/src/openssl111/crypto/ec/curve448/eddsa.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2017-2020 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * Copyright 2015-2016 Cryptography Research, Inc. |
4 | | * |
5 | | * Licensed under the OpenSSL license (the "License"). You may not use |
6 | | * this file except in compliance with the License. You can obtain a copy |
7 | | * in the file LICENSE in the source distribution or at |
8 | | * https://www.openssl.org/source/license.html |
9 | | * |
10 | | * Originally written by Mike Hamburg |
11 | | */ |
12 | | #include <string.h> |
13 | | #include <openssl/crypto.h> |
14 | | #include <openssl/evp.h> |
15 | | #include "curve448_local.h" |
16 | | #include "word.h" |
17 | | #include "ed448.h" |
18 | | #include "internal/numbers.h" |
19 | | |
20 | 12 | #define COFACTOR 4 |
21 | | |
22 | | static c448_error_t oneshot_hash(uint8_t *out, size_t outlen, |
23 | | const uint8_t *in, size_t inlen) |
24 | 12 | { |
25 | 12 | EVP_MD_CTX *hashctx = EVP_MD_CTX_new(); |
26 | | |
27 | 12 | if (hashctx == NULL) |
28 | 0 | return C448_FAILURE; |
29 | | |
30 | 12 | if (!EVP_DigestInit_ex(hashctx, EVP_shake256(), NULL) |
31 | 12 | || !EVP_DigestUpdate(hashctx, in, inlen) |
32 | 12 | || !EVP_DigestFinalXOF(hashctx, out, outlen)) { |
33 | 0 | EVP_MD_CTX_free(hashctx); |
34 | 0 | return C448_FAILURE; |
35 | 0 | } |
36 | | |
37 | 12 | EVP_MD_CTX_free(hashctx); |
38 | 12 | return C448_SUCCESS; |
39 | 12 | } |
40 | | |
41 | | static void clamp(uint8_t secret_scalar_ser[EDDSA_448_PRIVATE_BYTES]) |
42 | 12 | { |
43 | 12 | secret_scalar_ser[0] &= -COFACTOR; |
44 | 12 | secret_scalar_ser[EDDSA_448_PRIVATE_BYTES - 1] = 0; |
45 | 12 | secret_scalar_ser[EDDSA_448_PRIVATE_BYTES - 2] |= 0x80; |
46 | 12 | } |
47 | | |
48 | | static c448_error_t hash_init_with_dom(EVP_MD_CTX *hashctx, uint8_t prehashed, |
49 | | uint8_t for_prehash, |
50 | | const uint8_t *context, |
51 | | size_t context_len) |
52 | 0 | { |
53 | | #ifdef CHARSET_EBCDIC |
54 | | const char dom_s[] = {0x53, 0x69, 0x67, 0x45, |
55 | | 0x64, 0x34, 0x34, 0x38, 0x00}; |
56 | | #else |
57 | 0 | const char dom_s[] = "SigEd448"; |
58 | 0 | #endif |
59 | 0 | uint8_t dom[2]; |
60 | |
|
61 | 0 | if (context_len > UINT8_MAX) |
62 | 0 | return C448_FAILURE; |
63 | | |
64 | 0 | dom[0] = (uint8_t)(2 - (prehashed == 0 ? 1 : 0) |
65 | 0 | - (for_prehash == 0 ? 1 : 0)); |
66 | 0 | dom[1] = (uint8_t)context_len; |
67 | |
|
68 | 0 | if (!EVP_DigestInit_ex(hashctx, EVP_shake256(), NULL) |
69 | 0 | || !EVP_DigestUpdate(hashctx, dom_s, strlen(dom_s)) |
70 | 0 | || !EVP_DigestUpdate(hashctx, dom, sizeof(dom)) |
71 | 0 | || !EVP_DigestUpdate(hashctx, context, context_len)) |
72 | 0 | return C448_FAILURE; |
73 | | |
74 | 0 | return C448_SUCCESS; |
75 | 0 | } |
76 | | |
77 | | /* In this file because it uses the hash */ |
78 | | c448_error_t c448_ed448_convert_private_key_to_x448( |
79 | | uint8_t x[X448_PRIVATE_BYTES], |
80 | | const uint8_t ed [EDDSA_448_PRIVATE_BYTES]) |
81 | 0 | { |
82 | | /* pass the private key through oneshot_hash function */ |
83 | | /* and keep the first X448_PRIVATE_BYTES bytes */ |
84 | 0 | return oneshot_hash(x, X448_PRIVATE_BYTES, ed, |
85 | 0 | EDDSA_448_PRIVATE_BYTES); |
86 | 0 | } |
87 | | |
88 | | c448_error_t c448_ed448_derive_public_key( |
89 | | uint8_t pubkey[EDDSA_448_PUBLIC_BYTES], |
90 | | const uint8_t privkey[EDDSA_448_PRIVATE_BYTES]) |
91 | 12 | { |
92 | | /* only this much used for keygen */ |
93 | 12 | uint8_t secret_scalar_ser[EDDSA_448_PRIVATE_BYTES]; |
94 | 12 | curve448_scalar_t secret_scalar; |
95 | 12 | unsigned int c; |
96 | 12 | curve448_point_t p; |
97 | | |
98 | 12 | if (!oneshot_hash(secret_scalar_ser, sizeof(secret_scalar_ser), privkey, |
99 | 12 | EDDSA_448_PRIVATE_BYTES)) |
100 | 0 | return C448_FAILURE; |
101 | | |
102 | 12 | clamp(secret_scalar_ser); |
103 | | |
104 | 12 | curve448_scalar_decode_long(secret_scalar, secret_scalar_ser, |
105 | 12 | sizeof(secret_scalar_ser)); |
106 | | |
107 | | /* |
108 | | * Since we are going to mul_by_cofactor during encoding, divide by it |
109 | | * here. However, the EdDSA base point is not the same as the decaf base |
110 | | * point if the sigma isogeny is in use: the EdDSA base point is on |
111 | | * Etwist_d/(1-d) and the decaf base point is on Etwist_d, and when |
112 | | * converted it effectively picks up a factor of 2 from the isogenies. So |
113 | | * we might start at 2 instead of 1. |
114 | | */ |
115 | 36 | for (c = 1; c < C448_EDDSA_ENCODE_RATIO; c <<= 1) |
116 | 24 | curve448_scalar_halve(secret_scalar, secret_scalar); |
117 | | |
118 | 12 | curve448_precomputed_scalarmul(p, curve448_precomputed_base, secret_scalar); |
119 | | |
120 | 12 | curve448_point_mul_by_ratio_and_encode_like_eddsa(pubkey, p); |
121 | | |
122 | | /* Cleanup */ |
123 | 12 | curve448_scalar_destroy(secret_scalar); |
124 | 12 | curve448_point_destroy(p); |
125 | 12 | OPENSSL_cleanse(secret_scalar_ser, sizeof(secret_scalar_ser)); |
126 | | |
127 | 12 | return C448_SUCCESS; |
128 | 12 | } |
129 | | |
130 | | c448_error_t c448_ed448_sign( |
131 | | uint8_t signature[EDDSA_448_SIGNATURE_BYTES], |
132 | | const uint8_t privkey[EDDSA_448_PRIVATE_BYTES], |
133 | | const uint8_t pubkey[EDDSA_448_PUBLIC_BYTES], |
134 | | const uint8_t *message, size_t message_len, |
135 | | uint8_t prehashed, const uint8_t *context, |
136 | | size_t context_len) |
137 | 0 | { |
138 | 0 | curve448_scalar_t secret_scalar; |
139 | 0 | EVP_MD_CTX *hashctx = EVP_MD_CTX_new(); |
140 | 0 | c448_error_t ret = C448_FAILURE; |
141 | 0 | curve448_scalar_t nonce_scalar; |
142 | 0 | uint8_t nonce_point[EDDSA_448_PUBLIC_BYTES] = { 0 }; |
143 | 0 | unsigned int c; |
144 | 0 | curve448_scalar_t challenge_scalar; |
145 | |
|
146 | 0 | if (hashctx == NULL) |
147 | 0 | return C448_FAILURE; |
148 | | |
149 | 0 | { |
150 | | /* |
151 | | * Schedule the secret key, First EDDSA_448_PRIVATE_BYTES is serialised |
152 | | * secret scalar,next EDDSA_448_PRIVATE_BYTES bytes is the seed. |
153 | | */ |
154 | 0 | uint8_t expanded[EDDSA_448_PRIVATE_BYTES * 2]; |
155 | |
|
156 | 0 | if (!oneshot_hash(expanded, sizeof(expanded), privkey, |
157 | 0 | EDDSA_448_PRIVATE_BYTES)) |
158 | 0 | goto err; |
159 | 0 | clamp(expanded); |
160 | 0 | curve448_scalar_decode_long(secret_scalar, expanded, |
161 | 0 | EDDSA_448_PRIVATE_BYTES); |
162 | | |
163 | | /* Hash to create the nonce */ |
164 | 0 | if (!hash_init_with_dom(hashctx, prehashed, 0, context, context_len) |
165 | 0 | || !EVP_DigestUpdate(hashctx, |
166 | 0 | expanded + EDDSA_448_PRIVATE_BYTES, |
167 | 0 | EDDSA_448_PRIVATE_BYTES) |
168 | 0 | || !EVP_DigestUpdate(hashctx, message, message_len)) { |
169 | 0 | OPENSSL_cleanse(expanded, sizeof(expanded)); |
170 | 0 | goto err; |
171 | 0 | } |
172 | 0 | OPENSSL_cleanse(expanded, sizeof(expanded)); |
173 | 0 | } |
174 | | |
175 | | /* Decode the nonce */ |
176 | 0 | { |
177 | 0 | uint8_t nonce[2 * EDDSA_448_PRIVATE_BYTES]; |
178 | |
|
179 | 0 | if (!EVP_DigestFinalXOF(hashctx, nonce, sizeof(nonce))) |
180 | 0 | goto err; |
181 | 0 | curve448_scalar_decode_long(nonce_scalar, nonce, sizeof(nonce)); |
182 | 0 | OPENSSL_cleanse(nonce, sizeof(nonce)); |
183 | 0 | } |
184 | | |
185 | 0 | { |
186 | | /* Scalarmul to create the nonce-point */ |
187 | 0 | curve448_scalar_t nonce_scalar_2; |
188 | 0 | curve448_point_t p; |
189 | |
|
190 | 0 | curve448_scalar_halve(nonce_scalar_2, nonce_scalar); |
191 | 0 | for (c = 2; c < C448_EDDSA_ENCODE_RATIO; c <<= 1) |
192 | 0 | curve448_scalar_halve(nonce_scalar_2, nonce_scalar_2); |
193 | |
|
194 | 0 | curve448_precomputed_scalarmul(p, curve448_precomputed_base, |
195 | 0 | nonce_scalar_2); |
196 | 0 | curve448_point_mul_by_ratio_and_encode_like_eddsa(nonce_point, p); |
197 | 0 | curve448_point_destroy(p); |
198 | 0 | curve448_scalar_destroy(nonce_scalar_2); |
199 | 0 | } |
200 | |
|
201 | 0 | { |
202 | 0 | uint8_t challenge[2 * EDDSA_448_PRIVATE_BYTES]; |
203 | | |
204 | | /* Compute the challenge */ |
205 | 0 | if (!hash_init_with_dom(hashctx, prehashed, 0, context, context_len) |
206 | 0 | || !EVP_DigestUpdate(hashctx, nonce_point, sizeof(nonce_point)) |
207 | 0 | || !EVP_DigestUpdate(hashctx, pubkey, EDDSA_448_PUBLIC_BYTES) |
208 | 0 | || !EVP_DigestUpdate(hashctx, message, message_len) |
209 | 0 | || !EVP_DigestFinalXOF(hashctx, challenge, sizeof(challenge))) |
210 | 0 | goto err; |
211 | | |
212 | 0 | curve448_scalar_decode_long(challenge_scalar, challenge, |
213 | 0 | sizeof(challenge)); |
214 | 0 | OPENSSL_cleanse(challenge, sizeof(challenge)); |
215 | 0 | } |
216 | | |
217 | 0 | curve448_scalar_mul(challenge_scalar, challenge_scalar, secret_scalar); |
218 | 0 | curve448_scalar_add(challenge_scalar, challenge_scalar, nonce_scalar); |
219 | |
|
220 | 0 | OPENSSL_cleanse(signature, EDDSA_448_SIGNATURE_BYTES); |
221 | 0 | memcpy(signature, nonce_point, sizeof(nonce_point)); |
222 | 0 | curve448_scalar_encode(&signature[EDDSA_448_PUBLIC_BYTES], |
223 | 0 | challenge_scalar); |
224 | |
|
225 | 0 | curve448_scalar_destroy(secret_scalar); |
226 | 0 | curve448_scalar_destroy(nonce_scalar); |
227 | 0 | curve448_scalar_destroy(challenge_scalar); |
228 | |
|
229 | 0 | ret = C448_SUCCESS; |
230 | 0 | err: |
231 | 0 | EVP_MD_CTX_free(hashctx); |
232 | 0 | return ret; |
233 | 0 | } |
234 | | |
235 | | c448_error_t c448_ed448_sign_prehash( |
236 | | uint8_t signature[EDDSA_448_SIGNATURE_BYTES], |
237 | | const uint8_t privkey[EDDSA_448_PRIVATE_BYTES], |
238 | | const uint8_t pubkey[EDDSA_448_PUBLIC_BYTES], |
239 | | const uint8_t hash[64], const uint8_t *context, |
240 | | size_t context_len) |
241 | 0 | { |
242 | 0 | return c448_ed448_sign(signature, privkey, pubkey, hash, 64, 1, context, |
243 | 0 | context_len); |
244 | 0 | } |
245 | | |
246 | | c448_error_t c448_ed448_verify( |
247 | | const uint8_t signature[EDDSA_448_SIGNATURE_BYTES], |
248 | | const uint8_t pubkey[EDDSA_448_PUBLIC_BYTES], |
249 | | const uint8_t *message, size_t message_len, |
250 | | uint8_t prehashed, const uint8_t *context, |
251 | | uint8_t context_len) |
252 | 0 | { |
253 | 0 | curve448_point_t pk_point, r_point; |
254 | 0 | c448_error_t error; |
255 | 0 | curve448_scalar_t challenge_scalar; |
256 | 0 | curve448_scalar_t response_scalar; |
257 | | /* Order in little endian format */ |
258 | 0 | static const uint8_t order[] = { |
259 | 0 | 0xF3, 0x44, 0x58, 0xAB, 0x92, 0xC2, 0x78, 0x23, 0x55, 0x8F, 0xC5, 0x8D, |
260 | 0 | 0x72, 0xC2, 0x6C, 0x21, 0x90, 0x36, 0xD6, 0xAE, 0x49, 0xDB, 0x4E, 0xC4, |
261 | 0 | 0xE9, 0x23, 0xCA, 0x7C, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
262 | 0 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
263 | 0 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x3F, 0x00 |
264 | 0 | }; |
265 | 0 | int i; |
266 | | |
267 | | /* |
268 | | * Check that s (second 57 bytes of the sig) is less than the order. Both |
269 | | * s and the order are in little-endian format. This can be done in |
270 | | * variable time, since if this is not the case the signature if publicly |
271 | | * invalid. |
272 | | */ |
273 | 0 | for (i = EDDSA_448_PUBLIC_BYTES - 1; i >= 0; i--) { |
274 | 0 | if (signature[i + EDDSA_448_PUBLIC_BYTES] > order[i]) |
275 | 0 | return C448_FAILURE; |
276 | 0 | if (signature[i + EDDSA_448_PUBLIC_BYTES] < order[i]) |
277 | 0 | break; |
278 | 0 | } |
279 | 0 | if (i < 0) |
280 | 0 | return C448_FAILURE; |
281 | | |
282 | 0 | error = |
283 | 0 | curve448_point_decode_like_eddsa_and_mul_by_ratio(pk_point, pubkey); |
284 | |
|
285 | 0 | if (C448_SUCCESS != error) |
286 | 0 | return error; |
287 | | |
288 | 0 | error = |
289 | 0 | curve448_point_decode_like_eddsa_and_mul_by_ratio(r_point, signature); |
290 | 0 | if (C448_SUCCESS != error) |
291 | 0 | return error; |
292 | | |
293 | 0 | { |
294 | | /* Compute the challenge */ |
295 | 0 | EVP_MD_CTX *hashctx = EVP_MD_CTX_new(); |
296 | 0 | uint8_t challenge[2 * EDDSA_448_PRIVATE_BYTES]; |
297 | |
|
298 | 0 | if (hashctx == NULL |
299 | 0 | || !hash_init_with_dom(hashctx, prehashed, 0, context, |
300 | 0 | context_len) |
301 | 0 | || !EVP_DigestUpdate(hashctx, signature, EDDSA_448_PUBLIC_BYTES) |
302 | 0 | || !EVP_DigestUpdate(hashctx, pubkey, EDDSA_448_PUBLIC_BYTES) |
303 | 0 | || !EVP_DigestUpdate(hashctx, message, message_len) |
304 | 0 | || !EVP_DigestFinalXOF(hashctx, challenge, sizeof(challenge))) { |
305 | 0 | EVP_MD_CTX_free(hashctx); |
306 | 0 | return C448_FAILURE; |
307 | 0 | } |
308 | | |
309 | 0 | EVP_MD_CTX_free(hashctx); |
310 | 0 | curve448_scalar_decode_long(challenge_scalar, challenge, |
311 | 0 | sizeof(challenge)); |
312 | 0 | OPENSSL_cleanse(challenge, sizeof(challenge)); |
313 | 0 | } |
314 | 0 | curve448_scalar_sub(challenge_scalar, curve448_scalar_zero, |
315 | 0 | challenge_scalar); |
316 | |
|
317 | 0 | curve448_scalar_decode_long(response_scalar, |
318 | 0 | &signature[EDDSA_448_PUBLIC_BYTES], |
319 | 0 | EDDSA_448_PRIVATE_BYTES); |
320 | | |
321 | | /* pk_point = -c(x(P)) + (cx + k)G = kG */ |
322 | 0 | curve448_base_double_scalarmul_non_secret(pk_point, |
323 | 0 | response_scalar, |
324 | 0 | pk_point, challenge_scalar); |
325 | 0 | return c448_succeed_if(curve448_point_eq(pk_point, r_point)); |
326 | 0 | } |
327 | | |
328 | | c448_error_t c448_ed448_verify_prehash( |
329 | | const uint8_t signature[EDDSA_448_SIGNATURE_BYTES], |
330 | | const uint8_t pubkey[EDDSA_448_PUBLIC_BYTES], |
331 | | const uint8_t hash[64], const uint8_t *context, |
332 | | uint8_t context_len) |
333 | 0 | { |
334 | 0 | return c448_ed448_verify(signature, pubkey, hash, 64, 1, context, |
335 | 0 | context_len); |
336 | 0 | } |
337 | | |
338 | | int ED448_sign(uint8_t *out_sig, const uint8_t *message, size_t message_len, |
339 | | const uint8_t public_key[57], const uint8_t private_key[57], |
340 | | const uint8_t *context, size_t context_len) |
341 | 0 | { |
342 | 0 | return c448_ed448_sign(out_sig, private_key, public_key, message, |
343 | 0 | message_len, 0, context, context_len) |
344 | 0 | == C448_SUCCESS; |
345 | 0 | } |
346 | | |
347 | | int ED448_verify(const uint8_t *message, size_t message_len, |
348 | | const uint8_t signature[114], const uint8_t public_key[57], |
349 | | const uint8_t *context, size_t context_len) |
350 | 0 | { |
351 | 0 | return c448_ed448_verify(signature, public_key, message, message_len, 0, |
352 | 0 | context, (uint8_t)context_len) == C448_SUCCESS; |
353 | 0 | } |
354 | | |
355 | | int ED448ph_sign(uint8_t *out_sig, const uint8_t hash[64], |
356 | | const uint8_t public_key[57], const uint8_t private_key[57], |
357 | | const uint8_t *context, size_t context_len) |
358 | 0 | { |
359 | 0 | return c448_ed448_sign_prehash(out_sig, private_key, public_key, hash, |
360 | 0 | context, context_len) == C448_SUCCESS; |
361 | |
|
362 | 0 | } |
363 | | |
364 | | int ED448ph_verify(const uint8_t hash[64], const uint8_t signature[114], |
365 | | const uint8_t public_key[57], const uint8_t *context, |
366 | | size_t context_len) |
367 | 0 | { |
368 | 0 | return c448_ed448_verify_prehash(signature, public_key, hash, context, |
369 | 0 | (uint8_t)context_len) == C448_SUCCESS; |
370 | 0 | } |
371 | | |
372 | | int ED448_public_from_private(uint8_t out_public_key[57], |
373 | | const uint8_t private_key[57]) |
374 | 12 | { |
375 | 12 | return c448_ed448_derive_public_key(out_public_key, private_key) |
376 | 12 | == C448_SUCCESS; |
377 | 12 | } |