do { | 572 | 8.68k | t = LOAD_UINT32_REVERSED(p+1); | 573 | 8.68k | p[1] = LOAD_UINT32_REVERSED(p); | 574 | 8.68k | p[0] = t; | 575 | 8.68k | p += 2; | 576 | 8.68k | } while (--iters); | 577 | 2.17k | } | 578 | 3.03k | } |
|
579 | 4.77k | #define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z)) |
580 | | #else |
581 | | #define endian_convert_if_le(x,y,z) do{}while(0) /* Do nothing */ |
582 | | #endif |
583 | | |
584 | | /* ---------------------------------------------------------------------- */ |
585 | | |
586 | | static void nh_reset(nh_ctx *hc) |
587 | | /* Reset nh_ctx to ready for hashing of new data */ |
588 | 1.18M | { |
589 | 1.18M | hc->bytes_hashed = 0; |
590 | 1.18M | hc->next_data_empty = 0; |
591 | 1.18M | hc->state[0] = 0; |
592 | 1.18M | #if (UMAC_OUTPUT_LEN >= 8) |
593 | 1.18M | hc->state[1] = 0; |
594 | 1.18M | #endif |
595 | | #if (UMAC_OUTPUT_LEN >= 12) |
596 | | hc->state[2] = 0; |
597 | | #endif |
598 | | #if (UMAC_OUTPUT_LEN == 16) |
599 | | hc->state[3] = 0; |
600 | | #endif |
601 | | |
602 | 1.18M | } Line | Count | Source | 588 | 518k | { | 589 | 518k | hc->bytes_hashed = 0; | 590 | 518k | hc->next_data_empty = 0; | 591 | 518k | hc->state[0] = 0; | 592 | 518k | #if (UMAC_OUTPUT_LEN >= 8) | 593 | 518k | hc->state[1] = 0; | 594 | 518k | #endif | 595 | | #if (UMAC_OUTPUT_LEN >= 12) | 596 | | hc->state[2] = 0; | 597 | | #endif | 598 | | #if (UMAC_OUTPUT_LEN == 16) | 599 | | hc->state[3] = 0; | 600 | | #endif | 601 | | | 602 | 518k | } |
Line | Count | Source | 588 | 665k | { | 589 | 665k | hc->bytes_hashed = 0; | 590 | 665k | hc->next_data_empty = 0; | 591 | 665k | hc->state[0] = 0; | 592 | 665k | #if (UMAC_OUTPUT_LEN >= 8) | 593 | 665k | hc->state[1] = 0; | 594 | 665k | #endif | 595 | 665k | #if (UMAC_OUTPUT_LEN >= 12) | 596 | 665k | hc->state[2] = 0; | 597 | 665k | #endif | 598 | 665k | #if (UMAC_OUTPUT_LEN == 16) | 599 | 665k | hc->state[3] = 0; | 600 | 665k | #endif | 601 | | | 602 | 665k | } |
|
603 | | |
604 | | /* ---------------------------------------------------------------------- */ |
605 | | |
606 | | static void nh_init(nh_ctx *hc, aes_int_key prf_key) |
607 | | /* Generate nh_key, endian convert and reset to be ready for hashing. */ |
608 | 781 | { |
609 | 781 | kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key)); |
610 | 781 | endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key)); |
611 | 781 | nh_reset(hc); |
612 | 781 | } Line | Count | Source | 608 | 347 | { | 609 | 347 | kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key)); | 610 | 347 | endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key)); | 611 | 347 | nh_reset(hc); | 612 | 347 | } |
Line | Count | Source | 608 | 434 | { | 609 | 434 | kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key)); | 610 | 434 | endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key)); | 611 | 434 | nh_reset(hc); | 612 | 434 | } |
|
613 | | |
614 | | /* ---------------------------------------------------------------------- */ |
615 | | |
616 | | static void nh_update(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes) |
617 | | /* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an */ |
618 | | /* even multiple of HASH_BUF_BYTES. */ |
619 | 591k | { |
620 | 591k | UINT32 i,j; |
621 | | |
622 | 591k | j = hc->next_data_empty; |
623 | 591k | if ((j + nbytes) >= HASH_BUF_BYTES) { |
624 | 241 | if (j) { |
625 | 0 | i = HASH_BUF_BYTES - j; |
626 | 0 | memcpy(hc->data+j, buf, i); |
627 | 0 | nh_transform(hc,hc->data,HASH_BUF_BYTES); |
628 | 0 | nbytes -= i; |
629 | 0 | buf += i; |
630 | 0 | hc->bytes_hashed += HASH_BUF_BYTES; |
631 | 0 | } |
632 | 241 | if (nbytes >= HASH_BUF_BYTES) { |
633 | 241 | i = nbytes & ~(HASH_BUF_BYTES - 1); |
634 | 241 | nh_transform(hc, buf, i); |
635 | 241 | nbytes -= i; |
636 | 241 | buf += i; |
637 | 241 | hc->bytes_hashed += i; |
638 | 241 | } |
639 | 241 | j = 0; |
640 | 241 | } |
641 | 591k | memcpy(hc->data + j, buf, nbytes); |
642 | 591k | hc->next_data_empty = j + nbytes; |
643 | 591k | } Line | Count | Source | 619 | 259k | { | 620 | 259k | UINT32 i,j; | 621 | | | 622 | 259k | j = hc->next_data_empty; | 623 | 259k | if ((j + nbytes) >= HASH_BUF_BYTES) { | 624 | 165 | if (j) { | 625 | 0 | i = HASH_BUF_BYTES - j; | 626 | 0 | memcpy(hc->data+j, buf, i); | 627 | 0 | nh_transform(hc,hc->data,HASH_BUF_BYTES); | 628 | 0 | nbytes -= i; | 629 | 0 | buf += i; | 630 | 0 | hc->bytes_hashed += HASH_BUF_BYTES; | 631 | 0 | } | 632 | 165 | if (nbytes >= HASH_BUF_BYTES) { | 633 | 165 | i = nbytes & ~(HASH_BUF_BYTES - 1); | 634 | 165 | nh_transform(hc, buf, i); | 635 | 165 | nbytes -= i; | 636 | 165 | buf += i; | 637 | 165 | hc->bytes_hashed += i; | 638 | 165 | } | 639 | 165 | j = 0; | 640 | 165 | } | 641 | 259k | memcpy(hc->data + j, buf, nbytes); | 642 | 259k | hc->next_data_empty = j + nbytes; | 643 | 259k | } |
Line | Count | Source | 619 | 332k | { | 620 | 332k | UINT32 i,j; | 621 | | | 622 | 332k | j = hc->next_data_empty; | 623 | 332k | if ((j + nbytes) >= HASH_BUF_BYTES) { | 624 | 76 | if (j) { | 625 | 0 | i = HASH_BUF_BYTES - j; | 626 | 0 | memcpy(hc->data+j, buf, i); | 627 | 0 | nh_transform(hc,hc->data,HASH_BUF_BYTES); | 628 | 0 | nbytes -= i; | 629 | 0 | buf += i; | 630 | 0 | hc->bytes_hashed += HASH_BUF_BYTES; | 631 | 0 | } | 632 | 76 | if (nbytes >= HASH_BUF_BYTES) { | 633 | 76 | i = nbytes & ~(HASH_BUF_BYTES - 1); | 634 | 76 | nh_transform(hc, buf, i); | 635 | 76 | nbytes -= i; | 636 | 76 | buf += i; | 637 | 76 | hc->bytes_hashed += i; | 638 | 76 | } | 639 | 76 | j = 0; | 640 | 76 | } | 641 | 332k | memcpy(hc->data + j, buf, nbytes); | 642 | 332k | hc->next_data_empty = j + nbytes; | 643 | 332k | } |
|
644 | | |
645 | | /* ---------------------------------------------------------------------- */ |
646 | | |
647 | | static void zero_pad(UINT8 *p, int nbytes) |
648 | 591k | { |
649 | | /* Write "nbytes" of zeroes, beginning at "p" */ |
650 | 591k | if (nbytes >= (int)sizeof(UWORD)) { |
651 | 591k | while ((ptrdiff_t)p % sizeof(UWORD)) { |
652 | 0 | *p = 0; |
653 | 0 | nbytes--; |
654 | 0 | p++; |
655 | 0 | } |
656 | 2.62M | while (nbytes >= (int)sizeof(UWORD)) { |
657 | 2.03M | *(UWORD *)p = 0; |
658 | 2.03M | nbytes -= sizeof(UWORD); |
659 | 2.03M | p += sizeof(UWORD); |
660 | 2.03M | } |
661 | 591k | } |
662 | 591k | while (nbytes) { |
663 | 0 | *p = 0; |
664 | 0 | nbytes--; |
665 | 0 | p++; |
666 | 0 | } |
667 | 591k | } Line | Count | Source | 648 | 259k | { | 649 | | /* Write "nbytes" of zeroes, beginning at "p" */ | 650 | 259k | if (nbytes >= (int)sizeof(UWORD)) { | 651 | 259k | while ((ptrdiff_t)p % sizeof(UWORD)) { | 652 | 0 | *p = 0; | 653 | 0 | nbytes--; | 654 | 0 | p++; | 655 | 0 | } | 656 | 1.29M | while (nbytes >= (int)sizeof(UWORD)) { | 657 | 1.03M | *(UWORD *)p = 0; | 658 | 1.03M | nbytes -= sizeof(UWORD); | 659 | 1.03M | p += sizeof(UWORD); | 660 | 1.03M | } | 661 | 259k | } | 662 | 259k | while (nbytes) { | 663 | 0 | *p = 0; | 664 | 0 | nbytes--; | 665 | 0 | p++; | 666 | 0 | } | 667 | 259k | } |
Line | Count | Source | 648 | 332k | { | 649 | | /* Write "nbytes" of zeroes, beginning at "p" */ | 650 | 332k | if (nbytes >= (int)sizeof(UWORD)) { | 651 | 332k | while ((ptrdiff_t)p % sizeof(UWORD)) { | 652 | 0 | *p = 0; | 653 | 0 | nbytes--; | 654 | 0 | p++; | 655 | 0 | } | 656 | 1.33M | while (nbytes >= (int)sizeof(UWORD)) { | 657 | 998k | *(UWORD *)p = 0; | 658 | 998k | nbytes -= sizeof(UWORD); | 659 | 998k | p += sizeof(UWORD); | 660 | 998k | } | 661 | 332k | } | 662 | 332k | while (nbytes) { | 663 | 0 | *p = 0; | 664 | 0 | nbytes--; | 665 | 0 | p++; | 666 | 0 | } | 667 | 332k | } |
|
668 | | |
669 | | /* ---------------------------------------------------------------------- */ |
670 | | |
671 | | static void nh_final(nh_ctx *hc, UINT8 *result) |
672 | | /* After passing some number of data buffers to nh_update() for integration |
673 | | * into an NH context, nh_final is called to produce a hash result. If any |
674 | | * bytes are in the buffer hc->data, incorporate them into the |
675 | | * NH context. Finally, add into the NH accumulation "state" the total number |
676 | | * of bits hashed. The resulting numbers are written to the buffer "result". |
677 | | * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated. |
678 | | */ |
679 | 591k | { |
680 | 591k | int nh_len, nbits; |
681 | | |
682 | 591k | if (hc->next_data_empty != 0) { |
683 | 591k | nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) & |
684 | 591k | ~(L1_PAD_BOUNDARY - 1)); |
685 | 591k | zero_pad(hc->data + hc->next_data_empty, |
686 | 591k | nh_len - hc->next_data_empty); |
687 | 591k | nh_transform(hc, hc->data, nh_len); |
688 | 591k | hc->bytes_hashed += hc->next_data_empty; |
689 | 591k | } else if (hc->bytes_hashed == 0) { |
690 | 0 | nh_len = L1_PAD_BOUNDARY; |
691 | 0 | zero_pad(hc->data, L1_PAD_BOUNDARY); |
692 | 0 | nh_transform(hc, hc->data, nh_len); |
693 | 0 | } |
694 | | |
695 | 591k | nbits = (hc->bytes_hashed << 3); |
696 | 591k | ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits; |
697 | 591k | #if (UMAC_OUTPUT_LEN >= 8) |
698 | 591k | ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits; |
699 | 591k | #endif |
700 | | #if (UMAC_OUTPUT_LEN >= 12) |
701 | | ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits; |
702 | | #endif |
703 | | #if (UMAC_OUTPUT_LEN == 16) |
704 | | ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits; |
705 | | #endif |
706 | 591k | nh_reset(hc); |
707 | 591k | } Line | Count | Source | 679 | 259k | { | 680 | 259k | int nh_len, nbits; | 681 | | | 682 | 259k | if (hc->next_data_empty != 0) { | 683 | 259k | nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) & | 684 | 259k | ~(L1_PAD_BOUNDARY - 1)); | 685 | 259k | zero_pad(hc->data + hc->next_data_empty, | 686 | 259k | nh_len - hc->next_data_empty); | 687 | 259k | nh_transform(hc, hc->data, nh_len); | 688 | 259k | hc->bytes_hashed += hc->next_data_empty; | 689 | 259k | } else if (hc->bytes_hashed == 0) { | 690 | 0 | nh_len = L1_PAD_BOUNDARY; | 691 | 0 | zero_pad(hc->data, L1_PAD_BOUNDARY); | 692 | 0 | nh_transform(hc, hc->data, nh_len); | 693 | 0 | } | 694 | | | 695 | 259k | nbits = (hc->bytes_hashed << 3); | 696 | 259k | ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits; | 697 | 259k | #if (UMAC_OUTPUT_LEN >= 8) | 698 | 259k | ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits; | 699 | 259k | #endif | 700 | | #if (UMAC_OUTPUT_LEN >= 12) | 701 | | ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits; | 702 | | #endif | 703 | | #if (UMAC_OUTPUT_LEN == 16) | 704 | | ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits; | 705 | | #endif | 706 | 259k | nh_reset(hc); | 707 | 259k | } |
Line | Count | Source | 679 | 332k | { | 680 | 332k | int nh_len, nbits; | 681 | | | 682 | 332k | if (hc->next_data_empty != 0) { | 683 | 332k | nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) & | 684 | 332k | ~(L1_PAD_BOUNDARY - 1)); | 685 | 332k | zero_pad(hc->data + hc->next_data_empty, | 686 | 332k | nh_len - hc->next_data_empty); | 687 | 332k | nh_transform(hc, hc->data, nh_len); | 688 | 332k | hc->bytes_hashed += hc->next_data_empty; | 689 | 332k | } else if (hc->bytes_hashed == 0) { | 690 | 0 | nh_len = L1_PAD_BOUNDARY; | 691 | 0 | zero_pad(hc->data, L1_PAD_BOUNDARY); | 692 | 0 | nh_transform(hc, hc->data, nh_len); | 693 | 0 | } | 694 | | | 695 | 332k | nbits = (hc->bytes_hashed << 3); | 696 | 332k | ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits; | 697 | 332k | #if (UMAC_OUTPUT_LEN >= 8) | 698 | 332k | ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits; | 699 | 332k | #endif | 700 | 332k | #if (UMAC_OUTPUT_LEN >= 12) | 701 | 332k | ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits; | 702 | 332k | #endif | 703 | 332k | #if (UMAC_OUTPUT_LEN == 16) | 704 | 332k | ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits; | 705 | 332k | #endif | 706 | 332k | nh_reset(hc); | 707 | 332k | } |
|
708 | | |
709 | | /* ---------------------------------------------------------------------- */ |
710 | | |
711 | | static void nh(nh_ctx *hc, const UINT8 *buf, UINT32 padded_len, |
712 | | UINT32 unpadded_len, UINT8 *result) |
713 | | /* All-in-one nh_update() and nh_final() equivalent. |
714 | | * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is |
715 | | * well aligned |
716 | | */ |
717 | 10.8k | { |
718 | 10.8k | UINT32 nbits; |
719 | | |
720 | | /* Initialize the hash state */ |
721 | 10.8k | nbits = (unpadded_len << 3); |
722 | | |
723 | 10.8k | ((UINT64 *)result)[0] = nbits; |
724 | 10.8k | #if (UMAC_OUTPUT_LEN >= 8) |
725 | 10.8k | ((UINT64 *)result)[1] = nbits; |
726 | 10.8k | #endif |
727 | | #if (UMAC_OUTPUT_LEN >= 12) |
728 | | ((UINT64 *)result)[2] = nbits; |
729 | | #endif |
730 | | #if (UMAC_OUTPUT_LEN == 16) |
731 | | ((UINT64 *)result)[3] = nbits; |
732 | | #endif |
733 | | |
734 | 10.8k | nh_aux(hc->nh_key, buf, result, padded_len); |
735 | 10.8k | } Line | Count | Source | 717 | 4.60k | { | 718 | 4.60k | UINT32 nbits; | 719 | | | 720 | | /* Initialize the hash state */ | 721 | 4.60k | nbits = (unpadded_len << 3); | 722 | | | 723 | 4.60k | ((UINT64 *)result)[0] = nbits; | 724 | 4.60k | #if (UMAC_OUTPUT_LEN >= 8) | 725 | 4.60k | ((UINT64 *)result)[1] = nbits; | 726 | 4.60k | #endif | 727 | | #if (UMAC_OUTPUT_LEN >= 12) | 728 | | ((UINT64 *)result)[2] = nbits; | 729 | | #endif | 730 | | #if (UMAC_OUTPUT_LEN == 16) | 731 | | ((UINT64 *)result)[3] = nbits; | 732 | | #endif | 733 | | | 734 | 4.60k | nh_aux(hc->nh_key, buf, result, padded_len); | 735 | 4.60k | } |
Line | Count | Source | 717 | 6.23k | { | 718 | 6.23k | UINT32 nbits; | 719 | | | 720 | | /* Initialize the hash state */ | 721 | 6.23k | nbits = (unpadded_len << 3); | 722 | | | 723 | 6.23k | ((UINT64 *)result)[0] = nbits; | 724 | 6.23k | #if (UMAC_OUTPUT_LEN >= 8) | 725 | 6.23k | ((UINT64 *)result)[1] = nbits; | 726 | 6.23k | #endif | 727 | 6.23k | #if (UMAC_OUTPUT_LEN >= 12) | 728 | 6.23k | ((UINT64 *)result)[2] = nbits; | 729 | 6.23k | #endif | 730 | 6.23k | #if (UMAC_OUTPUT_LEN == 16) | 731 | 6.23k | ((UINT64 *)result)[3] = nbits; | 732 | 6.23k | #endif | 733 | | | 734 | 6.23k | nh_aux(hc->nh_key, buf, result, padded_len); | 735 | 6.23k | } |
|
736 | | |
737 | | /* ---------------------------------------------------------------------- */ |
738 | | /* ---------------------------------------------------------------------- */ |
739 | | /* ----- Begin UHASH Section -------------------------------------------- */ |
740 | | /* ---------------------------------------------------------------------- */ |
741 | | /* ---------------------------------------------------------------------- */ |
742 | | |
743 | | /* UHASH is a multi-layered algorithm. Data presented to UHASH is first |
744 | | * hashed by NH. The NH output is then hashed by a polynomial-hash layer |
745 | | * unless the initial data to be hashed is short. After the polynomial- |
746 | | * layer, an inner-product hash is used to produce the final UHASH output. |
747 | | * |
748 | | * UHASH provides two interfaces, one all-at-once and another where data |
749 | | * buffers are presented sequentially. In the sequential interface, the |
750 | | * UHASH client calls the routine uhash_update() as many times as necessary. |
751 | | * When there is no more data to be fed to UHASH, the client calls |
752 | | * uhash_final() which |
753 | | * calculates the UHASH output. Before beginning another UHASH calculation |
754 | | * the uhash_reset() routine must be called. The all-at-once UHASH routine, |
755 | | * uhash(), is equivalent to the sequence of calls uhash_update() and |
756 | | * uhash_final(); however it is optimized and should be |
757 | | * used whenever the sequential interface is not necessary. |
758 | | * |
759 | | * The routine uhash_init() initializes the uhash_ctx data structure and |
760 | | * must be called once, before any other UHASH routine. |
761 | | */ |
762 | | |
763 | | /* ---------------------------------------------------------------------- */ |
764 | | /* ----- Constants and uhash_ctx ---------------------------------------- */ |
765 | | /* ---------------------------------------------------------------------- */ |
766 | | |
767 | | /* ---------------------------------------------------------------------- */ |
768 | | /* ----- Poly hash and Inner-Product hash Constants --------------------- */ |
769 | | /* ---------------------------------------------------------------------- */ |
770 | | |
771 | | /* Primes and masks */ |
772 | 1.85M | #define p36 ((UINT64)0x0000000FFFFFFFFBull) /* 2^36 - 5 */ |
773 | 550 | #define p64 ((UINT64)0xFFFFFFFFFFFFFFC5ull) /* 2^64 - 59 */ |
774 | 1.84M | #define m36 ((UINT64)0x0000000FFFFFFFFFull) /* The low 36 of 64 bits */ |
775 | | |
776 | | |
777 | | /* ---------------------------------------------------------------------- */ |
778 | | |
779 | | typedef struct uhash_ctx { |
780 | | nh_ctx hash; /* Hash context for L1 NH hash */ |
781 | | UINT64 poly_key_8[STREAMS]; /* p64 poly keys */ |
782 | | UINT64 poly_accum[STREAMS]; /* poly hash result */ |
783 | | UINT64 ip_keys[STREAMS*4]; /* Inner-product keys */ |
784 | | UINT32 ip_trans[STREAMS]; /* Inner-product translation */ |
785 | | UINT32 msg_len; /* Total length of data passed */ |
786 | | /* to uhash */ |
787 | | } uhash_ctx; |
788 | | typedef struct uhash_ctx *uhash_ctx_t; |
789 | | |
790 | | /* ---------------------------------------------------------------------- */ |
791 | | |
792 | | |
793 | | /* The polynomial hashes use Horner's rule to evaluate a polynomial one |
794 | | * word at a time. As described in the specification, poly32 and poly64 |
795 | | * require keys from special domains. The following implementations exploit |
796 | | * the special domains to avoid overflow. The results are not guaranteed to |
797 | | * be within Z_p32 and Z_p64, but the Inner-Product hash implementation |
798 | | * patches any errant values. |
799 | | */ |
800 | | |
801 | | static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data) |
802 | 34.6k | { |
803 | 34.6k | UINT32 key_hi = (UINT32)(key >> 32), |
804 | 34.6k | key_lo = (UINT32)key, |
805 | 34.6k | cur_hi = (UINT32)(cur >> 32), |
806 | 34.6k | cur_lo = (UINT32)cur, |
807 | 34.6k | x_lo, |
808 | 34.6k | x_hi; |
809 | 34.6k | UINT64 X,T,res; |
810 | | |
811 | 34.6k | X = MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo); |
812 | 34.6k | x_lo = (UINT32)X; |
813 | 34.6k | x_hi = (UINT32)(X >> 32); |
814 | | |
815 | 34.6k | res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo); |
816 | | |
817 | 34.6k | T = ((UINT64)x_lo << 32); |
818 | 34.6k | res += T; |
819 | 34.6k | if (res < T) |
820 | 4.37k | res += 59; |
821 | | |
822 | 34.6k | res += data; |
823 | 34.6k | if (res < data) |
824 | 16.9k | res += 59; |
825 | | |
826 | 34.6k | return res; |
827 | 34.6k | } Line | Count | Source | 802 | 9.35k | { | 803 | 9.35k | UINT32 key_hi = (UINT32)(key >> 32), | 804 | 9.35k | key_lo = (UINT32)key, | 805 | 9.35k | cur_hi = (UINT32)(cur >> 32), | 806 | 9.35k | cur_lo = (UINT32)cur, | 807 | 9.35k | x_lo, | 808 | 9.35k | x_hi; | 809 | 9.35k | UINT64 X,T,res; | 810 | | | 811 | 9.35k | X = MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo); | 812 | 9.35k | x_lo = (UINT32)X; | 813 | 9.35k | x_hi = (UINT32)(X >> 32); | 814 | | | 815 | 9.35k | res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo); | 816 | | | 817 | 9.35k | T = ((UINT64)x_lo << 32); | 818 | 9.35k | res += T; | 819 | 9.35k | if (res < T) | 820 | 1.27k | res += 59; | 821 | | | 822 | 9.35k | res += data; | 823 | 9.35k | if (res < data) | 824 | 4.55k | res += 59; | 825 | | | 826 | 9.35k | return res; | 827 | 9.35k | } |
Line | Count | Source | 802 | 25.3k | { | 803 | 25.3k | UINT32 key_hi = (UINT32)(key >> 32), | 804 | 25.3k | key_lo = (UINT32)key, | 805 | 25.3k | cur_hi = (UINT32)(cur >> 32), | 806 | 25.3k | cur_lo = (UINT32)cur, | 807 | 25.3k | x_lo, | 808 | 25.3k | x_hi; | 809 | 25.3k | UINT64 X,T,res; | 810 | | | 811 | 25.3k | X = MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo); | 812 | 25.3k | x_lo = (UINT32)X; | 813 | 25.3k | x_hi = (UINT32)(X >> 32); | 814 | | | 815 | 25.3k | res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo); | 816 | | | 817 | 25.3k | T = ((UINT64)x_lo << 32); | 818 | 25.3k | res += T; | 819 | 25.3k | if (res < T) | 820 | 3.10k | res += 59; | 821 | | | 822 | 25.3k | res += data; | 823 | 25.3k | if (res < data) | 824 | 12.4k | res += 59; | 825 | | | 826 | 25.3k | return res; | 827 | 25.3k | } |
|
828 | | |
829 | | |
830 | | /* Although UMAC is specified to use a ramped polynomial hash scheme, this |
831 | | * implementation does not handle all ramp levels. Because we don't handle |
832 | | * the ramp up to p128 modulus in this implementation, we are limited to |
833 | | * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24 |
834 | | * bytes input to UMAC per tag, ie. 16MB). |
835 | | */ |
836 | | static void poly_hash(uhash_ctx_t hc, UINT32 data_in[]) |
837 | 11.0k | { |
838 | 11.0k | int i; |
839 | 11.0k | UINT64 *data=(UINT64*)data_in; |
840 | | |
841 | 45.6k | for (i = 0; i < STREAMS; i++) { |
842 | 34.6k | if ((UINT32)(data[i] >> 32) == 0xfffffffful) { |
843 | 0 | hc->poly_accum[i] = poly64(hc->poly_accum[i], |
844 | 0 | hc->poly_key_8[i], p64 - 1); |
845 | 0 | hc->poly_accum[i] = poly64(hc->poly_accum[i], |
846 | 0 | hc->poly_key_8[i], (data[i] - 59)); |
847 | 34.6k | } else { |
848 | 34.6k | hc->poly_accum[i] = poly64(hc->poly_accum[i], |
849 | 34.6k | hc->poly_key_8[i], data[i]); |
850 | 34.6k | } |
851 | 34.6k | } |
852 | 11.0k | } Line | Count | Source | 837 | 4.67k | { | 838 | 4.67k | int i; | 839 | 4.67k | UINT64 *data=(UINT64*)data_in; | 840 | | | 841 | 14.0k | for (i = 0; i < STREAMS; i++) { | 842 | 9.35k | if ((UINT32)(data[i] >> 32) == 0xfffffffful) { | 843 | 0 | hc->poly_accum[i] = poly64(hc->poly_accum[i], | 844 | 0 | hc->poly_key_8[i], p64 - 1); | 845 | 0 | hc->poly_accum[i] = poly64(hc->poly_accum[i], | 846 | 0 | hc->poly_key_8[i], (data[i] - 59)); | 847 | 9.35k | } else { | 848 | 9.35k | hc->poly_accum[i] = poly64(hc->poly_accum[i], | 849 | 9.35k | hc->poly_key_8[i], data[i]); | 850 | 9.35k | } | 851 | 9.35k | } | 852 | 4.67k | } |
Line | Count | Source | 837 | 6.33k | { | 838 | 6.33k | int i; | 839 | 6.33k | UINT64 *data=(UINT64*)data_in; | 840 | | | 841 | 31.6k | for (i = 0; i < STREAMS; i++) { | 842 | 25.3k | if ((UINT32)(data[i] >> 32) == 0xfffffffful) { | 843 | 0 | hc->poly_accum[i] = poly64(hc->poly_accum[i], | 844 | 0 | hc->poly_key_8[i], p64 - 1); | 845 | 0 | hc->poly_accum[i] = poly64(hc->poly_accum[i], | 846 | 0 | hc->poly_key_8[i], (data[i] - 59)); | 847 | 25.3k | } else { | 848 | 25.3k | hc->poly_accum[i] = poly64(hc->poly_accum[i], | 849 | 25.3k | hc->poly_key_8[i], data[i]); | 850 | 25.3k | } | 851 | 25.3k | } | 852 | 6.33k | } |
|
853 | | |
854 | | |
855 | | /* ---------------------------------------------------------------------- */ |
856 | | |
857 | | |
858 | | /* The final step in UHASH is an inner-product hash. The poly hash |
859 | | * produces a result not necessarily WORD_LEN bytes long. The inner- |
860 | | * product hash breaks the polyhash output into 16-bit chunks and |
861 | | * multiplies each with a 36 bit key. |
862 | | */ |
863 | | |
864 | | static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data) |
865 | 1.84M | { |
866 | 1.84M | t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48); |
867 | 1.84M | t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32); |
868 | 1.84M | t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16); |
869 | 1.84M | t = t + ipkp[3] * (UINT64)(UINT16)(data); |
870 | | |
871 | 1.84M | return t; |
872 | 1.84M | } Line | Count | Source | 865 | 518k | { | 866 | 518k | t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48); | 867 | 518k | t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32); | 868 | 518k | t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16); | 869 | 518k | t = t + ipkp[3] * (UINT64)(UINT16)(data); | 870 | | | 871 | 518k | return t; | 872 | 518k | } |
Line | Count | Source | 865 | 1.32M | { | 866 | 1.32M | t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48); | 867 | 1.32M | t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32); | 868 | 1.32M | t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16); | 869 | 1.32M | t = t + ipkp[3] * (UINT64)(UINT16)(data); | 870 | | | 871 | 1.32M | return t; | 872 | 1.32M | } |
|
873 | | |
874 | | static UINT32 ip_reduce_p36(UINT64 t) |
875 | 1.84M | { |
876 | | /* Divisionless modular reduction */ |
877 | 1.84M | UINT64 ret; |
878 | | |
879 | 1.84M | ret = (t & m36) + 5 * (t >> 36); |
880 | 1.84M | if (ret >= p36) |
881 | 15 | ret -= p36; |
882 | | |
883 | | /* return least significant 32 bits */ |
884 | 1.84M | return (UINT32)(ret); |
885 | 1.84M | } Line | Count | Source | 875 | 518k | { | 876 | | /* Divisionless modular reduction */ | 877 | 518k | UINT64 ret; | 878 | | | 879 | 518k | ret = (t & m36) + 5 * (t >> 36); | 880 | 518k | if (ret >= p36) | 881 | 2 | ret -= p36; | 882 | | | 883 | | /* return least significant 32 bits */ | 884 | 518k | return (UINT32)(ret); | 885 | 518k | } |
Line | Count | Source | 875 | 1.32M | { | 876 | | /* Divisionless modular reduction */ | 877 | 1.32M | UINT64 ret; | 878 | | | 879 | 1.32M | ret = (t & m36) + 5 * (t >> 36); | 880 | 1.32M | if (ret >= p36) | 881 | 13 | ret -= p36; | 882 | | | 883 | | /* return least significant 32 bits */ | 884 | 1.32M | return (UINT32)(ret); | 885 | 1.32M | } |
|
886 | | |
887 | | |
888 | | /* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then |
889 | | * the polyhash stage is skipped and ip_short is applied directly to the |
890 | | * NH output. |
891 | | */ |
892 | | static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res) |
893 | 591k | { |
894 | 591k | UINT64 t; |
895 | 591k | UINT64 *nhp = (UINT64 *)nh_res; |
896 | | |
897 | 591k | t = ip_aux(0,ahc->ip_keys, nhp[0]); |
898 | 591k | STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]); |
899 | 591k | #if (UMAC_OUTPUT_LEN >= 8) |
900 | 591k | t = ip_aux(0,ahc->ip_keys+4, nhp[1]); |
901 | 591k | STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]); |
902 | 591k | #endif |
903 | | #if (UMAC_OUTPUT_LEN >= 12) |
904 | | t = ip_aux(0,ahc->ip_keys+8, nhp[2]); |
905 | 332k | STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]); |
906 | | #endif |
907 | | #if (UMAC_OUTPUT_LEN == 16) |
908 | | t = ip_aux(0,ahc->ip_keys+12, nhp[3]); |
909 | 332k | STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]); |
910 | | #endif |
911 | 591k | } Line | Count | Source | 893 | 259k | { | 894 | 259k | UINT64 t; | 895 | 259k | UINT64 *nhp = (UINT64 *)nh_res; | 896 | | | 897 | 259k | t = ip_aux(0,ahc->ip_keys, nhp[0]); | 898 | 259k | STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]); | 899 | 259k | #if (UMAC_OUTPUT_LEN >= 8) | 900 | 259k | t = ip_aux(0,ahc->ip_keys+4, nhp[1]); | 901 | 259k | STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]); | 902 | 259k | #endif | 903 | | #if (UMAC_OUTPUT_LEN >= 12) | 904 | | t = ip_aux(0,ahc->ip_keys+8, nhp[2]); | 905 | | STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]); | 906 | | #endif | 907 | | #if (UMAC_OUTPUT_LEN == 16) | 908 | | t = ip_aux(0,ahc->ip_keys+12, nhp[3]); | 909 | | STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]); | 910 | | #endif | 911 | 259k | } |
Line | Count | Source | 893 | 332k | { | 894 | 332k | UINT64 t; | 895 | 332k | UINT64 *nhp = (UINT64 *)nh_res; | 896 | | | 897 | 332k | t = ip_aux(0,ahc->ip_keys, nhp[0]); | 898 | 332k | STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]); | 899 | 332k | #if (UMAC_OUTPUT_LEN >= 8) | 900 | 332k | t = ip_aux(0,ahc->ip_keys+4, nhp[1]); | 901 | 332k | STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]); | 902 | 332k | #endif | 903 | 332k | #if (UMAC_OUTPUT_LEN >= 12) | 904 | 332k | t = ip_aux(0,ahc->ip_keys+8, nhp[2]); | 905 | 332k | STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]); | 906 | 332k | #endif | 907 | 332k | #if (UMAC_OUTPUT_LEN == 16) | 908 | 332k | t = ip_aux(0,ahc->ip_keys+12, nhp[3]); | 909 | 332k | STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]); | 910 | 332k | #endif | 911 | 332k | } |
|
912 | | |
913 | | /* If the data being hashed by UHASH is longer than L1_KEY_LEN, then |
914 | | * the polyhash stage is not skipped and ip_long is applied to the |
915 | | * polyhash output. |
916 | | */ |
917 | | static void ip_long(uhash_ctx_t ahc, u_char *res) |
918 | 176 | { |
919 | 176 | int i; |
920 | 176 | UINT64 t; |
921 | | |
922 | 726 | for (i = 0; i < STREAMS; i++) { |
923 | | /* fix polyhash output not in Z_p64 */ |
924 | 550 | if (ahc->poly_accum[i] >= p64) |
925 | 0 | ahc->poly_accum[i] -= p64; |
926 | 550 | t = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]); |
927 | 550 | STORE_UINT32_BIG((UINT32 *)res+i, |
928 | 550 | ip_reduce_p36(t) ^ ahc->ip_trans[i]); |
929 | 550 | } |
930 | 176 | } Line | Count | Source | 918 | 77 | { | 919 | 77 | int i; | 920 | 77 | UINT64 t; | 921 | | | 922 | 231 | for (i = 0; i < STREAMS; i++) { | 923 | | /* fix polyhash output not in Z_p64 */ | 924 | 154 | if (ahc->poly_accum[i] >= p64) | 925 | 0 | ahc->poly_accum[i] -= p64; | 926 | 154 | t = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]); | 927 | 154 | STORE_UINT32_BIG((UINT32 *)res+i, | 928 | 154 | ip_reduce_p36(t) ^ ahc->ip_trans[i]); | 929 | 154 | } | 930 | 77 | } |
Line | Count | Source | 918 | 99 | { | 919 | 99 | int i; | 920 | 99 | UINT64 t; | 921 | | | 922 | 495 | for (i = 0; i < STREAMS; i++) { | 923 | | /* fix polyhash output not in Z_p64 */ | 924 | 396 | if (ahc->poly_accum[i] >= p64) | 925 | 0 | ahc->poly_accum[i] -= p64; | 926 | 396 | t = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]); | 927 | 396 | STORE_UINT32_BIG((UINT32 *)res+i, | 928 | 396 | ip_reduce_p36(t) ^ ahc->ip_trans[i]); | 929 | 396 | } | 930 | 99 | } |
|
931 | | |
932 | | |
933 | | /* ---------------------------------------------------------------------- */ |
934 | | |
935 | | /* ---------------------------------------------------------------------- */ |
936 | | |
937 | | /* Reset uhash context for next hash session */ |
938 | | static int uhash_reset(uhash_ctx_t pc) |
939 | 591k | { |
940 | 591k | nh_reset(&pc->hash); |
941 | 591k | pc->msg_len = 0; |
942 | 591k | pc->poly_accum[0] = 1; |
943 | 591k | #if (UMAC_OUTPUT_LEN >= 8) |
944 | 591k | pc->poly_accum[1] = 1; |
945 | 591k | #endif |
946 | | #if (UMAC_OUTPUT_LEN >= 12) |
947 | | pc->poly_accum[2] = 1; |
948 | | #endif |
949 | | #if (UMAC_OUTPUT_LEN == 16) |
950 | | pc->poly_accum[3] = 1; |
951 | | #endif |
952 | 591k | return 1; |
953 | 591k | } Line | Count | Source | 939 | 259k | { | 940 | 259k | nh_reset(&pc->hash); | 941 | 259k | pc->msg_len = 0; | 942 | 259k | pc->poly_accum[0] = 1; | 943 | 259k | #if (UMAC_OUTPUT_LEN >= 8) | 944 | 259k | pc->poly_accum[1] = 1; | 945 | 259k | #endif | 946 | | #if (UMAC_OUTPUT_LEN >= 12) | 947 | | pc->poly_accum[2] = 1; | 948 | | #endif | 949 | | #if (UMAC_OUTPUT_LEN == 16) | 950 | | pc->poly_accum[3] = 1; | 951 | | #endif | 952 | 259k | return 1; | 953 | 259k | } |
Line | Count | Source | 939 | 332k | { | 940 | 332k | nh_reset(&pc->hash); | 941 | 332k | pc->msg_len = 0; | 942 | 332k | pc->poly_accum[0] = 1; | 943 | 332k | #if (UMAC_OUTPUT_LEN >= 8) | 944 | 332k | pc->poly_accum[1] = 1; | 945 | 332k | #endif | 946 | 332k | #if (UMAC_OUTPUT_LEN >= 12) | 947 | 332k | pc->poly_accum[2] = 1; | 948 | 332k | #endif | 949 | 332k | #if (UMAC_OUTPUT_LEN == 16) | 950 | 332k | pc->poly_accum[3] = 1; | 951 | 332k | #endif | 952 | 332k | return 1; | 953 | 332k | } |
|
954 | | |
955 | | /* ---------------------------------------------------------------------- */ |
956 | | |
957 | | /* Given a pointer to the internal key needed by kdf() and a uhash context, |
958 | | * initialize the NH context and generate keys needed for poly and inner- |
959 | | * product hashing. All keys are endian adjusted in memory so that native |
960 | | * loads cause correct keys to be in registers during calculation. |
961 | | */ |
962 | | static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key) |
963 | 781 | { |
964 | 781 | int i; |
965 | 781 | UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)]; |
966 | | |
967 | | /* Zero the entire uhash context */ |
968 | 781 | memset(ahc, 0, sizeof(uhash_ctx)); |
969 | | |
970 | | /* Initialize the L1 hash */ |
971 | 781 | nh_init(&ahc->hash, prf_key); |
972 | | |
973 | | /* Setup L2 hash variables */ |
974 | 781 | kdf(buf, prf_key, 2, sizeof(buf)); /* Fill buffer with index 1 key */ |
975 | 3.21k | for (i = 0; i < STREAMS; i++) { |
976 | | /* Fill keys from the buffer, skipping bytes in the buffer not |
977 | | * used by this implementation. Endian reverse the keys if on a |
978 | | * little-endian computer. |
979 | | */ |
980 | 2.43k | memcpy(ahc->poly_key_8+i, buf+24*i, 8); |
981 | 2.43k | endian_convert_if_le(ahc->poly_key_8+i, 8, 8); |
982 | | /* Mask the 64-bit keys to their special domain */ |
983 | 2.43k | ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu; |
984 | 2.43k | ahc->poly_accum[i] = 1; /* Our polyhash prepends a non-zero word */ |
985 | 2.43k | } |
986 | | |
987 | | /* Setup L3-1 hash variables */ |
988 | 781 | kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */ |
989 | 3.21k | for (i = 0; i < STREAMS; i++) |
990 | 2.43k | memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64), |
991 | 2.43k | 4*sizeof(UINT64)); |
992 | 781 | endian_convert_if_le(ahc->ip_keys, sizeof(UINT64), |
993 | 781 | sizeof(ahc->ip_keys)); |
994 | 10.5k | for (i = 0; i < STREAMS*4; i++) |
995 | 9.72k | ahc->ip_keys[i] %= p36; /* Bring into Z_p36 */ |
996 | | |
997 | | /* Setup L3-2 hash variables */ |
998 | | /* Fill buffer with index 4 key */ |
999 | 781 | kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32)); |
1000 | 781 | endian_convert_if_le(ahc->ip_trans, sizeof(UINT32), |
1001 | 781 | STREAMS * sizeof(UINT32)); |
1002 | 781 | explicit_bzero(buf, sizeof(buf)); |
1003 | 781 | } Line | Count | Source | 963 | 347 | { | 964 | 347 | int i; | 965 | 347 | UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)]; | 966 | | | 967 | | /* Zero the entire uhash context */ | 968 | 347 | memset(ahc, 0, sizeof(uhash_ctx)); | 969 | | | 970 | | /* Initialize the L1 hash */ | 971 | 347 | nh_init(&ahc->hash, prf_key); | 972 | | | 973 | | /* Setup L2 hash variables */ | 974 | 347 | kdf(buf, prf_key, 2, sizeof(buf)); /* Fill buffer with index 1 key */ | 975 | 1.04k | for (i = 0; i < STREAMS; i++) { | 976 | | /* Fill keys from the buffer, skipping bytes in the buffer not | 977 | | * used by this implementation. Endian reverse the keys if on a | 978 | | * little-endian computer. | 979 | | */ | 980 | 694 | memcpy(ahc->poly_key_8+i, buf+24*i, 8); | 981 | 694 | endian_convert_if_le(ahc->poly_key_8+i, 8, 8); | 982 | | /* Mask the 64-bit keys to their special domain */ | 983 | 694 | ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu; | 984 | 694 | ahc->poly_accum[i] = 1; /* Our polyhash prepends a non-zero word */ | 985 | 694 | } | 986 | | | 987 | | /* Setup L3-1 hash variables */ | 988 | 347 | kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */ | 989 | 1.04k | for (i = 0; i < STREAMS; i++) | 990 | 694 | memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64), | 991 | 694 | 4*sizeof(UINT64)); | 992 | 347 | endian_convert_if_le(ahc->ip_keys, sizeof(UINT64), | 993 | 347 | sizeof(ahc->ip_keys)); | 994 | 3.12k | for (i = 0; i < STREAMS*4; i++) | 995 | 2.77k | ahc->ip_keys[i] %= p36; /* Bring into Z_p36 */ | 996 | | | 997 | | /* Setup L3-2 hash variables */ | 998 | | /* Fill buffer with index 4 key */ | 999 | 347 | kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32)); | 1000 | 347 | endian_convert_if_le(ahc->ip_trans, sizeof(UINT32), | 1001 | 347 | STREAMS * sizeof(UINT32)); | 1002 | 347 | explicit_bzero(buf, sizeof(buf)); | 1003 | 347 | } |
Line | Count | Source | 963 | 434 | { | 964 | 434 | int i; | 965 | 434 | UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)]; | 966 | | | 967 | | /* Zero the entire uhash context */ | 968 | 434 | memset(ahc, 0, sizeof(uhash_ctx)); | 969 | | | 970 | | /* Initialize the L1 hash */ | 971 | 434 | nh_init(&ahc->hash, prf_key); | 972 | | | 973 | | /* Setup L2 hash variables */ | 974 | 434 | kdf(buf, prf_key, 2, sizeof(buf)); /* Fill buffer with index 1 key */ | 975 | 2.17k | for (i = 0; i < STREAMS; i++) { | 976 | | /* Fill keys from the buffer, skipping bytes in the buffer not | 977 | | * used by this implementation. Endian reverse the keys if on a | 978 | | * little-endian computer. | 979 | | */ | 980 | 1.73k | memcpy(ahc->poly_key_8+i, buf+24*i, 8); | 981 | 1.73k | endian_convert_if_le(ahc->poly_key_8+i, 8, 8); | 982 | | /* Mask the 64-bit keys to their special domain */ | 983 | 1.73k | ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu; | 984 | 1.73k | ahc->poly_accum[i] = 1; /* Our polyhash prepends a non-zero word */ | 985 | 1.73k | } | 986 | | | 987 | | /* Setup L3-1 hash variables */ | 988 | 434 | kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */ | 989 | 2.17k | for (i = 0; i < STREAMS; i++) | 990 | 1.73k | memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64), | 991 | 1.73k | 4*sizeof(UINT64)); | 992 | 434 | endian_convert_if_le(ahc->ip_keys, sizeof(UINT64), | 993 | 434 | sizeof(ahc->ip_keys)); | 994 | 7.37k | for (i = 0; i < STREAMS*4; i++) | 995 | 6.94k | ahc->ip_keys[i] %= p36; /* Bring into Z_p36 */ | 996 | | | 997 | | /* Setup L3-2 hash variables */ | 998 | | /* Fill buffer with index 4 key */ | 999 | 434 | kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32)); | 1000 | 434 | endian_convert_if_le(ahc->ip_trans, sizeof(UINT32), | 1001 | 434 | STREAMS * sizeof(UINT32)); | 1002 | 434 | explicit_bzero(buf, sizeof(buf)); | 1003 | 434 | } |
|
1004 | | |
1005 | | /* ---------------------------------------------------------------------- */ |
1006 | | |
1007 | | #if 0 |
1008 | | static uhash_ctx_t uhash_alloc(u_char key[]) |
1009 | | { |
1010 | | /* Allocate memory and force to a 16-byte boundary. */ |
1011 | | uhash_ctx_t ctx; |
1012 | | u_char bytes_to_add; |
1013 | | aes_int_key prf_key; |
1014 | | |
1015 | | ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY); |
1016 | | if (ctx) { |
1017 | | if (ALLOC_BOUNDARY) { |
1018 | | bytes_to_add = ALLOC_BOUNDARY - |
1019 | | ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1)); |
1020 | | ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add); |
1021 | | *((u_char *)ctx - 1) = bytes_to_add; |
1022 | | } |
1023 | | aes_key_setup(key,prf_key); |
1024 | | uhash_init(ctx, prf_key); |
1025 | | } |
1026 | | return (ctx); |
1027 | | } |
1028 | | #endif |
1029 | | |
1030 | | /* ---------------------------------------------------------------------- */ |
1031 | | |
1032 | | #if 0 |
1033 | | static int uhash_free(uhash_ctx_t ctx) |
1034 | | { |
1035 | | /* Free memory allocated by uhash_alloc */ |
1036 | | u_char bytes_to_sub; |
1037 | | |
1038 | | if (ctx) { |
1039 | | if (ALLOC_BOUNDARY) { |
1040 | | bytes_to_sub = *((u_char *)ctx - 1); |
1041 | | ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub); |
1042 | | } |
1043 | | free(ctx); |
1044 | | } |
1045 | | return (1); |
1046 | | } |
1047 | | #endif |
1048 | | /* ---------------------------------------------------------------------- */ |
1049 | | |
1050 | | static int uhash_update(uhash_ctx_t ctx, const u_char *input, long len) |
1051 | | /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and |
1052 | | * hash each one with NH, calling the polyhash on each NH output. |
1053 | | */ |
1054 | 591k | { |
1055 | 591k | UWORD bytes_hashed, bytes_remaining; |
1056 | 591k | UINT64 result_buf[STREAMS]; |
1057 | 591k | UINT8 *nh_result = (UINT8 *)&result_buf; |
1058 | | |
1059 | 591k | if (ctx->msg_len + len <= L1_KEY_LEN) { |
1060 | 591k | nh_update(&ctx->hash, (const UINT8 *)input, len); |
1061 | 591k | ctx->msg_len += len; |
1062 | 591k | } else { |
1063 | | |
1064 | 176 | bytes_hashed = ctx->msg_len % L1_KEY_LEN; |
1065 | 176 | if (ctx->msg_len == L1_KEY_LEN) |
1066 | 0 | bytes_hashed = L1_KEY_LEN; |
1067 | | |
1068 | 176 | if (bytes_hashed + len >= L1_KEY_LEN) { |
1069 | | |
1070 | | /* If some bytes have been passed to the hash function */ |
1071 | | /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */ |
1072 | | /* bytes to complete the current nh_block. */ |
1073 | 176 | if (bytes_hashed) { |
1074 | 0 | bytes_remaining = (L1_KEY_LEN - bytes_hashed); |
1075 | 0 | nh_update(&ctx->hash, (const UINT8 *)input, bytes_remaining); |
1076 | 0 | nh_final(&ctx->hash, nh_result); |
1077 | 0 | ctx->msg_len += bytes_remaining; |
1078 | 0 | poly_hash(ctx,(UINT32 *)nh_result); |
1079 | 0 | len -= bytes_remaining; |
1080 | 0 | input += bytes_remaining; |
1081 | 0 | } |
1082 | | |
1083 | | /* Hash directly from input stream if enough bytes */ |
1084 | 11.0k | while (len >= L1_KEY_LEN) { |
1085 | 10.8k | nh(&ctx->hash, (const UINT8 *)input, L1_KEY_LEN, |
1086 | 10.8k | L1_KEY_LEN, nh_result); |
1087 | 10.8k | ctx->msg_len += L1_KEY_LEN; |
1088 | 10.8k | len -= L1_KEY_LEN; |
1089 | 10.8k | input += L1_KEY_LEN; |
1090 | 10.8k | poly_hash(ctx,(UINT32 *)nh_result); |
1091 | 10.8k | } |
1092 | 176 | } |
1093 | | |
1094 | | /* pass remaining < L1_KEY_LEN bytes of input data to NH */ |
1095 | 176 | if (len > 0 && (unsigned long)len <= UINT32_MAX) { |
1096 | 171 | nh_update(&ctx->hash, (const UINT8 *)input, len); |
1097 | 171 | ctx->msg_len += len; |
1098 | 171 | } |
1099 | 176 | } |
1100 | | |
1101 | 591k | return (1); |
1102 | 591k | } Line | Count | Source | 1054 | 259k | { | 1055 | 259k | UWORD bytes_hashed, bytes_remaining; | 1056 | 259k | UINT64 result_buf[STREAMS]; | 1057 | 259k | UINT8 *nh_result = (UINT8 *)&result_buf; | 1058 | | | 1059 | 259k | if (ctx->msg_len + len <= L1_KEY_LEN) { | 1060 | 259k | nh_update(&ctx->hash, (const UINT8 *)input, len); | 1061 | 259k | ctx->msg_len += len; | 1062 | 259k | } else { | 1063 | | | 1064 | 77 | bytes_hashed = ctx->msg_len % L1_KEY_LEN; | 1065 | 77 | if (ctx->msg_len == L1_KEY_LEN) | 1066 | 0 | bytes_hashed = L1_KEY_LEN; | 1067 | | | 1068 | 77 | if (bytes_hashed + len >= L1_KEY_LEN) { | 1069 | | | 1070 | | /* If some bytes have been passed to the hash function */ | 1071 | | /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */ | 1072 | | /* bytes to complete the current nh_block. */ | 1073 | 77 | if (bytes_hashed) { | 1074 | 0 | bytes_remaining = (L1_KEY_LEN - bytes_hashed); | 1075 | 0 | nh_update(&ctx->hash, (const UINT8 *)input, bytes_remaining); | 1076 | 0 | nh_final(&ctx->hash, nh_result); | 1077 | 0 | ctx->msg_len += bytes_remaining; | 1078 | 0 | poly_hash(ctx,(UINT32 *)nh_result); | 1079 | 0 | len -= bytes_remaining; | 1080 | 0 | input += bytes_remaining; | 1081 | 0 | } | 1082 | | | 1083 | | /* Hash directly from input stream if enough bytes */ | 1084 | 4.68k | while (len >= L1_KEY_LEN) { | 1085 | 4.60k | nh(&ctx->hash, (const UINT8 *)input, L1_KEY_LEN, | 1086 | 4.60k | L1_KEY_LEN, nh_result); | 1087 | 4.60k | ctx->msg_len += L1_KEY_LEN; | 1088 | 4.60k | len -= L1_KEY_LEN; | 1089 | 4.60k | input += L1_KEY_LEN; | 1090 | 4.60k | poly_hash(ctx,(UINT32 *)nh_result); | 1091 | 4.60k | } | 1092 | 77 | } | 1093 | | | 1094 | | /* pass remaining < L1_KEY_LEN bytes of input data to NH */ | 1095 | 77 | if (len > 0 && (unsigned long)len <= UINT32_MAX) { | 1096 | 76 | nh_update(&ctx->hash, (const UINT8 *)input, len); | 1097 | 76 | ctx->msg_len += len; | 1098 | 76 | } | 1099 | 77 | } | 1100 | | | 1101 | 259k | return (1); | 1102 | 259k | } |
Line | Count | Source | 1054 | 332k | { | 1055 | 332k | UWORD bytes_hashed, bytes_remaining; | 1056 | 332k | UINT64 result_buf[STREAMS]; | 1057 | 332k | UINT8 *nh_result = (UINT8 *)&result_buf; | 1058 | | | 1059 | 332k | if (ctx->msg_len + len <= L1_KEY_LEN) { | 1060 | 332k | nh_update(&ctx->hash, (const UINT8 *)input, len); | 1061 | 332k | ctx->msg_len += len; | 1062 | 332k | } else { | 1063 | | | 1064 | 99 | bytes_hashed = ctx->msg_len % L1_KEY_LEN; | 1065 | 99 | if (ctx->msg_len == L1_KEY_LEN) | 1066 | 0 | bytes_hashed = L1_KEY_LEN; | 1067 | | | 1068 | 99 | if (bytes_hashed + len >= L1_KEY_LEN) { | 1069 | | | 1070 | | /* If some bytes have been passed to the hash function */ | 1071 | | /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */ | 1072 | | /* bytes to complete the current nh_block. */ | 1073 | 99 | if (bytes_hashed) { | 1074 | 0 | bytes_remaining = (L1_KEY_LEN - bytes_hashed); | 1075 | 0 | nh_update(&ctx->hash, (const UINT8 *)input, bytes_remaining); | 1076 | 0 | nh_final(&ctx->hash, nh_result); | 1077 | 0 | ctx->msg_len += bytes_remaining; | 1078 | 0 | poly_hash(ctx,(UINT32 *)nh_result); | 1079 | 0 | len -= bytes_remaining; | 1080 | 0 | input += bytes_remaining; | 1081 | 0 | } | 1082 | | | 1083 | | /* Hash directly from input stream if enough bytes */ | 1084 | 6.33k | while (len >= L1_KEY_LEN) { | 1085 | 6.23k | nh(&ctx->hash, (const UINT8 *)input, L1_KEY_LEN, | 1086 | 6.23k | L1_KEY_LEN, nh_result); | 1087 | 6.23k | ctx->msg_len += L1_KEY_LEN; | 1088 | 6.23k | len -= L1_KEY_LEN; | 1089 | 6.23k | input += L1_KEY_LEN; | 1090 | 6.23k | poly_hash(ctx,(UINT32 *)nh_result); | 1091 | 6.23k | } | 1092 | 99 | } | 1093 | | | 1094 | | /* pass remaining < L1_KEY_LEN bytes of input data to NH */ | 1095 | 99 | if (len > 0 && (unsigned long)len <= UINT32_MAX) { | 1096 | 95 | nh_update(&ctx->hash, (const UINT8 *)input, len); | 1097 | 95 | ctx->msg_len += len; | 1098 | 95 | } | 1099 | 99 | } | 1100 | | | 1101 | 332k | return (1); | 1102 | 332k | } |
|
1103 | | |
1104 | | /* ---------------------------------------------------------------------- */ |
1105 | | |
1106 | | static int uhash_final(uhash_ctx_t ctx, u_char *res) |
1107 | | /* Incorporate any pending data, pad, and generate tag */ |
1108 | 591k | { |
1109 | 591k | UINT64 result_buf[STREAMS]; |
1110 | 591k | UINT8 *nh_result = (UINT8 *)&result_buf; |
1111 | | |
1112 | 591k | if (ctx->msg_len > L1_KEY_LEN) { |
1113 | 176 | if (ctx->msg_len % L1_KEY_LEN) { |
1114 | 171 | nh_final(&ctx->hash, nh_result); |
1115 | 171 | poly_hash(ctx,(UINT32 *)nh_result); |
1116 | 171 | } |
1117 | 176 | ip_long(ctx, res); |
1118 | 591k | } else { |
1119 | 591k | nh_final(&ctx->hash, nh_result); |
1120 | 591k | ip_short(ctx,nh_result, res); |
1121 | 591k | } |
1122 | 591k | uhash_reset(ctx); |
1123 | 591k | return (1); |
1124 | 591k | } Line | Count | Source | 1108 | 259k | { | 1109 | 259k | UINT64 result_buf[STREAMS]; | 1110 | 259k | UINT8 *nh_result = (UINT8 *)&result_buf; | 1111 | | | 1112 | 259k | if (ctx->msg_len > L1_KEY_LEN) { | 1113 | 77 | if (ctx->msg_len % L1_KEY_LEN) { | 1114 | 76 | nh_final(&ctx->hash, nh_result); | 1115 | 76 | poly_hash(ctx,(UINT32 *)nh_result); | 1116 | 76 | } | 1117 | 77 | ip_long(ctx, res); | 1118 | 259k | } else { | 1119 | 259k | nh_final(&ctx->hash, nh_result); | 1120 | 259k | ip_short(ctx,nh_result, res); | 1121 | 259k | } | 1122 | 259k | uhash_reset(ctx); | 1123 | 259k | return (1); | 1124 | 259k | } |
Line | Count | Source | 1108 | 332k | { | 1109 | 332k | UINT64 result_buf[STREAMS]; | 1110 | 332k | UINT8 *nh_result = (UINT8 *)&result_buf; | 1111 | | | 1112 | 332k | if (ctx->msg_len > L1_KEY_LEN) { | 1113 | 99 | if (ctx->msg_len % L1_KEY_LEN) { | 1114 | 95 | nh_final(&ctx->hash, nh_result); | 1115 | 95 | poly_hash(ctx,(UINT32 *)nh_result); | 1116 | 95 | } | 1117 | 99 | ip_long(ctx, res); | 1118 | 332k | } else { | 1119 | 332k | nh_final(&ctx->hash, nh_result); | 1120 | 332k | ip_short(ctx,nh_result, res); | 1121 | 332k | } | 1122 | 332k | uhash_reset(ctx); | 1123 | 332k | return (1); | 1124 | 332k | } |
|
1125 | | |
1126 | | /* ---------------------------------------------------------------------- */ |
1127 | | |
1128 | | #if 0 |
1129 | | static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res) |
1130 | | /* assumes that msg is in a writable buffer of length divisible by */ |
1131 | | /* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed. */ |
1132 | | { |
1133 | | UINT8 nh_result[STREAMS*sizeof(UINT64)]; |
1134 | | UINT32 nh_len; |
1135 | | int extra_zeroes_needed; |
1136 | | |
1137 | | /* If the message to be hashed is no longer than L1_HASH_LEN, we skip |
1138 | | * the polyhash. |
1139 | | */ |
1140 | | if (len <= L1_KEY_LEN) { |
1141 | | if (len == 0) /* If zero length messages will not */ |
1142 | | nh_len = L1_PAD_BOUNDARY; /* be seen, comment out this case */ |
1143 | | else |
1144 | | nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1)); |
1145 | | extra_zeroes_needed = nh_len - len; |
1146 | | zero_pad((UINT8 *)msg + len, extra_zeroes_needed); |
1147 | | nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result); |
1148 | | ip_short(ahc,nh_result, res); |
1149 | | } else { |
1150 | | /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH |
1151 | | * output to poly_hash(). |
1152 | | */ |
1153 | | do { |
1154 | | nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result); |
1155 | | poly_hash(ahc,(UINT32 *)nh_result); |
1156 | | len -= L1_KEY_LEN; |
1157 | | msg += L1_KEY_LEN; |
1158 | | } while (len >= L1_KEY_LEN); |
1159 | | if (len) { |
1160 | | nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1)); |
1161 | | extra_zeroes_needed = nh_len - len; |
1162 | | zero_pad((UINT8 *)msg + len, extra_zeroes_needed); |
1163 | | nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result); |
1164 | | poly_hash(ahc,(UINT32 *)nh_result); |
1165 | | } |
1166 | | |
1167 | | ip_long(ahc, res); |
1168 | | } |
1169 | | |
1170 | | uhash_reset(ahc); |
1171 | | return 1; |
1172 | | } |
1173 | | #endif |
1174 | | |
1175 | | /* ---------------------------------------------------------------------- */ |
1176 | | /* ---------------------------------------------------------------------- */ |
1177 | | /* ----- Begin UMAC Section --------------------------------------------- */ |
1178 | | /* ---------------------------------------------------------------------- */ |
1179 | | /* ---------------------------------------------------------------------- */ |
1180 | | |
1181 | | /* The UMAC interface has two interfaces, an all-at-once interface where |
1182 | | * the entire message to be authenticated is passed to UMAC in one buffer, |
1183 | | * and a sequential interface where the message is presented a little at a |
1184 | | * time. The all-at-once is more optimized than the sequential version and |
1185 | | * should be preferred when the sequential interface is not required. |
1186 | | */ |
1187 | | struct umac_ctx { |
1188 | | uhash_ctx hash; /* Hash function for message compression */ |
1189 | | pdf_ctx pdf; /* PDF for hashed output */ |
1190 | | void *free_ptr; /* Address to free this struct via */ |
1191 | | } umac_ctx; |
1192 | | |
1193 | | /* ---------------------------------------------------------------------- */ |
1194 | | |
1195 | | #if 0 |
1196 | | int umac_reset(struct umac_ctx *ctx) |
1197 | | /* Reset the hash function to begin a new authentication. */ |
1198 | | { |
1199 | | uhash_reset(&ctx->hash); |
1200 | | return (1); |
1201 | | } |
1202 | | #endif |
1203 | | |
1204 | | /* ---------------------------------------------------------------------- */ |
1205 | | |
1206 | | int umac_delete(struct umac_ctx *ctx) |
1207 | | /* Deallocate the ctx structure */ |
1208 | 781 | { |
1209 | 781 | if (ctx) { |
1210 | 781 | if (ALLOC_BOUNDARY) |
1211 | 781 | ctx = (struct umac_ctx *)ctx->free_ptr; |
1212 | 781 | freezero(ctx, sizeof(*ctx) + ALLOC_BOUNDARY); |
1213 | 781 | } |
1214 | 781 | return (1); |
1215 | 781 | } Line | Count | Source | 1208 | 347 | { | 1209 | 347 | if (ctx) { | 1210 | 347 | if (ALLOC_BOUNDARY) | 1211 | 347 | ctx = (struct umac_ctx *)ctx->free_ptr; | 1212 | 347 | freezero(ctx, sizeof(*ctx) + ALLOC_BOUNDARY); | 1213 | 347 | } | 1214 | 347 | return (1); | 1215 | 347 | } |
Line | Count | Source | 1208 | 434 | { | 1209 | 434 | if (ctx) { | 1210 | 434 | if (ALLOC_BOUNDARY) | 1211 | 434 | ctx = (struct umac_ctx *)ctx->free_ptr; | 1212 | 434 | freezero(ctx, sizeof(*ctx) + ALLOC_BOUNDARY); | 1213 | 434 | } | 1214 | 434 | return (1); | 1215 | 434 | } |
|
1216 | | |
1217 | | /* ---------------------------------------------------------------------- */ |
1218 | | |
1219 | | struct umac_ctx *umac_new(const u_char key[]) |
1220 | | /* Dynamically allocate a umac_ctx struct, initialize variables, |
1221 | | * generate subkeys from key. Align to 16-byte boundary. |
1222 | | */ |
1223 | 781 | { |
1224 | 781 | struct umac_ctx *ctx, *octx; |
1225 | 781 | size_t bytes_to_add; |
1226 | 781 | aes_int_key prf_key; |
1227 | | |
1228 | 781 | octx = ctx = xcalloc(1, sizeof(*ctx) + ALLOC_BOUNDARY); |
1229 | 781 | if (ctx) { |
1230 | 781 | if (ALLOC_BOUNDARY) { |
1231 | 781 | bytes_to_add = ALLOC_BOUNDARY - |
1232 | 781 | ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1)); |
1233 | 781 | ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add); |
1234 | 781 | } |
1235 | 781 | ctx->free_ptr = octx; |
1236 | 781 | aes_key_setup(key, prf_key); |
1237 | 781 | pdf_init(&ctx->pdf, prf_key); |
1238 | 781 | uhash_init(&ctx->hash, prf_key); |
1239 | 781 | explicit_bzero(prf_key, sizeof(prf_key)); |
1240 | 781 | } |
1241 | | |
1242 | 781 | return (ctx); |
1243 | 781 | } Line | Count | Source | 1223 | 347 | { | 1224 | 347 | struct umac_ctx *ctx, *octx; | 1225 | 347 | size_t bytes_to_add; | 1226 | 347 | aes_int_key prf_key; | 1227 | | | 1228 | 347 | octx = ctx = xcalloc(1, sizeof(*ctx) + ALLOC_BOUNDARY); | 1229 | 347 | if (ctx) { | 1230 | 347 | if (ALLOC_BOUNDARY) { | 1231 | 347 | bytes_to_add = ALLOC_BOUNDARY - | 1232 | 347 | ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1)); | 1233 | 347 | ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add); | 1234 | 347 | } | 1235 | 347 | ctx->free_ptr = octx; | 1236 | 347 | aes_key_setup(key, prf_key); | 1237 | 347 | pdf_init(&ctx->pdf, prf_key); | 1238 | 347 | uhash_init(&ctx->hash, prf_key); | 1239 | 347 | explicit_bzero(prf_key, sizeof(prf_key)); | 1240 | 347 | } | 1241 | | | 1242 | 347 | return (ctx); | 1243 | 347 | } |
Line | Count | Source | 1223 | 434 | { | 1224 | 434 | struct umac_ctx *ctx, *octx; | 1225 | 434 | size_t bytes_to_add; | 1226 | 434 | aes_int_key prf_key; | 1227 | | | 1228 | 434 | octx = ctx = xcalloc(1, sizeof(*ctx) + ALLOC_BOUNDARY); | 1229 | 434 | if (ctx) { | 1230 | 434 | if (ALLOC_BOUNDARY) { | 1231 | 434 | bytes_to_add = ALLOC_BOUNDARY - | 1232 | 434 | ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1)); | 1233 | 434 | ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add); | 1234 | 434 | } | 1235 | 434 | ctx->free_ptr = octx; | 1236 | 434 | aes_key_setup(key, prf_key); | 1237 | 434 | pdf_init(&ctx->pdf, prf_key); | 1238 | 434 | uhash_init(&ctx->hash, prf_key); | 1239 | 434 | explicit_bzero(prf_key, sizeof(prf_key)); | 1240 | 434 | } | 1241 | | | 1242 | 434 | return (ctx); | 1243 | 434 | } |
|
1244 | | |
1245 | | /* ---------------------------------------------------------------------- */ |
1246 | | |
1247 | | int umac_final(struct umac_ctx *ctx, u_char tag[], const u_char nonce[8]) |
1248 | | /* Incorporate any pending data, pad, and generate tag */ |
1249 | 591k | { |
1250 | 591k | uhash_final(&ctx->hash, (u_char *)tag); |
1251 | 591k | pdf_gen_xor(&ctx->pdf, (const UINT8 *)nonce, (UINT8 *)tag); |
1252 | | |
1253 | 591k | return (1); |
1254 | 591k | } Line | Count | Source | 1249 | 259k | { | 1250 | 259k | uhash_final(&ctx->hash, (u_char *)tag); | 1251 | 259k | pdf_gen_xor(&ctx->pdf, (const UINT8 *)nonce, (UINT8 *)tag); | 1252 | | | 1253 | 259k | return (1); | 1254 | 259k | } |
Line | Count | Source | 1249 | 332k | { | 1250 | 332k | uhash_final(&ctx->hash, (u_char *)tag); | 1251 | 332k | pdf_gen_xor(&ctx->pdf, (const UINT8 *)nonce, (UINT8 *)tag); | 1252 | | | 1253 | 332k | return (1); | 1254 | 332k | } |
|
1255 | | |
1256 | | /* ---------------------------------------------------------------------- */ |
1257 | | |
1258 | | int umac_update(struct umac_ctx *ctx, const u_char *input, long len) |
1259 | | /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and */ |
1260 | | /* hash each one, calling the PDF on the hashed output whenever the hash- */ |
1261 | | /* output buffer is full. */ |
1262 | 591k | { |
1263 | 591k | uhash_update(&ctx->hash, input, len); |
1264 | 591k | return (1); |
1265 | 591k | } Line | Count | Source | 1262 | 259k | { | 1263 | 259k | uhash_update(&ctx->hash, input, len); | 1264 | 259k | return (1); | 1265 | 259k | } |
Line | Count | Source | 1262 | 332k | { | 1263 | 332k | uhash_update(&ctx->hash, input, len); | 1264 | 332k | return (1); | 1265 | 332k | } |
|
1266 | | |
1267 | | /* ---------------------------------------------------------------------- */ |
1268 | | |
1269 | | #if 0 |
1270 | | int umac(struct umac_ctx *ctx, u_char *input, |
1271 | | long len, u_char tag[], |
1272 | | u_char nonce[8]) |
1273 | | /* All-in-one version simply calls umac_update() and umac_final(). */ |
1274 | | { |
1275 | | uhash(&ctx->hash, input, len, (u_char *)tag); |
1276 | | pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag); |
1277 | | |
1278 | | return (1); |
1279 | | } |
1280 | | #endif |
1281 | | |
1282 | | /* ---------------------------------------------------------------------- */ |
1283 | | /* ---------------------------------------------------------------------- */ |
1284 | | /* ----- End UMAC Section ----------------------------------------------- */ |
1285 | | /* ---------------------------------------------------------------------- */ |
1286 | | /* ---------------------------------------------------------------------- */ |