/src/openssl111/crypto/mem_sec.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2015-2020 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * Copyright 2004-2014, Akamai Technologies. All Rights Reserved. |
4 | | * |
5 | | * Licensed under the OpenSSL license (the "License"). You may not use |
6 | | * this file except in compliance with the License. You can obtain a copy |
7 | | * in the file LICENSE in the source distribution or at |
8 | | * https://www.openssl.org/source/license.html |
9 | | */ |
10 | | |
11 | | /* |
12 | | * This file is in two halves. The first half implements the public API |
13 | | * to be used by external consumers, and to be used by OpenSSL to store |
14 | | * data in a "secure arena." The second half implements the secure arena. |
15 | | * For details on that implementation, see below (look for uppercase |
16 | | * "SECURE HEAP IMPLEMENTATION"). |
17 | | */ |
18 | | #include "e_os.h" |
19 | | #include <openssl/crypto.h> |
20 | | |
21 | | #include <string.h> |
22 | | |
23 | | /* e_os.h defines OPENSSL_SECURE_MEMORY if secure memory can be implemented */ |
24 | | #ifdef OPENSSL_SECURE_MEMORY |
25 | | # include <stdlib.h> |
26 | | # include <assert.h> |
27 | | # include <unistd.h> |
28 | | # include <sys/types.h> |
29 | | # include <sys/mman.h> |
30 | | # if defined(OPENSSL_SYS_LINUX) |
31 | | # include <sys/syscall.h> |
32 | | # if defined(SYS_mlock2) |
33 | | # include <linux/mman.h> |
34 | | # include <errno.h> |
35 | | # endif |
36 | | # endif |
37 | | # if defined(__FreeBSD__) |
38 | | # define MADV_DONTDUMP MADV_NOCORE |
39 | | # endif |
40 | | # if !defined(MAP_CONCEAL) |
41 | 0 | # define MAP_CONCEAL 0 |
42 | | # endif |
43 | | # include <sys/param.h> |
44 | | # include <sys/stat.h> |
45 | | # include <fcntl.h> |
46 | | #endif |
47 | | |
48 | 0 | #define CLEAR(p, s) OPENSSL_cleanse(p, s) |
49 | | #ifndef PAGE_SIZE |
50 | 0 | # define PAGE_SIZE 4096 |
51 | | #endif |
52 | | #if !defined(MAP_ANON) && defined(MAP_ANONYMOUS) |
53 | | # define MAP_ANON MAP_ANONYMOUS |
54 | | #endif |
55 | | |
56 | | #ifdef OPENSSL_SECURE_MEMORY |
57 | | static size_t secure_mem_used; |
58 | | |
59 | | static int secure_mem_initialized; |
60 | | |
61 | | static CRYPTO_RWLOCK *sec_malloc_lock = NULL; |
62 | | |
63 | | /* |
64 | | * These are the functions that must be implemented by a secure heap (sh). |
65 | | */ |
66 | | static int sh_init(size_t size, int minsize); |
67 | | static void *sh_malloc(size_t size); |
68 | | static void sh_free(void *ptr); |
69 | | static void sh_done(void); |
70 | | static size_t sh_actual_size(char *ptr); |
71 | | static int sh_allocated(const char *ptr); |
72 | | #endif |
73 | | |
74 | | int CRYPTO_secure_malloc_init(size_t size, int minsize) |
75 | 0 | { |
76 | 0 | #ifdef OPENSSL_SECURE_MEMORY |
77 | 0 | int ret = 0; |
78 | |
|
79 | 0 | if (!secure_mem_initialized) { |
80 | 0 | sec_malloc_lock = CRYPTO_THREAD_lock_new(); |
81 | 0 | if (sec_malloc_lock == NULL) |
82 | 0 | return 0; |
83 | 0 | if ((ret = sh_init(size, minsize)) != 0) { |
84 | 0 | secure_mem_initialized = 1; |
85 | 0 | } else { |
86 | 0 | CRYPTO_THREAD_lock_free(sec_malloc_lock); |
87 | 0 | sec_malloc_lock = NULL; |
88 | 0 | } |
89 | 0 | } |
90 | | |
91 | 0 | return ret; |
92 | | #else |
93 | | return 0; |
94 | | #endif /* OPENSSL_SECURE_MEMORY */ |
95 | 0 | } |
96 | | |
97 | | int CRYPTO_secure_malloc_done(void) |
98 | 2 | { |
99 | 2 | #ifdef OPENSSL_SECURE_MEMORY |
100 | 2 | if (secure_mem_used == 0) { |
101 | 2 | sh_done(); |
102 | 2 | secure_mem_initialized = 0; |
103 | 2 | CRYPTO_THREAD_lock_free(sec_malloc_lock); |
104 | 2 | sec_malloc_lock = NULL; |
105 | 2 | return 1; |
106 | 2 | } |
107 | 0 | #endif /* OPENSSL_SECURE_MEMORY */ |
108 | 0 | return 0; |
109 | 2 | } |
110 | | |
111 | | int CRYPTO_secure_malloc_initialized(void) |
112 | 0 | { |
113 | 0 | #ifdef OPENSSL_SECURE_MEMORY |
114 | 0 | return secure_mem_initialized; |
115 | | #else |
116 | | return 0; |
117 | | #endif /* OPENSSL_SECURE_MEMORY */ |
118 | 0 | } |
119 | | |
120 | | void *CRYPTO_secure_malloc(size_t num, const char *file, int line) |
121 | 0 | { |
122 | 0 | #ifdef OPENSSL_SECURE_MEMORY |
123 | 0 | void *ret; |
124 | 0 | size_t actual_size; |
125 | |
|
126 | 0 | if (!secure_mem_initialized) { |
127 | 0 | return CRYPTO_malloc(num, file, line); |
128 | 0 | } |
129 | 0 | CRYPTO_THREAD_write_lock(sec_malloc_lock); |
130 | 0 | ret = sh_malloc(num); |
131 | 0 | actual_size = ret ? sh_actual_size(ret) : 0; |
132 | 0 | secure_mem_used += actual_size; |
133 | 0 | CRYPTO_THREAD_unlock(sec_malloc_lock); |
134 | 0 | return ret; |
135 | | #else |
136 | | return CRYPTO_malloc(num, file, line); |
137 | | #endif /* OPENSSL_SECURE_MEMORY */ |
138 | 0 | } |
139 | | |
140 | | void *CRYPTO_secure_zalloc(size_t num, const char *file, int line) |
141 | 0 | { |
142 | 0 | #ifdef OPENSSL_SECURE_MEMORY |
143 | 0 | if (secure_mem_initialized) |
144 | | /* CRYPTO_secure_malloc() zeroes allocations when it is implemented */ |
145 | 0 | return CRYPTO_secure_malloc(num, file, line); |
146 | 0 | #endif |
147 | 0 | return CRYPTO_zalloc(num, file, line); |
148 | 0 | } |
149 | | |
150 | | void CRYPTO_secure_free(void *ptr, const char *file, int line) |
151 | 0 | { |
152 | 0 | #ifdef OPENSSL_SECURE_MEMORY |
153 | 0 | size_t actual_size; |
154 | |
|
155 | 0 | if (ptr == NULL) |
156 | 0 | return; |
157 | 0 | if (!CRYPTO_secure_allocated(ptr)) { |
158 | 0 | CRYPTO_free(ptr, file, line); |
159 | 0 | return; |
160 | 0 | } |
161 | 0 | CRYPTO_THREAD_write_lock(sec_malloc_lock); |
162 | 0 | actual_size = sh_actual_size(ptr); |
163 | 0 | CLEAR(ptr, actual_size); |
164 | 0 | secure_mem_used -= actual_size; |
165 | 0 | sh_free(ptr); |
166 | 0 | CRYPTO_THREAD_unlock(sec_malloc_lock); |
167 | | #else |
168 | | CRYPTO_free(ptr, file, line); |
169 | | #endif /* OPENSSL_SECURE_MEMORY */ |
170 | 0 | } |
171 | | |
172 | | void CRYPTO_secure_clear_free(void *ptr, size_t num, |
173 | | const char *file, int line) |
174 | 0 | { |
175 | 0 | #ifdef OPENSSL_SECURE_MEMORY |
176 | 0 | size_t actual_size; |
177 | |
|
178 | 0 | if (ptr == NULL) |
179 | 0 | return; |
180 | 0 | if (!CRYPTO_secure_allocated(ptr)) { |
181 | 0 | OPENSSL_cleanse(ptr, num); |
182 | 0 | CRYPTO_free(ptr, file, line); |
183 | 0 | return; |
184 | 0 | } |
185 | 0 | CRYPTO_THREAD_write_lock(sec_malloc_lock); |
186 | 0 | actual_size = sh_actual_size(ptr); |
187 | 0 | CLEAR(ptr, actual_size); |
188 | 0 | secure_mem_used -= actual_size; |
189 | 0 | sh_free(ptr); |
190 | 0 | CRYPTO_THREAD_unlock(sec_malloc_lock); |
191 | | #else |
192 | | if (ptr == NULL) |
193 | | return; |
194 | | OPENSSL_cleanse(ptr, num); |
195 | | CRYPTO_free(ptr, file, line); |
196 | | #endif /* OPENSSL_SECURE_MEMORY */ |
197 | 0 | } |
198 | | |
199 | | int CRYPTO_secure_allocated(const void *ptr) |
200 | 0 | { |
201 | 0 | #ifdef OPENSSL_SECURE_MEMORY |
202 | 0 | int ret; |
203 | |
|
204 | 0 | if (!secure_mem_initialized) |
205 | 0 | return 0; |
206 | 0 | CRYPTO_THREAD_write_lock(sec_malloc_lock); |
207 | 0 | ret = sh_allocated(ptr); |
208 | 0 | CRYPTO_THREAD_unlock(sec_malloc_lock); |
209 | 0 | return ret; |
210 | | #else |
211 | | return 0; |
212 | | #endif /* OPENSSL_SECURE_MEMORY */ |
213 | 0 | } |
214 | | |
215 | | size_t CRYPTO_secure_used(void) |
216 | 0 | { |
217 | 0 | #ifdef OPENSSL_SECURE_MEMORY |
218 | 0 | return secure_mem_used; |
219 | | #else |
220 | | return 0; |
221 | | #endif /* OPENSSL_SECURE_MEMORY */ |
222 | 0 | } |
223 | | |
224 | | size_t CRYPTO_secure_actual_size(void *ptr) |
225 | 0 | { |
226 | 0 | #ifdef OPENSSL_SECURE_MEMORY |
227 | 0 | size_t actual_size; |
228 | |
|
229 | 0 | CRYPTO_THREAD_write_lock(sec_malloc_lock); |
230 | 0 | actual_size = sh_actual_size(ptr); |
231 | 0 | CRYPTO_THREAD_unlock(sec_malloc_lock); |
232 | 0 | return actual_size; |
233 | | #else |
234 | | return 0; |
235 | | #endif |
236 | 0 | } |
237 | | /* END OF PAGE ... |
238 | | |
239 | | ... START OF PAGE */ |
240 | | |
241 | | /* |
242 | | * SECURE HEAP IMPLEMENTATION |
243 | | */ |
244 | | #ifdef OPENSSL_SECURE_MEMORY |
245 | | |
246 | | |
247 | | /* |
248 | | * The implementation provided here uses a fixed-sized mmap() heap, |
249 | | * which is locked into memory, not written to core files, and protected |
250 | | * on either side by an unmapped page, which will catch pointer overruns |
251 | | * (or underruns) and an attempt to read data out of the secure heap. |
252 | | * Free'd memory is zero'd or otherwise cleansed. |
253 | | * |
254 | | * This is a pretty standard buddy allocator. We keep areas in a multiple |
255 | | * of "sh.minsize" units. The freelist and bitmaps are kept separately, |
256 | | * so all (and only) data is kept in the mmap'd heap. |
257 | | * |
258 | | * This code assumes eight-bit bytes. The numbers 3 and 7 are all over the |
259 | | * place. |
260 | | */ |
261 | | |
262 | 0 | #define ONE ((size_t)1) |
263 | | |
264 | 0 | # define TESTBIT(t, b) (t[(b) >> 3] & (ONE << ((b) & 7))) |
265 | 0 | # define SETBIT(t, b) (t[(b) >> 3] |= (ONE << ((b) & 7))) |
266 | 0 | # define CLEARBIT(t, b) (t[(b) >> 3] &= (0xFF & ~(ONE << ((b) & 7)))) |
267 | | |
268 | | #define WITHIN_ARENA(p) \ |
269 | 0 | ((char*)(p) >= sh.arena && (char*)(p) < &sh.arena[sh.arena_size]) |
270 | | #define WITHIN_FREELIST(p) \ |
271 | | ((char*)(p) >= (char*)sh.freelist && (char*)(p) < (char*)&sh.freelist[sh.freelist_size]) |
272 | | |
273 | | |
274 | | typedef struct sh_list_st |
275 | | { |
276 | | struct sh_list_st *next; |
277 | | struct sh_list_st **p_next; |
278 | | } SH_LIST; |
279 | | |
280 | | typedef struct sh_st |
281 | | { |
282 | | char* map_result; |
283 | | size_t map_size; |
284 | | char *arena; |
285 | | size_t arena_size; |
286 | | char **freelist; |
287 | | ossl_ssize_t freelist_size; |
288 | | size_t minsize; |
289 | | unsigned char *bittable; |
290 | | unsigned char *bitmalloc; |
291 | | size_t bittable_size; /* size in bits */ |
292 | | } SH; |
293 | | |
294 | | static SH sh; |
295 | | |
296 | | static size_t sh_getlist(char *ptr) |
297 | 0 | { |
298 | 0 | ossl_ssize_t list = sh.freelist_size - 1; |
299 | 0 | size_t bit = (sh.arena_size + ptr - sh.arena) / sh.minsize; |
300 | |
|
301 | 0 | for (; bit; bit >>= 1, list--) { |
302 | 0 | if (TESTBIT(sh.bittable, bit)) |
303 | 0 | break; |
304 | 0 | OPENSSL_assert((bit & 1) == 0); |
305 | 0 | } |
306 | |
|
307 | 0 | return list; |
308 | 0 | } |
309 | | |
310 | | |
311 | | static int sh_testbit(char *ptr, int list, unsigned char *table) |
312 | 0 | { |
313 | 0 | size_t bit; |
314 | |
|
315 | 0 | OPENSSL_assert(list >= 0 && list < sh.freelist_size); |
316 | 0 | OPENSSL_assert(((ptr - sh.arena) & ((sh.arena_size >> list) - 1)) == 0); |
317 | 0 | bit = (ONE << list) + ((ptr - sh.arena) / (sh.arena_size >> list)); |
318 | 0 | OPENSSL_assert(bit > 0 && bit < sh.bittable_size); |
319 | 0 | return TESTBIT(table, bit); |
320 | 0 | } |
321 | | |
322 | | static void sh_clearbit(char *ptr, int list, unsigned char *table) |
323 | 0 | { |
324 | 0 | size_t bit; |
325 | |
|
326 | 0 | OPENSSL_assert(list >= 0 && list < sh.freelist_size); |
327 | 0 | OPENSSL_assert(((ptr - sh.arena) & ((sh.arena_size >> list) - 1)) == 0); |
328 | 0 | bit = (ONE << list) + ((ptr - sh.arena) / (sh.arena_size >> list)); |
329 | 0 | OPENSSL_assert(bit > 0 && bit < sh.bittable_size); |
330 | 0 | OPENSSL_assert(TESTBIT(table, bit)); |
331 | 0 | CLEARBIT(table, bit); |
332 | 0 | } |
333 | | |
334 | | static void sh_setbit(char *ptr, int list, unsigned char *table) |
335 | 0 | { |
336 | 0 | size_t bit; |
337 | |
|
338 | 0 | OPENSSL_assert(list >= 0 && list < sh.freelist_size); |
339 | 0 | OPENSSL_assert(((ptr - sh.arena) & ((sh.arena_size >> list) - 1)) == 0); |
340 | 0 | bit = (ONE << list) + ((ptr - sh.arena) / (sh.arena_size >> list)); |
341 | 0 | OPENSSL_assert(bit > 0 && bit < sh.bittable_size); |
342 | 0 | OPENSSL_assert(!TESTBIT(table, bit)); |
343 | 0 | SETBIT(table, bit); |
344 | 0 | } |
345 | | |
346 | | static void sh_add_to_list(char **list, char *ptr) |
347 | 0 | { |
348 | 0 | SH_LIST *temp; |
349 | |
|
350 | 0 | OPENSSL_assert(WITHIN_FREELIST(list)); |
351 | 0 | OPENSSL_assert(WITHIN_ARENA(ptr)); |
352 | |
|
353 | 0 | temp = (SH_LIST *)ptr; |
354 | 0 | temp->next = *(SH_LIST **)list; |
355 | 0 | OPENSSL_assert(temp->next == NULL || WITHIN_ARENA(temp->next)); |
356 | 0 | temp->p_next = (SH_LIST **)list; |
357 | |
|
358 | 0 | if (temp->next != NULL) { |
359 | 0 | OPENSSL_assert((char **)temp->next->p_next == list); |
360 | 0 | temp->next->p_next = &(temp->next); |
361 | 0 | } |
362 | |
|
363 | 0 | *list = ptr; |
364 | 0 | } |
365 | | |
366 | | static void sh_remove_from_list(char *ptr) |
367 | 0 | { |
368 | 0 | SH_LIST *temp, *temp2; |
369 | |
|
370 | 0 | temp = (SH_LIST *)ptr; |
371 | 0 | if (temp->next != NULL) |
372 | 0 | temp->next->p_next = temp->p_next; |
373 | 0 | *temp->p_next = temp->next; |
374 | 0 | if (temp->next == NULL) |
375 | 0 | return; |
376 | | |
377 | 0 | temp2 = temp->next; |
378 | 0 | OPENSSL_assert(WITHIN_FREELIST(temp2->p_next) || WITHIN_ARENA(temp2->p_next)); |
379 | 0 | } |
380 | | |
381 | | |
382 | | static int sh_init(size_t size, int minsize) |
383 | 0 | { |
384 | 0 | int ret; |
385 | 0 | size_t i; |
386 | 0 | size_t pgsize; |
387 | 0 | size_t aligned; |
388 | |
|
389 | 0 | memset(&sh, 0, sizeof(sh)); |
390 | | |
391 | | /* make sure size and minsize are powers of 2 */ |
392 | 0 | OPENSSL_assert(size > 0); |
393 | 0 | OPENSSL_assert((size & (size - 1)) == 0); |
394 | 0 | OPENSSL_assert(minsize > 0); |
395 | 0 | OPENSSL_assert((minsize & (minsize - 1)) == 0); |
396 | 0 | if (size <= 0 || (size & (size - 1)) != 0) |
397 | 0 | goto err; |
398 | 0 | if (minsize <= 0 || (minsize & (minsize - 1)) != 0) |
399 | 0 | goto err; |
400 | | |
401 | 0 | while (minsize < (int)sizeof(SH_LIST)) |
402 | 0 | minsize *= 2; |
403 | |
|
404 | 0 | sh.arena_size = size; |
405 | 0 | sh.minsize = minsize; |
406 | 0 | sh.bittable_size = (sh.arena_size / sh.minsize) * 2; |
407 | | |
408 | | /* Prevent allocations of size 0 later on */ |
409 | 0 | if (sh.bittable_size >> 3 == 0) |
410 | 0 | goto err; |
411 | | |
412 | 0 | sh.freelist_size = -1; |
413 | 0 | for (i = sh.bittable_size; i; i >>= 1) |
414 | 0 | sh.freelist_size++; |
415 | |
|
416 | 0 | sh.freelist = OPENSSL_zalloc(sh.freelist_size * sizeof(char *)); |
417 | 0 | OPENSSL_assert(sh.freelist != NULL); |
418 | 0 | if (sh.freelist == NULL) |
419 | 0 | goto err; |
420 | | |
421 | 0 | sh.bittable = OPENSSL_zalloc(sh.bittable_size >> 3); |
422 | 0 | OPENSSL_assert(sh.bittable != NULL); |
423 | 0 | if (sh.bittable == NULL) |
424 | 0 | goto err; |
425 | | |
426 | 0 | sh.bitmalloc = OPENSSL_zalloc(sh.bittable_size >> 3); |
427 | 0 | OPENSSL_assert(sh.bitmalloc != NULL); |
428 | 0 | if (sh.bitmalloc == NULL) |
429 | 0 | goto err; |
430 | | |
431 | | /* Allocate space for heap, and two extra pages as guards */ |
432 | 0 | #if defined(_SC_PAGE_SIZE) || defined (_SC_PAGESIZE) |
433 | 0 | { |
434 | 0 | # if defined(_SC_PAGE_SIZE) |
435 | 0 | long tmppgsize = sysconf(_SC_PAGE_SIZE); |
436 | | # else |
437 | | long tmppgsize = sysconf(_SC_PAGESIZE); |
438 | | # endif |
439 | 0 | if (tmppgsize < 1) |
440 | 0 | pgsize = PAGE_SIZE; |
441 | 0 | else |
442 | 0 | pgsize = (size_t)tmppgsize; |
443 | 0 | } |
444 | | #else |
445 | | pgsize = PAGE_SIZE; |
446 | | #endif |
447 | 0 | sh.map_size = pgsize + sh.arena_size + pgsize; |
448 | 0 | if (1) { |
449 | 0 | #ifdef MAP_ANON |
450 | 0 | sh.map_result = mmap(NULL, sh.map_size, |
451 | 0 | PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE|MAP_CONCEAL, -1, 0); |
452 | 0 | } else { |
453 | 0 | #endif |
454 | 0 | int fd; |
455 | |
|
456 | 0 | sh.map_result = MAP_FAILED; |
457 | 0 | if ((fd = open("/dev/zero", O_RDWR)) >= 0) { |
458 | 0 | sh.map_result = mmap(NULL, sh.map_size, |
459 | 0 | PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0); |
460 | 0 | close(fd); |
461 | 0 | } |
462 | 0 | } |
463 | 0 | if (sh.map_result == MAP_FAILED) |
464 | 0 | goto err; |
465 | 0 | sh.arena = (char *)(sh.map_result + pgsize); |
466 | 0 | sh_setbit(sh.arena, 0, sh.bittable); |
467 | 0 | sh_add_to_list(&sh.freelist[0], sh.arena); |
468 | | |
469 | | /* Now try to add guard pages and lock into memory. */ |
470 | 0 | ret = 1; |
471 | | |
472 | | /* Starting guard is already aligned from mmap. */ |
473 | 0 | if (mprotect(sh.map_result, pgsize, PROT_NONE) < 0) |
474 | 0 | ret = 2; |
475 | | |
476 | | /* Ending guard page - need to round up to page boundary */ |
477 | 0 | aligned = (pgsize + sh.arena_size + (pgsize - 1)) & ~(pgsize - 1); |
478 | 0 | if (mprotect(sh.map_result + aligned, pgsize, PROT_NONE) < 0) |
479 | 0 | ret = 2; |
480 | |
|
481 | 0 | #if defined(OPENSSL_SYS_LINUX) && defined(MLOCK_ONFAULT) && defined(SYS_mlock2) |
482 | 0 | if (syscall(SYS_mlock2, sh.arena, sh.arena_size, MLOCK_ONFAULT) < 0) { |
483 | 0 | if (errno == ENOSYS) { |
484 | 0 | if (mlock(sh.arena, sh.arena_size) < 0) |
485 | 0 | ret = 2; |
486 | 0 | } else { |
487 | 0 | ret = 2; |
488 | 0 | } |
489 | 0 | } |
490 | | #else |
491 | | if (mlock(sh.arena, sh.arena_size) < 0) |
492 | | ret = 2; |
493 | | #endif |
494 | 0 | #ifdef MADV_DONTDUMP |
495 | 0 | if (madvise(sh.arena, sh.arena_size, MADV_DONTDUMP) < 0) |
496 | 0 | ret = 2; |
497 | 0 | #endif |
498 | |
|
499 | 0 | return ret; |
500 | | |
501 | 0 | err: |
502 | 0 | sh_done(); |
503 | 0 | return 0; |
504 | 0 | } |
505 | | |
506 | | static void sh_done(void) |
507 | 2 | { |
508 | 2 | OPENSSL_free(sh.freelist); |
509 | 2 | OPENSSL_free(sh.bittable); |
510 | 2 | OPENSSL_free(sh.bitmalloc); |
511 | 2 | if (sh.map_result != MAP_FAILED && sh.map_size) |
512 | 0 | munmap(sh.map_result, sh.map_size); |
513 | 2 | memset(&sh, 0, sizeof(sh)); |
514 | 2 | } |
515 | | |
516 | | static int sh_allocated(const char *ptr) |
517 | 0 | { |
518 | 0 | return WITHIN_ARENA(ptr) ? 1 : 0; |
519 | 0 | } |
520 | | |
521 | | static char *sh_find_my_buddy(char *ptr, int list) |
522 | 0 | { |
523 | 0 | size_t bit; |
524 | 0 | char *chunk = NULL; |
525 | |
|
526 | 0 | bit = (ONE << list) + (ptr - sh.arena) / (sh.arena_size >> list); |
527 | 0 | bit ^= 1; |
528 | |
|
529 | 0 | if (TESTBIT(sh.bittable, bit) && !TESTBIT(sh.bitmalloc, bit)) |
530 | 0 | chunk = sh.arena + ((bit & ((ONE << list) - 1)) * (sh.arena_size >> list)); |
531 | |
|
532 | 0 | return chunk; |
533 | 0 | } |
534 | | |
535 | | static void *sh_malloc(size_t size) |
536 | 0 | { |
537 | 0 | ossl_ssize_t list, slist; |
538 | 0 | size_t i; |
539 | 0 | char *chunk; |
540 | |
|
541 | 0 | if (size > sh.arena_size) |
542 | 0 | return NULL; |
543 | | |
544 | 0 | list = sh.freelist_size - 1; |
545 | 0 | for (i = sh.minsize; i < size; i <<= 1) |
546 | 0 | list--; |
547 | 0 | if (list < 0) |
548 | 0 | return NULL; |
549 | | |
550 | | /* try to find a larger entry to split */ |
551 | 0 | for (slist = list; slist >= 0; slist--) |
552 | 0 | if (sh.freelist[slist] != NULL) |
553 | 0 | break; |
554 | 0 | if (slist < 0) |
555 | 0 | return NULL; |
556 | | |
557 | | /* split larger entry */ |
558 | 0 | while (slist != list) { |
559 | 0 | char *temp = sh.freelist[slist]; |
560 | | |
561 | | /* remove from bigger list */ |
562 | 0 | OPENSSL_assert(!sh_testbit(temp, slist, sh.bitmalloc)); |
563 | 0 | sh_clearbit(temp, slist, sh.bittable); |
564 | 0 | sh_remove_from_list(temp); |
565 | 0 | OPENSSL_assert(temp != sh.freelist[slist]); |
566 | | |
567 | | /* done with bigger list */ |
568 | 0 | slist++; |
569 | | |
570 | | /* add to smaller list */ |
571 | 0 | OPENSSL_assert(!sh_testbit(temp, slist, sh.bitmalloc)); |
572 | 0 | sh_setbit(temp, slist, sh.bittable); |
573 | 0 | sh_add_to_list(&sh.freelist[slist], temp); |
574 | 0 | OPENSSL_assert(sh.freelist[slist] == temp); |
575 | | |
576 | | /* split in 2 */ |
577 | 0 | temp += sh.arena_size >> slist; |
578 | 0 | OPENSSL_assert(!sh_testbit(temp, slist, sh.bitmalloc)); |
579 | 0 | sh_setbit(temp, slist, sh.bittable); |
580 | 0 | sh_add_to_list(&sh.freelist[slist], temp); |
581 | 0 | OPENSSL_assert(sh.freelist[slist] == temp); |
582 | |
|
583 | 0 | OPENSSL_assert(temp-(sh.arena_size >> slist) == sh_find_my_buddy(temp, slist)); |
584 | 0 | } |
585 | | |
586 | | /* peel off memory to hand back */ |
587 | 0 | chunk = sh.freelist[list]; |
588 | 0 | OPENSSL_assert(sh_testbit(chunk, list, sh.bittable)); |
589 | 0 | sh_setbit(chunk, list, sh.bitmalloc); |
590 | 0 | sh_remove_from_list(chunk); |
591 | |
|
592 | 0 | OPENSSL_assert(WITHIN_ARENA(chunk)); |
593 | | |
594 | | /* zero the free list header as a precaution against information leakage */ |
595 | 0 | memset(chunk, 0, sizeof(SH_LIST)); |
596 | |
|
597 | 0 | return chunk; |
598 | 0 | } |
599 | | |
600 | | static void sh_free(void *ptr) |
601 | 0 | { |
602 | 0 | size_t list; |
603 | 0 | void *buddy; |
604 | |
|
605 | 0 | if (ptr == NULL) |
606 | 0 | return; |
607 | 0 | OPENSSL_assert(WITHIN_ARENA(ptr)); |
608 | 0 | if (!WITHIN_ARENA(ptr)) |
609 | 0 | return; |
610 | | |
611 | 0 | list = sh_getlist(ptr); |
612 | 0 | OPENSSL_assert(sh_testbit(ptr, list, sh.bittable)); |
613 | 0 | sh_clearbit(ptr, list, sh.bitmalloc); |
614 | 0 | sh_add_to_list(&sh.freelist[list], ptr); |
615 | | |
616 | | /* Try to coalesce two adjacent free areas. */ |
617 | 0 | while ((buddy = sh_find_my_buddy(ptr, list)) != NULL) { |
618 | 0 | OPENSSL_assert(ptr == sh_find_my_buddy(buddy, list)); |
619 | 0 | OPENSSL_assert(ptr != NULL); |
620 | 0 | OPENSSL_assert(!sh_testbit(ptr, list, sh.bitmalloc)); |
621 | 0 | sh_clearbit(ptr, list, sh.bittable); |
622 | 0 | sh_remove_from_list(ptr); |
623 | 0 | OPENSSL_assert(!sh_testbit(ptr, list, sh.bitmalloc)); |
624 | 0 | sh_clearbit(buddy, list, sh.bittable); |
625 | 0 | sh_remove_from_list(buddy); |
626 | |
|
627 | 0 | list--; |
628 | | |
629 | | /* Zero the higher addressed block's free list pointers */ |
630 | 0 | memset(ptr > buddy ? ptr : buddy, 0, sizeof(SH_LIST)); |
631 | 0 | if (ptr > buddy) |
632 | 0 | ptr = buddy; |
633 | |
|
634 | 0 | OPENSSL_assert(!sh_testbit(ptr, list, sh.bitmalloc)); |
635 | 0 | sh_setbit(ptr, list, sh.bittable); |
636 | 0 | sh_add_to_list(&sh.freelist[list], ptr); |
637 | 0 | OPENSSL_assert(sh.freelist[list] == ptr); |
638 | 0 | } |
639 | 0 | } |
640 | | |
641 | | static size_t sh_actual_size(char *ptr) |
642 | 0 | { |
643 | 0 | int list; |
644 | |
|
645 | 0 | OPENSSL_assert(WITHIN_ARENA(ptr)); |
646 | 0 | if (!WITHIN_ARENA(ptr)) |
647 | 0 | return 0; |
648 | 0 | list = sh_getlist(ptr); |
649 | 0 | OPENSSL_assert(sh_testbit(ptr, list, sh.bittable)); |
650 | 0 | return sh.arena_size / (ONE << list); |
651 | 0 | } |
652 | | #endif /* OPENSSL_SECURE_MEMORY */ |