/src/openssl111/crypto/lhash/lhash.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the OpenSSL license (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #include <stdio.h> |
11 | | #include <string.h> |
12 | | #include <stdlib.h> |
13 | | #include <openssl/crypto.h> |
14 | | #include <openssl/lhash.h> |
15 | | #include <openssl/err.h> |
16 | | #include "crypto/ctype.h" |
17 | | #include "crypto/lhash.h" |
18 | | #include "lhash_local.h" |
19 | | |
20 | | /* |
21 | | * A hashing implementation that appears to be based on the linear hashing |
22 | | * algorithm: |
23 | | * https://en.wikipedia.org/wiki/Linear_hashing |
24 | | * |
25 | | * Litwin, Witold (1980), "Linear hashing: A new tool for file and table |
26 | | * addressing", Proc. 6th Conference on Very Large Databases: 212-223 |
27 | | * https://hackthology.com/pdfs/Litwin-1980-Linear_Hashing.pdf |
28 | | * |
29 | | * From the Wikipedia article "Linear hashing is used in the BDB Berkeley |
30 | | * database system, which in turn is used by many software systems such as |
31 | | * OpenLDAP, using a C implementation derived from the CACM article and first |
32 | | * published on the Usenet in 1988 by Esmond Pitt." |
33 | | * |
34 | | * The CACM paper is available here: |
35 | | * https://pdfs.semanticscholar.org/ff4d/1c5deca6269cc316bfd952172284dbf610ee.pdf |
36 | | */ |
37 | | |
38 | | #undef MIN_NODES |
39 | 6 | #define MIN_NODES 16 |
40 | 2 | #define UP_LOAD (2*LH_LOAD_MULT) /* load times 256 (default 2) */ |
41 | 2 | #define DOWN_LOAD (LH_LOAD_MULT) /* load times 256 (default 1) */ |
42 | | |
43 | | static int expand(OPENSSL_LHASH *lh); |
44 | | static void contract(OPENSSL_LHASH *lh); |
45 | | static OPENSSL_LH_NODE **getrn(OPENSSL_LHASH *lh, const void *data, unsigned long *rhash); |
46 | | |
47 | | OPENSSL_LHASH *OPENSSL_LH_new(OPENSSL_LH_HASHFUNC h, OPENSSL_LH_COMPFUNC c) |
48 | 2 | { |
49 | 2 | OPENSSL_LHASH *ret; |
50 | | |
51 | 2 | if ((ret = OPENSSL_zalloc(sizeof(*ret))) == NULL) { |
52 | | /* |
53 | | * Do not set the error code, because the ERR code uses LHASH |
54 | | * and we want to avoid possible endless error loop. |
55 | | * CRYPTOerr(CRYPTO_F_OPENSSL_LH_NEW, ERR_R_MALLOC_FAILURE); |
56 | | */ |
57 | 0 | return NULL; |
58 | 0 | } |
59 | 2 | if ((ret->b = OPENSSL_zalloc(sizeof(*ret->b) * MIN_NODES)) == NULL) |
60 | 0 | goto err; |
61 | 2 | ret->comp = ((c == NULL) ? (OPENSSL_LH_COMPFUNC)strcmp : c); |
62 | 2 | ret->hash = ((h == NULL) ? (OPENSSL_LH_HASHFUNC)OPENSSL_LH_strhash : h); |
63 | 2 | ret->num_nodes = MIN_NODES / 2; |
64 | 2 | ret->num_alloc_nodes = MIN_NODES; |
65 | 2 | ret->pmax = MIN_NODES / 2; |
66 | 2 | ret->up_load = UP_LOAD; |
67 | 2 | ret->down_load = DOWN_LOAD; |
68 | 2 | return ret; |
69 | | |
70 | 0 | err: |
71 | 0 | OPENSSL_free(ret->b); |
72 | 0 | OPENSSL_free(ret); |
73 | 0 | return NULL; |
74 | 2 | } |
75 | | |
76 | | void OPENSSL_LH_free(OPENSSL_LHASH *lh) |
77 | 4 | { |
78 | 4 | unsigned int i; |
79 | 4 | OPENSSL_LH_NODE *n, *nn; |
80 | | |
81 | 4 | if (lh == NULL) |
82 | 2 | return; |
83 | | |
84 | 2.43k | for (i = 0; i < lh->num_nodes; i++) { |
85 | 2.43k | n = lh->b[i]; |
86 | 7.30k | while (n != NULL) { |
87 | 4.86k | nn = n->next; |
88 | 4.86k | OPENSSL_free(n); |
89 | 4.86k | n = nn; |
90 | 4.86k | } |
91 | 2.43k | } |
92 | 2 | OPENSSL_free(lh->b); |
93 | 2 | OPENSSL_free(lh); |
94 | 2 | } |
95 | | |
96 | | void *OPENSSL_LH_insert(OPENSSL_LHASH *lh, void *data) |
97 | 15.1k | { |
98 | 15.1k | unsigned long hash; |
99 | 15.1k | OPENSSL_LH_NODE *nn, **rn; |
100 | 15.1k | void *ret; |
101 | | |
102 | 15.1k | lh->error = 0; |
103 | 15.1k | if ((lh->up_load <= (lh->num_items * LH_LOAD_MULT / lh->num_nodes)) && !expand(lh)) |
104 | 0 | return NULL; /* 'lh->error++' already done in 'expand' */ |
105 | | |
106 | 15.1k | rn = getrn(lh, data, &hash); |
107 | | |
108 | 15.1k | if (*rn == NULL) { |
109 | 4.86k | if ((nn = OPENSSL_malloc(sizeof(*nn))) == NULL) { |
110 | 0 | lh->error++; |
111 | 0 | return NULL; |
112 | 0 | } |
113 | 4.86k | nn->data = data; |
114 | 4.86k | nn->next = NULL; |
115 | 4.86k | nn->hash = hash; |
116 | 4.86k | *rn = nn; |
117 | 4.86k | ret = NULL; |
118 | 4.86k | lh->num_insert++; |
119 | 4.86k | lh->num_items++; |
120 | 10.3k | } else { /* replace same key */ |
121 | 10.3k | ret = (*rn)->data; |
122 | 10.3k | (*rn)->data = data; |
123 | 10.3k | lh->num_replace++; |
124 | 10.3k | } |
125 | 15.1k | return ret; |
126 | 15.1k | } |
127 | | |
128 | | void *OPENSSL_LH_delete(OPENSSL_LHASH *lh, const void *data) |
129 | 0 | { |
130 | 0 | unsigned long hash; |
131 | 0 | OPENSSL_LH_NODE *nn, **rn; |
132 | 0 | void *ret; |
133 | |
|
134 | 0 | lh->error = 0; |
135 | 0 | rn = getrn(lh, data, &hash); |
136 | |
|
137 | 0 | if (*rn == NULL) { |
138 | 0 | lh->num_no_delete++; |
139 | 0 | return NULL; |
140 | 0 | } else { |
141 | 0 | nn = *rn; |
142 | 0 | *rn = nn->next; |
143 | 0 | ret = nn->data; |
144 | 0 | OPENSSL_free(nn); |
145 | 0 | lh->num_delete++; |
146 | 0 | } |
147 | | |
148 | 0 | lh->num_items--; |
149 | 0 | if ((lh->num_nodes > MIN_NODES) && |
150 | 0 | (lh->down_load >= (lh->num_items * LH_LOAD_MULT / lh->num_nodes))) |
151 | 0 | contract(lh); |
152 | |
|
153 | 0 | return ret; |
154 | 0 | } |
155 | | |
156 | | void *OPENSSL_LH_retrieve(OPENSSL_LHASH *lh, const void *data) |
157 | 58 | { |
158 | 58 | unsigned long hash; |
159 | 58 | OPENSSL_LH_NODE **rn; |
160 | 58 | void *ret; |
161 | | |
162 | 58 | tsan_store((TSAN_QUALIFIER int *)&lh->error, 0); |
163 | | |
164 | 58 | rn = getrn(lh, data, &hash); |
165 | | |
166 | 58 | if (*rn == NULL) { |
167 | 58 | tsan_counter(&lh->num_retrieve_miss); |
168 | 58 | return NULL; |
169 | 58 | } else { |
170 | 0 | ret = (*rn)->data; |
171 | 0 | tsan_counter(&lh->num_retrieve); |
172 | 0 | } |
173 | | |
174 | 0 | return ret; |
175 | 58 | } |
176 | | |
177 | | static void doall_util_fn(OPENSSL_LHASH *lh, int use_arg, |
178 | | OPENSSL_LH_DOALL_FUNC func, |
179 | | OPENSSL_LH_DOALL_FUNCARG func_arg, void *arg) |
180 | 0 | { |
181 | 0 | int i; |
182 | 0 | OPENSSL_LH_NODE *a, *n; |
183 | |
|
184 | 0 | if (lh == NULL) |
185 | 0 | return; |
186 | | |
187 | | /* |
188 | | * reverse the order so we search from 'top to bottom' We were having |
189 | | * memory leaks otherwise |
190 | | */ |
191 | 0 | for (i = lh->num_nodes - 1; i >= 0; i--) { |
192 | 0 | a = lh->b[i]; |
193 | 0 | while (a != NULL) { |
194 | 0 | n = a->next; |
195 | 0 | if (use_arg) |
196 | 0 | func_arg(a->data, arg); |
197 | 0 | else |
198 | 0 | func(a->data); |
199 | 0 | a = n; |
200 | 0 | } |
201 | 0 | } |
202 | 0 | } |
203 | | |
204 | | void OPENSSL_LH_doall(OPENSSL_LHASH *lh, OPENSSL_LH_DOALL_FUNC func) |
205 | 0 | { |
206 | 0 | doall_util_fn(lh, 0, func, (OPENSSL_LH_DOALL_FUNCARG)0, NULL); |
207 | 0 | } |
208 | | |
209 | | void OPENSSL_LH_doall_arg(OPENSSL_LHASH *lh, OPENSSL_LH_DOALL_FUNCARG func, void *arg) |
210 | 0 | { |
211 | 0 | doall_util_fn(lh, 1, (OPENSSL_LH_DOALL_FUNC)0, func, arg); |
212 | 0 | } |
213 | | |
214 | | static int expand(OPENSSL_LHASH *lh) |
215 | 2.41k | { |
216 | 2.41k | OPENSSL_LH_NODE **n, **n1, **n2, *np; |
217 | 2.41k | unsigned int p, pmax, nni, j; |
218 | 2.41k | unsigned long hash; |
219 | | |
220 | 2.41k | nni = lh->num_alloc_nodes; |
221 | 2.41k | p = lh->p; |
222 | 2.41k | pmax = lh->pmax; |
223 | 2.41k | if (p + 1 >= pmax) { |
224 | 14 | j = nni * 2; |
225 | 14 | n = OPENSSL_realloc(lh->b, sizeof(OPENSSL_LH_NODE *) * j); |
226 | 14 | if (n == NULL) { |
227 | 0 | lh->error++; |
228 | 0 | return 0; |
229 | 0 | } |
230 | 14 | lh->b = n; |
231 | 14 | memset(n + nni, 0, sizeof(*n) * (j - nni)); |
232 | 14 | lh->pmax = nni; |
233 | 14 | lh->num_alloc_nodes = j; |
234 | 14 | lh->num_expand_reallocs++; |
235 | 14 | lh->p = 0; |
236 | 2.40k | } else { |
237 | 2.40k | lh->p++; |
238 | 2.40k | } |
239 | | |
240 | 2.41k | lh->num_nodes++; |
241 | 2.41k | lh->num_expands++; |
242 | 2.41k | n1 = &(lh->b[p]); |
243 | 2.41k | n2 = &(lh->b[p + pmax]); |
244 | 2.41k | *n2 = NULL; |
245 | | |
246 | 11.3k | for (np = *n1; np != NULL;) { |
247 | 8.90k | hash = np->hash; |
248 | 8.90k | if ((hash % nni) != p) { /* move it */ |
249 | 704 | *n1 = (*n1)->next; |
250 | 704 | np->next = *n2; |
251 | 704 | *n2 = np; |
252 | 704 | } else |
253 | 8.20k | n1 = &((*n1)->next); |
254 | 8.90k | np = *n1; |
255 | 8.90k | } |
256 | | |
257 | 2.41k | return 1; |
258 | 2.41k | } |
259 | | |
260 | | static void contract(OPENSSL_LHASH *lh) |
261 | 0 | { |
262 | 0 | OPENSSL_LH_NODE **n, *n1, *np; |
263 | |
|
264 | 0 | np = lh->b[lh->p + lh->pmax - 1]; |
265 | 0 | lh->b[lh->p + lh->pmax - 1] = NULL; /* 24/07-92 - eay - weird but :-( */ |
266 | 0 | if (lh->p == 0) { |
267 | 0 | n = OPENSSL_realloc(lh->b, |
268 | 0 | (unsigned int)(sizeof(OPENSSL_LH_NODE *) * lh->pmax)); |
269 | 0 | if (n == NULL) { |
270 | | /* fputs("realloc error in lhash",stderr); */ |
271 | 0 | lh->error++; |
272 | 0 | return; |
273 | 0 | } |
274 | 0 | lh->num_contract_reallocs++; |
275 | 0 | lh->num_alloc_nodes /= 2; |
276 | 0 | lh->pmax /= 2; |
277 | 0 | lh->p = lh->pmax - 1; |
278 | 0 | lh->b = n; |
279 | 0 | } else |
280 | 0 | lh->p--; |
281 | | |
282 | 0 | lh->num_nodes--; |
283 | 0 | lh->num_contracts++; |
284 | |
|
285 | 0 | n1 = lh->b[(int)lh->p]; |
286 | 0 | if (n1 == NULL) |
287 | 0 | lh->b[(int)lh->p] = np; |
288 | 0 | else { |
289 | 0 | while (n1->next != NULL) |
290 | 0 | n1 = n1->next; |
291 | 0 | n1->next = np; |
292 | 0 | } |
293 | 0 | } |
294 | | |
295 | | static OPENSSL_LH_NODE **getrn(OPENSSL_LHASH *lh, |
296 | | const void *data, unsigned long *rhash) |
297 | 15.2k | { |
298 | 15.2k | OPENSSL_LH_NODE **ret, *n1; |
299 | 15.2k | unsigned long hash, nn; |
300 | 15.2k | OPENSSL_LH_COMPFUNC cf; |
301 | | |
302 | 15.2k | hash = (*(lh->hash)) (data); |
303 | 15.2k | tsan_counter(&lh->num_hash_calls); |
304 | 15.2k | *rhash = hash; |
305 | | |
306 | 15.2k | nn = hash % lh->pmax; |
307 | 15.2k | if (nn < lh->p) |
308 | 8.93k | nn = hash % lh->num_alloc_nodes; |
309 | | |
310 | 15.2k | cf = lh->comp; |
311 | 15.2k | ret = &(lh->b[(int)nn]); |
312 | 44.6k | for (n1 = *ret; n1 != NULL; n1 = n1->next) { |
313 | 39.6k | tsan_counter(&lh->num_hash_comps); |
314 | 39.6k | if (n1->hash != hash) { |
315 | 29.1k | ret = &(n1->next); |
316 | 29.1k | continue; |
317 | 29.1k | } |
318 | 39.6k | tsan_counter(&lh->num_comp_calls); |
319 | 10.5k | if (cf(n1->data, data) == 0) |
320 | 10.3k | break; |
321 | 246 | ret = &(n1->next); |
322 | 246 | } |
323 | 15.2k | return ret; |
324 | 15.2k | } |
325 | | |
326 | | /* |
327 | | * The following hash seems to work very well on normal text strings no |
328 | | * collisions on /usr/dict/words and it distributes on %2^n quite well, not |
329 | | * as good as MD5, but still good. |
330 | | */ |
331 | | unsigned long OPENSSL_LH_strhash(const char *c) |
332 | 0 | { |
333 | 0 | unsigned long ret = 0; |
334 | 0 | long n; |
335 | 0 | unsigned long v; |
336 | 0 | int r; |
337 | |
|
338 | 0 | if ((c == NULL) || (*c == '\0')) |
339 | 0 | return ret; |
340 | | |
341 | 0 | n = 0x100; |
342 | 0 | while (*c) { |
343 | 0 | v = n | (*c); |
344 | 0 | n += 0x100; |
345 | 0 | r = (int)((v >> 2) ^ v) & 0x0f; |
346 | | /* cast to uint64_t to avoid 32 bit shift of 32 bit value */ |
347 | 0 | ret = (ret << r) | (unsigned long)((uint64_t)ret >> (32 - r)); |
348 | 0 | ret &= 0xFFFFFFFFL; |
349 | 0 | ret ^= v * v; |
350 | 0 | c++; |
351 | 0 | } |
352 | 0 | return (ret >> 16) ^ ret; |
353 | 0 | } |
354 | | |
355 | | unsigned long openssl_lh_strcasehash(const char *c) |
356 | 0 | { |
357 | 0 | unsigned long ret = 0; |
358 | 0 | long n; |
359 | 0 | unsigned long v; |
360 | 0 | int r; |
361 | |
|
362 | 0 | if (c == NULL || *c == '\0') |
363 | 0 | return ret; |
364 | | |
365 | 0 | for (n = 0x100; *c != '\0'; n += 0x100) { |
366 | 0 | v = n | ossl_tolower(*c); |
367 | 0 | r = (int)((v >> 2) ^ v) & 0x0f; |
368 | | /* cast to uint64_t to avoid 32 bit shift of 32 bit value */ |
369 | 0 | ret = (ret << r) | (unsigned long)((uint64_t)ret >> (32 - r)); |
370 | 0 | ret &= 0xFFFFFFFFL; |
371 | 0 | ret ^= v * v; |
372 | 0 | c++; |
373 | 0 | } |
374 | 0 | return (ret >> 16) ^ ret; |
375 | 0 | } |
376 | | |
377 | | unsigned long OPENSSL_LH_num_items(const OPENSSL_LHASH *lh) |
378 | 2 | { |
379 | 2 | return lh ? lh->num_items : 0; |
380 | 2 | } |
381 | | |
382 | | unsigned long OPENSSL_LH_get_down_load(const OPENSSL_LHASH *lh) |
383 | 0 | { |
384 | 0 | return lh->down_load; |
385 | 0 | } |
386 | | |
387 | | void OPENSSL_LH_set_down_load(OPENSSL_LHASH *lh, unsigned long down_load) |
388 | 0 | { |
389 | 0 | lh->down_load = down_load; |
390 | 0 | } |
391 | | |
392 | | int OPENSSL_LH_error(OPENSSL_LHASH *lh) |
393 | 0 | { |
394 | 0 | return lh->error; |
395 | 0 | } |