/src/openssl111/crypto/ec/ec_mult.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2001-2020 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved |
4 | | * |
5 | | * Licensed under the OpenSSL license (the "License"). You may not use |
6 | | * this file except in compliance with the License. You can obtain a copy |
7 | | * in the file LICENSE in the source distribution or at |
8 | | * https://www.openssl.org/source/license.html |
9 | | */ |
10 | | |
11 | | #include <string.h> |
12 | | #include <openssl/err.h> |
13 | | |
14 | | #include "internal/cryptlib.h" |
15 | | #include "crypto/bn.h" |
16 | | #include "ec_local.h" |
17 | | #include "internal/refcount.h" |
18 | | |
19 | | /* |
20 | | * This file implements the wNAF-based interleaving multi-exponentiation method |
21 | | * Formerly at: |
22 | | * http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp |
23 | | * You might now find it here: |
24 | | * http://link.springer.com/chapter/10.1007%2F3-540-45537-X_13 |
25 | | * http://www.bmoeller.de/pdf/TI-01-08.multiexp.pdf |
26 | | * For multiplication with precomputation, we use wNAF splitting, formerly at: |
27 | | * http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp |
28 | | */ |
29 | | |
30 | | /* structure for precomputed multiples of the generator */ |
31 | | struct ec_pre_comp_st { |
32 | | const EC_GROUP *group; /* parent EC_GROUP object */ |
33 | | size_t blocksize; /* block size for wNAF splitting */ |
34 | | size_t numblocks; /* max. number of blocks for which we have |
35 | | * precomputation */ |
36 | | size_t w; /* window size */ |
37 | | EC_POINT **points; /* array with pre-calculated multiples of |
38 | | * generator: 'num' pointers to EC_POINT |
39 | | * objects followed by a NULL */ |
40 | | size_t num; /* numblocks * 2^(w-1) */ |
41 | | CRYPTO_REF_COUNT references; |
42 | | CRYPTO_RWLOCK *lock; |
43 | | }; |
44 | | |
45 | | static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group) |
46 | 0 | { |
47 | 0 | EC_PRE_COMP *ret = NULL; |
48 | |
|
49 | 0 | if (!group) |
50 | 0 | return NULL; |
51 | | |
52 | 0 | ret = OPENSSL_zalloc(sizeof(*ret)); |
53 | 0 | if (ret == NULL) { |
54 | 0 | ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); |
55 | 0 | return ret; |
56 | 0 | } |
57 | | |
58 | 0 | ret->group = group; |
59 | 0 | ret->blocksize = 8; /* default */ |
60 | 0 | ret->w = 4; /* default */ |
61 | 0 | ret->references = 1; |
62 | |
|
63 | 0 | ret->lock = CRYPTO_THREAD_lock_new(); |
64 | 0 | if (ret->lock == NULL) { |
65 | 0 | ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); |
66 | 0 | OPENSSL_free(ret); |
67 | 0 | return NULL; |
68 | 0 | } |
69 | 0 | return ret; |
70 | 0 | } |
71 | | |
72 | | EC_PRE_COMP *EC_ec_pre_comp_dup(EC_PRE_COMP *pre) |
73 | 0 | { |
74 | 0 | int i; |
75 | 0 | if (pre != NULL) |
76 | 0 | CRYPTO_UP_REF(&pre->references, &i, pre->lock); |
77 | 0 | return pre; |
78 | 0 | } |
79 | | |
80 | | void EC_ec_pre_comp_free(EC_PRE_COMP *pre) |
81 | 0 | { |
82 | 0 | int i; |
83 | |
|
84 | 0 | if (pre == NULL) |
85 | 0 | return; |
86 | | |
87 | 0 | CRYPTO_DOWN_REF(&pre->references, &i, pre->lock); |
88 | 0 | REF_PRINT_COUNT("EC_ec", pre); |
89 | 0 | if (i > 0) |
90 | 0 | return; |
91 | 0 | REF_ASSERT_ISNT(i < 0); |
92 | |
|
93 | 0 | if (pre->points != NULL) { |
94 | 0 | EC_POINT **pts; |
95 | |
|
96 | 0 | for (pts = pre->points; *pts != NULL; pts++) |
97 | 0 | EC_POINT_free(*pts); |
98 | 0 | OPENSSL_free(pre->points); |
99 | 0 | } |
100 | 0 | CRYPTO_THREAD_lock_free(pre->lock); |
101 | 0 | OPENSSL_free(pre); |
102 | 0 | } |
103 | | |
104 | 1.41k | #define EC_POINT_BN_set_flags(P, flags) do { \ |
105 | 1.41k | BN_set_flags((P)->X, (flags)); \ |
106 | 1.41k | BN_set_flags((P)->Y, (flags)); \ |
107 | 1.41k | BN_set_flags((P)->Z, (flags)); \ |
108 | 1.41k | } while(0) |
109 | | |
110 | | /*- |
111 | | * This functions computes a single point multiplication over the EC group, |
112 | | * using, at a high level, a Montgomery ladder with conditional swaps, with |
113 | | * various timing attack defenses. |
114 | | * |
115 | | * It performs either a fixed point multiplication |
116 | | * (scalar * generator) |
117 | | * when point is NULL, or a variable point multiplication |
118 | | * (scalar * point) |
119 | | * when point is not NULL. |
120 | | * |
121 | | * `scalar` cannot be NULL and should be in the range [0,n) otherwise all |
122 | | * constant time bets are off (where n is the cardinality of the EC group). |
123 | | * |
124 | | * This function expects `group->order` and `group->cardinality` to be well |
125 | | * defined and non-zero: it fails with an error code otherwise. |
126 | | * |
127 | | * NB: This says nothing about the constant-timeness of the ladder step |
128 | | * implementation (i.e., the default implementation is based on EC_POINT_add and |
129 | | * EC_POINT_dbl, which of course are not constant time themselves) or the |
130 | | * underlying multiprecision arithmetic. |
131 | | * |
132 | | * The product is stored in `r`. |
133 | | * |
134 | | * This is an internal function: callers are in charge of ensuring that the |
135 | | * input parameters `group`, `r`, `scalar` and `ctx` are not NULL. |
136 | | * |
137 | | * Returns 1 on success, 0 otherwise. |
138 | | */ |
139 | | int ec_scalar_mul_ladder(const EC_GROUP *group, EC_POINT *r, |
140 | | const BIGNUM *scalar, const EC_POINT *point, |
141 | | BN_CTX *ctx) |
142 | 470 | { |
143 | 470 | int i, cardinality_bits, group_top, kbit, pbit, Z_is_one; |
144 | 470 | EC_POINT *p = NULL; |
145 | 470 | EC_POINT *s = NULL; |
146 | 470 | BIGNUM *k = NULL; |
147 | 470 | BIGNUM *lambda = NULL; |
148 | 470 | BIGNUM *cardinality = NULL; |
149 | 470 | int ret = 0; |
150 | | |
151 | | /* early exit if the input point is the point at infinity */ |
152 | 470 | if (point != NULL && EC_POINT_is_at_infinity(group, point)) |
153 | 0 | return EC_POINT_set_to_infinity(group, r); |
154 | | |
155 | 470 | if (BN_is_zero(group->order)) { |
156 | 0 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_UNKNOWN_ORDER); |
157 | 0 | return 0; |
158 | 0 | } |
159 | 470 | if (BN_is_zero(group->cofactor)) { |
160 | 0 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_UNKNOWN_COFACTOR); |
161 | 0 | return 0; |
162 | 0 | } |
163 | | |
164 | 470 | BN_CTX_start(ctx); |
165 | | |
166 | 470 | if (((p = EC_POINT_new(group)) == NULL) |
167 | 470 | || ((s = EC_POINT_new(group)) == NULL)) { |
168 | 0 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_MALLOC_FAILURE); |
169 | 0 | goto err; |
170 | 0 | } |
171 | | |
172 | 470 | if (point == NULL) { |
173 | 470 | if (!EC_POINT_copy(p, group->generator)) { |
174 | 0 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_EC_LIB); |
175 | 0 | goto err; |
176 | 0 | } |
177 | 470 | } else { |
178 | 0 | if (!EC_POINT_copy(p, point)) { |
179 | 0 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_EC_LIB); |
180 | 0 | goto err; |
181 | 0 | } |
182 | 0 | } |
183 | | |
184 | 470 | EC_POINT_BN_set_flags(p, BN_FLG_CONSTTIME); |
185 | 470 | EC_POINT_BN_set_flags(r, BN_FLG_CONSTTIME); |
186 | 470 | EC_POINT_BN_set_flags(s, BN_FLG_CONSTTIME); |
187 | | |
188 | 470 | cardinality = BN_CTX_get(ctx); |
189 | 470 | lambda = BN_CTX_get(ctx); |
190 | 470 | k = BN_CTX_get(ctx); |
191 | 470 | if (k == NULL) { |
192 | 0 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_MALLOC_FAILURE); |
193 | 0 | goto err; |
194 | 0 | } |
195 | | |
196 | 470 | if (!BN_mul(cardinality, group->order, group->cofactor, ctx)) { |
197 | 0 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB); |
198 | 0 | goto err; |
199 | 0 | } |
200 | | |
201 | | /* |
202 | | * Group cardinalities are often on a word boundary. |
203 | | * So when we pad the scalar, some timing diff might |
204 | | * pop if it needs to be expanded due to carries. |
205 | | * So expand ahead of time. |
206 | | */ |
207 | 470 | cardinality_bits = BN_num_bits(cardinality); |
208 | 470 | group_top = bn_get_top(cardinality); |
209 | 470 | if ((bn_wexpand(k, group_top + 2) == NULL) |
210 | 470 | || (bn_wexpand(lambda, group_top + 2) == NULL)) { |
211 | 0 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB); |
212 | 0 | goto err; |
213 | 0 | } |
214 | | |
215 | 470 | if (!BN_copy(k, scalar)) { |
216 | 0 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB); |
217 | 0 | goto err; |
218 | 0 | } |
219 | | |
220 | 470 | BN_set_flags(k, BN_FLG_CONSTTIME); |
221 | | |
222 | 470 | if ((BN_num_bits(k) > cardinality_bits) || (BN_is_negative(k))) { |
223 | | /*- |
224 | | * this is an unusual input, and we don't guarantee |
225 | | * constant-timeness |
226 | | */ |
227 | 191 | if (!BN_nnmod(k, k, cardinality, ctx)) { |
228 | 0 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB); |
229 | 0 | goto err; |
230 | 0 | } |
231 | 191 | } |
232 | | |
233 | 470 | if (!BN_add(lambda, k, cardinality)) { |
234 | 0 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB); |
235 | 0 | goto err; |
236 | 0 | } |
237 | 470 | BN_set_flags(lambda, BN_FLG_CONSTTIME); |
238 | 470 | if (!BN_add(k, lambda, cardinality)) { |
239 | 0 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB); |
240 | 0 | goto err; |
241 | 0 | } |
242 | | /* |
243 | | * lambda := scalar + cardinality |
244 | | * k := scalar + 2*cardinality |
245 | | */ |
246 | 470 | kbit = BN_is_bit_set(lambda, cardinality_bits); |
247 | 470 | BN_consttime_swap(kbit, k, lambda, group_top + 2); |
248 | | |
249 | 470 | group_top = bn_get_top(group->field); |
250 | 470 | if ((bn_wexpand(s->X, group_top) == NULL) |
251 | 470 | || (bn_wexpand(s->Y, group_top) == NULL) |
252 | 470 | || (bn_wexpand(s->Z, group_top) == NULL) |
253 | 470 | || (bn_wexpand(r->X, group_top) == NULL) |
254 | 470 | || (bn_wexpand(r->Y, group_top) == NULL) |
255 | 470 | || (bn_wexpand(r->Z, group_top) == NULL) |
256 | 470 | || (bn_wexpand(p->X, group_top) == NULL) |
257 | 470 | || (bn_wexpand(p->Y, group_top) == NULL) |
258 | 470 | || (bn_wexpand(p->Z, group_top) == NULL)) { |
259 | 0 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB); |
260 | 0 | goto err; |
261 | 0 | } |
262 | | |
263 | | /* ensure input point is in affine coords for ladder step efficiency */ |
264 | 470 | if (!p->Z_is_one && !EC_POINT_make_affine(group, p, ctx)) { |
265 | 0 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_EC_LIB); |
266 | 0 | goto err; |
267 | 0 | } |
268 | | |
269 | | /* Initialize the Montgomery ladder */ |
270 | 470 | if (!ec_point_ladder_pre(group, r, s, p, ctx)) { |
271 | 0 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_LADDER_PRE_FAILURE); |
272 | 0 | goto err; |
273 | 0 | } |
274 | | |
275 | | /* top bit is a 1, in a fixed pos */ |
276 | 470 | pbit = 1; |
277 | | |
278 | 110k | #define EC_POINT_CSWAP(c, a, b, w, t) do { \ |
279 | 110k | BN_consttime_swap(c, (a)->X, (b)->X, w); \ |
280 | 110k | BN_consttime_swap(c, (a)->Y, (b)->Y, w); \ |
281 | 110k | BN_consttime_swap(c, (a)->Z, (b)->Z, w); \ |
282 | 110k | t = ((a)->Z_is_one ^ (b)->Z_is_one) & (c); \ |
283 | 110k | (a)->Z_is_one ^= (t); \ |
284 | 110k | (b)->Z_is_one ^= (t); \ |
285 | 110k | } while(0) |
286 | | |
287 | | /*- |
288 | | * The ladder step, with branches, is |
289 | | * |
290 | | * k[i] == 0: S = add(R, S), R = dbl(R) |
291 | | * k[i] == 1: R = add(S, R), S = dbl(S) |
292 | | * |
293 | | * Swapping R, S conditionally on k[i] leaves you with state |
294 | | * |
295 | | * k[i] == 0: T, U = R, S |
296 | | * k[i] == 1: T, U = S, R |
297 | | * |
298 | | * Then perform the ECC ops. |
299 | | * |
300 | | * U = add(T, U) |
301 | | * T = dbl(T) |
302 | | * |
303 | | * Which leaves you with state |
304 | | * |
305 | | * k[i] == 0: U = add(R, S), T = dbl(R) |
306 | | * k[i] == 1: U = add(S, R), T = dbl(S) |
307 | | * |
308 | | * Swapping T, U conditionally on k[i] leaves you with state |
309 | | * |
310 | | * k[i] == 0: R, S = T, U |
311 | | * k[i] == 1: R, S = U, T |
312 | | * |
313 | | * Which leaves you with state |
314 | | * |
315 | | * k[i] == 0: S = add(R, S), R = dbl(R) |
316 | | * k[i] == 1: R = add(S, R), S = dbl(S) |
317 | | * |
318 | | * So we get the same logic, but instead of a branch it's a |
319 | | * conditional swap, followed by ECC ops, then another conditional swap. |
320 | | * |
321 | | * Optimization: The end of iteration i and start of i-1 looks like |
322 | | * |
323 | | * ... |
324 | | * CSWAP(k[i], R, S) |
325 | | * ECC |
326 | | * CSWAP(k[i], R, S) |
327 | | * (next iteration) |
328 | | * CSWAP(k[i-1], R, S) |
329 | | * ECC |
330 | | * CSWAP(k[i-1], R, S) |
331 | | * ... |
332 | | * |
333 | | * So instead of two contiguous swaps, you can merge the condition |
334 | | * bits and do a single swap. |
335 | | * |
336 | | * k[i] k[i-1] Outcome |
337 | | * 0 0 No Swap |
338 | | * 0 1 Swap |
339 | | * 1 0 Swap |
340 | | * 1 1 No Swap |
341 | | * |
342 | | * This is XOR. pbit tracks the previous bit of k. |
343 | | */ |
344 | | |
345 | 110k | for (i = cardinality_bits - 1; i >= 0; i--) { |
346 | 109k | kbit = BN_is_bit_set(k, i) ^ pbit; |
347 | 109k | EC_POINT_CSWAP(kbit, r, s, group_top, Z_is_one); |
348 | | |
349 | | /* Perform a single step of the Montgomery ladder */ |
350 | 109k | if (!ec_point_ladder_step(group, r, s, p, ctx)) { |
351 | 0 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_LADDER_STEP_FAILURE); |
352 | 0 | goto err; |
353 | 0 | } |
354 | | /* |
355 | | * pbit logic merges this cswap with that of the |
356 | | * next iteration |
357 | | */ |
358 | 109k | pbit ^= kbit; |
359 | 109k | } |
360 | | /* one final cswap to move the right value into r */ |
361 | 470 | EC_POINT_CSWAP(pbit, r, s, group_top, Z_is_one); |
362 | 470 | #undef EC_POINT_CSWAP |
363 | | |
364 | | /* Finalize ladder (and recover full point coordinates) */ |
365 | 470 | if (!ec_point_ladder_post(group, r, s, p, ctx)) { |
366 | 0 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_LADDER_POST_FAILURE); |
367 | 0 | goto err; |
368 | 0 | } |
369 | | |
370 | 470 | ret = 1; |
371 | | |
372 | 470 | err: |
373 | 470 | EC_POINT_free(p); |
374 | 470 | EC_POINT_clear_free(s); |
375 | 470 | BN_CTX_end(ctx); |
376 | | |
377 | 470 | return ret; |
378 | 470 | } |
379 | | |
380 | | #undef EC_POINT_BN_set_flags |
381 | | |
382 | | /* |
383 | | * TODO: table should be optimised for the wNAF-based implementation, |
384 | | * sometimes smaller windows will give better performance (thus the |
385 | | * boundaries should be increased) |
386 | | */ |
387 | | #define EC_window_bits_for_scalar_size(b) \ |
388 | 69 | ((size_t) \ |
389 | 69 | ((b) >= 2000 ? 6 : \ |
390 | 69 | (b) >= 800 ? 5 : \ |
391 | 69 | (b) >= 300 ? 4 : \ |
392 | 62 | (b) >= 70 ? 3 : \ |
393 | 59 | (b) >= 20 ? 2 : \ |
394 | 50 | 1)) |
395 | | |
396 | | /*- |
397 | | * Compute |
398 | | * \sum scalars[i]*points[i], |
399 | | * also including |
400 | | * scalar*generator |
401 | | * in the addition if scalar != NULL |
402 | | */ |
403 | | int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, |
404 | | size_t num, const EC_POINT *points[], const BIGNUM *scalars[], |
405 | | BN_CTX *ctx) |
406 | 296 | { |
407 | 296 | const EC_POINT *generator = NULL; |
408 | 296 | EC_POINT *tmp = NULL; |
409 | 296 | size_t totalnum; |
410 | 296 | size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */ |
411 | 296 | size_t pre_points_per_block = 0; |
412 | 296 | size_t i, j; |
413 | 296 | int k; |
414 | 296 | int r_is_inverted = 0; |
415 | 296 | int r_is_at_infinity = 1; |
416 | 296 | size_t *wsize = NULL; /* individual window sizes */ |
417 | 296 | signed char **wNAF = NULL; /* individual wNAFs */ |
418 | 296 | size_t *wNAF_len = NULL; |
419 | 296 | size_t max_len = 0; |
420 | 296 | size_t num_val; |
421 | 296 | EC_POINT **val = NULL; /* precomputation */ |
422 | 296 | EC_POINT **v; |
423 | 296 | EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or |
424 | | * 'pre_comp->points' */ |
425 | 296 | const EC_PRE_COMP *pre_comp = NULL; |
426 | 296 | int num_scalar = 0; /* flag: will be set to 1 if 'scalar' must be |
427 | | * treated like other scalars, i.e. |
428 | | * precomputation is not available */ |
429 | 296 | int ret = 0; |
430 | | |
431 | 296 | if (!BN_is_zero(group->order) && !BN_is_zero(group->cofactor)) { |
432 | | /*- |
433 | | * Handle the common cases where the scalar is secret, enforcing a |
434 | | * scalar multiplication implementation based on a Montgomery ladder, |
435 | | * with various timing attack defenses. |
436 | | */ |
437 | 227 | if ((scalar != group->order) && (scalar != NULL) && (num == 0)) { |
438 | | /*- |
439 | | * In this case we want to compute scalar * GeneratorPoint: this |
440 | | * codepath is reached most prominently by (ephemeral) key |
441 | | * generation of EC cryptosystems (i.e. ECDSA keygen and sign setup, |
442 | | * ECDH keygen/first half), where the scalar is always secret. This |
443 | | * is why we ignore if BN_FLG_CONSTTIME is actually set and we |
444 | | * always call the ladder version. |
445 | | */ |
446 | 227 | return ec_scalar_mul_ladder(group, r, scalar, NULL, ctx); |
447 | 227 | } |
448 | 0 | if ((scalar == NULL) && (num == 1) && (scalars[0] != group->order)) { |
449 | | /*- |
450 | | * In this case we want to compute scalar * VariablePoint: this |
451 | | * codepath is reached most prominently by the second half of ECDH, |
452 | | * where the secret scalar is multiplied by the peer's public point. |
453 | | * To protect the secret scalar, we ignore if BN_FLG_CONSTTIME is |
454 | | * actually set and we always call the ladder version. |
455 | | */ |
456 | 0 | return ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx); |
457 | 0 | } |
458 | 0 | } |
459 | | |
460 | 69 | if (scalar != NULL) { |
461 | 69 | generator = EC_GROUP_get0_generator(group); |
462 | 69 | if (generator == NULL) { |
463 | 0 | ECerr(EC_F_EC_WNAF_MUL, EC_R_UNDEFINED_GENERATOR); |
464 | 0 | goto err; |
465 | 0 | } |
466 | | |
467 | | /* look if we can use precomputed multiples of generator */ |
468 | | |
469 | 69 | pre_comp = group->pre_comp.ec; |
470 | 69 | if (pre_comp && pre_comp->numblocks |
471 | 69 | && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) == |
472 | 0 | 0)) { |
473 | 0 | blocksize = pre_comp->blocksize; |
474 | | |
475 | | /* |
476 | | * determine maximum number of blocks that wNAF splitting may |
477 | | * yield (NB: maximum wNAF length is bit length plus one) |
478 | | */ |
479 | 0 | numblocks = (BN_num_bits(scalar) / blocksize) + 1; |
480 | | |
481 | | /* |
482 | | * we cannot use more blocks than we have precomputation for |
483 | | */ |
484 | 0 | if (numblocks > pre_comp->numblocks) |
485 | 0 | numblocks = pre_comp->numblocks; |
486 | |
|
487 | 0 | pre_points_per_block = (size_t)1 << (pre_comp->w - 1); |
488 | | |
489 | | /* check that pre_comp looks sane */ |
490 | 0 | if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block)) { |
491 | 0 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); |
492 | 0 | goto err; |
493 | 0 | } |
494 | 69 | } else { |
495 | | /* can't use precomputation */ |
496 | 69 | pre_comp = NULL; |
497 | 69 | numblocks = 1; |
498 | 69 | num_scalar = 1; /* treat 'scalar' like 'num'-th element of |
499 | | * 'scalars' */ |
500 | 69 | } |
501 | 69 | } |
502 | | |
503 | 69 | totalnum = num + numblocks; |
504 | | |
505 | 69 | wsize = OPENSSL_malloc(totalnum * sizeof(wsize[0])); |
506 | 69 | wNAF_len = OPENSSL_malloc(totalnum * sizeof(wNAF_len[0])); |
507 | | /* include space for pivot */ |
508 | 69 | wNAF = OPENSSL_malloc((totalnum + 1) * sizeof(wNAF[0])); |
509 | 69 | val_sub = OPENSSL_malloc(totalnum * sizeof(val_sub[0])); |
510 | | |
511 | | /* Ensure wNAF is initialised in case we end up going to err */ |
512 | 69 | if (wNAF != NULL) |
513 | 69 | wNAF[0] = NULL; /* preliminary pivot */ |
514 | | |
515 | 69 | if (wsize == NULL || wNAF_len == NULL || wNAF == NULL || val_sub == NULL) { |
516 | 0 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE); |
517 | 0 | goto err; |
518 | 0 | } |
519 | | |
520 | | /* |
521 | | * num_val will be the total number of temporarily precomputed points |
522 | | */ |
523 | 69 | num_val = 0; |
524 | | |
525 | 138 | for (i = 0; i < num + num_scalar; i++) { |
526 | 69 | size_t bits; |
527 | | |
528 | 69 | bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar); |
529 | 69 | wsize[i] = EC_window_bits_for_scalar_size(bits); |
530 | 69 | num_val += (size_t)1 << (wsize[i] - 1); |
531 | 69 | wNAF[i + 1] = NULL; /* make sure we always have a pivot */ |
532 | 69 | wNAF[i] = |
533 | 69 | bn_compute_wNAF((i < num ? scalars[i] : scalar), wsize[i], |
534 | 69 | &wNAF_len[i]); |
535 | 69 | if (wNAF[i] == NULL) |
536 | 0 | goto err; |
537 | 69 | if (wNAF_len[i] > max_len) |
538 | 69 | max_len = wNAF_len[i]; |
539 | 69 | } |
540 | | |
541 | 69 | if (numblocks) { |
542 | | /* we go here iff scalar != NULL */ |
543 | | |
544 | 69 | if (pre_comp == NULL) { |
545 | 69 | if (num_scalar != 1) { |
546 | 0 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); |
547 | 0 | goto err; |
548 | 0 | } |
549 | | /* we have already generated a wNAF for 'scalar' */ |
550 | 69 | } else { |
551 | 0 | signed char *tmp_wNAF = NULL; |
552 | 0 | size_t tmp_len = 0; |
553 | |
|
554 | 0 | if (num_scalar != 0) { |
555 | 0 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); |
556 | 0 | goto err; |
557 | 0 | } |
558 | | |
559 | | /* |
560 | | * use the window size for which we have precomputation |
561 | | */ |
562 | 0 | wsize[num] = pre_comp->w; |
563 | 0 | tmp_wNAF = bn_compute_wNAF(scalar, wsize[num], &tmp_len); |
564 | 0 | if (!tmp_wNAF) |
565 | 0 | goto err; |
566 | | |
567 | 0 | if (tmp_len <= max_len) { |
568 | | /* |
569 | | * One of the other wNAFs is at least as long as the wNAF |
570 | | * belonging to the generator, so wNAF splitting will not buy |
571 | | * us anything. |
572 | | */ |
573 | |
|
574 | 0 | numblocks = 1; |
575 | 0 | totalnum = num + 1; /* don't use wNAF splitting */ |
576 | 0 | wNAF[num] = tmp_wNAF; |
577 | 0 | wNAF[num + 1] = NULL; |
578 | 0 | wNAF_len[num] = tmp_len; |
579 | | /* |
580 | | * pre_comp->points starts with the points that we need here: |
581 | | */ |
582 | 0 | val_sub[num] = pre_comp->points; |
583 | 0 | } else { |
584 | | /* |
585 | | * don't include tmp_wNAF directly into wNAF array - use wNAF |
586 | | * splitting and include the blocks |
587 | | */ |
588 | |
|
589 | 0 | signed char *pp; |
590 | 0 | EC_POINT **tmp_points; |
591 | |
|
592 | 0 | if (tmp_len < numblocks * blocksize) { |
593 | | /* |
594 | | * possibly we can do with fewer blocks than estimated |
595 | | */ |
596 | 0 | numblocks = (tmp_len + blocksize - 1) / blocksize; |
597 | 0 | if (numblocks > pre_comp->numblocks) { |
598 | 0 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); |
599 | 0 | OPENSSL_free(tmp_wNAF); |
600 | 0 | goto err; |
601 | 0 | } |
602 | 0 | totalnum = num + numblocks; |
603 | 0 | } |
604 | | |
605 | | /* split wNAF in 'numblocks' parts */ |
606 | 0 | pp = tmp_wNAF; |
607 | 0 | tmp_points = pre_comp->points; |
608 | |
|
609 | 0 | for (i = num; i < totalnum; i++) { |
610 | 0 | if (i < totalnum - 1) { |
611 | 0 | wNAF_len[i] = blocksize; |
612 | 0 | if (tmp_len < blocksize) { |
613 | 0 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); |
614 | 0 | OPENSSL_free(tmp_wNAF); |
615 | 0 | goto err; |
616 | 0 | } |
617 | 0 | tmp_len -= blocksize; |
618 | 0 | } else |
619 | | /* |
620 | | * last block gets whatever is left (this could be |
621 | | * more or less than 'blocksize'!) |
622 | | */ |
623 | 0 | wNAF_len[i] = tmp_len; |
624 | | |
625 | 0 | wNAF[i + 1] = NULL; |
626 | 0 | wNAF[i] = OPENSSL_malloc(wNAF_len[i]); |
627 | 0 | if (wNAF[i] == NULL) { |
628 | 0 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE); |
629 | 0 | OPENSSL_free(tmp_wNAF); |
630 | 0 | goto err; |
631 | 0 | } |
632 | 0 | memcpy(wNAF[i], pp, wNAF_len[i]); |
633 | 0 | if (wNAF_len[i] > max_len) |
634 | 0 | max_len = wNAF_len[i]; |
635 | |
|
636 | 0 | if (*tmp_points == NULL) { |
637 | 0 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); |
638 | 0 | OPENSSL_free(tmp_wNAF); |
639 | 0 | goto err; |
640 | 0 | } |
641 | 0 | val_sub[i] = tmp_points; |
642 | 0 | tmp_points += pre_points_per_block; |
643 | 0 | pp += blocksize; |
644 | 0 | } |
645 | 0 | OPENSSL_free(tmp_wNAF); |
646 | 0 | } |
647 | 0 | } |
648 | 69 | } |
649 | | |
650 | | /* |
651 | | * All points we precompute now go into a single array 'val'. |
652 | | * 'val_sub[i]' is a pointer to the subarray for the i-th point, or to a |
653 | | * subarray of 'pre_comp->points' if we already have precomputation. |
654 | | */ |
655 | 69 | val = OPENSSL_malloc((num_val + 1) * sizeof(val[0])); |
656 | 69 | if (val == NULL) { |
657 | 0 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE); |
658 | 0 | goto err; |
659 | 0 | } |
660 | 69 | val[num_val] = NULL; /* pivot element */ |
661 | | |
662 | | /* allocate points for precomputation */ |
663 | 69 | v = val; |
664 | 138 | for (i = 0; i < num + num_scalar; i++) { |
665 | 69 | val_sub[i] = v; |
666 | 309 | for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) { |
667 | 240 | *v = EC_POINT_new(group); |
668 | 240 | if (*v == NULL) |
669 | 0 | goto err; |
670 | 240 | v++; |
671 | 240 | } |
672 | 69 | } |
673 | 69 | if (!(v == val + num_val)) { |
674 | 0 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); |
675 | 0 | goto err; |
676 | 0 | } |
677 | | |
678 | 69 | if ((tmp = EC_POINT_new(group)) == NULL) |
679 | 0 | goto err; |
680 | | |
681 | | /*- |
682 | | * prepare precomputed values: |
683 | | * val_sub[i][0] := points[i] |
684 | | * val_sub[i][1] := 3 * points[i] |
685 | | * val_sub[i][2] := 5 * points[i] |
686 | | * ... |
687 | | */ |
688 | 138 | for (i = 0; i < num + num_scalar; i++) { |
689 | 69 | if (i < num) { |
690 | 0 | if (!EC_POINT_copy(val_sub[i][0], points[i])) |
691 | 0 | goto err; |
692 | 69 | } else { |
693 | 69 | if (!EC_POINT_copy(val_sub[i][0], generator)) |
694 | 0 | goto err; |
695 | 69 | } |
696 | | |
697 | 69 | if (wsize[i] > 1) { |
698 | 37 | if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) |
699 | 0 | goto err; |
700 | 208 | for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) { |
701 | 171 | if (!EC_POINT_add |
702 | 171 | (group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) |
703 | 0 | goto err; |
704 | 171 | } |
705 | 37 | } |
706 | 69 | } |
707 | | |
708 | 69 | if (!EC_POINTs_make_affine(group, num_val, val, ctx)) |
709 | 0 | goto err; |
710 | | |
711 | 69 | r_is_at_infinity = 1; |
712 | | |
713 | 9.83k | for (k = max_len - 1; k >= 0; k--) { |
714 | 9.76k | if (!r_is_at_infinity) { |
715 | 9.69k | if (!EC_POINT_dbl(group, r, r, ctx)) |
716 | 0 | goto err; |
717 | 9.69k | } |
718 | | |
719 | 19.5k | for (i = 0; i < totalnum; i++) { |
720 | 9.76k | if (wNAF_len[i] > (size_t)k) { |
721 | 9.76k | int digit = wNAF[i][k]; |
722 | 9.76k | int is_neg; |
723 | | |
724 | 9.76k | if (digit) { |
725 | 1.49k | is_neg = digit < 0; |
726 | | |
727 | 1.49k | if (is_neg) |
728 | 510 | digit = -digit; |
729 | | |
730 | 1.49k | if (is_neg != r_is_inverted) { |
731 | 453 | if (!r_is_at_infinity) { |
732 | 453 | if (!EC_POINT_invert(group, r, ctx)) |
733 | 0 | goto err; |
734 | 453 | } |
735 | 453 | r_is_inverted = !r_is_inverted; |
736 | 453 | } |
737 | | |
738 | | /* digit > 0 */ |
739 | | |
740 | 1.49k | if (r_is_at_infinity) { |
741 | 68 | if (!EC_POINT_copy(r, val_sub[i][digit >> 1])) |
742 | 0 | goto err; |
743 | | |
744 | | /*- |
745 | | * Apply coordinate blinding for EC_POINT. |
746 | | * |
747 | | * The underlying EC_METHOD can optionally implement this function: |
748 | | * ec_point_blind_coordinates() returns 0 in case of errors or 1 on |
749 | | * success or if coordinate blinding is not implemented for this |
750 | | * group. |
751 | | */ |
752 | 68 | if (!ec_point_blind_coordinates(group, r, ctx)) { |
753 | 0 | ECerr(EC_F_EC_WNAF_MUL, EC_R_POINT_COORDINATES_BLIND_FAILURE); |
754 | 0 | goto err; |
755 | 0 | } |
756 | | |
757 | 68 | r_is_at_infinity = 0; |
758 | 1.43k | } else { |
759 | 1.43k | if (!EC_POINT_add |
760 | 1.43k | (group, r, r, val_sub[i][digit >> 1], ctx)) |
761 | 0 | goto err; |
762 | 1.43k | } |
763 | 1.49k | } |
764 | 9.76k | } |
765 | 9.76k | } |
766 | 9.76k | } |
767 | | |
768 | 69 | if (r_is_at_infinity) { |
769 | 1 | if (!EC_POINT_set_to_infinity(group, r)) |
770 | 0 | goto err; |
771 | 68 | } else { |
772 | 68 | if (r_is_inverted) |
773 | 33 | if (!EC_POINT_invert(group, r, ctx)) |
774 | 0 | goto err; |
775 | 68 | } |
776 | | |
777 | 69 | ret = 1; |
778 | | |
779 | 69 | err: |
780 | 69 | EC_POINT_free(tmp); |
781 | 69 | OPENSSL_free(wsize); |
782 | 69 | OPENSSL_free(wNAF_len); |
783 | 69 | if (wNAF != NULL) { |
784 | 69 | signed char **w; |
785 | | |
786 | 138 | for (w = wNAF; *w != NULL; w++) |
787 | 69 | OPENSSL_free(*w); |
788 | | |
789 | 69 | OPENSSL_free(wNAF); |
790 | 69 | } |
791 | 69 | if (val != NULL) { |
792 | 309 | for (v = val; *v != NULL; v++) |
793 | 240 | EC_POINT_clear_free(*v); |
794 | | |
795 | 69 | OPENSSL_free(val); |
796 | 69 | } |
797 | 69 | OPENSSL_free(val_sub); |
798 | 69 | return ret; |
799 | 69 | } |
800 | | |
801 | | /*- |
802 | | * ec_wNAF_precompute_mult() |
803 | | * creates an EC_PRE_COMP object with preprecomputed multiples of the generator |
804 | | * for use with wNAF splitting as implemented in ec_wNAF_mul(). |
805 | | * |
806 | | * 'pre_comp->points' is an array of multiples of the generator |
807 | | * of the following form: |
808 | | * points[0] = generator; |
809 | | * points[1] = 3 * generator; |
810 | | * ... |
811 | | * points[2^(w-1)-1] = (2^(w-1)-1) * generator; |
812 | | * points[2^(w-1)] = 2^blocksize * generator; |
813 | | * points[2^(w-1)+1] = 3 * 2^blocksize * generator; |
814 | | * ... |
815 | | * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) * 2^(blocksize*(numblocks-2)) * generator |
816 | | * points[2^(w-1)*(numblocks-1)] = 2^(blocksize*(numblocks-1)) * generator |
817 | | * ... |
818 | | * points[2^(w-1)*numblocks-1] = (2^(w-1)) * 2^(blocksize*(numblocks-1)) * generator |
819 | | * points[2^(w-1)*numblocks] = NULL |
820 | | */ |
821 | | int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx) |
822 | 0 | { |
823 | 0 | const EC_POINT *generator; |
824 | 0 | EC_POINT *tmp_point = NULL, *base = NULL, **var; |
825 | 0 | BN_CTX *new_ctx = NULL; |
826 | 0 | const BIGNUM *order; |
827 | 0 | size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num; |
828 | 0 | EC_POINT **points = NULL; |
829 | 0 | EC_PRE_COMP *pre_comp; |
830 | 0 | int ret = 0; |
831 | | |
832 | | /* if there is an old EC_PRE_COMP object, throw it away */ |
833 | 0 | EC_pre_comp_free(group); |
834 | 0 | if ((pre_comp = ec_pre_comp_new(group)) == NULL) |
835 | 0 | return 0; |
836 | | |
837 | 0 | generator = EC_GROUP_get0_generator(group); |
838 | 0 | if (generator == NULL) { |
839 | 0 | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR); |
840 | 0 | goto err; |
841 | 0 | } |
842 | | |
843 | 0 | if (ctx == NULL) { |
844 | 0 | ctx = new_ctx = BN_CTX_new(); |
845 | 0 | if (ctx == NULL) |
846 | 0 | goto err; |
847 | 0 | } |
848 | | |
849 | 0 | BN_CTX_start(ctx); |
850 | |
|
851 | 0 | order = EC_GROUP_get0_order(group); |
852 | 0 | if (order == NULL) |
853 | 0 | goto err; |
854 | 0 | if (BN_is_zero(order)) { |
855 | 0 | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER); |
856 | 0 | goto err; |
857 | 0 | } |
858 | | |
859 | 0 | bits = BN_num_bits(order); |
860 | | /* |
861 | | * The following parameters mean we precompute (approximately) one point |
862 | | * per bit. TBD: The combination 8, 4 is perfect for 160 bits; for other |
863 | | * bit lengths, other parameter combinations might provide better |
864 | | * efficiency. |
865 | | */ |
866 | 0 | blocksize = 8; |
867 | 0 | w = 4; |
868 | 0 | if (EC_window_bits_for_scalar_size(bits) > w) { |
869 | | /* let's not make the window too small ... */ |
870 | 0 | w = EC_window_bits_for_scalar_size(bits); |
871 | 0 | } |
872 | |
|
873 | 0 | numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks |
874 | | * to use for wNAF |
875 | | * splitting */ |
876 | |
|
877 | 0 | pre_points_per_block = (size_t)1 << (w - 1); |
878 | 0 | num = pre_points_per_block * numblocks; /* number of points to compute |
879 | | * and store */ |
880 | |
|
881 | 0 | points = OPENSSL_malloc(sizeof(*points) * (num + 1)); |
882 | 0 | if (points == NULL) { |
883 | 0 | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE); |
884 | 0 | goto err; |
885 | 0 | } |
886 | | |
887 | 0 | var = points; |
888 | 0 | var[num] = NULL; /* pivot */ |
889 | 0 | for (i = 0; i < num; i++) { |
890 | 0 | if ((var[i] = EC_POINT_new(group)) == NULL) { |
891 | 0 | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE); |
892 | 0 | goto err; |
893 | 0 | } |
894 | 0 | } |
895 | | |
896 | 0 | if ((tmp_point = EC_POINT_new(group)) == NULL |
897 | 0 | || (base = EC_POINT_new(group)) == NULL) { |
898 | 0 | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE); |
899 | 0 | goto err; |
900 | 0 | } |
901 | | |
902 | 0 | if (!EC_POINT_copy(base, generator)) |
903 | 0 | goto err; |
904 | | |
905 | | /* do the precomputation */ |
906 | 0 | for (i = 0; i < numblocks; i++) { |
907 | 0 | size_t j; |
908 | |
|
909 | 0 | if (!EC_POINT_dbl(group, tmp_point, base, ctx)) |
910 | 0 | goto err; |
911 | | |
912 | 0 | if (!EC_POINT_copy(*var++, base)) |
913 | 0 | goto err; |
914 | | |
915 | 0 | for (j = 1; j < pre_points_per_block; j++, var++) { |
916 | | /* |
917 | | * calculate odd multiples of the current base point |
918 | | */ |
919 | 0 | if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx)) |
920 | 0 | goto err; |
921 | 0 | } |
922 | | |
923 | 0 | if (i < numblocks - 1) { |
924 | | /* |
925 | | * get the next base (multiply current one by 2^blocksize) |
926 | | */ |
927 | 0 | size_t k; |
928 | |
|
929 | 0 | if (blocksize <= 2) { |
930 | 0 | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_INTERNAL_ERROR); |
931 | 0 | goto err; |
932 | 0 | } |
933 | | |
934 | 0 | if (!EC_POINT_dbl(group, base, tmp_point, ctx)) |
935 | 0 | goto err; |
936 | 0 | for (k = 2; k < blocksize; k++) { |
937 | 0 | if (!EC_POINT_dbl(group, base, base, ctx)) |
938 | 0 | goto err; |
939 | 0 | } |
940 | 0 | } |
941 | 0 | } |
942 | | |
943 | 0 | if (!EC_POINTs_make_affine(group, num, points, ctx)) |
944 | 0 | goto err; |
945 | | |
946 | 0 | pre_comp->group = group; |
947 | 0 | pre_comp->blocksize = blocksize; |
948 | 0 | pre_comp->numblocks = numblocks; |
949 | 0 | pre_comp->w = w; |
950 | 0 | pre_comp->points = points; |
951 | 0 | points = NULL; |
952 | 0 | pre_comp->num = num; |
953 | 0 | SETPRECOMP(group, ec, pre_comp); |
954 | 0 | pre_comp = NULL; |
955 | 0 | ret = 1; |
956 | |
|
957 | 0 | err: |
958 | 0 | BN_CTX_end(ctx); |
959 | 0 | BN_CTX_free(new_ctx); |
960 | 0 | EC_ec_pre_comp_free(pre_comp); |
961 | 0 | if (points) { |
962 | 0 | EC_POINT **p; |
963 | |
|
964 | 0 | for (p = points; *p != NULL; p++) |
965 | 0 | EC_POINT_free(*p); |
966 | 0 | OPENSSL_free(points); |
967 | 0 | } |
968 | 0 | EC_POINT_free(tmp_point); |
969 | 0 | EC_POINT_free(base); |
970 | 0 | return ret; |
971 | 0 | } |
972 | | |
973 | | int ec_wNAF_have_precompute_mult(const EC_GROUP *group) |
974 | 0 | { |
975 | 0 | return HAVEPRECOMP(group, ec); |
976 | 0 | } |