Coverage Report

Created: 2023-06-08 06:40

/src/openssl111/crypto/ec/ecp_nistp224.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2010-2020 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the OpenSSL license (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2011 Google Inc.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * A 64-bit implementation of the NIST P-224 elliptic curve point multiplication
28
 *
29
 * Inspired by Daniel J. Bernstein's public domain nistp224 implementation
30
 * and Adam Langley's public domain 64-bit C implementation of curve25519
31
 */
32
33
#include <openssl/opensslconf.h>
34
#ifdef OPENSSL_NO_EC_NISTP_64_GCC_128
35
NON_EMPTY_TRANSLATION_UNIT
36
#else
37
38
# include <stdint.h>
39
# include <string.h>
40
# include <openssl/err.h>
41
# include "ec_local.h"
42
43
# if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16
44
  /* even with gcc, the typedef won't work for 32-bit platforms */
45
typedef __uint128_t uint128_t;  /* nonstandard; implemented by gcc on 64-bit
46
                                 * platforms */
47
# else
48
#  error "Your compiler doesn't appear to support 128-bit integer types"
49
# endif
50
51
typedef uint8_t u8;
52
typedef uint64_t u64;
53
54
/******************************************************************************/
55
/*-
56
 * INTERNAL REPRESENTATION OF FIELD ELEMENTS
57
 *
58
 * Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3
59
 * using 64-bit coefficients called 'limbs',
60
 * and sometimes (for multiplication results) as
61
 * b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 + 2^336*b_6
62
 * using 128-bit coefficients called 'widelimbs'.
63
 * A 4-limb representation is an 'felem';
64
 * a 7-widelimb representation is a 'widefelem'.
65
 * Even within felems, bits of adjacent limbs overlap, and we don't always
66
 * reduce the representations: we ensure that inputs to each felem
67
 * multiplication satisfy a_i < 2^60, so outputs satisfy b_i < 4*2^60*2^60,
68
 * and fit into a 128-bit word without overflow. The coefficients are then
69
 * again partially reduced to obtain an felem satisfying a_i < 2^57.
70
 * We only reduce to the unique minimal representation at the end of the
71
 * computation.
72
 */
73
74
typedef uint64_t limb;
75
typedef uint64_t limb_aX __attribute((__aligned__(1)));
76
typedef uint128_t widelimb;
77
78
typedef limb felem[4];
79
typedef widelimb widefelem[7];
80
81
/*
82
 * Field element represented as a byte array. 28*8 = 224 bits is also the
83
 * group order size for the elliptic curve, and we also use this type for
84
 * scalars for point multiplication.
85
 */
86
typedef u8 felem_bytearray[28];
87
88
static const felem_bytearray nistp224_curve_params[5] = {
89
    {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */
90
     0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00,
91
     0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
92
    {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */
93
     0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF,
94
     0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE},
95
    {0xB4, 0x05, 0x0A, 0x85, 0x0C, 0x04, 0xB3, 0xAB, 0xF5, 0x41, /* b */
96
     0x32, 0x56, 0x50, 0x44, 0xB0, 0xB7, 0xD7, 0xBF, 0xD8, 0xBA,
97
     0x27, 0x0B, 0x39, 0x43, 0x23, 0x55, 0xFF, 0xB4},
98
    {0xB7, 0x0E, 0x0C, 0xBD, 0x6B, 0xB4, 0xBF, 0x7F, 0x32, 0x13, /* x */
99
     0x90, 0xB9, 0x4A, 0x03, 0xC1, 0xD3, 0x56, 0xC2, 0x11, 0x22,
100
     0x34, 0x32, 0x80, 0xD6, 0x11, 0x5C, 0x1D, 0x21},
101
    {0xbd, 0x37, 0x63, 0x88, 0xb5, 0xf7, 0x23, 0xfb, 0x4c, 0x22, /* y */
102
     0xdf, 0xe6, 0xcd, 0x43, 0x75, 0xa0, 0x5a, 0x07, 0x47, 0x64,
103
     0x44, 0xd5, 0x81, 0x99, 0x85, 0x00, 0x7e, 0x34}
104
};
105
106
/*-
107
 * Precomputed multiples of the standard generator
108
 * Points are given in coordinates (X, Y, Z) where Z normally is 1
109
 * (0 for the point at infinity).
110
 * For each field element, slice a_0 is word 0, etc.
111
 *
112
 * The table has 2 * 16 elements, starting with the following:
113
 * index | bits    | point
114
 * ------+---------+------------------------------
115
 *     0 | 0 0 0 0 | 0G
116
 *     1 | 0 0 0 1 | 1G
117
 *     2 | 0 0 1 0 | 2^56G
118
 *     3 | 0 0 1 1 | (2^56 + 1)G
119
 *     4 | 0 1 0 0 | 2^112G
120
 *     5 | 0 1 0 1 | (2^112 + 1)G
121
 *     6 | 0 1 1 0 | (2^112 + 2^56)G
122
 *     7 | 0 1 1 1 | (2^112 + 2^56 + 1)G
123
 *     8 | 1 0 0 0 | 2^168G
124
 *     9 | 1 0 0 1 | (2^168 + 1)G
125
 *    10 | 1 0 1 0 | (2^168 + 2^56)G
126
 *    11 | 1 0 1 1 | (2^168 + 2^56 + 1)G
127
 *    12 | 1 1 0 0 | (2^168 + 2^112)G
128
 *    13 | 1 1 0 1 | (2^168 + 2^112 + 1)G
129
 *    14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G
130
 *    15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G
131
 * followed by a copy of this with each element multiplied by 2^28.
132
 *
133
 * The reason for this is so that we can clock bits into four different
134
 * locations when doing simple scalar multiplies against the base point,
135
 * and then another four locations using the second 16 elements.
136
 */
137
static const felem gmul[2][16][3] = {
138
{{{0, 0, 0, 0},
139
  {0, 0, 0, 0},
140
  {0, 0, 0, 0}},
141
 {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf},
142
  {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723},
143
  {1, 0, 0, 0}},
144
 {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5},
145
  {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321},
146
  {1, 0, 0, 0}},
147
 {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748},
148
  {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17},
149
  {1, 0, 0, 0}},
150
 {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe},
151
  {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b},
152
  {1, 0, 0, 0}},
153
 {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3},
154
  {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a},
155
  {1, 0, 0, 0}},
156
 {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c},
157
  {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244},
158
  {1, 0, 0, 0}},
159
 {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849},
160
  {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112},
161
  {1, 0, 0, 0}},
162
 {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47},
163
  {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394},
164
  {1, 0, 0, 0}},
165
 {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d},
166
  {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7},
167
  {1, 0, 0, 0}},
168
 {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24},
169
  {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881},
170
  {1, 0, 0, 0}},
171
 {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984},
172
  {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369},
173
  {1, 0, 0, 0}},
174
 {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3},
175
  {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60},
176
  {1, 0, 0, 0}},
177
 {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057},
178
  {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9},
179
  {1, 0, 0, 0}},
180
 {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9},
181
  {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc},
182
  {1, 0, 0, 0}},
183
 {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58},
184
  {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558},
185
  {1, 0, 0, 0}}},
186
{{{0, 0, 0, 0},
187
  {0, 0, 0, 0},
188
  {0, 0, 0, 0}},
189
 {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31},
190
  {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d},
191
  {1, 0, 0, 0}},
192
 {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3},
193
  {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a},
194
  {1, 0, 0, 0}},
195
 {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33},
196
  {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100},
197
  {1, 0, 0, 0}},
198
 {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5},
199
  {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea},
200
  {1, 0, 0, 0}},
201
 {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be},
202
  {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51},
203
  {1, 0, 0, 0}},
204
 {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1},
205
  {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb},
206
  {1, 0, 0, 0}},
207
 {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233},
208
  {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def},
209
  {1, 0, 0, 0}},
210
 {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae},
211
  {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45},
212
  {1, 0, 0, 0}},
213
 {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e},
214
  {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb},
215
  {1, 0, 0, 0}},
216
 {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de},
217
  {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3},
218
  {1, 0, 0, 0}},
219
 {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05},
220
  {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58},
221
  {1, 0, 0, 0}},
222
 {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb},
223
  {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0},
224
  {1, 0, 0, 0}},
225
 {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9},
226
  {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea},
227
  {1, 0, 0, 0}},
228
 {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba},
229
  {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405},
230
  {1, 0, 0, 0}},
231
 {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e},
232
  {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e},
233
  {1, 0, 0, 0}}}
234
};
235
236
/* Precomputation for the group generator. */
237
struct nistp224_pre_comp_st {
238
    felem g_pre_comp[2][16][3];
239
    CRYPTO_REF_COUNT references;
240
    CRYPTO_RWLOCK *lock;
241
};
242
243
const EC_METHOD *EC_GFp_nistp224_method(void)
244
0
{
245
0
    static const EC_METHOD ret = {
246
0
        EC_FLAGS_DEFAULT_OCT,
247
0
        NID_X9_62_prime_field,
248
0
        ec_GFp_nistp224_group_init,
249
0
        ec_GFp_simple_group_finish,
250
0
        ec_GFp_simple_group_clear_finish,
251
0
        ec_GFp_nist_group_copy,
252
0
        ec_GFp_nistp224_group_set_curve,
253
0
        ec_GFp_simple_group_get_curve,
254
0
        ec_GFp_simple_group_get_degree,
255
0
        ec_group_simple_order_bits,
256
0
        ec_GFp_simple_group_check_discriminant,
257
0
        ec_GFp_simple_point_init,
258
0
        ec_GFp_simple_point_finish,
259
0
        ec_GFp_simple_point_clear_finish,
260
0
        ec_GFp_simple_point_copy,
261
0
        ec_GFp_simple_point_set_to_infinity,
262
0
        ec_GFp_simple_set_Jprojective_coordinates_GFp,
263
0
        ec_GFp_simple_get_Jprojective_coordinates_GFp,
264
0
        ec_GFp_simple_point_set_affine_coordinates,
265
0
        ec_GFp_nistp224_point_get_affine_coordinates,
266
0
        0 /* point_set_compressed_coordinates */ ,
267
0
        0 /* point2oct */ ,
268
0
        0 /* oct2point */ ,
269
0
        ec_GFp_simple_add,
270
0
        ec_GFp_simple_dbl,
271
0
        ec_GFp_simple_invert,
272
0
        ec_GFp_simple_is_at_infinity,
273
0
        ec_GFp_simple_is_on_curve,
274
0
        ec_GFp_simple_cmp,
275
0
        ec_GFp_simple_make_affine,
276
0
        ec_GFp_simple_points_make_affine,
277
0
        ec_GFp_nistp224_points_mul,
278
0
        ec_GFp_nistp224_precompute_mult,
279
0
        ec_GFp_nistp224_have_precompute_mult,
280
0
        ec_GFp_nist_field_mul,
281
0
        ec_GFp_nist_field_sqr,
282
0
        0 /* field_div */ ,
283
0
        ec_GFp_simple_field_inv,
284
0
        0 /* field_encode */ ,
285
0
        0 /* field_decode */ ,
286
0
        0,                      /* field_set_to_one */
287
0
        ec_key_simple_priv2oct,
288
0
        ec_key_simple_oct2priv,
289
0
        0, /* set private */
290
0
        ec_key_simple_generate_key,
291
0
        ec_key_simple_check_key,
292
0
        ec_key_simple_generate_public_key,
293
0
        0, /* keycopy */
294
0
        0, /* keyfinish */
295
0
        ecdh_simple_compute_key,
296
0
        0, /* field_inverse_mod_ord */
297
0
        0, /* blind_coordinates */
298
0
        0, /* ladder_pre */
299
0
        0, /* ladder_step */
300
0
        0  /* ladder_post */
301
0
    };
302
303
0
    return &ret;
304
0
}
305
306
/*
307
 * Helper functions to convert field elements to/from internal representation
308
 */
309
static void bin28_to_felem(felem out, const u8 in[28])
310
0
{
311
0
    out[0] = *((const limb *)(in)) & 0x00ffffffffffffff;
312
0
    out[1] = (*((const limb_aX *)(in + 7))) & 0x00ffffffffffffff;
313
0
    out[2] = (*((const limb_aX *)(in + 14))) & 0x00ffffffffffffff;
314
0
    out[3] = (*((const limb_aX *)(in + 20))) >> 8;
315
0
}
316
317
static void felem_to_bin28(u8 out[28], const felem in)
318
0
{
319
0
    unsigned i;
320
0
    for (i = 0; i < 7; ++i) {
321
0
        out[i] = in[0] >> (8 * i);
322
0
        out[i + 7] = in[1] >> (8 * i);
323
0
        out[i + 14] = in[2] >> (8 * i);
324
0
        out[i + 21] = in[3] >> (8 * i);
325
0
    }
326
0
}
327
328
/* From OpenSSL BIGNUM to internal representation */
329
static int BN_to_felem(felem out, const BIGNUM *bn)
330
0
{
331
0
    felem_bytearray b_out;
332
0
    int num_bytes;
333
334
0
    if (BN_is_negative(bn)) {
335
0
        ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
336
0
        return 0;
337
0
    }
338
0
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
339
0
    if (num_bytes < 0) {
340
0
        ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
341
0
        return 0;
342
0
    }
343
0
    bin28_to_felem(out, b_out);
344
0
    return 1;
345
0
}
346
347
/* From internal representation to OpenSSL BIGNUM */
348
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
349
0
{
350
0
    felem_bytearray b_out;
351
0
    felem_to_bin28(b_out, in);
352
0
    return BN_lebin2bn(b_out, sizeof(b_out), out);
353
0
}
354
355
/******************************************************************************/
356
/*-
357
 *                              FIELD OPERATIONS
358
 *
359
 * Field operations, using the internal representation of field elements.
360
 * NB! These operations are specific to our point multiplication and cannot be
361
 * expected to be correct in general - e.g., multiplication with a large scalar
362
 * will cause an overflow.
363
 *
364
 */
365
366
static void felem_one(felem out)
367
0
{
368
0
    out[0] = 1;
369
0
    out[1] = 0;
370
0
    out[2] = 0;
371
0
    out[3] = 0;
372
0
}
373
374
static void felem_assign(felem out, const felem in)
375
0
{
376
0
    out[0] = in[0];
377
0
    out[1] = in[1];
378
0
    out[2] = in[2];
379
0
    out[3] = in[3];
380
0
}
381
382
/* Sum two field elements: out += in */
383
static void felem_sum(felem out, const felem in)
384
0
{
385
0
    out[0] += in[0];
386
0
    out[1] += in[1];
387
0
    out[2] += in[2];
388
0
    out[3] += in[3];
389
0
}
390
391
/* Subtract field elements: out -= in */
392
/* Assumes in[i] < 2^57 */
393
static void felem_diff(felem out, const felem in)
394
0
{
395
0
    static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2);
396
0
    static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2);
397
0
    static const limb two58m42m2 = (((limb) 1) << 58) -
398
0
        (((limb) 1) << 42) - (((limb) 1) << 2);
399
400
    /* Add 0 mod 2^224-2^96+1 to ensure out > in */
401
0
    out[0] += two58p2;
402
0
    out[1] += two58m42m2;
403
0
    out[2] += two58m2;
404
0
    out[3] += two58m2;
405
406
0
    out[0] -= in[0];
407
0
    out[1] -= in[1];
408
0
    out[2] -= in[2];
409
0
    out[3] -= in[3];
410
0
}
411
412
/* Subtract in unreduced 128-bit mode: out -= in */
413
/* Assumes in[i] < 2^119 */
414
static void widefelem_diff(widefelem out, const widefelem in)
415
0
{
416
0
    static const widelimb two120 = ((widelimb) 1) << 120;
417
0
    static const widelimb two120m64 = (((widelimb) 1) << 120) -
418
0
        (((widelimb) 1) << 64);
419
0
    static const widelimb two120m104m64 = (((widelimb) 1) << 120) -
420
0
        (((widelimb) 1) << 104) - (((widelimb) 1) << 64);
421
422
    /* Add 0 mod 2^224-2^96+1 to ensure out > in */
423
0
    out[0] += two120;
424
0
    out[1] += two120m64;
425
0
    out[2] += two120m64;
426
0
    out[3] += two120;
427
0
    out[4] += two120m104m64;
428
0
    out[5] += two120m64;
429
0
    out[6] += two120m64;
430
431
0
    out[0] -= in[0];
432
0
    out[1] -= in[1];
433
0
    out[2] -= in[2];
434
0
    out[3] -= in[3];
435
0
    out[4] -= in[4];
436
0
    out[5] -= in[5];
437
0
    out[6] -= in[6];
438
0
}
439
440
/* Subtract in mixed mode: out128 -= in64 */
441
/* in[i] < 2^63 */
442
static void felem_diff_128_64(widefelem out, const felem in)
443
0
{
444
0
    static const widelimb two64p8 = (((widelimb) 1) << 64) +
445
0
        (((widelimb) 1) << 8);
446
0
    static const widelimb two64m8 = (((widelimb) 1) << 64) -
447
0
        (((widelimb) 1) << 8);
448
0
    static const widelimb two64m48m8 = (((widelimb) 1) << 64) -
449
0
        (((widelimb) 1) << 48) - (((widelimb) 1) << 8);
450
451
    /* Add 0 mod 2^224-2^96+1 to ensure out > in */
452
0
    out[0] += two64p8;
453
0
    out[1] += two64m48m8;
454
0
    out[2] += two64m8;
455
0
    out[3] += two64m8;
456
457
0
    out[0] -= in[0];
458
0
    out[1] -= in[1];
459
0
    out[2] -= in[2];
460
0
    out[3] -= in[3];
461
0
}
462
463
/*
464
 * Multiply a field element by a scalar: out = out * scalar The scalars we
465
 * actually use are small, so results fit without overflow
466
 */
467
static void felem_scalar(felem out, const limb scalar)
468
0
{
469
0
    out[0] *= scalar;
470
0
    out[1] *= scalar;
471
0
    out[2] *= scalar;
472
0
    out[3] *= scalar;
473
0
}
474
475
/*
476
 * Multiply an unreduced field element by a scalar: out = out * scalar The
477
 * scalars we actually use are small, so results fit without overflow
478
 */
479
static void widefelem_scalar(widefelem out, const widelimb scalar)
480
0
{
481
0
    out[0] *= scalar;
482
0
    out[1] *= scalar;
483
0
    out[2] *= scalar;
484
0
    out[3] *= scalar;
485
0
    out[4] *= scalar;
486
0
    out[5] *= scalar;
487
0
    out[6] *= scalar;
488
0
}
489
490
/* Square a field element: out = in^2 */
491
static void felem_square(widefelem out, const felem in)
492
0
{
493
0
    limb tmp0, tmp1, tmp2;
494
0
    tmp0 = 2 * in[0];
495
0
    tmp1 = 2 * in[1];
496
0
    tmp2 = 2 * in[2];
497
0
    out[0] = ((widelimb) in[0]) * in[0];
498
0
    out[1] = ((widelimb) in[0]) * tmp1;
499
0
    out[2] = ((widelimb) in[0]) * tmp2 + ((widelimb) in[1]) * in[1];
500
0
    out[3] = ((widelimb) in[3]) * tmp0 + ((widelimb) in[1]) * tmp2;
501
0
    out[4] = ((widelimb) in[3]) * tmp1 + ((widelimb) in[2]) * in[2];
502
0
    out[5] = ((widelimb) in[3]) * tmp2;
503
0
    out[6] = ((widelimb) in[3]) * in[3];
504
0
}
505
506
/* Multiply two field elements: out = in1 * in2 */
507
static void felem_mul(widefelem out, const felem in1, const felem in2)
508
0
{
509
0
    out[0] = ((widelimb) in1[0]) * in2[0];
510
0
    out[1] = ((widelimb) in1[0]) * in2[1] + ((widelimb) in1[1]) * in2[0];
511
0
    out[2] = ((widelimb) in1[0]) * in2[2] + ((widelimb) in1[1]) * in2[1] +
512
0
             ((widelimb) in1[2]) * in2[0];
513
0
    out[3] = ((widelimb) in1[0]) * in2[3] + ((widelimb) in1[1]) * in2[2] +
514
0
             ((widelimb) in1[2]) * in2[1] + ((widelimb) in1[3]) * in2[0];
515
0
    out[4] = ((widelimb) in1[1]) * in2[3] + ((widelimb) in1[2]) * in2[2] +
516
0
             ((widelimb) in1[3]) * in2[1];
517
0
    out[5] = ((widelimb) in1[2]) * in2[3] + ((widelimb) in1[3]) * in2[2];
518
0
    out[6] = ((widelimb) in1[3]) * in2[3];
519
0
}
520
521
/*-
522
 * Reduce seven 128-bit coefficients to four 64-bit coefficients.
523
 * Requires in[i] < 2^126,
524
 * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */
525
static void felem_reduce(felem out, const widefelem in)
526
0
{
527
0
    static const widelimb two127p15 = (((widelimb) 1) << 127) +
528
0
        (((widelimb) 1) << 15);
529
0
    static const widelimb two127m71 = (((widelimb) 1) << 127) -
530
0
        (((widelimb) 1) << 71);
531
0
    static const widelimb two127m71m55 = (((widelimb) 1) << 127) -
532
0
        (((widelimb) 1) << 71) - (((widelimb) 1) << 55);
533
0
    widelimb output[5];
534
535
    /* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */
536
0
    output[0] = in[0] + two127p15;
537
0
    output[1] = in[1] + two127m71m55;
538
0
    output[2] = in[2] + two127m71;
539
0
    output[3] = in[3];
540
0
    output[4] = in[4];
541
542
    /* Eliminate in[4], in[5], in[6] */
543
0
    output[4] += in[6] >> 16;
544
0
    output[3] += (in[6] & 0xffff) << 40;
545
0
    output[2] -= in[6];
546
547
0
    output[3] += in[5] >> 16;
548
0
    output[2] += (in[5] & 0xffff) << 40;
549
0
    output[1] -= in[5];
550
551
0
    output[2] += output[4] >> 16;
552
0
    output[1] += (output[4] & 0xffff) << 40;
553
0
    output[0] -= output[4];
554
555
    /* Carry 2 -> 3 -> 4 */
556
0
    output[3] += output[2] >> 56;
557
0
    output[2] &= 0x00ffffffffffffff;
558
559
0
    output[4] = output[3] >> 56;
560
0
    output[3] &= 0x00ffffffffffffff;
561
562
    /* Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 */
563
564
    /* Eliminate output[4] */
565
0
    output[2] += output[4] >> 16;
566
    /* output[2] < 2^56 + 2^56 = 2^57 */
567
0
    output[1] += (output[4] & 0xffff) << 40;
568
0
    output[0] -= output[4];
569
570
    /* Carry 0 -> 1 -> 2 -> 3 */
571
0
    output[1] += output[0] >> 56;
572
0
    out[0] = output[0] & 0x00ffffffffffffff;
573
574
0
    output[2] += output[1] >> 56;
575
    /* output[2] < 2^57 + 2^72 */
576
0
    out[1] = output[1] & 0x00ffffffffffffff;
577
0
    output[3] += output[2] >> 56;
578
    /* output[3] <= 2^56 + 2^16 */
579
0
    out[2] = output[2] & 0x00ffffffffffffff;
580
581
    /*-
582
     * out[0] < 2^56, out[1] < 2^56, out[2] < 2^56,
583
     * out[3] <= 2^56 + 2^16 (due to final carry),
584
     * so out < 2*p
585
     */
586
0
    out[3] = output[3];
587
0
}
588
589
static void felem_square_reduce(felem out, const felem in)
590
0
{
591
0
    widefelem tmp;
592
0
    felem_square(tmp, in);
593
0
    felem_reduce(out, tmp);
594
0
}
595
596
static void felem_mul_reduce(felem out, const felem in1, const felem in2)
597
0
{
598
0
    widefelem tmp;
599
0
    felem_mul(tmp, in1, in2);
600
0
    felem_reduce(out, tmp);
601
0
}
602
603
/*
604
 * Reduce to unique minimal representation. Requires 0 <= in < 2*p (always
605
 * call felem_reduce first)
606
 */
607
static void felem_contract(felem out, const felem in)
608
0
{
609
0
    static const int64_t two56 = ((limb) 1) << 56;
610
    /* 0 <= in < 2*p, p = 2^224 - 2^96 + 1 */
611
    /* if in > p , reduce in = in - 2^224 + 2^96 - 1 */
612
0
    int64_t tmp[4], a;
613
0
    tmp[0] = in[0];
614
0
    tmp[1] = in[1];
615
0
    tmp[2] = in[2];
616
0
    tmp[3] = in[3];
617
    /* Case 1: a = 1 iff in >= 2^224 */
618
0
    a = (in[3] >> 56);
619
0
    tmp[0] -= a;
620
0
    tmp[1] += a << 40;
621
0
    tmp[3] &= 0x00ffffffffffffff;
622
    /*
623
     * Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all 1
624
     * and the lower part is non-zero
625
     */
626
0
    a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) |
627
0
        (((int64_t) (in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63);
628
0
    a &= 0x00ffffffffffffff;
629
    /* turn a into an all-one mask (if a = 0) or an all-zero mask */
630
0
    a = (a - 1) >> 63;
631
    /* subtract 2^224 - 2^96 + 1 if a is all-one */
632
0
    tmp[3] &= a ^ 0xffffffffffffffff;
633
0
    tmp[2] &= a ^ 0xffffffffffffffff;
634
0
    tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff;
635
0
    tmp[0] -= 1 & a;
636
637
    /*
638
     * eliminate negative coefficients: if tmp[0] is negative, tmp[1] must be
639
     * non-zero, so we only need one step
640
     */
641
0
    a = tmp[0] >> 63;
642
0
    tmp[0] += two56 & a;
643
0
    tmp[1] -= 1 & a;
644
645
    /* carry 1 -> 2 -> 3 */
646
0
    tmp[2] += tmp[1] >> 56;
647
0
    tmp[1] &= 0x00ffffffffffffff;
648
649
0
    tmp[3] += tmp[2] >> 56;
650
0
    tmp[2] &= 0x00ffffffffffffff;
651
652
    /* Now 0 <= out < p */
653
0
    out[0] = tmp[0];
654
0
    out[1] = tmp[1];
655
0
    out[2] = tmp[2];
656
0
    out[3] = tmp[3];
657
0
}
658
659
/*
660
 * Get negative value: out = -in
661
 * Requires in[i] < 2^63,
662
 * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16
663
 */
664
static void felem_neg(felem out, const felem in)
665
0
{
666
0
    widefelem tmp = {0};
667
0
    felem_diff_128_64(tmp, in);
668
0
    felem_reduce(out, tmp);
669
0
}
670
671
/*
672
 * Zero-check: returns 1 if input is 0, and 0 otherwise. We know that field
673
 * elements are reduced to in < 2^225, so we only need to check three cases:
674
 * 0, 2^224 - 2^96 + 1, and 2^225 - 2^97 + 2
675
 */
676
static limb felem_is_zero(const felem in)
677
0
{
678
0
    limb zero, two224m96p1, two225m97p2;
679
680
0
    zero = in[0] | in[1] | in[2] | in[3];
681
0
    zero = (((int64_t) (zero) - 1) >> 63) & 1;
682
0
    two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000)
683
0
        | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x00ffffffffffffff);
684
0
    two224m96p1 = (((int64_t) (two224m96p1) - 1) >> 63) & 1;
685
0
    two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000)
686
0
        | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x01ffffffffffffff);
687
0
    two225m97p2 = (((int64_t) (two225m97p2) - 1) >> 63) & 1;
688
0
    return (zero | two224m96p1 | two225m97p2);
689
0
}
690
691
static int felem_is_zero_int(const void *in)
692
0
{
693
0
    return (int)(felem_is_zero(in) & ((limb) 1));
694
0
}
695
696
/* Invert a field element */
697
/* Computation chain copied from djb's code */
698
static void felem_inv(felem out, const felem in)
699
0
{
700
0
    felem ftmp, ftmp2, ftmp3, ftmp4;
701
0
    widefelem tmp;
702
0
    unsigned i;
703
704
0
    felem_square(tmp, in);
705
0
    felem_reduce(ftmp, tmp);    /* 2 */
706
0
    felem_mul(tmp, in, ftmp);
707
0
    felem_reduce(ftmp, tmp);    /* 2^2 - 1 */
708
0
    felem_square(tmp, ftmp);
709
0
    felem_reduce(ftmp, tmp);    /* 2^3 - 2 */
710
0
    felem_mul(tmp, in, ftmp);
711
0
    felem_reduce(ftmp, tmp);    /* 2^3 - 1 */
712
0
    felem_square(tmp, ftmp);
713
0
    felem_reduce(ftmp2, tmp);   /* 2^4 - 2 */
714
0
    felem_square(tmp, ftmp2);
715
0
    felem_reduce(ftmp2, tmp);   /* 2^5 - 4 */
716
0
    felem_square(tmp, ftmp2);
717
0
    felem_reduce(ftmp2, tmp);   /* 2^6 - 8 */
718
0
    felem_mul(tmp, ftmp2, ftmp);
719
0
    felem_reduce(ftmp, tmp);    /* 2^6 - 1 */
720
0
    felem_square(tmp, ftmp);
721
0
    felem_reduce(ftmp2, tmp);   /* 2^7 - 2 */
722
0
    for (i = 0; i < 5; ++i) {   /* 2^12 - 2^6 */
723
0
        felem_square(tmp, ftmp2);
724
0
        felem_reduce(ftmp2, tmp);
725
0
    }
726
0
    felem_mul(tmp, ftmp2, ftmp);
727
0
    felem_reduce(ftmp2, tmp);   /* 2^12 - 1 */
728
0
    felem_square(tmp, ftmp2);
729
0
    felem_reduce(ftmp3, tmp);   /* 2^13 - 2 */
730
0
    for (i = 0; i < 11; ++i) {  /* 2^24 - 2^12 */
731
0
        felem_square(tmp, ftmp3);
732
0
        felem_reduce(ftmp3, tmp);
733
0
    }
734
0
    felem_mul(tmp, ftmp3, ftmp2);
735
0
    felem_reduce(ftmp2, tmp);   /* 2^24 - 1 */
736
0
    felem_square(tmp, ftmp2);
737
0
    felem_reduce(ftmp3, tmp);   /* 2^25 - 2 */
738
0
    for (i = 0; i < 23; ++i) {  /* 2^48 - 2^24 */
739
0
        felem_square(tmp, ftmp3);
740
0
        felem_reduce(ftmp3, tmp);
741
0
    }
742
0
    felem_mul(tmp, ftmp3, ftmp2);
743
0
    felem_reduce(ftmp3, tmp);   /* 2^48 - 1 */
744
0
    felem_square(tmp, ftmp3);
745
0
    felem_reduce(ftmp4, tmp);   /* 2^49 - 2 */
746
0
    for (i = 0; i < 47; ++i) {  /* 2^96 - 2^48 */
747
0
        felem_square(tmp, ftmp4);
748
0
        felem_reduce(ftmp4, tmp);
749
0
    }
750
0
    felem_mul(tmp, ftmp3, ftmp4);
751
0
    felem_reduce(ftmp3, tmp);   /* 2^96 - 1 */
752
0
    felem_square(tmp, ftmp3);
753
0
    felem_reduce(ftmp4, tmp);   /* 2^97 - 2 */
754
0
    for (i = 0; i < 23; ++i) {  /* 2^120 - 2^24 */
755
0
        felem_square(tmp, ftmp4);
756
0
        felem_reduce(ftmp4, tmp);
757
0
    }
758
0
    felem_mul(tmp, ftmp2, ftmp4);
759
0
    felem_reduce(ftmp2, tmp);   /* 2^120 - 1 */
760
0
    for (i = 0; i < 6; ++i) {   /* 2^126 - 2^6 */
761
0
        felem_square(tmp, ftmp2);
762
0
        felem_reduce(ftmp2, tmp);
763
0
    }
764
0
    felem_mul(tmp, ftmp2, ftmp);
765
0
    felem_reduce(ftmp, tmp);    /* 2^126 - 1 */
766
0
    felem_square(tmp, ftmp);
767
0
    felem_reduce(ftmp, tmp);    /* 2^127 - 2 */
768
0
    felem_mul(tmp, ftmp, in);
769
0
    felem_reduce(ftmp, tmp);    /* 2^127 - 1 */
770
0
    for (i = 0; i < 97; ++i) {  /* 2^224 - 2^97 */
771
0
        felem_square(tmp, ftmp);
772
0
        felem_reduce(ftmp, tmp);
773
0
    }
774
0
    felem_mul(tmp, ftmp, ftmp3);
775
0
    felem_reduce(out, tmp);     /* 2^224 - 2^96 - 1 */
776
0
}
777
778
/*
779
 * Copy in constant time: if icopy == 1, copy in to out, if icopy == 0, copy
780
 * out to itself.
781
 */
782
static void copy_conditional(felem out, const felem in, limb icopy)
783
0
{
784
0
    unsigned i;
785
    /*
786
     * icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one
787
     */
788
0
    const limb copy = -icopy;
789
0
    for (i = 0; i < 4; ++i) {
790
0
        const limb tmp = copy & (in[i] ^ out[i]);
791
0
        out[i] ^= tmp;
792
0
    }
793
0
}
794
795
/******************************************************************************/
796
/*-
797
 *                       ELLIPTIC CURVE POINT OPERATIONS
798
 *
799
 * Points are represented in Jacobian projective coordinates:
800
 * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3),
801
 * or to the point at infinity if Z == 0.
802
 *
803
 */
804
805
/*-
806
 * Double an elliptic curve point:
807
 * (X', Y', Z') = 2 * (X, Y, Z), where
808
 * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2
809
 * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^4
810
 * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z
811
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed,
812
 * while x_out == y_in is not (maybe this works, but it's not tested).
813
 */
814
static void
815
point_double(felem x_out, felem y_out, felem z_out,
816
             const felem x_in, const felem y_in, const felem z_in)
817
0
{
818
0
    widefelem tmp, tmp2;
819
0
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
820
821
0
    felem_assign(ftmp, x_in);
822
0
    felem_assign(ftmp2, x_in);
823
824
    /* delta = z^2 */
825
0
    felem_square(tmp, z_in);
826
0
    felem_reduce(delta, tmp);
827
828
    /* gamma = y^2 */
829
0
    felem_square(tmp, y_in);
830
0
    felem_reduce(gamma, tmp);
831
832
    /* beta = x*gamma */
833
0
    felem_mul(tmp, x_in, gamma);
834
0
    felem_reduce(beta, tmp);
835
836
    /* alpha = 3*(x-delta)*(x+delta) */
837
0
    felem_diff(ftmp, delta);
838
    /* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */
839
0
    felem_sum(ftmp2, delta);
840
    /* ftmp2[i] < 2^57 + 2^57 = 2^58 */
841
0
    felem_scalar(ftmp2, 3);
842
    /* ftmp2[i] < 3 * 2^58 < 2^60 */
843
0
    felem_mul(tmp, ftmp, ftmp2);
844
    /* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */
845
0
    felem_reduce(alpha, tmp);
846
847
    /* x' = alpha^2 - 8*beta */
848
0
    felem_square(tmp, alpha);
849
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
850
0
    felem_assign(ftmp, beta);
851
0
    felem_scalar(ftmp, 8);
852
    /* ftmp[i] < 8 * 2^57 = 2^60 */
853
0
    felem_diff_128_64(tmp, ftmp);
854
    /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
855
0
    felem_reduce(x_out, tmp);
856
857
    /* z' = (y + z)^2 - gamma - delta */
858
0
    felem_sum(delta, gamma);
859
    /* delta[i] < 2^57 + 2^57 = 2^58 */
860
0
    felem_assign(ftmp, y_in);
861
0
    felem_sum(ftmp, z_in);
862
    /* ftmp[i] < 2^57 + 2^57 = 2^58 */
863
0
    felem_square(tmp, ftmp);
864
    /* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */
865
0
    felem_diff_128_64(tmp, delta);
866
    /* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */
867
0
    felem_reduce(z_out, tmp);
868
869
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
870
0
    felem_scalar(beta, 4);
871
    /* beta[i] < 4 * 2^57 = 2^59 */
872
0
    felem_diff(beta, x_out);
873
    /* beta[i] < 2^59 + 2^58 + 2 < 2^60 */
874
0
    felem_mul(tmp, alpha, beta);
875
    /* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */
876
0
    felem_square(tmp2, gamma);
877
    /* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */
878
0
    widefelem_scalar(tmp2, 8);
879
    /* tmp2[i] < 8 * 2^116 = 2^119 */
880
0
    widefelem_diff(tmp, tmp2);
881
    /* tmp[i] < 2^119 + 2^120 < 2^121 */
882
0
    felem_reduce(y_out, tmp);
883
0
}
884
885
/*-
886
 * Add two elliptic curve points:
887
 * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where
888
 * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 -
889
 * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2
890
 * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 - X_3) -
891
 *        Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3
892
 * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2)
893
 *
894
 * This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0.
895
 */
896
897
/*
898
 * This function is not entirely constant-time: it includes a branch for
899
 * checking whether the two input points are equal, (while not equal to the
900
 * point at infinity). This case never happens during single point
901
 * multiplication, so there is no timing leak for ECDH or ECDSA signing.
902
 */
903
static void point_add(felem x3, felem y3, felem z3,
904
                      const felem x1, const felem y1, const felem z1,
905
                      const int mixed, const felem x2, const felem y2,
906
                      const felem z2)
907
0
{
908
0
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out;
909
0
    widefelem tmp, tmp2;
910
0
    limb z1_is_zero, z2_is_zero, x_equal, y_equal;
911
0
    limb points_equal;
912
913
0
    if (!mixed) {
914
        /* ftmp2 = z2^2 */
915
0
        felem_square(tmp, z2);
916
0
        felem_reduce(ftmp2, tmp);
917
918
        /* ftmp4 = z2^3 */
919
0
        felem_mul(tmp, ftmp2, z2);
920
0
        felem_reduce(ftmp4, tmp);
921
922
        /* ftmp4 = z2^3*y1 */
923
0
        felem_mul(tmp2, ftmp4, y1);
924
0
        felem_reduce(ftmp4, tmp2);
925
926
        /* ftmp2 = z2^2*x1 */
927
0
        felem_mul(tmp2, ftmp2, x1);
928
0
        felem_reduce(ftmp2, tmp2);
929
0
    } else {
930
        /*
931
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
932
         */
933
934
        /* ftmp4 = z2^3*y1 */
935
0
        felem_assign(ftmp4, y1);
936
937
        /* ftmp2 = z2^2*x1 */
938
0
        felem_assign(ftmp2, x1);
939
0
    }
940
941
    /* ftmp = z1^2 */
942
0
    felem_square(tmp, z1);
943
0
    felem_reduce(ftmp, tmp);
944
945
    /* ftmp3 = z1^3 */
946
0
    felem_mul(tmp, ftmp, z1);
947
0
    felem_reduce(ftmp3, tmp);
948
949
    /* tmp = z1^3*y2 */
950
0
    felem_mul(tmp, ftmp3, y2);
951
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
952
953
    /* ftmp3 = z1^3*y2 - z2^3*y1 */
954
0
    felem_diff_128_64(tmp, ftmp4);
955
    /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
956
0
    felem_reduce(ftmp3, tmp);
957
958
    /* tmp = z1^2*x2 */
959
0
    felem_mul(tmp, ftmp, x2);
960
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
961
962
    /* ftmp = z1^2*x2 - z2^2*x1 */
963
0
    felem_diff_128_64(tmp, ftmp2);
964
    /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
965
0
    felem_reduce(ftmp, tmp);
966
967
    /*
968
     * The formulae are incorrect if the points are equal, in affine coordinates
969
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
970
     * happens.
971
     *
972
     * We use bitwise operations to avoid potential side-channels introduced by
973
     * the short-circuiting behaviour of boolean operators.
974
     */
975
0
    x_equal = felem_is_zero(ftmp);
976
0
    y_equal = felem_is_zero(ftmp3);
977
    /*
978
     * The special case of either point being the point at infinity (z1 and/or
979
     * z2 are zero), is handled separately later on in this function, so we
980
     * avoid jumping to point_double here in those special cases.
981
     */
982
0
    z1_is_zero = felem_is_zero(z1);
983
0
    z2_is_zero = felem_is_zero(z2);
984
985
    /*
986
     * Compared to `ecp_nistp256.c` and `ecp_nistp521.c`, in this
987
     * specific implementation `felem_is_zero()` returns truth as `0x1`
988
     * (rather than `0xff..ff`).
989
     *
990
     * This implies that `~true` in this implementation becomes
991
     * `0xff..fe` (rather than `0x0`): for this reason, to be used in
992
     * the if expression, we mask out only the last bit in the next
993
     * line.
994
     */
995
0
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero)) & 1;
996
997
0
    if (points_equal) {
998
        /*
999
         * This is obviously not constant-time but, as mentioned before, this
1000
         * case never happens during single point multiplication, so there is no
1001
         * timing leak for ECDH or ECDSA signing.
1002
         */
1003
0
        point_double(x3, y3, z3, x1, y1, z1);
1004
0
        return;
1005
0
    }
1006
1007
    /* ftmp5 = z1*z2 */
1008
0
    if (!mixed) {
1009
0
        felem_mul(tmp, z1, z2);
1010
0
        felem_reduce(ftmp5, tmp);
1011
0
    } else {
1012
        /* special case z2 = 0 is handled later */
1013
0
        felem_assign(ftmp5, z1);
1014
0
    }
1015
1016
    /* z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) */
1017
0
    felem_mul(tmp, ftmp, ftmp5);
1018
0
    felem_reduce(z_out, tmp);
1019
1020
    /* ftmp = (z1^2*x2 - z2^2*x1)^2 */
1021
0
    felem_assign(ftmp5, ftmp);
1022
0
    felem_square(tmp, ftmp);
1023
0
    felem_reduce(ftmp, tmp);
1024
1025
    /* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */
1026
0
    felem_mul(tmp, ftmp, ftmp5);
1027
0
    felem_reduce(ftmp5, tmp);
1028
1029
    /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
1030
0
    felem_mul(tmp, ftmp2, ftmp);
1031
0
    felem_reduce(ftmp2, tmp);
1032
1033
    /* tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
1034
0
    felem_mul(tmp, ftmp4, ftmp5);
1035
    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
1036
1037
    /* tmp2 = (z1^3*y2 - z2^3*y1)^2 */
1038
0
    felem_square(tmp2, ftmp3);
1039
    /* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */
1040
1041
    /* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */
1042
0
    felem_diff_128_64(tmp2, ftmp5);
1043
    /* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */
1044
1045
    /* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
1046
0
    felem_assign(ftmp5, ftmp2);
1047
0
    felem_scalar(ftmp5, 2);
1048
    /* ftmp5[i] < 2 * 2^57 = 2^58 */
1049
1050
    /*-
1051
     * x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 -
1052
     *  2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2
1053
     */
1054
0
    felem_diff_128_64(tmp2, ftmp5);
1055
    /* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */
1056
0
    felem_reduce(x_out, tmp2);
1057
1058
    /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out */
1059
0
    felem_diff(ftmp2, x_out);
1060
    /* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */
1061
1062
    /*
1063
     * tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out)
1064
     */
1065
0
    felem_mul(tmp2, ftmp3, ftmp2);
1066
    /* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */
1067
1068
    /*-
1069
     * y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) -
1070
     *  z2^3*y1*(z1^2*x2 - z2^2*x1)^3
1071
     */
1072
0
    widefelem_diff(tmp2, tmp);
1073
    /* tmp2[i] < 2^118 + 2^120 < 2^121 */
1074
0
    felem_reduce(y_out, tmp2);
1075
1076
    /*
1077
     * the result (x_out, y_out, z_out) is incorrect if one of the inputs is
1078
     * the point at infinity, so we need to check for this separately
1079
     */
1080
1081
    /*
1082
     * if point 1 is at infinity, copy point 2 to output, and vice versa
1083
     */
1084
0
    copy_conditional(x_out, x2, z1_is_zero);
1085
0
    copy_conditional(x_out, x1, z2_is_zero);
1086
0
    copy_conditional(y_out, y2, z1_is_zero);
1087
0
    copy_conditional(y_out, y1, z2_is_zero);
1088
0
    copy_conditional(z_out, z2, z1_is_zero);
1089
0
    copy_conditional(z_out, z1, z2_is_zero);
1090
0
    felem_assign(x3, x_out);
1091
0
    felem_assign(y3, y_out);
1092
0
    felem_assign(z3, z_out);
1093
0
}
1094
1095
/*
1096
 * select_point selects the |idx|th point from a precomputation table and
1097
 * copies it to out.
1098
 * The pre_comp array argument should be size of |size| argument
1099
 */
1100
static void select_point(const u64 idx, unsigned int size,
1101
                         const felem pre_comp[][3], felem out[3])
1102
0
{
1103
0
    unsigned i, j;
1104
0
    limb *outlimbs = &out[0][0];
1105
1106
0
    memset(out, 0, sizeof(*out) * 3);
1107
0
    for (i = 0; i < size; i++) {
1108
0
        const limb *inlimbs = &pre_comp[i][0][0];
1109
0
        u64 mask = i ^ idx;
1110
0
        mask |= mask >> 4;
1111
0
        mask |= mask >> 2;
1112
0
        mask |= mask >> 1;
1113
0
        mask &= 1;
1114
0
        mask--;
1115
0
        for (j = 0; j < 4 * 3; j++)
1116
0
            outlimbs[j] |= inlimbs[j] & mask;
1117
0
    }
1118
0
}
1119
1120
/* get_bit returns the |i|th bit in |in| */
1121
static char get_bit(const felem_bytearray in, unsigned i)
1122
0
{
1123
0
    if (i >= 224)
1124
0
        return 0;
1125
0
    return (in[i >> 3] >> (i & 7)) & 1;
1126
0
}
1127
1128
/*
1129
 * Interleaved point multiplication using precomputed point multiples: The
1130
 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1131
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1132
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1133
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1134
 */
1135
static void batch_mul(felem x_out, felem y_out, felem z_out,
1136
                      const felem_bytearray scalars[],
1137
                      const unsigned num_points, const u8 *g_scalar,
1138
                      const int mixed, const felem pre_comp[][17][3],
1139
                      const felem g_pre_comp[2][16][3])
1140
0
{
1141
0
    int i, skip;
1142
0
    unsigned num;
1143
0
    unsigned gen_mul = (g_scalar != NULL);
1144
0
    felem nq[3], tmp[4];
1145
0
    u64 bits;
1146
0
    u8 sign, digit;
1147
1148
    /* set nq to the point at infinity */
1149
0
    memset(nq, 0, sizeof(nq));
1150
1151
    /*
1152
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1153
     * of the generator (two in each of the last 28 rounds) and additions of
1154
     * other points multiples (every 5th round).
1155
     */
1156
0
    skip = 1;                   /* save two point operations in the first
1157
                                 * round */
1158
0
    for (i = (num_points ? 220 : 27); i >= 0; --i) {
1159
        /* double */
1160
0
        if (!skip)
1161
0
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1162
1163
        /* add multiples of the generator */
1164
0
        if (gen_mul && (i <= 27)) {
1165
            /* first, look 28 bits upwards */
1166
0
            bits = get_bit(g_scalar, i + 196) << 3;
1167
0
            bits |= get_bit(g_scalar, i + 140) << 2;
1168
0
            bits |= get_bit(g_scalar, i + 84) << 1;
1169
0
            bits |= get_bit(g_scalar, i + 28);
1170
            /* select the point to add, in constant time */
1171
0
            select_point(bits, 16, g_pre_comp[1], tmp);
1172
1173
0
            if (!skip) {
1174
                /* value 1 below is argument for "mixed" */
1175
0
                point_add(nq[0], nq[1], nq[2],
1176
0
                          nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1177
0
            } else {
1178
0
                memcpy(nq, tmp, 3 * sizeof(felem));
1179
0
                skip = 0;
1180
0
            }
1181
1182
            /* second, look at the current position */
1183
0
            bits = get_bit(g_scalar, i + 168) << 3;
1184
0
            bits |= get_bit(g_scalar, i + 112) << 2;
1185
0
            bits |= get_bit(g_scalar, i + 56) << 1;
1186
0
            bits |= get_bit(g_scalar, i);
1187
            /* select the point to add, in constant time */
1188
0
            select_point(bits, 16, g_pre_comp[0], tmp);
1189
0
            point_add(nq[0], nq[1], nq[2],
1190
0
                      nq[0], nq[1], nq[2],
1191
0
                      1 /* mixed */ , tmp[0], tmp[1], tmp[2]);
1192
0
        }
1193
1194
        /* do other additions every 5 doublings */
1195
0
        if (num_points && (i % 5 == 0)) {
1196
            /* loop over all scalars */
1197
0
            for (num = 0; num < num_points; ++num) {
1198
0
                bits = get_bit(scalars[num], i + 4) << 5;
1199
0
                bits |= get_bit(scalars[num], i + 3) << 4;
1200
0
                bits |= get_bit(scalars[num], i + 2) << 3;
1201
0
                bits |= get_bit(scalars[num], i + 1) << 2;
1202
0
                bits |= get_bit(scalars[num], i) << 1;
1203
0
                bits |= get_bit(scalars[num], i - 1);
1204
0
                ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1205
1206
                /* select the point to add or subtract */
1207
0
                select_point(digit, 17, pre_comp[num], tmp);
1208
0
                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1209
                                            * point */
1210
0
                copy_conditional(tmp[1], tmp[3], sign);
1211
1212
0
                if (!skip) {
1213
0
                    point_add(nq[0], nq[1], nq[2],
1214
0
                              nq[0], nq[1], nq[2],
1215
0
                              mixed, tmp[0], tmp[1], tmp[2]);
1216
0
                } else {
1217
0
                    memcpy(nq, tmp, 3 * sizeof(felem));
1218
0
                    skip = 0;
1219
0
                }
1220
0
            }
1221
0
        }
1222
0
    }
1223
0
    felem_assign(x_out, nq[0]);
1224
0
    felem_assign(y_out, nq[1]);
1225
0
    felem_assign(z_out, nq[2]);
1226
0
}
1227
1228
/******************************************************************************/
1229
/*
1230
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1231
 */
1232
1233
static NISTP224_PRE_COMP *nistp224_pre_comp_new(void)
1234
0
{
1235
0
    NISTP224_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1236
1237
0
    if (!ret) {
1238
0
        ECerr(EC_F_NISTP224_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1239
0
        return ret;
1240
0
    }
1241
1242
0
    ret->references = 1;
1243
1244
0
    ret->lock = CRYPTO_THREAD_lock_new();
1245
0
    if (ret->lock == NULL) {
1246
0
        ECerr(EC_F_NISTP224_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1247
0
        OPENSSL_free(ret);
1248
0
        return NULL;
1249
0
    }
1250
0
    return ret;
1251
0
}
1252
1253
NISTP224_PRE_COMP *EC_nistp224_pre_comp_dup(NISTP224_PRE_COMP *p)
1254
0
{
1255
0
    int i;
1256
0
    if (p != NULL)
1257
0
        CRYPTO_UP_REF(&p->references, &i, p->lock);
1258
0
    return p;
1259
0
}
1260
1261
void EC_nistp224_pre_comp_free(NISTP224_PRE_COMP *p)
1262
0
{
1263
0
    int i;
1264
1265
0
    if (p == NULL)
1266
0
        return;
1267
1268
0
    CRYPTO_DOWN_REF(&p->references, &i, p->lock);
1269
0
    REF_PRINT_COUNT("EC_nistp224", x);
1270
0
    if (i > 0)
1271
0
        return;
1272
0
    REF_ASSERT_ISNT(i < 0);
1273
1274
0
    CRYPTO_THREAD_lock_free(p->lock);
1275
0
    OPENSSL_free(p);
1276
0
}
1277
1278
/******************************************************************************/
1279
/*
1280
 * OPENSSL EC_METHOD FUNCTIONS
1281
 */
1282
1283
int ec_GFp_nistp224_group_init(EC_GROUP *group)
1284
0
{
1285
0
    int ret;
1286
0
    ret = ec_GFp_simple_group_init(group);
1287
0
    group->a_is_minus3 = 1;
1288
0
    return ret;
1289
0
}
1290
1291
int ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1292
                                    const BIGNUM *a, const BIGNUM *b,
1293
                                    BN_CTX *ctx)
1294
0
{
1295
0
    int ret = 0;
1296
0
    BN_CTX *new_ctx = NULL;
1297
0
    BIGNUM *curve_p, *curve_a, *curve_b;
1298
1299
0
    if (ctx == NULL)
1300
0
        if ((ctx = new_ctx = BN_CTX_new()) == NULL)
1301
0
            return 0;
1302
0
    BN_CTX_start(ctx);
1303
0
    curve_p = BN_CTX_get(ctx);
1304
0
    curve_a = BN_CTX_get(ctx);
1305
0
    curve_b = BN_CTX_get(ctx);
1306
0
    if (curve_b == NULL)
1307
0
        goto err;
1308
0
    BN_bin2bn(nistp224_curve_params[0], sizeof(felem_bytearray), curve_p);
1309
0
    BN_bin2bn(nistp224_curve_params[1], sizeof(felem_bytearray), curve_a);
1310
0
    BN_bin2bn(nistp224_curve_params[2], sizeof(felem_bytearray), curve_b);
1311
0
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1312
0
        ECerr(EC_F_EC_GFP_NISTP224_GROUP_SET_CURVE,
1313
0
              EC_R_WRONG_CURVE_PARAMETERS);
1314
0
        goto err;
1315
0
    }
1316
0
    group->field_mod_func = BN_nist_mod_224;
1317
0
    ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1318
0
 err:
1319
0
    BN_CTX_end(ctx);
1320
0
    BN_CTX_free(new_ctx);
1321
0
    return ret;
1322
0
}
1323
1324
/*
1325
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1326
 * (X/Z^2, Y/Z^3)
1327
 */
1328
int ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group,
1329
                                                 const EC_POINT *point,
1330
                                                 BIGNUM *x, BIGNUM *y,
1331
                                                 BN_CTX *ctx)
1332
0
{
1333
0
    felem z1, z2, x_in, y_in, x_out, y_out;
1334
0
    widefelem tmp;
1335
1336
0
    if (EC_POINT_is_at_infinity(group, point)) {
1337
0
        ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES,
1338
0
              EC_R_POINT_AT_INFINITY);
1339
0
        return 0;
1340
0
    }
1341
0
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1342
0
        (!BN_to_felem(z1, point->Z)))
1343
0
        return 0;
1344
0
    felem_inv(z2, z1);
1345
0
    felem_square(tmp, z2);
1346
0
    felem_reduce(z1, tmp);
1347
0
    felem_mul(tmp, x_in, z1);
1348
0
    felem_reduce(x_in, tmp);
1349
0
    felem_contract(x_out, x_in);
1350
0
    if (x != NULL) {
1351
0
        if (!felem_to_BN(x, x_out)) {
1352
0
            ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES,
1353
0
                  ERR_R_BN_LIB);
1354
0
            return 0;
1355
0
        }
1356
0
    }
1357
0
    felem_mul(tmp, z1, z2);
1358
0
    felem_reduce(z1, tmp);
1359
0
    felem_mul(tmp, y_in, z1);
1360
0
    felem_reduce(y_in, tmp);
1361
0
    felem_contract(y_out, y_in);
1362
0
    if (y != NULL) {
1363
0
        if (!felem_to_BN(y, y_out)) {
1364
0
            ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES,
1365
0
                  ERR_R_BN_LIB);
1366
0
            return 0;
1367
0
        }
1368
0
    }
1369
0
    return 1;
1370
0
}
1371
1372
static void make_points_affine(size_t num, felem points[ /* num */ ][3],
1373
                               felem tmp_felems[ /* num+1 */ ])
1374
0
{
1375
    /*
1376
     * Runs in constant time, unless an input is the point at infinity (which
1377
     * normally shouldn't happen).
1378
     */
1379
0
    ec_GFp_nistp_points_make_affine_internal(num,
1380
0
                                             points,
1381
0
                                             sizeof(felem),
1382
0
                                             tmp_felems,
1383
0
                                             (void (*)(void *))felem_one,
1384
0
                                             felem_is_zero_int,
1385
0
                                             (void (*)(void *, const void *))
1386
0
                                             felem_assign,
1387
0
                                             (void (*)(void *, const void *))
1388
0
                                             felem_square_reduce, (void (*)
1389
0
                                                                   (void *,
1390
0
                                                                    const void
1391
0
                                                                    *,
1392
0
                                                                    const void
1393
0
                                                                    *))
1394
0
                                             felem_mul_reduce,
1395
0
                                             (void (*)(void *, const void *))
1396
0
                                             felem_inv,
1397
0
                                             (void (*)(void *, const void *))
1398
0
                                             felem_contract);
1399
0
}
1400
1401
/*
1402
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1403
 * values Result is stored in r (r can equal one of the inputs).
1404
 */
1405
int ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r,
1406
                               const BIGNUM *scalar, size_t num,
1407
                               const EC_POINT *points[],
1408
                               const BIGNUM *scalars[], BN_CTX *ctx)
1409
0
{
1410
0
    int ret = 0;
1411
0
    int j;
1412
0
    unsigned i;
1413
0
    int mixed = 0;
1414
0
    BIGNUM *x, *y, *z, *tmp_scalar;
1415
0
    felem_bytearray g_secret;
1416
0
    felem_bytearray *secrets = NULL;
1417
0
    felem (*pre_comp)[17][3] = NULL;
1418
0
    felem *tmp_felems = NULL;
1419
0
    int num_bytes;
1420
0
    int have_pre_comp = 0;
1421
0
    size_t num_points = num;
1422
0
    felem x_in, y_in, z_in, x_out, y_out, z_out;
1423
0
    NISTP224_PRE_COMP *pre = NULL;
1424
0
    const felem(*g_pre_comp)[16][3] = NULL;
1425
0
    EC_POINT *generator = NULL;
1426
0
    const EC_POINT *p = NULL;
1427
0
    const BIGNUM *p_scalar = NULL;
1428
1429
0
    BN_CTX_start(ctx);
1430
0
    x = BN_CTX_get(ctx);
1431
0
    y = BN_CTX_get(ctx);
1432
0
    z = BN_CTX_get(ctx);
1433
0
    tmp_scalar = BN_CTX_get(ctx);
1434
0
    if (tmp_scalar == NULL)
1435
0
        goto err;
1436
1437
0
    if (scalar != NULL) {
1438
0
        pre = group->pre_comp.nistp224;
1439
0
        if (pre)
1440
            /* we have precomputation, try to use it */
1441
0
            g_pre_comp = (const felem(*)[16][3])pre->g_pre_comp;
1442
0
        else
1443
            /* try to use the standard precomputation */
1444
0
            g_pre_comp = &gmul[0];
1445
0
        generator = EC_POINT_new(group);
1446
0
        if (generator == NULL)
1447
0
            goto err;
1448
        /* get the generator from precomputation */
1449
0
        if (!felem_to_BN(x, g_pre_comp[0][1][0]) ||
1450
0
            !felem_to_BN(y, g_pre_comp[0][1][1]) ||
1451
0
            !felem_to_BN(z, g_pre_comp[0][1][2])) {
1452
0
            ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
1453
0
            goto err;
1454
0
        }
1455
0
        if (!EC_POINT_set_Jprojective_coordinates_GFp(group,
1456
0
                                                      generator, x, y, z,
1457
0
                                                      ctx))
1458
0
            goto err;
1459
0
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1460
            /* precomputation matches generator */
1461
0
            have_pre_comp = 1;
1462
0
        else
1463
            /*
1464
             * we don't have valid precomputation: treat the generator as a
1465
             * random point
1466
             */
1467
0
            num_points = num_points + 1;
1468
0
    }
1469
1470
0
    if (num_points > 0) {
1471
0
        if (num_points >= 3) {
1472
            /*
1473
             * unless we precompute multiples for just one or two points,
1474
             * converting those into affine form is time well spent
1475
             */
1476
0
            mixed = 1;
1477
0
        }
1478
0
        secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1479
0
        pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1480
0
        if (mixed)
1481
0
            tmp_felems =
1482
0
                OPENSSL_malloc(sizeof(felem) * (num_points * 17 + 1));
1483
0
        if ((secrets == NULL) || (pre_comp == NULL)
1484
0
            || (mixed && (tmp_felems == NULL))) {
1485
0
            ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_MALLOC_FAILURE);
1486
0
            goto err;
1487
0
        }
1488
1489
        /*
1490
         * we treat NULL scalars as 0, and NULL points as points at infinity,
1491
         * i.e., they contribute nothing to the linear combination
1492
         */
1493
0
        for (i = 0; i < num_points; ++i) {
1494
0
            if (i == num) {
1495
                /* the generator */
1496
0
                p = EC_GROUP_get0_generator(group);
1497
0
                p_scalar = scalar;
1498
0
            } else {
1499
                /* the i^th point */
1500
0
                p = points[i];
1501
0
                p_scalar = scalars[i];
1502
0
            }
1503
0
            if ((p_scalar != NULL) && (p != NULL)) {
1504
                /* reduce scalar to 0 <= scalar < 2^224 */
1505
0
                if ((BN_num_bits(p_scalar) > 224)
1506
0
                    || (BN_is_negative(p_scalar))) {
1507
                    /*
1508
                     * this is an unusual input, and we don't guarantee
1509
                     * constant-timeness
1510
                     */
1511
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
1512
0
                        ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
1513
0
                        goto err;
1514
0
                    }
1515
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
1516
0
                                               secrets[i], sizeof(secrets[i]));
1517
0
                } else {
1518
0
                    num_bytes = BN_bn2lebinpad(p_scalar,
1519
0
                                               secrets[i], sizeof(secrets[i]));
1520
0
                }
1521
0
                if (num_bytes < 0) {
1522
0
                    ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
1523
0
                    goto err;
1524
0
                }
1525
                /* precompute multiples */
1526
0
                if ((!BN_to_felem(x_out, p->X)) ||
1527
0
                    (!BN_to_felem(y_out, p->Y)) ||
1528
0
                    (!BN_to_felem(z_out, p->Z)))
1529
0
                    goto err;
1530
0
                felem_assign(pre_comp[i][1][0], x_out);
1531
0
                felem_assign(pre_comp[i][1][1], y_out);
1532
0
                felem_assign(pre_comp[i][1][2], z_out);
1533
0
                for (j = 2; j <= 16; ++j) {
1534
0
                    if (j & 1) {
1535
0
                        point_add(pre_comp[i][j][0], pre_comp[i][j][1],
1536
0
                                  pre_comp[i][j][2], pre_comp[i][1][0],
1537
0
                                  pre_comp[i][1][1], pre_comp[i][1][2], 0,
1538
0
                                  pre_comp[i][j - 1][0],
1539
0
                                  pre_comp[i][j - 1][1],
1540
0
                                  pre_comp[i][j - 1][2]);
1541
0
                    } else {
1542
0
                        point_double(pre_comp[i][j][0], pre_comp[i][j][1],
1543
0
                                     pre_comp[i][j][2], pre_comp[i][j / 2][0],
1544
0
                                     pre_comp[i][j / 2][1],
1545
0
                                     pre_comp[i][j / 2][2]);
1546
0
                    }
1547
0
                }
1548
0
            }
1549
0
        }
1550
0
        if (mixed)
1551
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
1552
0
    }
1553
1554
    /* the scalar for the generator */
1555
0
    if ((scalar != NULL) && (have_pre_comp)) {
1556
0
        memset(g_secret, 0, sizeof(g_secret));
1557
        /* reduce scalar to 0 <= scalar < 2^224 */
1558
0
        if ((BN_num_bits(scalar) > 224) || (BN_is_negative(scalar))) {
1559
            /*
1560
             * this is an unusual input, and we don't guarantee
1561
             * constant-timeness
1562
             */
1563
0
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
1564
0
                ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
1565
0
                goto err;
1566
0
            }
1567
0
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
1568
0
        } else {
1569
0
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
1570
0
        }
1571
        /* do the multiplication with generator precomputation */
1572
0
        batch_mul(x_out, y_out, z_out,
1573
0
                  (const felem_bytearray(*))secrets, num_points,
1574
0
                  g_secret,
1575
0
                  mixed, (const felem(*)[17][3])pre_comp, g_pre_comp);
1576
0
    } else {
1577
        /* do the multiplication without generator precomputation */
1578
0
        batch_mul(x_out, y_out, z_out,
1579
0
                  (const felem_bytearray(*))secrets, num_points,
1580
0
                  NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
1581
0
    }
1582
    /* reduce the output to its unique minimal representation */
1583
0
    felem_contract(x_in, x_out);
1584
0
    felem_contract(y_in, y_out);
1585
0
    felem_contract(z_in, z_out);
1586
0
    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
1587
0
        (!felem_to_BN(z, z_in))) {
1588
0
        ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
1589
0
        goto err;
1590
0
    }
1591
0
    ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
1592
1593
0
 err:
1594
0
    BN_CTX_end(ctx);
1595
0
    EC_POINT_free(generator);
1596
0
    OPENSSL_free(secrets);
1597
0
    OPENSSL_free(pre_comp);
1598
0
    OPENSSL_free(tmp_felems);
1599
0
    return ret;
1600
0
}
1601
1602
int ec_GFp_nistp224_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
1603
0
{
1604
0
    int ret = 0;
1605
0
    NISTP224_PRE_COMP *pre = NULL;
1606
0
    int i, j;
1607
0
    BN_CTX *new_ctx = NULL;
1608
0
    BIGNUM *x, *y;
1609
0
    EC_POINT *generator = NULL;
1610
0
    felem tmp_felems[32];
1611
1612
    /* throw away old precomputation */
1613
0
    EC_pre_comp_free(group);
1614
0
    if (ctx == NULL)
1615
0
        if ((ctx = new_ctx = BN_CTX_new()) == NULL)
1616
0
            return 0;
1617
0
    BN_CTX_start(ctx);
1618
0
    x = BN_CTX_get(ctx);
1619
0
    y = BN_CTX_get(ctx);
1620
0
    if (y == NULL)
1621
0
        goto err;
1622
    /* get the generator */
1623
0
    if (group->generator == NULL)
1624
0
        goto err;
1625
0
    generator = EC_POINT_new(group);
1626
0
    if (generator == NULL)
1627
0
        goto err;
1628
0
    BN_bin2bn(nistp224_curve_params[3], sizeof(felem_bytearray), x);
1629
0
    BN_bin2bn(nistp224_curve_params[4], sizeof(felem_bytearray), y);
1630
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
1631
0
        goto err;
1632
0
    if ((pre = nistp224_pre_comp_new()) == NULL)
1633
0
        goto err;
1634
    /*
1635
     * if the generator is the standard one, use built-in precomputation
1636
     */
1637
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
1638
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
1639
0
        goto done;
1640
0
    }
1641
0
    if ((!BN_to_felem(pre->g_pre_comp[0][1][0], group->generator->X)) ||
1642
0
        (!BN_to_felem(pre->g_pre_comp[0][1][1], group->generator->Y)) ||
1643
0
        (!BN_to_felem(pre->g_pre_comp[0][1][2], group->generator->Z)))
1644
0
        goto err;
1645
    /*
1646
     * compute 2^56*G, 2^112*G, 2^168*G for the first table, 2^28*G, 2^84*G,
1647
     * 2^140*G, 2^196*G for the second one
1648
     */
1649
0
    for (i = 1; i <= 8; i <<= 1) {
1650
0
        point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
1651
0
                     pre->g_pre_comp[1][i][2], pre->g_pre_comp[0][i][0],
1652
0
                     pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]);
1653
0
        for (j = 0; j < 27; ++j) {
1654
0
            point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
1655
0
                         pre->g_pre_comp[1][i][2], pre->g_pre_comp[1][i][0],
1656
0
                         pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
1657
0
        }
1658
0
        if (i == 8)
1659
0
            break;
1660
0
        point_double(pre->g_pre_comp[0][2 * i][0],
1661
0
                     pre->g_pre_comp[0][2 * i][1],
1662
0
                     pre->g_pre_comp[0][2 * i][2], pre->g_pre_comp[1][i][0],
1663
0
                     pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
1664
0
        for (j = 0; j < 27; ++j) {
1665
0
            point_double(pre->g_pre_comp[0][2 * i][0],
1666
0
                         pre->g_pre_comp[0][2 * i][1],
1667
0
                         pre->g_pre_comp[0][2 * i][2],
1668
0
                         pre->g_pre_comp[0][2 * i][0],
1669
0
                         pre->g_pre_comp[0][2 * i][1],
1670
0
                         pre->g_pre_comp[0][2 * i][2]);
1671
0
        }
1672
0
    }
1673
0
    for (i = 0; i < 2; i++) {
1674
        /* g_pre_comp[i][0] is the point at infinity */
1675
0
        memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0]));
1676
        /* the remaining multiples */
1677
        /* 2^56*G + 2^112*G resp. 2^84*G + 2^140*G */
1678
0
        point_add(pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1],
1679
0
                  pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0],
1680
0
                  pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2],
1681
0
                  0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1682
0
                  pre->g_pre_comp[i][2][2]);
1683
        /* 2^56*G + 2^168*G resp. 2^84*G + 2^196*G */
1684
0
        point_add(pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1],
1685
0
                  pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0],
1686
0
                  pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
1687
0
                  0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1688
0
                  pre->g_pre_comp[i][2][2]);
1689
        /* 2^112*G + 2^168*G resp. 2^140*G + 2^196*G */
1690
0
        point_add(pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1],
1691
0
                  pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0],
1692
0
                  pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
1693
0
                  0, pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1],
1694
0
                  pre->g_pre_comp[i][4][2]);
1695
        /*
1696
         * 2^56*G + 2^112*G + 2^168*G resp. 2^84*G + 2^140*G + 2^196*G
1697
         */
1698
0
        point_add(pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1],
1699
0
                  pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0],
1700
0
                  pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],
1701
0
                  0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1702
0
                  pre->g_pre_comp[i][2][2]);
1703
0
        for (j = 1; j < 8; ++j) {
1704
            /* odd multiples: add G resp. 2^28*G */
1705
0
            point_add(pre->g_pre_comp[i][2 * j + 1][0],
1706
0
                      pre->g_pre_comp[i][2 * j + 1][1],
1707
0
                      pre->g_pre_comp[i][2 * j + 1][2],
1708
0
                      pre->g_pre_comp[i][2 * j][0],
1709
0
                      pre->g_pre_comp[i][2 * j][1],
1710
0
                      pre->g_pre_comp[i][2 * j][2], 0,
1711
0
                      pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1],
1712
0
                      pre->g_pre_comp[i][1][2]);
1713
0
        }
1714
0
    }
1715
0
    make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_felems);
1716
1717
0
 done:
1718
0
    SETPRECOMP(group, nistp224, pre);
1719
0
    pre = NULL;
1720
0
    ret = 1;
1721
0
 err:
1722
0
    BN_CTX_end(ctx);
1723
0
    EC_POINT_free(generator);
1724
0
    BN_CTX_free(new_ctx);
1725
0
    EC_nistp224_pre_comp_free(pre);
1726
0
    return ret;
1727
0
}
1728
1729
int ec_GFp_nistp224_have_precompute_mult(const EC_GROUP *group)
1730
0
{
1731
0
    return HAVEPRECOMP(group, nistp224);
1732
0
}
1733
1734
#endif