Coverage Report

Created: 2023-06-08 06:41

/src/openssl111/crypto/ec/ecp_nistz256.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2014-2022 The OpenSSL Project Authors. All Rights Reserved.
3
 * Copyright (c) 2014, Intel Corporation. All Rights Reserved.
4
 * Copyright (c) 2015, CloudFlare, Inc.
5
 *
6
 * Licensed under the OpenSSL license (the "License").  You may not use
7
 * this file except in compliance with the License.  You can obtain a copy
8
 * in the file LICENSE in the source distribution or at
9
 * https://www.openssl.org/source/license.html
10
 *
11
 * Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1, 3)
12
 * (1) Intel Corporation, Israel Development Center, Haifa, Israel
13
 * (2) University of Haifa, Israel
14
 * (3) CloudFlare, Inc.
15
 *
16
 * Reference:
17
 * S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with
18
 *                          256 Bit Primes"
19
 */
20
21
#include <string.h>
22
23
#include "internal/cryptlib.h"
24
#include "crypto/bn.h"
25
#include "ec_local.h"
26
#include "internal/refcount.h"
27
28
#if BN_BITS2 != 64
29
# define TOBN(hi,lo)    lo,hi
30
#else
31
0
# define TOBN(hi,lo)    ((BN_ULONG)hi<<32|lo)
32
#endif
33
34
#if defined(__GNUC__)
35
11
# define ALIGN32        __attribute((aligned(32)))
36
#elif defined(_MSC_VER)
37
# define ALIGN32        __declspec(align(32))
38
#else
39
# define ALIGN32
40
#endif
41
42
0
#define ALIGNPTR(p,N)   ((unsigned char *)p+N-(size_t)p%N)
43
621
#define P256_LIMBS      (256/BN_BITS2)
44
45
typedef unsigned short u16;
46
47
typedef struct {
48
    BN_ULONG X[P256_LIMBS];
49
    BN_ULONG Y[P256_LIMBS];
50
    BN_ULONG Z[P256_LIMBS];
51
} P256_POINT;
52
53
typedef struct {
54
    BN_ULONG X[P256_LIMBS];
55
    BN_ULONG Y[P256_LIMBS];
56
} P256_POINT_AFFINE;
57
58
typedef P256_POINT_AFFINE PRECOMP256_ROW[64];
59
60
/* structure for precomputed multiples of the generator */
61
struct nistz256_pre_comp_st {
62
    const EC_GROUP *group;      /* Parent EC_GROUP object */
63
    size_t w;                   /* Window size */
64
    /*
65
     * Constant time access to the X and Y coordinates of the pre-computed,
66
     * generator multiplies, in the Montgomery domain. Pre-calculated
67
     * multiplies are stored in affine form.
68
     */
69
    PRECOMP256_ROW *precomp;
70
    void *precomp_storage;
71
    CRYPTO_REF_COUNT references;
72
    CRYPTO_RWLOCK *lock;
73
};
74
75
/* Functions implemented in assembly */
76
/*
77
 * Most of below mentioned functions *preserve* the property of inputs
78
 * being fully reduced, i.e. being in [0, modulus) range. Simply put if
79
 * inputs are fully reduced, then output is too. Note that reverse is
80
 * not true, in sense that given partially reduced inputs output can be
81
 * either, not unlikely reduced. And "most" in first sentence refers to
82
 * the fact that given the calculations flow one can tolerate that
83
 * addition, 1st function below, produces partially reduced result *if*
84
 * multiplications by 2 and 3, which customarily use addition, fully
85
 * reduce it. This effectively gives two options: a) addition produces
86
 * fully reduced result [as long as inputs are, just like remaining
87
 * functions]; b) addition is allowed to produce partially reduced
88
 * result, but multiplications by 2 and 3 perform additional reduction
89
 * step. Choice between the two can be platform-specific, but it was a)
90
 * in all cases so far...
91
 */
92
/* Modular add: res = a+b mod P   */
93
void ecp_nistz256_add(BN_ULONG res[P256_LIMBS],
94
                      const BN_ULONG a[P256_LIMBS],
95
                      const BN_ULONG b[P256_LIMBS]);
96
/* Modular mul by 2: res = 2*a mod P */
97
void ecp_nistz256_mul_by_2(BN_ULONG res[P256_LIMBS],
98
                           const BN_ULONG a[P256_LIMBS]);
99
/* Modular mul by 3: res = 3*a mod P */
100
void ecp_nistz256_mul_by_3(BN_ULONG res[P256_LIMBS],
101
                           const BN_ULONG a[P256_LIMBS]);
102
103
/* Modular div by 2: res = a/2 mod P */
104
void ecp_nistz256_div_by_2(BN_ULONG res[P256_LIMBS],
105
                           const BN_ULONG a[P256_LIMBS]);
106
/* Modular sub: res = a-b mod P   */
107
void ecp_nistz256_sub(BN_ULONG res[P256_LIMBS],
108
                      const BN_ULONG a[P256_LIMBS],
109
                      const BN_ULONG b[P256_LIMBS]);
110
/* Modular neg: res = -a mod P    */
111
void ecp_nistz256_neg(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS]);
112
/* Montgomery mul: res = a*b*2^-256 mod P */
113
void ecp_nistz256_mul_mont(BN_ULONG res[P256_LIMBS],
114
                           const BN_ULONG a[P256_LIMBS],
115
                           const BN_ULONG b[P256_LIMBS]);
116
/* Montgomery sqr: res = a*a*2^-256 mod P */
117
void ecp_nistz256_sqr_mont(BN_ULONG res[P256_LIMBS],
118
                           const BN_ULONG a[P256_LIMBS]);
119
/* Convert a number from Montgomery domain, by multiplying with 1 */
120
void ecp_nistz256_from_mont(BN_ULONG res[P256_LIMBS],
121
                            const BN_ULONG in[P256_LIMBS]);
122
/* Convert a number to Montgomery domain, by multiplying with 2^512 mod P*/
123
void ecp_nistz256_to_mont(BN_ULONG res[P256_LIMBS],
124
                          const BN_ULONG in[P256_LIMBS]);
125
/* Functions that perform constant time access to the precomputed tables */
126
void ecp_nistz256_scatter_w5(P256_POINT *val,
127
                             const P256_POINT *in_t, int idx);
128
void ecp_nistz256_gather_w5(P256_POINT *val,
129
                            const P256_POINT *in_t, int idx);
130
void ecp_nistz256_scatter_w7(P256_POINT_AFFINE *val,
131
                             const P256_POINT_AFFINE *in_t, int idx);
132
void ecp_nistz256_gather_w7(P256_POINT_AFFINE *val,
133
                            const P256_POINT_AFFINE *in_t, int idx);
134
135
/* One converted into the Montgomery domain */
136
static const BN_ULONG ONE[P256_LIMBS] = {
137
    TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000),
138
    TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe)
139
};
140
141
static NISTZ256_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group);
142
143
/* Precomputed tables for the default generator */
144
extern const PRECOMP256_ROW ecp_nistz256_precomputed[37];
145
146
/* Recode window to a signed digit, see ecp_nistputil.c for details */
147
static unsigned int _booth_recode_w5(unsigned int in)
148
0
{
149
0
    unsigned int s, d;
150
151
0
    s = ~((in >> 5) - 1);
152
0
    d = (1 << 6) - in - 1;
153
0
    d = (d & s) | (in & ~s);
154
0
    d = (d >> 1) + (d & 1);
155
156
0
    return (d << 1) + (s & 1);
157
0
}
158
159
static unsigned int _booth_recode_w7(unsigned int in)
160
407
{
161
407
    unsigned int s, d;
162
163
407
    s = ~((in >> 7) - 1);
164
407
    d = (1 << 8) - in - 1;
165
407
    d = (d & s) | (in & ~s);
166
407
    d = (d >> 1) + (d & 1);
167
168
407
    return (d << 1) + (s & 1);
169
407
}
170
171
static void copy_conditional(BN_ULONG dst[P256_LIMBS],
172
                             const BN_ULONG src[P256_LIMBS], BN_ULONG move)
173
407
{
174
407
    BN_ULONG mask1 = 0-move;
175
407
    BN_ULONG mask2 = ~mask1;
176
177
407
    dst[0] = (src[0] & mask1) ^ (dst[0] & mask2);
178
407
    dst[1] = (src[1] & mask1) ^ (dst[1] & mask2);
179
407
    dst[2] = (src[2] & mask1) ^ (dst[2] & mask2);
180
407
    dst[3] = (src[3] & mask1) ^ (dst[3] & mask2);
181
407
    if (P256_LIMBS == 8) {
182
0
        dst[4] = (src[4] & mask1) ^ (dst[4] & mask2);
183
0
        dst[5] = (src[5] & mask1) ^ (dst[5] & mask2);
184
0
        dst[6] = (src[6] & mask1) ^ (dst[6] & mask2);
185
0
        dst[7] = (src[7] & mask1) ^ (dst[7] & mask2);
186
0
    }
187
407
}
188
189
static BN_ULONG is_zero(BN_ULONG in)
190
54
{
191
54
    in |= (0 - in);
192
54
    in = ~in;
193
54
    in >>= BN_BITS2 - 1;
194
54
    return in;
195
54
}
196
197
static BN_ULONG is_equal(const BN_ULONG a[P256_LIMBS],
198
                         const BN_ULONG b[P256_LIMBS])
199
22
{
200
22
    BN_ULONG res;
201
202
22
    res = a[0] ^ b[0];
203
22
    res |= a[1] ^ b[1];
204
22
    res |= a[2] ^ b[2];
205
22
    res |= a[3] ^ b[3];
206
22
    if (P256_LIMBS == 8) {
207
0
        res |= a[4] ^ b[4];
208
0
        res |= a[5] ^ b[5];
209
0
        res |= a[6] ^ b[6];
210
0
        res |= a[7] ^ b[7];
211
0
    }
212
213
22
    return is_zero(res);
214
22
}
215
216
static BN_ULONG is_one(const BIGNUM *z)
217
22
{
218
22
    BN_ULONG res = 0;
219
22
    BN_ULONG *a = bn_get_words(z);
220
221
22
    if (bn_get_top(z) == (P256_LIMBS - P256_LIMBS / 8)) {
222
21
        res = a[0] ^ ONE[0];
223
21
        res |= a[1] ^ ONE[1];
224
21
        res |= a[2] ^ ONE[2];
225
21
        res |= a[3] ^ ONE[3];
226
21
        if (P256_LIMBS == 8) {
227
0
            res |= a[4] ^ ONE[4];
228
0
            res |= a[5] ^ ONE[5];
229
0
            res |= a[6] ^ ONE[6];
230
            /*
231
             * no check for a[7] (being zero) on 32-bit platforms,
232
             * because value of "one" takes only 7 limbs.
233
             */
234
0
        }
235
21
        res = is_zero(res);
236
21
    }
237
238
22
    return res;
239
22
}
240
241
/*
242
 * For reference, this macro is used only when new ecp_nistz256 assembly
243
 * module is being developed.  For example, configure with
244
 * -DECP_NISTZ256_REFERENCE_IMPLEMENTATION and implement only functions
245
 * performing simplest arithmetic operations on 256-bit vectors. Then
246
 * work on implementation of higher-level functions performing point
247
 * operations. Then remove ECP_NISTZ256_REFERENCE_IMPLEMENTATION
248
 * and never define it again. (The correct macro denoting presence of
249
 * ecp_nistz256 module is ECP_NISTZ256_ASM.)
250
 */
251
#ifndef ECP_NISTZ256_REFERENCE_IMPLEMENTATION
252
void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a);
253
void ecp_nistz256_point_add(P256_POINT *r,
254
                            const P256_POINT *a, const P256_POINT *b);
255
void ecp_nistz256_point_add_affine(P256_POINT *r,
256
                                   const P256_POINT *a,
257
                                   const P256_POINT_AFFINE *b);
258
#else
259
/* Point double: r = 2*a */
260
static void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a)
261
{
262
    BN_ULONG S[P256_LIMBS];
263
    BN_ULONG M[P256_LIMBS];
264
    BN_ULONG Zsqr[P256_LIMBS];
265
    BN_ULONG tmp0[P256_LIMBS];
266
267
    const BN_ULONG *in_x = a->X;
268
    const BN_ULONG *in_y = a->Y;
269
    const BN_ULONG *in_z = a->Z;
270
271
    BN_ULONG *res_x = r->X;
272
    BN_ULONG *res_y = r->Y;
273
    BN_ULONG *res_z = r->Z;
274
275
    ecp_nistz256_mul_by_2(S, in_y);
276
277
    ecp_nistz256_sqr_mont(Zsqr, in_z);
278
279
    ecp_nistz256_sqr_mont(S, S);
280
281
    ecp_nistz256_mul_mont(res_z, in_z, in_y);
282
    ecp_nistz256_mul_by_2(res_z, res_z);
283
284
    ecp_nistz256_add(M, in_x, Zsqr);
285
    ecp_nistz256_sub(Zsqr, in_x, Zsqr);
286
287
    ecp_nistz256_sqr_mont(res_y, S);
288
    ecp_nistz256_div_by_2(res_y, res_y);
289
290
    ecp_nistz256_mul_mont(M, M, Zsqr);
291
    ecp_nistz256_mul_by_3(M, M);
292
293
    ecp_nistz256_mul_mont(S, S, in_x);
294
    ecp_nistz256_mul_by_2(tmp0, S);
295
296
    ecp_nistz256_sqr_mont(res_x, M);
297
298
    ecp_nistz256_sub(res_x, res_x, tmp0);
299
    ecp_nistz256_sub(S, S, res_x);
300
301
    ecp_nistz256_mul_mont(S, S, M);
302
    ecp_nistz256_sub(res_y, S, res_y);
303
}
304
305
/* Point addition: r = a+b */
306
static void ecp_nistz256_point_add(P256_POINT *r,
307
                                   const P256_POINT *a, const P256_POINT *b)
308
{
309
    BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS];
310
    BN_ULONG U1[P256_LIMBS], S1[P256_LIMBS];
311
    BN_ULONG Z1sqr[P256_LIMBS];
312
    BN_ULONG Z2sqr[P256_LIMBS];
313
    BN_ULONG H[P256_LIMBS], R[P256_LIMBS];
314
    BN_ULONG Hsqr[P256_LIMBS];
315
    BN_ULONG Rsqr[P256_LIMBS];
316
    BN_ULONG Hcub[P256_LIMBS];
317
318
    BN_ULONG res_x[P256_LIMBS];
319
    BN_ULONG res_y[P256_LIMBS];
320
    BN_ULONG res_z[P256_LIMBS];
321
322
    BN_ULONG in1infty, in2infty;
323
324
    const BN_ULONG *in1_x = a->X;
325
    const BN_ULONG *in1_y = a->Y;
326
    const BN_ULONG *in1_z = a->Z;
327
328
    const BN_ULONG *in2_x = b->X;
329
    const BN_ULONG *in2_y = b->Y;
330
    const BN_ULONG *in2_z = b->Z;
331
332
    /*
333
     * Infinity in encoded as (,,0)
334
     */
335
    in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]);
336
    if (P256_LIMBS == 8)
337
        in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]);
338
339
    in2infty = (in2_z[0] | in2_z[1] | in2_z[2] | in2_z[3]);
340
    if (P256_LIMBS == 8)
341
        in2infty |= (in2_z[4] | in2_z[5] | in2_z[6] | in2_z[7]);
342
343
    in1infty = is_zero(in1infty);
344
    in2infty = is_zero(in2infty);
345
346
    ecp_nistz256_sqr_mont(Z2sqr, in2_z);        /* Z2^2 */
347
    ecp_nistz256_sqr_mont(Z1sqr, in1_z);        /* Z1^2 */
348
349
    ecp_nistz256_mul_mont(S1, Z2sqr, in2_z);    /* S1 = Z2^3 */
350
    ecp_nistz256_mul_mont(S2, Z1sqr, in1_z);    /* S2 = Z1^3 */
351
352
    ecp_nistz256_mul_mont(S1, S1, in1_y);       /* S1 = Y1*Z2^3 */
353
    ecp_nistz256_mul_mont(S2, S2, in2_y);       /* S2 = Y2*Z1^3 */
354
    ecp_nistz256_sub(R, S2, S1);                /* R = S2 - S1 */
355
356
    ecp_nistz256_mul_mont(U1, in1_x, Z2sqr);    /* U1 = X1*Z2^2 */
357
    ecp_nistz256_mul_mont(U2, in2_x, Z1sqr);    /* U2 = X2*Z1^2 */
358
    ecp_nistz256_sub(H, U2, U1);                /* H = U2 - U1 */
359
360
    /*
361
     * The formulae are incorrect if the points are equal so we check for
362
     * this and do doubling if this happens.
363
     *
364
     * Points here are in Jacobian projective coordinates (Xi, Yi, Zi)
365
     * that are bound to the affine coordinates (xi, yi) by the following
366
     * equations:
367
     *     - xi = Xi / (Zi)^2
368
     *     - y1 = Yi / (Zi)^3
369
     *
370
     * For the sake of optimization, the algorithm operates over
371
     * intermediate variables U1, U2 and S1, S2 that are derived from
372
     * the projective coordinates:
373
     *     - U1 = X1 * (Z2)^2 ; U2 = X2 * (Z1)^2
374
     *     - S1 = Y1 * (Z2)^3 ; S2 = Y2 * (Z1)^3
375
     *
376
     * It is easy to prove that is_equal(U1, U2) implies that the affine
377
     * x-coordinates are equal, or either point is at infinity.
378
     * Likewise is_equal(S1, S2) implies that the affine y-coordinates are
379
     * equal, or either point is at infinity.
380
     *
381
     * The special case of either point being the point at infinity (Z1 or Z2
382
     * is zero), is handled separately later on in this function, so we avoid
383
     * jumping to point_double here in those special cases.
384
     *
385
     * When both points are inverse of each other, we know that the affine
386
     * x-coordinates are equal, and the y-coordinates have different sign.
387
     * Therefore since U1 = U2, we know H = 0, and therefore Z3 = H*Z1*Z2
388
     * will equal 0, thus the result is infinity, if we simply let this
389
     * function continue normally.
390
     *
391
     * We use bitwise operations to avoid potential side-channels introduced by
392
     * the short-circuiting behaviour of boolean operators.
393
     */
394
    if (is_equal(U1, U2) & ~in1infty & ~in2infty & is_equal(S1, S2)) {
395
        /*
396
         * This is obviously not constant-time but it should never happen during
397
         * single point multiplication, so there is no timing leak for ECDH or
398
         * ECDSA signing.
399
         */
400
        ecp_nistz256_point_double(r, a);
401
        return;
402
    }
403
404
    ecp_nistz256_sqr_mont(Rsqr, R);             /* R^2 */
405
    ecp_nistz256_mul_mont(res_z, H, in1_z);     /* Z3 = H*Z1*Z2 */
406
    ecp_nistz256_sqr_mont(Hsqr, H);             /* H^2 */
407
    ecp_nistz256_mul_mont(res_z, res_z, in2_z); /* Z3 = H*Z1*Z2 */
408
    ecp_nistz256_mul_mont(Hcub, Hsqr, H);       /* H^3 */
409
410
    ecp_nistz256_mul_mont(U2, U1, Hsqr);        /* U1*H^2 */
411
    ecp_nistz256_mul_by_2(Hsqr, U2);            /* 2*U1*H^2 */
412
413
    ecp_nistz256_sub(res_x, Rsqr, Hsqr);
414
    ecp_nistz256_sub(res_x, res_x, Hcub);
415
416
    ecp_nistz256_sub(res_y, U2, res_x);
417
418
    ecp_nistz256_mul_mont(S2, S1, Hcub);
419
    ecp_nistz256_mul_mont(res_y, R, res_y);
420
    ecp_nistz256_sub(res_y, res_y, S2);
421
422
    copy_conditional(res_x, in2_x, in1infty);
423
    copy_conditional(res_y, in2_y, in1infty);
424
    copy_conditional(res_z, in2_z, in1infty);
425
426
    copy_conditional(res_x, in1_x, in2infty);
427
    copy_conditional(res_y, in1_y, in2infty);
428
    copy_conditional(res_z, in1_z, in2infty);
429
430
    memcpy(r->X, res_x, sizeof(res_x));
431
    memcpy(r->Y, res_y, sizeof(res_y));
432
    memcpy(r->Z, res_z, sizeof(res_z));
433
}
434
435
/* Point addition when b is known to be affine: r = a+b */
436
static void ecp_nistz256_point_add_affine(P256_POINT *r,
437
                                          const P256_POINT *a,
438
                                          const P256_POINT_AFFINE *b)
439
{
440
    BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS];
441
    BN_ULONG Z1sqr[P256_LIMBS];
442
    BN_ULONG H[P256_LIMBS], R[P256_LIMBS];
443
    BN_ULONG Hsqr[P256_LIMBS];
444
    BN_ULONG Rsqr[P256_LIMBS];
445
    BN_ULONG Hcub[P256_LIMBS];
446
447
    BN_ULONG res_x[P256_LIMBS];
448
    BN_ULONG res_y[P256_LIMBS];
449
    BN_ULONG res_z[P256_LIMBS];
450
451
    BN_ULONG in1infty, in2infty;
452
453
    const BN_ULONG *in1_x = a->X;
454
    const BN_ULONG *in1_y = a->Y;
455
    const BN_ULONG *in1_z = a->Z;
456
457
    const BN_ULONG *in2_x = b->X;
458
    const BN_ULONG *in2_y = b->Y;
459
460
    /*
461
     * Infinity in encoded as (,,0)
462
     */
463
    in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]);
464
    if (P256_LIMBS == 8)
465
        in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]);
466
467
    /*
468
     * In affine representation we encode infinity as (0,0), which is
469
     * not on the curve, so it is OK
470
     */
471
    in2infty = (in2_x[0] | in2_x[1] | in2_x[2] | in2_x[3] |
472
                in2_y[0] | in2_y[1] | in2_y[2] | in2_y[3]);
473
    if (P256_LIMBS == 8)
474
        in2infty |= (in2_x[4] | in2_x[5] | in2_x[6] | in2_x[7] |
475
                     in2_y[4] | in2_y[5] | in2_y[6] | in2_y[7]);
476
477
    in1infty = is_zero(in1infty);
478
    in2infty = is_zero(in2infty);
479
480
    ecp_nistz256_sqr_mont(Z1sqr, in1_z);        /* Z1^2 */
481
482
    ecp_nistz256_mul_mont(U2, in2_x, Z1sqr);    /* U2 = X2*Z1^2 */
483
    ecp_nistz256_sub(H, U2, in1_x);             /* H = U2 - U1 */
484
485
    ecp_nistz256_mul_mont(S2, Z1sqr, in1_z);    /* S2 = Z1^3 */
486
487
    ecp_nistz256_mul_mont(res_z, H, in1_z);     /* Z3 = H*Z1*Z2 */
488
489
    ecp_nistz256_mul_mont(S2, S2, in2_y);       /* S2 = Y2*Z1^3 */
490
    ecp_nistz256_sub(R, S2, in1_y);             /* R = S2 - S1 */
491
492
    ecp_nistz256_sqr_mont(Hsqr, H);             /* H^2 */
493
    ecp_nistz256_sqr_mont(Rsqr, R);             /* R^2 */
494
    ecp_nistz256_mul_mont(Hcub, Hsqr, H);       /* H^3 */
495
496
    ecp_nistz256_mul_mont(U2, in1_x, Hsqr);     /* U1*H^2 */
497
    ecp_nistz256_mul_by_2(Hsqr, U2);            /* 2*U1*H^2 */
498
499
    ecp_nistz256_sub(res_x, Rsqr, Hsqr);
500
    ecp_nistz256_sub(res_x, res_x, Hcub);
501
    ecp_nistz256_sub(H, U2, res_x);
502
503
    ecp_nistz256_mul_mont(S2, in1_y, Hcub);
504
    ecp_nistz256_mul_mont(H, H, R);
505
    ecp_nistz256_sub(res_y, H, S2);
506
507
    copy_conditional(res_x, in2_x, in1infty);
508
    copy_conditional(res_x, in1_x, in2infty);
509
510
    copy_conditional(res_y, in2_y, in1infty);
511
    copy_conditional(res_y, in1_y, in2infty);
512
513
    copy_conditional(res_z, ONE, in1infty);
514
    copy_conditional(res_z, in1_z, in2infty);
515
516
    memcpy(r->X, res_x, sizeof(res_x));
517
    memcpy(r->Y, res_y, sizeof(res_y));
518
    memcpy(r->Z, res_z, sizeof(res_z));
519
}
520
#endif
521
522
/* r = in^-1 mod p */
523
static void ecp_nistz256_mod_inverse(BN_ULONG r[P256_LIMBS],
524
                                     const BN_ULONG in[P256_LIMBS])
525
10
{
526
    /*
527
     * The poly is ffffffff 00000001 00000000 00000000 00000000 ffffffff
528
     * ffffffff ffffffff We use FLT and used poly-2 as exponent
529
     */
530
10
    BN_ULONG p2[P256_LIMBS];
531
10
    BN_ULONG p4[P256_LIMBS];
532
10
    BN_ULONG p8[P256_LIMBS];
533
10
    BN_ULONG p16[P256_LIMBS];
534
10
    BN_ULONG p32[P256_LIMBS];
535
10
    BN_ULONG res[P256_LIMBS];
536
10
    int i;
537
538
10
    ecp_nistz256_sqr_mont(res, in);
539
10
    ecp_nistz256_mul_mont(p2, res, in);         /* 3*p */
540
541
10
    ecp_nistz256_sqr_mont(res, p2);
542
10
    ecp_nistz256_sqr_mont(res, res);
543
10
    ecp_nistz256_mul_mont(p4, res, p2);         /* f*p */
544
545
10
    ecp_nistz256_sqr_mont(res, p4);
546
10
    ecp_nistz256_sqr_mont(res, res);
547
10
    ecp_nistz256_sqr_mont(res, res);
548
10
    ecp_nistz256_sqr_mont(res, res);
549
10
    ecp_nistz256_mul_mont(p8, res, p4);         /* ff*p */
550
551
10
    ecp_nistz256_sqr_mont(res, p8);
552
80
    for (i = 0; i < 7; i++)
553
70
        ecp_nistz256_sqr_mont(res, res);
554
10
    ecp_nistz256_mul_mont(p16, res, p8);        /* ffff*p */
555
556
10
    ecp_nistz256_sqr_mont(res, p16);
557
160
    for (i = 0; i < 15; i++)
558
150
        ecp_nistz256_sqr_mont(res, res);
559
10
    ecp_nistz256_mul_mont(p32, res, p16);       /* ffffffff*p */
560
561
10
    ecp_nistz256_sqr_mont(res, p32);
562
320
    for (i = 0; i < 31; i++)
563
310
        ecp_nistz256_sqr_mont(res, res);
564
10
    ecp_nistz256_mul_mont(res, res, in);
565
566
1.29k
    for (i = 0; i < 32 * 4; i++)
567
1.28k
        ecp_nistz256_sqr_mont(res, res);
568
10
    ecp_nistz256_mul_mont(res, res, p32);
569
570
330
    for (i = 0; i < 32; i++)
571
320
        ecp_nistz256_sqr_mont(res, res);
572
10
    ecp_nistz256_mul_mont(res, res, p32);
573
574
170
    for (i = 0; i < 16; i++)
575
160
        ecp_nistz256_sqr_mont(res, res);
576
10
    ecp_nistz256_mul_mont(res, res, p16);
577
578
90
    for (i = 0; i < 8; i++)
579
80
        ecp_nistz256_sqr_mont(res, res);
580
10
    ecp_nistz256_mul_mont(res, res, p8);
581
582
10
    ecp_nistz256_sqr_mont(res, res);
583
10
    ecp_nistz256_sqr_mont(res, res);
584
10
    ecp_nistz256_sqr_mont(res, res);
585
10
    ecp_nistz256_sqr_mont(res, res);
586
10
    ecp_nistz256_mul_mont(res, res, p4);
587
588
10
    ecp_nistz256_sqr_mont(res, res);
589
10
    ecp_nistz256_sqr_mont(res, res);
590
10
    ecp_nistz256_mul_mont(res, res, p2);
591
592
10
    ecp_nistz256_sqr_mont(res, res);
593
10
    ecp_nistz256_sqr_mont(res, res);
594
10
    ecp_nistz256_mul_mont(res, res, in);
595
596
10
    memcpy(r, res, sizeof(res));
597
10
}
598
599
/*
600
 * ecp_nistz256_bignum_to_field_elem copies the contents of |in| to |out| and
601
 * returns one if it fits. Otherwise it returns zero.
602
 */
603
__owur static int ecp_nistz256_bignum_to_field_elem(BN_ULONG out[P256_LIMBS],
604
                                                    const BIGNUM *in)
605
30
{
606
30
    return bn_copy_words(out, in, P256_LIMBS);
607
30
}
608
609
/* r = sum(scalar[i]*point[i]) */
610
__owur static int ecp_nistz256_windowed_mul(const EC_GROUP *group,
611
                                            P256_POINT *r,
612
                                            const BIGNUM **scalar,
613
                                            const EC_POINT **point,
614
                                            size_t num, BN_CTX *ctx)
615
0
{
616
0
    size_t i;
617
0
    int j, ret = 0;
618
0
    unsigned int idx;
619
0
    unsigned char (*p_str)[33] = NULL;
620
0
    const unsigned int window_size = 5;
621
0
    const unsigned int mask = (1 << (window_size + 1)) - 1;
622
0
    unsigned int wvalue;
623
0
    P256_POINT *temp;           /* place for 5 temporary points */
624
0
    const BIGNUM **scalars = NULL;
625
0
    P256_POINT (*table)[16] = NULL;
626
0
    void *table_storage = NULL;
627
628
0
    if ((num * 16 + 6) > OPENSSL_MALLOC_MAX_NELEMS(P256_POINT)
629
0
        || (table_storage =
630
0
            OPENSSL_malloc((num * 16 + 5) * sizeof(P256_POINT) + 64)) == NULL
631
0
        || (p_str =
632
0
            OPENSSL_malloc(num * 33 * sizeof(unsigned char))) == NULL
633
0
        || (scalars = OPENSSL_malloc(num * sizeof(BIGNUM *))) == NULL) {
634
0
        ECerr(EC_F_ECP_NISTZ256_WINDOWED_MUL, ERR_R_MALLOC_FAILURE);
635
0
        goto err;
636
0
    }
637
638
0
    table = (void *)ALIGNPTR(table_storage, 64);
639
0
    temp = (P256_POINT *)(table + num);
640
641
0
    for (i = 0; i < num; i++) {
642
0
        P256_POINT *row = table[i];
643
644
        /* This is an unusual input, we don't guarantee constant-timeness. */
645
0
        if ((BN_num_bits(scalar[i]) > 256) || BN_is_negative(scalar[i])) {
646
0
            BIGNUM *mod;
647
648
0
            if ((mod = BN_CTX_get(ctx)) == NULL)
649
0
                goto err;
650
0
            if (!BN_nnmod(mod, scalar[i], group->order, ctx)) {
651
0
                ECerr(EC_F_ECP_NISTZ256_WINDOWED_MUL, ERR_R_BN_LIB);
652
0
                goto err;
653
0
            }
654
0
            scalars[i] = mod;
655
0
        } else
656
0
            scalars[i] = scalar[i];
657
658
0
        for (j = 0; j < bn_get_top(scalars[i]) * BN_BYTES; j += BN_BYTES) {
659
0
            BN_ULONG d = bn_get_words(scalars[i])[j / BN_BYTES];
660
661
0
            p_str[i][j + 0] = (unsigned char)d;
662
0
            p_str[i][j + 1] = (unsigned char)(d >> 8);
663
0
            p_str[i][j + 2] = (unsigned char)(d >> 16);
664
0
            p_str[i][j + 3] = (unsigned char)(d >>= 24);
665
0
            if (BN_BYTES == 8) {
666
0
                d >>= 8;
667
0
                p_str[i][j + 4] = (unsigned char)d;
668
0
                p_str[i][j + 5] = (unsigned char)(d >> 8);
669
0
                p_str[i][j + 6] = (unsigned char)(d >> 16);
670
0
                p_str[i][j + 7] = (unsigned char)(d >> 24);
671
0
            }
672
0
        }
673
0
        for (; j < 33; j++)
674
0
            p_str[i][j] = 0;
675
676
0
        if (!ecp_nistz256_bignum_to_field_elem(temp[0].X, point[i]->X)
677
0
            || !ecp_nistz256_bignum_to_field_elem(temp[0].Y, point[i]->Y)
678
0
            || !ecp_nistz256_bignum_to_field_elem(temp[0].Z, point[i]->Z)) {
679
0
            ECerr(EC_F_ECP_NISTZ256_WINDOWED_MUL,
680
0
                  EC_R_COORDINATES_OUT_OF_RANGE);
681
0
            goto err;
682
0
        }
683
684
        /*
685
         * row[0] is implicitly (0,0,0) (the point at infinity), therefore it
686
         * is not stored. All other values are actually stored with an offset
687
         * of -1 in table.
688
         */
689
690
0
        ecp_nistz256_scatter_w5  (row, &temp[0], 1);
691
0
        ecp_nistz256_point_double(&temp[1], &temp[0]);              /*1+1=2  */
692
0
        ecp_nistz256_scatter_w5  (row, &temp[1], 2);
693
0
        ecp_nistz256_point_add   (&temp[2], &temp[1], &temp[0]);    /*2+1=3  */
694
0
        ecp_nistz256_scatter_w5  (row, &temp[2], 3);
695
0
        ecp_nistz256_point_double(&temp[1], &temp[1]);              /*2*2=4  */
696
0
        ecp_nistz256_scatter_w5  (row, &temp[1], 4);
697
0
        ecp_nistz256_point_double(&temp[2], &temp[2]);              /*2*3=6  */
698
0
        ecp_nistz256_scatter_w5  (row, &temp[2], 6);
699
0
        ecp_nistz256_point_add   (&temp[3], &temp[1], &temp[0]);    /*4+1=5  */
700
0
        ecp_nistz256_scatter_w5  (row, &temp[3], 5);
701
0
        ecp_nistz256_point_add   (&temp[4], &temp[2], &temp[0]);    /*6+1=7  */
702
0
        ecp_nistz256_scatter_w5  (row, &temp[4], 7);
703
0
        ecp_nistz256_point_double(&temp[1], &temp[1]);              /*2*4=8  */
704
0
        ecp_nistz256_scatter_w5  (row, &temp[1], 8);
705
0
        ecp_nistz256_point_double(&temp[2], &temp[2]);              /*2*6=12 */
706
0
        ecp_nistz256_scatter_w5  (row, &temp[2], 12);
707
0
        ecp_nistz256_point_double(&temp[3], &temp[3]);              /*2*5=10 */
708
0
        ecp_nistz256_scatter_w5  (row, &temp[3], 10);
709
0
        ecp_nistz256_point_double(&temp[4], &temp[4]);              /*2*7=14 */
710
0
        ecp_nistz256_scatter_w5  (row, &temp[4], 14);
711
0
        ecp_nistz256_point_add   (&temp[2], &temp[2], &temp[0]);    /*12+1=13*/
712
0
        ecp_nistz256_scatter_w5  (row, &temp[2], 13);
713
0
        ecp_nistz256_point_add   (&temp[3], &temp[3], &temp[0]);    /*10+1=11*/
714
0
        ecp_nistz256_scatter_w5  (row, &temp[3], 11);
715
0
        ecp_nistz256_point_add   (&temp[4], &temp[4], &temp[0]);    /*14+1=15*/
716
0
        ecp_nistz256_scatter_w5  (row, &temp[4], 15);
717
0
        ecp_nistz256_point_add   (&temp[2], &temp[1], &temp[0]);    /*8+1=9  */
718
0
        ecp_nistz256_scatter_w5  (row, &temp[2], 9);
719
0
        ecp_nistz256_point_double(&temp[1], &temp[1]);              /*2*8=16 */
720
0
        ecp_nistz256_scatter_w5  (row, &temp[1], 16);
721
0
    }
722
723
0
    idx = 255;
724
725
0
    wvalue = p_str[0][(idx - 1) / 8];
726
0
    wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
727
728
    /*
729
     * We gather to temp[0], because we know it's position relative
730
     * to table
731
     */
732
0
    ecp_nistz256_gather_w5(&temp[0], table[0], _booth_recode_w5(wvalue) >> 1);
733
0
    memcpy(r, &temp[0], sizeof(temp[0]));
734
735
0
    while (idx >= 5) {
736
0
        for (i = (idx == 255 ? 1 : 0); i < num; i++) {
737
0
            unsigned int off = (idx - 1) / 8;
738
739
0
            wvalue = p_str[i][off] | p_str[i][off + 1] << 8;
740
0
            wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
741
742
0
            wvalue = _booth_recode_w5(wvalue);
743
744
0
            ecp_nistz256_gather_w5(&temp[0], table[i], wvalue >> 1);
745
746
0
            ecp_nistz256_neg(temp[1].Y, temp[0].Y);
747
0
            copy_conditional(temp[0].Y, temp[1].Y, (wvalue & 1));
748
749
0
            ecp_nistz256_point_add(r, r, &temp[0]);
750
0
        }
751
752
0
        idx -= window_size;
753
754
0
        ecp_nistz256_point_double(r, r);
755
0
        ecp_nistz256_point_double(r, r);
756
0
        ecp_nistz256_point_double(r, r);
757
0
        ecp_nistz256_point_double(r, r);
758
0
        ecp_nistz256_point_double(r, r);
759
0
    }
760
761
    /* Final window */
762
0
    for (i = 0; i < num; i++) {
763
0
        wvalue = p_str[i][0];
764
0
        wvalue = (wvalue << 1) & mask;
765
766
0
        wvalue = _booth_recode_w5(wvalue);
767
768
0
        ecp_nistz256_gather_w5(&temp[0], table[i], wvalue >> 1);
769
770
0
        ecp_nistz256_neg(temp[1].Y, temp[0].Y);
771
0
        copy_conditional(temp[0].Y, temp[1].Y, wvalue & 1);
772
773
0
        ecp_nistz256_point_add(r, r, &temp[0]);
774
0
    }
775
776
0
    ret = 1;
777
0
 err:
778
0
    OPENSSL_free(table_storage);
779
0
    OPENSSL_free(p_str);
780
0
    OPENSSL_free(scalars);
781
0
    return ret;
782
0
}
783
784
/* Coordinates of G, for which we have precomputed tables */
785
static const BN_ULONG def_xG[P256_LIMBS] = {
786
    TOBN(0x79e730d4, 0x18a9143c), TOBN(0x75ba95fc, 0x5fedb601),
787
    TOBN(0x79fb732b, 0x77622510), TOBN(0x18905f76, 0xa53755c6)
788
};
789
790
static const BN_ULONG def_yG[P256_LIMBS] = {
791
    TOBN(0xddf25357, 0xce95560a), TOBN(0x8b4ab8e4, 0xba19e45c),
792
    TOBN(0xd2e88688, 0xdd21f325), TOBN(0x8571ff18, 0x25885d85)
793
};
794
795
/*
796
 * ecp_nistz256_is_affine_G returns one if |generator| is the standard, P-256
797
 * generator.
798
 */
799
static int ecp_nistz256_is_affine_G(const EC_POINT *generator)
800
11
{
801
11
    return (bn_get_top(generator->X) == P256_LIMBS) &&
802
11
        (bn_get_top(generator->Y) == P256_LIMBS) &&
803
11
        is_equal(bn_get_words(generator->X), def_xG) &&
804
11
        is_equal(bn_get_words(generator->Y), def_yG) &&
805
11
        is_one(generator->Z);
806
11
}
807
808
__owur static int ecp_nistz256_mult_precompute(EC_GROUP *group, BN_CTX *ctx)
809
0
{
810
    /*
811
     * We precompute a table for a Booth encoded exponent (wNAF) based
812
     * computation. Each table holds 64 values for safe access, with an
813
     * implicit value of infinity at index zero. We use window of size 7, and
814
     * therefore require ceil(256/7) = 37 tables.
815
     */
816
0
    const BIGNUM *order;
817
0
    EC_POINT *P = NULL, *T = NULL;
818
0
    const EC_POINT *generator;
819
0
    NISTZ256_PRE_COMP *pre_comp;
820
0
    BN_CTX *new_ctx = NULL;
821
0
    int i, j, k, ret = 0;
822
0
    size_t w;
823
824
0
    PRECOMP256_ROW *preComputedTable = NULL;
825
0
    unsigned char *precomp_storage = NULL;
826
827
    /* if there is an old NISTZ256_PRE_COMP object, throw it away */
828
0
    EC_pre_comp_free(group);
829
0
    generator = EC_GROUP_get0_generator(group);
830
0
    if (generator == NULL) {
831
0
        ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, EC_R_UNDEFINED_GENERATOR);
832
0
        return 0;
833
0
    }
834
835
0
    if (ecp_nistz256_is_affine_G(generator)) {
836
        /*
837
         * No need to calculate tables for the standard generator because we
838
         * have them statically.
839
         */
840
0
        return 1;
841
0
    }
842
843
0
    if ((pre_comp = ecp_nistz256_pre_comp_new(group)) == NULL)
844
0
        return 0;
845
846
0
    if (ctx == NULL) {
847
0
        ctx = new_ctx = BN_CTX_new();
848
0
        if (ctx == NULL)
849
0
            goto err;
850
0
    }
851
852
0
    BN_CTX_start(ctx);
853
854
0
    order = EC_GROUP_get0_order(group);
855
0
    if (order == NULL)
856
0
        goto err;
857
858
0
    if (BN_is_zero(order)) {
859
0
        ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, EC_R_UNKNOWN_ORDER);
860
0
        goto err;
861
0
    }
862
863
0
    w = 7;
864
865
0
    if ((precomp_storage =
866
0
         OPENSSL_malloc(37 * 64 * sizeof(P256_POINT_AFFINE) + 64)) == NULL) {
867
0
        ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, ERR_R_MALLOC_FAILURE);
868
0
        goto err;
869
0
    }
870
871
0
    preComputedTable = (void *)ALIGNPTR(precomp_storage, 64);
872
873
0
    P = EC_POINT_new(group);
874
0
    T = EC_POINT_new(group);
875
0
    if (P == NULL || T == NULL)
876
0
        goto err;
877
878
    /*
879
     * The zero entry is implicitly infinity, and we skip it, storing other
880
     * values with -1 offset.
881
     */
882
0
    if (!EC_POINT_copy(T, generator))
883
0
        goto err;
884
885
0
    for (k = 0; k < 64; k++) {
886
0
        if (!EC_POINT_copy(P, T))
887
0
            goto err;
888
0
        for (j = 0; j < 37; j++) {
889
0
            P256_POINT_AFFINE temp;
890
            /*
891
             * It would be faster to use EC_POINTs_make_affine and
892
             * make multiple points affine at the same time.
893
             */
894
0
            if (!EC_POINT_make_affine(group, P, ctx))
895
0
                goto err;
896
0
            if (!ecp_nistz256_bignum_to_field_elem(temp.X, P->X) ||
897
0
                !ecp_nistz256_bignum_to_field_elem(temp.Y, P->Y)) {
898
0
                ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE,
899
0
                      EC_R_COORDINATES_OUT_OF_RANGE);
900
0
                goto err;
901
0
            }
902
0
            ecp_nistz256_scatter_w7(preComputedTable[j], &temp, k);
903
0
            for (i = 0; i < 7; i++) {
904
0
                if (!EC_POINT_dbl(group, P, P, ctx))
905
0
                    goto err;
906
0
            }
907
0
        }
908
0
        if (!EC_POINT_add(group, T, T, generator, ctx))
909
0
            goto err;
910
0
    }
911
912
0
    pre_comp->group = group;
913
0
    pre_comp->w = w;
914
0
    pre_comp->precomp = preComputedTable;
915
0
    pre_comp->precomp_storage = precomp_storage;
916
0
    precomp_storage = NULL;
917
0
    SETPRECOMP(group, nistz256, pre_comp);
918
0
    pre_comp = NULL;
919
0
    ret = 1;
920
921
0
 err:
922
0
    BN_CTX_end(ctx);
923
0
    BN_CTX_free(new_ctx);
924
925
0
    EC_nistz256_pre_comp_free(pre_comp);
926
0
    OPENSSL_free(precomp_storage);
927
0
    EC_POINT_free(P);
928
0
    EC_POINT_free(T);
929
0
    return ret;
930
0
}
931
932
__owur static int ecp_nistz256_set_from_affine(EC_POINT *out, const EC_GROUP *group,
933
                                               const P256_POINT_AFFINE *in,
934
                                               BN_CTX *ctx)
935
0
{
936
0
    int ret = 0;
937
938
0
    if ((ret = bn_set_words(out->X, in->X, P256_LIMBS))
939
0
        && (ret = bn_set_words(out->Y, in->Y, P256_LIMBS))
940
0
        && (ret = bn_set_words(out->Z, ONE, P256_LIMBS)))
941
0
        out->Z_is_one = 1;
942
943
0
    return ret;
944
0
}
945
946
/* r = scalar*G + sum(scalars[i]*points[i]) */
947
__owur static int ecp_nistz256_points_mul(const EC_GROUP *group,
948
                                          EC_POINT *r,
949
                                          const BIGNUM *scalar,
950
                                          size_t num,
951
                                          const EC_POINT *points[],
952
                                          const BIGNUM *scalars[], BN_CTX *ctx)
953
11
{
954
11
    int i = 0, ret = 0, no_precomp_for_generator = 0, p_is_infinity = 0;
955
11
    unsigned char p_str[33] = { 0 };
956
11
    const PRECOMP256_ROW *preComputedTable = NULL;
957
11
    const NISTZ256_PRE_COMP *pre_comp = NULL;
958
11
    const EC_POINT *generator = NULL;
959
11
    const BIGNUM **new_scalars = NULL;
960
11
    const EC_POINT **new_points = NULL;
961
11
    unsigned int idx = 0;
962
11
    const unsigned int window_size = 7;
963
11
    const unsigned int mask = (1 << (window_size + 1)) - 1;
964
11
    unsigned int wvalue;
965
11
    ALIGN32 union {
966
11
        P256_POINT p;
967
11
        P256_POINT_AFFINE a;
968
11
    } t, p;
969
11
    BIGNUM *tmp_scalar;
970
971
11
    if ((num + 1) == 0 || (num + 1) > OPENSSL_MALLOC_MAX_NELEMS(void *)) {
972
0
        ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_MALLOC_FAILURE);
973
0
        return 0;
974
0
    }
975
976
11
    memset(&p, 0, sizeof(p));
977
11
    BN_CTX_start(ctx);
978
979
11
    if (scalar) {
980
11
        generator = EC_GROUP_get0_generator(group);
981
11
        if (generator == NULL) {
982
0
            ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, EC_R_UNDEFINED_GENERATOR);
983
0
            goto err;
984
0
        }
985
986
        /* look if we can use precomputed multiples of generator */
987
11
        pre_comp = group->pre_comp.nistz256;
988
989
11
        if (pre_comp) {
990
            /*
991
             * If there is a precomputed table for the generator, check that
992
             * it was generated with the same generator.
993
             */
994
0
            EC_POINT *pre_comp_generator = EC_POINT_new(group);
995
0
            if (pre_comp_generator == NULL)
996
0
                goto err;
997
998
0
            ecp_nistz256_gather_w7(&p.a, pre_comp->precomp[0], 1);
999
0
            if (!ecp_nistz256_set_from_affine(pre_comp_generator,
1000
0
                                              group, &p.a, ctx)) {
1001
0
                EC_POINT_free(pre_comp_generator);
1002
0
                goto err;
1003
0
            }
1004
1005
0
            if (0 == EC_POINT_cmp(group, generator, pre_comp_generator, ctx))
1006
0
                preComputedTable = (const PRECOMP256_ROW *)pre_comp->precomp;
1007
1008
0
            EC_POINT_free(pre_comp_generator);
1009
0
        }
1010
1011
11
        if (preComputedTable == NULL && ecp_nistz256_is_affine_G(generator)) {
1012
            /*
1013
             * If there is no precomputed data, but the generator is the
1014
             * default, a hardcoded table of precomputed data is used. This
1015
             * is because applications, such as Apache, do not use
1016
             * EC_KEY_precompute_mult.
1017
             */
1018
11
            preComputedTable = ecp_nistz256_precomputed;
1019
11
        }
1020
1021
11
        if (preComputedTable) {
1022
11
            BN_ULONG infty;
1023
1024
11
            if ((BN_num_bits(scalar) > 256)
1025
11
                || BN_is_negative(scalar)) {
1026
1
                if ((tmp_scalar = BN_CTX_get(ctx)) == NULL)
1027
0
                    goto err;
1028
1029
1
                if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
1030
0
                    ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_BN_LIB);
1031
0
                    goto err;
1032
0
                }
1033
1
                scalar = tmp_scalar;
1034
1
            }
1035
1036
41
            for (i = 0; i < bn_get_top(scalar) * BN_BYTES; i += BN_BYTES) {
1037
30
                BN_ULONG d = bn_get_words(scalar)[i / BN_BYTES];
1038
1039
30
                p_str[i + 0] = (unsigned char)d;
1040
30
                p_str[i + 1] = (unsigned char)(d >> 8);
1041
30
                p_str[i + 2] = (unsigned char)(d >> 16);
1042
30
                p_str[i + 3] = (unsigned char)(d >>= 24);
1043
30
                if (BN_BYTES == 8) {
1044
30
                    d >>= 8;
1045
30
                    p_str[i + 4] = (unsigned char)d;
1046
30
                    p_str[i + 5] = (unsigned char)(d >> 8);
1047
30
                    p_str[i + 6] = (unsigned char)(d >> 16);
1048
30
                    p_str[i + 7] = (unsigned char)(d >> 24);
1049
30
                }
1050
30
            }
1051
1052
134
            for (; i < 33; i++)
1053
123
                p_str[i] = 0;
1054
1055
            /* First window */
1056
11
            wvalue = (p_str[0] << 1) & mask;
1057
11
            idx += window_size;
1058
1059
11
            wvalue = _booth_recode_w7(wvalue);
1060
1061
11
            ecp_nistz256_gather_w7(&p.a, preComputedTable[0],
1062
11
                                   wvalue >> 1);
1063
1064
11
            ecp_nistz256_neg(p.p.Z, p.p.Y);
1065
11
            copy_conditional(p.p.Y, p.p.Z, wvalue & 1);
1066
1067
            /*
1068
             * Since affine infinity is encoded as (0,0) and
1069
             * Jacobian is (,,0), we need to harmonize them
1070
             * by assigning "one" or zero to Z.
1071
             */
1072
11
            infty = (p.p.X[0] | p.p.X[1] | p.p.X[2] | p.p.X[3] |
1073
11
                     p.p.Y[0] | p.p.Y[1] | p.p.Y[2] | p.p.Y[3]);
1074
11
            if (P256_LIMBS == 8)
1075
0
                infty |= (p.p.X[4] | p.p.X[5] | p.p.X[6] | p.p.X[7] |
1076
0
                          p.p.Y[4] | p.p.Y[5] | p.p.Y[6] | p.p.Y[7]);
1077
1078
11
            infty = 0 - is_zero(infty);
1079
11
            infty = ~infty;
1080
1081
11
            p.p.Z[0] = ONE[0] & infty;
1082
11
            p.p.Z[1] = ONE[1] & infty;
1083
11
            p.p.Z[2] = ONE[2] & infty;
1084
11
            p.p.Z[3] = ONE[3] & infty;
1085
11
            if (P256_LIMBS == 8) {
1086
0
                p.p.Z[4] = ONE[4] & infty;
1087
0
                p.p.Z[5] = ONE[5] & infty;
1088
0
                p.p.Z[6] = ONE[6] & infty;
1089
0
                p.p.Z[7] = ONE[7] & infty;
1090
0
            }
1091
1092
407
            for (i = 1; i < 37; i++) {
1093
396
                unsigned int off = (idx - 1) / 8;
1094
396
                wvalue = p_str[off] | p_str[off + 1] << 8;
1095
396
                wvalue = (wvalue >> ((idx - 1) % 8)) & mask;
1096
396
                idx += window_size;
1097
1098
396
                wvalue = _booth_recode_w7(wvalue);
1099
1100
396
                ecp_nistz256_gather_w7(&t.a,
1101
396
                                       preComputedTable[i], wvalue >> 1);
1102
1103
396
                ecp_nistz256_neg(t.p.Z, t.a.Y);
1104
396
                copy_conditional(t.a.Y, t.p.Z, wvalue & 1);
1105
1106
396
                ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a);
1107
396
            }
1108
11
        } else {
1109
0
            p_is_infinity = 1;
1110
0
            no_precomp_for_generator = 1;
1111
0
        }
1112
11
    } else
1113
0
        p_is_infinity = 1;
1114
1115
11
    if (no_precomp_for_generator) {
1116
        /*
1117
         * Without a precomputed table for the generator, it has to be
1118
         * handled like a normal point.
1119
         */
1120
0
        new_scalars = OPENSSL_malloc((num + 1) * sizeof(BIGNUM *));
1121
0
        if (new_scalars == NULL) {
1122
0
            ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_MALLOC_FAILURE);
1123
0
            goto err;
1124
0
        }
1125
1126
0
        new_points = OPENSSL_malloc((num + 1) * sizeof(EC_POINT *));
1127
0
        if (new_points == NULL) {
1128
0
            ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_MALLOC_FAILURE);
1129
0
            goto err;
1130
0
        }
1131
1132
0
        memcpy(new_scalars, scalars, num * sizeof(BIGNUM *));
1133
0
        new_scalars[num] = scalar;
1134
0
        memcpy(new_points, points, num * sizeof(EC_POINT *));
1135
0
        new_points[num] = generator;
1136
1137
0
        scalars = new_scalars;
1138
0
        points = new_points;
1139
0
        num++;
1140
0
    }
1141
1142
11
    if (num) {
1143
0
        P256_POINT *out = &t.p;
1144
0
        if (p_is_infinity)
1145
0
            out = &p.p;
1146
1147
0
        if (!ecp_nistz256_windowed_mul(group, out, scalars, points, num, ctx))
1148
0
            goto err;
1149
1150
0
        if (!p_is_infinity)
1151
0
            ecp_nistz256_point_add(&p.p, &p.p, out);
1152
0
    }
1153
1154
    /* Not constant-time, but we're only operating on the public output. */
1155
11
    if (!bn_set_words(r->X, p.p.X, P256_LIMBS) ||
1156
11
        !bn_set_words(r->Y, p.p.Y, P256_LIMBS) ||
1157
11
        !bn_set_words(r->Z, p.p.Z, P256_LIMBS)) {
1158
0
        goto err;
1159
0
    }
1160
11
    r->Z_is_one = is_one(r->Z) & 1;
1161
1162
11
    ret = 1;
1163
1164
11
err:
1165
11
    BN_CTX_end(ctx);
1166
11
    OPENSSL_free(new_points);
1167
11
    OPENSSL_free(new_scalars);
1168
11
    return ret;
1169
11
}
1170
1171
__owur static int ecp_nistz256_get_affine(const EC_GROUP *group,
1172
                                          const EC_POINT *point,
1173
                                          BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
1174
10
{
1175
10
    BN_ULONG z_inv2[P256_LIMBS];
1176
10
    BN_ULONG z_inv3[P256_LIMBS];
1177
10
    BN_ULONG x_aff[P256_LIMBS];
1178
10
    BN_ULONG y_aff[P256_LIMBS];
1179
10
    BN_ULONG point_x[P256_LIMBS], point_y[P256_LIMBS], point_z[P256_LIMBS];
1180
10
    BN_ULONG x_ret[P256_LIMBS], y_ret[P256_LIMBS];
1181
1182
10
    if (EC_POINT_is_at_infinity(group, point)) {
1183
0
        ECerr(EC_F_ECP_NISTZ256_GET_AFFINE, EC_R_POINT_AT_INFINITY);
1184
0
        return 0;
1185
0
    }
1186
1187
10
    if (!ecp_nistz256_bignum_to_field_elem(point_x, point->X) ||
1188
10
        !ecp_nistz256_bignum_to_field_elem(point_y, point->Y) ||
1189
10
        !ecp_nistz256_bignum_to_field_elem(point_z, point->Z)) {
1190
0
        ECerr(EC_F_ECP_NISTZ256_GET_AFFINE, EC_R_COORDINATES_OUT_OF_RANGE);
1191
0
        return 0;
1192
0
    }
1193
1194
10
    ecp_nistz256_mod_inverse(z_inv3, point_z);
1195
10
    ecp_nistz256_sqr_mont(z_inv2, z_inv3);
1196
10
    ecp_nistz256_mul_mont(x_aff, z_inv2, point_x);
1197
1198
10
    if (x != NULL) {
1199
10
        ecp_nistz256_from_mont(x_ret, x_aff);
1200
10
        if (!bn_set_words(x, x_ret, P256_LIMBS))
1201
0
            return 0;
1202
10
    }
1203
1204
10
    if (y != NULL) {
1205
10
        ecp_nistz256_mul_mont(z_inv3, z_inv3, z_inv2);
1206
10
        ecp_nistz256_mul_mont(y_aff, z_inv3, point_y);
1207
10
        ecp_nistz256_from_mont(y_ret, y_aff);
1208
10
        if (!bn_set_words(y, y_ret, P256_LIMBS))
1209
0
            return 0;
1210
10
    }
1211
1212
10
    return 1;
1213
10
}
1214
1215
static NISTZ256_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group)
1216
0
{
1217
0
    NISTZ256_PRE_COMP *ret = NULL;
1218
1219
0
    if (!group)
1220
0
        return NULL;
1221
1222
0
    ret = OPENSSL_zalloc(sizeof(*ret));
1223
1224
0
    if (ret == NULL) {
1225
0
        ECerr(EC_F_ECP_NISTZ256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1226
0
        return ret;
1227
0
    }
1228
1229
0
    ret->group = group;
1230
0
    ret->w = 6;                 /* default */
1231
0
    ret->references = 1;
1232
1233
0
    ret->lock = CRYPTO_THREAD_lock_new();
1234
0
    if (ret->lock == NULL) {
1235
0
        ECerr(EC_F_ECP_NISTZ256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1236
0
        OPENSSL_free(ret);
1237
0
        return NULL;
1238
0
    }
1239
0
    return ret;
1240
0
}
1241
1242
NISTZ256_PRE_COMP *EC_nistz256_pre_comp_dup(NISTZ256_PRE_COMP *p)
1243
0
{
1244
0
    int i;
1245
0
    if (p != NULL)
1246
0
        CRYPTO_UP_REF(&p->references, &i, p->lock);
1247
0
    return p;
1248
0
}
1249
1250
void EC_nistz256_pre_comp_free(NISTZ256_PRE_COMP *pre)
1251
0
{
1252
0
    int i;
1253
1254
0
    if (pre == NULL)
1255
0
        return;
1256
1257
0
    CRYPTO_DOWN_REF(&pre->references, &i, pre->lock);
1258
0
    REF_PRINT_COUNT("EC_nistz256", x);
1259
0
    if (i > 0)
1260
0
        return;
1261
0
    REF_ASSERT_ISNT(i < 0);
1262
1263
0
    OPENSSL_free(pre->precomp_storage);
1264
0
    CRYPTO_THREAD_lock_free(pre->lock);
1265
0
    OPENSSL_free(pre);
1266
0
}
1267
1268
1269
static int ecp_nistz256_window_have_precompute_mult(const EC_GROUP *group)
1270
0
{
1271
    /* There is a hard-coded table for the default generator. */
1272
0
    const EC_POINT *generator = EC_GROUP_get0_generator(group);
1273
1274
0
    if (generator != NULL && ecp_nistz256_is_affine_G(generator)) {
1275
        /* There is a hard-coded table for the default generator. */
1276
0
        return 1;
1277
0
    }
1278
1279
0
    return HAVEPRECOMP(group, nistz256);
1280
0
}
1281
1282
#if defined(__x86_64) || defined(__x86_64__) || \
1283
    defined(_M_AMD64) || defined(_M_X64) || \
1284
    defined(__powerpc64__) || defined(_ARCH_PP64) || \
1285
    defined(__aarch64__)
1286
/*
1287
 * Montgomery mul modulo Order(P): res = a*b*2^-256 mod Order(P)
1288
 */
1289
void ecp_nistz256_ord_mul_mont(BN_ULONG res[P256_LIMBS],
1290
                               const BN_ULONG a[P256_LIMBS],
1291
                               const BN_ULONG b[P256_LIMBS]);
1292
void ecp_nistz256_ord_sqr_mont(BN_ULONG res[P256_LIMBS],
1293
                               const BN_ULONG a[P256_LIMBS],
1294
                               int rep);
1295
1296
static int ecp_nistz256_inv_mod_ord(const EC_GROUP *group, BIGNUM *r,
1297
                                    const BIGNUM *x, BN_CTX *ctx)
1298
0
{
1299
    /* RR = 2^512 mod ord(p256) */
1300
0
    static const BN_ULONG RR[P256_LIMBS]  = {
1301
0
        TOBN(0x83244c95,0xbe79eea2), TOBN(0x4699799c,0x49bd6fa6),
1302
0
        TOBN(0x2845b239,0x2b6bec59), TOBN(0x66e12d94,0xf3d95620)
1303
0
    };
1304
    /* The constant 1 (unlike ONE that is one in Montgomery representation) */
1305
0
    static const BN_ULONG one[P256_LIMBS] = {
1306
0
        TOBN(0,1), TOBN(0,0), TOBN(0,0), TOBN(0,0)
1307
0
    };
1308
    /*
1309
     * We don't use entry 0 in the table, so we omit it and address
1310
     * with -1 offset.
1311
     */
1312
0
    BN_ULONG table[15][P256_LIMBS];
1313
0
    BN_ULONG out[P256_LIMBS], t[P256_LIMBS];
1314
0
    int i, ret = 0;
1315
0
    enum {
1316
0
        i_1 = 0, i_10,     i_11,     i_101, i_111, i_1010, i_1111,
1317
0
        i_10101, i_101010, i_101111, i_x6,  i_x8,  i_x16,  i_x32
1318
0
    };
1319
1320
    /*
1321
     * Catch allocation failure early.
1322
     */
1323
0
    if (bn_wexpand(r, P256_LIMBS) == NULL) {
1324
0
        ECerr(EC_F_ECP_NISTZ256_INV_MOD_ORD, ERR_R_BN_LIB);
1325
0
        goto err;
1326
0
    }
1327
1328
0
    if ((BN_num_bits(x) > 256) || BN_is_negative(x)) {
1329
0
        BIGNUM *tmp;
1330
1331
0
        if ((tmp = BN_CTX_get(ctx)) == NULL
1332
0
            || !BN_nnmod(tmp, x, group->order, ctx)) {
1333
0
            ECerr(EC_F_ECP_NISTZ256_INV_MOD_ORD, ERR_R_BN_LIB);
1334
0
            goto err;
1335
0
        }
1336
0
        x = tmp;
1337
0
    }
1338
1339
0
    if (!ecp_nistz256_bignum_to_field_elem(t, x)) {
1340
0
        ECerr(EC_F_ECP_NISTZ256_INV_MOD_ORD, EC_R_COORDINATES_OUT_OF_RANGE);
1341
0
        goto err;
1342
0
    }
1343
1344
0
    ecp_nistz256_ord_mul_mont(table[0], t, RR);
1345
#if 0
1346
    /*
1347
     * Original sparse-then-fixed-window algorithm, retained for reference.
1348
     */
1349
    for (i = 2; i < 16; i += 2) {
1350
        ecp_nistz256_ord_sqr_mont(table[i-1], table[i/2-1], 1);
1351
        ecp_nistz256_ord_mul_mont(table[i], table[i-1], table[0]);
1352
    }
1353
1354
    /*
1355
     * The top 128bit of the exponent are highly redudndant, so we
1356
     * perform an optimized flow
1357
     */
1358
    ecp_nistz256_ord_sqr_mont(t, table[15-1], 4);   /* f0 */
1359
    ecp_nistz256_ord_mul_mont(t, t, table[15-1]);   /* ff */
1360
1361
    ecp_nistz256_ord_sqr_mont(out, t, 8);           /* ff00 */
1362
    ecp_nistz256_ord_mul_mont(out, out, t);         /* ffff */
1363
1364
    ecp_nistz256_ord_sqr_mont(t, out, 16);          /* ffff0000 */
1365
    ecp_nistz256_ord_mul_mont(t, t, out);           /* ffffffff */
1366
1367
    ecp_nistz256_ord_sqr_mont(out, t, 64);          /* ffffffff0000000000000000 */
1368
    ecp_nistz256_ord_mul_mont(out, out, t);         /* ffffffff00000000ffffffff */
1369
1370
    ecp_nistz256_ord_sqr_mont(out, out, 32);        /* ffffffff00000000ffffffff00000000 */
1371
    ecp_nistz256_ord_mul_mont(out, out, t);         /* ffffffff00000000ffffffffffffffff */
1372
1373
    /*
1374
     * The bottom 128 bit of the exponent are processed with fixed 4-bit window
1375
     */
1376
    for(i = 0; i < 32; i++) {
1377
        /* expLo - the low 128 bits of the exponent we use (ord(p256) - 2),
1378
         * split into nibbles */
1379
        static const unsigned char expLo[32]  = {
1380
            0xb,0xc,0xe,0x6,0xf,0xa,0xa,0xd,0xa,0x7,0x1,0x7,0x9,0xe,0x8,0x4,
1381
            0xf,0x3,0xb,0x9,0xc,0xa,0xc,0x2,0xf,0xc,0x6,0x3,0x2,0x5,0x4,0xf
1382
        };
1383
1384
        ecp_nistz256_ord_sqr_mont(out, out, 4);
1385
        /* The exponent is public, no need in constant-time access */
1386
        ecp_nistz256_ord_mul_mont(out, out, table[expLo[i]-1]);
1387
    }
1388
#else
1389
    /*
1390
     * https://briansmith.org/ecc-inversion-addition-chains-01#p256_scalar_inversion
1391
     *
1392
     * Even though this code path spares 12 squarings, 4.5%, and 13
1393
     * multiplications, 25%, on grand scale sign operation is not that
1394
     * much faster, not more that 2%...
1395
     */
1396
1397
    /* pre-calculate powers */
1398
0
    ecp_nistz256_ord_sqr_mont(table[i_10], table[i_1], 1);
1399
1400
0
    ecp_nistz256_ord_mul_mont(table[i_11], table[i_1], table[i_10]);
1401
1402
0
    ecp_nistz256_ord_mul_mont(table[i_101], table[i_11], table[i_10]);
1403
1404
0
    ecp_nistz256_ord_mul_mont(table[i_111], table[i_101], table[i_10]);
1405
1406
0
    ecp_nistz256_ord_sqr_mont(table[i_1010], table[i_101], 1);
1407
1408
0
    ecp_nistz256_ord_mul_mont(table[i_1111], table[i_1010], table[i_101]);
1409
1410
0
    ecp_nistz256_ord_sqr_mont(table[i_10101], table[i_1010], 1);
1411
0
    ecp_nistz256_ord_mul_mont(table[i_10101], table[i_10101], table[i_1]);
1412
1413
0
    ecp_nistz256_ord_sqr_mont(table[i_101010], table[i_10101], 1);
1414
1415
0
    ecp_nistz256_ord_mul_mont(table[i_101111], table[i_101010], table[i_101]);
1416
1417
0
    ecp_nistz256_ord_mul_mont(table[i_x6], table[i_101010], table[i_10101]);
1418
1419
0
    ecp_nistz256_ord_sqr_mont(table[i_x8], table[i_x6], 2);
1420
0
    ecp_nistz256_ord_mul_mont(table[i_x8], table[i_x8], table[i_11]);
1421
1422
0
    ecp_nistz256_ord_sqr_mont(table[i_x16], table[i_x8], 8);
1423
0
    ecp_nistz256_ord_mul_mont(table[i_x16], table[i_x16], table[i_x8]);
1424
1425
0
    ecp_nistz256_ord_sqr_mont(table[i_x32], table[i_x16], 16);
1426
0
    ecp_nistz256_ord_mul_mont(table[i_x32], table[i_x32], table[i_x16]);
1427
1428
    /* calculations */
1429
0
    ecp_nistz256_ord_sqr_mont(out, table[i_x32], 64);
1430
0
    ecp_nistz256_ord_mul_mont(out, out, table[i_x32]);
1431
1432
0
    for (i = 0; i < 27; i++) {
1433
0
        static const struct { unsigned char p, i; } chain[27] = {
1434
0
            { 32, i_x32 }, { 6,  i_101111 }, { 5,  i_111    },
1435
0
            { 4,  i_11  }, { 5,  i_1111   }, { 5,  i_10101  },
1436
0
            { 4,  i_101 }, { 3,  i_101    }, { 3,  i_101    },
1437
0
            { 5,  i_111 }, { 9,  i_101111 }, { 6,  i_1111   },
1438
0
            { 2,  i_1   }, { 5,  i_1      }, { 6,  i_1111   },
1439
0
            { 5,  i_111 }, { 4,  i_111    }, { 5,  i_111    },
1440
0
            { 5,  i_101 }, { 3,  i_11     }, { 10, i_101111 },
1441
0
            { 2,  i_11  }, { 5,  i_11     }, { 5,  i_11     },
1442
0
            { 3,  i_1   }, { 7,  i_10101  }, { 6,  i_1111   }
1443
0
        };
1444
1445
0
        ecp_nistz256_ord_sqr_mont(out, out, chain[i].p);
1446
0
        ecp_nistz256_ord_mul_mont(out, out, table[chain[i].i]);
1447
0
    }
1448
0
#endif
1449
0
    ecp_nistz256_ord_mul_mont(out, out, one);
1450
1451
    /*
1452
     * Can't fail, but check return code to be consistent anyway.
1453
     */
1454
0
    if (!bn_set_words(r, out, P256_LIMBS))
1455
0
        goto err;
1456
1457
0
    ret = 1;
1458
0
err:
1459
0
    return ret;
1460
0
}
1461
#else
1462
# define ecp_nistz256_inv_mod_ord NULL
1463
#endif
1464
1465
const EC_METHOD *EC_GFp_nistz256_method(void)
1466
205
{
1467
205
    static const EC_METHOD ret = {
1468
205
        EC_FLAGS_DEFAULT_OCT,
1469
205
        NID_X9_62_prime_field,
1470
205
        ec_GFp_mont_group_init,
1471
205
        ec_GFp_mont_group_finish,
1472
205
        ec_GFp_mont_group_clear_finish,
1473
205
        ec_GFp_mont_group_copy,
1474
205
        ec_GFp_mont_group_set_curve,
1475
205
        ec_GFp_simple_group_get_curve,
1476
205
        ec_GFp_simple_group_get_degree,
1477
205
        ec_group_simple_order_bits,
1478
205
        ec_GFp_simple_group_check_discriminant,
1479
205
        ec_GFp_simple_point_init,
1480
205
        ec_GFp_simple_point_finish,
1481
205
        ec_GFp_simple_point_clear_finish,
1482
205
        ec_GFp_simple_point_copy,
1483
205
        ec_GFp_simple_point_set_to_infinity,
1484
205
        ec_GFp_simple_set_Jprojective_coordinates_GFp,
1485
205
        ec_GFp_simple_get_Jprojective_coordinates_GFp,
1486
205
        ec_GFp_simple_point_set_affine_coordinates,
1487
205
        ecp_nistz256_get_affine,
1488
205
        0, 0, 0,
1489
205
        ec_GFp_simple_add,
1490
205
        ec_GFp_simple_dbl,
1491
205
        ec_GFp_simple_invert,
1492
205
        ec_GFp_simple_is_at_infinity,
1493
205
        ec_GFp_simple_is_on_curve,
1494
205
        ec_GFp_simple_cmp,
1495
205
        ec_GFp_simple_make_affine,
1496
205
        ec_GFp_simple_points_make_affine,
1497
205
        ecp_nistz256_points_mul,                    /* mul */
1498
205
        ecp_nistz256_mult_precompute,               /* precompute_mult */
1499
205
        ecp_nistz256_window_have_precompute_mult,   /* have_precompute_mult */
1500
205
        ec_GFp_mont_field_mul,
1501
205
        ec_GFp_mont_field_sqr,
1502
205
        0,                                          /* field_div */
1503
205
        ec_GFp_mont_field_inv,
1504
205
        ec_GFp_mont_field_encode,
1505
205
        ec_GFp_mont_field_decode,
1506
205
        ec_GFp_mont_field_set_to_one,
1507
205
        ec_key_simple_priv2oct,
1508
205
        ec_key_simple_oct2priv,
1509
205
        0, /* set private */
1510
205
        ec_key_simple_generate_key,
1511
205
        ec_key_simple_check_key,
1512
205
        ec_key_simple_generate_public_key,
1513
205
        0, /* keycopy */
1514
205
        0, /* keyfinish */
1515
205
        ecdh_simple_compute_key,
1516
205
        ecp_nistz256_inv_mod_ord,                   /* can be #define-d NULL */
1517
205
        0,                                          /* blind_coordinates */
1518
205
        0,                                          /* ladder_pre */
1519
205
        0,                                          /* ladder_step */
1520
205
        0                                           /* ladder_post */
1521
205
    };
1522
1523
205
    return &ret;
1524
205
}