Coverage Report

Created: 2023-06-08 06:43

/src/openssl30/crypto/ec/ecp_nistp224.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2010-2021 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2011 Google Inc.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * ECDSA low level APIs are deprecated for public use, but still ok for
28
 * internal use.
29
 */
30
#include "internal/deprecated.h"
31
32
/*
33
 * A 64-bit implementation of the NIST P-224 elliptic curve point multiplication
34
 *
35
 * Inspired by Daniel J. Bernstein's public domain nistp224 implementation
36
 * and Adam Langley's public domain 64-bit C implementation of curve25519
37
 */
38
39
#include <openssl/opensslconf.h>
40
41
#include <stdint.h>
42
#include <string.h>
43
#include <openssl/err.h>
44
#include "ec_local.h"
45
46
#include "internal/numbers.h"
47
48
#ifndef INT128_MAX
49
# error "Your compiler doesn't appear to support 128-bit integer types"
50
#endif
51
52
typedef uint8_t u8;
53
typedef uint64_t u64;
54
55
/******************************************************************************/
56
/*-
57
 * INTERNAL REPRESENTATION OF FIELD ELEMENTS
58
 *
59
 * Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3
60
 * using 64-bit coefficients called 'limbs',
61
 * and sometimes (for multiplication results) as
62
 * b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 + 2^336*b_6
63
 * using 128-bit coefficients called 'widelimbs'.
64
 * A 4-limb representation is an 'felem';
65
 * a 7-widelimb representation is a 'widefelem'.
66
 * Even within felems, bits of adjacent limbs overlap, and we don't always
67
 * reduce the representations: we ensure that inputs to each felem
68
 * multiplication satisfy a_i < 2^60, so outputs satisfy b_i < 4*2^60*2^60,
69
 * and fit into a 128-bit word without overflow. The coefficients are then
70
 * again partially reduced to obtain an felem satisfying a_i < 2^57.
71
 * We only reduce to the unique minimal representation at the end of the
72
 * computation.
73
 */
74
75
typedef uint64_t limb;
76
typedef uint64_t limb_aX __attribute((__aligned__(1)));
77
typedef uint128_t widelimb;
78
79
typedef limb felem[4];
80
typedef widelimb widefelem[7];
81
82
/*
83
 * Field element represented as a byte array. 28*8 = 224 bits is also the
84
 * group order size for the elliptic curve, and we also use this type for
85
 * scalars for point multiplication.
86
 */
87
typedef u8 felem_bytearray[28];
88
89
static const felem_bytearray nistp224_curve_params[5] = {
90
    {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */
91
     0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00,
92
     0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
93
    {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */
94
     0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF,
95
     0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE},
96
    {0xB4, 0x05, 0x0A, 0x85, 0x0C, 0x04, 0xB3, 0xAB, 0xF5, 0x41, /* b */
97
     0x32, 0x56, 0x50, 0x44, 0xB0, 0xB7, 0xD7, 0xBF, 0xD8, 0xBA,
98
     0x27, 0x0B, 0x39, 0x43, 0x23, 0x55, 0xFF, 0xB4},
99
    {0xB7, 0x0E, 0x0C, 0xBD, 0x6B, 0xB4, 0xBF, 0x7F, 0x32, 0x13, /* x */
100
     0x90, 0xB9, 0x4A, 0x03, 0xC1, 0xD3, 0x56, 0xC2, 0x11, 0x22,
101
     0x34, 0x32, 0x80, 0xD6, 0x11, 0x5C, 0x1D, 0x21},
102
    {0xbd, 0x37, 0x63, 0x88, 0xb5, 0xf7, 0x23, 0xfb, 0x4c, 0x22, /* y */
103
     0xdf, 0xe6, 0xcd, 0x43, 0x75, 0xa0, 0x5a, 0x07, 0x47, 0x64,
104
     0x44, 0xd5, 0x81, 0x99, 0x85, 0x00, 0x7e, 0x34}
105
};
106
107
/*-
108
 * Precomputed multiples of the standard generator
109
 * Points are given in coordinates (X, Y, Z) where Z normally is 1
110
 * (0 for the point at infinity).
111
 * For each field element, slice a_0 is word 0, etc.
112
 *
113
 * The table has 2 * 16 elements, starting with the following:
114
 * index | bits    | point
115
 * ------+---------+------------------------------
116
 *     0 | 0 0 0 0 | 0G
117
 *     1 | 0 0 0 1 | 1G
118
 *     2 | 0 0 1 0 | 2^56G
119
 *     3 | 0 0 1 1 | (2^56 + 1)G
120
 *     4 | 0 1 0 0 | 2^112G
121
 *     5 | 0 1 0 1 | (2^112 + 1)G
122
 *     6 | 0 1 1 0 | (2^112 + 2^56)G
123
 *     7 | 0 1 1 1 | (2^112 + 2^56 + 1)G
124
 *     8 | 1 0 0 0 | 2^168G
125
 *     9 | 1 0 0 1 | (2^168 + 1)G
126
 *    10 | 1 0 1 0 | (2^168 + 2^56)G
127
 *    11 | 1 0 1 1 | (2^168 + 2^56 + 1)G
128
 *    12 | 1 1 0 0 | (2^168 + 2^112)G
129
 *    13 | 1 1 0 1 | (2^168 + 2^112 + 1)G
130
 *    14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G
131
 *    15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G
132
 * followed by a copy of this with each element multiplied by 2^28.
133
 *
134
 * The reason for this is so that we can clock bits into four different
135
 * locations when doing simple scalar multiplies against the base point,
136
 * and then another four locations using the second 16 elements.
137
 */
138
static const felem gmul[2][16][3] = {
139
{{{0, 0, 0, 0},
140
  {0, 0, 0, 0},
141
  {0, 0, 0, 0}},
142
 {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf},
143
  {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723},
144
  {1, 0, 0, 0}},
145
 {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5},
146
  {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321},
147
  {1, 0, 0, 0}},
148
 {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748},
149
  {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17},
150
  {1, 0, 0, 0}},
151
 {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe},
152
  {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b},
153
  {1, 0, 0, 0}},
154
 {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3},
155
  {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a},
156
  {1, 0, 0, 0}},
157
 {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c},
158
  {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244},
159
  {1, 0, 0, 0}},
160
 {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849},
161
  {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112},
162
  {1, 0, 0, 0}},
163
 {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47},
164
  {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394},
165
  {1, 0, 0, 0}},
166
 {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d},
167
  {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7},
168
  {1, 0, 0, 0}},
169
 {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24},
170
  {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881},
171
  {1, 0, 0, 0}},
172
 {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984},
173
  {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369},
174
  {1, 0, 0, 0}},
175
 {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3},
176
  {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60},
177
  {1, 0, 0, 0}},
178
 {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057},
179
  {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9},
180
  {1, 0, 0, 0}},
181
 {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9},
182
  {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc},
183
  {1, 0, 0, 0}},
184
 {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58},
185
  {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558},
186
  {1, 0, 0, 0}}},
187
{{{0, 0, 0, 0},
188
  {0, 0, 0, 0},
189
  {0, 0, 0, 0}},
190
 {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31},
191
  {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d},
192
  {1, 0, 0, 0}},
193
 {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3},
194
  {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a},
195
  {1, 0, 0, 0}},
196
 {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33},
197
  {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100},
198
  {1, 0, 0, 0}},
199
 {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5},
200
  {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea},
201
  {1, 0, 0, 0}},
202
 {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be},
203
  {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51},
204
  {1, 0, 0, 0}},
205
 {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1},
206
  {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb},
207
  {1, 0, 0, 0}},
208
 {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233},
209
  {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def},
210
  {1, 0, 0, 0}},
211
 {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae},
212
  {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45},
213
  {1, 0, 0, 0}},
214
 {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e},
215
  {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb},
216
  {1, 0, 0, 0}},
217
 {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de},
218
  {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3},
219
  {1, 0, 0, 0}},
220
 {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05},
221
  {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58},
222
  {1, 0, 0, 0}},
223
 {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb},
224
  {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0},
225
  {1, 0, 0, 0}},
226
 {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9},
227
  {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea},
228
  {1, 0, 0, 0}},
229
 {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba},
230
  {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405},
231
  {1, 0, 0, 0}},
232
 {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e},
233
  {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e},
234
  {1, 0, 0, 0}}}
235
};
236
237
/* Precomputation for the group generator. */
238
struct nistp224_pre_comp_st {
239
    felem g_pre_comp[2][16][3];
240
    CRYPTO_REF_COUNT references;
241
    CRYPTO_RWLOCK *lock;
242
};
243
244
const EC_METHOD *EC_GFp_nistp224_method(void)
245
2.27k
{
246
2.27k
    static const EC_METHOD ret = {
247
2.27k
        EC_FLAGS_DEFAULT_OCT,
248
2.27k
        NID_X9_62_prime_field,
249
2.27k
        ossl_ec_GFp_nistp224_group_init,
250
2.27k
        ossl_ec_GFp_simple_group_finish,
251
2.27k
        ossl_ec_GFp_simple_group_clear_finish,
252
2.27k
        ossl_ec_GFp_nist_group_copy,
253
2.27k
        ossl_ec_GFp_nistp224_group_set_curve,
254
2.27k
        ossl_ec_GFp_simple_group_get_curve,
255
2.27k
        ossl_ec_GFp_simple_group_get_degree,
256
2.27k
        ossl_ec_group_simple_order_bits,
257
2.27k
        ossl_ec_GFp_simple_group_check_discriminant,
258
2.27k
        ossl_ec_GFp_simple_point_init,
259
2.27k
        ossl_ec_GFp_simple_point_finish,
260
2.27k
        ossl_ec_GFp_simple_point_clear_finish,
261
2.27k
        ossl_ec_GFp_simple_point_copy,
262
2.27k
        ossl_ec_GFp_simple_point_set_to_infinity,
263
2.27k
        ossl_ec_GFp_simple_point_set_affine_coordinates,
264
2.27k
        ossl_ec_GFp_nistp224_point_get_affine_coordinates,
265
2.27k
        0 /* point_set_compressed_coordinates */ ,
266
2.27k
        0 /* point2oct */ ,
267
2.27k
        0 /* oct2point */ ,
268
2.27k
        ossl_ec_GFp_simple_add,
269
2.27k
        ossl_ec_GFp_simple_dbl,
270
2.27k
        ossl_ec_GFp_simple_invert,
271
2.27k
        ossl_ec_GFp_simple_is_at_infinity,
272
2.27k
        ossl_ec_GFp_simple_is_on_curve,
273
2.27k
        ossl_ec_GFp_simple_cmp,
274
2.27k
        ossl_ec_GFp_simple_make_affine,
275
2.27k
        ossl_ec_GFp_simple_points_make_affine,
276
2.27k
        ossl_ec_GFp_nistp224_points_mul,
277
2.27k
        ossl_ec_GFp_nistp224_precompute_mult,
278
2.27k
        ossl_ec_GFp_nistp224_have_precompute_mult,
279
2.27k
        ossl_ec_GFp_nist_field_mul,
280
2.27k
        ossl_ec_GFp_nist_field_sqr,
281
2.27k
        0 /* field_div */ ,
282
2.27k
        ossl_ec_GFp_simple_field_inv,
283
2.27k
        0 /* field_encode */ ,
284
2.27k
        0 /* field_decode */ ,
285
2.27k
        0,                      /* field_set_to_one */
286
2.27k
        ossl_ec_key_simple_priv2oct,
287
2.27k
        ossl_ec_key_simple_oct2priv,
288
2.27k
        0, /* set private */
289
2.27k
        ossl_ec_key_simple_generate_key,
290
2.27k
        ossl_ec_key_simple_check_key,
291
2.27k
        ossl_ec_key_simple_generate_public_key,
292
2.27k
        0, /* keycopy */
293
2.27k
        0, /* keyfinish */
294
2.27k
        ossl_ecdh_simple_compute_key,
295
2.27k
        ossl_ecdsa_simple_sign_setup,
296
2.27k
        ossl_ecdsa_simple_sign_sig,
297
2.27k
        ossl_ecdsa_simple_verify_sig,
298
2.27k
        0, /* field_inverse_mod_ord */
299
2.27k
        0, /* blind_coordinates */
300
2.27k
        0, /* ladder_pre */
301
2.27k
        0, /* ladder_step */
302
2.27k
        0  /* ladder_post */
303
2.27k
    };
304
305
2.27k
    return &ret;
306
2.27k
}
307
308
/*
309
 * Helper functions to convert field elements to/from internal representation
310
 */
311
static void bin28_to_felem(felem out, const u8 in[28])
312
33
{
313
33
    out[0] = *((const limb *)(in)) & 0x00ffffffffffffff;
314
33
    out[1] = (*((const limb_aX *)(in + 7))) & 0x00ffffffffffffff;
315
33
    out[2] = (*((const limb_aX *)(in + 14))) & 0x00ffffffffffffff;
316
33
    out[3] = (*((const limb_aX *)(in + 20))) >> 8;
317
33
}
318
319
static void felem_to_bin28(u8 out[28], const felem in)
320
118
{
321
118
    unsigned i;
322
944
    for (i = 0; i < 7; ++i) {
323
826
        out[i] = in[0] >> (8 * i);
324
826
        out[i + 7] = in[1] >> (8 * i);
325
826
        out[i + 14] = in[2] >> (8 * i);
326
826
        out[i + 21] = in[3] >> (8 * i);
327
826
    }
328
118
}
329
330
/* From OpenSSL BIGNUM to internal representation */
331
static int BN_to_felem(felem out, const BIGNUM *bn)
332
33
{
333
33
    felem_bytearray b_out;
334
33
    int num_bytes;
335
336
33
    if (BN_is_negative(bn)) {
337
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
338
0
        return 0;
339
0
    }
340
33
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
341
33
    if (num_bytes < 0) {
342
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
343
0
        return 0;
344
0
    }
345
33
    bin28_to_felem(out, b_out);
346
33
    return 1;
347
33
}
348
349
/* From internal representation to OpenSSL BIGNUM */
350
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
351
118
{
352
118
    felem_bytearray b_out;
353
118
    felem_to_bin28(b_out, in);
354
118
    return BN_lebin2bn(b_out, sizeof(b_out), out);
355
118
}
356
357
/******************************************************************************/
358
/*-
359
 *                              FIELD OPERATIONS
360
 *
361
 * Field operations, using the internal representation of field elements.
362
 * NB! These operations are specific to our point multiplication and cannot be
363
 * expected to be correct in general - e.g., multiplication with a large scalar
364
 * will cause an overflow.
365
 *
366
 */
367
368
static void felem_one(felem out)
369
0
{
370
0
    out[0] = 1;
371
0
    out[1] = 0;
372
0
    out[2] = 0;
373
0
    out[3] = 0;
374
0
}
375
376
static void felem_assign(felem out, const felem in)
377
8.81k
{
378
8.81k
    out[0] = in[0];
379
8.81k
    out[1] = in[1];
380
8.81k
    out[2] = in[2];
381
8.81k
    out[3] = in[3];
382
8.81k
}
383
384
/* Sum two field elements: out += in */
385
static void felem_sum(felem out, const felem in)
386
1.29k
{
387
1.29k
    out[0] += in[0];
388
1.29k
    out[1] += in[1];
389
1.29k
    out[2] += in[2];
390
1.29k
    out[3] += in[3];
391
1.29k
}
392
393
/* Subtract field elements: out -= in */
394
/* Assumes in[i] < 2^57 */
395
static void felem_diff(felem out, const felem in)
396
1.74k
{
397
1.74k
    static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2);
398
1.74k
    static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2);
399
1.74k
    static const limb two58m42m2 = (((limb) 1) << 58) -
400
1.74k
        (((limb) 1) << 42) - (((limb) 1) << 2);
401
402
    /* Add 0 mod 2^224-2^96+1 to ensure out > in */
403
1.74k
    out[0] += two58p2;
404
1.74k
    out[1] += two58m42m2;
405
1.74k
    out[2] += two58m2;
406
1.74k
    out[3] += two58m2;
407
408
1.74k
    out[0] -= in[0];
409
1.74k
    out[1] -= in[1];
410
1.74k
    out[2] -= in[2];
411
1.74k
    out[3] -= in[3];
412
1.74k
}
413
414
/* Subtract in unreduced 128-bit mode: out -= in */
415
/* Assumes in[i] < 2^119 */
416
static void widefelem_diff(widefelem out, const widefelem in)
417
1.31k
{
418
1.31k
    static const widelimb two120 = ((widelimb) 1) << 120;
419
1.31k
    static const widelimb two120m64 = (((widelimb) 1) << 120) -
420
1.31k
        (((widelimb) 1) << 64);
421
1.31k
    static const widelimb two120m104m64 = (((widelimb) 1) << 120) -
422
1.31k
        (((widelimb) 1) << 104) - (((widelimb) 1) << 64);
423
424
    /* Add 0 mod 2^224-2^96+1 to ensure out > in */
425
1.31k
    out[0] += two120;
426
1.31k
    out[1] += two120m64;
427
1.31k
    out[2] += two120m64;
428
1.31k
    out[3] += two120;
429
1.31k
    out[4] += two120m104m64;
430
1.31k
    out[5] += two120m64;
431
1.31k
    out[6] += two120m64;
432
433
1.31k
    out[0] -= in[0];
434
1.31k
    out[1] -= in[1];
435
1.31k
    out[2] -= in[2];
436
1.31k
    out[3] -= in[3];
437
1.31k
    out[4] -= in[4];
438
1.31k
    out[5] -= in[5];
439
1.31k
    out[6] -= in[6];
440
1.31k
}
441
442
/* Subtract in mixed mode: out128 -= in64 */
443
/* in[i] < 2^63 */
444
static void felem_diff_128_64(widefelem out, const felem in)
445
4.38k
{
446
4.38k
    static const widelimb two64p8 = (((widelimb) 1) << 64) +
447
4.38k
        (((widelimb) 1) << 8);
448
4.38k
    static const widelimb two64m8 = (((widelimb) 1) << 64) -
449
4.38k
        (((widelimb) 1) << 8);
450
4.38k
    static const widelimb two64m48m8 = (((widelimb) 1) << 64) -
451
4.38k
        (((widelimb) 1) << 48) - (((widelimb) 1) << 8);
452
453
    /* Add 0 mod 2^224-2^96+1 to ensure out > in */
454
4.38k
    out[0] += two64p8;
455
4.38k
    out[1] += two64m48m8;
456
4.38k
    out[2] += two64m8;
457
4.38k
    out[3] += two64m8;
458
459
4.38k
    out[0] -= in[0];
460
4.38k
    out[1] -= in[1];
461
4.38k
    out[2] -= in[2];
462
4.38k
    out[3] -= in[3];
463
4.38k
}
464
465
/*
466
 * Multiply a field element by a scalar: out = out * scalar The scalars we
467
 * actually use are small, so results fit without overflow
468
 */
469
static void felem_scalar(felem out, const limb scalar)
470
2.17k
{
471
2.17k
    out[0] *= scalar;
472
2.17k
    out[1] *= scalar;
473
2.17k
    out[2] *= scalar;
474
2.17k
    out[3] *= scalar;
475
2.17k
}
476
477
/*
478
 * Multiply an unreduced field element by a scalar: out = out * scalar The
479
 * scalars we actually use are small, so results fit without overflow
480
 */
481
static void widefelem_scalar(widefelem out, const widelimb scalar)
482
432
{
483
432
    out[0] *= scalar;
484
432
    out[1] *= scalar;
485
432
    out[2] *= scalar;
486
432
    out[3] *= scalar;
487
432
    out[4] *= scalar;
488
432
    out[5] *= scalar;
489
432
    out[6] *= scalar;
490
432
}
491
492
/* Square a field element: out = in^2 */
493
static void felem_square(widefelem out, const felem in)
494
7.26k
{
495
7.26k
    limb tmp0, tmp1, tmp2;
496
7.26k
    tmp0 = 2 * in[0];
497
7.26k
    tmp1 = 2 * in[1];
498
7.26k
    tmp2 = 2 * in[2];
499
7.26k
    out[0] = ((widelimb) in[0]) * in[0];
500
7.26k
    out[1] = ((widelimb) in[0]) * tmp1;
501
7.26k
    out[2] = ((widelimb) in[0]) * tmp2 + ((widelimb) in[1]) * in[1];
502
7.26k
    out[3] = ((widelimb) in[3]) * tmp0 + ((widelimb) in[1]) * tmp2;
503
7.26k
    out[4] = ((widelimb) in[3]) * tmp1 + ((widelimb) in[2]) * in[2];
504
7.26k
    out[5] = ((widelimb) in[3]) * tmp2;
505
7.26k
    out[6] = ((widelimb) in[3]) * in[3];
506
7.26k
}
507
508
/* Multiply two field elements: out = in1 * in2 */
509
static void felem_mul(widefelem out, const felem in1, const felem in2)
510
8.49k
{
511
8.49k
    out[0] = ((widelimb) in1[0]) * in2[0];
512
8.49k
    out[1] = ((widelimb) in1[0]) * in2[1] + ((widelimb) in1[1]) * in2[0];
513
8.49k
    out[2] = ((widelimb) in1[0]) * in2[2] + ((widelimb) in1[1]) * in2[1] +
514
8.49k
             ((widelimb) in1[2]) * in2[0];
515
8.49k
    out[3] = ((widelimb) in1[0]) * in2[3] + ((widelimb) in1[1]) * in2[2] +
516
8.49k
             ((widelimb) in1[2]) * in2[1] + ((widelimb) in1[3]) * in2[0];
517
8.49k
    out[4] = ((widelimb) in1[1]) * in2[3] + ((widelimb) in1[2]) * in2[2] +
518
8.49k
             ((widelimb) in1[3]) * in2[1];
519
8.49k
    out[5] = ((widelimb) in1[2]) * in2[3] + ((widelimb) in1[3]) * in2[2];
520
8.49k
    out[6] = ((widelimb) in1[3]) * in2[3];
521
8.49k
}
522
523
/*-
524
 * Reduce seven 128-bit coefficients to four 64-bit coefficients.
525
 * Requires in[i] < 2^126,
526
 * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */
527
static void felem_reduce(felem out, const widefelem in)
528
14.4k
{
529
14.4k
    static const widelimb two127p15 = (((widelimb) 1) << 127) +
530
14.4k
        (((widelimb) 1) << 15);
531
14.4k
    static const widelimb two127m71 = (((widelimb) 1) << 127) -
532
14.4k
        (((widelimb) 1) << 71);
533
14.4k
    static const widelimb two127m71m55 = (((widelimb) 1) << 127) -
534
14.4k
        (((widelimb) 1) << 71) - (((widelimb) 1) << 55);
535
14.4k
    widelimb output[5];
536
537
    /* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */
538
14.4k
    output[0] = in[0] + two127p15;
539
14.4k
    output[1] = in[1] + two127m71m55;
540
14.4k
    output[2] = in[2] + two127m71;
541
14.4k
    output[3] = in[3];
542
14.4k
    output[4] = in[4];
543
544
    /* Eliminate in[4], in[5], in[6] */
545
14.4k
    output[4] += in[6] >> 16;
546
14.4k
    output[3] += (in[6] & 0xffff) << 40;
547
14.4k
    output[2] -= in[6];
548
549
14.4k
    output[3] += in[5] >> 16;
550
14.4k
    output[2] += (in[5] & 0xffff) << 40;
551
14.4k
    output[1] -= in[5];
552
553
14.4k
    output[2] += output[4] >> 16;
554
14.4k
    output[1] += (output[4] & 0xffff) << 40;
555
14.4k
    output[0] -= output[4];
556
557
    /* Carry 2 -> 3 -> 4 */
558
14.4k
    output[3] += output[2] >> 56;
559
14.4k
    output[2] &= 0x00ffffffffffffff;
560
561
14.4k
    output[4] = output[3] >> 56;
562
14.4k
    output[3] &= 0x00ffffffffffffff;
563
564
    /* Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 */
565
566
    /* Eliminate output[4] */
567
14.4k
    output[2] += output[4] >> 16;
568
    /* output[2] < 2^56 + 2^56 = 2^57 */
569
14.4k
    output[1] += (output[4] & 0xffff) << 40;
570
14.4k
    output[0] -= output[4];
571
572
    /* Carry 0 -> 1 -> 2 -> 3 */
573
14.4k
    output[1] += output[0] >> 56;
574
14.4k
    out[0] = output[0] & 0x00ffffffffffffff;
575
576
14.4k
    output[2] += output[1] >> 56;
577
    /* output[2] < 2^57 + 2^72 */
578
14.4k
    out[1] = output[1] & 0x00ffffffffffffff;
579
14.4k
    output[3] += output[2] >> 56;
580
    /* output[3] <= 2^56 + 2^16 */
581
14.4k
    out[2] = output[2] & 0x00ffffffffffffff;
582
583
    /*-
584
     * out[0] < 2^56, out[1] < 2^56, out[2] < 2^56,
585
     * out[3] <= 2^56 + 2^16 (due to final carry),
586
     * so out < 2*p
587
     */
588
14.4k
    out[3] = output[3];
589
14.4k
}
590
591
static void felem_square_reduce(felem out, const felem in)
592
0
{
593
0
    widefelem tmp;
594
0
    felem_square(tmp, in);
595
0
    felem_reduce(out, tmp);
596
0
}
597
598
static void felem_mul_reduce(felem out, const felem in1, const felem in2)
599
0
{
600
0
    widefelem tmp;
601
0
    felem_mul(tmp, in1, in2);
602
0
    felem_reduce(out, tmp);
603
0
}
604
605
/*
606
 * Reduce to unique minimal representation. Requires 0 <= in < 2*p (always
607
 * call felem_reduce first)
608
 */
609
static void felem_contract(felem out, const felem in)
610
70
{
611
70
    static const int64_t two56 = ((limb) 1) << 56;
612
    /* 0 <= in < 2*p, p = 2^224 - 2^96 + 1 */
613
    /* if in > p , reduce in = in - 2^224 + 2^96 - 1 */
614
70
    int64_t tmp[4], a;
615
70
    tmp[0] = in[0];
616
70
    tmp[1] = in[1];
617
70
    tmp[2] = in[2];
618
70
    tmp[3] = in[3];
619
    /* Case 1: a = 1 iff in >= 2^224 */
620
70
    a = (in[3] >> 56);
621
70
    tmp[0] -= a;
622
70
    tmp[1] += a << 40;
623
70
    tmp[3] &= 0x00ffffffffffffff;
624
    /*
625
     * Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all 1
626
     * and the lower part is non-zero
627
     */
628
70
    a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) |
629
70
        (((int64_t) (in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63);
630
70
    a &= 0x00ffffffffffffff;
631
    /* turn a into an all-one mask (if a = 0) or an all-zero mask */
632
70
    a = (a - 1) >> 63;
633
    /* subtract 2^224 - 2^96 + 1 if a is all-one */
634
70
    tmp[3] &= a ^ 0xffffffffffffffff;
635
70
    tmp[2] &= a ^ 0xffffffffffffffff;
636
70
    tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff;
637
70
    tmp[0] -= 1 & a;
638
639
    /*
640
     * eliminate negative coefficients: if tmp[0] is negative, tmp[1] must be
641
     * non-zero, so we only need one step
642
     */
643
70
    a = tmp[0] >> 63;
644
70
    tmp[0] += two56 & a;
645
70
    tmp[1] -= 1 & a;
646
647
    /* carry 1 -> 2 -> 3 */
648
70
    tmp[2] += tmp[1] >> 56;
649
70
    tmp[1] &= 0x00ffffffffffffff;
650
651
70
    tmp[3] += tmp[2] >> 56;
652
70
    tmp[2] &= 0x00ffffffffffffff;
653
654
    /* Now 0 <= out < p */
655
70
    out[0] = tmp[0];
656
70
    out[1] = tmp[1];
657
70
    out[2] = tmp[2];
658
70
    out[3] = tmp[3];
659
70
}
660
661
/*
662
 * Get negative value: out = -in
663
 * Requires in[i] < 2^63,
664
 * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16
665
 */
666
static void felem_neg(felem out, const felem in)
667
0
{
668
0
    widefelem tmp;
669
670
0
    memset(tmp, 0, sizeof(tmp));
671
0
    felem_diff_128_64(tmp, in);
672
0
    felem_reduce(out, tmp);
673
0
}
674
675
/*
676
 * Zero-check: returns 1 if input is 0, and 0 otherwise. We know that field
677
 * elements are reduced to in < 2^225, so we only need to check three cases:
678
 * 0, 2^224 - 2^96 + 1, and 2^225 - 2^97 + 2
679
 */
680
static limb felem_is_zero(const felem in)
681
3.52k
{
682
3.52k
    limb zero, two224m96p1, two225m97p2;
683
684
3.52k
    zero = in[0] | in[1] | in[2] | in[3];
685
3.52k
    zero = (((int64_t) (zero) - 1) >> 63) & 1;
686
3.52k
    two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000)
687
3.52k
        | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x00ffffffffffffff);
688
3.52k
    two224m96p1 = (((int64_t) (two224m96p1) - 1) >> 63) & 1;
689
3.52k
    two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000)
690
3.52k
        | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x01ffffffffffffff);
691
3.52k
    two225m97p2 = (((int64_t) (two225m97p2) - 1) >> 63) & 1;
692
3.52k
    return (zero | two224m96p1 | two225m97p2);
693
3.52k
}
694
695
static int felem_is_zero_int(const void *in)
696
0
{
697
0
    return (int)(felem_is_zero(in) & ((limb) 1));
698
0
}
699
700
/* Invert a field element */
701
/* Computation chain copied from djb's code */
702
static void felem_inv(felem out, const felem in)
703
11
{
704
11
    felem ftmp, ftmp2, ftmp3, ftmp4;
705
11
    widefelem tmp;
706
11
    unsigned i;
707
708
11
    felem_square(tmp, in);
709
11
    felem_reduce(ftmp, tmp);    /* 2 */
710
11
    felem_mul(tmp, in, ftmp);
711
11
    felem_reduce(ftmp, tmp);    /* 2^2 - 1 */
712
11
    felem_square(tmp, ftmp);
713
11
    felem_reduce(ftmp, tmp);    /* 2^3 - 2 */
714
11
    felem_mul(tmp, in, ftmp);
715
11
    felem_reduce(ftmp, tmp);    /* 2^3 - 1 */
716
11
    felem_square(tmp, ftmp);
717
11
    felem_reduce(ftmp2, tmp);   /* 2^4 - 2 */
718
11
    felem_square(tmp, ftmp2);
719
11
    felem_reduce(ftmp2, tmp);   /* 2^5 - 4 */
720
11
    felem_square(tmp, ftmp2);
721
11
    felem_reduce(ftmp2, tmp);   /* 2^6 - 8 */
722
11
    felem_mul(tmp, ftmp2, ftmp);
723
11
    felem_reduce(ftmp, tmp);    /* 2^6 - 1 */
724
11
    felem_square(tmp, ftmp);
725
11
    felem_reduce(ftmp2, tmp);   /* 2^7 - 2 */
726
66
    for (i = 0; i < 5; ++i) {   /* 2^12 - 2^6 */
727
55
        felem_square(tmp, ftmp2);
728
55
        felem_reduce(ftmp2, tmp);
729
55
    }
730
11
    felem_mul(tmp, ftmp2, ftmp);
731
11
    felem_reduce(ftmp2, tmp);   /* 2^12 - 1 */
732
11
    felem_square(tmp, ftmp2);
733
11
    felem_reduce(ftmp3, tmp);   /* 2^13 - 2 */
734
132
    for (i = 0; i < 11; ++i) {  /* 2^24 - 2^12 */
735
121
        felem_square(tmp, ftmp3);
736
121
        felem_reduce(ftmp3, tmp);
737
121
    }
738
11
    felem_mul(tmp, ftmp3, ftmp2);
739
11
    felem_reduce(ftmp2, tmp);   /* 2^24 - 1 */
740
11
    felem_square(tmp, ftmp2);
741
11
    felem_reduce(ftmp3, tmp);   /* 2^25 - 2 */
742
264
    for (i = 0; i < 23; ++i) {  /* 2^48 - 2^24 */
743
253
        felem_square(tmp, ftmp3);
744
253
        felem_reduce(ftmp3, tmp);
745
253
    }
746
11
    felem_mul(tmp, ftmp3, ftmp2);
747
11
    felem_reduce(ftmp3, tmp);   /* 2^48 - 1 */
748
11
    felem_square(tmp, ftmp3);
749
11
    felem_reduce(ftmp4, tmp);   /* 2^49 - 2 */
750
528
    for (i = 0; i < 47; ++i) {  /* 2^96 - 2^48 */
751
517
        felem_square(tmp, ftmp4);
752
517
        felem_reduce(ftmp4, tmp);
753
517
    }
754
11
    felem_mul(tmp, ftmp3, ftmp4);
755
11
    felem_reduce(ftmp3, tmp);   /* 2^96 - 1 */
756
11
    felem_square(tmp, ftmp3);
757
11
    felem_reduce(ftmp4, tmp);   /* 2^97 - 2 */
758
264
    for (i = 0; i < 23; ++i) {  /* 2^120 - 2^24 */
759
253
        felem_square(tmp, ftmp4);
760
253
        felem_reduce(ftmp4, tmp);
761
253
    }
762
11
    felem_mul(tmp, ftmp2, ftmp4);
763
11
    felem_reduce(ftmp2, tmp);   /* 2^120 - 1 */
764
77
    for (i = 0; i < 6; ++i) {   /* 2^126 - 2^6 */
765
66
        felem_square(tmp, ftmp2);
766
66
        felem_reduce(ftmp2, tmp);
767
66
    }
768
11
    felem_mul(tmp, ftmp2, ftmp);
769
11
    felem_reduce(ftmp, tmp);    /* 2^126 - 1 */
770
11
    felem_square(tmp, ftmp);
771
11
    felem_reduce(ftmp, tmp);    /* 2^127 - 2 */
772
11
    felem_mul(tmp, ftmp, in);
773
11
    felem_reduce(ftmp, tmp);    /* 2^127 - 1 */
774
1.07k
    for (i = 0; i < 97; ++i) {  /* 2^224 - 2^97 */
775
1.06k
        felem_square(tmp, ftmp);
776
1.06k
        felem_reduce(ftmp, tmp);
777
1.06k
    }
778
11
    felem_mul(tmp, ftmp, ftmp3);
779
11
    felem_reduce(out, tmp);     /* 2^224 - 2^96 - 1 */
780
11
}
781
782
/*
783
 * Copy in constant time: if icopy == 1, copy in to out, if icopy == 0, copy
784
 * out to itself.
785
 */
786
static void copy_conditional(felem out, const felem in, limb icopy)
787
5.28k
{
788
5.28k
    unsigned i;
789
    /*
790
     * icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one
791
     */
792
5.28k
    const limb copy = -icopy;
793
26.4k
    for (i = 0; i < 4; ++i) {
794
21.1k
        const limb tmp = copy & (in[i] ^ out[i]);
795
21.1k
        out[i] ^= tmp;
796
21.1k
    }
797
5.28k
}
798
799
/******************************************************************************/
800
/*-
801
 *                       ELLIPTIC CURVE POINT OPERATIONS
802
 *
803
 * Points are represented in Jacobian projective coordinates:
804
 * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3),
805
 * or to the point at infinity if Z == 0.
806
 *
807
 */
808
809
/*-
810
 * Double an elliptic curve point:
811
 * (X', Y', Z') = 2 * (X, Y, Z), where
812
 * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2
813
 * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^4
814
 * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z
815
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed,
816
 * while x_out == y_in is not (maybe this works, but it's not tested).
817
 */
818
static void
819
point_double(felem x_out, felem y_out, felem z_out,
820
             const felem x_in, const felem y_in, const felem z_in)
821
432
{
822
432
    widefelem tmp, tmp2;
823
432
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
824
825
432
    felem_assign(ftmp, x_in);
826
432
    felem_assign(ftmp2, x_in);
827
828
    /* delta = z^2 */
829
432
    felem_square(tmp, z_in);
830
432
    felem_reduce(delta, tmp);
831
832
    /* gamma = y^2 */
833
432
    felem_square(tmp, y_in);
834
432
    felem_reduce(gamma, tmp);
835
836
    /* beta = x*gamma */
837
432
    felem_mul(tmp, x_in, gamma);
838
432
    felem_reduce(beta, tmp);
839
840
    /* alpha = 3*(x-delta)*(x+delta) */
841
432
    felem_diff(ftmp, delta);
842
    /* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */
843
432
    felem_sum(ftmp2, delta);
844
    /* ftmp2[i] < 2^57 + 2^57 = 2^58 */
845
432
    felem_scalar(ftmp2, 3);
846
    /* ftmp2[i] < 3 * 2^58 < 2^60 */
847
432
    felem_mul(tmp, ftmp, ftmp2);
848
    /* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */
849
432
    felem_reduce(alpha, tmp);
850
851
    /* x' = alpha^2 - 8*beta */
852
432
    felem_square(tmp, alpha);
853
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
854
432
    felem_assign(ftmp, beta);
855
432
    felem_scalar(ftmp, 8);
856
    /* ftmp[i] < 8 * 2^57 = 2^60 */
857
432
    felem_diff_128_64(tmp, ftmp);
858
    /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
859
432
    felem_reduce(x_out, tmp);
860
861
    /* z' = (y + z)^2 - gamma - delta */
862
432
    felem_sum(delta, gamma);
863
    /* delta[i] < 2^57 + 2^57 = 2^58 */
864
432
    felem_assign(ftmp, y_in);
865
432
    felem_sum(ftmp, z_in);
866
    /* ftmp[i] < 2^57 + 2^57 = 2^58 */
867
432
    felem_square(tmp, ftmp);
868
    /* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */
869
432
    felem_diff_128_64(tmp, delta);
870
    /* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */
871
432
    felem_reduce(z_out, tmp);
872
873
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
874
432
    felem_scalar(beta, 4);
875
    /* beta[i] < 4 * 2^57 = 2^59 */
876
432
    felem_diff(beta, x_out);
877
    /* beta[i] < 2^59 + 2^58 + 2 < 2^60 */
878
432
    felem_mul(tmp, alpha, beta);
879
    /* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */
880
432
    felem_square(tmp2, gamma);
881
    /* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */
882
432
    widefelem_scalar(tmp2, 8);
883
    /* tmp2[i] < 8 * 2^116 = 2^119 */
884
432
    widefelem_diff(tmp, tmp2);
885
    /* tmp[i] < 2^119 + 2^120 < 2^121 */
886
432
    felem_reduce(y_out, tmp);
887
432
}
888
889
/*-
890
 * Add two elliptic curve points:
891
 * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where
892
 * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 -
893
 * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2
894
 * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 - X_3) -
895
 *        Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3
896
 * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2)
897
 *
898
 * This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0.
899
 */
900
901
/*
902
 * This function is not entirely constant-time: it includes a branch for
903
 * checking whether the two input points are equal, (while not equal to the
904
 * point at infinity). This case never happens during single point
905
 * multiplication, so there is no timing leak for ECDH or ECDSA signing.
906
 */
907
static void point_add(felem x3, felem y3, felem z3,
908
                      const felem x1, const felem y1, const felem z1,
909
                      const int mixed, const felem x2, const felem y2,
910
                      const felem z2)
911
880
{
912
880
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out;
913
880
    widefelem tmp, tmp2;
914
880
    limb z1_is_zero, z2_is_zero, x_equal, y_equal;
915
880
    limb points_equal;
916
917
880
    if (!mixed) {
918
        /* ftmp2 = z2^2 */
919
0
        felem_square(tmp, z2);
920
0
        felem_reduce(ftmp2, tmp);
921
922
        /* ftmp4 = z2^3 */
923
0
        felem_mul(tmp, ftmp2, z2);
924
0
        felem_reduce(ftmp4, tmp);
925
926
        /* ftmp4 = z2^3*y1 */
927
0
        felem_mul(tmp2, ftmp4, y1);
928
0
        felem_reduce(ftmp4, tmp2);
929
930
        /* ftmp2 = z2^2*x1 */
931
0
        felem_mul(tmp2, ftmp2, x1);
932
0
        felem_reduce(ftmp2, tmp2);
933
880
    } else {
934
        /*
935
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
936
         */
937
938
        /* ftmp4 = z2^3*y1 */
939
880
        felem_assign(ftmp4, y1);
940
941
        /* ftmp2 = z2^2*x1 */
942
880
        felem_assign(ftmp2, x1);
943
880
    }
944
945
    /* ftmp = z1^2 */
946
880
    felem_square(tmp, z1);
947
880
    felem_reduce(ftmp, tmp);
948
949
    /* ftmp3 = z1^3 */
950
880
    felem_mul(tmp, ftmp, z1);
951
880
    felem_reduce(ftmp3, tmp);
952
953
    /* tmp = z1^3*y2 */
954
880
    felem_mul(tmp, ftmp3, y2);
955
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
956
957
    /* ftmp3 = z1^3*y2 - z2^3*y1 */
958
880
    felem_diff_128_64(tmp, ftmp4);
959
    /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
960
880
    felem_reduce(ftmp3, tmp);
961
962
    /* tmp = z1^2*x2 */
963
880
    felem_mul(tmp, ftmp, x2);
964
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
965
966
    /* ftmp = z1^2*x2 - z2^2*x1 */
967
880
    felem_diff_128_64(tmp, ftmp2);
968
    /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
969
880
    felem_reduce(ftmp, tmp);
970
971
    /*
972
     * The formulae are incorrect if the points are equal, in affine coordinates
973
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
974
     * happens.
975
     *
976
     * We use bitwise operations to avoid potential side-channels introduced by
977
     * the short-circuiting behaviour of boolean operators.
978
     */
979
880
    x_equal = felem_is_zero(ftmp);
980
880
    y_equal = felem_is_zero(ftmp3);
981
    /*
982
     * The special case of either point being the point at infinity (z1 and/or
983
     * z2 are zero), is handled separately later on in this function, so we
984
     * avoid jumping to point_double here in those special cases.
985
     */
986
880
    z1_is_zero = felem_is_zero(z1);
987
880
    z2_is_zero = felem_is_zero(z2);
988
989
    /*
990
     * Compared to `ecp_nistp256.c` and `ecp_nistp521.c`, in this
991
     * specific implementation `felem_is_zero()` returns truth as `0x1`
992
     * (rather than `0xff..ff`).
993
     *
994
     * This implies that `~true` in this implementation becomes
995
     * `0xff..fe` (rather than `0x0`): for this reason, to be used in
996
     * the if expression, we mask out only the last bit in the next
997
     * line.
998
     */
999
880
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero)) & 1;
1000
1001
880
    if (points_equal) {
1002
        /*
1003
         * This is obviously not constant-time but, as mentioned before, this
1004
         * case never happens during single point multiplication, so there is no
1005
         * timing leak for ECDH or ECDSA signing.
1006
         */
1007
0
        point_double(x3, y3, z3, x1, y1, z1);
1008
0
        return;
1009
0
    }
1010
1011
    /* ftmp5 = z1*z2 */
1012
880
    if (!mixed) {
1013
0
        felem_mul(tmp, z1, z2);
1014
0
        felem_reduce(ftmp5, tmp);
1015
880
    } else {
1016
        /* special case z2 = 0 is handled later */
1017
880
        felem_assign(ftmp5, z1);
1018
880
    }
1019
1020
    /* z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) */
1021
880
    felem_mul(tmp, ftmp, ftmp5);
1022
880
    felem_reduce(z_out, tmp);
1023
1024
    /* ftmp = (z1^2*x2 - z2^2*x1)^2 */
1025
880
    felem_assign(ftmp5, ftmp);
1026
880
    felem_square(tmp, ftmp);
1027
880
    felem_reduce(ftmp, tmp);
1028
1029
    /* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */
1030
880
    felem_mul(tmp, ftmp, ftmp5);
1031
880
    felem_reduce(ftmp5, tmp);
1032
1033
    /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
1034
880
    felem_mul(tmp, ftmp2, ftmp);
1035
880
    felem_reduce(ftmp2, tmp);
1036
1037
    /* tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
1038
880
    felem_mul(tmp, ftmp4, ftmp5);
1039
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
1040
1041
    /* tmp2 = (z1^3*y2 - z2^3*y1)^2 */
1042
880
    felem_square(tmp2, ftmp3);
1043
    /* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */
1044
1045
    /* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */
1046
880
    felem_diff_128_64(tmp2, ftmp5);
1047
    /* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */
1048
1049
    /* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
1050
880
    felem_assign(ftmp5, ftmp2);
1051
880
    felem_scalar(ftmp5, 2);
1052
    /* ftmp5[i] < 2 * 2^57 = 2^58 */
1053
1054
    /*-
1055
     * x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 -
1056
     *  2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2
1057
     */
1058
880
    felem_diff_128_64(tmp2, ftmp5);
1059
    /* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */
1060
880
    felem_reduce(x_out, tmp2);
1061
1062
    /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out */
1063
880
    felem_diff(ftmp2, x_out);
1064
    /* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */
1065
1066
    /*
1067
     * tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out)
1068
     */
1069
880
    felem_mul(tmp2, ftmp3, ftmp2);
1070
    /* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */
1071
1072
    /*-
1073
     * y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) -
1074
     *  z2^3*y1*(z1^2*x2 - z2^2*x1)^3
1075
     */
1076
880
    widefelem_diff(tmp2, tmp);
1077
    /* tmp2[i] < 2^118 + 2^120 < 2^121 */
1078
880
    felem_reduce(y_out, tmp2);
1079
1080
    /*
1081
     * the result (x_out, y_out, z_out) is incorrect if one of the inputs is
1082
     * the point at infinity, so we need to check for this separately
1083
     */
1084
1085
    /*
1086
     * if point 1 is at infinity, copy point 2 to output, and vice versa
1087
     */
1088
880
    copy_conditional(x_out, x2, z1_is_zero);
1089
880
    copy_conditional(x_out, x1, z2_is_zero);
1090
880
    copy_conditional(y_out, y2, z1_is_zero);
1091
880
    copy_conditional(y_out, y1, z2_is_zero);
1092
880
    copy_conditional(z_out, z2, z1_is_zero);
1093
880
    copy_conditional(z_out, z1, z2_is_zero);
1094
880
    felem_assign(x3, x_out);
1095
880
    felem_assign(y3, y_out);
1096
880
    felem_assign(z3, z_out);
1097
880
}
1098
1099
/*
1100
 * select_point selects the |idx|th point from a precomputation table and
1101
 * copies it to out.
1102
 * The pre_comp array argument should be size of |size| argument
1103
 */
1104
static void select_point(const u64 idx, unsigned int size,
1105
                         const felem pre_comp[][3], felem out[3])
1106
896
{
1107
896
    unsigned i, j;
1108
896
    limb *outlimbs = &out[0][0];
1109
1110
896
    memset(out, 0, sizeof(*out) * 3);
1111
15.2k
    for (i = 0; i < size; i++) {
1112
14.3k
        const limb *inlimbs = &pre_comp[i][0][0];
1113
14.3k
        u64 mask = i ^ idx;
1114
14.3k
        mask |= mask >> 4;
1115
14.3k
        mask |= mask >> 2;
1116
14.3k
        mask |= mask >> 1;
1117
14.3k
        mask &= 1;
1118
14.3k
        mask--;
1119
186k
        for (j = 0; j < 4 * 3; j++)
1120
172k
            outlimbs[j] |= inlimbs[j] & mask;
1121
14.3k
    }
1122
896
}
1123
1124
/* get_bit returns the |i|th bit in |in| */
1125
static char get_bit(const felem_bytearray in, unsigned i)
1126
3.58k
{
1127
3.58k
    if (i >= 224)
1128
0
        return 0;
1129
3.58k
    return (in[i >> 3] >> (i & 7)) & 1;
1130
3.58k
}
1131
1132
/*
1133
 * Interleaved point multiplication using precomputed point multiples: The
1134
 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1135
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1136
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1137
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1138
 */
1139
static void batch_mul(felem x_out, felem y_out, felem z_out,
1140
                      const felem_bytearray scalars[],
1141
                      const unsigned num_points, const u8 *g_scalar,
1142
                      const int mixed, const felem pre_comp[][17][3],
1143
                      const felem g_pre_comp[2][16][3])
1144
16
{
1145
16
    int i, skip;
1146
16
    unsigned num;
1147
16
    unsigned gen_mul = (g_scalar != NULL);
1148
16
    felem nq[3], tmp[4];
1149
16
    u64 bits;
1150
16
    u8 sign, digit;
1151
1152
    /* set nq to the point at infinity */
1153
16
    memset(nq, 0, sizeof(nq));
1154
1155
    /*
1156
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1157
     * of the generator (two in each of the last 28 rounds) and additions of
1158
     * other points multiples (every 5th round).
1159
     */
1160
16
    skip = 1;                   /* save two point operations in the first
1161
                                 * round */
1162
464
    for (i = (num_points ? 220 : 27); i >= 0; --i) {
1163
        /* double */
1164
448
        if (!skip)
1165
432
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1166
1167
        /* add multiples of the generator */
1168
448
        if (gen_mul && (i <= 27)) {
1169
            /* first, look 28 bits upwards */
1170
448
            bits = get_bit(g_scalar, i + 196) << 3;
1171
448
            bits |= get_bit(g_scalar, i + 140) << 2;
1172
448
            bits |= get_bit(g_scalar, i + 84) << 1;
1173
448
            bits |= get_bit(g_scalar, i + 28);
1174
            /* select the point to add, in constant time */
1175
448
            select_point(bits, 16, g_pre_comp[1], tmp);
1176
1177
448
            if (!skip) {
1178
                /* value 1 below is argument for "mixed" */
1179
432
                point_add(nq[0], nq[1], nq[2],
1180
432
                          nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1181
432
            } else {
1182
16
                memcpy(nq, tmp, 3 * sizeof(felem));
1183
16
                skip = 0;
1184
16
            }
1185
1186
            /* second, look at the current position */
1187
448
            bits = get_bit(g_scalar, i + 168) << 3;
1188
448
            bits |= get_bit(g_scalar, i + 112) << 2;
1189
448
            bits |= get_bit(g_scalar, i + 56) << 1;
1190
448
            bits |= get_bit(g_scalar, i);
1191
            /* select the point to add, in constant time */
1192
448
            select_point(bits, 16, g_pre_comp[0], tmp);
1193
448
            point_add(nq[0], nq[1], nq[2],
1194
448
                      nq[0], nq[1], nq[2],
1195
448
                      1 /* mixed */ , tmp[0], tmp[1], tmp[2]);
1196
448
        }
1197
1198
        /* do other additions every 5 doublings */
1199
448
        if (num_points && (i % 5 == 0)) {
1200
            /* loop over all scalars */
1201
0
            for (num = 0; num < num_points; ++num) {
1202
0
                bits = get_bit(scalars[num], i + 4) << 5;
1203
0
                bits |= get_bit(scalars[num], i + 3) << 4;
1204
0
                bits |= get_bit(scalars[num], i + 2) << 3;
1205
0
                bits |= get_bit(scalars[num], i + 1) << 2;
1206
0
                bits |= get_bit(scalars[num], i) << 1;
1207
0
                bits |= get_bit(scalars[num], i - 1);
1208
0
                ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1209
1210
                /* select the point to add or subtract */
1211
0
                select_point(digit, 17, pre_comp[num], tmp);
1212
0
                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1213
                                            * point */
1214
0
                copy_conditional(tmp[1], tmp[3], sign);
1215
1216
0
                if (!skip) {
1217
0
                    point_add(nq[0], nq[1], nq[2],
1218
0
                              nq[0], nq[1], nq[2],
1219
0
                              mixed, tmp[0], tmp[1], tmp[2]);
1220
0
                } else {
1221
0
                    memcpy(nq, tmp, 3 * sizeof(felem));
1222
0
                    skip = 0;
1223
0
                }
1224
0
            }
1225
0
        }
1226
448
    }
1227
16
    felem_assign(x_out, nq[0]);
1228
16
    felem_assign(y_out, nq[1]);
1229
16
    felem_assign(z_out, nq[2]);
1230
16
}
1231
1232
/******************************************************************************/
1233
/*
1234
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1235
 */
1236
1237
static NISTP224_PRE_COMP *nistp224_pre_comp_new(void)
1238
0
{
1239
0
    NISTP224_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1240
1241
0
    if (!ret) {
1242
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1243
0
        return ret;
1244
0
    }
1245
1246
0
    ret->references = 1;
1247
1248
0
    ret->lock = CRYPTO_THREAD_lock_new();
1249
0
    if (ret->lock == NULL) {
1250
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1251
0
        OPENSSL_free(ret);
1252
0
        return NULL;
1253
0
    }
1254
0
    return ret;
1255
0
}
1256
1257
NISTP224_PRE_COMP *EC_nistp224_pre_comp_dup(NISTP224_PRE_COMP *p)
1258
0
{
1259
0
    int i;
1260
0
    if (p != NULL)
1261
0
        CRYPTO_UP_REF(&p->references, &i, p->lock);
1262
0
    return p;
1263
0
}
1264
1265
void EC_nistp224_pre_comp_free(NISTP224_PRE_COMP *p)
1266
0
{
1267
0
    int i;
1268
1269
0
    if (p == NULL)
1270
0
        return;
1271
1272
0
    CRYPTO_DOWN_REF(&p->references, &i, p->lock);
1273
0
    REF_PRINT_COUNT("EC_nistp224", p);
1274
0
    if (i > 0)
1275
0
        return;
1276
0
    REF_ASSERT_ISNT(i < 0);
1277
1278
0
    CRYPTO_THREAD_lock_free(p->lock);
1279
0
    OPENSSL_free(p);
1280
0
}
1281
1282
/******************************************************************************/
1283
/*
1284
 * OPENSSL EC_METHOD FUNCTIONS
1285
 */
1286
1287
int ossl_ec_GFp_nistp224_group_init(EC_GROUP *group)
1288
4.50k
{
1289
4.50k
    int ret;
1290
4.50k
    ret = ossl_ec_GFp_simple_group_init(group);
1291
4.50k
    group->a_is_minus3 = 1;
1292
4.50k
    return ret;
1293
4.50k
}
1294
1295
int ossl_ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1296
                                         const BIGNUM *a, const BIGNUM *b,
1297
                                         BN_CTX *ctx)
1298
2.27k
{
1299
2.27k
    int ret = 0;
1300
2.27k
    BIGNUM *curve_p, *curve_a, *curve_b;
1301
2.27k
#ifndef FIPS_MODULE
1302
2.27k
    BN_CTX *new_ctx = NULL;
1303
1304
2.27k
    if (ctx == NULL)
1305
0
        ctx = new_ctx = BN_CTX_new();
1306
2.27k
#endif
1307
2.27k
    if (ctx == NULL)
1308
0
        return 0;
1309
1310
2.27k
    BN_CTX_start(ctx);
1311
2.27k
    curve_p = BN_CTX_get(ctx);
1312
2.27k
    curve_a = BN_CTX_get(ctx);
1313
2.27k
    curve_b = BN_CTX_get(ctx);
1314
2.27k
    if (curve_b == NULL)
1315
0
        goto err;
1316
2.27k
    BN_bin2bn(nistp224_curve_params[0], sizeof(felem_bytearray), curve_p);
1317
2.27k
    BN_bin2bn(nistp224_curve_params[1], sizeof(felem_bytearray), curve_a);
1318
2.27k
    BN_bin2bn(nistp224_curve_params[2], sizeof(felem_bytearray), curve_b);
1319
2.27k
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1320
0
        ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS);
1321
0
        goto err;
1322
0
    }
1323
2.27k
    group->field_mod_func = BN_nist_mod_224;
1324
2.27k
    ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1325
2.27k
 err:
1326
2.27k
    BN_CTX_end(ctx);
1327
2.27k
#ifndef FIPS_MODULE
1328
2.27k
    BN_CTX_free(new_ctx);
1329
2.27k
#endif
1330
2.27k
    return ret;
1331
2.27k
}
1332
1333
/*
1334
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1335
 * (X/Z^2, Y/Z^3)
1336
 */
1337
int ossl_ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group,
1338
                                                      const EC_POINT *point,
1339
                                                      BIGNUM *x, BIGNUM *y,
1340
                                                      BN_CTX *ctx)
1341
11
{
1342
11
    felem z1, z2, x_in, y_in, x_out, y_out;
1343
11
    widefelem tmp;
1344
1345
11
    if (EC_POINT_is_at_infinity(group, point)) {
1346
0
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
1347
0
        return 0;
1348
0
    }
1349
11
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1350
11
        (!BN_to_felem(z1, point->Z)))
1351
0
        return 0;
1352
11
    felem_inv(z2, z1);
1353
11
    felem_square(tmp, z2);
1354
11
    felem_reduce(z1, tmp);
1355
11
    felem_mul(tmp, x_in, z1);
1356
11
    felem_reduce(x_in, tmp);
1357
11
    felem_contract(x_out, x_in);
1358
11
    if (x != NULL) {
1359
11
        if (!felem_to_BN(x, x_out)) {
1360
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1361
0
            return 0;
1362
0
        }
1363
11
    }
1364
11
    felem_mul(tmp, z1, z2);
1365
11
    felem_reduce(z1, tmp);
1366
11
    felem_mul(tmp, y_in, z1);
1367
11
    felem_reduce(y_in, tmp);
1368
11
    felem_contract(y_out, y_in);
1369
11
    if (y != NULL) {
1370
11
        if (!felem_to_BN(y, y_out)) {
1371
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1372
0
            return 0;
1373
0
        }
1374
11
    }
1375
11
    return 1;
1376
11
}
1377
1378
static void make_points_affine(size_t num, felem points[ /* num */ ][3],
1379
                               felem tmp_felems[ /* num+1 */ ])
1380
0
{
1381
    /*
1382
     * Runs in constant time, unless an input is the point at infinity (which
1383
     * normally shouldn't happen).
1384
     */
1385
0
    ossl_ec_GFp_nistp_points_make_affine_internal(num,
1386
0
                                                  points,
1387
0
                                                  sizeof(felem),
1388
0
                                                  tmp_felems,
1389
0
                                                  (void (*)(void *))felem_one,
1390
0
                                                  felem_is_zero_int,
1391
0
                                                  (void (*)(void *, const void *))
1392
0
                                                  felem_assign,
1393
0
                                                  (void (*)(void *, const void *))
1394
0
                                                  felem_square_reduce, (void (*)
1395
0
                                                                        (void *,
1396
0
                                                                         const void
1397
0
                                                                         *,
1398
0
                                                                         const void
1399
0
                                                                         *))
1400
0
                                                  felem_mul_reduce,
1401
0
                                                  (void (*)(void *, const void *))
1402
0
                                                  felem_inv,
1403
0
                                                  (void (*)(void *, const void *))
1404
0
                                                  felem_contract);
1405
0
}
1406
1407
/*
1408
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1409
 * values Result is stored in r (r can equal one of the inputs).
1410
 */
1411
int ossl_ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r,
1412
                                    const BIGNUM *scalar, size_t num,
1413
                                    const EC_POINT *points[],
1414
                                    const BIGNUM *scalars[], BN_CTX *ctx)
1415
16
{
1416
16
    int ret = 0;
1417
16
    int j;
1418
16
    unsigned i;
1419
16
    int mixed = 0;
1420
16
    BIGNUM *x, *y, *z, *tmp_scalar;
1421
16
    felem_bytearray g_secret;
1422
16
    felem_bytearray *secrets = NULL;
1423
16
    felem (*pre_comp)[17][3] = NULL;
1424
16
    felem *tmp_felems = NULL;
1425
16
    int num_bytes;
1426
16
    int have_pre_comp = 0;
1427
16
    size_t num_points = num;
1428
16
    felem x_in, y_in, z_in, x_out, y_out, z_out;
1429
16
    NISTP224_PRE_COMP *pre = NULL;
1430
16
    const felem(*g_pre_comp)[16][3] = NULL;
1431
16
    EC_POINT *generator = NULL;
1432
16
    const EC_POINT *p = NULL;
1433
16
    const BIGNUM *p_scalar = NULL;
1434
1435
16
    BN_CTX_start(ctx);
1436
16
    x = BN_CTX_get(ctx);
1437
16
    y = BN_CTX_get(ctx);
1438
16
    z = BN_CTX_get(ctx);
1439
16
    tmp_scalar = BN_CTX_get(ctx);
1440
16
    if (tmp_scalar == NULL)
1441
0
        goto err;
1442
1443
16
    if (scalar != NULL) {
1444
16
        pre = group->pre_comp.nistp224;
1445
16
        if (pre)
1446
            /* we have precomputation, try to use it */
1447
0
            g_pre_comp = (const felem(*)[16][3])pre->g_pre_comp;
1448
16
        else
1449
            /* try to use the standard precomputation */
1450
16
            g_pre_comp = &gmul[0];
1451
16
        generator = EC_POINT_new(group);
1452
16
        if (generator == NULL)
1453
0
            goto err;
1454
        /* get the generator from precomputation */
1455
16
        if (!felem_to_BN(x, g_pre_comp[0][1][0]) ||
1456
16
            !felem_to_BN(y, g_pre_comp[0][1][1]) ||
1457
16
            !felem_to_BN(z, g_pre_comp[0][1][2])) {
1458
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1459
0
            goto err;
1460
0
        }
1461
16
        if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group,
1462
16
                                                                generator,
1463
16
                                                                x, y, z, ctx))
1464
0
            goto err;
1465
16
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1466
            /* precomputation matches generator */
1467
16
            have_pre_comp = 1;
1468
0
        else
1469
            /*
1470
             * we don't have valid precomputation: treat the generator as a
1471
             * random point
1472
             */
1473
0
            num_points = num_points + 1;
1474
16
    }
1475
1476
16
    if (num_points > 0) {
1477
0
        if (num_points >= 3) {
1478
            /*
1479
             * unless we precompute multiples for just one or two points,
1480
             * converting those into affine form is time well spent
1481
             */
1482
0
            mixed = 1;
1483
0
        }
1484
0
        secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1485
0
        pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1486
0
        if (mixed)
1487
0
            tmp_felems =
1488
0
                OPENSSL_malloc(sizeof(felem) * (num_points * 17 + 1));
1489
0
        if ((secrets == NULL) || (pre_comp == NULL)
1490
0
            || (mixed && (tmp_felems == NULL))) {
1491
0
            ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1492
0
            goto err;
1493
0
        }
1494
1495
        /*
1496
         * we treat NULL scalars as 0, and NULL points as points at infinity,
1497
         * i.e., they contribute nothing to the linear combination
1498
         */
1499
0
        for (i = 0; i < num_points; ++i) {
1500
0
            if (i == num) {
1501
                /* the generator */
1502
0
                p = EC_GROUP_get0_generator(group);
1503
0
                p_scalar = scalar;
1504
0
            } else {
1505
                /* the i^th point */
1506
0
                p = points[i];
1507
0
                p_scalar = scalars[i];
1508
0
            }
1509
0
            if ((p_scalar != NULL) && (p != NULL)) {
1510
                /* reduce scalar to 0 <= scalar < 2^224 */
1511
0
                if ((BN_num_bits(p_scalar) > 224)
1512
0
                    || (BN_is_negative(p_scalar))) {
1513
                    /*
1514
                     * this is an unusual input, and we don't guarantee
1515
                     * constant-timeness
1516
                     */
1517
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
1518
0
                        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1519
0
                        goto err;
1520
0
                    }
1521
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
1522
0
                                               secrets[i], sizeof(secrets[i]));
1523
0
                } else {
1524
0
                    num_bytes = BN_bn2lebinpad(p_scalar,
1525
0
                                               secrets[i], sizeof(secrets[i]));
1526
0
                }
1527
0
                if (num_bytes < 0) {
1528
0
                    ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1529
0
                    goto err;
1530
0
                }
1531
                /* precompute multiples */
1532
0
                if ((!BN_to_felem(x_out, p->X)) ||
1533
0
                    (!BN_to_felem(y_out, p->Y)) ||
1534
0
                    (!BN_to_felem(z_out, p->Z)))
1535
0
                    goto err;
1536
0
                felem_assign(pre_comp[i][1][0], x_out);
1537
0
                felem_assign(pre_comp[i][1][1], y_out);
1538
0
                felem_assign(pre_comp[i][1][2], z_out);
1539
0
                for (j = 2; j <= 16; ++j) {
1540
0
                    if (j & 1) {
1541
0
                        point_add(pre_comp[i][j][0], pre_comp[i][j][1],
1542
0
                                  pre_comp[i][j][2], pre_comp[i][1][0],
1543
0
                                  pre_comp[i][1][1], pre_comp[i][1][2], 0,
1544
0
                                  pre_comp[i][j - 1][0],
1545
0
                                  pre_comp[i][j - 1][1],
1546
0
                                  pre_comp[i][j - 1][2]);
1547
0
                    } else {
1548
0
                        point_double(pre_comp[i][j][0], pre_comp[i][j][1],
1549
0
                                     pre_comp[i][j][2], pre_comp[i][j / 2][0],
1550
0
                                     pre_comp[i][j / 2][1],
1551
0
                                     pre_comp[i][j / 2][2]);
1552
0
                    }
1553
0
                }
1554
0
            }
1555
0
        }
1556
0
        if (mixed)
1557
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
1558
0
    }
1559
1560
    /* the scalar for the generator */
1561
16
    if ((scalar != NULL) && (have_pre_comp)) {
1562
16
        memset(g_secret, 0, sizeof(g_secret));
1563
        /* reduce scalar to 0 <= scalar < 2^224 */
1564
16
        if ((BN_num_bits(scalar) > 224) || (BN_is_negative(scalar))) {
1565
            /*
1566
             * this is an unusual input, and we don't guarantee
1567
             * constant-timeness
1568
             */
1569
4
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
1570
0
                ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1571
0
                goto err;
1572
0
            }
1573
4
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
1574
12
        } else {
1575
12
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
1576
12
        }
1577
        /* do the multiplication with generator precomputation */
1578
16
        batch_mul(x_out, y_out, z_out,
1579
16
                  (const felem_bytearray(*))secrets, num_points,
1580
16
                  g_secret,
1581
16
                  mixed, (const felem(*)[17][3])pre_comp, g_pre_comp);
1582
16
    } else {
1583
        /* do the multiplication without generator precomputation */
1584
0
        batch_mul(x_out, y_out, z_out,
1585
0
                  (const felem_bytearray(*))secrets, num_points,
1586
0
                  NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
1587
0
    }
1588
    /* reduce the output to its unique minimal representation */
1589
16
    felem_contract(x_in, x_out);
1590
16
    felem_contract(y_in, y_out);
1591
16
    felem_contract(z_in, z_out);
1592
16
    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
1593
16
        (!felem_to_BN(z, z_in))) {
1594
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1595
0
        goto err;
1596
0
    }
1597
16
    ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z,
1598
16
                                                             ctx);
1599
1600
16
 err:
1601
16
    BN_CTX_end(ctx);
1602
16
    EC_POINT_free(generator);
1603
16
    OPENSSL_free(secrets);
1604
16
    OPENSSL_free(pre_comp);
1605
16
    OPENSSL_free(tmp_felems);
1606
16
    return ret;
1607
16
}
1608
1609
int ossl_ec_GFp_nistp224_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
1610
0
{
1611
0
    int ret = 0;
1612
0
    NISTP224_PRE_COMP *pre = NULL;
1613
0
    int i, j;
1614
0
    BIGNUM *x, *y;
1615
0
    EC_POINT *generator = NULL;
1616
0
    felem tmp_felems[32];
1617
0
#ifndef FIPS_MODULE
1618
0
    BN_CTX *new_ctx = NULL;
1619
0
#endif
1620
1621
    /* throw away old precomputation */
1622
0
    EC_pre_comp_free(group);
1623
1624
0
#ifndef FIPS_MODULE
1625
0
    if (ctx == NULL)
1626
0
        ctx = new_ctx = BN_CTX_new();
1627
0
#endif
1628
0
    if (ctx == NULL)
1629
0
        return 0;
1630
1631
0
    BN_CTX_start(ctx);
1632
0
    x = BN_CTX_get(ctx);
1633
0
    y = BN_CTX_get(ctx);
1634
0
    if (y == NULL)
1635
0
        goto err;
1636
    /* get the generator */
1637
0
    if (group->generator == NULL)
1638
0
        goto err;
1639
0
    generator = EC_POINT_new(group);
1640
0
    if (generator == NULL)
1641
0
        goto err;
1642
0
    BN_bin2bn(nistp224_curve_params[3], sizeof(felem_bytearray), x);
1643
0
    BN_bin2bn(nistp224_curve_params[4], sizeof(felem_bytearray), y);
1644
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
1645
0
        goto err;
1646
0
    if ((pre = nistp224_pre_comp_new()) == NULL)
1647
0
        goto err;
1648
    /*
1649
     * if the generator is the standard one, use built-in precomputation
1650
     */
1651
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
1652
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
1653
0
        goto done;
1654
0
    }
1655
0
    if ((!BN_to_felem(pre->g_pre_comp[0][1][0], group->generator->X)) ||
1656
0
        (!BN_to_felem(pre->g_pre_comp[0][1][1], group->generator->Y)) ||
1657
0
        (!BN_to_felem(pre->g_pre_comp[0][1][2], group->generator->Z)))
1658
0
        goto err;
1659
    /*
1660
     * compute 2^56*G, 2^112*G, 2^168*G for the first table, 2^28*G, 2^84*G,
1661
     * 2^140*G, 2^196*G for the second one
1662
     */
1663
0
    for (i = 1; i <= 8; i <<= 1) {
1664
0
        point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
1665
0
                     pre->g_pre_comp[1][i][2], pre->g_pre_comp[0][i][0],
1666
0
                     pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]);
1667
0
        for (j = 0; j < 27; ++j) {
1668
0
            point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
1669
0
                         pre->g_pre_comp[1][i][2], pre->g_pre_comp[1][i][0],
1670
0
                         pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
1671
0
        }
1672
0
        if (i == 8)
1673
0
            break;
1674
0
        point_double(pre->g_pre_comp[0][2 * i][0],
1675
0
                     pre->g_pre_comp[0][2 * i][1],
1676
0
                     pre->g_pre_comp[0][2 * i][2], pre->g_pre_comp[1][i][0],
1677
0
                     pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
1678
0
        for (j = 0; j < 27; ++j) {
1679
0
            point_double(pre->g_pre_comp[0][2 * i][0],
1680
0
                         pre->g_pre_comp[0][2 * i][1],
1681
0
                         pre->g_pre_comp[0][2 * i][2],
1682
0
                         pre->g_pre_comp[0][2 * i][0],
1683
0
                         pre->g_pre_comp[0][2 * i][1],
1684
0
                         pre->g_pre_comp[0][2 * i][2]);
1685
0
        }
1686
0
    }
1687
0
    for (i = 0; i < 2; i++) {
1688
        /* g_pre_comp[i][0] is the point at infinity */
1689
0
        memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0]));
1690
        /* the remaining multiples */
1691
        /* 2^56*G + 2^112*G resp. 2^84*G + 2^140*G */
1692
0
        point_add(pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1],
1693
0
                  pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0],
1694
0
                  pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2],
1695
0
                  0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1696
0
                  pre->g_pre_comp[i][2][2]);
1697
        /* 2^56*G + 2^168*G resp. 2^84*G + 2^196*G */
1698
0
        point_add(pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1],
1699
0
                  pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0],
1700
0
                  pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
1701
0
                  0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1702
0
                  pre->g_pre_comp[i][2][2]);
1703
        /* 2^112*G + 2^168*G resp. 2^140*G + 2^196*G */
1704
0
        point_add(pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1],
1705
0
                  pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0],
1706
0
                  pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
1707
0
                  0, pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1],
1708
0
                  pre->g_pre_comp[i][4][2]);
1709
        /*
1710
         * 2^56*G + 2^112*G + 2^168*G resp. 2^84*G + 2^140*G + 2^196*G
1711
         */
1712
0
        point_add(pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1],
1713
0
                  pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0],
1714
0
                  pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],
1715
0
                  0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1716
0
                  pre->g_pre_comp[i][2][2]);
1717
0
        for (j = 1; j < 8; ++j) {
1718
            /* odd multiples: add G resp. 2^28*G */
1719
0
            point_add(pre->g_pre_comp[i][2 * j + 1][0],
1720
0
                      pre->g_pre_comp[i][2 * j + 1][1],
1721
0
                      pre->g_pre_comp[i][2 * j + 1][2],
1722
0
                      pre->g_pre_comp[i][2 * j][0],
1723
0
                      pre->g_pre_comp[i][2 * j][1],
1724
0
                      pre->g_pre_comp[i][2 * j][2], 0,
1725
0
                      pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1],
1726
0
                      pre->g_pre_comp[i][1][2]);
1727
0
        }
1728
0
    }
1729
0
    make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_felems);
1730
1731
0
 done:
1732
0
    SETPRECOMP(group, nistp224, pre);
1733
0
    pre = NULL;
1734
0
    ret = 1;
1735
0
 err:
1736
0
    BN_CTX_end(ctx);
1737
0
    EC_POINT_free(generator);
1738
0
#ifndef FIPS_MODULE
1739
0
    BN_CTX_free(new_ctx);
1740
0
#endif
1741
0
    EC_nistp224_pre_comp_free(pre);
1742
0
    return ret;
1743
0
}
1744
1745
int ossl_ec_GFp_nistp224_have_precompute_mult(const EC_GROUP *group)
1746
0
{
1747
0
    return HAVEPRECOMP(group, nistp224);
1748
0
}