/src/openssl111/crypto/pem/pem_lib.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the OpenSSL license (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #include <stdio.h> |
11 | | #include "crypto/ctype.h" |
12 | | #include <string.h> |
13 | | #include "internal/cryptlib.h" |
14 | | #include <openssl/buffer.h> |
15 | | #include <openssl/objects.h> |
16 | | #include <openssl/evp.h> |
17 | | #include <openssl/rand.h> |
18 | | #include <openssl/x509.h> |
19 | | #include <openssl/pem.h> |
20 | | #include <openssl/pkcs12.h> |
21 | | #include "crypto/asn1.h" |
22 | | #include <openssl/des.h> |
23 | | #include <openssl/engine.h> |
24 | | |
25 | 0 | #define MIN_LENGTH 4 |
26 | | |
27 | | static int load_iv(char **fromp, unsigned char *to, int num); |
28 | | static int check_pem(const char *nm, const char *name); |
29 | | int pem_check_suffix(const char *pem_str, const char *suffix); |
30 | | |
31 | | int PEM_def_callback(char *buf, int num, int rwflag, void *userdata) |
32 | 0 | { |
33 | 0 | int i, min_len; |
34 | 0 | const char *prompt; |
35 | | |
36 | | /* We assume that the user passes a default password as userdata */ |
37 | 0 | if (userdata) { |
38 | 0 | i = strlen(userdata); |
39 | 0 | i = (i > num) ? num : i; |
40 | 0 | memcpy(buf, userdata, i); |
41 | 0 | return i; |
42 | 0 | } |
43 | | |
44 | 0 | prompt = EVP_get_pw_prompt(); |
45 | 0 | if (prompt == NULL) |
46 | 0 | prompt = "Enter PEM pass phrase:"; |
47 | | |
48 | | /* |
49 | | * rwflag == 0 means decryption |
50 | | * rwflag == 1 means encryption |
51 | | * |
52 | | * We assume that for encryption, we want a minimum length, while for |
53 | | * decryption, we cannot know any minimum length, so we assume zero. |
54 | | */ |
55 | 0 | min_len = rwflag ? MIN_LENGTH : 0; |
56 | |
|
57 | 0 | i = EVP_read_pw_string_min(buf, min_len, num, prompt, rwflag); |
58 | 0 | if (i != 0) { |
59 | 0 | PEMerr(PEM_F_PEM_DEF_CALLBACK, PEM_R_PROBLEMS_GETTING_PASSWORD); |
60 | 0 | memset(buf, 0, (unsigned int)num); |
61 | 0 | return -1; |
62 | 0 | } |
63 | 0 | return strlen(buf); |
64 | 0 | } |
65 | | |
66 | | void PEM_proc_type(char *buf, int type) |
67 | 0 | { |
68 | 0 | const char *str; |
69 | 0 | char *p = buf + strlen(buf); |
70 | |
|
71 | 0 | if (type == PEM_TYPE_ENCRYPTED) |
72 | 0 | str = "ENCRYPTED"; |
73 | 0 | else if (type == PEM_TYPE_MIC_CLEAR) |
74 | 0 | str = "MIC-CLEAR"; |
75 | 0 | else if (type == PEM_TYPE_MIC_ONLY) |
76 | 0 | str = "MIC-ONLY"; |
77 | 0 | else |
78 | 0 | str = "BAD-TYPE"; |
79 | |
|
80 | 0 | BIO_snprintf(p, PEM_BUFSIZE - (size_t)(p - buf), "Proc-Type: 4,%s\n", str); |
81 | 0 | } |
82 | | |
83 | | void PEM_dek_info(char *buf, const char *type, int len, char *str) |
84 | 0 | { |
85 | 0 | long i; |
86 | 0 | char *p = buf + strlen(buf); |
87 | 0 | int j = PEM_BUFSIZE - (size_t)(p - buf), n; |
88 | |
|
89 | 0 | n = BIO_snprintf(p, j, "DEK-Info: %s,", type); |
90 | 0 | if (n > 0) { |
91 | 0 | j -= n; |
92 | 0 | p += n; |
93 | 0 | for (i = 0; i < len; i++) { |
94 | 0 | n = BIO_snprintf(p, j, "%02X", 0xff & str[i]); |
95 | 0 | if (n <= 0) |
96 | 0 | return; |
97 | 0 | j -= n; |
98 | 0 | p += n; |
99 | 0 | } |
100 | 0 | if (j > 1) |
101 | 0 | strcpy(p, "\n"); |
102 | 0 | } |
103 | 0 | } |
104 | | |
105 | | #ifndef OPENSSL_NO_STDIO |
106 | | void *PEM_ASN1_read(d2i_of_void *d2i, const char *name, FILE *fp, void **x, |
107 | | pem_password_cb *cb, void *u) |
108 | 0 | { |
109 | 0 | BIO *b; |
110 | 0 | void *ret; |
111 | |
|
112 | 0 | if ((b = BIO_new(BIO_s_file())) == NULL) { |
113 | 0 | PEMerr(PEM_F_PEM_ASN1_READ, ERR_R_BUF_LIB); |
114 | 0 | return 0; |
115 | 0 | } |
116 | 0 | BIO_set_fp(b, fp, BIO_NOCLOSE); |
117 | 0 | ret = PEM_ASN1_read_bio(d2i, name, b, x, cb, u); |
118 | 0 | BIO_free(b); |
119 | 0 | return ret; |
120 | 0 | } |
121 | | #endif |
122 | | |
123 | | static int check_pem(const char *nm, const char *name) |
124 | 0 | { |
125 | | /* Normal matching nm and name */ |
126 | 0 | if (strcmp(nm, name) == 0) |
127 | 0 | return 1; |
128 | | |
129 | | /* Make PEM_STRING_EVP_PKEY match any private key */ |
130 | | |
131 | 0 | if (strcmp(name, PEM_STRING_EVP_PKEY) == 0) { |
132 | 0 | int slen; |
133 | 0 | const EVP_PKEY_ASN1_METHOD *ameth; |
134 | 0 | if (strcmp(nm, PEM_STRING_PKCS8) == 0) |
135 | 0 | return 1; |
136 | 0 | if (strcmp(nm, PEM_STRING_PKCS8INF) == 0) |
137 | 0 | return 1; |
138 | 0 | slen = pem_check_suffix(nm, "PRIVATE KEY"); |
139 | 0 | if (slen > 0) { |
140 | | /* |
141 | | * NB: ENGINE implementations won't contain a deprecated old |
142 | | * private key decode function so don't look for them. |
143 | | */ |
144 | 0 | ameth = EVP_PKEY_asn1_find_str(NULL, nm, slen); |
145 | 0 | if (ameth && ameth->old_priv_decode) |
146 | 0 | return 1; |
147 | 0 | } |
148 | 0 | return 0; |
149 | 0 | } |
150 | | |
151 | 0 | if (strcmp(name, PEM_STRING_PARAMETERS) == 0) { |
152 | 0 | int slen; |
153 | 0 | const EVP_PKEY_ASN1_METHOD *ameth; |
154 | 0 | slen = pem_check_suffix(nm, "PARAMETERS"); |
155 | 0 | if (slen > 0) { |
156 | 0 | ENGINE *e; |
157 | 0 | ameth = EVP_PKEY_asn1_find_str(&e, nm, slen); |
158 | 0 | if (ameth) { |
159 | 0 | int r; |
160 | 0 | if (ameth->param_decode) |
161 | 0 | r = 1; |
162 | 0 | else |
163 | 0 | r = 0; |
164 | 0 | #ifndef OPENSSL_NO_ENGINE |
165 | 0 | ENGINE_finish(e); |
166 | 0 | #endif |
167 | 0 | return r; |
168 | 0 | } |
169 | 0 | } |
170 | 0 | return 0; |
171 | 0 | } |
172 | | /* If reading DH parameters handle X9.42 DH format too */ |
173 | 0 | if (strcmp(nm, PEM_STRING_DHXPARAMS) == 0 |
174 | 0 | && strcmp(name, PEM_STRING_DHPARAMS) == 0) |
175 | 0 | return 1; |
176 | | |
177 | | /* Permit older strings */ |
178 | | |
179 | 0 | if (strcmp(nm, PEM_STRING_X509_OLD) == 0 |
180 | 0 | && strcmp(name, PEM_STRING_X509) == 0) |
181 | 0 | return 1; |
182 | | |
183 | 0 | if (strcmp(nm, PEM_STRING_X509_REQ_OLD) == 0 |
184 | 0 | && strcmp(name, PEM_STRING_X509_REQ) == 0) |
185 | 0 | return 1; |
186 | | |
187 | | /* Allow normal certs to be read as trusted certs */ |
188 | 0 | if (strcmp(nm, PEM_STRING_X509) == 0 |
189 | 0 | && strcmp(name, PEM_STRING_X509_TRUSTED) == 0) |
190 | 0 | return 1; |
191 | | |
192 | 0 | if (strcmp(nm, PEM_STRING_X509_OLD) == 0 |
193 | 0 | && strcmp(name, PEM_STRING_X509_TRUSTED) == 0) |
194 | 0 | return 1; |
195 | | |
196 | | /* Some CAs use PKCS#7 with CERTIFICATE headers */ |
197 | 0 | if (strcmp(nm, PEM_STRING_X509) == 0 |
198 | 0 | && strcmp(name, PEM_STRING_PKCS7) == 0) |
199 | 0 | return 1; |
200 | | |
201 | 0 | if (strcmp(nm, PEM_STRING_PKCS7_SIGNED) == 0 |
202 | 0 | && strcmp(name, PEM_STRING_PKCS7) == 0) |
203 | 0 | return 1; |
204 | | |
205 | 0 | #ifndef OPENSSL_NO_CMS |
206 | 0 | if (strcmp(nm, PEM_STRING_X509) == 0 |
207 | 0 | && strcmp(name, PEM_STRING_CMS) == 0) |
208 | 0 | return 1; |
209 | | /* Allow CMS to be read from PKCS#7 headers */ |
210 | 0 | if (strcmp(nm, PEM_STRING_PKCS7) == 0 |
211 | 0 | && strcmp(name, PEM_STRING_CMS) == 0) |
212 | 0 | return 1; |
213 | 0 | #endif |
214 | | |
215 | 0 | return 0; |
216 | 0 | } |
217 | | |
218 | | static void pem_free(void *p, unsigned int flags, size_t num) |
219 | 0 | { |
220 | 0 | if (flags & PEM_FLAG_SECURE) |
221 | 0 | OPENSSL_secure_clear_free(p, num); |
222 | 0 | else |
223 | 0 | OPENSSL_free(p); |
224 | 0 | } |
225 | | |
226 | | static void *pem_malloc(int num, unsigned int flags) |
227 | 0 | { |
228 | 0 | return (flags & PEM_FLAG_SECURE) ? OPENSSL_secure_malloc(num) |
229 | 0 | : OPENSSL_malloc(num); |
230 | 0 | } |
231 | | |
232 | | static int pem_bytes_read_bio_flags(unsigned char **pdata, long *plen, |
233 | | char **pnm, const char *name, BIO *bp, |
234 | | pem_password_cb *cb, void *u, |
235 | | unsigned int flags) |
236 | 0 | { |
237 | 0 | EVP_CIPHER_INFO cipher; |
238 | 0 | char *nm = NULL, *header = NULL; |
239 | 0 | unsigned char *data = NULL; |
240 | 0 | long len = 0; |
241 | 0 | int ret = 0; |
242 | |
|
243 | 0 | do { |
244 | 0 | pem_free(nm, flags, 0); |
245 | 0 | pem_free(header, flags, 0); |
246 | 0 | pem_free(data, flags, len); |
247 | 0 | if (!PEM_read_bio_ex(bp, &nm, &header, &data, &len, flags)) { |
248 | 0 | if (ERR_GET_REASON(ERR_peek_error()) == PEM_R_NO_START_LINE) |
249 | 0 | ERR_add_error_data(2, "Expecting: ", name); |
250 | 0 | return 0; |
251 | 0 | } |
252 | 0 | } while (!check_pem(nm, name)); |
253 | 0 | if (!PEM_get_EVP_CIPHER_INFO(header, &cipher)) |
254 | 0 | goto err; |
255 | 0 | if (!PEM_do_header(&cipher, data, &len, cb, u)) |
256 | 0 | goto err; |
257 | | |
258 | 0 | *pdata = data; |
259 | 0 | *plen = len; |
260 | |
|
261 | 0 | if (pnm != NULL) |
262 | 0 | *pnm = nm; |
263 | |
|
264 | 0 | ret = 1; |
265 | |
|
266 | 0 | err: |
267 | 0 | if (!ret || pnm == NULL) |
268 | 0 | pem_free(nm, flags, 0); |
269 | 0 | pem_free(header, flags, 0); |
270 | 0 | if (!ret) |
271 | 0 | pem_free(data, flags, len); |
272 | 0 | return ret; |
273 | 0 | } |
274 | | |
275 | | int PEM_bytes_read_bio(unsigned char **pdata, long *plen, char **pnm, |
276 | | const char *name, BIO *bp, pem_password_cb *cb, |
277 | 0 | void *u) { |
278 | 0 | return pem_bytes_read_bio_flags(pdata, plen, pnm, name, bp, cb, u, |
279 | 0 | PEM_FLAG_EAY_COMPATIBLE); |
280 | 0 | } |
281 | | |
282 | | int PEM_bytes_read_bio_secmem(unsigned char **pdata, long *plen, char **pnm, |
283 | | const char *name, BIO *bp, pem_password_cb *cb, |
284 | 0 | void *u) { |
285 | 0 | return pem_bytes_read_bio_flags(pdata, plen, pnm, name, bp, cb, u, |
286 | 0 | PEM_FLAG_SECURE | PEM_FLAG_EAY_COMPATIBLE); |
287 | 0 | } |
288 | | |
289 | | #ifndef OPENSSL_NO_STDIO |
290 | | int PEM_ASN1_write(i2d_of_void *i2d, const char *name, FILE *fp, |
291 | | void *x, const EVP_CIPHER *enc, unsigned char *kstr, |
292 | | int klen, pem_password_cb *callback, void *u) |
293 | 0 | { |
294 | 0 | BIO *b; |
295 | 0 | int ret; |
296 | |
|
297 | 0 | if ((b = BIO_new(BIO_s_file())) == NULL) { |
298 | 0 | PEMerr(PEM_F_PEM_ASN1_WRITE, ERR_R_BUF_LIB); |
299 | 0 | return 0; |
300 | 0 | } |
301 | 0 | BIO_set_fp(b, fp, BIO_NOCLOSE); |
302 | 0 | ret = PEM_ASN1_write_bio(i2d, name, b, x, enc, kstr, klen, callback, u); |
303 | 0 | BIO_free(b); |
304 | 0 | return ret; |
305 | 0 | } |
306 | | #endif |
307 | | |
308 | | int PEM_ASN1_write_bio(i2d_of_void *i2d, const char *name, BIO *bp, |
309 | | void *x, const EVP_CIPHER *enc, unsigned char *kstr, |
310 | | int klen, pem_password_cb *callback, void *u) |
311 | 0 | { |
312 | 0 | EVP_CIPHER_CTX *ctx = NULL; |
313 | 0 | int dsize = 0, i = 0, j = 0, ret = 0; |
314 | 0 | unsigned char *p, *data = NULL; |
315 | 0 | const char *objstr = NULL; |
316 | 0 | char buf[PEM_BUFSIZE]; |
317 | 0 | unsigned char key[EVP_MAX_KEY_LENGTH]; |
318 | 0 | unsigned char iv[EVP_MAX_IV_LENGTH]; |
319 | |
|
320 | 0 | if (enc != NULL) { |
321 | 0 | objstr = OBJ_nid2sn(EVP_CIPHER_nid(enc)); |
322 | 0 | if (objstr == NULL || EVP_CIPHER_iv_length(enc) == 0 |
323 | 0 | || EVP_CIPHER_iv_length(enc) > (int)sizeof(iv) |
324 | | /* |
325 | | * Check "Proc-Type: 4,Encrypted\nDEK-Info: objstr,hex-iv\n" |
326 | | * fits into buf |
327 | | */ |
328 | 0 | || (strlen(objstr) + 23 + 2 * EVP_CIPHER_iv_length(enc) + 13) |
329 | 0 | > sizeof(buf)) { |
330 | 0 | PEMerr(PEM_F_PEM_ASN1_WRITE_BIO, PEM_R_UNSUPPORTED_CIPHER); |
331 | 0 | goto err; |
332 | 0 | } |
333 | 0 | } |
334 | | |
335 | 0 | if ((dsize = i2d(x, NULL)) <= 0) { |
336 | 0 | PEMerr(PEM_F_PEM_ASN1_WRITE_BIO, ERR_R_ASN1_LIB); |
337 | 0 | dsize = 0; |
338 | 0 | goto err; |
339 | 0 | } |
340 | | /* dsize + 8 bytes are needed */ |
341 | | /* actually it needs the cipher block size extra... */ |
342 | 0 | data = OPENSSL_malloc((unsigned int)dsize + 20); |
343 | 0 | if (data == NULL) { |
344 | 0 | PEMerr(PEM_F_PEM_ASN1_WRITE_BIO, ERR_R_MALLOC_FAILURE); |
345 | 0 | goto err; |
346 | 0 | } |
347 | 0 | p = data; |
348 | 0 | i = i2d(x, &p); |
349 | |
|
350 | 0 | if (enc != NULL) { |
351 | 0 | if (kstr == NULL) { |
352 | 0 | if (callback == NULL) |
353 | 0 | klen = PEM_def_callback(buf, PEM_BUFSIZE, 1, u); |
354 | 0 | else |
355 | 0 | klen = (*callback) (buf, PEM_BUFSIZE, 1, u); |
356 | 0 | if (klen <= 0) { |
357 | 0 | PEMerr(PEM_F_PEM_ASN1_WRITE_BIO, PEM_R_READ_KEY); |
358 | 0 | goto err; |
359 | 0 | } |
360 | | #ifdef CHARSET_EBCDIC |
361 | | /* Convert the pass phrase from EBCDIC */ |
362 | | ebcdic2ascii(buf, buf, klen); |
363 | | #endif |
364 | 0 | kstr = (unsigned char *)buf; |
365 | 0 | } |
366 | 0 | if (RAND_bytes(iv, EVP_CIPHER_iv_length(enc)) <= 0) /* Generate a salt */ |
367 | 0 | goto err; |
368 | | /* |
369 | | * The 'iv' is used as the iv and as a salt. It is NOT taken from |
370 | | * the BytesToKey function |
371 | | */ |
372 | 0 | if (!EVP_BytesToKey(enc, EVP_md5(), iv, kstr, klen, 1, key, NULL)) |
373 | 0 | goto err; |
374 | | |
375 | 0 | if (kstr == (unsigned char *)buf) |
376 | 0 | OPENSSL_cleanse(buf, PEM_BUFSIZE); |
377 | |
|
378 | 0 | buf[0] = '\0'; |
379 | 0 | PEM_proc_type(buf, PEM_TYPE_ENCRYPTED); |
380 | 0 | PEM_dek_info(buf, objstr, EVP_CIPHER_iv_length(enc), (char *)iv); |
381 | | /* k=strlen(buf); */ |
382 | |
|
383 | 0 | ret = 1; |
384 | 0 | if ((ctx = EVP_CIPHER_CTX_new()) == NULL |
385 | 0 | || !EVP_EncryptInit_ex(ctx, enc, NULL, key, iv) |
386 | 0 | || !EVP_EncryptUpdate(ctx, data, &j, data, i) |
387 | 0 | || !EVP_EncryptFinal_ex(ctx, &(data[j]), &i)) |
388 | 0 | ret = 0; |
389 | 0 | if (ret == 0) |
390 | 0 | goto err; |
391 | 0 | i += j; |
392 | 0 | } else { |
393 | 0 | ret = 1; |
394 | 0 | buf[0] = '\0'; |
395 | 0 | } |
396 | 0 | i = PEM_write_bio(bp, name, buf, data, i); |
397 | 0 | if (i <= 0) |
398 | 0 | ret = 0; |
399 | 0 | err: |
400 | 0 | OPENSSL_cleanse(key, sizeof(key)); |
401 | 0 | OPENSSL_cleanse(iv, sizeof(iv)); |
402 | 0 | EVP_CIPHER_CTX_free(ctx); |
403 | 0 | OPENSSL_cleanse(buf, PEM_BUFSIZE); |
404 | 0 | OPENSSL_clear_free(data, (unsigned int)dsize); |
405 | 0 | return ret; |
406 | 0 | } |
407 | | |
408 | | int PEM_do_header(EVP_CIPHER_INFO *cipher, unsigned char *data, long *plen, |
409 | | pem_password_cb *callback, void *u) |
410 | 0 | { |
411 | 0 | int ok; |
412 | 0 | int keylen; |
413 | 0 | long len = *plen; |
414 | 0 | int ilen = (int) len; /* EVP_DecryptUpdate etc. take int lengths */ |
415 | 0 | EVP_CIPHER_CTX *ctx; |
416 | 0 | unsigned char key[EVP_MAX_KEY_LENGTH]; |
417 | 0 | char buf[PEM_BUFSIZE]; |
418 | |
|
419 | 0 | #if LONG_MAX > INT_MAX |
420 | | /* Check that we did not truncate the length */ |
421 | 0 | if (len > INT_MAX) { |
422 | 0 | PEMerr(PEM_F_PEM_DO_HEADER, PEM_R_HEADER_TOO_LONG); |
423 | 0 | return 0; |
424 | 0 | } |
425 | 0 | #endif |
426 | | |
427 | 0 | if (cipher->cipher == NULL) |
428 | 0 | return 1; |
429 | 0 | if (callback == NULL) |
430 | 0 | keylen = PEM_def_callback(buf, PEM_BUFSIZE, 0, u); |
431 | 0 | else |
432 | 0 | keylen = callback(buf, PEM_BUFSIZE, 0, u); |
433 | 0 | if (keylen < 0) { |
434 | 0 | PEMerr(PEM_F_PEM_DO_HEADER, PEM_R_BAD_PASSWORD_READ); |
435 | 0 | return 0; |
436 | 0 | } |
437 | | #ifdef CHARSET_EBCDIC |
438 | | /* Convert the pass phrase from EBCDIC */ |
439 | | ebcdic2ascii(buf, buf, keylen); |
440 | | #endif |
441 | | |
442 | 0 | if (!EVP_BytesToKey(cipher->cipher, EVP_md5(), &(cipher->iv[0]), |
443 | 0 | (unsigned char *)buf, keylen, 1, key, NULL)) |
444 | 0 | return 0; |
445 | | |
446 | 0 | ctx = EVP_CIPHER_CTX_new(); |
447 | 0 | if (ctx == NULL) |
448 | 0 | return 0; |
449 | | |
450 | 0 | ok = EVP_DecryptInit_ex(ctx, cipher->cipher, NULL, key, &(cipher->iv[0])); |
451 | 0 | if (ok) |
452 | 0 | ok = EVP_DecryptUpdate(ctx, data, &ilen, data, ilen); |
453 | 0 | if (ok) { |
454 | | /* Squirrel away the length of data decrypted so far. */ |
455 | 0 | *plen = ilen; |
456 | 0 | ok = EVP_DecryptFinal_ex(ctx, &(data[ilen]), &ilen); |
457 | 0 | } |
458 | 0 | if (ok) |
459 | 0 | *plen += ilen; |
460 | 0 | else |
461 | 0 | PEMerr(PEM_F_PEM_DO_HEADER, PEM_R_BAD_DECRYPT); |
462 | |
|
463 | 0 | EVP_CIPHER_CTX_free(ctx); |
464 | 0 | OPENSSL_cleanse((char *)buf, sizeof(buf)); |
465 | 0 | OPENSSL_cleanse((char *)key, sizeof(key)); |
466 | 0 | return ok; |
467 | 0 | } |
468 | | |
469 | | /* |
470 | | * This implements a very limited PEM header parser that does not support the |
471 | | * full grammar of rfc1421. In particular, folded headers are not supported, |
472 | | * nor is additional whitespace. |
473 | | * |
474 | | * A robust implementation would make use of a library that turns the headers |
475 | | * into a BIO from which one folded line is read at a time, and is then split |
476 | | * into a header label and content. We would then parse the content of the |
477 | | * headers we care about. This is overkill for just this limited use-case, but |
478 | | * presumably we also parse rfc822-style headers for S/MIME, so a common |
479 | | * abstraction might well be more generally useful. |
480 | | */ |
481 | | int PEM_get_EVP_CIPHER_INFO(char *header, EVP_CIPHER_INFO *cipher) |
482 | 0 | { |
483 | 0 | static const char ProcType[] = "Proc-Type:"; |
484 | 0 | static const char ENCRYPTED[] = "ENCRYPTED"; |
485 | 0 | static const char DEKInfo[] = "DEK-Info:"; |
486 | 0 | const EVP_CIPHER *enc = NULL; |
487 | 0 | int ivlen; |
488 | 0 | char *dekinfostart, c; |
489 | |
|
490 | 0 | cipher->cipher = NULL; |
491 | 0 | memset(cipher->iv, 0, sizeof(cipher->iv)); |
492 | 0 | if ((header == NULL) || (*header == '\0') || (*header == '\n')) |
493 | 0 | return 1; |
494 | | |
495 | 0 | if (strncmp(header, ProcType, sizeof(ProcType)-1) != 0) { |
496 | 0 | PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_NOT_PROC_TYPE); |
497 | 0 | return 0; |
498 | 0 | } |
499 | 0 | header += sizeof(ProcType)-1; |
500 | 0 | header += strspn(header, " \t"); |
501 | |
|
502 | 0 | if (*header++ != '4' || *header++ != ',') |
503 | 0 | return 0; |
504 | 0 | header += strspn(header, " \t"); |
505 | | |
506 | | /* We expect "ENCRYPTED" followed by optional white-space + line break */ |
507 | 0 | if (strncmp(header, ENCRYPTED, sizeof(ENCRYPTED)-1) != 0 || |
508 | 0 | strspn(header+sizeof(ENCRYPTED)-1, " \t\r\n") == 0) { |
509 | 0 | PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_NOT_ENCRYPTED); |
510 | 0 | return 0; |
511 | 0 | } |
512 | 0 | header += sizeof(ENCRYPTED)-1; |
513 | 0 | header += strspn(header, " \t\r"); |
514 | 0 | if (*header++ != '\n') { |
515 | 0 | PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_SHORT_HEADER); |
516 | 0 | return 0; |
517 | 0 | } |
518 | | |
519 | | /*- |
520 | | * https://tools.ietf.org/html/rfc1421#section-4.6.1.3 |
521 | | * We expect "DEK-Info: algo[,hex-parameters]" |
522 | | */ |
523 | 0 | if (strncmp(header, DEKInfo, sizeof(DEKInfo)-1) != 0) { |
524 | 0 | PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_NOT_DEK_INFO); |
525 | 0 | return 0; |
526 | 0 | } |
527 | 0 | header += sizeof(DEKInfo)-1; |
528 | 0 | header += strspn(header, " \t"); |
529 | | |
530 | | /* |
531 | | * DEK-INFO is a comma-separated combination of algorithm name and optional |
532 | | * parameters. |
533 | | */ |
534 | 0 | dekinfostart = header; |
535 | 0 | header += strcspn(header, " \t,"); |
536 | 0 | c = *header; |
537 | 0 | *header = '\0'; |
538 | 0 | cipher->cipher = enc = EVP_get_cipherbyname(dekinfostart); |
539 | 0 | *header = c; |
540 | 0 | header += strspn(header, " \t"); |
541 | |
|
542 | 0 | if (enc == NULL) { |
543 | 0 | PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_UNSUPPORTED_ENCRYPTION); |
544 | 0 | return 0; |
545 | 0 | } |
546 | 0 | ivlen = EVP_CIPHER_iv_length(enc); |
547 | 0 | if (ivlen > 0 && *header++ != ',') { |
548 | 0 | PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_MISSING_DEK_IV); |
549 | 0 | return 0; |
550 | 0 | } else if (ivlen == 0 && *header == ',') { |
551 | 0 | PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_UNEXPECTED_DEK_IV); |
552 | 0 | return 0; |
553 | 0 | } |
554 | | |
555 | 0 | if (!load_iv(&header, cipher->iv, EVP_CIPHER_iv_length(enc))) |
556 | 0 | return 0; |
557 | | |
558 | 0 | return 1; |
559 | 0 | } |
560 | | |
561 | | static int load_iv(char **fromp, unsigned char *to, int num) |
562 | 0 | { |
563 | 0 | int v, i; |
564 | 0 | char *from; |
565 | |
|
566 | 0 | from = *fromp; |
567 | 0 | for (i = 0; i < num; i++) |
568 | 0 | to[i] = 0; |
569 | 0 | num *= 2; |
570 | 0 | for (i = 0; i < num; i++) { |
571 | 0 | v = OPENSSL_hexchar2int(*from); |
572 | 0 | if (v < 0) { |
573 | 0 | PEMerr(PEM_F_LOAD_IV, PEM_R_BAD_IV_CHARS); |
574 | 0 | return 0; |
575 | 0 | } |
576 | 0 | from++; |
577 | 0 | to[i / 2] |= v << (long)((!(i & 1)) * 4); |
578 | 0 | } |
579 | | |
580 | 0 | *fromp = from; |
581 | 0 | return 1; |
582 | 0 | } |
583 | | |
584 | | #ifndef OPENSSL_NO_STDIO |
585 | | int PEM_write(FILE *fp, const char *name, const char *header, |
586 | | const unsigned char *data, long len) |
587 | 0 | { |
588 | 0 | BIO *b; |
589 | 0 | int ret; |
590 | |
|
591 | 0 | if ((b = BIO_new(BIO_s_file())) == NULL) { |
592 | 0 | PEMerr(PEM_F_PEM_WRITE, ERR_R_BUF_LIB); |
593 | 0 | return 0; |
594 | 0 | } |
595 | 0 | BIO_set_fp(b, fp, BIO_NOCLOSE); |
596 | 0 | ret = PEM_write_bio(b, name, header, data, len); |
597 | 0 | BIO_free(b); |
598 | 0 | return ret; |
599 | 0 | } |
600 | | #endif |
601 | | |
602 | | int PEM_write_bio(BIO *bp, const char *name, const char *header, |
603 | | const unsigned char *data, long len) |
604 | 0 | { |
605 | 0 | int nlen, n, i, j, outl; |
606 | 0 | unsigned char *buf = NULL; |
607 | 0 | EVP_ENCODE_CTX *ctx = EVP_ENCODE_CTX_new(); |
608 | 0 | int reason = ERR_R_BUF_LIB; |
609 | 0 | int retval = 0; |
610 | |
|
611 | 0 | if (ctx == NULL) { |
612 | 0 | reason = ERR_R_MALLOC_FAILURE; |
613 | 0 | goto err; |
614 | 0 | } |
615 | | |
616 | 0 | EVP_EncodeInit(ctx); |
617 | 0 | nlen = strlen(name); |
618 | |
|
619 | 0 | if ((BIO_write(bp, "-----BEGIN ", 11) != 11) || |
620 | 0 | (BIO_write(bp, name, nlen) != nlen) || |
621 | 0 | (BIO_write(bp, "-----\n", 6) != 6)) |
622 | 0 | goto err; |
623 | | |
624 | 0 | i = header != NULL ? strlen(header) : 0; |
625 | 0 | if (i > 0) { |
626 | 0 | if ((BIO_write(bp, header, i) != i) || (BIO_write(bp, "\n", 1) != 1)) |
627 | 0 | goto err; |
628 | 0 | } |
629 | | |
630 | 0 | buf = OPENSSL_malloc(PEM_BUFSIZE * 8); |
631 | 0 | if (buf == NULL) { |
632 | 0 | reason = ERR_R_MALLOC_FAILURE; |
633 | 0 | goto err; |
634 | 0 | } |
635 | | |
636 | 0 | i = j = 0; |
637 | 0 | while (len > 0) { |
638 | 0 | n = (int)((len > (PEM_BUFSIZE * 5)) ? (PEM_BUFSIZE * 5) : len); |
639 | 0 | if (!EVP_EncodeUpdate(ctx, buf, &outl, &(data[j]), n)) |
640 | 0 | goto err; |
641 | 0 | if ((outl) && (BIO_write(bp, (char *)buf, outl) != outl)) |
642 | 0 | goto err; |
643 | 0 | i += outl; |
644 | 0 | len -= n; |
645 | 0 | j += n; |
646 | 0 | } |
647 | 0 | EVP_EncodeFinal(ctx, buf, &outl); |
648 | 0 | if ((outl > 0) && (BIO_write(bp, (char *)buf, outl) != outl)) |
649 | 0 | goto err; |
650 | 0 | if ((BIO_write(bp, "-----END ", 9) != 9) || |
651 | 0 | (BIO_write(bp, name, nlen) != nlen) || |
652 | 0 | (BIO_write(bp, "-----\n", 6) != 6)) |
653 | 0 | goto err; |
654 | 0 | retval = i + outl; |
655 | |
|
656 | 0 | err: |
657 | 0 | if (retval == 0) |
658 | 0 | PEMerr(PEM_F_PEM_WRITE_BIO, reason); |
659 | 0 | EVP_ENCODE_CTX_free(ctx); |
660 | 0 | OPENSSL_clear_free(buf, PEM_BUFSIZE * 8); |
661 | 0 | return retval; |
662 | 0 | } |
663 | | |
664 | | #ifndef OPENSSL_NO_STDIO |
665 | | int PEM_read(FILE *fp, char **name, char **header, unsigned char **data, |
666 | | long *len) |
667 | 0 | { |
668 | 0 | BIO *b; |
669 | 0 | int ret; |
670 | |
|
671 | 0 | if ((b = BIO_new(BIO_s_file())) == NULL) { |
672 | 0 | PEMerr(PEM_F_PEM_READ, ERR_R_BUF_LIB); |
673 | 0 | return 0; |
674 | 0 | } |
675 | 0 | BIO_set_fp(b, fp, BIO_NOCLOSE); |
676 | 0 | ret = PEM_read_bio(b, name, header, data, len); |
677 | 0 | BIO_free(b); |
678 | 0 | return ret; |
679 | 0 | } |
680 | | #endif |
681 | | |
682 | | /* Some helpers for PEM_read_bio_ex(). */ |
683 | | static int sanitize_line(char *linebuf, int len, unsigned int flags) |
684 | 0 | { |
685 | 0 | int i; |
686 | |
|
687 | 0 | if (flags & PEM_FLAG_EAY_COMPATIBLE) { |
688 | | /* Strip trailing whitespace */ |
689 | 0 | while ((len >= 0) && (linebuf[len] <= ' ')) |
690 | 0 | len--; |
691 | | /* Go back to whitespace before applying uniform line ending. */ |
692 | 0 | len++; |
693 | 0 | } else if (flags & PEM_FLAG_ONLY_B64) { |
694 | 0 | for (i = 0; i < len; ++i) { |
695 | 0 | if (!ossl_isbase64(linebuf[i]) || linebuf[i] == '\n' |
696 | 0 | || linebuf[i] == '\r') |
697 | 0 | break; |
698 | 0 | } |
699 | 0 | len = i; |
700 | 0 | } else { |
701 | | /* EVP_DecodeBlock strips leading and trailing whitespace, so just strip |
702 | | * control characters in-place and let everything through. */ |
703 | 0 | for (i = 0; i < len; ++i) { |
704 | 0 | if (linebuf[i] == '\n' || linebuf[i] == '\r') |
705 | 0 | break; |
706 | 0 | if (ossl_iscntrl(linebuf[i])) |
707 | 0 | linebuf[i] = ' '; |
708 | 0 | } |
709 | 0 | len = i; |
710 | 0 | } |
711 | | /* The caller allocated LINESIZE+1, so this is safe. */ |
712 | 0 | linebuf[len++] = '\n'; |
713 | 0 | linebuf[len] = '\0'; |
714 | 0 | return len; |
715 | 0 | } |
716 | | |
717 | 0 | #define LINESIZE 255 |
718 | | /* Note trailing spaces for begin and end. */ |
719 | | static const char beginstr[] = "-----BEGIN "; |
720 | | static const char endstr[] = "-----END "; |
721 | | static const char tailstr[] = "-----\n"; |
722 | 0 | #define BEGINLEN ((int)(sizeof(beginstr) - 1)) |
723 | 0 | #define ENDLEN ((int)(sizeof(endstr) - 1)) |
724 | 0 | #define TAILLEN ((int)(sizeof(tailstr) - 1)) |
725 | | static int get_name(BIO *bp, char **name, unsigned int flags) |
726 | 0 | { |
727 | 0 | char *linebuf; |
728 | 0 | int ret = 0; |
729 | 0 | int len; |
730 | | |
731 | | /* |
732 | | * Need to hold trailing NUL (accounted for by BIO_gets() and the newline |
733 | | * that will be added by sanitize_line() (the extra '1'). |
734 | | */ |
735 | 0 | linebuf = pem_malloc(LINESIZE + 1, flags); |
736 | 0 | if (linebuf == NULL) { |
737 | 0 | PEMerr(PEM_F_GET_NAME, ERR_R_MALLOC_FAILURE); |
738 | 0 | return 0; |
739 | 0 | } |
740 | | |
741 | 0 | do { |
742 | 0 | len = BIO_gets(bp, linebuf, LINESIZE); |
743 | |
|
744 | 0 | if (len <= 0) { |
745 | 0 | PEMerr(PEM_F_GET_NAME, PEM_R_NO_START_LINE); |
746 | 0 | goto err; |
747 | 0 | } |
748 | | |
749 | | /* Strip trailing garbage and standardize ending. */ |
750 | 0 | len = sanitize_line(linebuf, len, flags & ~PEM_FLAG_ONLY_B64); |
751 | | |
752 | | /* Allow leading empty or non-matching lines. */ |
753 | 0 | } while (strncmp(linebuf, beginstr, BEGINLEN) != 0 |
754 | 0 | || len < TAILLEN |
755 | 0 | || strncmp(linebuf + len - TAILLEN, tailstr, TAILLEN) != 0); |
756 | 0 | linebuf[len - TAILLEN] = '\0'; |
757 | 0 | len = len - BEGINLEN - TAILLEN + 1; |
758 | 0 | *name = pem_malloc(len, flags); |
759 | 0 | if (*name == NULL) { |
760 | 0 | PEMerr(PEM_F_GET_NAME, ERR_R_MALLOC_FAILURE); |
761 | 0 | goto err; |
762 | 0 | } |
763 | 0 | memcpy(*name, linebuf + BEGINLEN, len); |
764 | 0 | ret = 1; |
765 | |
|
766 | 0 | err: |
767 | 0 | pem_free(linebuf, flags, LINESIZE + 1); |
768 | 0 | return ret; |
769 | 0 | } |
770 | | |
771 | | /* Keep track of how much of a header we've seen. */ |
772 | | enum header_status { |
773 | | MAYBE_HEADER, |
774 | | IN_HEADER, |
775 | | POST_HEADER |
776 | | }; |
777 | | |
778 | | /** |
779 | | * Extract the optional PEM header, with details on the type of content and |
780 | | * any encryption used on the contents, and the bulk of the data from the bio. |
781 | | * The end of the header is marked by a blank line; if the end-of-input marker |
782 | | * is reached prior to a blank line, there is no header. |
783 | | * |
784 | | * The header and data arguments are BIO** since we may have to swap them |
785 | | * if there is no header, for efficiency. |
786 | | * |
787 | | * We need the name of the PEM-encoded type to verify the end string. |
788 | | */ |
789 | | static int get_header_and_data(BIO *bp, BIO **header, BIO **data, char *name, |
790 | | unsigned int flags) |
791 | 0 | { |
792 | 0 | BIO *tmp = *header; |
793 | 0 | char *linebuf, *p; |
794 | 0 | int len, ret = 0, end = 0, prev_partial_line_read = 0, partial_line_read = 0; |
795 | | /* 0 if not seen (yet), 1 if reading header, 2 if finished header */ |
796 | 0 | enum header_status got_header = MAYBE_HEADER; |
797 | 0 | unsigned int flags_mask; |
798 | 0 | size_t namelen; |
799 | | |
800 | | /* Need to hold trailing NUL (accounted for by BIO_gets() and the newline |
801 | | * that will be added by sanitize_line() (the extra '1'). */ |
802 | 0 | linebuf = pem_malloc(LINESIZE + 1, flags); |
803 | 0 | if (linebuf == NULL) { |
804 | 0 | PEMerr(PEM_F_GET_HEADER_AND_DATA, ERR_R_MALLOC_FAILURE); |
805 | 0 | return 0; |
806 | 0 | } |
807 | | |
808 | 0 | for (;;) { |
809 | 0 | flags_mask = ~0u; |
810 | 0 | len = BIO_gets(bp, linebuf, LINESIZE); |
811 | 0 | if (len <= 0) { |
812 | 0 | PEMerr(PEM_F_GET_HEADER_AND_DATA, PEM_R_BAD_END_LINE); |
813 | 0 | goto err; |
814 | 0 | } |
815 | | |
816 | | /* |
817 | | * Check if line has been read completely or if only part of the line |
818 | | * has been read. Keep the previous value to ignore newlines that |
819 | | * appear due to reading a line up until the char before the newline. |
820 | | */ |
821 | 0 | prev_partial_line_read = partial_line_read; |
822 | 0 | partial_line_read = len == LINESIZE-1 && linebuf[LINESIZE-2] != '\n'; |
823 | |
|
824 | 0 | if (got_header == MAYBE_HEADER) { |
825 | 0 | if (memchr(linebuf, ':', len) != NULL) |
826 | 0 | got_header = IN_HEADER; |
827 | 0 | } |
828 | 0 | if (!strncmp(linebuf, endstr, ENDLEN) || got_header == IN_HEADER) |
829 | 0 | flags_mask &= ~PEM_FLAG_ONLY_B64; |
830 | 0 | len = sanitize_line(linebuf, len, flags & flags_mask); |
831 | | |
832 | | /* Check for end of header. */ |
833 | 0 | if (linebuf[0] == '\n') { |
834 | | /* |
835 | | * If previous line has been read only partially this newline is a |
836 | | * regular newline at the end of a line and not an empty line. |
837 | | */ |
838 | 0 | if (!prev_partial_line_read) { |
839 | 0 | if (got_header == POST_HEADER) { |
840 | | /* Another blank line is an error. */ |
841 | 0 | PEMerr(PEM_F_GET_HEADER_AND_DATA, PEM_R_BAD_END_LINE); |
842 | 0 | goto err; |
843 | 0 | } |
844 | 0 | got_header = POST_HEADER; |
845 | 0 | tmp = *data; |
846 | 0 | } |
847 | 0 | continue; |
848 | 0 | } |
849 | | |
850 | | /* Check for end of stream (which means there is no header). */ |
851 | 0 | if (strncmp(linebuf, endstr, ENDLEN) == 0) { |
852 | 0 | p = linebuf + ENDLEN; |
853 | 0 | namelen = strlen(name); |
854 | 0 | if (strncmp(p, name, namelen) != 0 || |
855 | 0 | strncmp(p + namelen, tailstr, TAILLEN) != 0) { |
856 | 0 | PEMerr(PEM_F_GET_HEADER_AND_DATA, PEM_R_BAD_END_LINE); |
857 | 0 | goto err; |
858 | 0 | } |
859 | 0 | if (got_header == MAYBE_HEADER) { |
860 | 0 | *header = *data; |
861 | 0 | *data = tmp; |
862 | 0 | } |
863 | 0 | break; |
864 | 0 | } else if (end) { |
865 | | /* Malformed input; short line not at end of data. */ |
866 | 0 | PEMerr(PEM_F_GET_HEADER_AND_DATA, PEM_R_BAD_END_LINE); |
867 | 0 | goto err; |
868 | 0 | } |
869 | | /* |
870 | | * Else, a line of text -- could be header or data; we don't |
871 | | * know yet. Just pass it through. |
872 | | */ |
873 | 0 | if (BIO_puts(tmp, linebuf) < 0) |
874 | 0 | goto err; |
875 | | /* |
876 | | * Only encrypted files need the line length check applied. |
877 | | */ |
878 | 0 | if (got_header == POST_HEADER) { |
879 | | /* 65 includes the trailing newline */ |
880 | 0 | if (len > 65) |
881 | 0 | goto err; |
882 | 0 | if (len < 65) |
883 | 0 | end = 1; |
884 | 0 | } |
885 | 0 | } |
886 | | |
887 | 0 | ret = 1; |
888 | 0 | err: |
889 | 0 | pem_free(linebuf, flags, LINESIZE + 1); |
890 | 0 | return ret; |
891 | 0 | } |
892 | | |
893 | | /** |
894 | | * Read in PEM-formatted data from the given BIO. |
895 | | * |
896 | | * By nature of the PEM format, all content must be printable ASCII (except |
897 | | * for line endings). Other characters are malformed input and will be rejected. |
898 | | */ |
899 | | int PEM_read_bio_ex(BIO *bp, char **name_out, char **header, |
900 | | unsigned char **data, long *len_out, unsigned int flags) |
901 | 0 | { |
902 | 0 | EVP_ENCODE_CTX *ctx = NULL; |
903 | 0 | const BIO_METHOD *bmeth; |
904 | 0 | BIO *headerB = NULL, *dataB = NULL; |
905 | 0 | char *name = NULL; |
906 | 0 | int len, taillen, headerlen, ret = 0; |
907 | 0 | BUF_MEM * buf_mem; |
908 | |
|
909 | 0 | *len_out = 0; |
910 | 0 | *name_out = *header = NULL; |
911 | 0 | *data = NULL; |
912 | 0 | if ((flags & PEM_FLAG_EAY_COMPATIBLE) && (flags & PEM_FLAG_ONLY_B64)) { |
913 | | /* These two are mutually incompatible; bail out. */ |
914 | 0 | PEMerr(PEM_F_PEM_READ_BIO_EX, ERR_R_PASSED_INVALID_ARGUMENT); |
915 | 0 | goto end; |
916 | 0 | } |
917 | 0 | bmeth = (flags & PEM_FLAG_SECURE) ? BIO_s_secmem() : BIO_s_mem(); |
918 | |
|
919 | 0 | headerB = BIO_new(bmeth); |
920 | 0 | dataB = BIO_new(bmeth); |
921 | 0 | if (headerB == NULL || dataB == NULL) { |
922 | 0 | PEMerr(PEM_F_PEM_READ_BIO_EX, ERR_R_MALLOC_FAILURE); |
923 | 0 | goto end; |
924 | 0 | } |
925 | | |
926 | 0 | if (!get_name(bp, &name, flags)) |
927 | 0 | goto end; |
928 | 0 | if (!get_header_and_data(bp, &headerB, &dataB, name, flags)) |
929 | 0 | goto end; |
930 | | |
931 | 0 | BIO_get_mem_ptr(dataB, &buf_mem); |
932 | 0 | len = buf_mem->length; |
933 | | |
934 | | /* There was no data in the PEM file */ |
935 | 0 | if (len == 0) |
936 | 0 | goto end; |
937 | | |
938 | 0 | ctx = EVP_ENCODE_CTX_new(); |
939 | 0 | if (ctx == NULL) { |
940 | 0 | PEMerr(PEM_F_PEM_READ_BIO_EX, ERR_R_MALLOC_FAILURE); |
941 | 0 | goto end; |
942 | 0 | } |
943 | | |
944 | 0 | EVP_DecodeInit(ctx); |
945 | 0 | if (EVP_DecodeUpdate(ctx, (unsigned char*)buf_mem->data, &len, |
946 | 0 | (unsigned char*)buf_mem->data, len) < 0 |
947 | 0 | || EVP_DecodeFinal(ctx, (unsigned char*)&(buf_mem->data[len]), |
948 | 0 | &taillen) < 0) { |
949 | 0 | PEMerr(PEM_F_PEM_READ_BIO_EX, PEM_R_BAD_BASE64_DECODE); |
950 | 0 | goto end; |
951 | 0 | } |
952 | 0 | len += taillen; |
953 | 0 | buf_mem->length = len; |
954 | |
|
955 | 0 | headerlen = BIO_get_mem_data(headerB, NULL); |
956 | 0 | *header = pem_malloc(headerlen + 1, flags); |
957 | 0 | *data = pem_malloc(len, flags); |
958 | 0 | if (*header == NULL || *data == NULL) { |
959 | 0 | pem_free(*header, flags, 0); |
960 | 0 | *header = NULL; |
961 | 0 | pem_free(*data, flags, 0); |
962 | 0 | *data = NULL; |
963 | 0 | goto end; |
964 | 0 | } |
965 | 0 | BIO_read(headerB, *header, headerlen); |
966 | 0 | (*header)[headerlen] = '\0'; |
967 | 0 | BIO_read(dataB, *data, len); |
968 | 0 | *len_out = len; |
969 | 0 | *name_out = name; |
970 | 0 | name = NULL; |
971 | 0 | ret = 1; |
972 | |
|
973 | 0 | end: |
974 | 0 | EVP_ENCODE_CTX_free(ctx); |
975 | 0 | pem_free(name, flags, 0); |
976 | 0 | BIO_free(headerB); |
977 | 0 | BIO_free(dataB); |
978 | 0 | return ret; |
979 | 0 | } |
980 | | |
981 | | int PEM_read_bio(BIO *bp, char **name, char **header, unsigned char **data, |
982 | | long *len) |
983 | 0 | { |
984 | 0 | return PEM_read_bio_ex(bp, name, header, data, len, PEM_FLAG_EAY_COMPATIBLE); |
985 | 0 | } |
986 | | |
987 | | /* |
988 | | * Check pem string and return prefix length. If for example the pem_str == |
989 | | * "RSA PRIVATE KEY" and suffix = "PRIVATE KEY" the return value is 3 for the |
990 | | * string "RSA". |
991 | | */ |
992 | | |
993 | | int pem_check_suffix(const char *pem_str, const char *suffix) |
994 | 0 | { |
995 | 0 | int pem_len = strlen(pem_str); |
996 | 0 | int suffix_len = strlen(suffix); |
997 | 0 | const char *p; |
998 | 0 | if (suffix_len + 1 >= pem_len) |
999 | 0 | return 0; |
1000 | 0 | p = pem_str + pem_len - suffix_len; |
1001 | 0 | if (strcmp(p, suffix)) |
1002 | 0 | return 0; |
1003 | 0 | p--; |
1004 | 0 | if (*p != ' ') |
1005 | 0 | return 0; |
1006 | 0 | return p - pem_str; |
1007 | 0 | } |