/src/openssl111/engines/e_padlock.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2004-2023 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the OpenSSL license (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #include <stdio.h> |
11 | | #include <string.h> |
12 | | |
13 | | #include <openssl/opensslconf.h> |
14 | | #include <openssl/crypto.h> |
15 | | #include <openssl/engine.h> |
16 | | #include <openssl/evp.h> |
17 | | #include <openssl/aes.h> |
18 | | #include <openssl/rand.h> |
19 | | #include <openssl/err.h> |
20 | | #include <openssl/modes.h> |
21 | | |
22 | | #ifndef OPENSSL_NO_HW |
23 | | # ifndef OPENSSL_NO_HW_PADLOCK |
24 | | |
25 | | /* Attempt to have a single source for both 0.9.7 and 0.9.8 :-) */ |
26 | | # if (OPENSSL_VERSION_NUMBER >= 0x00908000L) |
27 | | # ifndef OPENSSL_NO_DYNAMIC_ENGINE |
28 | | # define DYNAMIC_ENGINE |
29 | | # endif |
30 | | # elif (OPENSSL_VERSION_NUMBER >= 0x00907000L) |
31 | | # ifdef ENGINE_DYNAMIC_SUPPORT |
32 | | # define DYNAMIC_ENGINE |
33 | | # endif |
34 | | # else |
35 | | # error "Only OpenSSL >= 0.9.7 is supported" |
36 | | # endif |
37 | | |
38 | | /* |
39 | | * VIA PadLock AES is available *ONLY* on some x86 CPUs. Not only that it |
40 | | * doesn't exist elsewhere, but it even can't be compiled on other platforms! |
41 | | */ |
42 | | |
43 | | # undef COMPILE_HW_PADLOCK |
44 | | # if defined(PADLOCK_ASM) |
45 | | # define COMPILE_HW_PADLOCK |
46 | | # ifdef OPENSSL_NO_DYNAMIC_ENGINE |
47 | | static ENGINE *ENGINE_padlock(void); |
48 | | # endif |
49 | | # endif |
50 | | |
51 | | # ifdef OPENSSL_NO_DYNAMIC_ENGINE |
52 | | void engine_load_padlock_int(void); |
53 | | void engine_load_padlock_int(void) |
54 | 0 | { |
55 | | /* On non-x86 CPUs it just returns. */ |
56 | | # ifdef COMPILE_HW_PADLOCK |
57 | | ENGINE *toadd = ENGINE_padlock(); |
58 | | if (!toadd) |
59 | | return; |
60 | | ENGINE_add(toadd); |
61 | | ENGINE_free(toadd); |
62 | | ERR_clear_error(); |
63 | | # endif |
64 | 0 | } |
65 | | |
66 | | # endif |
67 | | |
68 | | # ifdef COMPILE_HW_PADLOCK |
69 | | |
70 | | /* Function for ENGINE detection and control */ |
71 | | static int padlock_available(void); |
72 | | static int padlock_init(ENGINE *e); |
73 | | |
74 | | /* RNG Stuff */ |
75 | | static RAND_METHOD padlock_rand; |
76 | | |
77 | | /* Cipher Stuff */ |
78 | | static int padlock_ciphers(ENGINE *e, const EVP_CIPHER **cipher, |
79 | | const int **nids, int nid); |
80 | | |
81 | | /* Engine names */ |
82 | | static const char *padlock_id = "padlock"; |
83 | | static char padlock_name[100]; |
84 | | |
85 | | /* Available features */ |
86 | | static int padlock_use_ace = 0; /* Advanced Cryptography Engine */ |
87 | | static int padlock_use_rng = 0; /* Random Number Generator */ |
88 | | |
89 | | /* ===== Engine "management" functions ===== */ |
90 | | |
91 | | /* Prepare the ENGINE structure for registration */ |
92 | | static int padlock_bind_helper(ENGINE *e) |
93 | | { |
94 | | /* Check available features */ |
95 | | padlock_available(); |
96 | | |
97 | | /* |
98 | | * RNG is currently disabled for reasons discussed in commentary just |
99 | | * before padlock_rand_bytes function. |
100 | | */ |
101 | | padlock_use_rng = 0; |
102 | | |
103 | | /* Generate a nice engine name with available features */ |
104 | | BIO_snprintf(padlock_name, sizeof(padlock_name), |
105 | | "VIA PadLock (%s, %s)", |
106 | | padlock_use_rng ? "RNG" : "no-RNG", |
107 | | padlock_use_ace ? "ACE" : "no-ACE"); |
108 | | |
109 | | /* Register everything or return with an error */ |
110 | | if (!ENGINE_set_id(e, padlock_id) || |
111 | | !ENGINE_set_name(e, padlock_name) || |
112 | | !ENGINE_set_init_function(e, padlock_init) || |
113 | | (padlock_use_ace && !ENGINE_set_ciphers(e, padlock_ciphers)) || |
114 | | (padlock_use_rng && !ENGINE_set_RAND(e, &padlock_rand))) { |
115 | | return 0; |
116 | | } |
117 | | |
118 | | /* Everything looks good */ |
119 | | return 1; |
120 | | } |
121 | | |
122 | | # ifdef OPENSSL_NO_DYNAMIC_ENGINE |
123 | | /* Constructor */ |
124 | | static ENGINE *ENGINE_padlock(void) |
125 | | { |
126 | | ENGINE *eng = ENGINE_new(); |
127 | | |
128 | | if (eng == NULL) { |
129 | | return NULL; |
130 | | } |
131 | | |
132 | | if (!padlock_bind_helper(eng)) { |
133 | | ENGINE_free(eng); |
134 | | return NULL; |
135 | | } |
136 | | |
137 | | return eng; |
138 | | } |
139 | | # endif |
140 | | |
141 | | /* Check availability of the engine */ |
142 | | static int padlock_init(ENGINE *e) |
143 | | { |
144 | | return (padlock_use_rng || padlock_use_ace); |
145 | | } |
146 | | |
147 | | # ifndef AES_ASM |
148 | | static int padlock_aes_set_encrypt_key(const unsigned char *userKey, |
149 | | const int bits, |
150 | | AES_KEY *key); |
151 | | static int padlock_aes_set_decrypt_key(const unsigned char *userKey, |
152 | | const int bits, |
153 | | AES_KEY *key); |
154 | | # define AES_ASM |
155 | | # define AES_set_encrypt_key padlock_aes_set_encrypt_key |
156 | | # define AES_set_decrypt_key padlock_aes_set_decrypt_key |
157 | | # include "../crypto/aes/aes_core.c" |
158 | | # endif |
159 | | |
160 | | /* |
161 | | * This stuff is needed if this ENGINE is being compiled into a |
162 | | * self-contained shared-library. |
163 | | */ |
164 | | # ifndef OPENSSL_NO_DYNAMIC_ENGINE |
165 | | static int padlock_bind_fn(ENGINE *e, const char *id) |
166 | | { |
167 | | if (id && (strcmp(id, padlock_id) != 0)) { |
168 | | return 0; |
169 | | } |
170 | | |
171 | | if (!padlock_bind_helper(e)) { |
172 | | return 0; |
173 | | } |
174 | | |
175 | | return 1; |
176 | | } |
177 | | |
178 | | IMPLEMENT_DYNAMIC_CHECK_FN() |
179 | | IMPLEMENT_DYNAMIC_BIND_FN(padlock_bind_fn) |
180 | | # endif /* !OPENSSL_NO_DYNAMIC_ENGINE */ |
181 | | /* ===== Here comes the "real" engine ===== */ |
182 | | |
183 | | /* Some AES-related constants */ |
184 | | # define AES_BLOCK_SIZE 16 |
185 | | # define AES_KEY_SIZE_128 16 |
186 | | # define AES_KEY_SIZE_192 24 |
187 | | # define AES_KEY_SIZE_256 32 |
188 | | /* |
189 | | * Here we store the status information relevant to the current context. |
190 | | */ |
191 | | /* |
192 | | * BIG FAT WARNING: Inline assembler in PADLOCK_XCRYPT_ASM() depends on |
193 | | * the order of items in this structure. Don't blindly modify, reorder, |
194 | | * etc! |
195 | | */ |
196 | | struct padlock_cipher_data { |
197 | | unsigned char iv[AES_BLOCK_SIZE]; /* Initialization vector */ |
198 | | union { |
199 | | unsigned int pad[4]; |
200 | | struct { |
201 | | int rounds:4; |
202 | | int dgst:1; /* n/a in C3 */ |
203 | | int align:1; /* n/a in C3 */ |
204 | | int ciphr:1; /* n/a in C3 */ |
205 | | unsigned int keygen:1; |
206 | | int interm:1; |
207 | | unsigned int encdec:1; |
208 | | int ksize:2; |
209 | | } b; |
210 | | } cword; /* Control word */ |
211 | | AES_KEY ks; /* Encryption key */ |
212 | | }; |
213 | | |
214 | | /* Interface to assembler module */ |
215 | | unsigned int padlock_capability(void); |
216 | | void padlock_key_bswap(AES_KEY *key); |
217 | | void padlock_verify_context(struct padlock_cipher_data *ctx); |
218 | | void padlock_reload_key(void); |
219 | | void padlock_aes_block(void *out, const void *inp, |
220 | | struct padlock_cipher_data *ctx); |
221 | | int padlock_ecb_encrypt(void *out, const void *inp, |
222 | | struct padlock_cipher_data *ctx, size_t len); |
223 | | int padlock_cbc_encrypt(void *out, const void *inp, |
224 | | struct padlock_cipher_data *ctx, size_t len); |
225 | | int padlock_cfb_encrypt(void *out, const void *inp, |
226 | | struct padlock_cipher_data *ctx, size_t len); |
227 | | int padlock_ofb_encrypt(void *out, const void *inp, |
228 | | struct padlock_cipher_data *ctx, size_t len); |
229 | | int padlock_ctr32_encrypt(void *out, const void *inp, |
230 | | struct padlock_cipher_data *ctx, size_t len); |
231 | | int padlock_xstore(void *out, int edx); |
232 | | void padlock_sha1_oneshot(void *ctx, const void *inp, size_t len); |
233 | | void padlock_sha1(void *ctx, const void *inp, size_t len); |
234 | | void padlock_sha256_oneshot(void *ctx, const void *inp, size_t len); |
235 | | void padlock_sha256(void *ctx, const void *inp, size_t len); |
236 | | |
237 | | /* |
238 | | * Load supported features of the CPU to see if the PadLock is available. |
239 | | */ |
240 | | static int padlock_available(void) |
241 | | { |
242 | | unsigned int edx = padlock_capability(); |
243 | | |
244 | | /* Fill up some flags */ |
245 | | padlock_use_ace = ((edx & (0x3 << 6)) == (0x3 << 6)); |
246 | | padlock_use_rng = ((edx & (0x3 << 2)) == (0x3 << 2)); |
247 | | |
248 | | return padlock_use_ace + padlock_use_rng; |
249 | | } |
250 | | |
251 | | /* ===== AES encryption/decryption ===== */ |
252 | | |
253 | | # if defined(NID_aes_128_cfb128) && ! defined (NID_aes_128_cfb) |
254 | | # define NID_aes_128_cfb NID_aes_128_cfb128 |
255 | | # endif |
256 | | |
257 | | # if defined(NID_aes_128_ofb128) && ! defined (NID_aes_128_ofb) |
258 | | # define NID_aes_128_ofb NID_aes_128_ofb128 |
259 | | # endif |
260 | | |
261 | | # if defined(NID_aes_192_cfb128) && ! defined (NID_aes_192_cfb) |
262 | | # define NID_aes_192_cfb NID_aes_192_cfb128 |
263 | | # endif |
264 | | |
265 | | # if defined(NID_aes_192_ofb128) && ! defined (NID_aes_192_ofb) |
266 | | # define NID_aes_192_ofb NID_aes_192_ofb128 |
267 | | # endif |
268 | | |
269 | | # if defined(NID_aes_256_cfb128) && ! defined (NID_aes_256_cfb) |
270 | | # define NID_aes_256_cfb NID_aes_256_cfb128 |
271 | | # endif |
272 | | |
273 | | # if defined(NID_aes_256_ofb128) && ! defined (NID_aes_256_ofb) |
274 | | # define NID_aes_256_ofb NID_aes_256_ofb128 |
275 | | # endif |
276 | | |
277 | | /* List of supported ciphers. */ |
278 | | static const int padlock_cipher_nids[] = { |
279 | | NID_aes_128_ecb, |
280 | | NID_aes_128_cbc, |
281 | | NID_aes_128_cfb, |
282 | | NID_aes_128_ofb, |
283 | | NID_aes_128_ctr, |
284 | | |
285 | | NID_aes_192_ecb, |
286 | | NID_aes_192_cbc, |
287 | | NID_aes_192_cfb, |
288 | | NID_aes_192_ofb, |
289 | | NID_aes_192_ctr, |
290 | | |
291 | | NID_aes_256_ecb, |
292 | | NID_aes_256_cbc, |
293 | | NID_aes_256_cfb, |
294 | | NID_aes_256_ofb, |
295 | | NID_aes_256_ctr |
296 | | }; |
297 | | |
298 | | static int padlock_cipher_nids_num = (sizeof(padlock_cipher_nids) / |
299 | | sizeof(padlock_cipher_nids[0])); |
300 | | |
301 | | /* Function prototypes ... */ |
302 | | static int padlock_aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
303 | | const unsigned char *iv, int enc); |
304 | | |
305 | | # define NEAREST_ALIGNED(ptr) ( (unsigned char *)(ptr) + \ |
306 | | ( (0x10 - ((size_t)(ptr) & 0x0F)) & 0x0F ) ) |
307 | | # define ALIGNED_CIPHER_DATA(ctx) ((struct padlock_cipher_data *)\ |
308 | | NEAREST_ALIGNED(EVP_CIPHER_CTX_get_cipher_data(ctx))) |
309 | | |
310 | | static int |
311 | | padlock_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg, |
312 | | const unsigned char *in_arg, size_t nbytes) |
313 | | { |
314 | | return padlock_ecb_encrypt(out_arg, in_arg, |
315 | | ALIGNED_CIPHER_DATA(ctx), nbytes); |
316 | | } |
317 | | |
318 | | static int |
319 | | padlock_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg, |
320 | | const unsigned char *in_arg, size_t nbytes) |
321 | | { |
322 | | struct padlock_cipher_data *cdata = ALIGNED_CIPHER_DATA(ctx); |
323 | | int ret; |
324 | | |
325 | | memcpy(cdata->iv, EVP_CIPHER_CTX_iv(ctx), AES_BLOCK_SIZE); |
326 | | if ((ret = padlock_cbc_encrypt(out_arg, in_arg, cdata, nbytes))) |
327 | | memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), cdata->iv, AES_BLOCK_SIZE); |
328 | | return ret; |
329 | | } |
330 | | |
331 | | static int |
332 | | padlock_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg, |
333 | | const unsigned char *in_arg, size_t nbytes) |
334 | | { |
335 | | struct padlock_cipher_data *cdata = ALIGNED_CIPHER_DATA(ctx); |
336 | | size_t chunk; |
337 | | |
338 | | if ((chunk = EVP_CIPHER_CTX_num(ctx))) { /* borrow chunk variable */ |
339 | | unsigned char *ivp = EVP_CIPHER_CTX_iv_noconst(ctx); |
340 | | |
341 | | if (chunk >= AES_BLOCK_SIZE) |
342 | | return 0; /* bogus value */ |
343 | | |
344 | | if (EVP_CIPHER_CTX_encrypting(ctx)) |
345 | | while (chunk < AES_BLOCK_SIZE && nbytes != 0) { |
346 | | ivp[chunk] = *(out_arg++) = *(in_arg++) ^ ivp[chunk]; |
347 | | chunk++, nbytes--; |
348 | | } else |
349 | | while (chunk < AES_BLOCK_SIZE && nbytes != 0) { |
350 | | unsigned char c = *(in_arg++); |
351 | | *(out_arg++) = c ^ ivp[chunk]; |
352 | | ivp[chunk++] = c, nbytes--; |
353 | | } |
354 | | |
355 | | EVP_CIPHER_CTX_set_num(ctx, chunk % AES_BLOCK_SIZE); |
356 | | } |
357 | | |
358 | | if (nbytes == 0) |
359 | | return 1; |
360 | | |
361 | | memcpy(cdata->iv, EVP_CIPHER_CTX_iv(ctx), AES_BLOCK_SIZE); |
362 | | |
363 | | if ((chunk = nbytes & ~(AES_BLOCK_SIZE - 1))) { |
364 | | if (!padlock_cfb_encrypt(out_arg, in_arg, cdata, chunk)) |
365 | | return 0; |
366 | | nbytes -= chunk; |
367 | | } |
368 | | |
369 | | if (nbytes) { |
370 | | unsigned char *ivp = cdata->iv; |
371 | | |
372 | | out_arg += chunk; |
373 | | in_arg += chunk; |
374 | | EVP_CIPHER_CTX_set_num(ctx, nbytes); |
375 | | if (cdata->cword.b.encdec) { |
376 | | cdata->cword.b.encdec = 0; |
377 | | padlock_reload_key(); |
378 | | padlock_aes_block(ivp, ivp, cdata); |
379 | | cdata->cword.b.encdec = 1; |
380 | | padlock_reload_key(); |
381 | | while (nbytes) { |
382 | | unsigned char c = *(in_arg++); |
383 | | *(out_arg++) = c ^ *ivp; |
384 | | *(ivp++) = c, nbytes--; |
385 | | } |
386 | | } else { |
387 | | padlock_reload_key(); |
388 | | padlock_aes_block(ivp, ivp, cdata); |
389 | | padlock_reload_key(); |
390 | | while (nbytes) { |
391 | | *ivp = *(out_arg++) = *(in_arg++) ^ *ivp; |
392 | | ivp++, nbytes--; |
393 | | } |
394 | | } |
395 | | } |
396 | | |
397 | | memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), cdata->iv, AES_BLOCK_SIZE); |
398 | | |
399 | | return 1; |
400 | | } |
401 | | |
402 | | static int |
403 | | padlock_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg, |
404 | | const unsigned char *in_arg, size_t nbytes) |
405 | | { |
406 | | struct padlock_cipher_data *cdata = ALIGNED_CIPHER_DATA(ctx); |
407 | | size_t chunk; |
408 | | |
409 | | /* |
410 | | * ctx->num is maintained in byte-oriented modes, such as CFB and OFB... |
411 | | */ |
412 | | if ((chunk = EVP_CIPHER_CTX_num(ctx))) { /* borrow chunk variable */ |
413 | | unsigned char *ivp = EVP_CIPHER_CTX_iv_noconst(ctx); |
414 | | |
415 | | if (chunk >= AES_BLOCK_SIZE) |
416 | | return 0; /* bogus value */ |
417 | | |
418 | | while (chunk < AES_BLOCK_SIZE && nbytes != 0) { |
419 | | *(out_arg++) = *(in_arg++) ^ ivp[chunk]; |
420 | | chunk++, nbytes--; |
421 | | } |
422 | | |
423 | | EVP_CIPHER_CTX_set_num(ctx, chunk % AES_BLOCK_SIZE); |
424 | | } |
425 | | |
426 | | if (nbytes == 0) |
427 | | return 1; |
428 | | |
429 | | memcpy(cdata->iv, EVP_CIPHER_CTX_iv(ctx), AES_BLOCK_SIZE); |
430 | | |
431 | | if ((chunk = nbytes & ~(AES_BLOCK_SIZE - 1))) { |
432 | | if (!padlock_ofb_encrypt(out_arg, in_arg, cdata, chunk)) |
433 | | return 0; |
434 | | nbytes -= chunk; |
435 | | } |
436 | | |
437 | | if (nbytes) { |
438 | | unsigned char *ivp = cdata->iv; |
439 | | |
440 | | out_arg += chunk; |
441 | | in_arg += chunk; |
442 | | EVP_CIPHER_CTX_set_num(ctx, nbytes); |
443 | | padlock_reload_key(); /* empirically found */ |
444 | | padlock_aes_block(ivp, ivp, cdata); |
445 | | padlock_reload_key(); /* empirically found */ |
446 | | while (nbytes) { |
447 | | *(out_arg++) = *(in_arg++) ^ *ivp; |
448 | | ivp++, nbytes--; |
449 | | } |
450 | | } |
451 | | |
452 | | memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), cdata->iv, AES_BLOCK_SIZE); |
453 | | |
454 | | return 1; |
455 | | } |
456 | | |
457 | | static void padlock_ctr32_encrypt_glue(const unsigned char *in, |
458 | | unsigned char *out, size_t blocks, |
459 | | struct padlock_cipher_data *ctx, |
460 | | const unsigned char *ivec) |
461 | | { |
462 | | memcpy(ctx->iv, ivec, AES_BLOCK_SIZE); |
463 | | padlock_ctr32_encrypt(out, in, ctx, AES_BLOCK_SIZE * blocks); |
464 | | } |
465 | | |
466 | | static int |
467 | | padlock_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg, |
468 | | const unsigned char *in_arg, size_t nbytes) |
469 | | { |
470 | | struct padlock_cipher_data *cdata = ALIGNED_CIPHER_DATA(ctx); |
471 | | unsigned int num = EVP_CIPHER_CTX_num(ctx); |
472 | | |
473 | | CRYPTO_ctr128_encrypt_ctr32(in_arg, out_arg, nbytes, |
474 | | cdata, EVP_CIPHER_CTX_iv_noconst(ctx), |
475 | | EVP_CIPHER_CTX_buf_noconst(ctx), &num, |
476 | | (ctr128_f) padlock_ctr32_encrypt_glue); |
477 | | |
478 | | EVP_CIPHER_CTX_set_num(ctx, (size_t)num); |
479 | | return 1; |
480 | | } |
481 | | |
482 | | # define EVP_CIPHER_block_size_ECB AES_BLOCK_SIZE |
483 | | # define EVP_CIPHER_block_size_CBC AES_BLOCK_SIZE |
484 | | # define EVP_CIPHER_block_size_OFB 1 |
485 | | # define EVP_CIPHER_block_size_CFB 1 |
486 | | # define EVP_CIPHER_block_size_CTR 1 |
487 | | |
488 | | /* |
489 | | * Declaring so many ciphers by hand would be a pain. Instead introduce a bit |
490 | | * of preprocessor magic :-) |
491 | | */ |
492 | | # define DECLARE_AES_EVP(ksize,lmode,umode) \ |
493 | | static EVP_CIPHER *_hidden_aes_##ksize##_##lmode = NULL; \ |
494 | | static const EVP_CIPHER *padlock_aes_##ksize##_##lmode(void) \ |
495 | | { \ |
496 | | if (_hidden_aes_##ksize##_##lmode == NULL \ |
497 | | && ((_hidden_aes_##ksize##_##lmode = \ |
498 | | EVP_CIPHER_meth_new(NID_aes_##ksize##_##lmode, \ |
499 | | EVP_CIPHER_block_size_##umode, \ |
500 | | AES_KEY_SIZE_##ksize)) == NULL \ |
501 | | || !EVP_CIPHER_meth_set_iv_length(_hidden_aes_##ksize##_##lmode, \ |
502 | | AES_BLOCK_SIZE) \ |
503 | | || !EVP_CIPHER_meth_set_flags(_hidden_aes_##ksize##_##lmode, \ |
504 | | 0 | EVP_CIPH_##umode##_MODE) \ |
505 | | || !EVP_CIPHER_meth_set_init(_hidden_aes_##ksize##_##lmode, \ |
506 | | padlock_aes_init_key) \ |
507 | | || !EVP_CIPHER_meth_set_do_cipher(_hidden_aes_##ksize##_##lmode, \ |
508 | | padlock_##lmode##_cipher) \ |
509 | | || !EVP_CIPHER_meth_set_impl_ctx_size(_hidden_aes_##ksize##_##lmode, \ |
510 | | sizeof(struct padlock_cipher_data) + 16) \ |
511 | | || !EVP_CIPHER_meth_set_set_asn1_params(_hidden_aes_##ksize##_##lmode, \ |
512 | | EVP_CIPHER_set_asn1_iv) \ |
513 | | || !EVP_CIPHER_meth_set_get_asn1_params(_hidden_aes_##ksize##_##lmode, \ |
514 | | EVP_CIPHER_get_asn1_iv))) { \ |
515 | | EVP_CIPHER_meth_free(_hidden_aes_##ksize##_##lmode); \ |
516 | | _hidden_aes_##ksize##_##lmode = NULL; \ |
517 | | } \ |
518 | | return _hidden_aes_##ksize##_##lmode; \ |
519 | | } |
520 | | |
521 | | DECLARE_AES_EVP(128, ecb, ECB) |
522 | | DECLARE_AES_EVP(128, cbc, CBC) |
523 | | DECLARE_AES_EVP(128, cfb, CFB) |
524 | | DECLARE_AES_EVP(128, ofb, OFB) |
525 | | DECLARE_AES_EVP(128, ctr, CTR) |
526 | | |
527 | | DECLARE_AES_EVP(192, ecb, ECB) |
528 | | DECLARE_AES_EVP(192, cbc, CBC) |
529 | | DECLARE_AES_EVP(192, cfb, CFB) |
530 | | DECLARE_AES_EVP(192, ofb, OFB) |
531 | | DECLARE_AES_EVP(192, ctr, CTR) |
532 | | |
533 | | DECLARE_AES_EVP(256, ecb, ECB) |
534 | | DECLARE_AES_EVP(256, cbc, CBC) |
535 | | DECLARE_AES_EVP(256, cfb, CFB) |
536 | | DECLARE_AES_EVP(256, ofb, OFB) |
537 | | DECLARE_AES_EVP(256, ctr, CTR) |
538 | | |
539 | | static int |
540 | | padlock_ciphers(ENGINE *e, const EVP_CIPHER **cipher, const int **nids, |
541 | | int nid) |
542 | | { |
543 | | /* No specific cipher => return a list of supported nids ... */ |
544 | | if (!cipher) { |
545 | | *nids = padlock_cipher_nids; |
546 | | return padlock_cipher_nids_num; |
547 | | } |
548 | | |
549 | | /* ... or the requested "cipher" otherwise */ |
550 | | switch (nid) { |
551 | | case NID_aes_128_ecb: |
552 | | *cipher = padlock_aes_128_ecb(); |
553 | | break; |
554 | | case NID_aes_128_cbc: |
555 | | *cipher = padlock_aes_128_cbc(); |
556 | | break; |
557 | | case NID_aes_128_cfb: |
558 | | *cipher = padlock_aes_128_cfb(); |
559 | | break; |
560 | | case NID_aes_128_ofb: |
561 | | *cipher = padlock_aes_128_ofb(); |
562 | | break; |
563 | | case NID_aes_128_ctr: |
564 | | *cipher = padlock_aes_128_ctr(); |
565 | | break; |
566 | | |
567 | | case NID_aes_192_ecb: |
568 | | *cipher = padlock_aes_192_ecb(); |
569 | | break; |
570 | | case NID_aes_192_cbc: |
571 | | *cipher = padlock_aes_192_cbc(); |
572 | | break; |
573 | | case NID_aes_192_cfb: |
574 | | *cipher = padlock_aes_192_cfb(); |
575 | | break; |
576 | | case NID_aes_192_ofb: |
577 | | *cipher = padlock_aes_192_ofb(); |
578 | | break; |
579 | | case NID_aes_192_ctr: |
580 | | *cipher = padlock_aes_192_ctr(); |
581 | | break; |
582 | | |
583 | | case NID_aes_256_ecb: |
584 | | *cipher = padlock_aes_256_ecb(); |
585 | | break; |
586 | | case NID_aes_256_cbc: |
587 | | *cipher = padlock_aes_256_cbc(); |
588 | | break; |
589 | | case NID_aes_256_cfb: |
590 | | *cipher = padlock_aes_256_cfb(); |
591 | | break; |
592 | | case NID_aes_256_ofb: |
593 | | *cipher = padlock_aes_256_ofb(); |
594 | | break; |
595 | | case NID_aes_256_ctr: |
596 | | *cipher = padlock_aes_256_ctr(); |
597 | | break; |
598 | | |
599 | | default: |
600 | | /* Sorry, we don't support this NID */ |
601 | | *cipher = NULL; |
602 | | return 0; |
603 | | } |
604 | | |
605 | | return 1; |
606 | | } |
607 | | |
608 | | /* Prepare the encryption key for PadLock usage */ |
609 | | static int |
610 | | padlock_aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
611 | | const unsigned char *iv, int enc) |
612 | | { |
613 | | struct padlock_cipher_data *cdata; |
614 | | int key_len = EVP_CIPHER_CTX_key_length(ctx) * 8; |
615 | | unsigned long mode = EVP_CIPHER_CTX_mode(ctx); |
616 | | |
617 | | if (key == NULL) |
618 | | return 0; /* ERROR */ |
619 | | |
620 | | cdata = ALIGNED_CIPHER_DATA(ctx); |
621 | | memset(cdata, 0, sizeof(*cdata)); |
622 | | |
623 | | /* Prepare Control word. */ |
624 | | if (mode == EVP_CIPH_OFB_MODE || mode == EVP_CIPH_CTR_MODE) |
625 | | cdata->cword.b.encdec = 0; |
626 | | else |
627 | | cdata->cword.b.encdec = (EVP_CIPHER_CTX_encrypting(ctx) == 0); |
628 | | cdata->cword.b.rounds = 10 + (key_len - 128) / 32; |
629 | | cdata->cword.b.ksize = (key_len - 128) / 64; |
630 | | |
631 | | switch (key_len) { |
632 | | case 128: |
633 | | /* |
634 | | * PadLock can generate an extended key for AES128 in hardware |
635 | | */ |
636 | | memcpy(cdata->ks.rd_key, key, AES_KEY_SIZE_128); |
637 | | cdata->cword.b.keygen = 0; |
638 | | break; |
639 | | |
640 | | case 192: |
641 | | case 256: |
642 | | /* |
643 | | * Generate an extended AES key in software. Needed for AES192/AES256 |
644 | | */ |
645 | | /* |
646 | | * Well, the above applies to Stepping 8 CPUs and is listed as |
647 | | * hardware errata. They most likely will fix it at some point and |
648 | | * then a check for stepping would be due here. |
649 | | */ |
650 | | if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) |
651 | | && !enc) |
652 | | AES_set_decrypt_key(key, key_len, &cdata->ks); |
653 | | else |
654 | | AES_set_encrypt_key(key, key_len, &cdata->ks); |
655 | | /* |
656 | | * OpenSSL C functions use byte-swapped extended key. |
657 | | */ |
658 | | padlock_key_bswap(&cdata->ks); |
659 | | cdata->cword.b.keygen = 1; |
660 | | break; |
661 | | |
662 | | default: |
663 | | /* ERROR */ |
664 | | return 0; |
665 | | } |
666 | | |
667 | | /* |
668 | | * This is done to cover for cases when user reuses the |
669 | | * context for new key. The catch is that if we don't do |
670 | | * this, padlock_eas_cipher might proceed with old key... |
671 | | */ |
672 | | padlock_reload_key(); |
673 | | |
674 | | return 1; |
675 | | } |
676 | | |
677 | | /* ===== Random Number Generator ===== */ |
678 | | /* |
679 | | * This code is not engaged. The reason is that it does not comply |
680 | | * with recommendations for VIA RNG usage for secure applications |
681 | | * (posted at http://www.via.com.tw/en/viac3/c3.jsp) nor does it |
682 | | * provide meaningful error control... |
683 | | */ |
684 | | /* |
685 | | * Wrapper that provides an interface between the API and the raw PadLock |
686 | | * RNG |
687 | | */ |
688 | | static int padlock_rand_bytes(unsigned char *output, int count) |
689 | | { |
690 | | unsigned int eax, buf; |
691 | | |
692 | | while (count >= 8) { |
693 | | eax = padlock_xstore(output, 0); |
694 | | if (!(eax & (1 << 6))) |
695 | | return 0; /* RNG disabled */ |
696 | | /* this ---vv--- covers DC bias, Raw Bits and String Filter */ |
697 | | if (eax & (0x1F << 10)) |
698 | | return 0; |
699 | | if ((eax & 0x1F) == 0) |
700 | | continue; /* no data, retry... */ |
701 | | if ((eax & 0x1F) != 8) |
702 | | return 0; /* fatal failure... */ |
703 | | output += 8; |
704 | | count -= 8; |
705 | | } |
706 | | while (count > 0) { |
707 | | eax = padlock_xstore(&buf, 3); |
708 | | if (!(eax & (1 << 6))) |
709 | | return 0; /* RNG disabled */ |
710 | | /* this ---vv--- covers DC bias, Raw Bits and String Filter */ |
711 | | if (eax & (0x1F << 10)) |
712 | | return 0; |
713 | | if ((eax & 0x1F) == 0) |
714 | | continue; /* no data, retry... */ |
715 | | if ((eax & 0x1F) != 1) |
716 | | return 0; /* fatal failure... */ |
717 | | *output++ = (unsigned char)buf; |
718 | | count--; |
719 | | } |
720 | | OPENSSL_cleanse(&buf, sizeof(buf)); |
721 | | |
722 | | return 1; |
723 | | } |
724 | | |
725 | | /* Dummy but necessary function */ |
726 | | static int padlock_rand_status(void) |
727 | | { |
728 | | return 1; |
729 | | } |
730 | | |
731 | | /* Prepare structure for registration */ |
732 | | static RAND_METHOD padlock_rand = { |
733 | | NULL, /* seed */ |
734 | | padlock_rand_bytes, /* bytes */ |
735 | | NULL, /* cleanup */ |
736 | | NULL, /* add */ |
737 | | padlock_rand_bytes, /* pseudorand */ |
738 | | padlock_rand_status, /* rand status */ |
739 | | }; |
740 | | |
741 | | # endif /* COMPILE_HW_PADLOCK */ |
742 | | # endif /* !OPENSSL_NO_HW_PADLOCK */ |
743 | | #endif /* !OPENSSL_NO_HW */ |
744 | | |
745 | | #if defined(OPENSSL_NO_HW) || defined(OPENSSL_NO_HW_PADLOCK) \ |
746 | | || !defined(COMPILE_HW_PADLOCK) |
747 | | # ifndef OPENSSL_NO_DYNAMIC_ENGINE |
748 | | OPENSSL_EXPORT |
749 | | int bind_engine(ENGINE *e, const char *id, const dynamic_fns *fns); |
750 | | OPENSSL_EXPORT |
751 | | int bind_engine(ENGINE *e, const char *id, const dynamic_fns *fns) |
752 | | { |
753 | | return 0; |
754 | | } |
755 | | |
756 | | IMPLEMENT_DYNAMIC_CHECK_FN() |
757 | | # endif |
758 | | #endif |