Coverage Report

Created: 2023-06-08 06:40

/src/openssl111/crypto/rsa/rsa_oaep.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 1999-2019 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the OpenSSL license (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* EME-OAEP as defined in RFC 2437 (PKCS #1 v2.0) */
11
12
/*
13
 * See Victor Shoup, "OAEP reconsidered," Nov. 2000, <URL:
14
 * http://www.shoup.net/papers/oaep.ps.Z> for problems with the security
15
 * proof for the original OAEP scheme, which EME-OAEP is based on. A new
16
 * proof can be found in E. Fujisaki, T. Okamoto, D. Pointcheval, J. Stern,
17
 * "RSA-OEAP is Still Alive!", Dec. 2000, <URL:
18
 * http://eprint.iacr.org/2000/061/>. The new proof has stronger requirements
19
 * for the underlying permutation: "partial-one-wayness" instead of
20
 * one-wayness.  For the RSA function, this is an equivalent notion.
21
 */
22
23
#include "internal/constant_time.h"
24
25
#include <stdio.h>
26
#include "internal/cryptlib.h"
27
#include <openssl/bn.h>
28
#include <openssl/evp.h>
29
#include <openssl/rand.h>
30
#include <openssl/sha.h>
31
#include "rsa_local.h"
32
33
int RSA_padding_add_PKCS1_OAEP(unsigned char *to, int tlen,
34
                               const unsigned char *from, int flen,
35
                               const unsigned char *param, int plen)
36
0
{
37
0
    return RSA_padding_add_PKCS1_OAEP_mgf1(to, tlen, from, flen,
38
0
                                           param, plen, NULL, NULL);
39
0
}
40
41
int RSA_padding_add_PKCS1_OAEP_mgf1(unsigned char *to, int tlen,
42
                                    const unsigned char *from, int flen,
43
                                    const unsigned char *param, int plen,
44
                                    const EVP_MD *md, const EVP_MD *mgf1md)
45
0
{
46
0
    int rv = 0;
47
0
    int i, emlen = tlen - 1;
48
0
    unsigned char *db, *seed;
49
0
    unsigned char *dbmask = NULL;
50
0
    unsigned char seedmask[EVP_MAX_MD_SIZE];
51
0
    int mdlen, dbmask_len = 0;
52
53
0
    if (md == NULL)
54
0
        md = EVP_sha1();
55
0
    if (mgf1md == NULL)
56
0
        mgf1md = md;
57
58
0
    mdlen = EVP_MD_size(md);
59
60
0
    if (flen > emlen - 2 * mdlen - 1) {
61
0
        RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP_MGF1,
62
0
               RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
63
0
        return 0;
64
0
    }
65
66
0
    if (emlen < 2 * mdlen + 1) {
67
0
        RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP_MGF1,
68
0
               RSA_R_KEY_SIZE_TOO_SMALL);
69
0
        return 0;
70
0
    }
71
72
0
    to[0] = 0;
73
0
    seed = to + 1;
74
0
    db = to + mdlen + 1;
75
76
0
    if (!EVP_Digest((void *)param, plen, db, NULL, md, NULL))
77
0
        goto err;
78
0
    memset(db + mdlen, 0, emlen - flen - 2 * mdlen - 1);
79
0
    db[emlen - flen - mdlen - 1] = 0x01;
80
0
    memcpy(db + emlen - flen - mdlen, from, (unsigned int)flen);
81
0
    if (RAND_bytes(seed, mdlen) <= 0)
82
0
        goto err;
83
84
0
    dbmask_len = emlen - mdlen;
85
0
    dbmask = OPENSSL_malloc(dbmask_len);
86
0
    if (dbmask == NULL) {
87
0
        RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP_MGF1, ERR_R_MALLOC_FAILURE);
88
0
        goto err;
89
0
    }
90
91
0
    if (PKCS1_MGF1(dbmask, dbmask_len, seed, mdlen, mgf1md) < 0)
92
0
        goto err;
93
0
    for (i = 0; i < dbmask_len; i++)
94
0
        db[i] ^= dbmask[i];
95
96
0
    if (PKCS1_MGF1(seedmask, mdlen, db, dbmask_len, mgf1md) < 0)
97
0
        goto err;
98
0
    for (i = 0; i < mdlen; i++)
99
0
        seed[i] ^= seedmask[i];
100
0
    rv = 1;
101
102
0
 err:
103
0
    OPENSSL_cleanse(seedmask, sizeof(seedmask));
104
0
    OPENSSL_clear_free(dbmask, dbmask_len);
105
0
    return rv;
106
0
}
107
108
int RSA_padding_check_PKCS1_OAEP(unsigned char *to, int tlen,
109
                                 const unsigned char *from, int flen, int num,
110
                                 const unsigned char *param, int plen)
111
0
{
112
0
    return RSA_padding_check_PKCS1_OAEP_mgf1(to, tlen, from, flen, num,
113
0
                                             param, plen, NULL, NULL);
114
0
}
115
116
int RSA_padding_check_PKCS1_OAEP_mgf1(unsigned char *to, int tlen,
117
                                      const unsigned char *from, int flen,
118
                                      int num, const unsigned char *param,
119
                                      int plen, const EVP_MD *md,
120
                                      const EVP_MD *mgf1md)
121
0
{
122
0
    int i, dblen = 0, mlen = -1, one_index = 0, msg_index;
123
0
    unsigned int good = 0, found_one_byte, mask;
124
0
    const unsigned char *maskedseed, *maskeddb;
125
    /*
126
     * |em| is the encoded message, zero-padded to exactly |num| bytes: em =
127
     * Y || maskedSeed || maskedDB
128
     */
129
0
    unsigned char *db = NULL, *em = NULL, seed[EVP_MAX_MD_SIZE],
130
0
        phash[EVP_MAX_MD_SIZE];
131
0
    int mdlen;
132
133
0
    if (md == NULL)
134
0
        md = EVP_sha1();
135
0
    if (mgf1md == NULL)
136
0
        mgf1md = md;
137
138
0
    mdlen = EVP_MD_size(md);
139
140
0
    if (tlen <= 0 || flen <= 0)
141
0
        return -1;
142
    /*
143
     * |num| is the length of the modulus; |flen| is the length of the
144
     * encoded message. Therefore, for any |from| that was obtained by
145
     * decrypting a ciphertext, we must have |flen| <= |num|. Similarly,
146
     * |num| >= 2 * |mdlen| + 2 must hold for the modulus irrespective of
147
     * the ciphertext, see PKCS #1 v2.2, section 7.1.2.
148
     * This does not leak any side-channel information.
149
     */
150
0
    if (num < flen || num < 2 * mdlen + 2) {
151
0
        RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP_MGF1,
152
0
               RSA_R_OAEP_DECODING_ERROR);
153
0
        return -1;
154
0
    }
155
156
0
    dblen = num - mdlen - 1;
157
0
    db = OPENSSL_malloc(dblen);
158
0
    if (db == NULL) {
159
0
        RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP_MGF1, ERR_R_MALLOC_FAILURE);
160
0
        goto cleanup;
161
0
    }
162
163
0
    em = OPENSSL_malloc(num);
164
0
    if (em == NULL) {
165
0
        RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP_MGF1,
166
0
               ERR_R_MALLOC_FAILURE);
167
0
        goto cleanup;
168
0
    }
169
170
    /*
171
     * Caller is encouraged to pass zero-padded message created with
172
     * BN_bn2binpad. Trouble is that since we can't read out of |from|'s
173
     * bounds, it's impossible to have an invariant memory access pattern
174
     * in case |from| was not zero-padded in advance.
175
     */
176
0
    for (from += flen, em += num, i = 0; i < num; i++) {
177
0
        mask = ~constant_time_is_zero(flen);
178
0
        flen -= 1 & mask;
179
0
        from -= 1 & mask;
180
0
        *--em = *from & mask;
181
0
    }
182
183
    /*
184
     * The first byte must be zero, however we must not leak if this is
185
     * true. See James H. Manger, "A Chosen Ciphertext  Attack on RSA
186
     * Optimal Asymmetric Encryption Padding (OAEP) [...]", CRYPTO 2001).
187
     */
188
0
    good = constant_time_is_zero(em[0]);
189
190
0
    maskedseed = em + 1;
191
0
    maskeddb = em + 1 + mdlen;
192
193
0
    if (PKCS1_MGF1(seed, mdlen, maskeddb, dblen, mgf1md))
194
0
        goto cleanup;
195
0
    for (i = 0; i < mdlen; i++)
196
0
        seed[i] ^= maskedseed[i];
197
198
0
    if (PKCS1_MGF1(db, dblen, seed, mdlen, mgf1md))
199
0
        goto cleanup;
200
0
    for (i = 0; i < dblen; i++)
201
0
        db[i] ^= maskeddb[i];
202
203
0
    if (!EVP_Digest((void *)param, plen, phash, NULL, md, NULL))
204
0
        goto cleanup;
205
206
0
    good &= constant_time_is_zero(CRYPTO_memcmp(db, phash, mdlen));
207
208
0
    found_one_byte = 0;
209
0
    for (i = mdlen; i < dblen; i++) {
210
        /*
211
         * Padding consists of a number of 0-bytes, followed by a 1.
212
         */
213
0
        unsigned int equals1 = constant_time_eq(db[i], 1);
214
0
        unsigned int equals0 = constant_time_is_zero(db[i]);
215
0
        one_index = constant_time_select_int(~found_one_byte & equals1,
216
0
                                             i, one_index);
217
0
        found_one_byte |= equals1;
218
0
        good &= (found_one_byte | equals0);
219
0
    }
220
221
0
    good &= found_one_byte;
222
223
    /*
224
     * At this point |good| is zero unless the plaintext was valid,
225
     * so plaintext-awareness ensures timing side-channels are no longer a
226
     * concern.
227
     */
228
0
    msg_index = one_index + 1;
229
0
    mlen = dblen - msg_index;
230
231
    /*
232
     * For good measure, do this check in constant time as well.
233
     */
234
0
    good &= constant_time_ge(tlen, mlen);
235
236
    /*
237
     * Move the result in-place by |dblen|-|mdlen|-1-|mlen| bytes to the left.
238
     * Then if |good| move |mlen| bytes from |db|+|mdlen|+1 to |to|.
239
     * Otherwise leave |to| unchanged.
240
     * Copy the memory back in a way that does not reveal the size of
241
     * the data being copied via a timing side channel. This requires copying
242
     * parts of the buffer multiple times based on the bits set in the real
243
     * length. Clear bits do a non-copy with identical access pattern.
244
     * The loop below has overall complexity of O(N*log(N)).
245
     */
246
0
    tlen = constant_time_select_int(constant_time_lt(dblen - mdlen - 1, tlen),
247
0
                                    dblen - mdlen - 1, tlen);
248
0
    for (msg_index = 1; msg_index < dblen - mdlen - 1; msg_index <<= 1) {
249
0
        mask = ~constant_time_eq(msg_index & (dblen - mdlen - 1 - mlen), 0);
250
0
        for (i = mdlen + 1; i < dblen - msg_index; i++)
251
0
            db[i] = constant_time_select_8(mask, db[i + msg_index], db[i]);
252
0
    }
253
0
    for (i = 0; i < tlen; i++) {
254
0
        mask = good & constant_time_lt(i, mlen);
255
0
        to[i] = constant_time_select_8(mask, db[i + mdlen + 1], to[i]);
256
0
    }
257
258
    /*
259
     * To avoid chosen ciphertext attacks, the error message should not
260
     * reveal which kind of decoding error happened.
261
     */
262
0
    RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP_MGF1,
263
0
           RSA_R_OAEP_DECODING_ERROR);
264
0
    err_clear_last_constant_time(1 & good);
265
0
 cleanup:
266
0
    OPENSSL_cleanse(seed, sizeof(seed));
267
0
    OPENSSL_clear_free(db, dblen);
268
0
    OPENSSL_clear_free(em, num);
269
270
0
    return constant_time_select_int(good, mlen, -1);
271
0
}
272
273
int PKCS1_MGF1(unsigned char *mask, long len,
274
               const unsigned char *seed, long seedlen, const EVP_MD *dgst)
275
0
{
276
0
    long i, outlen = 0;
277
0
    unsigned char cnt[4];
278
0
    EVP_MD_CTX *c = EVP_MD_CTX_new();
279
0
    unsigned char md[EVP_MAX_MD_SIZE];
280
0
    int mdlen;
281
0
    int rv = -1;
282
283
0
    if (c == NULL)
284
0
        goto err;
285
0
    mdlen = EVP_MD_size(dgst);
286
0
    if (mdlen < 0)
287
0
        goto err;
288
0
    for (i = 0; outlen < len; i++) {
289
0
        cnt[0] = (unsigned char)((i >> 24) & 255);
290
0
        cnt[1] = (unsigned char)((i >> 16) & 255);
291
0
        cnt[2] = (unsigned char)((i >> 8)) & 255;
292
0
        cnt[3] = (unsigned char)(i & 255);
293
0
        if (!EVP_DigestInit_ex(c, dgst, NULL)
294
0
            || !EVP_DigestUpdate(c, seed, seedlen)
295
0
            || !EVP_DigestUpdate(c, cnt, 4))
296
0
            goto err;
297
0
        if (outlen + mdlen <= len) {
298
0
            if (!EVP_DigestFinal_ex(c, mask + outlen, NULL))
299
0
                goto err;
300
0
            outlen += mdlen;
301
0
        } else {
302
0
            if (!EVP_DigestFinal_ex(c, md, NULL))
303
0
                goto err;
304
0
            memcpy(mask + outlen, md, len - outlen);
305
0
            outlen = len;
306
0
        }
307
0
    }
308
0
    rv = 0;
309
0
 err:
310
0
    OPENSSL_cleanse(md, sizeof(md));
311
0
    EVP_MD_CTX_free(c);
312
0
    return rv;
313
0
}