Coverage Report

Created: 2023-06-08 06:41

/src/openssl111/crypto/ec/ecp_nistp521.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2011-2020 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the OpenSSL license (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2011 Google Inc.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * A 64-bit implementation of the NIST P-521 elliptic curve point multiplication
28
 *
29
 * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
30
 * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
31
 * work which got its smarts from Daniel J. Bernstein's work on the same.
32
 */
33
34
#include <openssl/e_os2.h>
35
#ifdef OPENSSL_NO_EC_NISTP_64_GCC_128
36
NON_EMPTY_TRANSLATION_UNIT
37
#else
38
39
# include <string.h>
40
# include <openssl/err.h>
41
# include "ec_local.h"
42
43
# if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16
44
  /* even with gcc, the typedef won't work for 32-bit platforms */
45
typedef __uint128_t uint128_t;  /* nonstandard; implemented by gcc on 64-bit
46
                                 * platforms */
47
# else
48
#  error "Your compiler doesn't appear to support 128-bit integer types"
49
# endif
50
51
typedef uint8_t u8;
52
typedef uint64_t u64;
53
54
/*
55
 * The underlying field. P521 operates over GF(2^521-1). We can serialise an
56
 * element of this field into 66 bytes where the most significant byte
57
 * contains only a single bit. We call this an felem_bytearray.
58
 */
59
60
typedef u8 felem_bytearray[66];
61
62
/*
63
 * These are the parameters of P521, taken from FIPS 186-3, section D.1.2.5.
64
 * These values are big-endian.
65
 */
66
static const felem_bytearray nistp521_curve_params[5] = {
67
    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* p */
68
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
69
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
70
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
71
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
72
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
73
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
74
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
75
     0xff, 0xff},
76
    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* a = -3 */
77
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
78
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
79
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
80
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
81
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
82
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
83
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
84
     0xff, 0xfc},
85
    {0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, /* b */
86
     0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85,
87
     0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3,
88
     0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1,
89
     0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e,
90
     0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1,
91
     0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c,
92
     0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50,
93
     0x3f, 0x00},
94
    {0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, /* x */
95
     0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95,
96
     0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f,
97
     0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d,
98
     0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7,
99
     0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff,
100
     0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a,
101
     0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5,
102
     0xbd, 0x66},
103
    {0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, /* y */
104
     0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d,
105
     0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b,
106
     0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e,
107
     0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4,
108
     0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad,
109
     0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72,
110
     0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1,
111
     0x66, 0x50}
112
};
113
114
/*-
115
 * The representation of field elements.
116
 * ------------------------------------
117
 *
118
 * We represent field elements with nine values. These values are either 64 or
119
 * 128 bits and the field element represented is:
120
 *   v[0]*2^0 + v[1]*2^58 + v[2]*2^116 + ... + v[8]*2^464  (mod p)
121
 * Each of the nine values is called a 'limb'. Since the limbs are spaced only
122
 * 58 bits apart, but are greater than 58 bits in length, the most significant
123
 * bits of each limb overlap with the least significant bits of the next.
124
 *
125
 * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a
126
 * 'largefelem' */
127
128
1.19M
# define NLIMBS 9
129
130
typedef uint64_t limb;
131
typedef limb limb_aX __attribute((__aligned__(1)));
132
typedef limb felem[NLIMBS];
133
typedef uint128_t largefelem[NLIMBS];
134
135
static const limb bottom57bits = 0x1ffffffffffffff;
136
static const limb bottom58bits = 0x3ffffffffffffff;
137
138
/*
139
 * bin66_to_felem takes a little-endian byte array and converts it into felem
140
 * form. This assumes that the CPU is little-endian.
141
 */
142
static void bin66_to_felem(felem out, const u8 in[66])
143
51
{
144
51
    out[0] = (*((limb *) & in[0])) & bottom58bits;
145
51
    out[1] = (*((limb_aX *) & in[7]) >> 2) & bottom58bits;
146
51
    out[2] = (*((limb_aX *) & in[14]) >> 4) & bottom58bits;
147
51
    out[3] = (*((limb_aX *) & in[21]) >> 6) & bottom58bits;
148
51
    out[4] = (*((limb_aX *) & in[29])) & bottom58bits;
149
51
    out[5] = (*((limb_aX *) & in[36]) >> 2) & bottom58bits;
150
51
    out[6] = (*((limb_aX *) & in[43]) >> 4) & bottom58bits;
151
51
    out[7] = (*((limb_aX *) & in[50]) >> 6) & bottom58bits;
152
51
    out[8] = (*((limb_aX *) & in[58])) & bottom57bits;
153
51
}
154
155
/*
156
 * felem_to_bin66 takes an felem and serialises into a little endian, 66 byte
157
 * array. This assumes that the CPU is little-endian.
158
 */
159
static void felem_to_bin66(u8 out[66], const felem in)
160
142
{
161
142
    memset(out, 0, 66);
162
142
    (*((limb *) & out[0])) = in[0];
163
142
    (*((limb_aX *) & out[7])) |= in[1] << 2;
164
142
    (*((limb_aX *) & out[14])) |= in[2] << 4;
165
142
    (*((limb_aX *) & out[21])) |= in[3] << 6;
166
142
    (*((limb_aX *) & out[29])) = in[4];
167
142
    (*((limb_aX *) & out[36])) |= in[5] << 2;
168
142
    (*((limb_aX *) & out[43])) |= in[6] << 4;
169
142
    (*((limb_aX *) & out[50])) |= in[7] << 6;
170
142
    (*((limb_aX *) & out[58])) = in[8];
171
142
}
172
173
/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
174
static int BN_to_felem(felem out, const BIGNUM *bn)
175
51
{
176
51
    felem_bytearray b_out;
177
51
    int num_bytes;
178
179
51
    if (BN_is_negative(bn)) {
180
0
        ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
181
0
        return 0;
182
0
    }
183
51
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
184
51
    if (num_bytes < 0) {
185
0
        ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
186
0
        return 0;
187
0
    }
188
51
    bin66_to_felem(out, b_out);
189
51
    return 1;
190
51
}
191
192
/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
193
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
194
142
{
195
142
    felem_bytearray b_out;
196
142
    felem_to_bin66(b_out, in);
197
142
    return BN_lebin2bn(b_out, sizeof(b_out), out);
198
142
}
199
200
/*-
201
 * Field operations
202
 * ----------------
203
 */
204
205
static void felem_one(felem out)
206
0
{
207
0
    out[0] = 1;
208
0
    out[1] = 0;
209
0
    out[2] = 0;
210
0
    out[3] = 0;
211
0
    out[4] = 0;
212
0
    out[5] = 0;
213
0
    out[6] = 0;
214
0
    out[7] = 0;
215
0
    out[8] = 0;
216
0
}
217
218
static void felem_assign(felem out, const felem in)
219
35.3k
{
220
35.3k
    out[0] = in[0];
221
35.3k
    out[1] = in[1];
222
35.3k
    out[2] = in[2];
223
35.3k
    out[3] = in[3];
224
35.3k
    out[4] = in[4];
225
35.3k
    out[5] = in[5];
226
35.3k
    out[6] = in[6];
227
35.3k
    out[7] = in[7];
228
35.3k
    out[8] = in[8];
229
35.3k
}
230
231
/* felem_sum64 sets out = out + in. */
232
static void felem_sum64(felem out, const felem in)
233
7.02k
{
234
7.02k
    out[0] += in[0];
235
7.02k
    out[1] += in[1];
236
7.02k
    out[2] += in[2];
237
7.02k
    out[3] += in[3];
238
7.02k
    out[4] += in[4];
239
7.02k
    out[5] += in[5];
240
7.02k
    out[6] += in[6];
241
7.02k
    out[7] += in[7];
242
7.02k
    out[8] += in[8];
243
7.02k
}
244
245
/* felem_scalar sets out = in * scalar */
246
static void felem_scalar(felem out, const felem in, limb scalar)
247
83.6k
{
248
83.6k
    out[0] = in[0] * scalar;
249
83.6k
    out[1] = in[1] * scalar;
250
83.6k
    out[2] = in[2] * scalar;
251
83.6k
    out[3] = in[3] * scalar;
252
83.6k
    out[4] = in[4] * scalar;
253
83.6k
    out[5] = in[5] * scalar;
254
83.6k
    out[6] = in[6] * scalar;
255
83.6k
    out[7] = in[7] * scalar;
256
83.6k
    out[8] = in[8] * scalar;
257
83.6k
}
258
259
/* felem_scalar64 sets out = out * scalar */
260
static void felem_scalar64(felem out, limb scalar)
261
14.0k
{
262
14.0k
    out[0] *= scalar;
263
14.0k
    out[1] *= scalar;
264
14.0k
    out[2] *= scalar;
265
14.0k
    out[3] *= scalar;
266
14.0k
    out[4] *= scalar;
267
14.0k
    out[5] *= scalar;
268
14.0k
    out[6] *= scalar;
269
14.0k
    out[7] *= scalar;
270
14.0k
    out[8] *= scalar;
271
14.0k
}
272
273
/* felem_scalar128 sets out = out * scalar */
274
static void felem_scalar128(largefelem out, limb scalar)
275
4.68k
{
276
4.68k
    out[0] *= scalar;
277
4.68k
    out[1] *= scalar;
278
4.68k
    out[2] *= scalar;
279
4.68k
    out[3] *= scalar;
280
4.68k
    out[4] *= scalar;
281
4.68k
    out[5] *= scalar;
282
4.68k
    out[6] *= scalar;
283
4.68k
    out[7] *= scalar;
284
4.68k
    out[8] *= scalar;
285
4.68k
}
286
287
/*-
288
 * felem_neg sets |out| to |-in|
289
 * On entry:
290
 *   in[i] < 2^59 + 2^14
291
 * On exit:
292
 *   out[i] < 2^62
293
 */
294
static void felem_neg(felem out, const felem in)
295
0
{
296
    /* In order to prevent underflow, we subtract from 0 mod p. */
297
0
    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
298
0
    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
299
300
0
    out[0] = two62m3 - in[0];
301
0
    out[1] = two62m2 - in[1];
302
0
    out[2] = two62m2 - in[2];
303
0
    out[3] = two62m2 - in[3];
304
0
    out[4] = two62m2 - in[4];
305
0
    out[5] = two62m2 - in[5];
306
0
    out[6] = two62m2 - in[6];
307
0
    out[7] = two62m2 - in[7];
308
0
    out[8] = two62m2 - in[8];
309
0
}
310
311
/*-
312
 * felem_diff64 subtracts |in| from |out|
313
 * On entry:
314
 *   in[i] < 2^59 + 2^14
315
 * On exit:
316
 *   out[i] < out[i] + 2^62
317
 */
318
static void felem_diff64(felem out, const felem in)
319
7.02k
{
320
    /*
321
     * In order to prevent underflow, we add 0 mod p before subtracting.
322
     */
323
7.02k
    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
324
7.02k
    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
325
326
7.02k
    out[0] += two62m3 - in[0];
327
7.02k
    out[1] += two62m2 - in[1];
328
7.02k
    out[2] += two62m2 - in[2];
329
7.02k
    out[3] += two62m2 - in[3];
330
7.02k
    out[4] += two62m2 - in[4];
331
7.02k
    out[5] += two62m2 - in[5];
332
7.02k
    out[6] += two62m2 - in[6];
333
7.02k
    out[7] += two62m2 - in[7];
334
7.02k
    out[8] += two62m2 - in[8];
335
7.02k
}
336
337
/*-
338
 * felem_diff_128_64 subtracts |in| from |out|
339
 * On entry:
340
 *   in[i] < 2^62 + 2^17
341
 * On exit:
342
 *   out[i] < out[i] + 2^63
343
 */
344
static void felem_diff_128_64(largefelem out, const felem in)
345
14.0k
{
346
    /*
347
     * In order to prevent underflow, we add 64p mod p (which is equivalent
348
     * to 0 mod p) before subtracting. p is 2^521 - 1, i.e. in binary a 521
349
     * digit number with all bits set to 1. See "The representation of field
350
     * elements" comment above for a description of how limbs are used to
351
     * represent a number. 64p is represented with 8 limbs containing a number
352
     * with 58 bits set and one limb with a number with 57 bits set.
353
     */
354
14.0k
    static const limb two63m6 = (((limb) 1) << 63) - (((limb) 1) << 6);
355
14.0k
    static const limb two63m5 = (((limb) 1) << 63) - (((limb) 1) << 5);
356
357
14.0k
    out[0] += two63m6 - in[0];
358
14.0k
    out[1] += two63m5 - in[1];
359
14.0k
    out[2] += two63m5 - in[2];
360
14.0k
    out[3] += two63m5 - in[3];
361
14.0k
    out[4] += two63m5 - in[4];
362
14.0k
    out[5] += two63m5 - in[5];
363
14.0k
    out[6] += two63m5 - in[6];
364
14.0k
    out[7] += two63m5 - in[7];
365
14.0k
    out[8] += two63m5 - in[8];
366
14.0k
}
367
368
/*-
369
 * felem_diff_128_64 subtracts |in| from |out|
370
 * On entry:
371
 *   in[i] < 2^126
372
 * On exit:
373
 *   out[i] < out[i] + 2^127 - 2^69
374
 */
375
static void felem_diff128(largefelem out, const largefelem in)
376
4.68k
{
377
    /*
378
     * In order to prevent underflow, we add 0 mod p before subtracting.
379
     */
380
4.68k
    static const uint128_t two127m70 =
381
4.68k
        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 70);
382
4.68k
    static const uint128_t two127m69 =
383
4.68k
        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 69);
384
385
4.68k
    out[0] += (two127m70 - in[0]);
386
4.68k
    out[1] += (two127m69 - in[1]);
387
4.68k
    out[2] += (two127m69 - in[2]);
388
4.68k
    out[3] += (two127m69 - in[3]);
389
4.68k
    out[4] += (two127m69 - in[4]);
390
4.68k
    out[5] += (two127m69 - in[5]);
391
4.68k
    out[6] += (two127m69 - in[6]);
392
4.68k
    out[7] += (two127m69 - in[7]);
393
4.68k
    out[8] += (two127m69 - in[8]);
394
4.68k
}
395
396
/*-
397
 * felem_square sets |out| = |in|^2
398
 * On entry:
399
 *   in[i] < 2^62
400
 * On exit:
401
 *   out[i] < 17 * max(in[i]) * max(in[i])
402
 */
403
static void felem_square(largefelem out, const felem in)
404
27.6k
{
405
27.6k
    felem inx2, inx4;
406
27.6k
    felem_scalar(inx2, in, 2);
407
27.6k
    felem_scalar(inx4, in, 4);
408
409
    /*-
410
     * We have many cases were we want to do
411
     *   in[x] * in[y] +
412
     *   in[y] * in[x]
413
     * This is obviously just
414
     *   2 * in[x] * in[y]
415
     * However, rather than do the doubling on the 128 bit result, we
416
     * double one of the inputs to the multiplication by reading from
417
     * |inx2|
418
     */
419
420
27.6k
    out[0] = ((uint128_t) in[0]) * in[0];
421
27.6k
    out[1] = ((uint128_t) in[0]) * inx2[1];
422
27.6k
    out[2] = ((uint128_t) in[0]) * inx2[2] + ((uint128_t) in[1]) * in[1];
423
27.6k
    out[3] = ((uint128_t) in[0]) * inx2[3] + ((uint128_t) in[1]) * inx2[2];
424
27.6k
    out[4] = ((uint128_t) in[0]) * inx2[4] +
425
27.6k
             ((uint128_t) in[1]) * inx2[3] + ((uint128_t) in[2]) * in[2];
426
27.6k
    out[5] = ((uint128_t) in[0]) * inx2[5] +
427
27.6k
             ((uint128_t) in[1]) * inx2[4] + ((uint128_t) in[2]) * inx2[3];
428
27.6k
    out[6] = ((uint128_t) in[0]) * inx2[6] +
429
27.6k
             ((uint128_t) in[1]) * inx2[5] +
430
27.6k
             ((uint128_t) in[2]) * inx2[4] + ((uint128_t) in[3]) * in[3];
431
27.6k
    out[7] = ((uint128_t) in[0]) * inx2[7] +
432
27.6k
             ((uint128_t) in[1]) * inx2[6] +
433
27.6k
             ((uint128_t) in[2]) * inx2[5] + ((uint128_t) in[3]) * inx2[4];
434
27.6k
    out[8] = ((uint128_t) in[0]) * inx2[8] +
435
27.6k
             ((uint128_t) in[1]) * inx2[7] +
436
27.6k
             ((uint128_t) in[2]) * inx2[6] +
437
27.6k
             ((uint128_t) in[3]) * inx2[5] + ((uint128_t) in[4]) * in[4];
438
439
    /*
440
     * The remaining limbs fall above 2^521, with the first falling at 2^522.
441
     * They correspond to locations one bit up from the limbs produced above
442
     * so we would have to multiply by two to align them. Again, rather than
443
     * operate on the 128-bit result, we double one of the inputs to the
444
     * multiplication. If we want to double for both this reason, and the
445
     * reason above, then we end up multiplying by four.
446
     */
447
448
    /* 9 */
449
27.6k
    out[0] += ((uint128_t) in[1]) * inx4[8] +
450
27.6k
              ((uint128_t) in[2]) * inx4[7] +
451
27.6k
              ((uint128_t) in[3]) * inx4[6] + ((uint128_t) in[4]) * inx4[5];
452
453
    /* 10 */
454
27.6k
    out[1] += ((uint128_t) in[2]) * inx4[8] +
455
27.6k
              ((uint128_t) in[3]) * inx4[7] +
456
27.6k
              ((uint128_t) in[4]) * inx4[6] + ((uint128_t) in[5]) * inx2[5];
457
458
    /* 11 */
459
27.6k
    out[2] += ((uint128_t) in[3]) * inx4[8] +
460
27.6k
              ((uint128_t) in[4]) * inx4[7] + ((uint128_t) in[5]) * inx4[6];
461
462
    /* 12 */
463
27.6k
    out[3] += ((uint128_t) in[4]) * inx4[8] +
464
27.6k
              ((uint128_t) in[5]) * inx4[7] + ((uint128_t) in[6]) * inx2[6];
465
466
    /* 13 */
467
27.6k
    out[4] += ((uint128_t) in[5]) * inx4[8] + ((uint128_t) in[6]) * inx4[7];
468
469
    /* 14 */
470
27.6k
    out[5] += ((uint128_t) in[6]) * inx4[8] + ((uint128_t) in[7]) * inx2[7];
471
472
    /* 15 */
473
27.6k
    out[6] += ((uint128_t) in[7]) * inx4[8];
474
475
    /* 16 */
476
27.6k
    out[7] += ((uint128_t) in[8]) * inx2[8];
477
27.6k
}
478
479
/*-
480
 * felem_mul sets |out| = |in1| * |in2|
481
 * On entry:
482
 *   in1[i] < 2^64
483
 *   in2[i] < 2^63
484
 * On exit:
485
 *   out[i] < 17 * max(in1[i]) * max(in2[i])
486
 */
487
static void felem_mul(largefelem out, const felem in1, const felem in2)
488
26.0k
{
489
26.0k
    felem in2x2;
490
26.0k
    felem_scalar(in2x2, in2, 2);
491
492
26.0k
    out[0] = ((uint128_t) in1[0]) * in2[0];
493
494
26.0k
    out[1] = ((uint128_t) in1[0]) * in2[1] +
495
26.0k
             ((uint128_t) in1[1]) * in2[0];
496
497
26.0k
    out[2] = ((uint128_t) in1[0]) * in2[2] +
498
26.0k
             ((uint128_t) in1[1]) * in2[1] +
499
26.0k
             ((uint128_t) in1[2]) * in2[0];
500
501
26.0k
    out[3] = ((uint128_t) in1[0]) * in2[3] +
502
26.0k
             ((uint128_t) in1[1]) * in2[2] +
503
26.0k
             ((uint128_t) in1[2]) * in2[1] +
504
26.0k
             ((uint128_t) in1[3]) * in2[0];
505
506
26.0k
    out[4] = ((uint128_t) in1[0]) * in2[4] +
507
26.0k
             ((uint128_t) in1[1]) * in2[3] +
508
26.0k
             ((uint128_t) in1[2]) * in2[2] +
509
26.0k
             ((uint128_t) in1[3]) * in2[1] +
510
26.0k
             ((uint128_t) in1[4]) * in2[0];
511
512
26.0k
    out[5] = ((uint128_t) in1[0]) * in2[5] +
513
26.0k
             ((uint128_t) in1[1]) * in2[4] +
514
26.0k
             ((uint128_t) in1[2]) * in2[3] +
515
26.0k
             ((uint128_t) in1[3]) * in2[2] +
516
26.0k
             ((uint128_t) in1[4]) * in2[1] +
517
26.0k
             ((uint128_t) in1[5]) * in2[0];
518
519
26.0k
    out[6] = ((uint128_t) in1[0]) * in2[6] +
520
26.0k
             ((uint128_t) in1[1]) * in2[5] +
521
26.0k
             ((uint128_t) in1[2]) * in2[4] +
522
26.0k
             ((uint128_t) in1[3]) * in2[3] +
523
26.0k
             ((uint128_t) in1[4]) * in2[2] +
524
26.0k
             ((uint128_t) in1[5]) * in2[1] +
525
26.0k
             ((uint128_t) in1[6]) * in2[0];
526
527
26.0k
    out[7] = ((uint128_t) in1[0]) * in2[7] +
528
26.0k
             ((uint128_t) in1[1]) * in2[6] +
529
26.0k
             ((uint128_t) in1[2]) * in2[5] +
530
26.0k
             ((uint128_t) in1[3]) * in2[4] +
531
26.0k
             ((uint128_t) in1[4]) * in2[3] +
532
26.0k
             ((uint128_t) in1[5]) * in2[2] +
533
26.0k
             ((uint128_t) in1[6]) * in2[1] +
534
26.0k
             ((uint128_t) in1[7]) * in2[0];
535
536
26.0k
    out[8] = ((uint128_t) in1[0]) * in2[8] +
537
26.0k
             ((uint128_t) in1[1]) * in2[7] +
538
26.0k
             ((uint128_t) in1[2]) * in2[6] +
539
26.0k
             ((uint128_t) in1[3]) * in2[5] +
540
26.0k
             ((uint128_t) in1[4]) * in2[4] +
541
26.0k
             ((uint128_t) in1[5]) * in2[3] +
542
26.0k
             ((uint128_t) in1[6]) * in2[2] +
543
26.0k
             ((uint128_t) in1[7]) * in2[1] +
544
26.0k
             ((uint128_t) in1[8]) * in2[0];
545
546
    /* See comment in felem_square about the use of in2x2 here */
547
548
26.0k
    out[0] += ((uint128_t) in1[1]) * in2x2[8] +
549
26.0k
              ((uint128_t) in1[2]) * in2x2[7] +
550
26.0k
              ((uint128_t) in1[3]) * in2x2[6] +
551
26.0k
              ((uint128_t) in1[4]) * in2x2[5] +
552
26.0k
              ((uint128_t) in1[5]) * in2x2[4] +
553
26.0k
              ((uint128_t) in1[6]) * in2x2[3] +
554
26.0k
              ((uint128_t) in1[7]) * in2x2[2] +
555
26.0k
              ((uint128_t) in1[8]) * in2x2[1];
556
557
26.0k
    out[1] += ((uint128_t) in1[2]) * in2x2[8] +
558
26.0k
              ((uint128_t) in1[3]) * in2x2[7] +
559
26.0k
              ((uint128_t) in1[4]) * in2x2[6] +
560
26.0k
              ((uint128_t) in1[5]) * in2x2[5] +
561
26.0k
              ((uint128_t) in1[6]) * in2x2[4] +
562
26.0k
              ((uint128_t) in1[7]) * in2x2[3] +
563
26.0k
              ((uint128_t) in1[8]) * in2x2[2];
564
565
26.0k
    out[2] += ((uint128_t) in1[3]) * in2x2[8] +
566
26.0k
              ((uint128_t) in1[4]) * in2x2[7] +
567
26.0k
              ((uint128_t) in1[5]) * in2x2[6] +
568
26.0k
              ((uint128_t) in1[6]) * in2x2[5] +
569
26.0k
              ((uint128_t) in1[7]) * in2x2[4] +
570
26.0k
              ((uint128_t) in1[8]) * in2x2[3];
571
572
26.0k
    out[3] += ((uint128_t) in1[4]) * in2x2[8] +
573
26.0k
              ((uint128_t) in1[5]) * in2x2[7] +
574
26.0k
              ((uint128_t) in1[6]) * in2x2[6] +
575
26.0k
              ((uint128_t) in1[7]) * in2x2[5] +
576
26.0k
              ((uint128_t) in1[8]) * in2x2[4];
577
578
26.0k
    out[4] += ((uint128_t) in1[5]) * in2x2[8] +
579
26.0k
              ((uint128_t) in1[6]) * in2x2[7] +
580
26.0k
              ((uint128_t) in1[7]) * in2x2[6] +
581
26.0k
              ((uint128_t) in1[8]) * in2x2[5];
582
583
26.0k
    out[5] += ((uint128_t) in1[6]) * in2x2[8] +
584
26.0k
              ((uint128_t) in1[7]) * in2x2[7] +
585
26.0k
              ((uint128_t) in1[8]) * in2x2[6];
586
587
26.0k
    out[6] += ((uint128_t) in1[7]) * in2x2[8] +
588
26.0k
              ((uint128_t) in1[8]) * in2x2[7];
589
590
26.0k
    out[7] += ((uint128_t) in1[8]) * in2x2[8];
591
26.0k
}
592
593
static const limb bottom52bits = 0xfffffffffffff;
594
595
/*-
596
 * felem_reduce converts a largefelem to an felem.
597
 * On entry:
598
 *   in[i] < 2^128
599
 * On exit:
600
 *   out[i] < 2^59 + 2^14
601
 */
602
static void felem_reduce(felem out, const largefelem in)
603
48.9k
{
604
48.9k
    u64 overflow1, overflow2;
605
606
48.9k
    out[0] = ((limb) in[0]) & bottom58bits;
607
48.9k
    out[1] = ((limb) in[1]) & bottom58bits;
608
48.9k
    out[2] = ((limb) in[2]) & bottom58bits;
609
48.9k
    out[3] = ((limb) in[3]) & bottom58bits;
610
48.9k
    out[4] = ((limb) in[4]) & bottom58bits;
611
48.9k
    out[5] = ((limb) in[5]) & bottom58bits;
612
48.9k
    out[6] = ((limb) in[6]) & bottom58bits;
613
48.9k
    out[7] = ((limb) in[7]) & bottom58bits;
614
48.9k
    out[8] = ((limb) in[8]) & bottom58bits;
615
616
    /* out[i] < 2^58 */
617
618
48.9k
    out[1] += ((limb) in[0]) >> 58;
619
48.9k
    out[1] += (((limb) (in[0] >> 64)) & bottom52bits) << 6;
620
    /*-
621
     * out[1] < 2^58 + 2^6 + 2^58
622
     *        = 2^59 + 2^6
623
     */
624
48.9k
    out[2] += ((limb) (in[0] >> 64)) >> 52;
625
626
48.9k
    out[2] += ((limb) in[1]) >> 58;
627
48.9k
    out[2] += (((limb) (in[1] >> 64)) & bottom52bits) << 6;
628
48.9k
    out[3] += ((limb) (in[1] >> 64)) >> 52;
629
630
48.9k
    out[3] += ((limb) in[2]) >> 58;
631
48.9k
    out[3] += (((limb) (in[2] >> 64)) & bottom52bits) << 6;
632
48.9k
    out[4] += ((limb) (in[2] >> 64)) >> 52;
633
634
48.9k
    out[4] += ((limb) in[3]) >> 58;
635
48.9k
    out[4] += (((limb) (in[3] >> 64)) & bottom52bits) << 6;
636
48.9k
    out[5] += ((limb) (in[3] >> 64)) >> 52;
637
638
48.9k
    out[5] += ((limb) in[4]) >> 58;
639
48.9k
    out[5] += (((limb) (in[4] >> 64)) & bottom52bits) << 6;
640
48.9k
    out[6] += ((limb) (in[4] >> 64)) >> 52;
641
642
48.9k
    out[6] += ((limb) in[5]) >> 58;
643
48.9k
    out[6] += (((limb) (in[5] >> 64)) & bottom52bits) << 6;
644
48.9k
    out[7] += ((limb) (in[5] >> 64)) >> 52;
645
646
48.9k
    out[7] += ((limb) in[6]) >> 58;
647
48.9k
    out[7] += (((limb) (in[6] >> 64)) & bottom52bits) << 6;
648
48.9k
    out[8] += ((limb) (in[6] >> 64)) >> 52;
649
650
48.9k
    out[8] += ((limb) in[7]) >> 58;
651
48.9k
    out[8] += (((limb) (in[7] >> 64)) & bottom52bits) << 6;
652
    /*-
653
     * out[x > 1] < 2^58 + 2^6 + 2^58 + 2^12
654
     *            < 2^59 + 2^13
655
     */
656
48.9k
    overflow1 = ((limb) (in[7] >> 64)) >> 52;
657
658
48.9k
    overflow1 += ((limb) in[8]) >> 58;
659
48.9k
    overflow1 += (((limb) (in[8] >> 64)) & bottom52bits) << 6;
660
48.9k
    overflow2 = ((limb) (in[8] >> 64)) >> 52;
661
662
48.9k
    overflow1 <<= 1;            /* overflow1 < 2^13 + 2^7 + 2^59 */
663
48.9k
    overflow2 <<= 1;            /* overflow2 < 2^13 */
664
665
48.9k
    out[0] += overflow1;        /* out[0] < 2^60 */
666
48.9k
    out[1] += overflow2;        /* out[1] < 2^59 + 2^6 + 2^13 */
667
668
48.9k
    out[1] += out[0] >> 58;
669
48.9k
    out[0] &= bottom58bits;
670
    /*-
671
     * out[0] < 2^58
672
     * out[1] < 2^59 + 2^6 + 2^13 + 2^2
673
     *        < 2^59 + 2^14
674
     */
675
48.9k
}
676
677
static void felem_square_reduce(felem out, const felem in)
678
0
{
679
0
    largefelem tmp;
680
0
    felem_square(tmp, in);
681
0
    felem_reduce(out, tmp);
682
0
}
683
684
static void felem_mul_reduce(felem out, const felem in1, const felem in2)
685
0
{
686
0
    largefelem tmp;
687
0
    felem_mul(tmp, in1, in2);
688
0
    felem_reduce(out, tmp);
689
0
}
690
691
/*-
692
 * felem_inv calculates |out| = |in|^{-1}
693
 *
694
 * Based on Fermat's Little Theorem:
695
 *   a^p = a (mod p)
696
 *   a^{p-1} = 1 (mod p)
697
 *   a^{p-2} = a^{-1} (mod p)
698
 */
699
static void felem_inv(felem out, const felem in)
700
17
{
701
17
    felem ftmp, ftmp2, ftmp3, ftmp4;
702
17
    largefelem tmp;
703
17
    unsigned i;
704
705
17
    felem_square(tmp, in);
706
17
    felem_reduce(ftmp, tmp);    /* 2^1 */
707
17
    felem_mul(tmp, in, ftmp);
708
17
    felem_reduce(ftmp, tmp);    /* 2^2 - 2^0 */
709
17
    felem_assign(ftmp2, ftmp);
710
17
    felem_square(tmp, ftmp);
711
17
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^1 */
712
17
    felem_mul(tmp, in, ftmp);
713
17
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^0 */
714
17
    felem_square(tmp, ftmp);
715
17
    felem_reduce(ftmp, tmp);    /* 2^4 - 2^1 */
716
717
17
    felem_square(tmp, ftmp2);
718
17
    felem_reduce(ftmp3, tmp);   /* 2^3 - 2^1 */
719
17
    felem_square(tmp, ftmp3);
720
17
    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^2 */
721
17
    felem_mul(tmp, ftmp3, ftmp2);
722
17
    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^0 */
723
724
17
    felem_assign(ftmp2, ftmp3);
725
17
    felem_square(tmp, ftmp3);
726
17
    felem_reduce(ftmp3, tmp);   /* 2^5 - 2^1 */
727
17
    felem_square(tmp, ftmp3);
728
17
    felem_reduce(ftmp3, tmp);   /* 2^6 - 2^2 */
729
17
    felem_square(tmp, ftmp3);
730
17
    felem_reduce(ftmp3, tmp);   /* 2^7 - 2^3 */
731
17
    felem_square(tmp, ftmp3);
732
17
    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^4 */
733
17
    felem_assign(ftmp4, ftmp3);
734
17
    felem_mul(tmp, ftmp3, ftmp);
735
17
    felem_reduce(ftmp4, tmp);   /* 2^8 - 2^1 */
736
17
    felem_square(tmp, ftmp4);
737
17
    felem_reduce(ftmp4, tmp);   /* 2^9 - 2^2 */
738
17
    felem_mul(tmp, ftmp3, ftmp2);
739
17
    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^0 */
740
17
    felem_assign(ftmp2, ftmp3);
741
742
153
    for (i = 0; i < 8; i++) {
743
136
        felem_square(tmp, ftmp3);
744
136
        felem_reduce(ftmp3, tmp); /* 2^16 - 2^8 */
745
136
    }
746
17
    felem_mul(tmp, ftmp3, ftmp2);
747
17
    felem_reduce(ftmp3, tmp);   /* 2^16 - 2^0 */
748
17
    felem_assign(ftmp2, ftmp3);
749
750
289
    for (i = 0; i < 16; i++) {
751
272
        felem_square(tmp, ftmp3);
752
272
        felem_reduce(ftmp3, tmp); /* 2^32 - 2^16 */
753
272
    }
754
17
    felem_mul(tmp, ftmp3, ftmp2);
755
17
    felem_reduce(ftmp3, tmp);   /* 2^32 - 2^0 */
756
17
    felem_assign(ftmp2, ftmp3);
757
758
561
    for (i = 0; i < 32; i++) {
759
544
        felem_square(tmp, ftmp3);
760
544
        felem_reduce(ftmp3, tmp); /* 2^64 - 2^32 */
761
544
    }
762
17
    felem_mul(tmp, ftmp3, ftmp2);
763
17
    felem_reduce(ftmp3, tmp);   /* 2^64 - 2^0 */
764
17
    felem_assign(ftmp2, ftmp3);
765
766
1.10k
    for (i = 0; i < 64; i++) {
767
1.08k
        felem_square(tmp, ftmp3);
768
1.08k
        felem_reduce(ftmp3, tmp); /* 2^128 - 2^64 */
769
1.08k
    }
770
17
    felem_mul(tmp, ftmp3, ftmp2);
771
17
    felem_reduce(ftmp3, tmp);   /* 2^128 - 2^0 */
772
17
    felem_assign(ftmp2, ftmp3);
773
774
2.19k
    for (i = 0; i < 128; i++) {
775
2.17k
        felem_square(tmp, ftmp3);
776
2.17k
        felem_reduce(ftmp3, tmp); /* 2^256 - 2^128 */
777
2.17k
    }
778
17
    felem_mul(tmp, ftmp3, ftmp2);
779
17
    felem_reduce(ftmp3, tmp);   /* 2^256 - 2^0 */
780
17
    felem_assign(ftmp2, ftmp3);
781
782
4.36k
    for (i = 0; i < 256; i++) {
783
4.35k
        felem_square(tmp, ftmp3);
784
4.35k
        felem_reduce(ftmp3, tmp); /* 2^512 - 2^256 */
785
4.35k
    }
786
17
    felem_mul(tmp, ftmp3, ftmp2);
787
17
    felem_reduce(ftmp3, tmp);   /* 2^512 - 2^0 */
788
789
170
    for (i = 0; i < 9; i++) {
790
153
        felem_square(tmp, ftmp3);
791
153
        felem_reduce(ftmp3, tmp); /* 2^521 - 2^9 */
792
153
    }
793
17
    felem_mul(tmp, ftmp3, ftmp4);
794
17
    felem_reduce(ftmp3, tmp);   /* 2^512 - 2^2 */
795
17
    felem_mul(tmp, ftmp3, in);
796
17
    felem_reduce(out, tmp);     /* 2^512 - 3 */
797
17
}
798
799
/* This is 2^521-1, expressed as an felem */
800
static const felem kPrime = {
801
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
802
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
803
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x01ffffffffffffff
804
};
805
806
/*-
807
 * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
808
 * otherwise.
809
 * On entry:
810
 *   in[i] < 2^59 + 2^14
811
 */
812
static limb felem_is_zero(const felem in)
813
9.36k
{
814
9.36k
    felem ftmp;
815
9.36k
    limb is_zero, is_p;
816
9.36k
    felem_assign(ftmp, in);
817
818
9.36k
    ftmp[0] += ftmp[8] >> 57;
819
9.36k
    ftmp[8] &= bottom57bits;
820
    /* ftmp[8] < 2^57 */
821
9.36k
    ftmp[1] += ftmp[0] >> 58;
822
9.36k
    ftmp[0] &= bottom58bits;
823
9.36k
    ftmp[2] += ftmp[1] >> 58;
824
9.36k
    ftmp[1] &= bottom58bits;
825
9.36k
    ftmp[3] += ftmp[2] >> 58;
826
9.36k
    ftmp[2] &= bottom58bits;
827
9.36k
    ftmp[4] += ftmp[3] >> 58;
828
9.36k
    ftmp[3] &= bottom58bits;
829
9.36k
    ftmp[5] += ftmp[4] >> 58;
830
9.36k
    ftmp[4] &= bottom58bits;
831
9.36k
    ftmp[6] += ftmp[5] >> 58;
832
9.36k
    ftmp[5] &= bottom58bits;
833
9.36k
    ftmp[7] += ftmp[6] >> 58;
834
9.36k
    ftmp[6] &= bottom58bits;
835
9.36k
    ftmp[8] += ftmp[7] >> 58;
836
9.36k
    ftmp[7] &= bottom58bits;
837
    /* ftmp[8] < 2^57 + 4 */
838
839
    /*
840
     * The ninth limb of 2*(2^521-1) is 0x03ffffffffffffff, which is greater
841
     * than our bound for ftmp[8]. Therefore we only have to check if the
842
     * zero is zero or 2^521-1.
843
     */
844
845
9.36k
    is_zero = 0;
846
9.36k
    is_zero |= ftmp[0];
847
9.36k
    is_zero |= ftmp[1];
848
9.36k
    is_zero |= ftmp[2];
849
9.36k
    is_zero |= ftmp[3];
850
9.36k
    is_zero |= ftmp[4];
851
9.36k
    is_zero |= ftmp[5];
852
9.36k
    is_zero |= ftmp[6];
853
9.36k
    is_zero |= ftmp[7];
854
9.36k
    is_zero |= ftmp[8];
855
856
9.36k
    is_zero--;
857
    /*
858
     * We know that ftmp[i] < 2^63, therefore the only way that the top bit
859
     * can be set is if is_zero was 0 before the decrement.
860
     */
861
9.36k
    is_zero = 0 - (is_zero >> 63);
862
863
9.36k
    is_p = ftmp[0] ^ kPrime[0];
864
9.36k
    is_p |= ftmp[1] ^ kPrime[1];
865
9.36k
    is_p |= ftmp[2] ^ kPrime[2];
866
9.36k
    is_p |= ftmp[3] ^ kPrime[3];
867
9.36k
    is_p |= ftmp[4] ^ kPrime[4];
868
9.36k
    is_p |= ftmp[5] ^ kPrime[5];
869
9.36k
    is_p |= ftmp[6] ^ kPrime[6];
870
9.36k
    is_p |= ftmp[7] ^ kPrime[7];
871
9.36k
    is_p |= ftmp[8] ^ kPrime[8];
872
873
9.36k
    is_p--;
874
9.36k
    is_p = 0 - (is_p >> 63);
875
876
9.36k
    is_zero |= is_p;
877
9.36k
    return is_zero;
878
9.36k
}
879
880
static int felem_is_zero_int(const void *in)
881
0
{
882
0
    return (int)(felem_is_zero(in) & ((limb) 1));
883
0
}
884
885
/*-
886
 * felem_contract converts |in| to its unique, minimal representation.
887
 * On entry:
888
 *   in[i] < 2^59 + 2^14
889
 */
890
static void felem_contract(felem out, const felem in)
891
88
{
892
88
    limb is_p, is_greater, sign;
893
88
    static const limb two58 = ((limb) 1) << 58;
894
895
88
    felem_assign(out, in);
896
897
88
    out[0] += out[8] >> 57;
898
88
    out[8] &= bottom57bits;
899
    /* out[8] < 2^57 */
900
88
    out[1] += out[0] >> 58;
901
88
    out[0] &= bottom58bits;
902
88
    out[2] += out[1] >> 58;
903
88
    out[1] &= bottom58bits;
904
88
    out[3] += out[2] >> 58;
905
88
    out[2] &= bottom58bits;
906
88
    out[4] += out[3] >> 58;
907
88
    out[3] &= bottom58bits;
908
88
    out[5] += out[4] >> 58;
909
88
    out[4] &= bottom58bits;
910
88
    out[6] += out[5] >> 58;
911
88
    out[5] &= bottom58bits;
912
88
    out[7] += out[6] >> 58;
913
88
    out[6] &= bottom58bits;
914
88
    out[8] += out[7] >> 58;
915
88
    out[7] &= bottom58bits;
916
    /* out[8] < 2^57 + 4 */
917
918
    /*
919
     * If the value is greater than 2^521-1 then we have to subtract 2^521-1
920
     * out. See the comments in felem_is_zero regarding why we don't test for
921
     * other multiples of the prime.
922
     */
923
924
    /*
925
     * First, if |out| is equal to 2^521-1, we subtract it out to get zero.
926
     */
927
928
88
    is_p = out[0] ^ kPrime[0];
929
88
    is_p |= out[1] ^ kPrime[1];
930
88
    is_p |= out[2] ^ kPrime[2];
931
88
    is_p |= out[3] ^ kPrime[3];
932
88
    is_p |= out[4] ^ kPrime[4];
933
88
    is_p |= out[5] ^ kPrime[5];
934
88
    is_p |= out[6] ^ kPrime[6];
935
88
    is_p |= out[7] ^ kPrime[7];
936
88
    is_p |= out[8] ^ kPrime[8];
937
938
88
    is_p--;
939
88
    is_p &= is_p << 32;
940
88
    is_p &= is_p << 16;
941
88
    is_p &= is_p << 8;
942
88
    is_p &= is_p << 4;
943
88
    is_p &= is_p << 2;
944
88
    is_p &= is_p << 1;
945
88
    is_p = 0 - (is_p >> 63);
946
88
    is_p = ~is_p;
947
948
    /* is_p is 0 iff |out| == 2^521-1 and all ones otherwise */
949
950
88
    out[0] &= is_p;
951
88
    out[1] &= is_p;
952
88
    out[2] &= is_p;
953
88
    out[3] &= is_p;
954
88
    out[4] &= is_p;
955
88
    out[5] &= is_p;
956
88
    out[6] &= is_p;
957
88
    out[7] &= is_p;
958
88
    out[8] &= is_p;
959
960
    /*
961
     * In order to test that |out| >= 2^521-1 we need only test if out[8] >>
962
     * 57 is greater than zero as (2^521-1) + x >= 2^522
963
     */
964
88
    is_greater = out[8] >> 57;
965
88
    is_greater |= is_greater << 32;
966
88
    is_greater |= is_greater << 16;
967
88
    is_greater |= is_greater << 8;
968
88
    is_greater |= is_greater << 4;
969
88
    is_greater |= is_greater << 2;
970
88
    is_greater |= is_greater << 1;
971
88
    is_greater = 0 - (is_greater >> 63);
972
973
88
    out[0] -= kPrime[0] & is_greater;
974
88
    out[1] -= kPrime[1] & is_greater;
975
88
    out[2] -= kPrime[2] & is_greater;
976
88
    out[3] -= kPrime[3] & is_greater;
977
88
    out[4] -= kPrime[4] & is_greater;
978
88
    out[5] -= kPrime[5] & is_greater;
979
88
    out[6] -= kPrime[6] & is_greater;
980
88
    out[7] -= kPrime[7] & is_greater;
981
88
    out[8] -= kPrime[8] & is_greater;
982
983
    /* Eliminate negative coefficients */
984
88
    sign = -(out[0] >> 63);
985
88
    out[0] += (two58 & sign);
986
88
    out[1] -= (1 & sign);
987
88
    sign = -(out[1] >> 63);
988
88
    out[1] += (two58 & sign);
989
88
    out[2] -= (1 & sign);
990
88
    sign = -(out[2] >> 63);
991
88
    out[2] += (two58 & sign);
992
88
    out[3] -= (1 & sign);
993
88
    sign = -(out[3] >> 63);
994
88
    out[3] += (two58 & sign);
995
88
    out[4] -= (1 & sign);
996
88
    sign = -(out[4] >> 63);
997
88
    out[4] += (two58 & sign);
998
88
    out[5] -= (1 & sign);
999
88
    sign = -(out[0] >> 63);
1000
88
    out[5] += (two58 & sign);
1001
88
    out[6] -= (1 & sign);
1002
88
    sign = -(out[6] >> 63);
1003
88
    out[6] += (two58 & sign);
1004
88
    out[7] -= (1 & sign);
1005
88
    sign = -(out[7] >> 63);
1006
88
    out[7] += (two58 & sign);
1007
88
    out[8] -= (1 & sign);
1008
88
    sign = -(out[5] >> 63);
1009
88
    out[5] += (two58 & sign);
1010
88
    out[6] -= (1 & sign);
1011
88
    sign = -(out[6] >> 63);
1012
88
    out[6] += (two58 & sign);
1013
88
    out[7] -= (1 & sign);
1014
88
    sign = -(out[7] >> 63);
1015
88
    out[7] += (two58 & sign);
1016
88
    out[8] -= (1 & sign);
1017
88
}
1018
1019
/*-
1020
 * Group operations
1021
 * ----------------
1022
 *
1023
 * Building on top of the field operations we have the operations on the
1024
 * elliptic curve group itself. Points on the curve are represented in Jacobian
1025
 * coordinates */
1026
1027
/*-
1028
 * point_double calculates 2*(x_in, y_in, z_in)
1029
 *
1030
 * The method is taken from:
1031
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1032
 *
1033
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1034
 * while x_out == y_in is not (maybe this works, but it's not tested). */
1035
static void
1036
point_double(felem x_out, felem y_out, felem z_out,
1037
             const felem x_in, const felem y_in, const felem z_in)
1038
2.34k
{
1039
2.34k
    largefelem tmp, tmp2;
1040
2.34k
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
1041
1042
2.34k
    felem_assign(ftmp, x_in);
1043
2.34k
    felem_assign(ftmp2, x_in);
1044
1045
    /* delta = z^2 */
1046
2.34k
    felem_square(tmp, z_in);
1047
2.34k
    felem_reduce(delta, tmp);   /* delta[i] < 2^59 + 2^14 */
1048
1049
    /* gamma = y^2 */
1050
2.34k
    felem_square(tmp, y_in);
1051
2.34k
    felem_reduce(gamma, tmp);   /* gamma[i] < 2^59 + 2^14 */
1052
1053
    /* beta = x*gamma */
1054
2.34k
    felem_mul(tmp, x_in, gamma);
1055
2.34k
    felem_reduce(beta, tmp);    /* beta[i] < 2^59 + 2^14 */
1056
1057
    /* alpha = 3*(x-delta)*(x+delta) */
1058
2.34k
    felem_diff64(ftmp, delta);
1059
    /* ftmp[i] < 2^61 */
1060
2.34k
    felem_sum64(ftmp2, delta);
1061
    /* ftmp2[i] < 2^60 + 2^15 */
1062
2.34k
    felem_scalar64(ftmp2, 3);
1063
    /* ftmp2[i] < 3*2^60 + 3*2^15 */
1064
2.34k
    felem_mul(tmp, ftmp, ftmp2);
1065
    /*-
1066
     * tmp[i] < 17(3*2^121 + 3*2^76)
1067
     *        = 61*2^121 + 61*2^76
1068
     *        < 64*2^121 + 64*2^76
1069
     *        = 2^127 + 2^82
1070
     *        < 2^128
1071
     */
1072
2.34k
    felem_reduce(alpha, tmp);
1073
1074
    /* x' = alpha^2 - 8*beta */
1075
2.34k
    felem_square(tmp, alpha);
1076
    /*
1077
     * tmp[i] < 17*2^120 < 2^125
1078
     */
1079
2.34k
    felem_assign(ftmp, beta);
1080
2.34k
    felem_scalar64(ftmp, 8);
1081
    /* ftmp[i] < 2^62 + 2^17 */
1082
2.34k
    felem_diff_128_64(tmp, ftmp);
1083
    /* tmp[i] < 2^125 + 2^63 + 2^62 + 2^17 */
1084
2.34k
    felem_reduce(x_out, tmp);
1085
1086
    /* z' = (y + z)^2 - gamma - delta */
1087
2.34k
    felem_sum64(delta, gamma);
1088
    /* delta[i] < 2^60 + 2^15 */
1089
2.34k
    felem_assign(ftmp, y_in);
1090
2.34k
    felem_sum64(ftmp, z_in);
1091
    /* ftmp[i] < 2^60 + 2^15 */
1092
2.34k
    felem_square(tmp, ftmp);
1093
    /*
1094
     * tmp[i] < 17(2^122) < 2^127
1095
     */
1096
2.34k
    felem_diff_128_64(tmp, delta);
1097
    /* tmp[i] < 2^127 + 2^63 */
1098
2.34k
    felem_reduce(z_out, tmp);
1099
1100
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
1101
2.34k
    felem_scalar64(beta, 4);
1102
    /* beta[i] < 2^61 + 2^16 */
1103
2.34k
    felem_diff64(beta, x_out);
1104
    /* beta[i] < 2^61 + 2^60 + 2^16 */
1105
2.34k
    felem_mul(tmp, alpha, beta);
1106
    /*-
1107
     * tmp[i] < 17*((2^59 + 2^14)(2^61 + 2^60 + 2^16))
1108
     *        = 17*(2^120 + 2^75 + 2^119 + 2^74 + 2^75 + 2^30)
1109
     *        = 17*(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1110
     *        < 2^128
1111
     */
1112
2.34k
    felem_square(tmp2, gamma);
1113
    /*-
1114
     * tmp2[i] < 17*(2^59 + 2^14)^2
1115
     *         = 17*(2^118 + 2^74 + 2^28)
1116
     */
1117
2.34k
    felem_scalar128(tmp2, 8);
1118
    /*-
1119
     * tmp2[i] < 8*17*(2^118 + 2^74 + 2^28)
1120
     *         = 2^125 + 2^121 + 2^81 + 2^77 + 2^35 + 2^31
1121
     *         < 2^126
1122
     */
1123
2.34k
    felem_diff128(tmp, tmp2);
1124
    /*-
1125
     * tmp[i] < 2^127 - 2^69 + 17(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1126
     *        = 2^127 + 2^124 + 2^122 + 2^120 + 2^118 + 2^80 + 2^78 + 2^76 +
1127
     *          2^74 + 2^69 + 2^34 + 2^30
1128
     *        < 2^128
1129
     */
1130
2.34k
    felem_reduce(y_out, tmp);
1131
2.34k
}
1132
1133
/* copy_conditional copies in to out iff mask is all ones. */
1134
static void copy_conditional(felem out, const felem in, limb mask)
1135
14.0k
{
1136
14.0k
    unsigned i;
1137
140k
    for (i = 0; i < NLIMBS; ++i) {
1138
126k
        const limb tmp = mask & (in[i] ^ out[i]);
1139
126k
        out[i] ^= tmp;
1140
126k
    }
1141
14.0k
}
1142
1143
/*-
1144
 * point_add calculates (x1, y1, z1) + (x2, y2, z2)
1145
 *
1146
 * The method is taken from
1147
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1148
 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1149
 *
1150
 * This function includes a branch for checking whether the two input points
1151
 * are equal (while not equal to the point at infinity). See comment below
1152
 * on constant-time.
1153
 */
1154
static void point_add(felem x3, felem y3, felem z3,
1155
                      const felem x1, const felem y1, const felem z1,
1156
                      const int mixed, const felem x2, const felem y2,
1157
                      const felem z2)
1158
2.34k
{
1159
2.34k
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1160
2.34k
    largefelem tmp, tmp2;
1161
2.34k
    limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1162
2.34k
    limb points_equal;
1163
1164
2.34k
    z1_is_zero = felem_is_zero(z1);
1165
2.34k
    z2_is_zero = felem_is_zero(z2);
1166
1167
    /* ftmp = z1z1 = z1**2 */
1168
2.34k
    felem_square(tmp, z1);
1169
2.34k
    felem_reduce(ftmp, tmp);
1170
1171
2.34k
    if (!mixed) {
1172
        /* ftmp2 = z2z2 = z2**2 */
1173
0
        felem_square(tmp, z2);
1174
0
        felem_reduce(ftmp2, tmp);
1175
1176
        /* u1 = ftmp3 = x1*z2z2 */
1177
0
        felem_mul(tmp, x1, ftmp2);
1178
0
        felem_reduce(ftmp3, tmp);
1179
1180
        /* ftmp5 = z1 + z2 */
1181
0
        felem_assign(ftmp5, z1);
1182
0
        felem_sum64(ftmp5, z2);
1183
        /* ftmp5[i] < 2^61 */
1184
1185
        /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */
1186
0
        felem_square(tmp, ftmp5);
1187
        /* tmp[i] < 17*2^122 */
1188
0
        felem_diff_128_64(tmp, ftmp);
1189
        /* tmp[i] < 17*2^122 + 2^63 */
1190
0
        felem_diff_128_64(tmp, ftmp2);
1191
        /* tmp[i] < 17*2^122 + 2^64 */
1192
0
        felem_reduce(ftmp5, tmp);
1193
1194
        /* ftmp2 = z2 * z2z2 */
1195
0
        felem_mul(tmp, ftmp2, z2);
1196
0
        felem_reduce(ftmp2, tmp);
1197
1198
        /* s1 = ftmp6 = y1 * z2**3 */
1199
0
        felem_mul(tmp, y1, ftmp2);
1200
0
        felem_reduce(ftmp6, tmp);
1201
2.34k
    } else {
1202
        /*
1203
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
1204
         */
1205
1206
        /* u1 = ftmp3 = x1*z2z2 */
1207
2.34k
        felem_assign(ftmp3, x1);
1208
1209
        /* ftmp5 = 2*z1z2 */
1210
2.34k
        felem_scalar(ftmp5, z1, 2);
1211
1212
        /* s1 = ftmp6 = y1 * z2**3 */
1213
2.34k
        felem_assign(ftmp6, y1);
1214
2.34k
    }
1215
1216
    /* u2 = x2*z1z1 */
1217
2.34k
    felem_mul(tmp, x2, ftmp);
1218
    /* tmp[i] < 17*2^120 */
1219
1220
    /* h = ftmp4 = u2 - u1 */
1221
2.34k
    felem_diff_128_64(tmp, ftmp3);
1222
    /* tmp[i] < 17*2^120 + 2^63 */
1223
2.34k
    felem_reduce(ftmp4, tmp);
1224
1225
2.34k
    x_equal = felem_is_zero(ftmp4);
1226
1227
    /* z_out = ftmp5 * h */
1228
2.34k
    felem_mul(tmp, ftmp5, ftmp4);
1229
2.34k
    felem_reduce(z_out, tmp);
1230
1231
    /* ftmp = z1 * z1z1 */
1232
2.34k
    felem_mul(tmp, ftmp, z1);
1233
2.34k
    felem_reduce(ftmp, tmp);
1234
1235
    /* s2 = tmp = y2 * z1**3 */
1236
2.34k
    felem_mul(tmp, y2, ftmp);
1237
    /* tmp[i] < 17*2^120 */
1238
1239
    /* r = ftmp5 = (s2 - s1)*2 */
1240
2.34k
    felem_diff_128_64(tmp, ftmp6);
1241
    /* tmp[i] < 17*2^120 + 2^63 */
1242
2.34k
    felem_reduce(ftmp5, tmp);
1243
2.34k
    y_equal = felem_is_zero(ftmp5);
1244
2.34k
    felem_scalar64(ftmp5, 2);
1245
    /* ftmp5[i] < 2^61 */
1246
1247
    /*
1248
     * The formulae are incorrect if the points are equal, in affine coordinates
1249
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
1250
     * happens.
1251
     *
1252
     * We use bitwise operations to avoid potential side-channels introduced by
1253
     * the short-circuiting behaviour of boolean operators.
1254
     *
1255
     * The special case of either point being the point at infinity (z1 and/or
1256
     * z2 are zero), is handled separately later on in this function, so we
1257
     * avoid jumping to point_double here in those special cases.
1258
     *
1259
     * Notice the comment below on the implications of this branching for timing
1260
     * leaks and why it is considered practically irrelevant.
1261
     */
1262
2.34k
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero));
1263
1264
2.34k
    if (points_equal) {
1265
        /*
1266
         * This is obviously not constant-time but it will almost-never happen
1267
         * for ECDH / ECDSA. The case where it can happen is during scalar-mult
1268
         * where the intermediate value gets very close to the group order.
1269
         * Since |ec_GFp_nistp_recode_scalar_bits| produces signed digits for
1270
         * the scalar, it's possible for the intermediate value to be a small
1271
         * negative multiple of the base point, and for the final signed digit
1272
         * to be the same value. We believe that this only occurs for the scalar
1273
         * 1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
1274
         * ffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb
1275
         * 71e913863f7, in that case the penultimate intermediate is -9G and
1276
         * the final digit is also -9G. Since this only happens for a single
1277
         * scalar, the timing leak is irrelevant. (Any attacker who wanted to
1278
         * check whether a secret scalar was that exact value, can already do
1279
         * so.)
1280
         */
1281
0
        point_double(x3, y3, z3, x1, y1, z1);
1282
0
        return;
1283
0
    }
1284
1285
    /* I = ftmp = (2h)**2 */
1286
2.34k
    felem_assign(ftmp, ftmp4);
1287
2.34k
    felem_scalar64(ftmp, 2);
1288
    /* ftmp[i] < 2^61 */
1289
2.34k
    felem_square(tmp, ftmp);
1290
    /* tmp[i] < 17*2^122 */
1291
2.34k
    felem_reduce(ftmp, tmp);
1292
1293
    /* J = ftmp2 = h * I */
1294
2.34k
    felem_mul(tmp, ftmp4, ftmp);
1295
2.34k
    felem_reduce(ftmp2, tmp);
1296
1297
    /* V = ftmp4 = U1 * I */
1298
2.34k
    felem_mul(tmp, ftmp3, ftmp);
1299
2.34k
    felem_reduce(ftmp4, tmp);
1300
1301
    /* x_out = r**2 - J - 2V */
1302
2.34k
    felem_square(tmp, ftmp5);
1303
    /* tmp[i] < 17*2^122 */
1304
2.34k
    felem_diff_128_64(tmp, ftmp2);
1305
    /* tmp[i] < 17*2^122 + 2^63 */
1306
2.34k
    felem_assign(ftmp3, ftmp4);
1307
2.34k
    felem_scalar64(ftmp4, 2);
1308
    /* ftmp4[i] < 2^61 */
1309
2.34k
    felem_diff_128_64(tmp, ftmp4);
1310
    /* tmp[i] < 17*2^122 + 2^64 */
1311
2.34k
    felem_reduce(x_out, tmp);
1312
1313
    /* y_out = r(V-x_out) - 2 * s1 * J */
1314
2.34k
    felem_diff64(ftmp3, x_out);
1315
    /*
1316
     * ftmp3[i] < 2^60 + 2^60 = 2^61
1317
     */
1318
2.34k
    felem_mul(tmp, ftmp5, ftmp3);
1319
    /* tmp[i] < 17*2^122 */
1320
2.34k
    felem_mul(tmp2, ftmp6, ftmp2);
1321
    /* tmp2[i] < 17*2^120 */
1322
2.34k
    felem_scalar128(tmp2, 2);
1323
    /* tmp2[i] < 17*2^121 */
1324
2.34k
    felem_diff128(tmp, tmp2);
1325
        /*-
1326
         * tmp[i] < 2^127 - 2^69 + 17*2^122
1327
         *        = 2^126 - 2^122 - 2^6 - 2^2 - 1
1328
         *        < 2^127
1329
         */
1330
2.34k
    felem_reduce(y_out, tmp);
1331
1332
2.34k
    copy_conditional(x_out, x2, z1_is_zero);
1333
2.34k
    copy_conditional(x_out, x1, z2_is_zero);
1334
2.34k
    copy_conditional(y_out, y2, z1_is_zero);
1335
2.34k
    copy_conditional(y_out, y1, z2_is_zero);
1336
2.34k
    copy_conditional(z_out, z2, z1_is_zero);
1337
2.34k
    copy_conditional(z_out, z1, z2_is_zero);
1338
2.34k
    felem_assign(x3, x_out);
1339
2.34k
    felem_assign(y3, y_out);
1340
2.34k
    felem_assign(z3, z_out);
1341
2.34k
}
1342
1343
/*-
1344
 * Base point pre computation
1345
 * --------------------------
1346
 *
1347
 * Two different sorts of precomputed tables are used in the following code.
1348
 * Each contain various points on the curve, where each point is three field
1349
 * elements (x, y, z).
1350
 *
1351
 * For the base point table, z is usually 1 (0 for the point at infinity).
1352
 * This table has 16 elements:
1353
 * index | bits    | point
1354
 * ------+---------+------------------------------
1355
 *     0 | 0 0 0 0 | 0G
1356
 *     1 | 0 0 0 1 | 1G
1357
 *     2 | 0 0 1 0 | 2^130G
1358
 *     3 | 0 0 1 1 | (2^130 + 1)G
1359
 *     4 | 0 1 0 0 | 2^260G
1360
 *     5 | 0 1 0 1 | (2^260 + 1)G
1361
 *     6 | 0 1 1 0 | (2^260 + 2^130)G
1362
 *     7 | 0 1 1 1 | (2^260 + 2^130 + 1)G
1363
 *     8 | 1 0 0 0 | 2^390G
1364
 *     9 | 1 0 0 1 | (2^390 + 1)G
1365
 *    10 | 1 0 1 0 | (2^390 + 2^130)G
1366
 *    11 | 1 0 1 1 | (2^390 + 2^130 + 1)G
1367
 *    12 | 1 1 0 0 | (2^390 + 2^260)G
1368
 *    13 | 1 1 0 1 | (2^390 + 2^260 + 1)G
1369
 *    14 | 1 1 1 0 | (2^390 + 2^260 + 2^130)G
1370
 *    15 | 1 1 1 1 | (2^390 + 2^260 + 2^130 + 1)G
1371
 *
1372
 * The reason for this is so that we can clock bits into four different
1373
 * locations when doing simple scalar multiplies against the base point.
1374
 *
1375
 * Tables for other points have table[i] = iG for i in 0 .. 16. */
1376
1377
/* gmul is the table of precomputed base points */
1378
static const felem gmul[16][3] = {
1379
{{0, 0, 0, 0, 0, 0, 0, 0, 0},
1380
 {0, 0, 0, 0, 0, 0, 0, 0, 0},
1381
 {0, 0, 0, 0, 0, 0, 0, 0, 0}},
1382
{{0x017e7e31c2e5bd66, 0x022cf0615a90a6fe, 0x00127a2ffa8de334,
1383
  0x01dfbf9d64a3f877, 0x006b4d3dbaa14b5e, 0x014fed487e0a2bd8,
1384
  0x015b4429c6481390, 0x03a73678fb2d988e, 0x00c6858e06b70404},
1385
 {0x00be94769fd16650, 0x031c21a89cb09022, 0x039013fad0761353,
1386
  0x02657bd099031542, 0x03273e662c97ee72, 0x01e6d11a05ebef45,
1387
  0x03d1bd998f544495, 0x03001172297ed0b1, 0x011839296a789a3b},
1388
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1389
{{0x0373faacbc875bae, 0x00f325023721c671, 0x00f666fd3dbde5ad,
1390
  0x01a6932363f88ea7, 0x01fc6d9e13f9c47b, 0x03bcbffc2bbf734e,
1391
  0x013ee3c3647f3a92, 0x029409fefe75d07d, 0x00ef9199963d85e5},
1392
 {0x011173743ad5b178, 0x02499c7c21bf7d46, 0x035beaeabb8b1a58,
1393
  0x00f989c4752ea0a3, 0x0101e1de48a9c1a3, 0x01a20076be28ba6c,
1394
  0x02f8052e5eb2de95, 0x01bfe8f82dea117c, 0x0160074d3c36ddb7},
1395
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1396
{{0x012f3fc373393b3b, 0x03d3d6172f1419fa, 0x02adc943c0b86873,
1397
  0x00d475584177952b, 0x012a4d1673750ee2, 0x00512517a0f13b0c,
1398
  0x02b184671a7b1734, 0x0315b84236f1a50a, 0x00a4afc472edbdb9},
1399
 {0x00152a7077f385c4, 0x03044007d8d1c2ee, 0x0065829d61d52b52,
1400
  0x00494ff6b6631d0d, 0x00a11d94d5f06bcf, 0x02d2f89474d9282e,
1401
  0x0241c5727c06eeb9, 0x0386928710fbdb9d, 0x01f883f727b0dfbe},
1402
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1403
{{0x019b0c3c9185544d, 0x006243a37c9d97db, 0x02ee3cbe030a2ad2,
1404
  0x00cfdd946bb51e0d, 0x0271c00932606b91, 0x03f817d1ec68c561,
1405
  0x03f37009806a369c, 0x03c1f30baf184fd5, 0x01091022d6d2f065},
1406
 {0x0292c583514c45ed, 0x0316fca51f9a286c, 0x00300af507c1489a,
1407
  0x0295f69008298cf1, 0x02c0ed8274943d7b, 0x016509b9b47a431e,
1408
  0x02bc9de9634868ce, 0x005b34929bffcb09, 0x000c1a0121681524},
1409
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1410
{{0x0286abc0292fb9f2, 0x02665eee9805b3f7, 0x01ed7455f17f26d6,
1411
  0x0346355b83175d13, 0x006284944cd0a097, 0x0191895bcdec5e51,
1412
  0x02e288370afda7d9, 0x03b22312bfefa67a, 0x01d104d3fc0613fe},
1413
 {0x0092421a12f7e47f, 0x0077a83fa373c501, 0x03bd25c5f696bd0d,
1414
  0x035c41e4d5459761, 0x01ca0d1742b24f53, 0x00aaab27863a509c,
1415
  0x018b6de47df73917, 0x025c0b771705cd01, 0x01fd51d566d760a7},
1416
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1417
{{0x01dd92ff6b0d1dbd, 0x039c5e2e8f8afa69, 0x0261ed13242c3b27,
1418
  0x0382c6e67026e6a0, 0x01d60b10be2089f9, 0x03c15f3dce86723f,
1419
  0x03c764a32d2a062d, 0x017307eac0fad056, 0x018207c0b96c5256},
1420
 {0x0196a16d60e13154, 0x03e6ce74c0267030, 0x00ddbf2b4e52a5aa,
1421
  0x012738241bbf31c8, 0x00ebe8dc04685a28, 0x024c2ad6d380d4a2,
1422
  0x035ee062a6e62d0e, 0x0029ed74af7d3a0f, 0x00eef32aec142ebd},
1423
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1424
{{0x00c31ec398993b39, 0x03a9f45bcda68253, 0x00ac733c24c70890,
1425
  0x00872b111401ff01, 0x01d178c23195eafb, 0x03bca2c816b87f74,
1426
  0x0261a9af46fbad7a, 0x0324b2a8dd3d28f9, 0x00918121d8f24e23},
1427
 {0x032bc8c1ca983cd7, 0x00d869dfb08fc8c6, 0x01693cb61fce1516,
1428
  0x012a5ea68f4e88a8, 0x010869cab88d7ae3, 0x009081ad277ceee1,
1429
  0x033a77166d064cdc, 0x03955235a1fb3a95, 0x01251a4a9b25b65e},
1430
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1431
{{0x00148a3a1b27f40b, 0x0123186df1b31fdc, 0x00026e7beaad34ce,
1432
  0x01db446ac1d3dbba, 0x0299c1a33437eaec, 0x024540610183cbb7,
1433
  0x0173bb0e9ce92e46, 0x02b937e43921214b, 0x01ab0436a9bf01b5},
1434
 {0x0383381640d46948, 0x008dacbf0e7f330f, 0x03602122bcc3f318,
1435
  0x01ee596b200620d6, 0x03bd0585fda430b3, 0x014aed77fd123a83,
1436
  0x005ace749e52f742, 0x0390fe041da2b842, 0x0189a8ceb3299242},
1437
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1438
{{0x012a19d6b3282473, 0x00c0915918b423ce, 0x023a954eb94405ae,
1439
  0x00529f692be26158, 0x0289fa1b6fa4b2aa, 0x0198ae4ceea346ef,
1440
  0x0047d8cdfbdedd49, 0x00cc8c8953f0f6b8, 0x001424abbff49203},
1441
 {0x0256732a1115a03a, 0x0351bc38665c6733, 0x03f7b950fb4a6447,
1442
  0x000afffa94c22155, 0x025763d0a4dab540, 0x000511e92d4fc283,
1443
  0x030a7e9eda0ee96c, 0x004c3cd93a28bf0a, 0x017edb3a8719217f},
1444
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1445
{{0x011de5675a88e673, 0x031d7d0f5e567fbe, 0x0016b2062c970ae5,
1446
  0x03f4a2be49d90aa7, 0x03cef0bd13822866, 0x03f0923dcf774a6c,
1447
  0x0284bebc4f322f72, 0x016ab2645302bb2c, 0x01793f95dace0e2a},
1448
 {0x010646e13527a28f, 0x01ca1babd59dc5e7, 0x01afedfd9a5595df,
1449
  0x01f15785212ea6b1, 0x0324e5d64f6ae3f4, 0x02d680f526d00645,
1450
  0x0127920fadf627a7, 0x03b383f75df4f684, 0x0089e0057e783b0a},
1451
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1452
{{0x00f334b9eb3c26c6, 0x0298fdaa98568dce, 0x01c2d24843a82292,
1453
  0x020bcb24fa1b0711, 0x02cbdb3d2b1875e6, 0x0014907598f89422,
1454
  0x03abe3aa43b26664, 0x02cbf47f720bc168, 0x0133b5e73014b79b},
1455
 {0x034aab5dab05779d, 0x00cdc5d71fee9abb, 0x0399f16bd4bd9d30,
1456
  0x03582fa592d82647, 0x02be1cdfb775b0e9, 0x0034f7cea32e94cb,
1457
  0x0335a7f08f56f286, 0x03b707e9565d1c8b, 0x0015c946ea5b614f},
1458
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1459
{{0x024676f6cff72255, 0x00d14625cac96378, 0x00532b6008bc3767,
1460
  0x01fc16721b985322, 0x023355ea1b091668, 0x029de7afdc0317c3,
1461
  0x02fc8a7ca2da037c, 0x02de1217d74a6f30, 0x013f7173175b73bf},
1462
 {0x0344913f441490b5, 0x0200f9e272b61eca, 0x0258a246b1dd55d2,
1463
  0x03753db9ea496f36, 0x025e02937a09c5ef, 0x030cbd3d14012692,
1464
  0x01793a67e70dc72a, 0x03ec1d37048a662e, 0x006550f700c32a8d},
1465
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1466
{{0x00d3f48a347eba27, 0x008e636649b61bd8, 0x00d3b93716778fb3,
1467
  0x004d1915757bd209, 0x019d5311a3da44e0, 0x016d1afcbbe6aade,
1468
  0x0241bf5f73265616, 0x0384672e5d50d39b, 0x005009fee522b684},
1469
 {0x029b4fab064435fe, 0x018868ee095bbb07, 0x01ea3d6936cc92b8,
1470
  0x000608b00f78a2f3, 0x02db911073d1c20f, 0x018205938470100a,
1471
  0x01f1e4964cbe6ff2, 0x021a19a29eed4663, 0x01414485f42afa81},
1472
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1473
{{0x01612b3a17f63e34, 0x03813992885428e6, 0x022b3c215b5a9608,
1474
  0x029b4057e19f2fcb, 0x0384059a587af7e6, 0x02d6400ace6fe610,
1475
  0x029354d896e8e331, 0x00c047ee6dfba65e, 0x0037720542e9d49d},
1476
 {0x02ce9eed7c5e9278, 0x0374ed703e79643b, 0x01316c54c4072006,
1477
  0x005aaa09054b2ee8, 0x002824000c840d57, 0x03d4eba24771ed86,
1478
  0x0189c50aabc3bdae, 0x0338c01541e15510, 0x00466d56e38eed42},
1479
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1480
{{0x007efd8330ad8bd6, 0x02465ed48047710b, 0x0034c6606b215e0c,
1481
  0x016ae30c53cbf839, 0x01fa17bd37161216, 0x018ead4e61ce8ab9,
1482
  0x005482ed5f5dee46, 0x037543755bba1d7f, 0x005e5ac7e70a9d0f},
1483
 {0x0117e1bb2fdcb2a2, 0x03deea36249f40c4, 0x028d09b4a6246cb7,
1484
  0x03524b8855bcf756, 0x023d7d109d5ceb58, 0x0178e43e3223ef9c,
1485
  0x0154536a0c6e966a, 0x037964d1286ee9fe, 0x0199bcd90e125055},
1486
 {1, 0, 0, 0, 0, 0, 0, 0, 0}}
1487
};
1488
1489
/*
1490
 * select_point selects the |idx|th point from a precomputation table and
1491
 * copies it to out.
1492
 */
1493
 /* pre_comp below is of the size provided in |size| */
1494
static void select_point(const limb idx, unsigned int size,
1495
                         const felem pre_comp[][3], felem out[3])
1496
2.35k
{
1497
2.35k
    unsigned i, j;
1498
2.35k
    limb *outlimbs = &out[0][0];
1499
1500
2.35k
    memset(out, 0, sizeof(*out) * 3);
1501
1502
40.0k
    for (i = 0; i < size; i++) {
1503
37.7k
        const limb *inlimbs = &pre_comp[i][0][0];
1504
37.7k
        limb mask = i ^ idx;
1505
37.7k
        mask |= mask >> 4;
1506
37.7k
        mask |= mask >> 2;
1507
37.7k
        mask |= mask >> 1;
1508
37.7k
        mask &= 1;
1509
37.7k
        mask--;
1510
1.05M
        for (j = 0; j < NLIMBS * 3; j++)
1511
1.01M
            outlimbs[j] |= inlimbs[j] & mask;
1512
37.7k
    }
1513
2.35k
}
1514
1515
/* get_bit returns the |i|th bit in |in| */
1516
static char get_bit(const felem_bytearray in, int i)
1517
9.37k
{
1518
9.37k
    if (i < 0)
1519
0
        return 0;
1520
9.37k
    return (in[i >> 3] >> (i & 7)) & 1;
1521
9.37k
}
1522
1523
/*
1524
 * Interleaved point multiplication using precomputed point multiples: The
1525
 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1526
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1527
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1528
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1529
 */
1530
static void batch_mul(felem x_out, felem y_out, felem z_out,
1531
                      const felem_bytearray scalars[],
1532
                      const unsigned num_points, const u8 *g_scalar,
1533
                      const int mixed, const felem pre_comp[][17][3],
1534
                      const felem g_pre_comp[16][3])
1535
18
{
1536
18
    int i, skip;
1537
18
    unsigned num, gen_mul = (g_scalar != NULL);
1538
18
    felem nq[3], tmp[4];
1539
18
    limb bits;
1540
18
    u8 sign, digit;
1541
1542
    /* set nq to the point at infinity */
1543
18
    memset(nq, 0, sizeof(nq));
1544
1545
    /*
1546
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1547
     * of the generator (last quarter of rounds) and additions of other
1548
     * points multiples (every 5th round).
1549
     */
1550
18
    skip = 1;                   /* save two point operations in the first
1551
                                 * round */
1552
2.37k
    for (i = (num_points ? 520 : 130); i >= 0; --i) {
1553
        /* double */
1554
2.35k
        if (!skip)
1555
2.34k
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1556
1557
        /* add multiples of the generator */
1558
2.35k
        if (gen_mul && (i <= 130)) {
1559
2.35k
            bits = get_bit(g_scalar, i + 390) << 3;
1560
2.35k
            if (i < 130) {
1561
2.34k
                bits |= get_bit(g_scalar, i + 260) << 2;
1562
2.34k
                bits |= get_bit(g_scalar, i + 130) << 1;
1563
2.34k
                bits |= get_bit(g_scalar, i);
1564
2.34k
            }
1565
            /* select the point to add, in constant time */
1566
2.35k
            select_point(bits, 16, g_pre_comp, tmp);
1567
2.35k
            if (!skip) {
1568
                /* The 1 argument below is for "mixed" */
1569
2.34k
                point_add(nq[0], nq[1], nq[2],
1570
2.34k
                          nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1571
2.34k
            } else {
1572
18
                memcpy(nq, tmp, 3 * sizeof(felem));
1573
18
                skip = 0;
1574
18
            }
1575
2.35k
        }
1576
1577
        /* do other additions every 5 doublings */
1578
2.35k
        if (num_points && (i % 5 == 0)) {
1579
            /* loop over all scalars */
1580
0
            for (num = 0; num < num_points; ++num) {
1581
0
                bits = get_bit(scalars[num], i + 4) << 5;
1582
0
                bits |= get_bit(scalars[num], i + 3) << 4;
1583
0
                bits |= get_bit(scalars[num], i + 2) << 3;
1584
0
                bits |= get_bit(scalars[num], i + 1) << 2;
1585
0
                bits |= get_bit(scalars[num], i) << 1;
1586
0
                bits |= get_bit(scalars[num], i - 1);
1587
0
                ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1588
1589
                /*
1590
                 * select the point to add or subtract, in constant time
1591
                 */
1592
0
                select_point(digit, 17, pre_comp[num], tmp);
1593
0
                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1594
                                            * point */
1595
0
                copy_conditional(tmp[1], tmp[3], (-(limb) sign));
1596
1597
0
                if (!skip) {
1598
0
                    point_add(nq[0], nq[1], nq[2],
1599
0
                              nq[0], nq[1], nq[2],
1600
0
                              mixed, tmp[0], tmp[1], tmp[2]);
1601
0
                } else {
1602
0
                    memcpy(nq, tmp, 3 * sizeof(felem));
1603
0
                    skip = 0;
1604
0
                }
1605
0
            }
1606
0
        }
1607
2.35k
    }
1608
18
    felem_assign(x_out, nq[0]);
1609
18
    felem_assign(y_out, nq[1]);
1610
18
    felem_assign(z_out, nq[2]);
1611
18
}
1612
1613
/* Precomputation for the group generator. */
1614
struct nistp521_pre_comp_st {
1615
    felem g_pre_comp[16][3];
1616
    CRYPTO_REF_COUNT references;
1617
    CRYPTO_RWLOCK *lock;
1618
};
1619
1620
const EC_METHOD *EC_GFp_nistp521_method(void)
1621
1.13k
{
1622
1.13k
    static const EC_METHOD ret = {
1623
1.13k
        EC_FLAGS_DEFAULT_OCT,
1624
1.13k
        NID_X9_62_prime_field,
1625
1.13k
        ec_GFp_nistp521_group_init,
1626
1.13k
        ec_GFp_simple_group_finish,
1627
1.13k
        ec_GFp_simple_group_clear_finish,
1628
1.13k
        ec_GFp_nist_group_copy,
1629
1.13k
        ec_GFp_nistp521_group_set_curve,
1630
1.13k
        ec_GFp_simple_group_get_curve,
1631
1.13k
        ec_GFp_simple_group_get_degree,
1632
1.13k
        ec_group_simple_order_bits,
1633
1.13k
        ec_GFp_simple_group_check_discriminant,
1634
1.13k
        ec_GFp_simple_point_init,
1635
1.13k
        ec_GFp_simple_point_finish,
1636
1.13k
        ec_GFp_simple_point_clear_finish,
1637
1.13k
        ec_GFp_simple_point_copy,
1638
1.13k
        ec_GFp_simple_point_set_to_infinity,
1639
1.13k
        ec_GFp_simple_set_Jprojective_coordinates_GFp,
1640
1.13k
        ec_GFp_simple_get_Jprojective_coordinates_GFp,
1641
1.13k
        ec_GFp_simple_point_set_affine_coordinates,
1642
1.13k
        ec_GFp_nistp521_point_get_affine_coordinates,
1643
1.13k
        0 /* point_set_compressed_coordinates */ ,
1644
1.13k
        0 /* point2oct */ ,
1645
1.13k
        0 /* oct2point */ ,
1646
1.13k
        ec_GFp_simple_add,
1647
1.13k
        ec_GFp_simple_dbl,
1648
1.13k
        ec_GFp_simple_invert,
1649
1.13k
        ec_GFp_simple_is_at_infinity,
1650
1.13k
        ec_GFp_simple_is_on_curve,
1651
1.13k
        ec_GFp_simple_cmp,
1652
1.13k
        ec_GFp_simple_make_affine,
1653
1.13k
        ec_GFp_simple_points_make_affine,
1654
1.13k
        ec_GFp_nistp521_points_mul,
1655
1.13k
        ec_GFp_nistp521_precompute_mult,
1656
1.13k
        ec_GFp_nistp521_have_precompute_mult,
1657
1.13k
        ec_GFp_nist_field_mul,
1658
1.13k
        ec_GFp_nist_field_sqr,
1659
1.13k
        0 /* field_div */ ,
1660
1.13k
        ec_GFp_simple_field_inv,
1661
1.13k
        0 /* field_encode */ ,
1662
1.13k
        0 /* field_decode */ ,
1663
1.13k
        0,                      /* field_set_to_one */
1664
1.13k
        ec_key_simple_priv2oct,
1665
1.13k
        ec_key_simple_oct2priv,
1666
1.13k
        0, /* set private */
1667
1.13k
        ec_key_simple_generate_key,
1668
1.13k
        ec_key_simple_check_key,
1669
1.13k
        ec_key_simple_generate_public_key,
1670
1.13k
        0, /* keycopy */
1671
1.13k
        0, /* keyfinish */
1672
1.13k
        ecdh_simple_compute_key,
1673
1.13k
        0, /* field_inverse_mod_ord */
1674
1.13k
        0, /* blind_coordinates */
1675
1.13k
        0, /* ladder_pre */
1676
1.13k
        0, /* ladder_step */
1677
1.13k
        0  /* ladder_post */
1678
1.13k
    };
1679
1680
1.13k
    return &ret;
1681
1.13k
}
1682
1683
/******************************************************************************/
1684
/*
1685
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1686
 */
1687
1688
static NISTP521_PRE_COMP *nistp521_pre_comp_new(void)
1689
0
{
1690
0
    NISTP521_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1691
1692
0
    if (ret == NULL) {
1693
0
        ECerr(EC_F_NISTP521_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1694
0
        return ret;
1695
0
    }
1696
1697
0
    ret->references = 1;
1698
1699
0
    ret->lock = CRYPTO_THREAD_lock_new();
1700
0
    if (ret->lock == NULL) {
1701
0
        ECerr(EC_F_NISTP521_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1702
0
        OPENSSL_free(ret);
1703
0
        return NULL;
1704
0
    }
1705
0
    return ret;
1706
0
}
1707
1708
NISTP521_PRE_COMP *EC_nistp521_pre_comp_dup(NISTP521_PRE_COMP *p)
1709
0
{
1710
0
    int i;
1711
0
    if (p != NULL)
1712
0
        CRYPTO_UP_REF(&p->references, &i, p->lock);
1713
0
    return p;
1714
0
}
1715
1716
void EC_nistp521_pre_comp_free(NISTP521_PRE_COMP *p)
1717
0
{
1718
0
    int i;
1719
1720
0
    if (p == NULL)
1721
0
        return;
1722
1723
0
    CRYPTO_DOWN_REF(&p->references, &i, p->lock);
1724
0
    REF_PRINT_COUNT("EC_nistp521", x);
1725
0
    if (i > 0)
1726
0
        return;
1727
0
    REF_ASSERT_ISNT(i < 0);
1728
1729
0
    CRYPTO_THREAD_lock_free(p->lock);
1730
0
    OPENSSL_free(p);
1731
0
}
1732
1733
/******************************************************************************/
1734
/*
1735
 * OPENSSL EC_METHOD FUNCTIONS
1736
 */
1737
1738
int ec_GFp_nistp521_group_init(EC_GROUP *group)
1739
2.24k
{
1740
2.24k
    int ret;
1741
2.24k
    ret = ec_GFp_simple_group_init(group);
1742
2.24k
    group->a_is_minus3 = 1;
1743
2.24k
    return ret;
1744
2.24k
}
1745
1746
int ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1747
                                    const BIGNUM *a, const BIGNUM *b,
1748
                                    BN_CTX *ctx)
1749
1.13k
{
1750
1.13k
    int ret = 0;
1751
1.13k
    BN_CTX *new_ctx = NULL;
1752
1.13k
    BIGNUM *curve_p, *curve_a, *curve_b;
1753
1754
1.13k
    if (ctx == NULL)
1755
0
        if ((ctx = new_ctx = BN_CTX_new()) == NULL)
1756
0
            return 0;
1757
1.13k
    BN_CTX_start(ctx);
1758
1.13k
    curve_p = BN_CTX_get(ctx);
1759
1.13k
    curve_a = BN_CTX_get(ctx);
1760
1.13k
    curve_b = BN_CTX_get(ctx);
1761
1.13k
    if (curve_b == NULL)
1762
0
        goto err;
1763
1.13k
    BN_bin2bn(nistp521_curve_params[0], sizeof(felem_bytearray), curve_p);
1764
1.13k
    BN_bin2bn(nistp521_curve_params[1], sizeof(felem_bytearray), curve_a);
1765
1.13k
    BN_bin2bn(nistp521_curve_params[2], sizeof(felem_bytearray), curve_b);
1766
1.13k
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1767
0
        ECerr(EC_F_EC_GFP_NISTP521_GROUP_SET_CURVE,
1768
0
              EC_R_WRONG_CURVE_PARAMETERS);
1769
0
        goto err;
1770
0
    }
1771
1.13k
    group->field_mod_func = BN_nist_mod_521;
1772
1.13k
    ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1773
1.13k
 err:
1774
1.13k
    BN_CTX_end(ctx);
1775
1.13k
    BN_CTX_free(new_ctx);
1776
1.13k
    return ret;
1777
1.13k
}
1778
1779
/*
1780
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1781
 * (X/Z^2, Y/Z^3)
1782
 */
1783
int ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group,
1784
                                                 const EC_POINT *point,
1785
                                                 BIGNUM *x, BIGNUM *y,
1786
                                                 BN_CTX *ctx)
1787
17
{
1788
17
    felem z1, z2, x_in, y_in, x_out, y_out;
1789
17
    largefelem tmp;
1790
1791
17
    if (EC_POINT_is_at_infinity(group, point)) {
1792
0
        ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES,
1793
0
              EC_R_POINT_AT_INFINITY);
1794
0
        return 0;
1795
0
    }
1796
17
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1797
17
        (!BN_to_felem(z1, point->Z)))
1798
0
        return 0;
1799
17
    felem_inv(z2, z1);
1800
17
    felem_square(tmp, z2);
1801
17
    felem_reduce(z1, tmp);
1802
17
    felem_mul(tmp, x_in, z1);
1803
17
    felem_reduce(x_in, tmp);
1804
17
    felem_contract(x_out, x_in);
1805
17
    if (x != NULL) {
1806
17
        if (!felem_to_BN(x, x_out)) {
1807
0
            ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES,
1808
0
                  ERR_R_BN_LIB);
1809
0
            return 0;
1810
0
        }
1811
17
    }
1812
17
    felem_mul(tmp, z1, z2);
1813
17
    felem_reduce(z1, tmp);
1814
17
    felem_mul(tmp, y_in, z1);
1815
17
    felem_reduce(y_in, tmp);
1816
17
    felem_contract(y_out, y_in);
1817
17
    if (y != NULL) {
1818
17
        if (!felem_to_BN(y, y_out)) {
1819
0
            ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES,
1820
0
                  ERR_R_BN_LIB);
1821
0
            return 0;
1822
0
        }
1823
17
    }
1824
17
    return 1;
1825
17
}
1826
1827
/* points below is of size |num|, and tmp_felems is of size |num+1/ */
1828
static void make_points_affine(size_t num, felem points[][3],
1829
                               felem tmp_felems[])
1830
0
{
1831
    /*
1832
     * Runs in constant time, unless an input is the point at infinity (which
1833
     * normally shouldn't happen).
1834
     */
1835
0
    ec_GFp_nistp_points_make_affine_internal(num,
1836
0
                                             points,
1837
0
                                             sizeof(felem),
1838
0
                                             tmp_felems,
1839
0
                                             (void (*)(void *))felem_one,
1840
0
                                             felem_is_zero_int,
1841
0
                                             (void (*)(void *, const void *))
1842
0
                                             felem_assign,
1843
0
                                             (void (*)(void *, const void *))
1844
0
                                             felem_square_reduce, (void (*)
1845
0
                                                                   (void *,
1846
0
                                                                    const void
1847
0
                                                                    *,
1848
0
                                                                    const void
1849
0
                                                                    *))
1850
0
                                             felem_mul_reduce,
1851
0
                                             (void (*)(void *, const void *))
1852
0
                                             felem_inv,
1853
0
                                             (void (*)(void *, const void *))
1854
0
                                             felem_contract);
1855
0
}
1856
1857
/*
1858
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1859
 * values Result is stored in r (r can equal one of the inputs).
1860
 */
1861
int ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r,
1862
                               const BIGNUM *scalar, size_t num,
1863
                               const EC_POINT *points[],
1864
                               const BIGNUM *scalars[], BN_CTX *ctx)
1865
18
{
1866
18
    int ret = 0;
1867
18
    int j;
1868
18
    int mixed = 0;
1869
18
    BIGNUM *x, *y, *z, *tmp_scalar;
1870
18
    felem_bytearray g_secret;
1871
18
    felem_bytearray *secrets = NULL;
1872
18
    felem (*pre_comp)[17][3] = NULL;
1873
18
    felem *tmp_felems = NULL;
1874
18
    unsigned i;
1875
18
    int num_bytes;
1876
18
    int have_pre_comp = 0;
1877
18
    size_t num_points = num;
1878
18
    felem x_in, y_in, z_in, x_out, y_out, z_out;
1879
18
    NISTP521_PRE_COMP *pre = NULL;
1880
18
    felem(*g_pre_comp)[3] = NULL;
1881
18
    EC_POINT *generator = NULL;
1882
18
    const EC_POINT *p = NULL;
1883
18
    const BIGNUM *p_scalar = NULL;
1884
1885
18
    BN_CTX_start(ctx);
1886
18
    x = BN_CTX_get(ctx);
1887
18
    y = BN_CTX_get(ctx);
1888
18
    z = BN_CTX_get(ctx);
1889
18
    tmp_scalar = BN_CTX_get(ctx);
1890
18
    if (tmp_scalar == NULL)
1891
0
        goto err;
1892
1893
18
    if (scalar != NULL) {
1894
18
        pre = group->pre_comp.nistp521;
1895
18
        if (pre)
1896
            /* we have precomputation, try to use it */
1897
0
            g_pre_comp = &pre->g_pre_comp[0];
1898
18
        else
1899
            /* try to use the standard precomputation */
1900
18
            g_pre_comp = (felem(*)[3]) gmul;
1901
18
        generator = EC_POINT_new(group);
1902
18
        if (generator == NULL)
1903
0
            goto err;
1904
        /* get the generator from precomputation */
1905
18
        if (!felem_to_BN(x, g_pre_comp[1][0]) ||
1906
18
            !felem_to_BN(y, g_pre_comp[1][1]) ||
1907
18
            !felem_to_BN(z, g_pre_comp[1][2])) {
1908
0
            ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
1909
0
            goto err;
1910
0
        }
1911
18
        if (!EC_POINT_set_Jprojective_coordinates_GFp(group,
1912
18
                                                      generator, x, y, z,
1913
18
                                                      ctx))
1914
0
            goto err;
1915
18
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1916
            /* precomputation matches generator */
1917
18
            have_pre_comp = 1;
1918
0
        else
1919
            /*
1920
             * we don't have valid precomputation: treat the generator as a
1921
             * random point
1922
             */
1923
0
            num_points++;
1924
18
    }
1925
1926
18
    if (num_points > 0) {
1927
0
        if (num_points >= 2) {
1928
            /*
1929
             * unless we precompute multiples for just one point, converting
1930
             * those into affine form is time well spent
1931
             */
1932
0
            mixed = 1;
1933
0
        }
1934
0
        secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1935
0
        pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1936
0
        if (mixed)
1937
0
            tmp_felems =
1938
0
                OPENSSL_malloc(sizeof(*tmp_felems) * (num_points * 17 + 1));
1939
0
        if ((secrets == NULL) || (pre_comp == NULL)
1940
0
            || (mixed && (tmp_felems == NULL))) {
1941
0
            ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_MALLOC_FAILURE);
1942
0
            goto err;
1943
0
        }
1944
1945
        /*
1946
         * we treat NULL scalars as 0, and NULL points as points at infinity,
1947
         * i.e., they contribute nothing to the linear combination
1948
         */
1949
0
        for (i = 0; i < num_points; ++i) {
1950
0
            if (i == num) {
1951
                /*
1952
                 * we didn't have a valid precomputation, so we pick the
1953
                 * generator
1954
                 */
1955
0
                p = EC_GROUP_get0_generator(group);
1956
0
                p_scalar = scalar;
1957
0
            } else {
1958
                /* the i^th point */
1959
0
                p = points[i];
1960
0
                p_scalar = scalars[i];
1961
0
            }
1962
0
            if ((p_scalar != NULL) && (p != NULL)) {
1963
                /* reduce scalar to 0 <= scalar < 2^521 */
1964
0
                if ((BN_num_bits(p_scalar) > 521)
1965
0
                    || (BN_is_negative(p_scalar))) {
1966
                    /*
1967
                     * this is an unusual input, and we don't guarantee
1968
                     * constant-timeness
1969
                     */
1970
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
1971
0
                        ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
1972
0
                        goto err;
1973
0
                    }
1974
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
1975
0
                                               secrets[i], sizeof(secrets[i]));
1976
0
                } else {
1977
0
                    num_bytes = BN_bn2lebinpad(p_scalar,
1978
0
                                               secrets[i], sizeof(secrets[i]));
1979
0
                }
1980
0
                if (num_bytes < 0) {
1981
0
                    ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
1982
0
                    goto err;
1983
0
                }
1984
                /* precompute multiples */
1985
0
                if ((!BN_to_felem(x_out, p->X)) ||
1986
0
                    (!BN_to_felem(y_out, p->Y)) ||
1987
0
                    (!BN_to_felem(z_out, p->Z)))
1988
0
                    goto err;
1989
0
                memcpy(pre_comp[i][1][0], x_out, sizeof(felem));
1990
0
                memcpy(pre_comp[i][1][1], y_out, sizeof(felem));
1991
0
                memcpy(pre_comp[i][1][2], z_out, sizeof(felem));
1992
0
                for (j = 2; j <= 16; ++j) {
1993
0
                    if (j & 1) {
1994
0
                        point_add(pre_comp[i][j][0], pre_comp[i][j][1],
1995
0
                                  pre_comp[i][j][2], pre_comp[i][1][0],
1996
0
                                  pre_comp[i][1][1], pre_comp[i][1][2], 0,
1997
0
                                  pre_comp[i][j - 1][0],
1998
0
                                  pre_comp[i][j - 1][1],
1999
0
                                  pre_comp[i][j - 1][2]);
2000
0
                    } else {
2001
0
                        point_double(pre_comp[i][j][0], pre_comp[i][j][1],
2002
0
                                     pre_comp[i][j][2], pre_comp[i][j / 2][0],
2003
0
                                     pre_comp[i][j / 2][1],
2004
0
                                     pre_comp[i][j / 2][2]);
2005
0
                    }
2006
0
                }
2007
0
            }
2008
0
        }
2009
0
        if (mixed)
2010
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
2011
0
    }
2012
2013
    /* the scalar for the generator */
2014
18
    if ((scalar != NULL) && (have_pre_comp)) {
2015
18
        memset(g_secret, 0, sizeof(g_secret));
2016
        /* reduce scalar to 0 <= scalar < 2^521 */
2017
18
        if ((BN_num_bits(scalar) > 521) || (BN_is_negative(scalar))) {
2018
            /*
2019
             * this is an unusual input, and we don't guarantee
2020
             * constant-timeness
2021
             */
2022
2
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
2023
0
                ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
2024
0
                goto err;
2025
0
            }
2026
2
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
2027
16
        } else {
2028
16
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
2029
16
        }
2030
        /* do the multiplication with generator precomputation */
2031
18
        batch_mul(x_out, y_out, z_out,
2032
18
                  (const felem_bytearray(*))secrets, num_points,
2033
18
                  g_secret,
2034
18
                  mixed, (const felem(*)[17][3])pre_comp,
2035
18
                  (const felem(*)[3])g_pre_comp);
2036
18
    } else {
2037
        /* do the multiplication without generator precomputation */
2038
0
        batch_mul(x_out, y_out, z_out,
2039
0
                  (const felem_bytearray(*))secrets, num_points,
2040
0
                  NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
2041
0
    }
2042
    /* reduce the output to its unique minimal representation */
2043
18
    felem_contract(x_in, x_out);
2044
18
    felem_contract(y_in, y_out);
2045
18
    felem_contract(z_in, z_out);
2046
18
    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
2047
18
        (!felem_to_BN(z, z_in))) {
2048
0
        ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
2049
0
        goto err;
2050
0
    }
2051
18
    ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
2052
2053
18
 err:
2054
18
    BN_CTX_end(ctx);
2055
18
    EC_POINT_free(generator);
2056
18
    OPENSSL_free(secrets);
2057
18
    OPENSSL_free(pre_comp);
2058
18
    OPENSSL_free(tmp_felems);
2059
18
    return ret;
2060
18
}
2061
2062
int ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
2063
0
{
2064
0
    int ret = 0;
2065
0
    NISTP521_PRE_COMP *pre = NULL;
2066
0
    int i, j;
2067
0
    BN_CTX *new_ctx = NULL;
2068
0
    BIGNUM *x, *y;
2069
0
    EC_POINT *generator = NULL;
2070
0
    felem tmp_felems[16];
2071
2072
    /* throw away old precomputation */
2073
0
    EC_pre_comp_free(group);
2074
0
    if (ctx == NULL)
2075
0
        if ((ctx = new_ctx = BN_CTX_new()) == NULL)
2076
0
            return 0;
2077
0
    BN_CTX_start(ctx);
2078
0
    x = BN_CTX_get(ctx);
2079
0
    y = BN_CTX_get(ctx);
2080
0
    if (y == NULL)
2081
0
        goto err;
2082
    /* get the generator */
2083
0
    if (group->generator == NULL)
2084
0
        goto err;
2085
0
    generator = EC_POINT_new(group);
2086
0
    if (generator == NULL)
2087
0
        goto err;
2088
0
    BN_bin2bn(nistp521_curve_params[3], sizeof(felem_bytearray), x);
2089
0
    BN_bin2bn(nistp521_curve_params[4], sizeof(felem_bytearray), y);
2090
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
2091
0
        goto err;
2092
0
    if ((pre = nistp521_pre_comp_new()) == NULL)
2093
0
        goto err;
2094
    /*
2095
     * if the generator is the standard one, use built-in precomputation
2096
     */
2097
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
2098
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
2099
0
        goto done;
2100
0
    }
2101
0
    if ((!BN_to_felem(pre->g_pre_comp[1][0], group->generator->X)) ||
2102
0
        (!BN_to_felem(pre->g_pre_comp[1][1], group->generator->Y)) ||
2103
0
        (!BN_to_felem(pre->g_pre_comp[1][2], group->generator->Z)))
2104
0
        goto err;
2105
    /* compute 2^130*G, 2^260*G, 2^390*G */
2106
0
    for (i = 1; i <= 4; i <<= 1) {
2107
0
        point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1],
2108
0
                     pre->g_pre_comp[2 * i][2], pre->g_pre_comp[i][0],
2109
0
                     pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]);
2110
0
        for (j = 0; j < 129; ++j) {
2111
0
            point_double(pre->g_pre_comp[2 * i][0],
2112
0
                         pre->g_pre_comp[2 * i][1],
2113
0
                         pre->g_pre_comp[2 * i][2],
2114
0
                         pre->g_pre_comp[2 * i][0],
2115
0
                         pre->g_pre_comp[2 * i][1],
2116
0
                         pre->g_pre_comp[2 * i][2]);
2117
0
        }
2118
0
    }
2119
    /* g_pre_comp[0] is the point at infinity */
2120
0
    memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0]));
2121
    /* the remaining multiples */
2122
    /* 2^130*G + 2^260*G */
2123
0
    point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1],
2124
0
              pre->g_pre_comp[6][2], pre->g_pre_comp[4][0],
2125
0
              pre->g_pre_comp[4][1], pre->g_pre_comp[4][2],
2126
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2127
0
              pre->g_pre_comp[2][2]);
2128
    /* 2^130*G + 2^390*G */
2129
0
    point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1],
2130
0
              pre->g_pre_comp[10][2], pre->g_pre_comp[8][0],
2131
0
              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2132
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2133
0
              pre->g_pre_comp[2][2]);
2134
    /* 2^260*G + 2^390*G */
2135
0
    point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1],
2136
0
              pre->g_pre_comp[12][2], pre->g_pre_comp[8][0],
2137
0
              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2138
0
              0, pre->g_pre_comp[4][0], pre->g_pre_comp[4][1],
2139
0
              pre->g_pre_comp[4][2]);
2140
    /* 2^130*G + 2^260*G + 2^390*G */
2141
0
    point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1],
2142
0
              pre->g_pre_comp[14][2], pre->g_pre_comp[12][0],
2143
0
              pre->g_pre_comp[12][1], pre->g_pre_comp[12][2],
2144
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2145
0
              pre->g_pre_comp[2][2]);
2146
0
    for (i = 1; i < 8; ++i) {
2147
        /* odd multiples: add G */
2148
0
        point_add(pre->g_pre_comp[2 * i + 1][0],
2149
0
                  pre->g_pre_comp[2 * i + 1][1],
2150
0
                  pre->g_pre_comp[2 * i + 1][2], pre->g_pre_comp[2 * i][0],
2151
0
                  pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], 0,
2152
0
                  pre->g_pre_comp[1][0], pre->g_pre_comp[1][1],
2153
0
                  pre->g_pre_comp[1][2]);
2154
0
    }
2155
0
    make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems);
2156
2157
0
 done:
2158
0
    SETPRECOMP(group, nistp521, pre);
2159
0
    ret = 1;
2160
0
    pre = NULL;
2161
0
 err:
2162
0
    BN_CTX_end(ctx);
2163
0
    EC_POINT_free(generator);
2164
0
    BN_CTX_free(new_ctx);
2165
0
    EC_nistp521_pre_comp_free(pre);
2166
0
    return ret;
2167
0
}
2168
2169
int ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group)
2170
0
{
2171
0
    return HAVEPRECOMP(group, nistp521);
2172
0
}
2173
2174
#endif