Coverage Report

Created: 2023-06-08 06:40

/src/openssl111/crypto/evp/encode.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the OpenSSL license (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include <stdio.h>
11
#include <limits.h>
12
#include "internal/cryptlib.h"
13
#include <openssl/evp.h>
14
#include "evp_local.h"
15
#include "crypto/evp.h"
16
17
static unsigned char conv_ascii2bin(unsigned char a,
18
                                    const unsigned char *table);
19
static int evp_encodeblock_int(EVP_ENCODE_CTX *ctx, unsigned char *t,
20
                               const unsigned char *f, int dlen);
21
static int evp_decodeblock_int(EVP_ENCODE_CTX *ctx, unsigned char *t,
22
                               const unsigned char *f, int n);
23
24
#ifndef CHARSET_EBCDIC
25
0
# define conv_bin2ascii(a, table)       ((table)[(a)&0x3f])
26
#else
27
/*
28
 * We assume that PEM encoded files are EBCDIC files (i.e., printable text
29
 * files). Convert them here while decoding. When encoding, output is EBCDIC
30
 * (text) format again. (No need for conversion in the conv_bin2ascii macro,
31
 * as the underlying textstring data_bin2ascii[] is already EBCDIC)
32
 */
33
# define conv_bin2ascii(a, table)       ((table)[(a)&0x3f])
34
#endif
35
36
/*-
37
 * 64 char lines
38
 * pad input with 0
39
 * left over chars are set to =
40
 * 1 byte  => xx==
41
 * 2 bytes => xxx=
42
 * 3 bytes => xxxx
43
 */
44
#define BIN_PER_LINE    (64/4*3)
45
#define CHUNKS_PER_LINE (64/4)
46
#define CHAR_PER_LINE   (64+1)
47
48
static const unsigned char data_bin2ascii[65] =
49
    "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
50
51
/* SRP uses a different base64 alphabet */
52
static const unsigned char srpdata_bin2ascii[65] =
53
    "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz./";
54
55
56
/*-
57
 * 0xF0 is a EOLN
58
 * 0xF1 is ignore but next needs to be 0xF0 (for \r\n processing).
59
 * 0xF2 is EOF
60
 * 0xE0 is ignore at start of line.
61
 * 0xFF is error
62
 */
63
64
#define B64_EOLN                0xF0
65
#define B64_CR                  0xF1
66
0
#define B64_EOF                 0xF2
67
0
#define B64_WS                  0xE0
68
0
#define B64_ERROR               0xFF
69
0
#define B64_NOT_BASE64(a)       (((a)|0x13) == 0xF3)
70
0
#define B64_BASE64(a)           (!B64_NOT_BASE64(a))
71
72
static const unsigned char data_ascii2bin[128] = {
73
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
74
    0xFF, 0xE0, 0xF0, 0xFF, 0xFF, 0xF1, 0xFF, 0xFF,
75
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
76
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
77
    0xE0, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
78
    0xFF, 0xFF, 0xFF, 0x3E, 0xFF, 0xF2, 0xFF, 0x3F,
79
    0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B,
80
    0x3C, 0x3D, 0xFF, 0xFF, 0xFF, 0x00, 0xFF, 0xFF,
81
    0xFF, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,
82
    0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E,
83
    0x0F, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16,
84
    0x17, 0x18, 0x19, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
85
    0xFF, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20,
86
    0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28,
87
    0x29, 0x2A, 0x2B, 0x2C, 0x2D, 0x2E, 0x2F, 0x30,
88
    0x31, 0x32, 0x33, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
89
};
90
91
static const unsigned char srpdata_ascii2bin[128] = {
92
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
93
    0xFF, 0xE0, 0xF0, 0xFF, 0xFF, 0xF1, 0xFF, 0xFF,
94
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
95
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
96
    0xE0, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
97
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xF2, 0x3E, 0x3F,
98
    0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
99
    0x08, 0x09, 0xFF, 0xFF, 0xFF, 0x00, 0xFF, 0xFF,
100
    0xFF, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10,
101
    0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18,
102
    0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20,
103
    0x21, 0x22, 0x23, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
104
    0xFF, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2A,
105
    0x2B, 0x2C, 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32,
106
    0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A,
107
    0x3B, 0x3C, 0x3D, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
108
};
109
110
#ifndef CHARSET_EBCDIC
111
static unsigned char conv_ascii2bin(unsigned char a, const unsigned char *table)
112
0
{
113
0
    if (a & 0x80)
114
0
        return B64_ERROR;
115
0
    return table[a];
116
0
}
117
#else
118
static unsigned char conv_ascii2bin(unsigned char a, const unsigned char *table)
119
{
120
    a = os_toascii[a];
121
    if (a & 0x80)
122
        return B64_ERROR;
123
    return table[a];
124
}
125
#endif
126
127
EVP_ENCODE_CTX *EVP_ENCODE_CTX_new(void)
128
0
{
129
0
    return OPENSSL_zalloc(sizeof(EVP_ENCODE_CTX));
130
0
}
131
132
void EVP_ENCODE_CTX_free(EVP_ENCODE_CTX *ctx)
133
0
{
134
0
    OPENSSL_free(ctx);
135
0
}
136
137
int EVP_ENCODE_CTX_copy(EVP_ENCODE_CTX *dctx, EVP_ENCODE_CTX *sctx)
138
0
{
139
0
    memcpy(dctx, sctx, sizeof(EVP_ENCODE_CTX));
140
141
0
    return 1;
142
0
}
143
144
int EVP_ENCODE_CTX_num(EVP_ENCODE_CTX *ctx)
145
0
{
146
0
    return ctx->num;
147
0
}
148
149
void evp_encode_ctx_set_flags(EVP_ENCODE_CTX *ctx, unsigned int flags)
150
0
{
151
0
    ctx->flags = flags;
152
0
}
153
154
void EVP_EncodeInit(EVP_ENCODE_CTX *ctx)
155
0
{
156
0
    ctx->length = 48;
157
0
    ctx->num = 0;
158
0
    ctx->line_num = 0;
159
0
    ctx->flags = 0;
160
0
}
161
162
int EVP_EncodeUpdate(EVP_ENCODE_CTX *ctx, unsigned char *out, int *outl,
163
                      const unsigned char *in, int inl)
164
0
{
165
0
    int i, j;
166
0
    size_t total = 0;
167
168
0
    *outl = 0;
169
0
    if (inl <= 0)
170
0
        return 0;
171
0
    OPENSSL_assert(ctx->length <= (int)sizeof(ctx->enc_data));
172
0
    if (ctx->length - ctx->num > inl) {
173
0
        memcpy(&(ctx->enc_data[ctx->num]), in, inl);
174
0
        ctx->num += inl;
175
0
        return 1;
176
0
    }
177
0
    if (ctx->num != 0) {
178
0
        i = ctx->length - ctx->num;
179
0
        memcpy(&(ctx->enc_data[ctx->num]), in, i);
180
0
        in += i;
181
0
        inl -= i;
182
0
        j = evp_encodeblock_int(ctx, out, ctx->enc_data, ctx->length);
183
0
        ctx->num = 0;
184
0
        out += j;
185
0
        total = j;
186
0
        if ((ctx->flags & EVP_ENCODE_CTX_NO_NEWLINES) == 0) {
187
0
            *(out++) = '\n';
188
0
            total++;
189
0
        }
190
0
        *out = '\0';
191
0
    }
192
0
    while (inl >= ctx->length && total <= INT_MAX) {
193
0
        j = evp_encodeblock_int(ctx, out, in, ctx->length);
194
0
        in += ctx->length;
195
0
        inl -= ctx->length;
196
0
        out += j;
197
0
        total += j;
198
0
        if ((ctx->flags & EVP_ENCODE_CTX_NO_NEWLINES) == 0) {
199
0
            *(out++) = '\n';
200
0
            total++;
201
0
        }
202
0
        *out = '\0';
203
0
    }
204
0
    if (total > INT_MAX) {
205
        /* Too much output data! */
206
0
        *outl = 0;
207
0
        return 0;
208
0
    }
209
0
    if (inl != 0)
210
0
        memcpy(&(ctx->enc_data[0]), in, inl);
211
0
    ctx->num = inl;
212
0
    *outl = total;
213
214
0
    return 1;
215
0
}
216
217
void EVP_EncodeFinal(EVP_ENCODE_CTX *ctx, unsigned char *out, int *outl)
218
0
{
219
0
    unsigned int ret = 0;
220
221
0
    if (ctx->num != 0) {
222
0
        ret = evp_encodeblock_int(ctx, out, ctx->enc_data, ctx->num);
223
0
        if ((ctx->flags & EVP_ENCODE_CTX_NO_NEWLINES) == 0)
224
0
            out[ret++] = '\n';
225
0
        out[ret] = '\0';
226
0
        ctx->num = 0;
227
0
    }
228
0
    *outl = ret;
229
0
}
230
231
static int evp_encodeblock_int(EVP_ENCODE_CTX *ctx, unsigned char *t,
232
                               const unsigned char *f, int dlen)
233
0
{
234
0
    int i, ret = 0;
235
0
    unsigned long l;
236
0
    const unsigned char *table;
237
238
0
    if (ctx != NULL && (ctx->flags & EVP_ENCODE_CTX_USE_SRP_ALPHABET) != 0)
239
0
        table = srpdata_bin2ascii;
240
0
    else
241
0
        table = data_bin2ascii;
242
243
0
    for (i = dlen; i > 0; i -= 3) {
244
0
        if (i >= 3) {
245
0
            l = (((unsigned long)f[0]) << 16L) |
246
0
                (((unsigned long)f[1]) << 8L) | f[2];
247
0
            *(t++) = conv_bin2ascii(l >> 18L, table);
248
0
            *(t++) = conv_bin2ascii(l >> 12L, table);
249
0
            *(t++) = conv_bin2ascii(l >> 6L, table);
250
0
            *(t++) = conv_bin2ascii(l, table);
251
0
        } else {
252
0
            l = ((unsigned long)f[0]) << 16L;
253
0
            if (i == 2)
254
0
                l |= ((unsigned long)f[1] << 8L);
255
256
0
            *(t++) = conv_bin2ascii(l >> 18L, table);
257
0
            *(t++) = conv_bin2ascii(l >> 12L, table);
258
0
            *(t++) = (i == 1) ? '=' : conv_bin2ascii(l >> 6L, table);
259
0
            *(t++) = '=';
260
0
        }
261
0
        ret += 4;
262
0
        f += 3;
263
0
    }
264
265
0
    *t = '\0';
266
0
    return ret;
267
0
}
268
269
int EVP_EncodeBlock(unsigned char *t, const unsigned char *f, int dlen)
270
0
{
271
0
    return evp_encodeblock_int(NULL, t, f, dlen);
272
0
}
273
274
void EVP_DecodeInit(EVP_ENCODE_CTX *ctx)
275
0
{
276
    /* Only ctx->num and ctx->flags are used during decoding. */
277
0
    ctx->num = 0;
278
0
    ctx->length = 0;
279
0
    ctx->line_num = 0;
280
0
    ctx->flags = 0;
281
0
}
282
283
/*-
284
 * -1 for error
285
 *  0 for last line
286
 *  1 for full line
287
 *
288
 * Note: even though EVP_DecodeUpdate attempts to detect and report end of
289
 * content, the context doesn't currently remember it and will accept more data
290
 * in the next call. Therefore, the caller is responsible for checking and
291
 * rejecting a 0 return value in the middle of content.
292
 *
293
 * Note: even though EVP_DecodeUpdate has historically tried to detect end of
294
 * content based on line length, this has never worked properly. Therefore,
295
 * we now return 0 when one of the following is true:
296
 *   - Padding or B64_EOF was detected and the last block is complete.
297
 *   - Input has zero-length.
298
 * -1 is returned if:
299
 *   - Invalid characters are detected.
300
 *   - There is extra trailing padding, or data after padding.
301
 *   - B64_EOF is detected after an incomplete base64 block.
302
 */
303
int EVP_DecodeUpdate(EVP_ENCODE_CTX *ctx, unsigned char *out, int *outl,
304
                     const unsigned char *in, int inl)
305
0
{
306
0
    int seof = 0, eof = 0, rv = -1, ret = 0, i, v, tmp, n, decoded_len;
307
0
    unsigned char *d;
308
0
    const unsigned char *table;
309
310
0
    n = ctx->num;
311
0
    d = ctx->enc_data;
312
313
0
    if (n > 0 && d[n - 1] == '=') {
314
0
        eof++;
315
0
        if (n > 1 && d[n - 2] == '=')
316
0
            eof++;
317
0
    }
318
319
     /* Legacy behaviour: an empty input chunk signals end of input. */
320
0
    if (inl == 0) {
321
0
        rv = 0;
322
0
        goto end;
323
0
    }
324
325
0
    if ((ctx->flags & EVP_ENCODE_CTX_USE_SRP_ALPHABET) != 0)
326
0
        table = srpdata_ascii2bin;
327
0
    else
328
0
        table = data_ascii2bin;
329
330
0
    for (i = 0; i < inl; i++) {
331
0
        tmp = *(in++);
332
0
        v = conv_ascii2bin(tmp, table);
333
0
        if (v == B64_ERROR) {
334
0
            rv = -1;
335
0
            goto end;
336
0
        }
337
338
0
        if (tmp == '=') {
339
0
            eof++;
340
0
        } else if (eof > 0 && B64_BASE64(v)) {
341
            /* More data after padding. */
342
0
            rv = -1;
343
0
            goto end;
344
0
        }
345
346
0
        if (eof > 2) {
347
0
            rv = -1;
348
0
            goto end;
349
0
        }
350
351
0
        if (v == B64_EOF) {
352
0
            seof = 1;
353
0
            goto tail;
354
0
        }
355
356
        /* Only save valid base64 characters. */
357
0
        if (B64_BASE64(v)) {
358
0
            if (n >= 64) {
359
                /*
360
                 * We increment n once per loop, and empty the buffer as soon as
361
                 * we reach 64 characters, so this can only happen if someone's
362
                 * manually messed with the ctx. Refuse to write any more data.
363
                 */
364
0
                rv = -1;
365
0
                goto end;
366
0
            }
367
0
            OPENSSL_assert(n < (int)sizeof(ctx->enc_data));
368
0
            d[n++] = tmp;
369
0
        }
370
371
0
        if (n == 64) {
372
0
            decoded_len = evp_decodeblock_int(ctx, out, d, n);
373
0
            n = 0;
374
0
            if (decoded_len < 0 || eof > decoded_len) {
375
0
                rv = -1;
376
0
                goto end;
377
0
            }
378
0
            ret += decoded_len - eof;
379
0
            out += decoded_len - eof;
380
0
        }
381
0
    }
382
383
    /*
384
     * Legacy behaviour: if the current line is a full base64-block (i.e., has
385
     * 0 mod 4 base64 characters), it is processed immediately. We keep this
386
     * behaviour as applications may not be calling EVP_DecodeFinal properly.
387
     */
388
0
tail:
389
0
    if (n > 0) {
390
0
        if ((n & 3) == 0) {
391
0
            decoded_len = evp_decodeblock_int(ctx, out, d, n);
392
0
            n = 0;
393
0
            if (decoded_len < 0 || eof > decoded_len) {
394
0
                rv = -1;
395
0
                goto end;
396
0
            }
397
0
            ret += (decoded_len - eof);
398
0
        } else if (seof) {
399
            /* EOF in the middle of a base64 block. */
400
0
            rv = -1;
401
0
            goto end;
402
0
        }
403
0
    }
404
405
0
    rv = seof || (n == 0 && eof) ? 0 : 1;
406
0
end:
407
    /* Legacy behaviour. This should probably rather be zeroed on error. */
408
0
    *outl = ret;
409
0
    ctx->num = n;
410
0
    return rv;
411
0
}
412
413
static int evp_decodeblock_int(EVP_ENCODE_CTX *ctx, unsigned char *t,
414
                               const unsigned char *f, int n)
415
0
{
416
0
    int i, ret = 0, a, b, c, d;
417
0
    unsigned long l;
418
0
    const unsigned char *table;
419
420
0
    if (ctx != NULL && (ctx->flags & EVP_ENCODE_CTX_USE_SRP_ALPHABET) != 0)
421
0
        table = srpdata_ascii2bin;
422
0
    else
423
0
        table = data_ascii2bin;
424
425
    /* trim white space from the start of the line. */
426
0
    while ((n > 0) && (conv_ascii2bin(*f, table) == B64_WS)) {
427
0
        f++;
428
0
        n--;
429
0
    }
430
431
    /*
432
     * strip off stuff at the end of the line ascii2bin values B64_WS,
433
     * B64_EOLN, B64_EOLN and B64_EOF
434
     */
435
0
    while ((n > 3) && (B64_NOT_BASE64(conv_ascii2bin(f[n - 1], table))))
436
0
        n--;
437
438
0
    if (n % 4 != 0)
439
0
        return -1;
440
441
0
    for (i = 0; i < n; i += 4) {
442
0
        a = conv_ascii2bin(*(f++), table);
443
0
        b = conv_ascii2bin(*(f++), table);
444
0
        c = conv_ascii2bin(*(f++), table);
445
0
        d = conv_ascii2bin(*(f++), table);
446
0
        if ((a & 0x80) || (b & 0x80) || (c & 0x80) || (d & 0x80))
447
0
            return -1;
448
0
        l = ((((unsigned long)a) << 18L) |
449
0
             (((unsigned long)b) << 12L) |
450
0
             (((unsigned long)c) << 6L) | (((unsigned long)d)));
451
0
        *(t++) = (unsigned char)(l >> 16L) & 0xff;
452
0
        *(t++) = (unsigned char)(l >> 8L) & 0xff;
453
0
        *(t++) = (unsigned char)(l) & 0xff;
454
0
        ret += 3;
455
0
    }
456
0
    return ret;
457
0
}
458
459
int EVP_DecodeBlock(unsigned char *t, const unsigned char *f, int n)
460
0
{
461
0
    return evp_decodeblock_int(NULL, t, f, n);
462
0
}
463
464
int EVP_DecodeFinal(EVP_ENCODE_CTX *ctx, unsigned char *out, int *outl)
465
0
{
466
0
    int i;
467
468
0
    *outl = 0;
469
0
    if (ctx->num != 0) {
470
0
        i = evp_decodeblock_int(ctx, out, ctx->enc_data, ctx->num);
471
0
        if (i < 0)
472
0
            return -1;
473
0
        ctx->num = 0;
474
0
        *outl = i;
475
0
        return 1;
476
0
    } else
477
0
        return 1;
478
0
}