Coverage Report

Created: 2023-06-08 06:40

/src/openssl111/crypto/stack/stack.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the OpenSSL license (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include <stdio.h>
11
#include "internal/cryptlib.h"
12
#include "internal/numbers.h"
13
#include <openssl/stack.h>
14
#include <openssl/objects.h>
15
#include <errno.h>
16
#include <openssl/e_os2.h>      /* For ossl_inline */
17
18
/*
19
 * The initial number of nodes in the array.
20
 */
21
static const int min_nodes = 4;
22
static const int max_nodes = SIZE_MAX / sizeof(void *) < INT_MAX
23
                             ? (int)(SIZE_MAX / sizeof(void *))
24
                             : INT_MAX;
25
26
struct stack_st {
27
    int num;
28
    const void **data;
29
    int sorted;
30
    int num_alloc;
31
    OPENSSL_sk_compfunc comp;
32
};
33
34
OPENSSL_sk_compfunc OPENSSL_sk_set_cmp_func(OPENSSL_STACK *sk, OPENSSL_sk_compfunc c)
35
0
{
36
0
    OPENSSL_sk_compfunc old = sk->comp;
37
38
0
    if (sk->comp != c)
39
0
        sk->sorted = 0;
40
0
    sk->comp = c;
41
42
0
    return old;
43
0
}
44
45
OPENSSL_STACK *OPENSSL_sk_dup(const OPENSSL_STACK *sk)
46
0
{
47
0
    OPENSSL_STACK *ret;
48
49
0
    if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) {
50
0
        CRYPTOerr(CRYPTO_F_OPENSSL_SK_DUP, ERR_R_MALLOC_FAILURE);
51
0
        return NULL;
52
0
    }
53
54
    /* direct structure assignment */
55
0
    *ret = *sk;
56
57
0
    if (sk->num == 0) {
58
        /* postpone |ret->data| allocation */
59
0
        ret->data = NULL;
60
0
        ret->num_alloc = 0;
61
0
        return ret;
62
0
    }
63
    /* duplicate |sk->data| content */
64
0
    if ((ret->data = OPENSSL_malloc(sizeof(*ret->data) * sk->num_alloc)) == NULL)
65
0
        goto err;
66
0
    memcpy(ret->data, sk->data, sizeof(void *) * sk->num);
67
0
    return ret;
68
0
 err:
69
0
    OPENSSL_sk_free(ret);
70
0
    return NULL;
71
0
}
72
73
OPENSSL_STACK *OPENSSL_sk_deep_copy(const OPENSSL_STACK *sk,
74
                             OPENSSL_sk_copyfunc copy_func,
75
                             OPENSSL_sk_freefunc free_func)
76
0
{
77
0
    OPENSSL_STACK *ret;
78
0
    int i;
79
80
0
    if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) {
81
0
        CRYPTOerr(CRYPTO_F_OPENSSL_SK_DEEP_COPY, ERR_R_MALLOC_FAILURE);
82
0
        return NULL;
83
0
    }
84
85
    /* direct structure assignment */
86
0
    *ret = *sk;
87
88
0
    if (sk->num == 0) {
89
        /* postpone |ret| data allocation */
90
0
        ret->data = NULL;
91
0
        ret->num_alloc = 0;
92
0
        return ret;
93
0
    }
94
95
0
    ret->num_alloc = sk->num > min_nodes ? sk->num : min_nodes;
96
0
    ret->data = OPENSSL_zalloc(sizeof(*ret->data) * ret->num_alloc);
97
0
    if (ret->data == NULL) {
98
0
        OPENSSL_free(ret);
99
0
        return NULL;
100
0
    }
101
102
0
    for (i = 0; i < ret->num; ++i) {
103
0
        if (sk->data[i] == NULL)
104
0
            continue;
105
0
        if ((ret->data[i] = copy_func(sk->data[i])) == NULL) {
106
0
            while (--i >= 0)
107
0
                if (ret->data[i] != NULL)
108
0
                    free_func((void *)ret->data[i]);
109
0
            OPENSSL_sk_free(ret);
110
0
            return NULL;
111
0
        }
112
0
    }
113
0
    return ret;
114
0
}
115
116
OPENSSL_STACK *OPENSSL_sk_new_null(void)
117
0
{
118
0
    return OPENSSL_sk_new_reserve(NULL, 0);
119
0
}
120
121
OPENSSL_STACK *OPENSSL_sk_new(OPENSSL_sk_compfunc c)
122
0
{
123
0
    return OPENSSL_sk_new_reserve(c, 0);
124
0
}
125
126
/*
127
 * Calculate the array growth based on the target size.
128
 *
129
 * The growth fraction is a rational number and is defined by a numerator
130
 * and a denominator.  According to Andrew Koenig in his paper "Why Are
131
 * Vectors Efficient?" from JOOP 11(5) 1998, this factor should be less
132
 * than the golden ratio (1.618...).
133
 *
134
 * We use 3/2 = 1.5 for simplicity of calculation and overflow checking.
135
 * Another option 8/5 = 1.6 allows for slightly faster growth, although safe
136
 * computation is more difficult.
137
 *
138
 * The limit to avoid overflow is spot on.  The modulo three correction term
139
 * ensures that the limit is the largest number than can be expanded by the
140
 * growth factor without exceeding the hard limit.
141
 *
142
 * Do not call it with |current| lower than 2, or it will infinitely loop.
143
 */
144
static ossl_inline int compute_growth(int target, int current)
145
0
{
146
0
    const int limit = (max_nodes / 3) * 2 + (max_nodes % 3 ? 1 : 0);
147
148
0
    while (current < target) {
149
        /* Check to see if we're at the hard limit */
150
0
        if (current >= max_nodes)
151
0
            return 0;
152
153
        /* Expand the size by a factor of 3/2 if it is within range */
154
0
        current = current < limit ? current + current / 2 : max_nodes;
155
0
    }
156
0
    return current;
157
0
}
158
159
/* internal STACK storage allocation */
160
static int sk_reserve(OPENSSL_STACK *st, int n, int exact)
161
0
{
162
0
    const void **tmpdata;
163
0
    int num_alloc;
164
165
    /* Check to see the reservation isn't exceeding the hard limit */
166
0
    if (n > max_nodes - st->num)
167
0
        return 0;
168
169
    /* Figure out the new size */
170
0
    num_alloc = st->num + n;
171
0
    if (num_alloc < min_nodes)
172
0
        num_alloc = min_nodes;
173
174
    /* If |st->data| allocation was postponed */
175
0
    if (st->data == NULL) {
176
        /*
177
         * At this point, |st->num_alloc| and |st->num| are 0;
178
         * so |num_alloc| value is |n| or |min_nodes| if greater than |n|.
179
         */
180
0
        if ((st->data = OPENSSL_zalloc(sizeof(void *) * num_alloc)) == NULL) {
181
0
            CRYPTOerr(CRYPTO_F_SK_RESERVE, ERR_R_MALLOC_FAILURE);
182
0
            return 0;
183
0
        }
184
0
        st->num_alloc = num_alloc;
185
0
        return 1;
186
0
    }
187
188
0
    if (!exact) {
189
0
        if (num_alloc <= st->num_alloc)
190
0
            return 1;
191
0
        num_alloc = compute_growth(num_alloc, st->num_alloc);
192
0
        if (num_alloc == 0)
193
0
            return 0;
194
0
    } else if (num_alloc == st->num_alloc) {
195
0
        return 1;
196
0
    }
197
198
0
    tmpdata = OPENSSL_realloc((void *)st->data, sizeof(void *) * num_alloc);
199
0
    if (tmpdata == NULL)
200
0
        return 0;
201
202
0
    st->data = tmpdata;
203
0
    st->num_alloc = num_alloc;
204
0
    return 1;
205
0
}
206
207
OPENSSL_STACK *OPENSSL_sk_new_reserve(OPENSSL_sk_compfunc c, int n)
208
0
{
209
0
    OPENSSL_STACK *st = OPENSSL_zalloc(sizeof(OPENSSL_STACK));
210
211
0
    if (st == NULL)
212
0
        return NULL;
213
214
0
    st->comp = c;
215
216
0
    if (n <= 0)
217
0
        return st;
218
219
0
    if (!sk_reserve(st, n, 1)) {
220
0
        OPENSSL_sk_free(st);
221
0
        return NULL;
222
0
    }
223
224
0
    return st;
225
0
}
226
227
int OPENSSL_sk_reserve(OPENSSL_STACK *st, int n)
228
0
{
229
0
    if (st == NULL)
230
0
        return 0;
231
232
0
    if (n < 0)
233
0
        return 1;
234
0
    return sk_reserve(st, n, 1);
235
0
}
236
237
int OPENSSL_sk_insert(OPENSSL_STACK *st, const void *data, int loc)
238
0
{
239
0
    if (st == NULL || st->num == max_nodes)
240
0
        return 0;
241
242
0
    if (!sk_reserve(st, 1, 0))
243
0
        return 0;
244
245
0
    if ((loc >= st->num) || (loc < 0)) {
246
0
        st->data[st->num] = data;
247
0
    } else {
248
0
        memmove(&st->data[loc + 1], &st->data[loc],
249
0
                sizeof(st->data[0]) * (st->num - loc));
250
0
        st->data[loc] = data;
251
0
    }
252
0
    st->num++;
253
0
    st->sorted = 0;
254
0
    return st->num;
255
0
}
256
257
static ossl_inline void *internal_delete(OPENSSL_STACK *st, int loc)
258
0
{
259
0
    const void *ret = st->data[loc];
260
261
0
    if (loc != st->num - 1)
262
0
         memmove(&st->data[loc], &st->data[loc + 1],
263
0
                 sizeof(st->data[0]) * (st->num - loc - 1));
264
0
    st->num--;
265
266
0
    return (void *)ret;
267
0
}
268
269
void *OPENSSL_sk_delete_ptr(OPENSSL_STACK *st, const void *p)
270
0
{
271
0
    int i;
272
273
0
    for (i = 0; i < st->num; i++)
274
0
        if (st->data[i] == p)
275
0
            return internal_delete(st, i);
276
0
    return NULL;
277
0
}
278
279
void *OPENSSL_sk_delete(OPENSSL_STACK *st, int loc)
280
0
{
281
0
    if (st == NULL || loc < 0 || loc >= st->num)
282
0
        return NULL;
283
284
0
    return internal_delete(st, loc);
285
0
}
286
287
static int internal_find(OPENSSL_STACK *st, const void *data,
288
                         int ret_val_options)
289
0
{
290
0
    const void *r;
291
0
    int i;
292
293
0
    if (st == NULL || st->num == 0)
294
0
        return -1;
295
296
0
    if (st->comp == NULL) {
297
0
        for (i = 0; i < st->num; i++)
298
0
            if (st->data[i] == data)
299
0
                return i;
300
0
        return -1;
301
0
    }
302
303
0
    if (!st->sorted) {
304
0
        if (st->num > 1)
305
0
            qsort(st->data, st->num, sizeof(void *), st->comp);
306
0
        st->sorted = 1; /* empty or single-element stack is considered sorted */
307
0
    }
308
0
    if (data == NULL)
309
0
        return -1;
310
0
    r = OBJ_bsearch_ex_(&data, st->data, st->num, sizeof(void *), st->comp,
311
0
                        ret_val_options);
312
313
0
    return r == NULL ? -1 : (int)((const void **)r - st->data);
314
0
}
315
316
int OPENSSL_sk_find(OPENSSL_STACK *st, const void *data)
317
0
{
318
0
    return internal_find(st, data, OBJ_BSEARCH_FIRST_VALUE_ON_MATCH);
319
0
}
320
321
int OPENSSL_sk_find_ex(OPENSSL_STACK *st, const void *data)
322
0
{
323
0
    return internal_find(st, data, OBJ_BSEARCH_VALUE_ON_NOMATCH);
324
0
}
325
326
int OPENSSL_sk_push(OPENSSL_STACK *st, const void *data)
327
0
{
328
0
    if (st == NULL)
329
0
        return -1;
330
0
    return OPENSSL_sk_insert(st, data, st->num);
331
0
}
332
333
int OPENSSL_sk_unshift(OPENSSL_STACK *st, const void *data)
334
0
{
335
0
    return OPENSSL_sk_insert(st, data, 0);
336
0
}
337
338
void *OPENSSL_sk_shift(OPENSSL_STACK *st)
339
0
{
340
0
    if (st == NULL || st->num == 0)
341
0
        return NULL;
342
0
    return internal_delete(st, 0);
343
0
}
344
345
void *OPENSSL_sk_pop(OPENSSL_STACK *st)
346
0
{
347
0
    if (st == NULL || st->num == 0)
348
0
        return NULL;
349
0
    return internal_delete(st, st->num - 1);
350
0
}
351
352
void OPENSSL_sk_zero(OPENSSL_STACK *st)
353
0
{
354
0
    if (st == NULL || st->num == 0)
355
0
        return;
356
0
    memset(st->data, 0, sizeof(*st->data) * st->num);
357
0
    st->num = 0;
358
0
}
359
360
void OPENSSL_sk_pop_free(OPENSSL_STACK *st, OPENSSL_sk_freefunc func)
361
36
{
362
36
    int i;
363
364
36
    if (st == NULL)
365
36
        return;
366
0
    for (i = 0; i < st->num; i++)
367
0
        if (st->data[i] != NULL)
368
0
            func((char *)st->data[i]);
369
0
    OPENSSL_sk_free(st);
370
0
}
371
372
void OPENSSL_sk_free(OPENSSL_STACK *st)
373
6
{
374
6
    if (st == NULL)
375
6
        return;
376
0
    OPENSSL_free(st->data);
377
0
    OPENSSL_free(st);
378
0
}
379
380
int OPENSSL_sk_num(const OPENSSL_STACK *st)
381
8
{
382
8
    return st == NULL ? -1 : st->num;
383
8
}
384
385
void *OPENSSL_sk_value(const OPENSSL_STACK *st, int i)
386
0
{
387
0
    if (st == NULL || i < 0 || i >= st->num)
388
0
        return NULL;
389
0
    return (void *)st->data[i];
390
0
}
391
392
void *OPENSSL_sk_set(OPENSSL_STACK *st, int i, const void *data)
393
0
{
394
0
    if (st == NULL || i < 0 || i >= st->num)
395
0
        return NULL;
396
0
    st->data[i] = data;
397
0
    st->sorted = 0;
398
0
    return (void *)st->data[i];
399
0
}
400
401
void OPENSSL_sk_sort(OPENSSL_STACK *st)
402
0
{
403
0
    if (st != NULL && !st->sorted && st->comp != NULL) {
404
0
        if (st->num > 1)
405
0
            qsort(st->data, st->num, sizeof(void *), st->comp);
406
0
        st->sorted = 1; /* empty or single-element stack is considered sorted */
407
0
    }
408
0
}
409
410
int OPENSSL_sk_is_sorted(const OPENSSL_STACK *st)
411
0
{
412
0
    return st == NULL ? 1 : st->sorted;
413
0
}