Coverage Report

Created: 2023-06-08 06:43

/src/openssl30/crypto/ec/ecp_nistp521.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2011-2021 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2011 Google Inc.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * ECDSA low level APIs are deprecated for public use, but still ok for
28
 * internal use.
29
 */
30
#include "internal/deprecated.h"
31
32
/*
33
 * A 64-bit implementation of the NIST P-521 elliptic curve point multiplication
34
 *
35
 * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
36
 * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
37
 * work which got its smarts from Daniel J. Bernstein's work on the same.
38
 */
39
40
#include <openssl/e_os2.h>
41
42
#include <string.h>
43
#include <openssl/err.h>
44
#include "ec_local.h"
45
46
#include "internal/numbers.h"
47
48
#ifndef INT128_MAX
49
# error "Your compiler doesn't appear to support 128-bit integer types"
50
#endif
51
52
typedef uint8_t u8;
53
typedef uint64_t u64;
54
55
/*
56
 * The underlying field. P521 operates over GF(2^521-1). We can serialize an
57
 * element of this field into 66 bytes where the most significant byte
58
 * contains only a single bit. We call this an felem_bytearray.
59
 */
60
61
typedef u8 felem_bytearray[66];
62
63
/*
64
 * These are the parameters of P521, taken from FIPS 186-3, section D.1.2.5.
65
 * These values are big-endian.
66
 */
67
static const felem_bytearray nistp521_curve_params[5] = {
68
    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* p */
69
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
70
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
71
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
72
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
73
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
74
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
75
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
76
     0xff, 0xff},
77
    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* a = -3 */
78
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
79
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
80
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
81
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
82
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
83
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
84
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
85
     0xff, 0xfc},
86
    {0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, /* b */
87
     0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85,
88
     0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3,
89
     0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1,
90
     0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e,
91
     0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1,
92
     0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c,
93
     0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50,
94
     0x3f, 0x00},
95
    {0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, /* x */
96
     0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95,
97
     0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f,
98
     0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d,
99
     0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7,
100
     0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff,
101
     0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a,
102
     0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5,
103
     0xbd, 0x66},
104
    {0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, /* y */
105
     0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d,
106
     0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b,
107
     0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e,
108
     0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4,
109
     0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad,
110
     0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72,
111
     0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1,
112
     0x66, 0x50}
113
};
114
115
/*-
116
 * The representation of field elements.
117
 * ------------------------------------
118
 *
119
 * We represent field elements with nine values. These values are either 64 or
120
 * 128 bits and the field element represented is:
121
 *   v[0]*2^0 + v[1]*2^58 + v[2]*2^116 + ... + v[8]*2^464  (mod p)
122
 * Each of the nine values is called a 'limb'. Since the limbs are spaced only
123
 * 58 bits apart, but are greater than 58 bits in length, the most significant
124
 * bits of each limb overlap with the least significant bits of the next.
125
 *
126
 * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a
127
 * 'largefelem' */
128
129
3.05M
#define NLIMBS 9
130
131
typedef uint64_t limb;
132
typedef limb limb_aX __attribute((__aligned__(1)));
133
typedef limb felem[NLIMBS];
134
typedef uint128_t largefelem[NLIMBS];
135
136
static const limb bottom57bits = 0x1ffffffffffffff;
137
static const limb bottom58bits = 0x3ffffffffffffff;
138
139
/*
140
 * bin66_to_felem takes a little-endian byte array and converts it into felem
141
 * form. This assumes that the CPU is little-endian.
142
 */
143
static void bin66_to_felem(felem out, const u8 in[66])
144
111
{
145
111
    out[0] = (*((limb *) & in[0])) & bottom58bits;
146
111
    out[1] = (*((limb_aX *) & in[7]) >> 2) & bottom58bits;
147
111
    out[2] = (*((limb_aX *) & in[14]) >> 4) & bottom58bits;
148
111
    out[3] = (*((limb_aX *) & in[21]) >> 6) & bottom58bits;
149
111
    out[4] = (*((limb_aX *) & in[29])) & bottom58bits;
150
111
    out[5] = (*((limb_aX *) & in[36]) >> 2) & bottom58bits;
151
111
    out[6] = (*((limb_aX *) & in[43]) >> 4) & bottom58bits;
152
111
    out[7] = (*((limb_aX *) & in[50]) >> 6) & bottom58bits;
153
111
    out[8] = (*((limb_aX *) & in[58])) & bottom57bits;
154
111
}
155
156
/*
157
 * felem_to_bin66 takes an felem and serializes into a little endian, 66 byte
158
 * array. This assumes that the CPU is little-endian.
159
 */
160
static void felem_to_bin66(u8 out[66], const felem in)
161
350
{
162
350
    memset(out, 0, 66);
163
350
    (*((limb *) & out[0])) = in[0];
164
350
    (*((limb_aX *) & out[7])) |= in[1] << 2;
165
350
    (*((limb_aX *) & out[14])) |= in[2] << 4;
166
350
    (*((limb_aX *) & out[21])) |= in[3] << 6;
167
350
    (*((limb_aX *) & out[29])) = in[4];
168
350
    (*((limb_aX *) & out[36])) |= in[5] << 2;
169
350
    (*((limb_aX *) & out[43])) |= in[6] << 4;
170
350
    (*((limb_aX *) & out[50])) |= in[7] << 6;
171
350
    (*((limb_aX *) & out[58])) = in[8];
172
350
}
173
174
/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
175
static int BN_to_felem(felem out, const BIGNUM *bn)
176
111
{
177
111
    felem_bytearray b_out;
178
111
    int num_bytes;
179
180
111
    if (BN_is_negative(bn)) {
181
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
182
0
        return 0;
183
0
    }
184
111
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
185
111
    if (num_bytes < 0) {
186
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
187
0
        return 0;
188
0
    }
189
111
    bin66_to_felem(out, b_out);
190
111
    return 1;
191
111
}
192
193
/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
194
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
195
350
{
196
350
    felem_bytearray b_out;
197
350
    felem_to_bin66(b_out, in);
198
350
    return BN_lebin2bn(b_out, sizeof(b_out), out);
199
350
}
200
201
/*-
202
 * Field operations
203
 * ----------------
204
 */
205
206
static void felem_one(felem out)
207
0
{
208
0
    out[0] = 1;
209
0
    out[1] = 0;
210
0
    out[2] = 0;
211
0
    out[3] = 0;
212
0
    out[4] = 0;
213
0
    out[5] = 0;
214
0
    out[6] = 0;
215
0
    out[7] = 0;
216
0
    out[8] = 0;
217
0
}
218
219
static void felem_assign(felem out, const felem in)
220
90.3k
{
221
90.3k
    out[0] = in[0];
222
90.3k
    out[1] = in[1];
223
90.3k
    out[2] = in[2];
224
90.3k
    out[3] = in[3];
225
90.3k
    out[4] = in[4];
226
90.3k
    out[5] = in[5];
227
90.3k
    out[6] = in[6];
228
90.3k
    out[7] = in[7];
229
90.3k
    out[8] = in[8];
230
90.3k
}
231
232
/* felem_sum64 sets out = out + in. */
233
static void felem_sum64(felem out, const felem in)
234
17.9k
{
235
17.9k
    out[0] += in[0];
236
17.9k
    out[1] += in[1];
237
17.9k
    out[2] += in[2];
238
17.9k
    out[3] += in[3];
239
17.9k
    out[4] += in[4];
240
17.9k
    out[5] += in[5];
241
17.9k
    out[6] += in[6];
242
17.9k
    out[7] += in[7];
243
17.9k
    out[8] += in[8];
244
17.9k
}
245
246
/* felem_scalar sets out = in * scalar */
247
static void felem_scalar(felem out, const felem in, limb scalar)
248
206k
{
249
206k
    out[0] = in[0] * scalar;
250
206k
    out[1] = in[1] * scalar;
251
206k
    out[2] = in[2] * scalar;
252
206k
    out[3] = in[3] * scalar;
253
206k
    out[4] = in[4] * scalar;
254
206k
    out[5] = in[5] * scalar;
255
206k
    out[6] = in[6] * scalar;
256
206k
    out[7] = in[7] * scalar;
257
206k
    out[8] = in[8] * scalar;
258
206k
}
259
260
/* felem_scalar64 sets out = out * scalar */
261
static void felem_scalar64(felem out, limb scalar)
262
35.8k
{
263
35.8k
    out[0] *= scalar;
264
35.8k
    out[1] *= scalar;
265
35.8k
    out[2] *= scalar;
266
35.8k
    out[3] *= scalar;
267
35.8k
    out[4] *= scalar;
268
35.8k
    out[5] *= scalar;
269
35.8k
    out[6] *= scalar;
270
35.8k
    out[7] *= scalar;
271
35.8k
    out[8] *= scalar;
272
35.8k
}
273
274
/* felem_scalar128 sets out = out * scalar */
275
static void felem_scalar128(largefelem out, limb scalar)
276
11.9k
{
277
11.9k
    out[0] *= scalar;
278
11.9k
    out[1] *= scalar;
279
11.9k
    out[2] *= scalar;
280
11.9k
    out[3] *= scalar;
281
11.9k
    out[4] *= scalar;
282
11.9k
    out[5] *= scalar;
283
11.9k
    out[6] *= scalar;
284
11.9k
    out[7] *= scalar;
285
11.9k
    out[8] *= scalar;
286
11.9k
}
287
288
/*-
289
 * felem_neg sets |out| to |-in|
290
 * On entry:
291
 *   in[i] < 2^59 + 2^14
292
 * On exit:
293
 *   out[i] < 2^62
294
 */
295
static void felem_neg(felem out, const felem in)
296
0
{
297
    /* In order to prevent underflow, we subtract from 0 mod p. */
298
0
    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
299
0
    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
300
301
0
    out[0] = two62m3 - in[0];
302
0
    out[1] = two62m2 - in[1];
303
0
    out[2] = two62m2 - in[2];
304
0
    out[3] = two62m2 - in[3];
305
0
    out[4] = two62m2 - in[4];
306
0
    out[5] = two62m2 - in[5];
307
0
    out[6] = two62m2 - in[6];
308
0
    out[7] = two62m2 - in[7];
309
0
    out[8] = two62m2 - in[8];
310
0
}
311
312
/*-
313
 * felem_diff64 subtracts |in| from |out|
314
 * On entry:
315
 *   in[i] < 2^59 + 2^14
316
 * On exit:
317
 *   out[i] < out[i] + 2^62
318
 */
319
static void felem_diff64(felem out, const felem in)
320
17.9k
{
321
    /*
322
     * In order to prevent underflow, we add 0 mod p before subtracting.
323
     */
324
17.9k
    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
325
17.9k
    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
326
327
17.9k
    out[0] += two62m3 - in[0];
328
17.9k
    out[1] += two62m2 - in[1];
329
17.9k
    out[2] += two62m2 - in[2];
330
17.9k
    out[3] += two62m2 - in[3];
331
17.9k
    out[4] += two62m2 - in[4];
332
17.9k
    out[5] += two62m2 - in[5];
333
17.9k
    out[6] += two62m2 - in[6];
334
17.9k
    out[7] += two62m2 - in[7];
335
17.9k
    out[8] += two62m2 - in[8];
336
17.9k
}
337
338
/*-
339
 * felem_diff_128_64 subtracts |in| from |out|
340
 * On entry:
341
 *   in[i] < 2^62 + 2^17
342
 * On exit:
343
 *   out[i] < out[i] + 2^63
344
 */
345
static void felem_diff_128_64(largefelem out, const felem in)
346
35.8k
{
347
    /*
348
     * In order to prevent underflow, we add 64p mod p (which is equivalent
349
     * to 0 mod p) before subtracting. p is 2^521 - 1, i.e. in binary a 521
350
     * digit number with all bits set to 1. See "The representation of field
351
     * elements" comment above for a description of how limbs are used to
352
     * represent a number. 64p is represented with 8 limbs containing a number
353
     * with 58 bits set and one limb with a number with 57 bits set.
354
     */
355
35.8k
    static const limb two63m6 = (((limb) 1) << 63) - (((limb) 1) << 6);
356
35.8k
    static const limb two63m5 = (((limb) 1) << 63) - (((limb) 1) << 5);
357
358
35.8k
    out[0] += two63m6 - in[0];
359
35.8k
    out[1] += two63m5 - in[1];
360
35.8k
    out[2] += two63m5 - in[2];
361
35.8k
    out[3] += two63m5 - in[3];
362
35.8k
    out[4] += two63m5 - in[4];
363
35.8k
    out[5] += two63m5 - in[5];
364
35.8k
    out[6] += two63m5 - in[6];
365
35.8k
    out[7] += two63m5 - in[7];
366
35.8k
    out[8] += two63m5 - in[8];
367
35.8k
}
368
369
/*-
370
 * felem_diff_128_64 subtracts |in| from |out|
371
 * On entry:
372
 *   in[i] < 2^126
373
 * On exit:
374
 *   out[i] < out[i] + 2^127 - 2^69
375
 */
376
static void felem_diff128(largefelem out, const largefelem in)
377
11.9k
{
378
    /*
379
     * In order to prevent underflow, we add 0 mod p before subtracting.
380
     */
381
11.9k
    static const uint128_t two127m70 =
382
11.9k
        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 70);
383
11.9k
    static const uint128_t two127m69 =
384
11.9k
        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 69);
385
386
11.9k
    out[0] += (two127m70 - in[0]);
387
11.9k
    out[1] += (two127m69 - in[1]);
388
11.9k
    out[2] += (two127m69 - in[2]);
389
11.9k
    out[3] += (two127m69 - in[3]);
390
11.9k
    out[4] += (two127m69 - in[4]);
391
11.9k
    out[5] += (two127m69 - in[5]);
392
11.9k
    out[6] += (two127m69 - in[6]);
393
11.9k
    out[7] += (two127m69 - in[7]);
394
11.9k
    out[8] += (two127m69 - in[8]);
395
11.9k
}
396
397
/*-
398
 * felem_square sets |out| = |in|^2
399
 * On entry:
400
 *   in[i] < 2^62
401
 * On exit:
402
 *   out[i] < 17 * max(in[i]) * max(in[i])
403
 */
404
static void felem_square_ref(largefelem out, const felem in)
405
67.2k
{
406
67.2k
    felem inx2, inx4;
407
67.2k
    felem_scalar(inx2, in, 2);
408
67.2k
    felem_scalar(inx4, in, 4);
409
410
    /*-
411
     * We have many cases were we want to do
412
     *   in[x] * in[y] +
413
     *   in[y] * in[x]
414
     * This is obviously just
415
     *   2 * in[x] * in[y]
416
     * However, rather than do the doubling on the 128 bit result, we
417
     * double one of the inputs to the multiplication by reading from
418
     * |inx2|
419
     */
420
421
67.2k
    out[0] = ((uint128_t) in[0]) * in[0];
422
67.2k
    out[1] = ((uint128_t) in[0]) * inx2[1];
423
67.2k
    out[2] = ((uint128_t) in[0]) * inx2[2] + ((uint128_t) in[1]) * in[1];
424
67.2k
    out[3] = ((uint128_t) in[0]) * inx2[3] + ((uint128_t) in[1]) * inx2[2];
425
67.2k
    out[4] = ((uint128_t) in[0]) * inx2[4] +
426
67.2k
             ((uint128_t) in[1]) * inx2[3] + ((uint128_t) in[2]) * in[2];
427
67.2k
    out[5] = ((uint128_t) in[0]) * inx2[5] +
428
67.2k
             ((uint128_t) in[1]) * inx2[4] + ((uint128_t) in[2]) * inx2[3];
429
67.2k
    out[6] = ((uint128_t) in[0]) * inx2[6] +
430
67.2k
             ((uint128_t) in[1]) * inx2[5] +
431
67.2k
             ((uint128_t) in[2]) * inx2[4] + ((uint128_t) in[3]) * in[3];
432
67.2k
    out[7] = ((uint128_t) in[0]) * inx2[7] +
433
67.2k
             ((uint128_t) in[1]) * inx2[6] +
434
67.2k
             ((uint128_t) in[2]) * inx2[5] + ((uint128_t) in[3]) * inx2[4];
435
67.2k
    out[8] = ((uint128_t) in[0]) * inx2[8] +
436
67.2k
             ((uint128_t) in[1]) * inx2[7] +
437
67.2k
             ((uint128_t) in[2]) * inx2[6] +
438
67.2k
             ((uint128_t) in[3]) * inx2[5] + ((uint128_t) in[4]) * in[4];
439
440
    /*
441
     * The remaining limbs fall above 2^521, with the first falling at 2^522.
442
     * They correspond to locations one bit up from the limbs produced above
443
     * so we would have to multiply by two to align them. Again, rather than
444
     * operate on the 128-bit result, we double one of the inputs to the
445
     * multiplication. If we want to double for both this reason, and the
446
     * reason above, then we end up multiplying by four.
447
     */
448
449
    /* 9 */
450
67.2k
    out[0] += ((uint128_t) in[1]) * inx4[8] +
451
67.2k
              ((uint128_t) in[2]) * inx4[7] +
452
67.2k
              ((uint128_t) in[3]) * inx4[6] + ((uint128_t) in[4]) * inx4[5];
453
454
    /* 10 */
455
67.2k
    out[1] += ((uint128_t) in[2]) * inx4[8] +
456
67.2k
              ((uint128_t) in[3]) * inx4[7] +
457
67.2k
              ((uint128_t) in[4]) * inx4[6] + ((uint128_t) in[5]) * inx2[5];
458
459
    /* 11 */
460
67.2k
    out[2] += ((uint128_t) in[3]) * inx4[8] +
461
67.2k
              ((uint128_t) in[4]) * inx4[7] + ((uint128_t) in[5]) * inx4[6];
462
463
    /* 12 */
464
67.2k
    out[3] += ((uint128_t) in[4]) * inx4[8] +
465
67.2k
              ((uint128_t) in[5]) * inx4[7] + ((uint128_t) in[6]) * inx2[6];
466
467
    /* 13 */
468
67.2k
    out[4] += ((uint128_t) in[5]) * inx4[8] + ((uint128_t) in[6]) * inx4[7];
469
470
    /* 14 */
471
67.2k
    out[5] += ((uint128_t) in[6]) * inx4[8] + ((uint128_t) in[7]) * inx2[7];
472
473
    /* 15 */
474
67.2k
    out[6] += ((uint128_t) in[7]) * inx4[8];
475
476
    /* 16 */
477
67.2k
    out[7] += ((uint128_t) in[8]) * inx2[8];
478
67.2k
}
479
480
/*-
481
 * felem_mul sets |out| = |in1| * |in2|
482
 * On entry:
483
 *   in1[i] < 2^64
484
 *   in2[i] < 2^63
485
 * On exit:
486
 *   out[i] < 17 * max(in1[i]) * max(in2[i])
487
 */
488
static void felem_mul_ref(largefelem out, const felem in1, const felem in2)
489
66.3k
{
490
66.3k
    felem in2x2;
491
66.3k
    felem_scalar(in2x2, in2, 2);
492
493
66.3k
    out[0] = ((uint128_t) in1[0]) * in2[0];
494
495
66.3k
    out[1] = ((uint128_t) in1[0]) * in2[1] +
496
66.3k
             ((uint128_t) in1[1]) * in2[0];
497
498
66.3k
    out[2] = ((uint128_t) in1[0]) * in2[2] +
499
66.3k
             ((uint128_t) in1[1]) * in2[1] +
500
66.3k
             ((uint128_t) in1[2]) * in2[0];
501
502
66.3k
    out[3] = ((uint128_t) in1[0]) * in2[3] +
503
66.3k
             ((uint128_t) in1[1]) * in2[2] +
504
66.3k
             ((uint128_t) in1[2]) * in2[1] +
505
66.3k
             ((uint128_t) in1[3]) * in2[0];
506
507
66.3k
    out[4] = ((uint128_t) in1[0]) * in2[4] +
508
66.3k
             ((uint128_t) in1[1]) * in2[3] +
509
66.3k
             ((uint128_t) in1[2]) * in2[2] +
510
66.3k
             ((uint128_t) in1[3]) * in2[1] +
511
66.3k
             ((uint128_t) in1[4]) * in2[0];
512
513
66.3k
    out[5] = ((uint128_t) in1[0]) * in2[5] +
514
66.3k
             ((uint128_t) in1[1]) * in2[4] +
515
66.3k
             ((uint128_t) in1[2]) * in2[3] +
516
66.3k
             ((uint128_t) in1[3]) * in2[2] +
517
66.3k
             ((uint128_t) in1[4]) * in2[1] +
518
66.3k
             ((uint128_t) in1[5]) * in2[0];
519
520
66.3k
    out[6] = ((uint128_t) in1[0]) * in2[6] +
521
66.3k
             ((uint128_t) in1[1]) * in2[5] +
522
66.3k
             ((uint128_t) in1[2]) * in2[4] +
523
66.3k
             ((uint128_t) in1[3]) * in2[3] +
524
66.3k
             ((uint128_t) in1[4]) * in2[2] +
525
66.3k
             ((uint128_t) in1[5]) * in2[1] +
526
66.3k
             ((uint128_t) in1[6]) * in2[0];
527
528
66.3k
    out[7] = ((uint128_t) in1[0]) * in2[7] +
529
66.3k
             ((uint128_t) in1[1]) * in2[6] +
530
66.3k
             ((uint128_t) in1[2]) * in2[5] +
531
66.3k
             ((uint128_t) in1[3]) * in2[4] +
532
66.3k
             ((uint128_t) in1[4]) * in2[3] +
533
66.3k
             ((uint128_t) in1[5]) * in2[2] +
534
66.3k
             ((uint128_t) in1[6]) * in2[1] +
535
66.3k
             ((uint128_t) in1[7]) * in2[0];
536
537
66.3k
    out[8] = ((uint128_t) in1[0]) * in2[8] +
538
66.3k
             ((uint128_t) in1[1]) * in2[7] +
539
66.3k
             ((uint128_t) in1[2]) * in2[6] +
540
66.3k
             ((uint128_t) in1[3]) * in2[5] +
541
66.3k
             ((uint128_t) in1[4]) * in2[4] +
542
66.3k
             ((uint128_t) in1[5]) * in2[3] +
543
66.3k
             ((uint128_t) in1[6]) * in2[2] +
544
66.3k
             ((uint128_t) in1[7]) * in2[1] +
545
66.3k
             ((uint128_t) in1[8]) * in2[0];
546
547
    /* See comment in felem_square about the use of in2x2 here */
548
549
66.3k
    out[0] += ((uint128_t) in1[1]) * in2x2[8] +
550
66.3k
              ((uint128_t) in1[2]) * in2x2[7] +
551
66.3k
              ((uint128_t) in1[3]) * in2x2[6] +
552
66.3k
              ((uint128_t) in1[4]) * in2x2[5] +
553
66.3k
              ((uint128_t) in1[5]) * in2x2[4] +
554
66.3k
              ((uint128_t) in1[6]) * in2x2[3] +
555
66.3k
              ((uint128_t) in1[7]) * in2x2[2] +
556
66.3k
              ((uint128_t) in1[8]) * in2x2[1];
557
558
66.3k
    out[1] += ((uint128_t) in1[2]) * in2x2[8] +
559
66.3k
              ((uint128_t) in1[3]) * in2x2[7] +
560
66.3k
              ((uint128_t) in1[4]) * in2x2[6] +
561
66.3k
              ((uint128_t) in1[5]) * in2x2[5] +
562
66.3k
              ((uint128_t) in1[6]) * in2x2[4] +
563
66.3k
              ((uint128_t) in1[7]) * in2x2[3] +
564
66.3k
              ((uint128_t) in1[8]) * in2x2[2];
565
566
66.3k
    out[2] += ((uint128_t) in1[3]) * in2x2[8] +
567
66.3k
              ((uint128_t) in1[4]) * in2x2[7] +
568
66.3k
              ((uint128_t) in1[5]) * in2x2[6] +
569
66.3k
              ((uint128_t) in1[6]) * in2x2[5] +
570
66.3k
              ((uint128_t) in1[7]) * in2x2[4] +
571
66.3k
              ((uint128_t) in1[8]) * in2x2[3];
572
573
66.3k
    out[3] += ((uint128_t) in1[4]) * in2x2[8] +
574
66.3k
              ((uint128_t) in1[5]) * in2x2[7] +
575
66.3k
              ((uint128_t) in1[6]) * in2x2[6] +
576
66.3k
              ((uint128_t) in1[7]) * in2x2[5] +
577
66.3k
              ((uint128_t) in1[8]) * in2x2[4];
578
579
66.3k
    out[4] += ((uint128_t) in1[5]) * in2x2[8] +
580
66.3k
              ((uint128_t) in1[6]) * in2x2[7] +
581
66.3k
              ((uint128_t) in1[7]) * in2x2[6] +
582
66.3k
              ((uint128_t) in1[8]) * in2x2[5];
583
584
66.3k
    out[5] += ((uint128_t) in1[6]) * in2x2[8] +
585
66.3k
              ((uint128_t) in1[7]) * in2x2[7] +
586
66.3k
              ((uint128_t) in1[8]) * in2x2[6];
587
588
66.3k
    out[6] += ((uint128_t) in1[7]) * in2x2[8] +
589
66.3k
              ((uint128_t) in1[8]) * in2x2[7];
590
591
66.3k
    out[7] += ((uint128_t) in1[8]) * in2x2[8];
592
66.3k
}
593
594
static const limb bottom52bits = 0xfffffffffffff;
595
596
/*-
597
 * felem_reduce converts a largefelem to an felem.
598
 * On entry:
599
 *   in[i] < 2^128
600
 * On exit:
601
 *   out[i] < 2^59 + 2^14
602
 */
603
static void felem_reduce(felem out, const largefelem in)
604
121k
{
605
121k
    u64 overflow1, overflow2;
606
607
121k
    out[0] = ((limb) in[0]) & bottom58bits;
608
121k
    out[1] = ((limb) in[1]) & bottom58bits;
609
121k
    out[2] = ((limb) in[2]) & bottom58bits;
610
121k
    out[3] = ((limb) in[3]) & bottom58bits;
611
121k
    out[4] = ((limb) in[4]) & bottom58bits;
612
121k
    out[5] = ((limb) in[5]) & bottom58bits;
613
121k
    out[6] = ((limb) in[6]) & bottom58bits;
614
121k
    out[7] = ((limb) in[7]) & bottom58bits;
615
121k
    out[8] = ((limb) in[8]) & bottom58bits;
616
617
    /* out[i] < 2^58 */
618
619
121k
    out[1] += ((limb) in[0]) >> 58;
620
121k
    out[1] += (((limb) (in[0] >> 64)) & bottom52bits) << 6;
621
    /*-
622
     * out[1] < 2^58 + 2^6 + 2^58
623
     *        = 2^59 + 2^6
624
     */
625
121k
    out[2] += ((limb) (in[0] >> 64)) >> 52;
626
627
121k
    out[2] += ((limb) in[1]) >> 58;
628
121k
    out[2] += (((limb) (in[1] >> 64)) & bottom52bits) << 6;
629
121k
    out[3] += ((limb) (in[1] >> 64)) >> 52;
630
631
121k
    out[3] += ((limb) in[2]) >> 58;
632
121k
    out[3] += (((limb) (in[2] >> 64)) & bottom52bits) << 6;
633
121k
    out[4] += ((limb) (in[2] >> 64)) >> 52;
634
635
121k
    out[4] += ((limb) in[3]) >> 58;
636
121k
    out[4] += (((limb) (in[3] >> 64)) & bottom52bits) << 6;
637
121k
    out[5] += ((limb) (in[3] >> 64)) >> 52;
638
639
121k
    out[5] += ((limb) in[4]) >> 58;
640
121k
    out[5] += (((limb) (in[4] >> 64)) & bottom52bits) << 6;
641
121k
    out[6] += ((limb) (in[4] >> 64)) >> 52;
642
643
121k
    out[6] += ((limb) in[5]) >> 58;
644
121k
    out[6] += (((limb) (in[5] >> 64)) & bottom52bits) << 6;
645
121k
    out[7] += ((limb) (in[5] >> 64)) >> 52;
646
647
121k
    out[7] += ((limb) in[6]) >> 58;
648
121k
    out[7] += (((limb) (in[6] >> 64)) & bottom52bits) << 6;
649
121k
    out[8] += ((limb) (in[6] >> 64)) >> 52;
650
651
121k
    out[8] += ((limb) in[7]) >> 58;
652
121k
    out[8] += (((limb) (in[7] >> 64)) & bottom52bits) << 6;
653
    /*-
654
     * out[x > 1] < 2^58 + 2^6 + 2^58 + 2^12
655
     *            < 2^59 + 2^13
656
     */
657
121k
    overflow1 = ((limb) (in[7] >> 64)) >> 52;
658
659
121k
    overflow1 += ((limb) in[8]) >> 58;
660
121k
    overflow1 += (((limb) (in[8] >> 64)) & bottom52bits) << 6;
661
121k
    overflow2 = ((limb) (in[8] >> 64)) >> 52;
662
663
121k
    overflow1 <<= 1;            /* overflow1 < 2^13 + 2^7 + 2^59 */
664
121k
    overflow2 <<= 1;            /* overflow2 < 2^13 */
665
666
121k
    out[0] += overflow1;        /* out[0] < 2^60 */
667
121k
    out[1] += overflow2;        /* out[1] < 2^59 + 2^6 + 2^13 */
668
669
121k
    out[1] += out[0] >> 58;
670
121k
    out[0] &= bottom58bits;
671
    /*-
672
     * out[0] < 2^58
673
     * out[1] < 2^59 + 2^6 + 2^13 + 2^2
674
     *        < 2^59 + 2^14
675
     */
676
121k
}
677
678
#if defined(ECP_NISTP521_ASM)
679
void felem_square_wrapper(largefelem out, const felem in);
680
void felem_mul_wrapper(largefelem out, const felem in1, const felem in2);
681
682
static void (*felem_square_p)(largefelem out, const felem in) =
683
    felem_square_wrapper;
684
static void (*felem_mul_p)(largefelem out, const felem in1, const felem in2) =
685
    felem_mul_wrapper;
686
687
void p521_felem_square(largefelem out, const felem in);
688
void p521_felem_mul(largefelem out, const felem in1, const felem in2);
689
690
# if defined(_ARCH_PPC64)
691
#  include "crypto/ppc_arch.h"
692
# endif
693
694
void felem_select(void)
695
{
696
# if defined(_ARCH_PPC64)
697
    if ((OPENSSL_ppccap_P & PPC_MADD300) && (OPENSSL_ppccap_P & PPC_ALTIVEC)) {
698
        felem_square_p = p521_felem_square;
699
        felem_mul_p = p521_felem_mul;
700
701
        return;
702
    }
703
# endif
704
705
    /* Default */
706
    felem_square_p = felem_square_ref;
707
    felem_mul_p = felem_mul_ref;
708
}
709
710
void felem_square_wrapper(largefelem out, const felem in)
711
{
712
    felem_select();
713
    felem_square_p(out, in);
714
}
715
716
void felem_mul_wrapper(largefelem out, const felem in1, const felem in2)
717
{
718
    felem_select();
719
    felem_mul_p(out, in1, in2);
720
}
721
722
# define felem_square felem_square_p
723
# define felem_mul felem_mul_p
724
#else
725
67.2k
# define felem_square felem_square_ref
726
66.3k
# define felem_mul felem_mul_ref
727
#endif
728
729
static void felem_square_reduce(felem out, const felem in)
730
0
{
731
0
    largefelem tmp;
732
0
    felem_square(tmp, in);
733
0
    felem_reduce(out, tmp);
734
0
}
735
736
static void felem_mul_reduce(felem out, const felem in1, const felem in2)
737
0
{
738
0
    largefelem tmp;
739
0
    felem_mul(tmp, in1, in2);
740
0
    felem_reduce(out, tmp);
741
0
}
742
743
/*-
744
 * felem_inv calculates |out| = |in|^{-1}
745
 *
746
 * Based on Fermat's Little Theorem:
747
 *   a^p = a (mod p)
748
 *   a^{p-1} = 1 (mod p)
749
 *   a^{p-2} = a^{-1} (mod p)
750
 */
751
static void felem_inv(felem out, const felem in)
752
37
{
753
37
    felem ftmp, ftmp2, ftmp3, ftmp4;
754
37
    largefelem tmp;
755
37
    unsigned i;
756
757
37
    felem_square(tmp, in);
758
37
    felem_reduce(ftmp, tmp);    /* 2^1 */
759
37
    felem_mul(tmp, in, ftmp);
760
37
    felem_reduce(ftmp, tmp);    /* 2^2 - 2^0 */
761
37
    felem_assign(ftmp2, ftmp);
762
37
    felem_square(tmp, ftmp);
763
37
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^1 */
764
37
    felem_mul(tmp, in, ftmp);
765
37
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^0 */
766
37
    felem_square(tmp, ftmp);
767
37
    felem_reduce(ftmp, tmp);    /* 2^4 - 2^1 */
768
769
37
    felem_square(tmp, ftmp2);
770
37
    felem_reduce(ftmp3, tmp);   /* 2^3 - 2^1 */
771
37
    felem_square(tmp, ftmp3);
772
37
    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^2 */
773
37
    felem_mul(tmp, ftmp3, ftmp2);
774
37
    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^0 */
775
776
37
    felem_assign(ftmp2, ftmp3);
777
37
    felem_square(tmp, ftmp3);
778
37
    felem_reduce(ftmp3, tmp);   /* 2^5 - 2^1 */
779
37
    felem_square(tmp, ftmp3);
780
37
    felem_reduce(ftmp3, tmp);   /* 2^6 - 2^2 */
781
37
    felem_square(tmp, ftmp3);
782
37
    felem_reduce(ftmp3, tmp);   /* 2^7 - 2^3 */
783
37
    felem_square(tmp, ftmp3);
784
37
    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^4 */
785
37
    felem_assign(ftmp4, ftmp3);
786
37
    felem_mul(tmp, ftmp3, ftmp);
787
37
    felem_reduce(ftmp4, tmp);   /* 2^8 - 2^1 */
788
37
    felem_square(tmp, ftmp4);
789
37
    felem_reduce(ftmp4, tmp);   /* 2^9 - 2^2 */
790
37
    felem_mul(tmp, ftmp3, ftmp2);
791
37
    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^0 */
792
37
    felem_assign(ftmp2, ftmp3);
793
794
333
    for (i = 0; i < 8; i++) {
795
296
        felem_square(tmp, ftmp3);
796
296
        felem_reduce(ftmp3, tmp); /* 2^16 - 2^8 */
797
296
    }
798
37
    felem_mul(tmp, ftmp3, ftmp2);
799
37
    felem_reduce(ftmp3, tmp);   /* 2^16 - 2^0 */
800
37
    felem_assign(ftmp2, ftmp3);
801
802
629
    for (i = 0; i < 16; i++) {
803
592
        felem_square(tmp, ftmp3);
804
592
        felem_reduce(ftmp3, tmp); /* 2^32 - 2^16 */
805
592
    }
806
37
    felem_mul(tmp, ftmp3, ftmp2);
807
37
    felem_reduce(ftmp3, tmp);   /* 2^32 - 2^0 */
808
37
    felem_assign(ftmp2, ftmp3);
809
810
1.22k
    for (i = 0; i < 32; i++) {
811
1.18k
        felem_square(tmp, ftmp3);
812
1.18k
        felem_reduce(ftmp3, tmp); /* 2^64 - 2^32 */
813
1.18k
    }
814
37
    felem_mul(tmp, ftmp3, ftmp2);
815
37
    felem_reduce(ftmp3, tmp);   /* 2^64 - 2^0 */
816
37
    felem_assign(ftmp2, ftmp3);
817
818
2.40k
    for (i = 0; i < 64; i++) {
819
2.36k
        felem_square(tmp, ftmp3);
820
2.36k
        felem_reduce(ftmp3, tmp); /* 2^128 - 2^64 */
821
2.36k
    }
822
37
    felem_mul(tmp, ftmp3, ftmp2);
823
37
    felem_reduce(ftmp3, tmp);   /* 2^128 - 2^0 */
824
37
    felem_assign(ftmp2, ftmp3);
825
826
4.77k
    for (i = 0; i < 128; i++) {
827
4.73k
        felem_square(tmp, ftmp3);
828
4.73k
        felem_reduce(ftmp3, tmp); /* 2^256 - 2^128 */
829
4.73k
    }
830
37
    felem_mul(tmp, ftmp3, ftmp2);
831
37
    felem_reduce(ftmp3, tmp);   /* 2^256 - 2^0 */
832
37
    felem_assign(ftmp2, ftmp3);
833
834
9.50k
    for (i = 0; i < 256; i++) {
835
9.47k
        felem_square(tmp, ftmp3);
836
9.47k
        felem_reduce(ftmp3, tmp); /* 2^512 - 2^256 */
837
9.47k
    }
838
37
    felem_mul(tmp, ftmp3, ftmp2);
839
37
    felem_reduce(ftmp3, tmp);   /* 2^512 - 2^0 */
840
841
370
    for (i = 0; i < 9; i++) {
842
333
        felem_square(tmp, ftmp3);
843
333
        felem_reduce(ftmp3, tmp); /* 2^521 - 2^9 */
844
333
    }
845
37
    felem_mul(tmp, ftmp3, ftmp4);
846
37
    felem_reduce(ftmp3, tmp);   /* 2^512 - 2^2 */
847
37
    felem_mul(tmp, ftmp3, in);
848
37
    felem_reduce(out, tmp);     /* 2^512 - 3 */
849
37
}
850
851
/* This is 2^521-1, expressed as an felem */
852
static const felem kPrime = {
853
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
854
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
855
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x01ffffffffffffff
856
};
857
858
/*-
859
 * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
860
 * otherwise.
861
 * On entry:
862
 *   in[i] < 2^59 + 2^14
863
 */
864
static limb felem_is_zero(const felem in)
865
23.9k
{
866
23.9k
    felem ftmp;
867
23.9k
    limb is_zero, is_p;
868
23.9k
    felem_assign(ftmp, in);
869
870
23.9k
    ftmp[0] += ftmp[8] >> 57;
871
23.9k
    ftmp[8] &= bottom57bits;
872
    /* ftmp[8] < 2^57 */
873
23.9k
    ftmp[1] += ftmp[0] >> 58;
874
23.9k
    ftmp[0] &= bottom58bits;
875
23.9k
    ftmp[2] += ftmp[1] >> 58;
876
23.9k
    ftmp[1] &= bottom58bits;
877
23.9k
    ftmp[3] += ftmp[2] >> 58;
878
23.9k
    ftmp[2] &= bottom58bits;
879
23.9k
    ftmp[4] += ftmp[3] >> 58;
880
23.9k
    ftmp[3] &= bottom58bits;
881
23.9k
    ftmp[5] += ftmp[4] >> 58;
882
23.9k
    ftmp[4] &= bottom58bits;
883
23.9k
    ftmp[6] += ftmp[5] >> 58;
884
23.9k
    ftmp[5] &= bottom58bits;
885
23.9k
    ftmp[7] += ftmp[6] >> 58;
886
23.9k
    ftmp[6] &= bottom58bits;
887
23.9k
    ftmp[8] += ftmp[7] >> 58;
888
23.9k
    ftmp[7] &= bottom58bits;
889
    /* ftmp[8] < 2^57 + 4 */
890
891
    /*
892
     * The ninth limb of 2*(2^521-1) is 0x03ffffffffffffff, which is greater
893
     * than our bound for ftmp[8]. Therefore we only have to check if the
894
     * zero is zero or 2^521-1.
895
     */
896
897
23.9k
    is_zero = 0;
898
23.9k
    is_zero |= ftmp[0];
899
23.9k
    is_zero |= ftmp[1];
900
23.9k
    is_zero |= ftmp[2];
901
23.9k
    is_zero |= ftmp[3];
902
23.9k
    is_zero |= ftmp[4];
903
23.9k
    is_zero |= ftmp[5];
904
23.9k
    is_zero |= ftmp[6];
905
23.9k
    is_zero |= ftmp[7];
906
23.9k
    is_zero |= ftmp[8];
907
908
23.9k
    is_zero--;
909
    /*
910
     * We know that ftmp[i] < 2^63, therefore the only way that the top bit
911
     * can be set is if is_zero was 0 before the decrement.
912
     */
913
23.9k
    is_zero = 0 - (is_zero >> 63);
914
915
23.9k
    is_p = ftmp[0] ^ kPrime[0];
916
23.9k
    is_p |= ftmp[1] ^ kPrime[1];
917
23.9k
    is_p |= ftmp[2] ^ kPrime[2];
918
23.9k
    is_p |= ftmp[3] ^ kPrime[3];
919
23.9k
    is_p |= ftmp[4] ^ kPrime[4];
920
23.9k
    is_p |= ftmp[5] ^ kPrime[5];
921
23.9k
    is_p |= ftmp[6] ^ kPrime[6];
922
23.9k
    is_p |= ftmp[7] ^ kPrime[7];
923
23.9k
    is_p |= ftmp[8] ^ kPrime[8];
924
925
23.9k
    is_p--;
926
23.9k
    is_p = 0 - (is_p >> 63);
927
928
23.9k
    is_zero |= is_p;
929
23.9k
    return is_zero;
930
23.9k
}
931
932
static int felem_is_zero_int(const void *in)
933
0
{
934
0
    return (int)(felem_is_zero(in) & ((limb) 1));
935
0
}
936
937
/*-
938
 * felem_contract converts |in| to its unique, minimal representation.
939
 * On entry:
940
 *   in[i] < 2^59 + 2^14
941
 */
942
static void felem_contract(felem out, const felem in)
943
212
{
944
212
    limb is_p, is_greater, sign;
945
212
    static const limb two58 = ((limb) 1) << 58;
946
947
212
    felem_assign(out, in);
948
949
212
    out[0] += out[8] >> 57;
950
212
    out[8] &= bottom57bits;
951
    /* out[8] < 2^57 */
952
212
    out[1] += out[0] >> 58;
953
212
    out[0] &= bottom58bits;
954
212
    out[2] += out[1] >> 58;
955
212
    out[1] &= bottom58bits;
956
212
    out[3] += out[2] >> 58;
957
212
    out[2] &= bottom58bits;
958
212
    out[4] += out[3] >> 58;
959
212
    out[3] &= bottom58bits;
960
212
    out[5] += out[4] >> 58;
961
212
    out[4] &= bottom58bits;
962
212
    out[6] += out[5] >> 58;
963
212
    out[5] &= bottom58bits;
964
212
    out[7] += out[6] >> 58;
965
212
    out[6] &= bottom58bits;
966
212
    out[8] += out[7] >> 58;
967
212
    out[7] &= bottom58bits;
968
    /* out[8] < 2^57 + 4 */
969
970
    /*
971
     * If the value is greater than 2^521-1 then we have to subtract 2^521-1
972
     * out. See the comments in felem_is_zero regarding why we don't test for
973
     * other multiples of the prime.
974
     */
975
976
    /*
977
     * First, if |out| is equal to 2^521-1, we subtract it out to get zero.
978
     */
979
980
212
    is_p = out[0] ^ kPrime[0];
981
212
    is_p |= out[1] ^ kPrime[1];
982
212
    is_p |= out[2] ^ kPrime[2];
983
212
    is_p |= out[3] ^ kPrime[3];
984
212
    is_p |= out[4] ^ kPrime[4];
985
212
    is_p |= out[5] ^ kPrime[5];
986
212
    is_p |= out[6] ^ kPrime[6];
987
212
    is_p |= out[7] ^ kPrime[7];
988
212
    is_p |= out[8] ^ kPrime[8];
989
990
212
    is_p--;
991
212
    is_p &= is_p << 32;
992
212
    is_p &= is_p << 16;
993
212
    is_p &= is_p << 8;
994
212
    is_p &= is_p << 4;
995
212
    is_p &= is_p << 2;
996
212
    is_p &= is_p << 1;
997
212
    is_p = 0 - (is_p >> 63);
998
212
    is_p = ~is_p;
999
1000
    /* is_p is 0 iff |out| == 2^521-1 and all ones otherwise */
1001
1002
212
    out[0] &= is_p;
1003
212
    out[1] &= is_p;
1004
212
    out[2] &= is_p;
1005
212
    out[3] &= is_p;
1006
212
    out[4] &= is_p;
1007
212
    out[5] &= is_p;
1008
212
    out[6] &= is_p;
1009
212
    out[7] &= is_p;
1010
212
    out[8] &= is_p;
1011
1012
    /*
1013
     * In order to test that |out| >= 2^521-1 we need only test if out[8] >>
1014
     * 57 is greater than zero as (2^521-1) + x >= 2^522
1015
     */
1016
212
    is_greater = out[8] >> 57;
1017
212
    is_greater |= is_greater << 32;
1018
212
    is_greater |= is_greater << 16;
1019
212
    is_greater |= is_greater << 8;
1020
212
    is_greater |= is_greater << 4;
1021
212
    is_greater |= is_greater << 2;
1022
212
    is_greater |= is_greater << 1;
1023
212
    is_greater = 0 - (is_greater >> 63);
1024
1025
212
    out[0] -= kPrime[0] & is_greater;
1026
212
    out[1] -= kPrime[1] & is_greater;
1027
212
    out[2] -= kPrime[2] & is_greater;
1028
212
    out[3] -= kPrime[3] & is_greater;
1029
212
    out[4] -= kPrime[4] & is_greater;
1030
212
    out[5] -= kPrime[5] & is_greater;
1031
212
    out[6] -= kPrime[6] & is_greater;
1032
212
    out[7] -= kPrime[7] & is_greater;
1033
212
    out[8] -= kPrime[8] & is_greater;
1034
1035
    /* Eliminate negative coefficients */
1036
212
    sign = -(out[0] >> 63);
1037
212
    out[0] += (two58 & sign);
1038
212
    out[1] -= (1 & sign);
1039
212
    sign = -(out[1] >> 63);
1040
212
    out[1] += (two58 & sign);
1041
212
    out[2] -= (1 & sign);
1042
212
    sign = -(out[2] >> 63);
1043
212
    out[2] += (two58 & sign);
1044
212
    out[3] -= (1 & sign);
1045
212
    sign = -(out[3] >> 63);
1046
212
    out[3] += (two58 & sign);
1047
212
    out[4] -= (1 & sign);
1048
212
    sign = -(out[4] >> 63);
1049
212
    out[4] += (two58 & sign);
1050
212
    out[5] -= (1 & sign);
1051
212
    sign = -(out[0] >> 63);
1052
212
    out[5] += (two58 & sign);
1053
212
    out[6] -= (1 & sign);
1054
212
    sign = -(out[6] >> 63);
1055
212
    out[6] += (two58 & sign);
1056
212
    out[7] -= (1 & sign);
1057
212
    sign = -(out[7] >> 63);
1058
212
    out[7] += (two58 & sign);
1059
212
    out[8] -= (1 & sign);
1060
212
    sign = -(out[5] >> 63);
1061
212
    out[5] += (two58 & sign);
1062
212
    out[6] -= (1 & sign);
1063
212
    sign = -(out[6] >> 63);
1064
212
    out[6] += (two58 & sign);
1065
212
    out[7] -= (1 & sign);
1066
212
    sign = -(out[7] >> 63);
1067
212
    out[7] += (two58 & sign);
1068
212
    out[8] -= (1 & sign);
1069
212
}
1070
1071
/*-
1072
 * Group operations
1073
 * ----------------
1074
 *
1075
 * Building on top of the field operations we have the operations on the
1076
 * elliptic curve group itself. Points on the curve are represented in Jacobian
1077
 * coordinates */
1078
1079
/*-
1080
 * point_double calculates 2*(x_in, y_in, z_in)
1081
 *
1082
 * The method is taken from:
1083
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1084
 *
1085
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1086
 * while x_out == y_in is not (maybe this works, but it's not tested). */
1087
static void
1088
point_double(felem x_out, felem y_out, felem z_out,
1089
             const felem x_in, const felem y_in, const felem z_in)
1090
5.98k
{
1091
5.98k
    largefelem tmp, tmp2;
1092
5.98k
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
1093
1094
5.98k
    felem_assign(ftmp, x_in);
1095
5.98k
    felem_assign(ftmp2, x_in);
1096
1097
    /* delta = z^2 */
1098
5.98k
    felem_square(tmp, z_in);
1099
5.98k
    felem_reduce(delta, tmp);   /* delta[i] < 2^59 + 2^14 */
1100
1101
    /* gamma = y^2 */
1102
5.98k
    felem_square(tmp, y_in);
1103
5.98k
    felem_reduce(gamma, tmp);   /* gamma[i] < 2^59 + 2^14 */
1104
1105
    /* beta = x*gamma */
1106
5.98k
    felem_mul(tmp, x_in, gamma);
1107
5.98k
    felem_reduce(beta, tmp);    /* beta[i] < 2^59 + 2^14 */
1108
1109
    /* alpha = 3*(x-delta)*(x+delta) */
1110
5.98k
    felem_diff64(ftmp, delta);
1111
    /* ftmp[i] < 2^61 */
1112
5.98k
    felem_sum64(ftmp2, delta);
1113
    /* ftmp2[i] < 2^60 + 2^15 */
1114
5.98k
    felem_scalar64(ftmp2, 3);
1115
    /* ftmp2[i] < 3*2^60 + 3*2^15 */
1116
5.98k
    felem_mul(tmp, ftmp, ftmp2);
1117
    /*-
1118
     * tmp[i] < 17(3*2^121 + 3*2^76)
1119
     *        = 61*2^121 + 61*2^76
1120
     *        < 64*2^121 + 64*2^76
1121
     *        = 2^127 + 2^82
1122
     *        < 2^128
1123
     */
1124
5.98k
    felem_reduce(alpha, tmp);
1125
1126
    /* x' = alpha^2 - 8*beta */
1127
5.98k
    felem_square(tmp, alpha);
1128
    /*
1129
     * tmp[i] < 17*2^120 < 2^125
1130
     */
1131
5.98k
    felem_assign(ftmp, beta);
1132
5.98k
    felem_scalar64(ftmp, 8);
1133
    /* ftmp[i] < 2^62 + 2^17 */
1134
5.98k
    felem_diff_128_64(tmp, ftmp);
1135
    /* tmp[i] < 2^125 + 2^63 + 2^62 + 2^17 */
1136
5.98k
    felem_reduce(x_out, tmp);
1137
1138
    /* z' = (y + z)^2 - gamma - delta */
1139
5.98k
    felem_sum64(delta, gamma);
1140
    /* delta[i] < 2^60 + 2^15 */
1141
5.98k
    felem_assign(ftmp, y_in);
1142
5.98k
    felem_sum64(ftmp, z_in);
1143
    /* ftmp[i] < 2^60 + 2^15 */
1144
5.98k
    felem_square(tmp, ftmp);
1145
    /*
1146
     * tmp[i] < 17(2^122) < 2^127
1147
     */
1148
5.98k
    felem_diff_128_64(tmp, delta);
1149
    /* tmp[i] < 2^127 + 2^63 */
1150
5.98k
    felem_reduce(z_out, tmp);
1151
1152
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
1153
5.98k
    felem_scalar64(beta, 4);
1154
    /* beta[i] < 2^61 + 2^16 */
1155
5.98k
    felem_diff64(beta, x_out);
1156
    /* beta[i] < 2^61 + 2^60 + 2^16 */
1157
5.98k
    felem_mul(tmp, alpha, beta);
1158
    /*-
1159
     * tmp[i] < 17*((2^59 + 2^14)(2^61 + 2^60 + 2^16))
1160
     *        = 17*(2^120 + 2^75 + 2^119 + 2^74 + 2^75 + 2^30)
1161
     *        = 17*(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1162
     *        < 2^128
1163
     */
1164
5.98k
    felem_square(tmp2, gamma);
1165
    /*-
1166
     * tmp2[i] < 17*(2^59 + 2^14)^2
1167
     *         = 17*(2^118 + 2^74 + 2^28)
1168
     */
1169
5.98k
    felem_scalar128(tmp2, 8);
1170
    /*-
1171
     * tmp2[i] < 8*17*(2^118 + 2^74 + 2^28)
1172
     *         = 2^125 + 2^121 + 2^81 + 2^77 + 2^35 + 2^31
1173
     *         < 2^126
1174
     */
1175
5.98k
    felem_diff128(tmp, tmp2);
1176
    /*-
1177
     * tmp[i] < 2^127 - 2^69 + 17(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1178
     *        = 2^127 + 2^124 + 2^122 + 2^120 + 2^118 + 2^80 + 2^78 + 2^76 +
1179
     *          2^74 + 2^69 + 2^34 + 2^30
1180
     *        < 2^128
1181
     */
1182
5.98k
    felem_reduce(y_out, tmp);
1183
5.98k
}
1184
1185
/* copy_conditional copies in to out iff mask is all ones. */
1186
static void copy_conditional(felem out, const felem in, limb mask)
1187
35.8k
{
1188
35.8k
    unsigned i;
1189
358k
    for (i = 0; i < NLIMBS; ++i) {
1190
322k
        const limb tmp = mask & (in[i] ^ out[i]);
1191
322k
        out[i] ^= tmp;
1192
322k
    }
1193
35.8k
}
1194
1195
/*-
1196
 * point_add calculates (x1, y1, z1) + (x2, y2, z2)
1197
 *
1198
 * The method is taken from
1199
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1200
 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1201
 *
1202
 * This function includes a branch for checking whether the two input points
1203
 * are equal (while not equal to the point at infinity). See comment below
1204
 * on constant-time.
1205
 */
1206
static void point_add(felem x3, felem y3, felem z3,
1207
                      const felem x1, const felem y1, const felem z1,
1208
                      const int mixed, const felem x2, const felem y2,
1209
                      const felem z2)
1210
5.98k
{
1211
5.98k
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1212
5.98k
    largefelem tmp, tmp2;
1213
5.98k
    limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1214
5.98k
    limb points_equal;
1215
1216
5.98k
    z1_is_zero = felem_is_zero(z1);
1217
5.98k
    z2_is_zero = felem_is_zero(z2);
1218
1219
    /* ftmp = z1z1 = z1**2 */
1220
5.98k
    felem_square(tmp, z1);
1221
5.98k
    felem_reduce(ftmp, tmp);
1222
1223
5.98k
    if (!mixed) {
1224
        /* ftmp2 = z2z2 = z2**2 */
1225
0
        felem_square(tmp, z2);
1226
0
        felem_reduce(ftmp2, tmp);
1227
1228
        /* u1 = ftmp3 = x1*z2z2 */
1229
0
        felem_mul(tmp, x1, ftmp2);
1230
0
        felem_reduce(ftmp3, tmp);
1231
1232
        /* ftmp5 = z1 + z2 */
1233
0
        felem_assign(ftmp5, z1);
1234
0
        felem_sum64(ftmp5, z2);
1235
        /* ftmp5[i] < 2^61 */
1236
1237
        /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */
1238
0
        felem_square(tmp, ftmp5);
1239
        /* tmp[i] < 17*2^122 */
1240
0
        felem_diff_128_64(tmp, ftmp);
1241
        /* tmp[i] < 17*2^122 + 2^63 */
1242
0
        felem_diff_128_64(tmp, ftmp2);
1243
        /* tmp[i] < 17*2^122 + 2^64 */
1244
0
        felem_reduce(ftmp5, tmp);
1245
1246
        /* ftmp2 = z2 * z2z2 */
1247
0
        felem_mul(tmp, ftmp2, z2);
1248
0
        felem_reduce(ftmp2, tmp);
1249
1250
        /* s1 = ftmp6 = y1 * z2**3 */
1251
0
        felem_mul(tmp, y1, ftmp2);
1252
0
        felem_reduce(ftmp6, tmp);
1253
5.98k
    } else {
1254
        /*
1255
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
1256
         */
1257
1258
        /* u1 = ftmp3 = x1*z2z2 */
1259
5.98k
        felem_assign(ftmp3, x1);
1260
1261
        /* ftmp5 = 2*z1z2 */
1262
5.98k
        felem_scalar(ftmp5, z1, 2);
1263
1264
        /* s1 = ftmp6 = y1 * z2**3 */
1265
5.98k
        felem_assign(ftmp6, y1);
1266
5.98k
    }
1267
1268
    /* u2 = x2*z1z1 */
1269
5.98k
    felem_mul(tmp, x2, ftmp);
1270
    /* tmp[i] < 17*2^120 */
1271
1272
    /* h = ftmp4 = u2 - u1 */
1273
5.98k
    felem_diff_128_64(tmp, ftmp3);
1274
    /* tmp[i] < 17*2^120 + 2^63 */
1275
5.98k
    felem_reduce(ftmp4, tmp);
1276
1277
5.98k
    x_equal = felem_is_zero(ftmp4);
1278
1279
    /* z_out = ftmp5 * h */
1280
5.98k
    felem_mul(tmp, ftmp5, ftmp4);
1281
5.98k
    felem_reduce(z_out, tmp);
1282
1283
    /* ftmp = z1 * z1z1 */
1284
5.98k
    felem_mul(tmp, ftmp, z1);
1285
5.98k
    felem_reduce(ftmp, tmp);
1286
1287
    /* s2 = tmp = y2 * z1**3 */
1288
5.98k
    felem_mul(tmp, y2, ftmp);
1289
    /* tmp[i] < 17*2^120 */
1290
1291
    /* r = ftmp5 = (s2 - s1)*2 */
1292
5.98k
    felem_diff_128_64(tmp, ftmp6);
1293
    /* tmp[i] < 17*2^120 + 2^63 */
1294
5.98k
    felem_reduce(ftmp5, tmp);
1295
5.98k
    y_equal = felem_is_zero(ftmp5);
1296
5.98k
    felem_scalar64(ftmp5, 2);
1297
    /* ftmp5[i] < 2^61 */
1298
1299
    /*
1300
     * The formulae are incorrect if the points are equal, in affine coordinates
1301
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
1302
     * happens.
1303
     *
1304
     * We use bitwise operations to avoid potential side-channels introduced by
1305
     * the short-circuiting behaviour of boolean operators.
1306
     *
1307
     * The special case of either point being the point at infinity (z1 and/or
1308
     * z2 are zero), is handled separately later on in this function, so we
1309
     * avoid jumping to point_double here in those special cases.
1310
     *
1311
     * Notice the comment below on the implications of this branching for timing
1312
     * leaks and why it is considered practically irrelevant.
1313
     */
1314
5.98k
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero));
1315
1316
5.98k
    if (points_equal) {
1317
        /*
1318
         * This is obviously not constant-time but it will almost-never happen
1319
         * for ECDH / ECDSA. The case where it can happen is during scalar-mult
1320
         * where the intermediate value gets very close to the group order.
1321
         * Since |ossl_ec_GFp_nistp_recode_scalar_bits| produces signed digits
1322
         * for the scalar, it's possible for the intermediate value to be a small
1323
         * negative multiple of the base point, and for the final signed digit
1324
         * to be the same value. We believe that this only occurs for the scalar
1325
         * 1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
1326
         * ffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb
1327
         * 71e913863f7, in that case the penultimate intermediate is -9G and
1328
         * the final digit is also -9G. Since this only happens for a single
1329
         * scalar, the timing leak is irrelevant. (Any attacker who wanted to
1330
         * check whether a secret scalar was that exact value, can already do
1331
         * so.)
1332
         */
1333
0
        point_double(x3, y3, z3, x1, y1, z1);
1334
0
        return;
1335
0
    }
1336
1337
    /* I = ftmp = (2h)**2 */
1338
5.98k
    felem_assign(ftmp, ftmp4);
1339
5.98k
    felem_scalar64(ftmp, 2);
1340
    /* ftmp[i] < 2^61 */
1341
5.98k
    felem_square(tmp, ftmp);
1342
    /* tmp[i] < 17*2^122 */
1343
5.98k
    felem_reduce(ftmp, tmp);
1344
1345
    /* J = ftmp2 = h * I */
1346
5.98k
    felem_mul(tmp, ftmp4, ftmp);
1347
5.98k
    felem_reduce(ftmp2, tmp);
1348
1349
    /* V = ftmp4 = U1 * I */
1350
5.98k
    felem_mul(tmp, ftmp3, ftmp);
1351
5.98k
    felem_reduce(ftmp4, tmp);
1352
1353
    /* x_out = r**2 - J - 2V */
1354
5.98k
    felem_square(tmp, ftmp5);
1355
    /* tmp[i] < 17*2^122 */
1356
5.98k
    felem_diff_128_64(tmp, ftmp2);
1357
    /* tmp[i] < 17*2^122 + 2^63 */
1358
5.98k
    felem_assign(ftmp3, ftmp4);
1359
5.98k
    felem_scalar64(ftmp4, 2);
1360
    /* ftmp4[i] < 2^61 */
1361
5.98k
    felem_diff_128_64(tmp, ftmp4);
1362
    /* tmp[i] < 17*2^122 + 2^64 */
1363
5.98k
    felem_reduce(x_out, tmp);
1364
1365
    /* y_out = r(V-x_out) - 2 * s1 * J */
1366
5.98k
    felem_diff64(ftmp3, x_out);
1367
    /*
1368
     * ftmp3[i] < 2^60 + 2^60 = 2^61
1369
     */
1370
5.98k
    felem_mul(tmp, ftmp5, ftmp3);
1371
    /* tmp[i] < 17*2^122 */
1372
5.98k
    felem_mul(tmp2, ftmp6, ftmp2);
1373
    /* tmp2[i] < 17*2^120 */
1374
5.98k
    felem_scalar128(tmp2, 2);
1375
    /* tmp2[i] < 17*2^121 */
1376
5.98k
    felem_diff128(tmp, tmp2);
1377
        /*-
1378
         * tmp[i] < 2^127 - 2^69 + 17*2^122
1379
         *        = 2^126 - 2^122 - 2^6 - 2^2 - 1
1380
         *        < 2^127
1381
         */
1382
5.98k
    felem_reduce(y_out, tmp);
1383
1384
5.98k
    copy_conditional(x_out, x2, z1_is_zero);
1385
5.98k
    copy_conditional(x_out, x1, z2_is_zero);
1386
5.98k
    copy_conditional(y_out, y2, z1_is_zero);
1387
5.98k
    copy_conditional(y_out, y1, z2_is_zero);
1388
5.98k
    copy_conditional(z_out, z2, z1_is_zero);
1389
5.98k
    copy_conditional(z_out, z1, z2_is_zero);
1390
5.98k
    felem_assign(x3, x_out);
1391
5.98k
    felem_assign(y3, y_out);
1392
5.98k
    felem_assign(z3, z_out);
1393
5.98k
}
1394
1395
/*-
1396
 * Base point pre computation
1397
 * --------------------------
1398
 *
1399
 * Two different sorts of precomputed tables are used in the following code.
1400
 * Each contain various points on the curve, where each point is three field
1401
 * elements (x, y, z).
1402
 *
1403
 * For the base point table, z is usually 1 (0 for the point at infinity).
1404
 * This table has 16 elements:
1405
 * index | bits    | point
1406
 * ------+---------+------------------------------
1407
 *     0 | 0 0 0 0 | 0G
1408
 *     1 | 0 0 0 1 | 1G
1409
 *     2 | 0 0 1 0 | 2^130G
1410
 *     3 | 0 0 1 1 | (2^130 + 1)G
1411
 *     4 | 0 1 0 0 | 2^260G
1412
 *     5 | 0 1 0 1 | (2^260 + 1)G
1413
 *     6 | 0 1 1 0 | (2^260 + 2^130)G
1414
 *     7 | 0 1 1 1 | (2^260 + 2^130 + 1)G
1415
 *     8 | 1 0 0 0 | 2^390G
1416
 *     9 | 1 0 0 1 | (2^390 + 1)G
1417
 *    10 | 1 0 1 0 | (2^390 + 2^130)G
1418
 *    11 | 1 0 1 1 | (2^390 + 2^130 + 1)G
1419
 *    12 | 1 1 0 0 | (2^390 + 2^260)G
1420
 *    13 | 1 1 0 1 | (2^390 + 2^260 + 1)G
1421
 *    14 | 1 1 1 0 | (2^390 + 2^260 + 2^130)G
1422
 *    15 | 1 1 1 1 | (2^390 + 2^260 + 2^130 + 1)G
1423
 *
1424
 * The reason for this is so that we can clock bits into four different
1425
 * locations when doing simple scalar multiplies against the base point.
1426
 *
1427
 * Tables for other points have table[i] = iG for i in 0 .. 16. */
1428
1429
/* gmul is the table of precomputed base points */
1430
static const felem gmul[16][3] = {
1431
{{0, 0, 0, 0, 0, 0, 0, 0, 0},
1432
 {0, 0, 0, 0, 0, 0, 0, 0, 0},
1433
 {0, 0, 0, 0, 0, 0, 0, 0, 0}},
1434
{{0x017e7e31c2e5bd66, 0x022cf0615a90a6fe, 0x00127a2ffa8de334,
1435
  0x01dfbf9d64a3f877, 0x006b4d3dbaa14b5e, 0x014fed487e0a2bd8,
1436
  0x015b4429c6481390, 0x03a73678fb2d988e, 0x00c6858e06b70404},
1437
 {0x00be94769fd16650, 0x031c21a89cb09022, 0x039013fad0761353,
1438
  0x02657bd099031542, 0x03273e662c97ee72, 0x01e6d11a05ebef45,
1439
  0x03d1bd998f544495, 0x03001172297ed0b1, 0x011839296a789a3b},
1440
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1441
{{0x0373faacbc875bae, 0x00f325023721c671, 0x00f666fd3dbde5ad,
1442
  0x01a6932363f88ea7, 0x01fc6d9e13f9c47b, 0x03bcbffc2bbf734e,
1443
  0x013ee3c3647f3a92, 0x029409fefe75d07d, 0x00ef9199963d85e5},
1444
 {0x011173743ad5b178, 0x02499c7c21bf7d46, 0x035beaeabb8b1a58,
1445
  0x00f989c4752ea0a3, 0x0101e1de48a9c1a3, 0x01a20076be28ba6c,
1446
  0x02f8052e5eb2de95, 0x01bfe8f82dea117c, 0x0160074d3c36ddb7},
1447
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1448
{{0x012f3fc373393b3b, 0x03d3d6172f1419fa, 0x02adc943c0b86873,
1449
  0x00d475584177952b, 0x012a4d1673750ee2, 0x00512517a0f13b0c,
1450
  0x02b184671a7b1734, 0x0315b84236f1a50a, 0x00a4afc472edbdb9},
1451
 {0x00152a7077f385c4, 0x03044007d8d1c2ee, 0x0065829d61d52b52,
1452
  0x00494ff6b6631d0d, 0x00a11d94d5f06bcf, 0x02d2f89474d9282e,
1453
  0x0241c5727c06eeb9, 0x0386928710fbdb9d, 0x01f883f727b0dfbe},
1454
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1455
{{0x019b0c3c9185544d, 0x006243a37c9d97db, 0x02ee3cbe030a2ad2,
1456
  0x00cfdd946bb51e0d, 0x0271c00932606b91, 0x03f817d1ec68c561,
1457
  0x03f37009806a369c, 0x03c1f30baf184fd5, 0x01091022d6d2f065},
1458
 {0x0292c583514c45ed, 0x0316fca51f9a286c, 0x00300af507c1489a,
1459
  0x0295f69008298cf1, 0x02c0ed8274943d7b, 0x016509b9b47a431e,
1460
  0x02bc9de9634868ce, 0x005b34929bffcb09, 0x000c1a0121681524},
1461
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1462
{{0x0286abc0292fb9f2, 0x02665eee9805b3f7, 0x01ed7455f17f26d6,
1463
  0x0346355b83175d13, 0x006284944cd0a097, 0x0191895bcdec5e51,
1464
  0x02e288370afda7d9, 0x03b22312bfefa67a, 0x01d104d3fc0613fe},
1465
 {0x0092421a12f7e47f, 0x0077a83fa373c501, 0x03bd25c5f696bd0d,
1466
  0x035c41e4d5459761, 0x01ca0d1742b24f53, 0x00aaab27863a509c,
1467
  0x018b6de47df73917, 0x025c0b771705cd01, 0x01fd51d566d760a7},
1468
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1469
{{0x01dd92ff6b0d1dbd, 0x039c5e2e8f8afa69, 0x0261ed13242c3b27,
1470
  0x0382c6e67026e6a0, 0x01d60b10be2089f9, 0x03c15f3dce86723f,
1471
  0x03c764a32d2a062d, 0x017307eac0fad056, 0x018207c0b96c5256},
1472
 {0x0196a16d60e13154, 0x03e6ce74c0267030, 0x00ddbf2b4e52a5aa,
1473
  0x012738241bbf31c8, 0x00ebe8dc04685a28, 0x024c2ad6d380d4a2,
1474
  0x035ee062a6e62d0e, 0x0029ed74af7d3a0f, 0x00eef32aec142ebd},
1475
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1476
{{0x00c31ec398993b39, 0x03a9f45bcda68253, 0x00ac733c24c70890,
1477
  0x00872b111401ff01, 0x01d178c23195eafb, 0x03bca2c816b87f74,
1478
  0x0261a9af46fbad7a, 0x0324b2a8dd3d28f9, 0x00918121d8f24e23},
1479
 {0x032bc8c1ca983cd7, 0x00d869dfb08fc8c6, 0x01693cb61fce1516,
1480
  0x012a5ea68f4e88a8, 0x010869cab88d7ae3, 0x009081ad277ceee1,
1481
  0x033a77166d064cdc, 0x03955235a1fb3a95, 0x01251a4a9b25b65e},
1482
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1483
{{0x00148a3a1b27f40b, 0x0123186df1b31fdc, 0x00026e7beaad34ce,
1484
  0x01db446ac1d3dbba, 0x0299c1a33437eaec, 0x024540610183cbb7,
1485
  0x0173bb0e9ce92e46, 0x02b937e43921214b, 0x01ab0436a9bf01b5},
1486
 {0x0383381640d46948, 0x008dacbf0e7f330f, 0x03602122bcc3f318,
1487
  0x01ee596b200620d6, 0x03bd0585fda430b3, 0x014aed77fd123a83,
1488
  0x005ace749e52f742, 0x0390fe041da2b842, 0x0189a8ceb3299242},
1489
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1490
{{0x012a19d6b3282473, 0x00c0915918b423ce, 0x023a954eb94405ae,
1491
  0x00529f692be26158, 0x0289fa1b6fa4b2aa, 0x0198ae4ceea346ef,
1492
  0x0047d8cdfbdedd49, 0x00cc8c8953f0f6b8, 0x001424abbff49203},
1493
 {0x0256732a1115a03a, 0x0351bc38665c6733, 0x03f7b950fb4a6447,
1494
  0x000afffa94c22155, 0x025763d0a4dab540, 0x000511e92d4fc283,
1495
  0x030a7e9eda0ee96c, 0x004c3cd93a28bf0a, 0x017edb3a8719217f},
1496
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1497
{{0x011de5675a88e673, 0x031d7d0f5e567fbe, 0x0016b2062c970ae5,
1498
  0x03f4a2be49d90aa7, 0x03cef0bd13822866, 0x03f0923dcf774a6c,
1499
  0x0284bebc4f322f72, 0x016ab2645302bb2c, 0x01793f95dace0e2a},
1500
 {0x010646e13527a28f, 0x01ca1babd59dc5e7, 0x01afedfd9a5595df,
1501
  0x01f15785212ea6b1, 0x0324e5d64f6ae3f4, 0x02d680f526d00645,
1502
  0x0127920fadf627a7, 0x03b383f75df4f684, 0x0089e0057e783b0a},
1503
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1504
{{0x00f334b9eb3c26c6, 0x0298fdaa98568dce, 0x01c2d24843a82292,
1505
  0x020bcb24fa1b0711, 0x02cbdb3d2b1875e6, 0x0014907598f89422,
1506
  0x03abe3aa43b26664, 0x02cbf47f720bc168, 0x0133b5e73014b79b},
1507
 {0x034aab5dab05779d, 0x00cdc5d71fee9abb, 0x0399f16bd4bd9d30,
1508
  0x03582fa592d82647, 0x02be1cdfb775b0e9, 0x0034f7cea32e94cb,
1509
  0x0335a7f08f56f286, 0x03b707e9565d1c8b, 0x0015c946ea5b614f},
1510
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1511
{{0x024676f6cff72255, 0x00d14625cac96378, 0x00532b6008bc3767,
1512
  0x01fc16721b985322, 0x023355ea1b091668, 0x029de7afdc0317c3,
1513
  0x02fc8a7ca2da037c, 0x02de1217d74a6f30, 0x013f7173175b73bf},
1514
 {0x0344913f441490b5, 0x0200f9e272b61eca, 0x0258a246b1dd55d2,
1515
  0x03753db9ea496f36, 0x025e02937a09c5ef, 0x030cbd3d14012692,
1516
  0x01793a67e70dc72a, 0x03ec1d37048a662e, 0x006550f700c32a8d},
1517
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1518
{{0x00d3f48a347eba27, 0x008e636649b61bd8, 0x00d3b93716778fb3,
1519
  0x004d1915757bd209, 0x019d5311a3da44e0, 0x016d1afcbbe6aade,
1520
  0x0241bf5f73265616, 0x0384672e5d50d39b, 0x005009fee522b684},
1521
 {0x029b4fab064435fe, 0x018868ee095bbb07, 0x01ea3d6936cc92b8,
1522
  0x000608b00f78a2f3, 0x02db911073d1c20f, 0x018205938470100a,
1523
  0x01f1e4964cbe6ff2, 0x021a19a29eed4663, 0x01414485f42afa81},
1524
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1525
{{0x01612b3a17f63e34, 0x03813992885428e6, 0x022b3c215b5a9608,
1526
  0x029b4057e19f2fcb, 0x0384059a587af7e6, 0x02d6400ace6fe610,
1527
  0x029354d896e8e331, 0x00c047ee6dfba65e, 0x0037720542e9d49d},
1528
 {0x02ce9eed7c5e9278, 0x0374ed703e79643b, 0x01316c54c4072006,
1529
  0x005aaa09054b2ee8, 0x002824000c840d57, 0x03d4eba24771ed86,
1530
  0x0189c50aabc3bdae, 0x0338c01541e15510, 0x00466d56e38eed42},
1531
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1532
{{0x007efd8330ad8bd6, 0x02465ed48047710b, 0x0034c6606b215e0c,
1533
  0x016ae30c53cbf839, 0x01fa17bd37161216, 0x018ead4e61ce8ab9,
1534
  0x005482ed5f5dee46, 0x037543755bba1d7f, 0x005e5ac7e70a9d0f},
1535
 {0x0117e1bb2fdcb2a2, 0x03deea36249f40c4, 0x028d09b4a6246cb7,
1536
  0x03524b8855bcf756, 0x023d7d109d5ceb58, 0x0178e43e3223ef9c,
1537
  0x0154536a0c6e966a, 0x037964d1286ee9fe, 0x0199bcd90e125055},
1538
 {1, 0, 0, 0, 0, 0, 0, 0, 0}}
1539
};
1540
1541
/*
1542
 * select_point selects the |idx|th point from a precomputation table and
1543
 * copies it to out.
1544
 */
1545
 /* pre_comp below is of the size provided in |size| */
1546
static void select_point(const limb idx, unsigned int size,
1547
                         const felem pre_comp[][3], felem out[3])
1548
6.02k
{
1549
6.02k
    unsigned i, j;
1550
6.02k
    limb *outlimbs = &out[0][0];
1551
1552
6.02k
    memset(out, 0, sizeof(*out) * 3);
1553
1554
102k
    for (i = 0; i < size; i++) {
1555
96.4k
        const limb *inlimbs = &pre_comp[i][0][0];
1556
96.4k
        limb mask = i ^ idx;
1557
96.4k
        mask |= mask >> 4;
1558
96.4k
        mask |= mask >> 2;
1559
96.4k
        mask |= mask >> 1;
1560
96.4k
        mask &= 1;
1561
96.4k
        mask--;
1562
2.69M
        for (j = 0; j < NLIMBS * 3; j++)
1563
2.60M
            outlimbs[j] |= inlimbs[j] & mask;
1564
96.4k
    }
1565
6.02k
}
1566
1567
/* get_bit returns the |i|th bit in |in| */
1568
static char get_bit(const felem_bytearray in, int i)
1569
23.9k
{
1570
23.9k
    if (i < 0)
1571
0
        return 0;
1572
23.9k
    return (in[i >> 3] >> (i & 7)) & 1;
1573
23.9k
}
1574
1575
/*
1576
 * Interleaved point multiplication using precomputed point multiples: The
1577
 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1578
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1579
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1580
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1581
 */
1582
static void batch_mul(felem x_out, felem y_out, felem z_out,
1583
                      const felem_bytearray scalars[],
1584
                      const unsigned num_points, const u8 *g_scalar,
1585
                      const int mixed, const felem pre_comp[][17][3],
1586
                      const felem g_pre_comp[16][3])
1587
46
{
1588
46
    int i, skip;
1589
46
    unsigned num, gen_mul = (g_scalar != NULL);
1590
46
    felem nq[3], tmp[4];
1591
46
    limb bits;
1592
46
    u8 sign, digit;
1593
1594
    /* set nq to the point at infinity */
1595
46
    memset(nq, 0, sizeof(nq));
1596
1597
    /*
1598
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1599
     * of the generator (last quarter of rounds) and additions of other
1600
     * points multiples (every 5th round).
1601
     */
1602
46
    skip = 1;                   /* save two point operations in the first
1603
                                 * round */
1604
6.07k
    for (i = (num_points ? 520 : 130); i >= 0; --i) {
1605
        /* double */
1606
6.02k
        if (!skip)
1607
5.98k
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1608
1609
        /* add multiples of the generator */
1610
6.02k
        if (gen_mul && (i <= 130)) {
1611
6.02k
            bits = get_bit(g_scalar, i + 390) << 3;
1612
6.02k
            if (i < 130) {
1613
5.98k
                bits |= get_bit(g_scalar, i + 260) << 2;
1614
5.98k
                bits |= get_bit(g_scalar, i + 130) << 1;
1615
5.98k
                bits |= get_bit(g_scalar, i);
1616
5.98k
            }
1617
            /* select the point to add, in constant time */
1618
6.02k
            select_point(bits, 16, g_pre_comp, tmp);
1619
6.02k
            if (!skip) {
1620
                /* The 1 argument below is for "mixed" */
1621
5.98k
                point_add(nq[0], nq[1], nq[2],
1622
5.98k
                          nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1623
5.98k
            } else {
1624
46
                memcpy(nq, tmp, 3 * sizeof(felem));
1625
46
                skip = 0;
1626
46
            }
1627
6.02k
        }
1628
1629
        /* do other additions every 5 doublings */
1630
6.02k
        if (num_points && (i % 5 == 0)) {
1631
            /* loop over all scalars */
1632
0
            for (num = 0; num < num_points; ++num) {
1633
0
                bits = get_bit(scalars[num], i + 4) << 5;
1634
0
                bits |= get_bit(scalars[num], i + 3) << 4;
1635
0
                bits |= get_bit(scalars[num], i + 2) << 3;
1636
0
                bits |= get_bit(scalars[num], i + 1) << 2;
1637
0
                bits |= get_bit(scalars[num], i) << 1;
1638
0
                bits |= get_bit(scalars[num], i - 1);
1639
0
                ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1640
1641
                /*
1642
                 * select the point to add or subtract, in constant time
1643
                 */
1644
0
                select_point(digit, 17, pre_comp[num], tmp);
1645
0
                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1646
                                            * point */
1647
0
                copy_conditional(tmp[1], tmp[3], (-(limb) sign));
1648
1649
0
                if (!skip) {
1650
0
                    point_add(nq[0], nq[1], nq[2],
1651
0
                              nq[0], nq[1], nq[2],
1652
0
                              mixed, tmp[0], tmp[1], tmp[2]);
1653
0
                } else {
1654
0
                    memcpy(nq, tmp, 3 * sizeof(felem));
1655
0
                    skip = 0;
1656
0
                }
1657
0
            }
1658
0
        }
1659
6.02k
    }
1660
46
    felem_assign(x_out, nq[0]);
1661
46
    felem_assign(y_out, nq[1]);
1662
46
    felem_assign(z_out, nq[2]);
1663
46
}
1664
1665
/* Precomputation for the group generator. */
1666
struct nistp521_pre_comp_st {
1667
    felem g_pre_comp[16][3];
1668
    CRYPTO_REF_COUNT references;
1669
    CRYPTO_RWLOCK *lock;
1670
};
1671
1672
const EC_METHOD *EC_GFp_nistp521_method(void)
1673
1.47k
{
1674
1.47k
    static const EC_METHOD ret = {
1675
1.47k
        EC_FLAGS_DEFAULT_OCT,
1676
1.47k
        NID_X9_62_prime_field,
1677
1.47k
        ossl_ec_GFp_nistp521_group_init,
1678
1.47k
        ossl_ec_GFp_simple_group_finish,
1679
1.47k
        ossl_ec_GFp_simple_group_clear_finish,
1680
1.47k
        ossl_ec_GFp_nist_group_copy,
1681
1.47k
        ossl_ec_GFp_nistp521_group_set_curve,
1682
1.47k
        ossl_ec_GFp_simple_group_get_curve,
1683
1.47k
        ossl_ec_GFp_simple_group_get_degree,
1684
1.47k
        ossl_ec_group_simple_order_bits,
1685
1.47k
        ossl_ec_GFp_simple_group_check_discriminant,
1686
1.47k
        ossl_ec_GFp_simple_point_init,
1687
1.47k
        ossl_ec_GFp_simple_point_finish,
1688
1.47k
        ossl_ec_GFp_simple_point_clear_finish,
1689
1.47k
        ossl_ec_GFp_simple_point_copy,
1690
1.47k
        ossl_ec_GFp_simple_point_set_to_infinity,
1691
1.47k
        ossl_ec_GFp_simple_point_set_affine_coordinates,
1692
1.47k
        ossl_ec_GFp_nistp521_point_get_affine_coordinates,
1693
1.47k
        0 /* point_set_compressed_coordinates */ ,
1694
1.47k
        0 /* point2oct */ ,
1695
1.47k
        0 /* oct2point */ ,
1696
1.47k
        ossl_ec_GFp_simple_add,
1697
1.47k
        ossl_ec_GFp_simple_dbl,
1698
1.47k
        ossl_ec_GFp_simple_invert,
1699
1.47k
        ossl_ec_GFp_simple_is_at_infinity,
1700
1.47k
        ossl_ec_GFp_simple_is_on_curve,
1701
1.47k
        ossl_ec_GFp_simple_cmp,
1702
1.47k
        ossl_ec_GFp_simple_make_affine,
1703
1.47k
        ossl_ec_GFp_simple_points_make_affine,
1704
1.47k
        ossl_ec_GFp_nistp521_points_mul,
1705
1.47k
        ossl_ec_GFp_nistp521_precompute_mult,
1706
1.47k
        ossl_ec_GFp_nistp521_have_precompute_mult,
1707
1.47k
        ossl_ec_GFp_nist_field_mul,
1708
1.47k
        ossl_ec_GFp_nist_field_sqr,
1709
1.47k
        0 /* field_div */ ,
1710
1.47k
        ossl_ec_GFp_simple_field_inv,
1711
1.47k
        0 /* field_encode */ ,
1712
1.47k
        0 /* field_decode */ ,
1713
1.47k
        0,                      /* field_set_to_one */
1714
1.47k
        ossl_ec_key_simple_priv2oct,
1715
1.47k
        ossl_ec_key_simple_oct2priv,
1716
1.47k
        0, /* set private */
1717
1.47k
        ossl_ec_key_simple_generate_key,
1718
1.47k
        ossl_ec_key_simple_check_key,
1719
1.47k
        ossl_ec_key_simple_generate_public_key,
1720
1.47k
        0, /* keycopy */
1721
1.47k
        0, /* keyfinish */
1722
1.47k
        ossl_ecdh_simple_compute_key,
1723
1.47k
        ossl_ecdsa_simple_sign_setup,
1724
1.47k
        ossl_ecdsa_simple_sign_sig,
1725
1.47k
        ossl_ecdsa_simple_verify_sig,
1726
1.47k
        0, /* field_inverse_mod_ord */
1727
1.47k
        0, /* blind_coordinates */
1728
1.47k
        0, /* ladder_pre */
1729
1.47k
        0, /* ladder_step */
1730
1.47k
        0  /* ladder_post */
1731
1.47k
    };
1732
1733
1.47k
    return &ret;
1734
1.47k
}
1735
1736
/******************************************************************************/
1737
/*
1738
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1739
 */
1740
1741
static NISTP521_PRE_COMP *nistp521_pre_comp_new(void)
1742
0
{
1743
0
    NISTP521_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1744
1745
0
    if (ret == NULL) {
1746
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1747
0
        return ret;
1748
0
    }
1749
1750
0
    ret->references = 1;
1751
1752
0
    ret->lock = CRYPTO_THREAD_lock_new();
1753
0
    if (ret->lock == NULL) {
1754
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1755
0
        OPENSSL_free(ret);
1756
0
        return NULL;
1757
0
    }
1758
0
    return ret;
1759
0
}
1760
1761
NISTP521_PRE_COMP *EC_nistp521_pre_comp_dup(NISTP521_PRE_COMP *p)
1762
0
{
1763
0
    int i;
1764
0
    if (p != NULL)
1765
0
        CRYPTO_UP_REF(&p->references, &i, p->lock);
1766
0
    return p;
1767
0
}
1768
1769
void EC_nistp521_pre_comp_free(NISTP521_PRE_COMP *p)
1770
0
{
1771
0
    int i;
1772
1773
0
    if (p == NULL)
1774
0
        return;
1775
1776
0
    CRYPTO_DOWN_REF(&p->references, &i, p->lock);
1777
0
    REF_PRINT_COUNT("EC_nistp521", p);
1778
0
    if (i > 0)
1779
0
        return;
1780
0
    REF_ASSERT_ISNT(i < 0);
1781
1782
0
    CRYPTO_THREAD_lock_free(p->lock);
1783
0
    OPENSSL_free(p);
1784
0
}
1785
1786
/******************************************************************************/
1787
/*
1788
 * OPENSSL EC_METHOD FUNCTIONS
1789
 */
1790
1791
int ossl_ec_GFp_nistp521_group_init(EC_GROUP *group)
1792
2.90k
{
1793
2.90k
    int ret;
1794
2.90k
    ret = ossl_ec_GFp_simple_group_init(group);
1795
2.90k
    group->a_is_minus3 = 1;
1796
2.90k
    return ret;
1797
2.90k
}
1798
1799
int ossl_ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1800
                                         const BIGNUM *a, const BIGNUM *b,
1801
                                         BN_CTX *ctx)
1802
1.47k
{
1803
1.47k
    int ret = 0;
1804
1.47k
    BIGNUM *curve_p, *curve_a, *curve_b;
1805
1.47k
#ifndef FIPS_MODULE
1806
1.47k
    BN_CTX *new_ctx = NULL;
1807
1808
1.47k
    if (ctx == NULL)
1809
0
        ctx = new_ctx = BN_CTX_new();
1810
1.47k
#endif
1811
1.47k
    if (ctx == NULL)
1812
0
        return 0;
1813
1814
1.47k
    BN_CTX_start(ctx);
1815
1.47k
    curve_p = BN_CTX_get(ctx);
1816
1.47k
    curve_a = BN_CTX_get(ctx);
1817
1.47k
    curve_b = BN_CTX_get(ctx);
1818
1.47k
    if (curve_b == NULL)
1819
0
        goto err;
1820
1.47k
    BN_bin2bn(nistp521_curve_params[0], sizeof(felem_bytearray), curve_p);
1821
1.47k
    BN_bin2bn(nistp521_curve_params[1], sizeof(felem_bytearray), curve_a);
1822
1.47k
    BN_bin2bn(nistp521_curve_params[2], sizeof(felem_bytearray), curve_b);
1823
1.47k
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1824
0
        ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS);
1825
0
        goto err;
1826
0
    }
1827
1.47k
    group->field_mod_func = BN_nist_mod_521;
1828
1.47k
    ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1829
1.47k
 err:
1830
1.47k
    BN_CTX_end(ctx);
1831
1.47k
#ifndef FIPS_MODULE
1832
1.47k
    BN_CTX_free(new_ctx);
1833
1.47k
#endif
1834
1.47k
    return ret;
1835
1.47k
}
1836
1837
/*
1838
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1839
 * (X/Z^2, Y/Z^3)
1840
 */
1841
int ossl_ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group,
1842
                                                      const EC_POINT *point,
1843
                                                      BIGNUM *x, BIGNUM *y,
1844
                                                      BN_CTX *ctx)
1845
37
{
1846
37
    felem z1, z2, x_in, y_in, x_out, y_out;
1847
37
    largefelem tmp;
1848
1849
37
    if (EC_POINT_is_at_infinity(group, point)) {
1850
0
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
1851
0
        return 0;
1852
0
    }
1853
37
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1854
37
        (!BN_to_felem(z1, point->Z)))
1855
0
        return 0;
1856
37
    felem_inv(z2, z1);
1857
37
    felem_square(tmp, z2);
1858
37
    felem_reduce(z1, tmp);
1859
37
    felem_mul(tmp, x_in, z1);
1860
37
    felem_reduce(x_in, tmp);
1861
37
    felem_contract(x_out, x_in);
1862
37
    if (x != NULL) {
1863
37
        if (!felem_to_BN(x, x_out)) {
1864
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1865
0
            return 0;
1866
0
        }
1867
37
    }
1868
37
    felem_mul(tmp, z1, z2);
1869
37
    felem_reduce(z1, tmp);
1870
37
    felem_mul(tmp, y_in, z1);
1871
37
    felem_reduce(y_in, tmp);
1872
37
    felem_contract(y_out, y_in);
1873
37
    if (y != NULL) {
1874
37
        if (!felem_to_BN(y, y_out)) {
1875
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1876
0
            return 0;
1877
0
        }
1878
37
    }
1879
37
    return 1;
1880
37
}
1881
1882
/* points below is of size |num|, and tmp_felems is of size |num+1/ */
1883
static void make_points_affine(size_t num, felem points[][3],
1884
                               felem tmp_felems[])
1885
0
{
1886
    /*
1887
     * Runs in constant time, unless an input is the point at infinity (which
1888
     * normally shouldn't happen).
1889
     */
1890
0
    ossl_ec_GFp_nistp_points_make_affine_internal(num,
1891
0
                                                  points,
1892
0
                                                  sizeof(felem),
1893
0
                                                  tmp_felems,
1894
0
                                                  (void (*)(void *))felem_one,
1895
0
                                                  felem_is_zero_int,
1896
0
                                                  (void (*)(void *, const void *))
1897
0
                                                  felem_assign,
1898
0
                                                  (void (*)(void *, const void *))
1899
0
                                                  felem_square_reduce, (void (*)
1900
0
                                                                        (void *,
1901
0
                                                                         const void
1902
0
                                                                         *,
1903
0
                                                                         const void
1904
0
                                                                         *))
1905
0
                                                  felem_mul_reduce,
1906
0
                                                  (void (*)(void *, const void *))
1907
0
                                                  felem_inv,
1908
0
                                                  (void (*)(void *, const void *))
1909
0
                                                  felem_contract);
1910
0
}
1911
1912
/*
1913
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1914
 * values Result is stored in r (r can equal one of the inputs).
1915
 */
1916
int ossl_ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r,
1917
                                    const BIGNUM *scalar, size_t num,
1918
                                    const EC_POINT *points[],
1919
                                    const BIGNUM *scalars[], BN_CTX *ctx)
1920
46
{
1921
46
    int ret = 0;
1922
46
    int j;
1923
46
    int mixed = 0;
1924
46
    BIGNUM *x, *y, *z, *tmp_scalar;
1925
46
    felem_bytearray g_secret;
1926
46
    felem_bytearray *secrets = NULL;
1927
46
    felem (*pre_comp)[17][3] = NULL;
1928
46
    felem *tmp_felems = NULL;
1929
46
    unsigned i;
1930
46
    int num_bytes;
1931
46
    int have_pre_comp = 0;
1932
46
    size_t num_points = num;
1933
46
    felem x_in, y_in, z_in, x_out, y_out, z_out;
1934
46
    NISTP521_PRE_COMP *pre = NULL;
1935
46
    felem(*g_pre_comp)[3] = NULL;
1936
46
    EC_POINT *generator = NULL;
1937
46
    const EC_POINT *p = NULL;
1938
46
    const BIGNUM *p_scalar = NULL;
1939
1940
46
    BN_CTX_start(ctx);
1941
46
    x = BN_CTX_get(ctx);
1942
46
    y = BN_CTX_get(ctx);
1943
46
    z = BN_CTX_get(ctx);
1944
46
    tmp_scalar = BN_CTX_get(ctx);
1945
46
    if (tmp_scalar == NULL)
1946
0
        goto err;
1947
1948
46
    if (scalar != NULL) {
1949
46
        pre = group->pre_comp.nistp521;
1950
46
        if (pre)
1951
            /* we have precomputation, try to use it */
1952
0
            g_pre_comp = &pre->g_pre_comp[0];
1953
46
        else
1954
            /* try to use the standard precomputation */
1955
46
            g_pre_comp = (felem(*)[3]) gmul;
1956
46
        generator = EC_POINT_new(group);
1957
46
        if (generator == NULL)
1958
0
            goto err;
1959
        /* get the generator from precomputation */
1960
46
        if (!felem_to_BN(x, g_pre_comp[1][0]) ||
1961
46
            !felem_to_BN(y, g_pre_comp[1][1]) ||
1962
46
            !felem_to_BN(z, g_pre_comp[1][2])) {
1963
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1964
0
            goto err;
1965
0
        }
1966
46
        if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group,
1967
46
                                                                generator,
1968
46
                                                                x, y, z, ctx))
1969
0
            goto err;
1970
46
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1971
            /* precomputation matches generator */
1972
46
            have_pre_comp = 1;
1973
0
        else
1974
            /*
1975
             * we don't have valid precomputation: treat the generator as a
1976
             * random point
1977
             */
1978
0
            num_points++;
1979
46
    }
1980
1981
46
    if (num_points > 0) {
1982
0
        if (num_points >= 2) {
1983
            /*
1984
             * unless we precompute multiples for just one point, converting
1985
             * those into affine form is time well spent
1986
             */
1987
0
            mixed = 1;
1988
0
        }
1989
0
        secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1990
0
        pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1991
0
        if (mixed)
1992
0
            tmp_felems =
1993
0
                OPENSSL_malloc(sizeof(*tmp_felems) * (num_points * 17 + 1));
1994
0
        if ((secrets == NULL) || (pre_comp == NULL)
1995
0
            || (mixed && (tmp_felems == NULL))) {
1996
0
            ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1997
0
            goto err;
1998
0
        }
1999
2000
        /*
2001
         * we treat NULL scalars as 0, and NULL points as points at infinity,
2002
         * i.e., they contribute nothing to the linear combination
2003
         */
2004
0
        for (i = 0; i < num_points; ++i) {
2005
0
            if (i == num) {
2006
                /*
2007
                 * we didn't have a valid precomputation, so we pick the
2008
                 * generator
2009
                 */
2010
0
                p = EC_GROUP_get0_generator(group);
2011
0
                p_scalar = scalar;
2012
0
            } else {
2013
                /* the i^th point */
2014
0
                p = points[i];
2015
0
                p_scalar = scalars[i];
2016
0
            }
2017
0
            if ((p_scalar != NULL) && (p != NULL)) {
2018
                /* reduce scalar to 0 <= scalar < 2^521 */
2019
0
                if ((BN_num_bits(p_scalar) > 521)
2020
0
                    || (BN_is_negative(p_scalar))) {
2021
                    /*
2022
                     * this is an unusual input, and we don't guarantee
2023
                     * constant-timeness
2024
                     */
2025
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
2026
0
                        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2027
0
                        goto err;
2028
0
                    }
2029
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
2030
0
                                               secrets[i], sizeof(secrets[i]));
2031
0
                } else {
2032
0
                    num_bytes = BN_bn2lebinpad(p_scalar,
2033
0
                                               secrets[i], sizeof(secrets[i]));
2034
0
                }
2035
0
                if (num_bytes < 0) {
2036
0
                    ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2037
0
                    goto err;
2038
0
                }
2039
                /* precompute multiples */
2040
0
                if ((!BN_to_felem(x_out, p->X)) ||
2041
0
                    (!BN_to_felem(y_out, p->Y)) ||
2042
0
                    (!BN_to_felem(z_out, p->Z)))
2043
0
                    goto err;
2044
0
                memcpy(pre_comp[i][1][0], x_out, sizeof(felem));
2045
0
                memcpy(pre_comp[i][1][1], y_out, sizeof(felem));
2046
0
                memcpy(pre_comp[i][1][2], z_out, sizeof(felem));
2047
0
                for (j = 2; j <= 16; ++j) {
2048
0
                    if (j & 1) {
2049
0
                        point_add(pre_comp[i][j][0], pre_comp[i][j][1],
2050
0
                                  pre_comp[i][j][2], pre_comp[i][1][0],
2051
0
                                  pre_comp[i][1][1], pre_comp[i][1][2], 0,
2052
0
                                  pre_comp[i][j - 1][0],
2053
0
                                  pre_comp[i][j - 1][1],
2054
0
                                  pre_comp[i][j - 1][2]);
2055
0
                    } else {
2056
0
                        point_double(pre_comp[i][j][0], pre_comp[i][j][1],
2057
0
                                     pre_comp[i][j][2], pre_comp[i][j / 2][0],
2058
0
                                     pre_comp[i][j / 2][1],
2059
0
                                     pre_comp[i][j / 2][2]);
2060
0
                    }
2061
0
                }
2062
0
            }
2063
0
        }
2064
0
        if (mixed)
2065
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
2066
0
    }
2067
2068
    /* the scalar for the generator */
2069
46
    if ((scalar != NULL) && (have_pre_comp)) {
2070
46
        memset(g_secret, 0, sizeof(g_secret));
2071
        /* reduce scalar to 0 <= scalar < 2^521 */
2072
46
        if ((BN_num_bits(scalar) > 521) || (BN_is_negative(scalar))) {
2073
            /*
2074
             * this is an unusual input, and we don't guarantee
2075
             * constant-timeness
2076
             */
2077
14
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
2078
0
                ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2079
0
                goto err;
2080
0
            }
2081
14
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
2082
32
        } else {
2083
32
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
2084
32
        }
2085
        /* do the multiplication with generator precomputation */
2086
46
        batch_mul(x_out, y_out, z_out,
2087
46
                  (const felem_bytearray(*))secrets, num_points,
2088
46
                  g_secret,
2089
46
                  mixed, (const felem(*)[17][3])pre_comp,
2090
46
                  (const felem(*)[3])g_pre_comp);
2091
46
    } else {
2092
        /* do the multiplication without generator precomputation */
2093
0
        batch_mul(x_out, y_out, z_out,
2094
0
                  (const felem_bytearray(*))secrets, num_points,
2095
0
                  NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
2096
0
    }
2097
    /* reduce the output to its unique minimal representation */
2098
46
    felem_contract(x_in, x_out);
2099
46
    felem_contract(y_in, y_out);
2100
46
    felem_contract(z_in, z_out);
2101
46
    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
2102
46
        (!felem_to_BN(z, z_in))) {
2103
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2104
0
        goto err;
2105
0
    }
2106
46
    ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z,
2107
46
                                                             ctx);
2108
2109
46
 err:
2110
46
    BN_CTX_end(ctx);
2111
46
    EC_POINT_free(generator);
2112
46
    OPENSSL_free(secrets);
2113
46
    OPENSSL_free(pre_comp);
2114
46
    OPENSSL_free(tmp_felems);
2115
46
    return ret;
2116
46
}
2117
2118
int ossl_ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
2119
0
{
2120
0
    int ret = 0;
2121
0
    NISTP521_PRE_COMP *pre = NULL;
2122
0
    int i, j;
2123
0
    BIGNUM *x, *y;
2124
0
    EC_POINT *generator = NULL;
2125
0
    felem tmp_felems[16];
2126
0
#ifndef FIPS_MODULE
2127
0
    BN_CTX *new_ctx = NULL;
2128
0
#endif
2129
2130
    /* throw away old precomputation */
2131
0
    EC_pre_comp_free(group);
2132
2133
0
#ifndef FIPS_MODULE
2134
0
    if (ctx == NULL)
2135
0
        ctx = new_ctx = BN_CTX_new();
2136
0
#endif
2137
0
    if (ctx == NULL)
2138
0
        return 0;
2139
2140
0
    BN_CTX_start(ctx);
2141
0
    x = BN_CTX_get(ctx);
2142
0
    y = BN_CTX_get(ctx);
2143
0
    if (y == NULL)
2144
0
        goto err;
2145
    /* get the generator */
2146
0
    if (group->generator == NULL)
2147
0
        goto err;
2148
0
    generator = EC_POINT_new(group);
2149
0
    if (generator == NULL)
2150
0
        goto err;
2151
0
    BN_bin2bn(nistp521_curve_params[3], sizeof(felem_bytearray), x);
2152
0
    BN_bin2bn(nistp521_curve_params[4], sizeof(felem_bytearray), y);
2153
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
2154
0
        goto err;
2155
0
    if ((pre = nistp521_pre_comp_new()) == NULL)
2156
0
        goto err;
2157
    /*
2158
     * if the generator is the standard one, use built-in precomputation
2159
     */
2160
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
2161
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
2162
0
        goto done;
2163
0
    }
2164
0
    if ((!BN_to_felem(pre->g_pre_comp[1][0], group->generator->X)) ||
2165
0
        (!BN_to_felem(pre->g_pre_comp[1][1], group->generator->Y)) ||
2166
0
        (!BN_to_felem(pre->g_pre_comp[1][2], group->generator->Z)))
2167
0
        goto err;
2168
    /* compute 2^130*G, 2^260*G, 2^390*G */
2169
0
    for (i = 1; i <= 4; i <<= 1) {
2170
0
        point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1],
2171
0
                     pre->g_pre_comp[2 * i][2], pre->g_pre_comp[i][0],
2172
0
                     pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]);
2173
0
        for (j = 0; j < 129; ++j) {
2174
0
            point_double(pre->g_pre_comp[2 * i][0],
2175
0
                         pre->g_pre_comp[2 * i][1],
2176
0
                         pre->g_pre_comp[2 * i][2],
2177
0
                         pre->g_pre_comp[2 * i][0],
2178
0
                         pre->g_pre_comp[2 * i][1],
2179
0
                         pre->g_pre_comp[2 * i][2]);
2180
0
        }
2181
0
    }
2182
    /* g_pre_comp[0] is the point at infinity */
2183
0
    memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0]));
2184
    /* the remaining multiples */
2185
    /* 2^130*G + 2^260*G */
2186
0
    point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1],
2187
0
              pre->g_pre_comp[6][2], pre->g_pre_comp[4][0],
2188
0
              pre->g_pre_comp[4][1], pre->g_pre_comp[4][2],
2189
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2190
0
              pre->g_pre_comp[2][2]);
2191
    /* 2^130*G + 2^390*G */
2192
0
    point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1],
2193
0
              pre->g_pre_comp[10][2], pre->g_pre_comp[8][0],
2194
0
              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2195
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2196
0
              pre->g_pre_comp[2][2]);
2197
    /* 2^260*G + 2^390*G */
2198
0
    point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1],
2199
0
              pre->g_pre_comp[12][2], pre->g_pre_comp[8][0],
2200
0
              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2201
0
              0, pre->g_pre_comp[4][0], pre->g_pre_comp[4][1],
2202
0
              pre->g_pre_comp[4][2]);
2203
    /* 2^130*G + 2^260*G + 2^390*G */
2204
0
    point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1],
2205
0
              pre->g_pre_comp[14][2], pre->g_pre_comp[12][0],
2206
0
              pre->g_pre_comp[12][1], pre->g_pre_comp[12][2],
2207
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2208
0
              pre->g_pre_comp[2][2]);
2209
0
    for (i = 1; i < 8; ++i) {
2210
        /* odd multiples: add G */
2211
0
        point_add(pre->g_pre_comp[2 * i + 1][0],
2212
0
                  pre->g_pre_comp[2 * i + 1][1],
2213
0
                  pre->g_pre_comp[2 * i + 1][2], pre->g_pre_comp[2 * i][0],
2214
0
                  pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], 0,
2215
0
                  pre->g_pre_comp[1][0], pre->g_pre_comp[1][1],
2216
0
                  pre->g_pre_comp[1][2]);
2217
0
    }
2218
0
    make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems);
2219
2220
0
 done:
2221
0
    SETPRECOMP(group, nistp521, pre);
2222
0
    ret = 1;
2223
0
    pre = NULL;
2224
0
 err:
2225
0
    BN_CTX_end(ctx);
2226
0
    EC_POINT_free(generator);
2227
0
#ifndef FIPS_MODULE
2228
0
    BN_CTX_free(new_ctx);
2229
0
#endif
2230
0
    EC_nistp521_pre_comp_free(pre);
2231
0
    return ret;
2232
0
}
2233
2234
int ossl_ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group)
2235
0
{
2236
0
    return HAVEPRECOMP(group, nistp521);
2237
0
}