/src/openssl111/crypto/modes/ctr128.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2008-2020 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the OpenSSL license (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #include <openssl/crypto.h> |
11 | | #include "modes_local.h" |
12 | | #include <string.h> |
13 | | |
14 | | #if defined(__GNUC__) && !defined(STRICT_ALIGNMENT) |
15 | | typedef size_t size_t_aX __attribute((__aligned__(1))); |
16 | | #else |
17 | | typedef size_t size_t_aX; |
18 | | #endif |
19 | | |
20 | | /* |
21 | | * NOTE: the IV/counter CTR mode is big-endian. The code itself is |
22 | | * endian-neutral. |
23 | | */ |
24 | | |
25 | | /* increment counter (128-bit int) by 1 */ |
26 | | static void ctr128_inc(unsigned char *counter) |
27 | 0 | { |
28 | 0 | u32 n = 16, c = 1; |
29 | |
|
30 | 0 | do { |
31 | 0 | --n; |
32 | 0 | c += counter[n]; |
33 | 0 | counter[n] = (u8)c; |
34 | 0 | c >>= 8; |
35 | 0 | } while (n); |
36 | 0 | } |
37 | | |
38 | | #if !defined(OPENSSL_SMALL_FOOTPRINT) |
39 | | static void ctr128_inc_aligned(unsigned char *counter) |
40 | 0 | { |
41 | 0 | size_t *data, c, d, n; |
42 | 0 | const union { |
43 | 0 | long one; |
44 | 0 | char little; |
45 | 0 | } is_endian = { |
46 | 0 | 1 |
47 | 0 | }; |
48 | |
|
49 | 0 | if (is_endian.little || ((size_t)counter % sizeof(size_t)) != 0) { |
50 | 0 | ctr128_inc(counter); |
51 | 0 | return; |
52 | 0 | } |
53 | | |
54 | 0 | data = (size_t *)counter; |
55 | 0 | c = 1; |
56 | 0 | n = 16 / sizeof(size_t); |
57 | 0 | do { |
58 | 0 | --n; |
59 | 0 | d = data[n] += c; |
60 | | /* did addition carry? */ |
61 | 0 | c = ((d - c) & ~d) >> (sizeof(size_t) * 8 - 1); |
62 | 0 | } while (n); |
63 | 0 | } |
64 | | #endif |
65 | | |
66 | | /* |
67 | | * The input encrypted as though 128bit counter mode is being used. The |
68 | | * extra state information to record how much of the 128bit block we have |
69 | | * used is contained in *num, and the encrypted counter is kept in |
70 | | * ecount_buf. Both *num and ecount_buf must be initialised with zeros |
71 | | * before the first call to CRYPTO_ctr128_encrypt(). This algorithm assumes |
72 | | * that the counter is in the x lower bits of the IV (ivec), and that the |
73 | | * application has full control over overflow and the rest of the IV. This |
74 | | * implementation takes NO responsibility for checking that the counter |
75 | | * doesn't overflow into the rest of the IV when incremented. |
76 | | */ |
77 | | void CRYPTO_ctr128_encrypt(const unsigned char *in, unsigned char *out, |
78 | | size_t len, const void *key, |
79 | | unsigned char ivec[16], |
80 | | unsigned char ecount_buf[16], unsigned int *num, |
81 | | block128_f block) |
82 | 0 | { |
83 | 0 | unsigned int n; |
84 | 0 | size_t l = 0; |
85 | |
|
86 | 0 | n = *num; |
87 | |
|
88 | 0 | #if !defined(OPENSSL_SMALL_FOOTPRINT) |
89 | 0 | if (16 % sizeof(size_t) == 0) { /* always true actually */ |
90 | 0 | do { |
91 | 0 | while (n && len) { |
92 | 0 | *(out++) = *(in++) ^ ecount_buf[n]; |
93 | 0 | --len; |
94 | 0 | n = (n + 1) % 16; |
95 | 0 | } |
96 | |
|
97 | 0 | # if defined(STRICT_ALIGNMENT) |
98 | 0 | if (((size_t)in | (size_t)out | (size_t)ecount_buf) |
99 | 0 | % sizeof(size_t) != 0) |
100 | 0 | break; |
101 | 0 | # endif |
102 | 0 | while (len >= 16) { |
103 | 0 | (*block) (ivec, ecount_buf, key); |
104 | 0 | ctr128_inc_aligned(ivec); |
105 | 0 | for (n = 0; n < 16; n += sizeof(size_t)) |
106 | 0 | *(size_t_aX *)(out + n) = |
107 | 0 | *(size_t_aX *)(in + n) |
108 | 0 | ^ *(size_t_aX *)(ecount_buf + n); |
109 | 0 | len -= 16; |
110 | 0 | out += 16; |
111 | 0 | in += 16; |
112 | 0 | n = 0; |
113 | 0 | } |
114 | 0 | if (len) { |
115 | 0 | (*block) (ivec, ecount_buf, key); |
116 | 0 | ctr128_inc_aligned(ivec); |
117 | 0 | while (len--) { |
118 | 0 | out[n] = in[n] ^ ecount_buf[n]; |
119 | 0 | ++n; |
120 | 0 | } |
121 | 0 | } |
122 | 0 | *num = n; |
123 | 0 | return; |
124 | 0 | } while (0); |
125 | 0 | } |
126 | | /* the rest would be commonly eliminated by x86* compiler */ |
127 | 0 | #endif |
128 | 0 | while (l < len) { |
129 | 0 | if (n == 0) { |
130 | 0 | (*block) (ivec, ecount_buf, key); |
131 | 0 | ctr128_inc(ivec); |
132 | 0 | } |
133 | 0 | out[l] = in[l] ^ ecount_buf[n]; |
134 | 0 | ++l; |
135 | 0 | n = (n + 1) % 16; |
136 | 0 | } |
137 | |
|
138 | 0 | *num = n; |
139 | 0 | } |
140 | | |
141 | | /* increment upper 96 bits of 128-bit counter by 1 */ |
142 | | static void ctr96_inc(unsigned char *counter) |
143 | 0 | { |
144 | 0 | u32 n = 12, c = 1; |
145 | |
|
146 | 0 | do { |
147 | 0 | --n; |
148 | 0 | c += counter[n]; |
149 | 0 | counter[n] = (u8)c; |
150 | 0 | c >>= 8; |
151 | 0 | } while (n); |
152 | 0 | } |
153 | | |
154 | | void CRYPTO_ctr128_encrypt_ctr32(const unsigned char *in, unsigned char *out, |
155 | | size_t len, const void *key, |
156 | | unsigned char ivec[16], |
157 | | unsigned char ecount_buf[16], |
158 | | unsigned int *num, ctr128_f func) |
159 | 0 | { |
160 | 0 | unsigned int n, ctr32; |
161 | |
|
162 | 0 | n = *num; |
163 | |
|
164 | 0 | while (n && len) { |
165 | 0 | *(out++) = *(in++) ^ ecount_buf[n]; |
166 | 0 | --len; |
167 | 0 | n = (n + 1) % 16; |
168 | 0 | } |
169 | |
|
170 | 0 | ctr32 = GETU32(ivec + 12); |
171 | 0 | while (len >= 16) { |
172 | 0 | size_t blocks = len / 16; |
173 | | /* |
174 | | * 1<<28 is just a not-so-small yet not-so-large number... |
175 | | * Below condition is practically never met, but it has to |
176 | | * be checked for code correctness. |
177 | | */ |
178 | 0 | if (sizeof(size_t) > sizeof(unsigned int) && blocks > (1U << 28)) |
179 | 0 | blocks = (1U << 28); |
180 | | /* |
181 | | * As (*func) operates on 32-bit counter, caller |
182 | | * has to handle overflow. 'if' below detects the |
183 | | * overflow, which is then handled by limiting the |
184 | | * amount of blocks to the exact overflow point... |
185 | | */ |
186 | 0 | ctr32 += (u32)blocks; |
187 | 0 | if (ctr32 < blocks) { |
188 | 0 | blocks -= ctr32; |
189 | 0 | ctr32 = 0; |
190 | 0 | } |
191 | 0 | (*func) (in, out, blocks, key, ivec); |
192 | | /* (*ctr) does not update ivec, caller does: */ |
193 | 0 | PUTU32(ivec + 12, ctr32); |
194 | | /* ... overflow was detected, propagate carry. */ |
195 | 0 | if (ctr32 == 0) |
196 | 0 | ctr96_inc(ivec); |
197 | 0 | blocks *= 16; |
198 | 0 | len -= blocks; |
199 | 0 | out += blocks; |
200 | 0 | in += blocks; |
201 | 0 | } |
202 | 0 | if (len) { |
203 | 0 | memset(ecount_buf, 0, 16); |
204 | 0 | (*func) (ecount_buf, ecount_buf, 1, key, ivec); |
205 | 0 | ++ctr32; |
206 | 0 | PUTU32(ivec + 12, ctr32); |
207 | 0 | if (ctr32 == 0) |
208 | 0 | ctr96_inc(ivec); |
209 | 0 | while (len--) { |
210 | 0 | out[n] = in[n] ^ ecount_buf[n]; |
211 | 0 | ++n; |
212 | 0 | } |
213 | 0 | } |
214 | |
|
215 | 0 | *num = n; |
216 | 0 | } |