Coverage Report

Created: 2023-06-08 06:40

/src/openssl111/crypto/rand/rand_unix.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the OpenSSL license (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#ifndef _GNU_SOURCE
11
# define _GNU_SOURCE
12
#endif
13
#include "e_os.h"
14
#include <stdio.h>
15
#include "internal/cryptlib.h"
16
#include <openssl/rand.h>
17
#include <openssl/crypto.h>
18
#include "rand_local.h"
19
#include "crypto/rand.h"
20
#include <stdio.h>
21
#include "internal/dso.h"
22
#ifdef __linux
23
# include <sys/syscall.h>
24
# ifdef DEVRANDOM_WAIT
25
#  include <sys/shm.h>
26
#  include <sys/utsname.h>
27
# endif
28
#endif
29
#if (defined(__FreeBSD__) || defined(__NetBSD__)) && !defined(OPENSSL_SYS_UEFI)
30
# include <sys/types.h>
31
# include <sys/sysctl.h>
32
# include <sys/param.h>
33
#endif
34
#if defined(__OpenBSD__)
35
# include <sys/param.h>
36
#endif
37
38
#if defined(OPENSSL_SYS_UNIX) || defined(__DJGPP__)
39
# include <sys/types.h>
40
# include <sys/stat.h>
41
# include <fcntl.h>
42
# include <unistd.h>
43
# include <sys/time.h>
44
45
static uint64_t get_time_stamp(void);
46
static uint64_t get_timer_bits(void);
47
48
/* Macro to convert two thirty two bit values into a sixty four bit one */
49
0
# define TWO32TO64(a, b) ((((uint64_t)(a)) << 32) + (b))
50
51
/*
52
 * Check for the existence and support of POSIX timers.  The standard
53
 * says that the _POSIX_TIMERS macro will have a positive value if they
54
 * are available.
55
 *
56
 * However, we want an additional constraint: that the timer support does
57
 * not require an extra library dependency.  Early versions of glibc
58
 * require -lrt to be specified on the link line to access the timers,
59
 * so this needs to be checked for.
60
 *
61
 * It is worse because some libraries define __GLIBC__ but don't
62
 * support the version testing macro (e.g. uClibc).  This means
63
 * an extra check is needed.
64
 *
65
 * The final condition is:
66
 *      "have posix timers and either not glibc or glibc without -lrt"
67
 *
68
 * The nested #if sequences are required to avoid using a parameterised
69
 * macro that might be undefined.
70
 */
71
# undef OSSL_POSIX_TIMER_OKAY
72
# if defined(_POSIX_TIMERS) && _POSIX_TIMERS > 0
73
#  if defined(__GLIBC__)
74
#   if defined(__GLIBC_PREREQ)
75
#    if __GLIBC_PREREQ(2, 17)
76
#     define OSSL_POSIX_TIMER_OKAY
77
#    endif
78
#   endif
79
#  else
80
#   define OSSL_POSIX_TIMER_OKAY
81
#  endif
82
# endif
83
#endif /* (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS))
84
          || defined(__DJGPP__) */
85
86
#if defined(OPENSSL_RAND_SEED_NONE)
87
/* none means none. this simplifies the following logic */
88
# undef OPENSSL_RAND_SEED_OS
89
# undef OPENSSL_RAND_SEED_GETRANDOM
90
# undef OPENSSL_RAND_SEED_LIBRANDOM
91
# undef OPENSSL_RAND_SEED_DEVRANDOM
92
# undef OPENSSL_RAND_SEED_RDTSC
93
# undef OPENSSL_RAND_SEED_RDCPU
94
# undef OPENSSL_RAND_SEED_EGD
95
#endif
96
97
#if (defined(OPENSSL_SYS_VXWORKS) || defined(OPENSSL_SYS_UEFI)) && \
98
        !defined(OPENSSL_RAND_SEED_NONE)
99
# error "UEFI and VXWorks only support seeding NONE"
100
#endif
101
102
#if defined(OPENSSL_SYS_VXWORKS)
103
/* empty implementation */
104
int rand_pool_init(void)
105
{
106
    return 1;
107
}
108
109
void rand_pool_cleanup(void)
110
{
111
}
112
113
void rand_pool_keep_random_devices_open(int keep)
114
{
115
}
116
117
size_t rand_pool_acquire_entropy(RAND_POOL *pool)
118
{
119
    return rand_pool_entropy_available(pool);
120
}
121
#endif
122
123
#if !(defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32) \
124
    || defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_VXWORKS) \
125
    || defined(OPENSSL_SYS_UEFI))
126
127
# if defined(OPENSSL_SYS_VOS)
128
129
#  ifndef OPENSSL_RAND_SEED_OS
130
#   error "Unsupported seeding method configured; must be os"
131
#  endif
132
133
#  if defined(OPENSSL_SYS_VOS_HPPA) && defined(OPENSSL_SYS_VOS_IA32)
134
#   error "Unsupported HP-PA and IA32 at the same time."
135
#  endif
136
#  if !defined(OPENSSL_SYS_VOS_HPPA) && !defined(OPENSSL_SYS_VOS_IA32)
137
#   error "Must have one of HP-PA or IA32"
138
#  endif
139
140
/*
141
 * The following algorithm repeatedly samples the real-time clock (RTC) to
142
 * generate a sequence of unpredictable data.  The algorithm relies upon the
143
 * uneven execution speed of the code (due to factors such as cache misses,
144
 * interrupts, bus activity, and scheduling) and upon the rather large
145
 * relative difference between the speed of the clock and the rate at which
146
 * it can be read.  If it is ported to an environment where execution speed
147
 * is more constant or where the RTC ticks at a much slower rate, or the
148
 * clock can be read with fewer instructions, it is likely that the results
149
 * would be far more predictable.  This should only be used for legacy
150
 * platforms.
151
 *
152
 * As a precaution, we assume only 2 bits of entropy per byte.
153
 */
154
size_t rand_pool_acquire_entropy(RAND_POOL *pool)
155
{
156
    short int code;
157
    int i, k;
158
    size_t bytes_needed;
159
    struct timespec ts;
160
    unsigned char v;
161
#  ifdef OPENSSL_SYS_VOS_HPPA
162
    long duration;
163
    extern void s$sleep(long *_duration, short int *_code);
164
#  else
165
    long long duration;
166
    extern void s$sleep2(long long *_duration, short int *_code);
167
#  endif
168
169
    bytes_needed = rand_pool_bytes_needed(pool, 4 /*entropy_factor*/);
170
171
    for (i = 0; i < bytes_needed; i++) {
172
        /*
173
         * burn some cpu; hope for interrupts, cache collisions, bus
174
         * interference, etc.
175
         */
176
        for (k = 0; k < 99; k++)
177
            ts.tv_nsec = random();
178
179
#  ifdef OPENSSL_SYS_VOS_HPPA
180
        /* sleep for 1/1024 of a second (976 us).  */
181
        duration = 1;
182
        s$sleep(&duration, &code);
183
#  else
184
        /* sleep for 1/65536 of a second (15 us).  */
185
        duration = 1;
186
        s$sleep2(&duration, &code);
187
#  endif
188
189
        /* Get wall clock time, take 8 bits. */
190
        clock_gettime(CLOCK_REALTIME, &ts);
191
        v = (unsigned char)(ts.tv_nsec & 0xFF);
192
        rand_pool_add(pool, arg, &v, sizeof(v) , 2);
193
    }
194
    return rand_pool_entropy_available(pool);
195
}
196
197
void rand_pool_cleanup(void)
198
{
199
}
200
201
void rand_pool_keep_random_devices_open(int keep)
202
{
203
}
204
205
# else
206
207
#  if defined(OPENSSL_RAND_SEED_EGD) && \
208
        (defined(OPENSSL_NO_EGD) || !defined(DEVRANDOM_EGD))
209
#   error "Seeding uses EGD but EGD is turned off or no device given"
210
#  endif
211
212
#  if defined(OPENSSL_RAND_SEED_DEVRANDOM) && !defined(DEVRANDOM)
213
#   error "Seeding uses urandom but DEVRANDOM is not configured"
214
#  endif
215
216
#  if defined(OPENSSL_RAND_SEED_OS)
217
#   if !defined(DEVRANDOM)
218
#    error "OS seeding requires DEVRANDOM to be configured"
219
#   endif
220
#   define OPENSSL_RAND_SEED_GETRANDOM
221
#   define OPENSSL_RAND_SEED_DEVRANDOM
222
#  endif
223
224
#  if defined(OPENSSL_RAND_SEED_LIBRANDOM)
225
#   error "librandom not (yet) supported"
226
#  endif
227
228
#  if (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)
229
/*
230
 * sysctl_random(): Use sysctl() to read a random number from the kernel
231
 * Returns the number of bytes returned in buf on success, -1 on failure.
232
 */
233
static ssize_t sysctl_random(char *buf, size_t buflen)
234
{
235
    int mib[2];
236
    size_t done = 0;
237
    size_t len;
238
239
    /*
240
     * Note: sign conversion between size_t and ssize_t is safe even
241
     * without a range check, see comment in syscall_random()
242
     */
243
244
    /*
245
     * On FreeBSD old implementations returned longs, newer versions support
246
     * variable sizes up to 256 byte. The code below would not work properly
247
     * when the sysctl returns long and we want to request something not a
248
     * multiple of longs, which should never be the case.
249
     */
250
#if   defined(__FreeBSD__)
251
    if (!ossl_assert(buflen % sizeof(long) == 0)) {
252
        errno = EINVAL;
253
        return -1;
254
    }
255
#endif
256
257
    /*
258
     * On NetBSD before 4.0 KERN_ARND was an alias for KERN_URND, and only
259
     * filled in an int, leaving the rest uninitialized. Since NetBSD 4.0
260
     * it returns a variable number of bytes with the current version supporting
261
     * up to 256 bytes.
262
     * Just return an error on older NetBSD versions.
263
     */
264
#if   defined(__NetBSD__) && __NetBSD_Version__ < 400000000
265
    errno = ENOSYS;
266
    return -1;
267
#endif
268
269
    mib[0] = CTL_KERN;
270
    mib[1] = KERN_ARND;
271
272
    do {
273
        len = buflen > 256 ? 256 : buflen;
274
        if (sysctl(mib, 2, buf, &len, NULL, 0) == -1)
275
            return done > 0 ? done : -1;
276
        done += len;
277
        buf += len;
278
        buflen -= len;
279
    } while (buflen > 0);
280
281
    return done;
282
}
283
#  endif
284
285
#  if defined(OPENSSL_RAND_SEED_GETRANDOM)
286
287
#   if defined(__linux) && !defined(__NR_getrandom)
288
#    if defined(__arm__)
289
#     define __NR_getrandom    (__NR_SYSCALL_BASE+384)
290
#    elif defined(__i386__)
291
#     define __NR_getrandom    355
292
#    elif defined(__x86_64__)
293
#     if defined(__ILP32__)
294
#      define __NR_getrandom   (__X32_SYSCALL_BIT + 318)
295
#     else
296
#      define __NR_getrandom   318
297
#     endif
298
#    elif defined(__xtensa__)
299
#     define __NR_getrandom    338
300
#    elif defined(__s390__) || defined(__s390x__)
301
#     define __NR_getrandom    349
302
#    elif defined(__bfin__)
303
#     define __NR_getrandom    389
304
#    elif defined(__powerpc__)
305
#     define __NR_getrandom    359
306
#    elif defined(__mips__) || defined(__mips64)
307
#     if _MIPS_SIM == _MIPS_SIM_ABI32
308
#      define __NR_getrandom   (__NR_Linux + 353)
309
#     elif _MIPS_SIM == _MIPS_SIM_ABI64
310
#      define __NR_getrandom   (__NR_Linux + 313)
311
#     elif _MIPS_SIM == _MIPS_SIM_NABI32
312
#      define __NR_getrandom   (__NR_Linux + 317)
313
#     endif
314
#    elif defined(__hppa__)
315
#     define __NR_getrandom    (__NR_Linux + 339)
316
#    elif defined(__sparc__)
317
#     define __NR_getrandom    347
318
#    elif defined(__ia64__)
319
#     define __NR_getrandom    1339
320
#    elif defined(__alpha__)
321
#     define __NR_getrandom    511
322
#    elif defined(__sh__)
323
#     if defined(__SH5__)
324
#      define __NR_getrandom   373
325
#     else
326
#      define __NR_getrandom   384
327
#     endif
328
#    elif defined(__avr32__)
329
#     define __NR_getrandom    317
330
#    elif defined(__microblaze__)
331
#     define __NR_getrandom    385
332
#    elif defined(__m68k__)
333
#     define __NR_getrandom    352
334
#    elif defined(__cris__)
335
#     define __NR_getrandom    356
336
#    elif defined(__aarch64__)
337
#     define __NR_getrandom    278
338
#    else /* generic */
339
#     define __NR_getrandom    278
340
#    endif
341
#   endif
342
343
/*
344
 * syscall_random(): Try to get random data using a system call
345
 * returns the number of bytes returned in buf, or < 0 on error.
346
 */
347
static ssize_t syscall_random(void *buf, size_t buflen)
348
0
{
349
    /*
350
     * Note: 'buflen' equals the size of the buffer which is used by the
351
     * get_entropy() callback of the RAND_DRBG. It is roughly bounded by
352
     *
353
     *   2 * RAND_POOL_FACTOR * (RAND_DRBG_STRENGTH / 8) = 2^14
354
     *
355
     * which is way below the OSSL_SSIZE_MAX limit. Therefore sign conversion
356
     * between size_t and ssize_t is safe even without a range check.
357
     */
358
359
    /*
360
     * Do runtime detection to find getentropy().
361
     *
362
     * Known OSs that should support this:
363
     * - Darwin since 16 (OSX 10.12, IOS 10.0).
364
     * - Solaris since 11.3
365
     * - OpenBSD since 5.6
366
     * - Linux since 3.17 with glibc 2.25
367
     * - FreeBSD since 12.0 (1200061)
368
     *
369
     * Note: Sometimes getentropy() can be provided but not implemented
370
     * internally. So we need to check errno for ENOSYS
371
     */
372
0
#  if defined(__GNUC__) && __GNUC__>=2 && defined(__ELF__) && !defined(__hpux)
373
0
    extern int getentropy(void *buffer, size_t length) __attribute__((weak));
374
375
0
    if (getentropy != NULL) {
376
0
        if (getentropy(buf, buflen) == 0)
377
0
            return (ssize_t)buflen;
378
0
        if (errno != ENOSYS)
379
0
            return -1;
380
0
    }
381
#  elif defined(OPENSSL_APPLE_CRYPTO_RANDOM)
382
    if (CCRandomGenerateBytes(buf, buflen) == kCCSuccess)
383
      return (ssize_t)buflen;
384
385
    return -1;
386
#  else
387
    union {
388
        void *p;
389
        int (*f)(void *buffer, size_t length);
390
    } p_getentropy;
391
392
    /*
393
     * We could cache the result of the lookup, but we normally don't
394
     * call this function often.
395
     */
396
    ERR_set_mark();
397
    p_getentropy.p = DSO_global_lookup("getentropy");
398
    ERR_pop_to_mark();
399
    if (p_getentropy.p != NULL)
400
        return p_getentropy.f(buf, buflen) == 0 ? (ssize_t)buflen : -1;
401
#  endif
402
403
    /* Linux supports this since version 3.17 */
404
0
#  if defined(__linux) && defined(__NR_getrandom)
405
0
    return syscall(__NR_getrandom, buf, buflen, 0);
406
#  elif (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)
407
    return sysctl_random(buf, buflen);
408
#  else
409
    errno = ENOSYS;
410
    return -1;
411
#  endif
412
0
}
413
#  endif    /* defined(OPENSSL_RAND_SEED_GETRANDOM) */
414
415
#  if defined(OPENSSL_RAND_SEED_DEVRANDOM)
416
static const char *random_device_paths[] = { DEVRANDOM };
417
static struct random_device {
418
    int fd;
419
    dev_t dev;
420
    ino_t ino;
421
    mode_t mode;
422
    dev_t rdev;
423
} random_devices[OSSL_NELEM(random_device_paths)];
424
static int keep_random_devices_open = 1;
425
426
#   if defined(__linux) && defined(DEVRANDOM_WAIT) \
427
       && defined(OPENSSL_RAND_SEED_GETRANDOM)
428
static void *shm_addr;
429
430
static void cleanup_shm(void)
431
0
{
432
0
    shmdt(shm_addr);
433
0
}
434
435
/*
436
 * Ensure that the system randomness source has been adequately seeded.
437
 * This is done by having the first start of libcrypto, wait until the device
438
 * /dev/random becomes able to supply a byte of entropy.  Subsequent starts
439
 * of the library and later reseedings do not need to do this.
440
 */
441
static int wait_random_seeded(void)
442
0
{
443
0
    static int seeded = OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID < 0;
444
0
    static const int kernel_version[] = { DEVRANDOM_SAFE_KERNEL };
445
0
    int kernel[2];
446
0
    int shm_id, fd, r;
447
0
    char c, *p;
448
0
    struct utsname un;
449
0
    fd_set fds;
450
451
0
    if (!seeded) {
452
        /* See if anything has created the global seeded indication */
453
0
        if ((shm_id = shmget(OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID, 1, 0)) == -1) {
454
            /*
455
             * Check the kernel's version and fail if it is too recent.
456
             *
457
             * Linux kernels from 4.8 onwards do not guarantee that
458
             * /dev/urandom is properly seeded when /dev/random becomes
459
             * readable.  However, such kernels support the getentropy(2)
460
             * system call and this should always succeed which renders
461
             * this alternative but essentially identical source moot.
462
             */
463
0
            if (uname(&un) == 0) {
464
0
                kernel[0] = atoi(un.release);
465
0
                p = strchr(un.release, '.');
466
0
                kernel[1] = p == NULL ? 0 : atoi(p + 1);
467
0
                if (kernel[0] > kernel_version[0]
468
0
                    || (kernel[0] == kernel_version[0]
469
0
                        && kernel[1] >= kernel_version[1])) {
470
0
                    return 0;
471
0
                }
472
0
            }
473
            /* Open /dev/random and wait for it to be readable */
474
0
            if ((fd = open(DEVRANDOM_WAIT, O_RDONLY)) != -1) {
475
0
                if (DEVRANDM_WAIT_USE_SELECT && fd < FD_SETSIZE) {
476
0
                    FD_ZERO(&fds);
477
0
                    FD_SET(fd, &fds);
478
0
                    while ((r = select(fd + 1, &fds, NULL, NULL, NULL)) < 0
479
0
                           && errno == EINTR);
480
0
                } else {
481
0
                    while ((r = read(fd, &c, 1)) < 0 && errno == EINTR);
482
0
                }
483
0
                close(fd);
484
0
                if (r == 1) {
485
0
                    seeded = 1;
486
                    /* Create the shared memory indicator */
487
0
                    shm_id = shmget(OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID, 1,
488
0
                                    IPC_CREAT | S_IRUSR | S_IRGRP | S_IROTH);
489
0
                }
490
0
            }
491
0
        }
492
0
        if (shm_id != -1) {
493
0
            seeded = 1;
494
            /*
495
             * Map the shared memory to prevent its premature destruction.
496
             * If this call fails, it isn't a big problem.
497
             */
498
0
            shm_addr = shmat(shm_id, NULL, SHM_RDONLY);
499
0
            if (shm_addr != (void *)-1)
500
0
                OPENSSL_atexit(&cleanup_shm);
501
0
        }
502
0
    }
503
0
    return seeded;
504
0
}
505
#   else /* defined __linux && DEVRANDOM_WAIT && OPENSSL_RAND_SEED_GETRANDOM */
506
static int wait_random_seeded(void)
507
{
508
    return 1;
509
}
510
#   endif
511
512
/*
513
 * Verify that the file descriptor associated with the random source is
514
 * still valid. The rationale for doing this is the fact that it is not
515
 * uncommon for daemons to close all open file handles when daemonizing.
516
 * So the handle might have been closed or even reused for opening
517
 * another file.
518
 */
519
static int check_random_device(struct random_device * rd)
520
0
{
521
0
    struct stat st;
522
523
0
    return rd->fd != -1
524
0
           && fstat(rd->fd, &st) != -1
525
0
           && rd->dev == st.st_dev
526
0
           && rd->ino == st.st_ino
527
0
           && ((rd->mode ^ st.st_mode) & ~(S_IRWXU | S_IRWXG | S_IRWXO)) == 0
528
0
           && rd->rdev == st.st_rdev;
529
0
}
530
531
/*
532
 * Open a random device if required and return its file descriptor or -1 on error
533
 */
534
static int get_random_device(size_t n)
535
0
{
536
0
    struct stat st;
537
0
    struct random_device * rd = &random_devices[n];
538
539
    /* reuse existing file descriptor if it is (still) valid */
540
0
    if (check_random_device(rd))
541
0
        return rd->fd;
542
543
    /* open the random device ... */
544
0
    if ((rd->fd = open(random_device_paths[n], O_RDONLY)) == -1)
545
0
        return rd->fd;
546
547
    /* ... and cache its relevant stat(2) data */
548
0
    if (fstat(rd->fd, &st) != -1) {
549
0
        rd->dev = st.st_dev;
550
0
        rd->ino = st.st_ino;
551
0
        rd->mode = st.st_mode;
552
0
        rd->rdev = st.st_rdev;
553
0
    } else {
554
0
        close(rd->fd);
555
0
        rd->fd = -1;
556
0
    }
557
558
0
    return rd->fd;
559
0
}
560
561
/*
562
 * Close a random device making sure it is a random device
563
 */
564
static void close_random_device(size_t n)
565
0
{
566
0
    struct random_device * rd = &random_devices[n];
567
568
0
    if (check_random_device(rd))
569
0
        close(rd->fd);
570
0
    rd->fd = -1;
571
0
}
572
573
int rand_pool_init(void)
574
0
{
575
0
    size_t i;
576
577
0
    for (i = 0; i < OSSL_NELEM(random_devices); i++)
578
0
        random_devices[i].fd = -1;
579
580
0
    return 1;
581
0
}
582
583
void rand_pool_cleanup(void)
584
0
{
585
0
    size_t i;
586
587
0
    for (i = 0; i < OSSL_NELEM(random_devices); i++)
588
0
        close_random_device(i);
589
0
}
590
591
void rand_pool_keep_random_devices_open(int keep)
592
0
{
593
0
    if (!keep)
594
0
        rand_pool_cleanup();
595
596
0
    keep_random_devices_open = keep;
597
0
}
598
599
#  else     /* !defined(OPENSSL_RAND_SEED_DEVRANDOM) */
600
601
int rand_pool_init(void)
602
{
603
    return 1;
604
}
605
606
void rand_pool_cleanup(void)
607
{
608
}
609
610
void rand_pool_keep_random_devices_open(int keep)
611
{
612
}
613
614
#  endif    /* defined(OPENSSL_RAND_SEED_DEVRANDOM) */
615
616
/*
617
 * Try the various seeding methods in turn, exit when successful.
618
 *
619
 * TODO(DRBG): If more than one entropy source is available, is it
620
 * preferable to stop as soon as enough entropy has been collected
621
 * (as favored by @rsalz) or should one rather be defensive and add
622
 * more entropy than requested and/or from different sources?
623
 *
624
 * Currently, the user can select multiple entropy sources in the
625
 * configure step, yet in practice only the first available source
626
 * will be used. A more flexible solution has been requested, but
627
 * currently it is not clear how this can be achieved without
628
 * overengineering the problem. There are many parameters which
629
 * could be taken into account when selecting the order and amount
630
 * of input from the different entropy sources (trust, quality,
631
 * possibility of blocking).
632
 */
633
size_t rand_pool_acquire_entropy(RAND_POOL *pool)
634
0
{
635
#  if defined(OPENSSL_RAND_SEED_NONE)
636
    return rand_pool_entropy_available(pool);
637
#  else
638
0
    size_t entropy_available;
639
640
0
#   if defined(OPENSSL_RAND_SEED_GETRANDOM)
641
0
    {
642
0
        size_t bytes_needed;
643
0
        unsigned char *buffer;
644
0
        ssize_t bytes;
645
        /* Maximum allowed number of consecutive unsuccessful attempts */
646
0
        int attempts = 3;
647
648
0
        bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
649
0
        while (bytes_needed != 0 && attempts-- > 0) {
650
0
            buffer = rand_pool_add_begin(pool, bytes_needed);
651
0
            bytes = syscall_random(buffer, bytes_needed);
652
0
            if (bytes > 0) {
653
0
                rand_pool_add_end(pool, bytes, 8 * bytes);
654
0
                bytes_needed -= bytes;
655
0
                attempts = 3; /* reset counter after successful attempt */
656
0
            } else if (bytes < 0 && errno != EINTR) {
657
0
                break;
658
0
            }
659
0
        }
660
0
    }
661
0
    entropy_available = rand_pool_entropy_available(pool);
662
0
    if (entropy_available > 0)
663
0
        return entropy_available;
664
0
#   endif
665
666
#   if defined(OPENSSL_RAND_SEED_LIBRANDOM)
667
    {
668
        /* Not yet implemented. */
669
    }
670
#   endif
671
672
0
#   if defined(OPENSSL_RAND_SEED_DEVRANDOM)
673
0
    if (wait_random_seeded()) {
674
0
        size_t bytes_needed;
675
0
        unsigned char *buffer;
676
0
        size_t i;
677
678
0
        bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
679
0
        for (i = 0; bytes_needed > 0 && i < OSSL_NELEM(random_device_paths);
680
0
             i++) {
681
0
            ssize_t bytes = 0;
682
            /* Maximum number of consecutive unsuccessful attempts */
683
0
            int attempts = 3;
684
0
            const int fd = get_random_device(i);
685
686
0
            if (fd == -1)
687
0
                continue;
688
689
0
            while (bytes_needed != 0 && attempts-- > 0) {
690
0
                buffer = rand_pool_add_begin(pool, bytes_needed);
691
0
                bytes = read(fd, buffer, bytes_needed);
692
693
0
                if (bytes > 0) {
694
0
                    rand_pool_add_end(pool, bytes, 8 * bytes);
695
0
                    bytes_needed -= bytes;
696
0
                    attempts = 3; /* reset counter on successful attempt */
697
0
                } else if (bytes < 0 && errno != EINTR) {
698
0
                    break;
699
0
                }
700
0
            }
701
0
            if (bytes < 0 || !keep_random_devices_open)
702
0
                close_random_device(i);
703
704
0
            bytes_needed = rand_pool_bytes_needed(pool, 1);
705
0
        }
706
0
        entropy_available = rand_pool_entropy_available(pool);
707
0
        if (entropy_available > 0)
708
0
            return entropy_available;
709
0
    }
710
0
#   endif
711
712
#   if defined(OPENSSL_RAND_SEED_RDTSC)
713
    entropy_available = rand_acquire_entropy_from_tsc(pool);
714
    if (entropy_available > 0)
715
        return entropy_available;
716
#   endif
717
718
#   if defined(OPENSSL_RAND_SEED_RDCPU)
719
    entropy_available = rand_acquire_entropy_from_cpu(pool);
720
    if (entropy_available > 0)
721
        return entropy_available;
722
#   endif
723
724
#   if defined(OPENSSL_RAND_SEED_EGD)
725
    {
726
        static const char *paths[] = { DEVRANDOM_EGD, NULL };
727
        size_t bytes_needed;
728
        unsigned char *buffer;
729
        int i;
730
731
        bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
732
        for (i = 0; bytes_needed > 0 && paths[i] != NULL; i++) {
733
            size_t bytes = 0;
734
            int num;
735
736
            buffer = rand_pool_add_begin(pool, bytes_needed);
737
            num = RAND_query_egd_bytes(paths[i],
738
                                       buffer, (int)bytes_needed);
739
            if (num == (int)bytes_needed)
740
                bytes = bytes_needed;
741
742
            rand_pool_add_end(pool, bytes, 8 * bytes);
743
            bytes_needed = rand_pool_bytes_needed(pool, 1);
744
        }
745
        entropy_available = rand_pool_entropy_available(pool);
746
        if (entropy_available > 0)
747
            return entropy_available;
748
    }
749
#   endif
750
751
0
    return rand_pool_entropy_available(pool);
752
0
#  endif
753
0
}
754
# endif
755
#endif
756
757
#if defined(OPENSSL_SYS_UNIX) || defined(__DJGPP__)
758
int rand_pool_add_nonce_data(RAND_POOL *pool)
759
0
{
760
0
    struct {
761
0
        pid_t pid;
762
0
        CRYPTO_THREAD_ID tid;
763
0
        uint64_t time;
764
0
    } data = { 0 };
765
766
    /*
767
     * Add process id, thread id, and a high resolution timestamp to
768
     * ensure that the nonce is unique with high probability for
769
     * different process instances.
770
     */
771
0
    data.pid = getpid();
772
0
    data.tid = CRYPTO_THREAD_get_current_id();
773
0
    data.time = get_time_stamp();
774
775
0
    return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
776
0
}
777
778
int rand_pool_add_additional_data(RAND_POOL *pool)
779
0
{
780
0
    struct {
781
0
        int fork_id;
782
0
        CRYPTO_THREAD_ID tid;
783
0
        uint64_t time;
784
0
    } data = { 0 };
785
786
    /*
787
     * Add some noise from the thread id and a high resolution timer.
788
     * The fork_id adds some extra fork-safety.
789
     * The thread id adds a little randomness if the drbg is accessed
790
     * concurrently (which is the case for the <master> drbg).
791
     */
792
0
    data.fork_id = openssl_get_fork_id();
793
0
    data.tid = CRYPTO_THREAD_get_current_id();
794
0
    data.time = get_timer_bits();
795
796
0
    return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
797
0
}
798
799
800
/*
801
 * Get the current time with the highest possible resolution
802
 *
803
 * The time stamp is added to the nonce, so it is optimized for not repeating.
804
 * The current time is ideal for this purpose, provided the computer's clock
805
 * is synchronized.
806
 */
807
static uint64_t get_time_stamp(void)
808
0
{
809
0
# if defined(OSSL_POSIX_TIMER_OKAY)
810
0
    {
811
0
        struct timespec ts;
812
813
0
        if (clock_gettime(CLOCK_REALTIME, &ts) == 0)
814
0
            return TWO32TO64(ts.tv_sec, ts.tv_nsec);
815
0
    }
816
0
# endif
817
0
# if defined(__unix__) \
818
0
     || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
819
0
    {
820
0
        struct timeval tv;
821
822
0
        if (gettimeofday(&tv, NULL) == 0)
823
0
            return TWO32TO64(tv.tv_sec, tv.tv_usec);
824
0
    }
825
0
# endif
826
0
    return time(NULL);
827
0
}
828
829
/*
830
 * Get an arbitrary timer value of the highest possible resolution
831
 *
832
 * The timer value is added as random noise to the additional data,
833
 * which is not considered a trusted entropy sourec, so any result
834
 * is acceptable.
835
 */
836
static uint64_t get_timer_bits(void)
837
0
{
838
0
    uint64_t res = OPENSSL_rdtsc();
839
840
0
    if (res != 0)
841
0
        return res;
842
843
# if defined(__sun) || defined(__hpux)
844
    return gethrtime();
845
# elif defined(_AIX)
846
    {
847
        timebasestruct_t t;
848
849
        read_wall_time(&t, TIMEBASE_SZ);
850
        return TWO32TO64(t.tb_high, t.tb_low);
851
    }
852
# elif defined(OSSL_POSIX_TIMER_OKAY)
853
0
    {
854
0
        struct timespec ts;
855
856
0
#  ifdef CLOCK_BOOTTIME
857
0
#   define CLOCK_TYPE CLOCK_BOOTTIME
858
#  elif defined(_POSIX_MONOTONIC_CLOCK)
859
#   define CLOCK_TYPE CLOCK_MONOTONIC
860
#  else
861
#   define CLOCK_TYPE CLOCK_REALTIME
862
#  endif
863
864
0
        if (clock_gettime(CLOCK_TYPE, &ts) == 0)
865
0
            return TWO32TO64(ts.tv_sec, ts.tv_nsec);
866
0
    }
867
0
# endif
868
0
# if defined(__unix__) \
869
0
     || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
870
0
    {
871
0
        struct timeval tv;
872
873
0
        if (gettimeofday(&tv, NULL) == 0)
874
0
            return TWO32TO64(tv.tv_sec, tv.tv_usec);
875
0
    }
876
0
# endif
877
0
    return time(NULL);
878
0
}
879
#endif /* (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS))
880
          || defined(__DJGPP__) */