/src/openssl111/crypto/bn/bn_sqr.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the OpenSSL license (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #include "internal/cryptlib.h" |
11 | | #include "bn_local.h" |
12 | | |
13 | | /* r must not be a */ |
14 | | /* |
15 | | * I've just gone over this and it is now %20 faster on x86 - eay - 27 Jun 96 |
16 | | */ |
17 | | int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) |
18 | 243k | { |
19 | 243k | int ret = bn_sqr_fixed_top(r, a, ctx); |
20 | | |
21 | 243k | bn_correct_top(r); |
22 | 243k | bn_check_top(r); |
23 | | |
24 | 243k | return ret; |
25 | 243k | } |
26 | | |
27 | | int bn_sqr_fixed_top(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) |
28 | 409k | { |
29 | 409k | int max, al; |
30 | 409k | int ret = 0; |
31 | 409k | BIGNUM *tmp, *rr; |
32 | | |
33 | 409k | bn_check_top(a); |
34 | | |
35 | 409k | al = a->top; |
36 | 409k | if (al <= 0) { |
37 | 12.6k | r->top = 0; |
38 | 12.6k | r->neg = 0; |
39 | 12.6k | return 1; |
40 | 12.6k | } |
41 | | |
42 | 396k | BN_CTX_start(ctx); |
43 | 396k | rr = (a != r) ? r : BN_CTX_get(ctx); |
44 | 396k | tmp = BN_CTX_get(ctx); |
45 | 396k | if (rr == NULL || tmp == NULL) |
46 | 0 | goto err; |
47 | | |
48 | 396k | max = 2 * al; /* Non-zero (from above) */ |
49 | 396k | if (bn_wexpand(rr, max) == NULL) |
50 | 0 | goto err; |
51 | | |
52 | 396k | if (al == 4) { |
53 | | #ifndef BN_SQR_COMBA |
54 | | BN_ULONG t[8]; |
55 | | bn_sqr_normal(rr->d, a->d, 4, t); |
56 | | #else |
57 | 1.79k | bn_sqr_comba4(rr->d, a->d); |
58 | 1.79k | #endif |
59 | 394k | } else if (al == 8) { |
60 | | #ifndef BN_SQR_COMBA |
61 | | BN_ULONG t[16]; |
62 | | bn_sqr_normal(rr->d, a->d, 8, t); |
63 | | #else |
64 | 535 | bn_sqr_comba8(rr->d, a->d); |
65 | 535 | #endif |
66 | 394k | } else { |
67 | 394k | #if defined(BN_RECURSION) |
68 | 394k | if (al < BN_SQR_RECURSIVE_SIZE_NORMAL) { |
69 | 357k | BN_ULONG t[BN_SQR_RECURSIVE_SIZE_NORMAL * 2]; |
70 | 357k | bn_sqr_normal(rr->d, a->d, al, t); |
71 | 357k | } else { |
72 | 36.3k | int j, k; |
73 | | |
74 | 36.3k | j = BN_num_bits_word((BN_ULONG)al); |
75 | 36.3k | j = 1 << (j - 1); |
76 | 36.3k | k = j + j; |
77 | 36.3k | if (al == j) { |
78 | 12.5k | if (bn_wexpand(tmp, k * 2) == NULL) |
79 | 0 | goto err; |
80 | 12.5k | bn_sqr_recursive(rr->d, a->d, al, tmp->d); |
81 | 23.8k | } else { |
82 | 23.8k | if (bn_wexpand(tmp, max) == NULL) |
83 | 0 | goto err; |
84 | 23.8k | bn_sqr_normal(rr->d, a->d, al, tmp->d); |
85 | 23.8k | } |
86 | 36.3k | } |
87 | | #else |
88 | | if (bn_wexpand(tmp, max) == NULL) |
89 | | goto err; |
90 | | bn_sqr_normal(rr->d, a->d, al, tmp->d); |
91 | | #endif |
92 | 394k | } |
93 | | |
94 | 396k | rr->neg = 0; |
95 | 396k | rr->top = max; |
96 | 396k | rr->flags |= BN_FLG_FIXED_TOP; |
97 | 396k | if (r != rr && BN_copy(r, rr) == NULL) |
98 | 0 | goto err; |
99 | | |
100 | 396k | ret = 1; |
101 | 396k | err: |
102 | 396k | bn_check_top(rr); |
103 | 396k | bn_check_top(tmp); |
104 | 396k | BN_CTX_end(ctx); |
105 | 396k | return ret; |
106 | 396k | } |
107 | | |
108 | | /* tmp must have 2*n words */ |
109 | | void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp) |
110 | 381k | { |
111 | 381k | int i, j, max; |
112 | 381k | const BN_ULONG *ap; |
113 | 381k | BN_ULONG *rp; |
114 | | |
115 | 381k | max = n * 2; |
116 | 381k | ap = a; |
117 | 381k | rp = r; |
118 | 381k | rp[0] = rp[max - 1] = 0; |
119 | 381k | rp++; |
120 | 381k | j = n; |
121 | | |
122 | 381k | if (--j > 0) { |
123 | 37.3k | ap++; |
124 | 37.3k | rp[j] = bn_mul_words(rp, ap, j, ap[-1]); |
125 | 37.3k | rp += 2; |
126 | 37.3k | } |
127 | | |
128 | 1.51M | for (i = n - 2; i > 0; i--) { |
129 | 1.12M | j--; |
130 | 1.12M | ap++; |
131 | 1.12M | rp[j] = bn_mul_add_words(rp, ap, j, ap[-1]); |
132 | 1.12M | rp += 2; |
133 | 1.12M | } |
134 | | |
135 | 381k | bn_add_words(r, r, r, max); |
136 | | |
137 | | /* There will not be a carry */ |
138 | | |
139 | 381k | bn_sqr_words(tmp, a, n); |
140 | | |
141 | 381k | bn_add_words(r, r, tmp, max); |
142 | 381k | } |
143 | | |
144 | | #ifdef BN_RECURSION |
145 | | /*- |
146 | | * r is 2*n words in size, |
147 | | * a and b are both n words in size. (There's not actually a 'b' here ...) |
148 | | * n must be a power of 2. |
149 | | * We multiply and return the result. |
150 | | * t must be 2*n words in size |
151 | | * We calculate |
152 | | * a[0]*b[0] |
153 | | * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0]) |
154 | | * a[1]*b[1] |
155 | | */ |
156 | | void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t) |
157 | 109k | { |
158 | 109k | int n = n2 / 2; |
159 | 109k | int zero, c1; |
160 | 109k | BN_ULONG ln, lo, *p; |
161 | | |
162 | 109k | if (n2 == 4) { |
163 | | # ifndef BN_SQR_COMBA |
164 | | bn_sqr_normal(r, a, 4, t); |
165 | | # else |
166 | 0 | bn_sqr_comba4(r, a); |
167 | 0 | # endif |
168 | 0 | return; |
169 | 109k | } else if (n2 == 8) { |
170 | | # ifndef BN_SQR_COMBA |
171 | | bn_sqr_normal(r, a, 8, t); |
172 | | # else |
173 | 76.9k | bn_sqr_comba8(r, a); |
174 | 76.9k | # endif |
175 | 76.9k | return; |
176 | 76.9k | } |
177 | 32.4k | if (n2 < BN_SQR_RECURSIVE_SIZE_NORMAL) { |
178 | 0 | bn_sqr_normal(r, a, n2, t); |
179 | 0 | return; |
180 | 0 | } |
181 | | /* r=(a[0]-a[1])*(a[1]-a[0]) */ |
182 | 32.4k | c1 = bn_cmp_words(a, &(a[n]), n); |
183 | 32.4k | zero = 0; |
184 | 32.4k | if (c1 > 0) |
185 | 18.8k | bn_sub_words(t, a, &(a[n]), n); |
186 | 13.6k | else if (c1 < 0) |
187 | 13.1k | bn_sub_words(t, &(a[n]), a, n); |
188 | 467 | else |
189 | 467 | zero = 1; |
190 | | |
191 | | /* The result will always be negative unless it is zero */ |
192 | 32.4k | p = &(t[n2 * 2]); |
193 | | |
194 | 32.4k | if (!zero) |
195 | 32.0k | bn_sqr_recursive(&(t[n2]), t, n, p); |
196 | 467 | else |
197 | 467 | memset(&t[n2], 0, sizeof(*t) * n2); |
198 | 32.4k | bn_sqr_recursive(r, a, n, p); |
199 | 32.4k | bn_sqr_recursive(&(r[n2]), &(a[n]), n, p); |
200 | | |
201 | | /*- |
202 | | * t[32] holds (a[0]-a[1])*(a[1]-a[0]), it is negative or zero |
203 | | * r[10] holds (a[0]*b[0]) |
204 | | * r[32] holds (b[1]*b[1]) |
205 | | */ |
206 | | |
207 | 32.4k | c1 = (int)(bn_add_words(t, r, &(r[n2]), n2)); |
208 | | |
209 | | /* t[32] is negative */ |
210 | 32.4k | c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2)); |
211 | | |
212 | | /*- |
213 | | * t[32] holds (a[0]-a[1])*(a[1]-a[0])+(a[0]*a[0])+(a[1]*a[1]) |
214 | | * r[10] holds (a[0]*a[0]) |
215 | | * r[32] holds (a[1]*a[1]) |
216 | | * c1 holds the carry bits |
217 | | */ |
218 | 32.4k | c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2)); |
219 | 32.4k | if (c1) { |
220 | 10.2k | p = &(r[n + n2]); |
221 | 10.2k | lo = *p; |
222 | 10.2k | ln = (lo + c1) & BN_MASK2; |
223 | 10.2k | *p = ln; |
224 | | |
225 | | /* |
226 | | * The overflow will stop before we over write words we should not |
227 | | * overwrite |
228 | | */ |
229 | 10.2k | if (ln < (BN_ULONG)c1) { |
230 | 830 | do { |
231 | 830 | p++; |
232 | 830 | lo = *p; |
233 | 830 | ln = (lo + 1) & BN_MASK2; |
234 | 830 | *p = ln; |
235 | 830 | } while (ln == 0); |
236 | 434 | } |
237 | 10.2k | } |
238 | 32.4k | } |
239 | | #endif |