/src/openssl111/crypto/rand/rand_unix.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the OpenSSL license (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #ifndef _GNU_SOURCE |
11 | | # define _GNU_SOURCE |
12 | | #endif |
13 | | #include "e_os.h" |
14 | | #include <stdio.h> |
15 | | #include "internal/cryptlib.h" |
16 | | #include <openssl/rand.h> |
17 | | #include <openssl/crypto.h> |
18 | | #include "rand_local.h" |
19 | | #include "crypto/rand.h" |
20 | | #include <stdio.h> |
21 | | #include "internal/dso.h" |
22 | | #ifdef __linux |
23 | | # include <sys/syscall.h> |
24 | | # ifdef DEVRANDOM_WAIT |
25 | | # include <sys/shm.h> |
26 | | # include <sys/utsname.h> |
27 | | # endif |
28 | | #endif |
29 | | #if (defined(__FreeBSD__) || defined(__NetBSD__)) && !defined(OPENSSL_SYS_UEFI) |
30 | | # include <sys/types.h> |
31 | | # include <sys/sysctl.h> |
32 | | # include <sys/param.h> |
33 | | #endif |
34 | | #if defined(__OpenBSD__) |
35 | | # include <sys/param.h> |
36 | | #endif |
37 | | |
38 | | #if defined(OPENSSL_SYS_UNIX) || defined(__DJGPP__) |
39 | | # include <sys/types.h> |
40 | | # include <sys/stat.h> |
41 | | # include <fcntl.h> |
42 | | # include <unistd.h> |
43 | | # include <sys/time.h> |
44 | | |
45 | | static uint64_t get_time_stamp(void); |
46 | | static uint64_t get_timer_bits(void); |
47 | | |
48 | | /* Macro to convert two thirty two bit values into a sixty four bit one */ |
49 | 0 | # define TWO32TO64(a, b) ((((uint64_t)(a)) << 32) + (b)) |
50 | | |
51 | | /* |
52 | | * Check for the existence and support of POSIX timers. The standard |
53 | | * says that the _POSIX_TIMERS macro will have a positive value if they |
54 | | * are available. |
55 | | * |
56 | | * However, we want an additional constraint: that the timer support does |
57 | | * not require an extra library dependency. Early versions of glibc |
58 | | * require -lrt to be specified on the link line to access the timers, |
59 | | * so this needs to be checked for. |
60 | | * |
61 | | * It is worse because some libraries define __GLIBC__ but don't |
62 | | * support the version testing macro (e.g. uClibc). This means |
63 | | * an extra check is needed. |
64 | | * |
65 | | * The final condition is: |
66 | | * "have posix timers and either not glibc or glibc without -lrt" |
67 | | * |
68 | | * The nested #if sequences are required to avoid using a parameterised |
69 | | * macro that might be undefined. |
70 | | */ |
71 | | # undef OSSL_POSIX_TIMER_OKAY |
72 | | # if defined(_POSIX_TIMERS) && _POSIX_TIMERS > 0 |
73 | | # if defined(__GLIBC__) |
74 | | # if defined(__GLIBC_PREREQ) |
75 | | # if __GLIBC_PREREQ(2, 17) |
76 | | # define OSSL_POSIX_TIMER_OKAY |
77 | | # endif |
78 | | # endif |
79 | | # else |
80 | | # define OSSL_POSIX_TIMER_OKAY |
81 | | # endif |
82 | | # endif |
83 | | #endif /* (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS)) |
84 | | || defined(__DJGPP__) */ |
85 | | |
86 | | #if defined(OPENSSL_RAND_SEED_NONE) |
87 | | /* none means none. this simplifies the following logic */ |
88 | | # undef OPENSSL_RAND_SEED_OS |
89 | | # undef OPENSSL_RAND_SEED_GETRANDOM |
90 | | # undef OPENSSL_RAND_SEED_LIBRANDOM |
91 | | # undef OPENSSL_RAND_SEED_DEVRANDOM |
92 | | # undef OPENSSL_RAND_SEED_RDTSC |
93 | | # undef OPENSSL_RAND_SEED_RDCPU |
94 | | # undef OPENSSL_RAND_SEED_EGD |
95 | | #endif |
96 | | |
97 | | #if (defined(OPENSSL_SYS_VXWORKS) || defined(OPENSSL_SYS_UEFI)) && \ |
98 | | !defined(OPENSSL_RAND_SEED_NONE) |
99 | | # error "UEFI and VXWorks only support seeding NONE" |
100 | | #endif |
101 | | |
102 | | #if defined(OPENSSL_SYS_VXWORKS) |
103 | | /* empty implementation */ |
104 | | int rand_pool_init(void) |
105 | | { |
106 | | return 1; |
107 | | } |
108 | | |
109 | | void rand_pool_cleanup(void) |
110 | | { |
111 | | } |
112 | | |
113 | | void rand_pool_keep_random_devices_open(int keep) |
114 | | { |
115 | | } |
116 | | |
117 | | size_t rand_pool_acquire_entropy(RAND_POOL *pool) |
118 | | { |
119 | | return rand_pool_entropy_available(pool); |
120 | | } |
121 | | #endif |
122 | | |
123 | | #if !(defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32) \ |
124 | | || defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_VXWORKS) \ |
125 | | || defined(OPENSSL_SYS_UEFI)) |
126 | | |
127 | | # if defined(OPENSSL_SYS_VOS) |
128 | | |
129 | | # ifndef OPENSSL_RAND_SEED_OS |
130 | | # error "Unsupported seeding method configured; must be os" |
131 | | # endif |
132 | | |
133 | | # if defined(OPENSSL_SYS_VOS_HPPA) && defined(OPENSSL_SYS_VOS_IA32) |
134 | | # error "Unsupported HP-PA and IA32 at the same time." |
135 | | # endif |
136 | | # if !defined(OPENSSL_SYS_VOS_HPPA) && !defined(OPENSSL_SYS_VOS_IA32) |
137 | | # error "Must have one of HP-PA or IA32" |
138 | | # endif |
139 | | |
140 | | /* |
141 | | * The following algorithm repeatedly samples the real-time clock (RTC) to |
142 | | * generate a sequence of unpredictable data. The algorithm relies upon the |
143 | | * uneven execution speed of the code (due to factors such as cache misses, |
144 | | * interrupts, bus activity, and scheduling) and upon the rather large |
145 | | * relative difference between the speed of the clock and the rate at which |
146 | | * it can be read. If it is ported to an environment where execution speed |
147 | | * is more constant or where the RTC ticks at a much slower rate, or the |
148 | | * clock can be read with fewer instructions, it is likely that the results |
149 | | * would be far more predictable. This should only be used for legacy |
150 | | * platforms. |
151 | | * |
152 | | * As a precaution, we assume only 2 bits of entropy per byte. |
153 | | */ |
154 | | size_t rand_pool_acquire_entropy(RAND_POOL *pool) |
155 | | { |
156 | | short int code; |
157 | | int i, k; |
158 | | size_t bytes_needed; |
159 | | struct timespec ts; |
160 | | unsigned char v; |
161 | | # ifdef OPENSSL_SYS_VOS_HPPA |
162 | | long duration; |
163 | | extern void s$sleep(long *_duration, short int *_code); |
164 | | # else |
165 | | long long duration; |
166 | | extern void s$sleep2(long long *_duration, short int *_code); |
167 | | # endif |
168 | | |
169 | | bytes_needed = rand_pool_bytes_needed(pool, 4 /*entropy_factor*/); |
170 | | |
171 | | for (i = 0; i < bytes_needed; i++) { |
172 | | /* |
173 | | * burn some cpu; hope for interrupts, cache collisions, bus |
174 | | * interference, etc. |
175 | | */ |
176 | | for (k = 0; k < 99; k++) |
177 | | ts.tv_nsec = random(); |
178 | | |
179 | | # ifdef OPENSSL_SYS_VOS_HPPA |
180 | | /* sleep for 1/1024 of a second (976 us). */ |
181 | | duration = 1; |
182 | | s$sleep(&duration, &code); |
183 | | # else |
184 | | /* sleep for 1/65536 of a second (15 us). */ |
185 | | duration = 1; |
186 | | s$sleep2(&duration, &code); |
187 | | # endif |
188 | | |
189 | | /* Get wall clock time, take 8 bits. */ |
190 | | clock_gettime(CLOCK_REALTIME, &ts); |
191 | | v = (unsigned char)(ts.tv_nsec & 0xFF); |
192 | | rand_pool_add(pool, arg, &v, sizeof(v) , 2); |
193 | | } |
194 | | return rand_pool_entropy_available(pool); |
195 | | } |
196 | | |
197 | | void rand_pool_cleanup(void) |
198 | | { |
199 | | } |
200 | | |
201 | | void rand_pool_keep_random_devices_open(int keep) |
202 | | { |
203 | | } |
204 | | |
205 | | # else |
206 | | |
207 | | # if defined(OPENSSL_RAND_SEED_EGD) && \ |
208 | | (defined(OPENSSL_NO_EGD) || !defined(DEVRANDOM_EGD)) |
209 | | # error "Seeding uses EGD but EGD is turned off or no device given" |
210 | | # endif |
211 | | |
212 | | # if defined(OPENSSL_RAND_SEED_DEVRANDOM) && !defined(DEVRANDOM) |
213 | | # error "Seeding uses urandom but DEVRANDOM is not configured" |
214 | | # endif |
215 | | |
216 | | # if defined(OPENSSL_RAND_SEED_OS) |
217 | | # if !defined(DEVRANDOM) |
218 | | # error "OS seeding requires DEVRANDOM to be configured" |
219 | | # endif |
220 | | # define OPENSSL_RAND_SEED_GETRANDOM |
221 | | # define OPENSSL_RAND_SEED_DEVRANDOM |
222 | | # endif |
223 | | |
224 | | # if defined(OPENSSL_RAND_SEED_LIBRANDOM) |
225 | | # error "librandom not (yet) supported" |
226 | | # endif |
227 | | |
228 | | # if (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND) |
229 | | /* |
230 | | * sysctl_random(): Use sysctl() to read a random number from the kernel |
231 | | * Returns the number of bytes returned in buf on success, -1 on failure. |
232 | | */ |
233 | | static ssize_t sysctl_random(char *buf, size_t buflen) |
234 | | { |
235 | | int mib[2]; |
236 | | size_t done = 0; |
237 | | size_t len; |
238 | | |
239 | | /* |
240 | | * Note: sign conversion between size_t and ssize_t is safe even |
241 | | * without a range check, see comment in syscall_random() |
242 | | */ |
243 | | |
244 | | /* |
245 | | * On FreeBSD old implementations returned longs, newer versions support |
246 | | * variable sizes up to 256 byte. The code below would not work properly |
247 | | * when the sysctl returns long and we want to request something not a |
248 | | * multiple of longs, which should never be the case. |
249 | | */ |
250 | | #if defined(__FreeBSD__) |
251 | | if (!ossl_assert(buflen % sizeof(long) == 0)) { |
252 | | errno = EINVAL; |
253 | | return -1; |
254 | | } |
255 | | #endif |
256 | | |
257 | | /* |
258 | | * On NetBSD before 4.0 KERN_ARND was an alias for KERN_URND, and only |
259 | | * filled in an int, leaving the rest uninitialized. Since NetBSD 4.0 |
260 | | * it returns a variable number of bytes with the current version supporting |
261 | | * up to 256 bytes. |
262 | | * Just return an error on older NetBSD versions. |
263 | | */ |
264 | | #if defined(__NetBSD__) && __NetBSD_Version__ < 400000000 |
265 | | errno = ENOSYS; |
266 | | return -1; |
267 | | #endif |
268 | | |
269 | | mib[0] = CTL_KERN; |
270 | | mib[1] = KERN_ARND; |
271 | | |
272 | | do { |
273 | | len = buflen > 256 ? 256 : buflen; |
274 | | if (sysctl(mib, 2, buf, &len, NULL, 0) == -1) |
275 | | return done > 0 ? done : -1; |
276 | | done += len; |
277 | | buf += len; |
278 | | buflen -= len; |
279 | | } while (buflen > 0); |
280 | | |
281 | | return done; |
282 | | } |
283 | | # endif |
284 | | |
285 | | # if defined(OPENSSL_RAND_SEED_GETRANDOM) |
286 | | |
287 | | # if defined(__linux) && !defined(__NR_getrandom) |
288 | | # if defined(__arm__) |
289 | | # define __NR_getrandom (__NR_SYSCALL_BASE+384) |
290 | | # elif defined(__i386__) |
291 | | # define __NR_getrandom 355 |
292 | | # elif defined(__x86_64__) |
293 | | # if defined(__ILP32__) |
294 | | # define __NR_getrandom (__X32_SYSCALL_BIT + 318) |
295 | | # else |
296 | | # define __NR_getrandom 318 |
297 | | # endif |
298 | | # elif defined(__xtensa__) |
299 | | # define __NR_getrandom 338 |
300 | | # elif defined(__s390__) || defined(__s390x__) |
301 | | # define __NR_getrandom 349 |
302 | | # elif defined(__bfin__) |
303 | | # define __NR_getrandom 389 |
304 | | # elif defined(__powerpc__) |
305 | | # define __NR_getrandom 359 |
306 | | # elif defined(__mips__) || defined(__mips64) |
307 | | # if _MIPS_SIM == _MIPS_SIM_ABI32 |
308 | | # define __NR_getrandom (__NR_Linux + 353) |
309 | | # elif _MIPS_SIM == _MIPS_SIM_ABI64 |
310 | | # define __NR_getrandom (__NR_Linux + 313) |
311 | | # elif _MIPS_SIM == _MIPS_SIM_NABI32 |
312 | | # define __NR_getrandom (__NR_Linux + 317) |
313 | | # endif |
314 | | # elif defined(__hppa__) |
315 | | # define __NR_getrandom (__NR_Linux + 339) |
316 | | # elif defined(__sparc__) |
317 | | # define __NR_getrandom 347 |
318 | | # elif defined(__ia64__) |
319 | | # define __NR_getrandom 1339 |
320 | | # elif defined(__alpha__) |
321 | | # define __NR_getrandom 511 |
322 | | # elif defined(__sh__) |
323 | | # if defined(__SH5__) |
324 | | # define __NR_getrandom 373 |
325 | | # else |
326 | | # define __NR_getrandom 384 |
327 | | # endif |
328 | | # elif defined(__avr32__) |
329 | | # define __NR_getrandom 317 |
330 | | # elif defined(__microblaze__) |
331 | | # define __NR_getrandom 385 |
332 | | # elif defined(__m68k__) |
333 | | # define __NR_getrandom 352 |
334 | | # elif defined(__cris__) |
335 | | # define __NR_getrandom 356 |
336 | | # elif defined(__aarch64__) |
337 | | # define __NR_getrandom 278 |
338 | | # else /* generic */ |
339 | | # define __NR_getrandom 278 |
340 | | # endif |
341 | | # endif |
342 | | |
343 | | /* |
344 | | * syscall_random(): Try to get random data using a system call |
345 | | * returns the number of bytes returned in buf, or < 0 on error. |
346 | | */ |
347 | | static ssize_t syscall_random(void *buf, size_t buflen) |
348 | 0 | { |
349 | | /* |
350 | | * Note: 'buflen' equals the size of the buffer which is used by the |
351 | | * get_entropy() callback of the RAND_DRBG. It is roughly bounded by |
352 | | * |
353 | | * 2 * RAND_POOL_FACTOR * (RAND_DRBG_STRENGTH / 8) = 2^14 |
354 | | * |
355 | | * which is way below the OSSL_SSIZE_MAX limit. Therefore sign conversion |
356 | | * between size_t and ssize_t is safe even without a range check. |
357 | | */ |
358 | | |
359 | | /* |
360 | | * Do runtime detection to find getentropy(). |
361 | | * |
362 | | * Known OSs that should support this: |
363 | | * - Darwin since 16 (OSX 10.12, IOS 10.0). |
364 | | * - Solaris since 11.3 |
365 | | * - OpenBSD since 5.6 |
366 | | * - Linux since 3.17 with glibc 2.25 |
367 | | * - FreeBSD since 12.0 (1200061) |
368 | | * |
369 | | * Note: Sometimes getentropy() can be provided but not implemented |
370 | | * internally. So we need to check errno for ENOSYS |
371 | | */ |
372 | 0 | # if defined(__GNUC__) && __GNUC__>=2 && defined(__ELF__) && !defined(__hpux) |
373 | 0 | extern int getentropy(void *buffer, size_t length) __attribute__((weak)); |
374 | |
|
375 | 0 | if (getentropy != NULL) { |
376 | 0 | if (getentropy(buf, buflen) == 0) |
377 | 0 | return (ssize_t)buflen; |
378 | 0 | if (errno != ENOSYS) |
379 | 0 | return -1; |
380 | 0 | } |
381 | | # elif defined(OPENSSL_APPLE_CRYPTO_RANDOM) |
382 | | if (CCRandomGenerateBytes(buf, buflen) == kCCSuccess) |
383 | | return (ssize_t)buflen; |
384 | | |
385 | | return -1; |
386 | | # else |
387 | | union { |
388 | | void *p; |
389 | | int (*f)(void *buffer, size_t length); |
390 | | } p_getentropy; |
391 | | |
392 | | /* |
393 | | * We could cache the result of the lookup, but we normally don't |
394 | | * call this function often. |
395 | | */ |
396 | | ERR_set_mark(); |
397 | | p_getentropy.p = DSO_global_lookup("getentropy"); |
398 | | ERR_pop_to_mark(); |
399 | | if (p_getentropy.p != NULL) |
400 | | return p_getentropy.f(buf, buflen) == 0 ? (ssize_t)buflen : -1; |
401 | | # endif |
402 | | |
403 | | /* Linux supports this since version 3.17 */ |
404 | 0 | # if defined(__linux) && defined(__NR_getrandom) |
405 | 0 | return syscall(__NR_getrandom, buf, buflen, 0); |
406 | | # elif (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND) |
407 | | return sysctl_random(buf, buflen); |
408 | | # else |
409 | | errno = ENOSYS; |
410 | | return -1; |
411 | | # endif |
412 | 0 | } |
413 | | # endif /* defined(OPENSSL_RAND_SEED_GETRANDOM) */ |
414 | | |
415 | | # if defined(OPENSSL_RAND_SEED_DEVRANDOM) |
416 | | static const char *random_device_paths[] = { DEVRANDOM }; |
417 | | static struct random_device { |
418 | | int fd; |
419 | | dev_t dev; |
420 | | ino_t ino; |
421 | | mode_t mode; |
422 | | dev_t rdev; |
423 | | } random_devices[OSSL_NELEM(random_device_paths)]; |
424 | | static int keep_random_devices_open = 1; |
425 | | |
426 | | # if defined(__linux) && defined(DEVRANDOM_WAIT) \ |
427 | | && defined(OPENSSL_RAND_SEED_GETRANDOM) |
428 | | static void *shm_addr; |
429 | | |
430 | | static void cleanup_shm(void) |
431 | 0 | { |
432 | 0 | shmdt(shm_addr); |
433 | 0 | } |
434 | | |
435 | | /* |
436 | | * Ensure that the system randomness source has been adequately seeded. |
437 | | * This is done by having the first start of libcrypto, wait until the device |
438 | | * /dev/random becomes able to supply a byte of entropy. Subsequent starts |
439 | | * of the library and later reseedings do not need to do this. |
440 | | */ |
441 | | static int wait_random_seeded(void) |
442 | 0 | { |
443 | 0 | static int seeded = OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID < 0; |
444 | 0 | static const int kernel_version[] = { DEVRANDOM_SAFE_KERNEL }; |
445 | 0 | int kernel[2]; |
446 | 0 | int shm_id, fd, r; |
447 | 0 | char c, *p; |
448 | 0 | struct utsname un; |
449 | 0 | fd_set fds; |
450 | |
|
451 | 0 | if (!seeded) { |
452 | | /* See if anything has created the global seeded indication */ |
453 | 0 | if ((shm_id = shmget(OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID, 1, 0)) == -1) { |
454 | | /* |
455 | | * Check the kernel's version and fail if it is too recent. |
456 | | * |
457 | | * Linux kernels from 4.8 onwards do not guarantee that |
458 | | * /dev/urandom is properly seeded when /dev/random becomes |
459 | | * readable. However, such kernels support the getentropy(2) |
460 | | * system call and this should always succeed which renders |
461 | | * this alternative but essentially identical source moot. |
462 | | */ |
463 | 0 | if (uname(&un) == 0) { |
464 | 0 | kernel[0] = atoi(un.release); |
465 | 0 | p = strchr(un.release, '.'); |
466 | 0 | kernel[1] = p == NULL ? 0 : atoi(p + 1); |
467 | 0 | if (kernel[0] > kernel_version[0] |
468 | 0 | || (kernel[0] == kernel_version[0] |
469 | 0 | && kernel[1] >= kernel_version[1])) { |
470 | 0 | return 0; |
471 | 0 | } |
472 | 0 | } |
473 | | /* Open /dev/random and wait for it to be readable */ |
474 | 0 | if ((fd = open(DEVRANDOM_WAIT, O_RDONLY)) != -1) { |
475 | 0 | if (DEVRANDM_WAIT_USE_SELECT && fd < FD_SETSIZE) { |
476 | 0 | FD_ZERO(&fds); |
477 | 0 | FD_SET(fd, &fds); |
478 | 0 | while ((r = select(fd + 1, &fds, NULL, NULL, NULL)) < 0 |
479 | 0 | && errno == EINTR); |
480 | 0 | } else { |
481 | 0 | while ((r = read(fd, &c, 1)) < 0 && errno == EINTR); |
482 | 0 | } |
483 | 0 | close(fd); |
484 | 0 | if (r == 1) { |
485 | 0 | seeded = 1; |
486 | | /* Create the shared memory indicator */ |
487 | 0 | shm_id = shmget(OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID, 1, |
488 | 0 | IPC_CREAT | S_IRUSR | S_IRGRP | S_IROTH); |
489 | 0 | } |
490 | 0 | } |
491 | 0 | } |
492 | 0 | if (shm_id != -1) { |
493 | 0 | seeded = 1; |
494 | | /* |
495 | | * Map the shared memory to prevent its premature destruction. |
496 | | * If this call fails, it isn't a big problem. |
497 | | */ |
498 | 0 | shm_addr = shmat(shm_id, NULL, SHM_RDONLY); |
499 | 0 | if (shm_addr != (void *)-1) |
500 | 0 | OPENSSL_atexit(&cleanup_shm); |
501 | 0 | } |
502 | 0 | } |
503 | 0 | return seeded; |
504 | 0 | } |
505 | | # else /* defined __linux && DEVRANDOM_WAIT && OPENSSL_RAND_SEED_GETRANDOM */ |
506 | | static int wait_random_seeded(void) |
507 | | { |
508 | | return 1; |
509 | | } |
510 | | # endif |
511 | | |
512 | | /* |
513 | | * Verify that the file descriptor associated with the random source is |
514 | | * still valid. The rationale for doing this is the fact that it is not |
515 | | * uncommon for daemons to close all open file handles when daemonizing. |
516 | | * So the handle might have been closed or even reused for opening |
517 | | * another file. |
518 | | */ |
519 | | static int check_random_device(struct random_device * rd) |
520 | 0 | { |
521 | 0 | struct stat st; |
522 | |
|
523 | 0 | return rd->fd != -1 |
524 | 0 | && fstat(rd->fd, &st) != -1 |
525 | 0 | && rd->dev == st.st_dev |
526 | 0 | && rd->ino == st.st_ino |
527 | 0 | && ((rd->mode ^ st.st_mode) & ~(S_IRWXU | S_IRWXG | S_IRWXO)) == 0 |
528 | 0 | && rd->rdev == st.st_rdev; |
529 | 0 | } |
530 | | |
531 | | /* |
532 | | * Open a random device if required and return its file descriptor or -1 on error |
533 | | */ |
534 | | static int get_random_device(size_t n) |
535 | 0 | { |
536 | 0 | struct stat st; |
537 | 0 | struct random_device * rd = &random_devices[n]; |
538 | | |
539 | | /* reuse existing file descriptor if it is (still) valid */ |
540 | 0 | if (check_random_device(rd)) |
541 | 0 | return rd->fd; |
542 | | |
543 | | /* open the random device ... */ |
544 | 0 | if ((rd->fd = open(random_device_paths[n], O_RDONLY)) == -1) |
545 | 0 | return rd->fd; |
546 | | |
547 | | /* ... and cache its relevant stat(2) data */ |
548 | 0 | if (fstat(rd->fd, &st) != -1) { |
549 | 0 | rd->dev = st.st_dev; |
550 | 0 | rd->ino = st.st_ino; |
551 | 0 | rd->mode = st.st_mode; |
552 | 0 | rd->rdev = st.st_rdev; |
553 | 0 | } else { |
554 | 0 | close(rd->fd); |
555 | 0 | rd->fd = -1; |
556 | 0 | } |
557 | |
|
558 | 0 | return rd->fd; |
559 | 0 | } |
560 | | |
561 | | /* |
562 | | * Close a random device making sure it is a random device |
563 | | */ |
564 | | static void close_random_device(size_t n) |
565 | 0 | { |
566 | 0 | struct random_device * rd = &random_devices[n]; |
567 | |
|
568 | 0 | if (check_random_device(rd)) |
569 | 0 | close(rd->fd); |
570 | 0 | rd->fd = -1; |
571 | 0 | } |
572 | | |
573 | | int rand_pool_init(void) |
574 | 0 | { |
575 | 0 | size_t i; |
576 | |
|
577 | 0 | for (i = 0; i < OSSL_NELEM(random_devices); i++) |
578 | 0 | random_devices[i].fd = -1; |
579 | |
|
580 | 0 | return 1; |
581 | 0 | } |
582 | | |
583 | | void rand_pool_cleanup(void) |
584 | 0 | { |
585 | 0 | size_t i; |
586 | |
|
587 | 0 | for (i = 0; i < OSSL_NELEM(random_devices); i++) |
588 | 0 | close_random_device(i); |
589 | 0 | } |
590 | | |
591 | | void rand_pool_keep_random_devices_open(int keep) |
592 | 0 | { |
593 | 0 | if (!keep) |
594 | 0 | rand_pool_cleanup(); |
595 | |
|
596 | 0 | keep_random_devices_open = keep; |
597 | 0 | } |
598 | | |
599 | | # else /* !defined(OPENSSL_RAND_SEED_DEVRANDOM) */ |
600 | | |
601 | | int rand_pool_init(void) |
602 | | { |
603 | | return 1; |
604 | | } |
605 | | |
606 | | void rand_pool_cleanup(void) |
607 | | { |
608 | | } |
609 | | |
610 | | void rand_pool_keep_random_devices_open(int keep) |
611 | | { |
612 | | } |
613 | | |
614 | | # endif /* defined(OPENSSL_RAND_SEED_DEVRANDOM) */ |
615 | | |
616 | | /* |
617 | | * Try the various seeding methods in turn, exit when successful. |
618 | | * |
619 | | * TODO(DRBG): If more than one entropy source is available, is it |
620 | | * preferable to stop as soon as enough entropy has been collected |
621 | | * (as favored by @rsalz) or should one rather be defensive and add |
622 | | * more entropy than requested and/or from different sources? |
623 | | * |
624 | | * Currently, the user can select multiple entropy sources in the |
625 | | * configure step, yet in practice only the first available source |
626 | | * will be used. A more flexible solution has been requested, but |
627 | | * currently it is not clear how this can be achieved without |
628 | | * overengineering the problem. There are many parameters which |
629 | | * could be taken into account when selecting the order and amount |
630 | | * of input from the different entropy sources (trust, quality, |
631 | | * possibility of blocking). |
632 | | */ |
633 | | size_t rand_pool_acquire_entropy(RAND_POOL *pool) |
634 | 0 | { |
635 | | # if defined(OPENSSL_RAND_SEED_NONE) |
636 | | return rand_pool_entropy_available(pool); |
637 | | # else |
638 | 0 | size_t entropy_available; |
639 | |
|
640 | 0 | # if defined(OPENSSL_RAND_SEED_GETRANDOM) |
641 | 0 | { |
642 | 0 | size_t bytes_needed; |
643 | 0 | unsigned char *buffer; |
644 | 0 | ssize_t bytes; |
645 | | /* Maximum allowed number of consecutive unsuccessful attempts */ |
646 | 0 | int attempts = 3; |
647 | |
|
648 | 0 | bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/); |
649 | 0 | while (bytes_needed != 0 && attempts-- > 0) { |
650 | 0 | buffer = rand_pool_add_begin(pool, bytes_needed); |
651 | 0 | bytes = syscall_random(buffer, bytes_needed); |
652 | 0 | if (bytes > 0) { |
653 | 0 | rand_pool_add_end(pool, bytes, 8 * bytes); |
654 | 0 | bytes_needed -= bytes; |
655 | 0 | attempts = 3; /* reset counter after successful attempt */ |
656 | 0 | } else if (bytes < 0 && errno != EINTR) { |
657 | 0 | break; |
658 | 0 | } |
659 | 0 | } |
660 | 0 | } |
661 | 0 | entropy_available = rand_pool_entropy_available(pool); |
662 | 0 | if (entropy_available > 0) |
663 | 0 | return entropy_available; |
664 | 0 | # endif |
665 | | |
666 | | # if defined(OPENSSL_RAND_SEED_LIBRANDOM) |
667 | | { |
668 | | /* Not yet implemented. */ |
669 | | } |
670 | | # endif |
671 | | |
672 | 0 | # if defined(OPENSSL_RAND_SEED_DEVRANDOM) |
673 | 0 | if (wait_random_seeded()) { |
674 | 0 | size_t bytes_needed; |
675 | 0 | unsigned char *buffer; |
676 | 0 | size_t i; |
677 | |
|
678 | 0 | bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/); |
679 | 0 | for (i = 0; bytes_needed > 0 && i < OSSL_NELEM(random_device_paths); |
680 | 0 | i++) { |
681 | 0 | ssize_t bytes = 0; |
682 | | /* Maximum number of consecutive unsuccessful attempts */ |
683 | 0 | int attempts = 3; |
684 | 0 | const int fd = get_random_device(i); |
685 | |
|
686 | 0 | if (fd == -1) |
687 | 0 | continue; |
688 | | |
689 | 0 | while (bytes_needed != 0 && attempts-- > 0) { |
690 | 0 | buffer = rand_pool_add_begin(pool, bytes_needed); |
691 | 0 | bytes = read(fd, buffer, bytes_needed); |
692 | |
|
693 | 0 | if (bytes > 0) { |
694 | 0 | rand_pool_add_end(pool, bytes, 8 * bytes); |
695 | 0 | bytes_needed -= bytes; |
696 | 0 | attempts = 3; /* reset counter on successful attempt */ |
697 | 0 | } else if (bytes < 0 && errno != EINTR) { |
698 | 0 | break; |
699 | 0 | } |
700 | 0 | } |
701 | 0 | if (bytes < 0 || !keep_random_devices_open) |
702 | 0 | close_random_device(i); |
703 | |
|
704 | 0 | bytes_needed = rand_pool_bytes_needed(pool, 1); |
705 | 0 | } |
706 | 0 | entropy_available = rand_pool_entropy_available(pool); |
707 | 0 | if (entropy_available > 0) |
708 | 0 | return entropy_available; |
709 | 0 | } |
710 | 0 | # endif |
711 | | |
712 | | # if defined(OPENSSL_RAND_SEED_RDTSC) |
713 | | entropy_available = rand_acquire_entropy_from_tsc(pool); |
714 | | if (entropy_available > 0) |
715 | | return entropy_available; |
716 | | # endif |
717 | | |
718 | | # if defined(OPENSSL_RAND_SEED_RDCPU) |
719 | | entropy_available = rand_acquire_entropy_from_cpu(pool); |
720 | | if (entropy_available > 0) |
721 | | return entropy_available; |
722 | | # endif |
723 | | |
724 | | # if defined(OPENSSL_RAND_SEED_EGD) |
725 | | { |
726 | | static const char *paths[] = { DEVRANDOM_EGD, NULL }; |
727 | | size_t bytes_needed; |
728 | | unsigned char *buffer; |
729 | | int i; |
730 | | |
731 | | bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/); |
732 | | for (i = 0; bytes_needed > 0 && paths[i] != NULL; i++) { |
733 | | size_t bytes = 0; |
734 | | int num; |
735 | | |
736 | | buffer = rand_pool_add_begin(pool, bytes_needed); |
737 | | num = RAND_query_egd_bytes(paths[i], |
738 | | buffer, (int)bytes_needed); |
739 | | if (num == (int)bytes_needed) |
740 | | bytes = bytes_needed; |
741 | | |
742 | | rand_pool_add_end(pool, bytes, 8 * bytes); |
743 | | bytes_needed = rand_pool_bytes_needed(pool, 1); |
744 | | } |
745 | | entropy_available = rand_pool_entropy_available(pool); |
746 | | if (entropy_available > 0) |
747 | | return entropy_available; |
748 | | } |
749 | | # endif |
750 | | |
751 | 0 | return rand_pool_entropy_available(pool); |
752 | 0 | # endif |
753 | 0 | } |
754 | | # endif |
755 | | #endif |
756 | | |
757 | | #if defined(OPENSSL_SYS_UNIX) || defined(__DJGPP__) |
758 | | int rand_pool_add_nonce_data(RAND_POOL *pool) |
759 | 0 | { |
760 | 0 | struct { |
761 | 0 | pid_t pid; |
762 | 0 | CRYPTO_THREAD_ID tid; |
763 | 0 | uint64_t time; |
764 | 0 | } data = { 0 }; |
765 | | |
766 | | /* |
767 | | * Add process id, thread id, and a high resolution timestamp to |
768 | | * ensure that the nonce is unique with high probability for |
769 | | * different process instances. |
770 | | */ |
771 | 0 | data.pid = getpid(); |
772 | 0 | data.tid = CRYPTO_THREAD_get_current_id(); |
773 | 0 | data.time = get_time_stamp(); |
774 | |
|
775 | 0 | return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0); |
776 | 0 | } |
777 | | |
778 | | int rand_pool_add_additional_data(RAND_POOL *pool) |
779 | 0 | { |
780 | 0 | struct { |
781 | 0 | int fork_id; |
782 | 0 | CRYPTO_THREAD_ID tid; |
783 | 0 | uint64_t time; |
784 | 0 | } data = { 0 }; |
785 | | |
786 | | /* |
787 | | * Add some noise from the thread id and a high resolution timer. |
788 | | * The fork_id adds some extra fork-safety. |
789 | | * The thread id adds a little randomness if the drbg is accessed |
790 | | * concurrently (which is the case for the <master> drbg). |
791 | | */ |
792 | 0 | data.fork_id = openssl_get_fork_id(); |
793 | 0 | data.tid = CRYPTO_THREAD_get_current_id(); |
794 | 0 | data.time = get_timer_bits(); |
795 | |
|
796 | 0 | return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0); |
797 | 0 | } |
798 | | |
799 | | |
800 | | /* |
801 | | * Get the current time with the highest possible resolution |
802 | | * |
803 | | * The time stamp is added to the nonce, so it is optimized for not repeating. |
804 | | * The current time is ideal for this purpose, provided the computer's clock |
805 | | * is synchronized. |
806 | | */ |
807 | | static uint64_t get_time_stamp(void) |
808 | 0 | { |
809 | 0 | # if defined(OSSL_POSIX_TIMER_OKAY) |
810 | 0 | { |
811 | 0 | struct timespec ts; |
812 | |
|
813 | 0 | if (clock_gettime(CLOCK_REALTIME, &ts) == 0) |
814 | 0 | return TWO32TO64(ts.tv_sec, ts.tv_nsec); |
815 | 0 | } |
816 | 0 | # endif |
817 | 0 | # if defined(__unix__) \ |
818 | 0 | || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L) |
819 | 0 | { |
820 | 0 | struct timeval tv; |
821 | |
|
822 | 0 | if (gettimeofday(&tv, NULL) == 0) |
823 | 0 | return TWO32TO64(tv.tv_sec, tv.tv_usec); |
824 | 0 | } |
825 | 0 | # endif |
826 | 0 | return time(NULL); |
827 | 0 | } |
828 | | |
829 | | /* |
830 | | * Get an arbitrary timer value of the highest possible resolution |
831 | | * |
832 | | * The timer value is added as random noise to the additional data, |
833 | | * which is not considered a trusted entropy sourec, so any result |
834 | | * is acceptable. |
835 | | */ |
836 | | static uint64_t get_timer_bits(void) |
837 | 0 | { |
838 | 0 | uint64_t res = OPENSSL_rdtsc(); |
839 | |
|
840 | 0 | if (res != 0) |
841 | 0 | return res; |
842 | | |
843 | | # if defined(__sun) || defined(__hpux) |
844 | | return gethrtime(); |
845 | | # elif defined(_AIX) |
846 | | { |
847 | | timebasestruct_t t; |
848 | | |
849 | | read_wall_time(&t, TIMEBASE_SZ); |
850 | | return TWO32TO64(t.tb_high, t.tb_low); |
851 | | } |
852 | | # elif defined(OSSL_POSIX_TIMER_OKAY) |
853 | 0 | { |
854 | 0 | struct timespec ts; |
855 | |
|
856 | 0 | # ifdef CLOCK_BOOTTIME |
857 | 0 | # define CLOCK_TYPE CLOCK_BOOTTIME |
858 | | # elif defined(_POSIX_MONOTONIC_CLOCK) |
859 | | # define CLOCK_TYPE CLOCK_MONOTONIC |
860 | | # else |
861 | | # define CLOCK_TYPE CLOCK_REALTIME |
862 | | # endif |
863 | |
|
864 | 0 | if (clock_gettime(CLOCK_TYPE, &ts) == 0) |
865 | 0 | return TWO32TO64(ts.tv_sec, ts.tv_nsec); |
866 | 0 | } |
867 | 0 | # endif |
868 | 0 | # if defined(__unix__) \ |
869 | 0 | || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L) |
870 | 0 | { |
871 | 0 | struct timeval tv; |
872 | |
|
873 | 0 | if (gettimeofday(&tv, NULL) == 0) |
874 | 0 | return TWO32TO64(tv.tv_sec, tv.tv_usec); |
875 | 0 | } |
876 | 0 | # endif |
877 | 0 | return time(NULL); |
878 | 0 | } |
879 | | #endif /* (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS)) |
880 | | || defined(__DJGPP__) */ |