/src/openssl/crypto/bn/bn_gf2m.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2002-2021 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved |
4 | | * |
5 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
6 | | * this file except in compliance with the License. You can obtain a copy |
7 | | * in the file LICENSE in the source distribution or at |
8 | | * https://www.openssl.org/source/license.html |
9 | | */ |
10 | | |
11 | | #include <assert.h> |
12 | | #include <limits.h> |
13 | | #include <stdio.h> |
14 | | #include "internal/cryptlib.h" |
15 | | #include "bn_local.h" |
16 | | |
17 | | #ifndef OPENSSL_NO_EC2M |
18 | | |
19 | | /* |
20 | | * Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should |
21 | | * fail. |
22 | | */ |
23 | 550 | # define MAX_ITERATIONS 50 |
24 | | |
25 | 43.9M | # define SQR_nibble(w) ((((w) & 8) << 3) \ |
26 | 43.9M | | (((w) & 4) << 2) \ |
27 | 43.9M | | (((w) & 2) << 1) \ |
28 | 43.9M | | ((w) & 1)) |
29 | | |
30 | | |
31 | | /* Platform-specific macros to accelerate squaring. */ |
32 | | # if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG) |
33 | | # define SQR1(w) \ |
34 | 2.74M | SQR_nibble((w) >> 60) << 56 | SQR_nibble((w) >> 56) << 48 | \ |
35 | 2.74M | SQR_nibble((w) >> 52) << 40 | SQR_nibble((w) >> 48) << 32 | \ |
36 | 2.74M | SQR_nibble((w) >> 44) << 24 | SQR_nibble((w) >> 40) << 16 | \ |
37 | 2.74M | SQR_nibble((w) >> 36) << 8 | SQR_nibble((w) >> 32) |
38 | | # define SQR0(w) \ |
39 | 2.74M | SQR_nibble((w) >> 28) << 56 | SQR_nibble((w) >> 24) << 48 | \ |
40 | 2.74M | SQR_nibble((w) >> 20) << 40 | SQR_nibble((w) >> 16) << 32 | \ |
41 | 2.74M | SQR_nibble((w) >> 12) << 24 | SQR_nibble((w) >> 8) << 16 | \ |
42 | 2.74M | SQR_nibble((w) >> 4) << 8 | SQR_nibble((w) ) |
43 | | # endif |
44 | | # ifdef THIRTY_TWO_BIT |
45 | | # define SQR1(w) \ |
46 | | SQR_nibble((w) >> 28) << 24 | SQR_nibble((w) >> 24) << 16 | \ |
47 | | SQR_nibble((w) >> 20) << 8 | SQR_nibble((w) >> 16) |
48 | | # define SQR0(w) \ |
49 | | SQR_nibble((w) >> 12) << 24 | SQR_nibble((w) >> 8) << 16 | \ |
50 | | SQR_nibble((w) >> 4) << 8 | SQR_nibble((w) ) |
51 | | # endif |
52 | | |
53 | | # if !defined(OPENSSL_BN_ASM_GF2m) |
54 | | /* |
55 | | * Product of two polynomials a, b each with degree < BN_BITS2 - 1, result is |
56 | | * a polynomial r with degree < 2 * BN_BITS - 1 The caller MUST ensure that |
57 | | * the variables have the right amount of space allocated. |
58 | | */ |
59 | | # ifdef THIRTY_TWO_BIT |
60 | | static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, |
61 | | const BN_ULONG b) |
62 | | { |
63 | | register BN_ULONG h, l, s; |
64 | | BN_ULONG tab[8], top2b = a >> 30; |
65 | | register BN_ULONG a1, a2, a4; |
66 | | |
67 | | a1 = a & (0x3FFFFFFF); |
68 | | a2 = a1 << 1; |
69 | | a4 = a2 << 1; |
70 | | |
71 | | tab[0] = 0; |
72 | | tab[1] = a1; |
73 | | tab[2] = a2; |
74 | | tab[3] = a1 ^ a2; |
75 | | tab[4] = a4; |
76 | | tab[5] = a1 ^ a4; |
77 | | tab[6] = a2 ^ a4; |
78 | | tab[7] = a1 ^ a2 ^ a4; |
79 | | |
80 | | s = tab[b & 0x7]; |
81 | | l = s; |
82 | | s = tab[b >> 3 & 0x7]; |
83 | | l ^= s << 3; |
84 | | h = s >> 29; |
85 | | s = tab[b >> 6 & 0x7]; |
86 | | l ^= s << 6; |
87 | | h ^= s >> 26; |
88 | | s = tab[b >> 9 & 0x7]; |
89 | | l ^= s << 9; |
90 | | h ^= s >> 23; |
91 | | s = tab[b >> 12 & 0x7]; |
92 | | l ^= s << 12; |
93 | | h ^= s >> 20; |
94 | | s = tab[b >> 15 & 0x7]; |
95 | | l ^= s << 15; |
96 | | h ^= s >> 17; |
97 | | s = tab[b >> 18 & 0x7]; |
98 | | l ^= s << 18; |
99 | | h ^= s >> 14; |
100 | | s = tab[b >> 21 & 0x7]; |
101 | | l ^= s << 21; |
102 | | h ^= s >> 11; |
103 | | s = tab[b >> 24 & 0x7]; |
104 | | l ^= s << 24; |
105 | | h ^= s >> 8; |
106 | | s = tab[b >> 27 & 0x7]; |
107 | | l ^= s << 27; |
108 | | h ^= s >> 5; |
109 | | s = tab[b >> 30]; |
110 | | l ^= s << 30; |
111 | | h ^= s >> 2; |
112 | | |
113 | | /* compensate for the top two bits of a */ |
114 | | |
115 | | if (top2b & 01) { |
116 | | l ^= b << 30; |
117 | | h ^= b >> 2; |
118 | | } |
119 | | if (top2b & 02) { |
120 | | l ^= b << 31; |
121 | | h ^= b >> 1; |
122 | | } |
123 | | |
124 | | *r1 = h; |
125 | | *r0 = l; |
126 | | } |
127 | | # endif |
128 | | # if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG) |
129 | | static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, |
130 | | const BN_ULONG b) |
131 | | { |
132 | | register BN_ULONG h, l, s; |
133 | | BN_ULONG tab[16], top3b = a >> 61; |
134 | | register BN_ULONG a1, a2, a4, a8; |
135 | | |
136 | | a1 = a & (0x1FFFFFFFFFFFFFFFULL); |
137 | | a2 = a1 << 1; |
138 | | a4 = a2 << 1; |
139 | | a8 = a4 << 1; |
140 | | |
141 | | tab[0] = 0; |
142 | | tab[1] = a1; |
143 | | tab[2] = a2; |
144 | | tab[3] = a1 ^ a2; |
145 | | tab[4] = a4; |
146 | | tab[5] = a1 ^ a4; |
147 | | tab[6] = a2 ^ a4; |
148 | | tab[7] = a1 ^ a2 ^ a4; |
149 | | tab[8] = a8; |
150 | | tab[9] = a1 ^ a8; |
151 | | tab[10] = a2 ^ a8; |
152 | | tab[11] = a1 ^ a2 ^ a8; |
153 | | tab[12] = a4 ^ a8; |
154 | | tab[13] = a1 ^ a4 ^ a8; |
155 | | tab[14] = a2 ^ a4 ^ a8; |
156 | | tab[15] = a1 ^ a2 ^ a4 ^ a8; |
157 | | |
158 | | s = tab[b & 0xF]; |
159 | | l = s; |
160 | | s = tab[b >> 4 & 0xF]; |
161 | | l ^= s << 4; |
162 | | h = s >> 60; |
163 | | s = tab[b >> 8 & 0xF]; |
164 | | l ^= s << 8; |
165 | | h ^= s >> 56; |
166 | | s = tab[b >> 12 & 0xF]; |
167 | | l ^= s << 12; |
168 | | h ^= s >> 52; |
169 | | s = tab[b >> 16 & 0xF]; |
170 | | l ^= s << 16; |
171 | | h ^= s >> 48; |
172 | | s = tab[b >> 20 & 0xF]; |
173 | | l ^= s << 20; |
174 | | h ^= s >> 44; |
175 | | s = tab[b >> 24 & 0xF]; |
176 | | l ^= s << 24; |
177 | | h ^= s >> 40; |
178 | | s = tab[b >> 28 & 0xF]; |
179 | | l ^= s << 28; |
180 | | h ^= s >> 36; |
181 | | s = tab[b >> 32 & 0xF]; |
182 | | l ^= s << 32; |
183 | | h ^= s >> 32; |
184 | | s = tab[b >> 36 & 0xF]; |
185 | | l ^= s << 36; |
186 | | h ^= s >> 28; |
187 | | s = tab[b >> 40 & 0xF]; |
188 | | l ^= s << 40; |
189 | | h ^= s >> 24; |
190 | | s = tab[b >> 44 & 0xF]; |
191 | | l ^= s << 44; |
192 | | h ^= s >> 20; |
193 | | s = tab[b >> 48 & 0xF]; |
194 | | l ^= s << 48; |
195 | | h ^= s >> 16; |
196 | | s = tab[b >> 52 & 0xF]; |
197 | | l ^= s << 52; |
198 | | h ^= s >> 12; |
199 | | s = tab[b >> 56 & 0xF]; |
200 | | l ^= s << 56; |
201 | | h ^= s >> 8; |
202 | | s = tab[b >> 60]; |
203 | | l ^= s << 60; |
204 | | h ^= s >> 4; |
205 | | |
206 | | /* compensate for the top three bits of a */ |
207 | | |
208 | | if (top3b & 01) { |
209 | | l ^= b << 61; |
210 | | h ^= b >> 3; |
211 | | } |
212 | | if (top3b & 02) { |
213 | | l ^= b << 62; |
214 | | h ^= b >> 2; |
215 | | } |
216 | | if (top3b & 04) { |
217 | | l ^= b << 63; |
218 | | h ^= b >> 1; |
219 | | } |
220 | | |
221 | | *r1 = h; |
222 | | *r0 = l; |
223 | | } |
224 | | # endif |
225 | | |
226 | | /* |
227 | | * Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1, |
228 | | * result is a polynomial r with degree < 4 * BN_BITS2 - 1 The caller MUST |
229 | | * ensure that the variables have the right amount of space allocated. |
230 | | */ |
231 | | static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, |
232 | | const BN_ULONG b1, const BN_ULONG b0) |
233 | | { |
234 | | BN_ULONG m1, m0; |
235 | | /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */ |
236 | | bn_GF2m_mul_1x1(r + 3, r + 2, a1, b1); |
237 | | bn_GF2m_mul_1x1(r + 1, r, a0, b0); |
238 | | bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1); |
239 | | /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */ |
240 | | r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */ |
241 | | r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */ |
242 | | } |
243 | | # else |
244 | | void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1, |
245 | | BN_ULONG b0); |
246 | | # endif |
247 | | |
248 | | /* |
249 | | * Add polynomials a and b and store result in r; r could be a or b, a and b |
250 | | * could be equal; r is the bitwise XOR of a and b. |
251 | | */ |
252 | | int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b) |
253 | 438k | { |
254 | 438k | int i; |
255 | 438k | const BIGNUM *at, *bt; |
256 | | |
257 | 438k | bn_check_top(a); |
258 | 438k | bn_check_top(b); |
259 | | |
260 | 438k | if (a->top < b->top) { |
261 | 1.19k | at = b; |
262 | 1.19k | bt = a; |
263 | 436k | } else { |
264 | 436k | at = a; |
265 | 436k | bt = b; |
266 | 436k | } |
267 | | |
268 | 438k | if (bn_wexpand(r, at->top) == NULL) |
269 | 0 | return 0; |
270 | | |
271 | 3.04M | for (i = 0; i < bt->top; i++) { |
272 | 2.61M | r->d[i] = at->d[i] ^ bt->d[i]; |
273 | 2.61M | } |
274 | 444k | for (; i < at->top; i++) { |
275 | 5.99k | r->d[i] = at->d[i]; |
276 | 5.99k | } |
277 | | |
278 | 438k | r->top = at->top; |
279 | 438k | bn_correct_top(r); |
280 | | |
281 | 438k | return 1; |
282 | 438k | } |
283 | | |
284 | | /*- |
285 | | * Some functions allow for representation of the irreducible polynomials |
286 | | * as an int[], say p. The irreducible f(t) is then of the form: |
287 | | * t^p[0] + t^p[1] + ... + t^p[k] |
288 | | * where m = p[0] > p[1] > ... > p[k] = 0. |
289 | | */ |
290 | | |
291 | | /* Performs modular reduction of a and store result in r. r could be a. */ |
292 | | int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[]) |
293 | 671k | { |
294 | 671k | int j, k; |
295 | 671k | int n, dN, d0, d1; |
296 | 671k | BN_ULONG zz, *z; |
297 | | |
298 | 671k | bn_check_top(a); |
299 | | |
300 | 671k | if (p[0] == 0) { |
301 | | /* reduction mod 1 => return 0 */ |
302 | 0 | BN_zero(r); |
303 | 0 | return 1; |
304 | 0 | } |
305 | | |
306 | | /* |
307 | | * Since the algorithm does reduction in the r value, if a != r, copy the |
308 | | * contents of a into r so we can do reduction in r. |
309 | | */ |
310 | 671k | if (a != r) { |
311 | 670k | if (!bn_wexpand(r, a->top)) |
312 | 0 | return 0; |
313 | 8.63M | for (j = 0; j < a->top; j++) { |
314 | 7.96M | r->d[j] = a->d[j]; |
315 | 7.96M | } |
316 | 670k | r->top = a->top; |
317 | 670k | } |
318 | 671k | z = r->d; |
319 | | |
320 | | /* start reduction */ |
321 | 671k | dN = p[0] / BN_BITS2; |
322 | 8.60M | for (j = r->top - 1; j > dN;) { |
323 | 7.93M | zz = z[j]; |
324 | 7.93M | if (z[j] == 0) { |
325 | 3.96M | j--; |
326 | 3.96M | continue; |
327 | 3.96M | } |
328 | 3.96M | z[j] = 0; |
329 | | |
330 | 15.3M | for (k = 1; p[k] != 0; k++) { |
331 | | /* reducing component t^p[k] */ |
332 | 11.3M | n = p[0] - p[k]; |
333 | 11.3M | d0 = n % BN_BITS2; |
334 | 11.3M | d1 = BN_BITS2 - d0; |
335 | 11.3M | n /= BN_BITS2; |
336 | 11.3M | z[j - n] ^= (zz >> d0); |
337 | 11.3M | if (d0) |
338 | 11.3M | z[j - n - 1] ^= (zz << d1); |
339 | 11.3M | } |
340 | | |
341 | | /* reducing component t^0 */ |
342 | 3.96M | n = dN; |
343 | 3.96M | d0 = p[0] % BN_BITS2; |
344 | 3.96M | d1 = BN_BITS2 - d0; |
345 | 3.96M | z[j - n] ^= (zz >> d0); |
346 | 3.96M | if (d0) |
347 | 3.96M | z[j - n - 1] ^= (zz << d1); |
348 | 3.96M | } |
349 | | |
350 | | /* final round of reduction */ |
351 | 1.33M | while (j == dN) { |
352 | | |
353 | 1.33M | d0 = p[0] % BN_BITS2; |
354 | 1.33M | zz = z[dN] >> d0; |
355 | 1.33M | if (zz == 0) |
356 | 668k | break; |
357 | 666k | d1 = BN_BITS2 - d0; |
358 | | |
359 | | /* clear up the top d1 bits */ |
360 | 666k | if (d0) |
361 | 666k | z[dN] = (z[dN] << d1) >> d1; |
362 | 0 | else |
363 | 0 | z[dN] = 0; |
364 | 666k | z[0] ^= zz; /* reduction t^0 component */ |
365 | | |
366 | 2.57M | for (k = 1; p[k] != 0; k++) { |
367 | 1.91M | BN_ULONG tmp_ulong; |
368 | | |
369 | | /* reducing component t^p[k] */ |
370 | 1.91M | n = p[k] / BN_BITS2; |
371 | 1.91M | d0 = p[k] % BN_BITS2; |
372 | 1.91M | d1 = BN_BITS2 - d0; |
373 | 1.91M | z[n] ^= (zz << d0); |
374 | 1.91M | if (d0 && (tmp_ulong = zz >> d1)) |
375 | 47.9k | z[n + 1] ^= tmp_ulong; |
376 | 1.91M | } |
377 | | |
378 | 666k | } |
379 | | |
380 | 671k | bn_correct_top(r); |
381 | 671k | return 1; |
382 | 671k | } |
383 | | |
384 | | /* |
385 | | * Performs modular reduction of a by p and store result in r. r could be a. |
386 | | * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper |
387 | | * function is only provided for convenience; for best performance, use the |
388 | | * BN_GF2m_mod_arr function. |
389 | | */ |
390 | | int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p) |
391 | 192 | { |
392 | 192 | int ret = 0; |
393 | 192 | int arr[6]; |
394 | 192 | bn_check_top(a); |
395 | 192 | bn_check_top(p); |
396 | 192 | ret = BN_GF2m_poly2arr(p, arr, OSSL_NELEM(arr)); |
397 | 192 | if (!ret || ret > (int)OSSL_NELEM(arr)) { |
398 | 0 | ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH); |
399 | 0 | return 0; |
400 | 0 | } |
401 | 192 | ret = BN_GF2m_mod_arr(r, a, arr); |
402 | 192 | bn_check_top(r); |
403 | 192 | return ret; |
404 | 192 | } |
405 | | |
406 | | /* |
407 | | * Compute the product of two polynomials a and b, reduce modulo p, and store |
408 | | * the result in r. r could be a or b; a could be b. |
409 | | */ |
410 | | int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
411 | | const int p[], BN_CTX *ctx) |
412 | 208k | { |
413 | 208k | int zlen, i, j, k, ret = 0; |
414 | 208k | BIGNUM *s; |
415 | 208k | BN_ULONG x1, x0, y1, y0, zz[4]; |
416 | | |
417 | 208k | bn_check_top(a); |
418 | 208k | bn_check_top(b); |
419 | | |
420 | 208k | if (a == b) { |
421 | 0 | return BN_GF2m_mod_sqr_arr(r, a, p, ctx); |
422 | 0 | } |
423 | | |
424 | 208k | BN_CTX_start(ctx); |
425 | 208k | if ((s = BN_CTX_get(ctx)) == NULL) |
426 | 0 | goto err; |
427 | | |
428 | 208k | zlen = a->top + b->top + 4; |
429 | 208k | if (!bn_wexpand(s, zlen)) |
430 | 0 | goto err; |
431 | 208k | s->top = zlen; |
432 | | |
433 | 3.52M | for (i = 0; i < zlen; i++) |
434 | 3.31M | s->d[i] = 0; |
435 | | |
436 | 831k | for (j = 0; j < b->top; j += 2) { |
437 | 623k | y0 = b->d[j]; |
438 | 623k | y1 = ((j + 1) == b->top) ? 0 : b->d[j + 1]; |
439 | 2.49M | for (i = 0; i < a->top; i += 2) { |
440 | 1.86M | x0 = a->d[i]; |
441 | 1.86M | x1 = ((i + 1) == a->top) ? 0 : a->d[i + 1]; |
442 | 1.86M | bn_GF2m_mul_2x2(zz, x1, x0, y1, y0); |
443 | 9.34M | for (k = 0; k < 4; k++) |
444 | 7.47M | s->d[i + j + k] ^= zz[k]; |
445 | 1.86M | } |
446 | 623k | } |
447 | | |
448 | 208k | bn_correct_top(s); |
449 | 208k | if (BN_GF2m_mod_arr(r, s, p)) |
450 | 208k | ret = 1; |
451 | 208k | bn_check_top(r); |
452 | | |
453 | 208k | err: |
454 | 208k | BN_CTX_end(ctx); |
455 | 208k | return ret; |
456 | 208k | } |
457 | | |
458 | | /* |
459 | | * Compute the product of two polynomials a and b, reduce modulo p, and store |
460 | | * the result in r. r could be a or b; a could equal b. This function calls |
461 | | * down to the BN_GF2m_mod_mul_arr implementation; this wrapper function is |
462 | | * only provided for convenience; for best performance, use the |
463 | | * BN_GF2m_mod_mul_arr function. |
464 | | */ |
465 | | int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
466 | | const BIGNUM *p, BN_CTX *ctx) |
467 | 576 | { |
468 | 576 | int ret = 0; |
469 | 576 | const int max = BN_num_bits(p) + 1; |
470 | 576 | int *arr; |
471 | | |
472 | 576 | bn_check_top(a); |
473 | 576 | bn_check_top(b); |
474 | 576 | bn_check_top(p); |
475 | | |
476 | 576 | arr = OPENSSL_malloc(sizeof(*arr) * max); |
477 | 576 | if (arr == NULL) |
478 | 0 | return 0; |
479 | 576 | ret = BN_GF2m_poly2arr(p, arr, max); |
480 | 576 | if (!ret || ret > max) { |
481 | 0 | ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH); |
482 | 0 | goto err; |
483 | 0 | } |
484 | 576 | ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx); |
485 | 576 | bn_check_top(r); |
486 | 576 | err: |
487 | 576 | OPENSSL_free(arr); |
488 | 576 | return ret; |
489 | 576 | } |
490 | | |
491 | | /* Square a, reduce the result mod p, and store it in a. r could be a. */ |
492 | | int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], |
493 | | BN_CTX *ctx) |
494 | 461k | { |
495 | 461k | int i, ret = 0; |
496 | 461k | BIGNUM *s; |
497 | | |
498 | 461k | bn_check_top(a); |
499 | 461k | BN_CTX_start(ctx); |
500 | 461k | if ((s = BN_CTX_get(ctx)) == NULL) |
501 | 0 | goto err; |
502 | 461k | if (!bn_wexpand(s, 2 * a->top)) |
503 | 0 | goto err; |
504 | | |
505 | 3.20M | for (i = a->top - 1; i >= 0; i--) { |
506 | 2.74M | s->d[2 * i + 1] = SQR1(a->d[i]); |
507 | 2.74M | s->d[2 * i] = SQR0(a->d[i]); |
508 | 2.74M | } |
509 | | |
510 | 461k | s->top = 2 * a->top; |
511 | 461k | bn_correct_top(s); |
512 | 461k | if (!BN_GF2m_mod_arr(r, s, p)) |
513 | 0 | goto err; |
514 | 461k | bn_check_top(r); |
515 | 461k | ret = 1; |
516 | 461k | err: |
517 | 461k | BN_CTX_end(ctx); |
518 | 461k | return ret; |
519 | 461k | } |
520 | | |
521 | | /* |
522 | | * Square a, reduce the result mod p, and store it in a. r could be a. This |
523 | | * function calls down to the BN_GF2m_mod_sqr_arr implementation; this |
524 | | * wrapper function is only provided for convenience; for best performance, |
525 | | * use the BN_GF2m_mod_sqr_arr function. |
526 | | */ |
527 | | int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) |
528 | 0 | { |
529 | 0 | int ret = 0; |
530 | 0 | const int max = BN_num_bits(p) + 1; |
531 | 0 | int *arr; |
532 | |
|
533 | 0 | bn_check_top(a); |
534 | 0 | bn_check_top(p); |
535 | |
|
536 | 0 | arr = OPENSSL_malloc(sizeof(*arr) * max); |
537 | 0 | if (arr == NULL) |
538 | 0 | return 0; |
539 | 0 | ret = BN_GF2m_poly2arr(p, arr, max); |
540 | 0 | if (!ret || ret > max) { |
541 | 0 | ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH); |
542 | 0 | goto err; |
543 | 0 | } |
544 | 0 | ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx); |
545 | 0 | bn_check_top(r); |
546 | 0 | err: |
547 | 0 | OPENSSL_free(arr); |
548 | 0 | return ret; |
549 | 0 | } |
550 | | |
551 | | /* |
552 | | * Invert a, reduce modulo p, and store the result in r. r could be a. Uses |
553 | | * Modified Almost Inverse Algorithm (Algorithm 10) from Hankerson, D., |
554 | | * Hernandez, J.L., and Menezes, A. "Software Implementation of Elliptic |
555 | | * Curve Cryptography Over Binary Fields". |
556 | | */ |
557 | | static int BN_GF2m_mod_inv_vartime(BIGNUM *r, const BIGNUM *a, |
558 | | const BIGNUM *p, BN_CTX *ctx) |
559 | 192 | { |
560 | 192 | BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp; |
561 | 192 | int ret = 0; |
562 | | |
563 | 192 | bn_check_top(a); |
564 | 192 | bn_check_top(p); |
565 | | |
566 | 192 | BN_CTX_start(ctx); |
567 | | |
568 | 192 | b = BN_CTX_get(ctx); |
569 | 192 | c = BN_CTX_get(ctx); |
570 | 192 | u = BN_CTX_get(ctx); |
571 | 192 | v = BN_CTX_get(ctx); |
572 | 192 | if (v == NULL) |
573 | 0 | goto err; |
574 | | |
575 | 192 | if (!BN_GF2m_mod(u, a, p)) |
576 | 0 | goto err; |
577 | 192 | if (BN_is_zero(u)) |
578 | 0 | goto err; |
579 | | |
580 | 192 | if (!BN_copy(v, p)) |
581 | 0 | goto err; |
582 | | # if 0 |
583 | | if (!BN_one(b)) |
584 | | goto err; |
585 | | |
586 | | while (1) { |
587 | | while (!BN_is_odd(u)) { |
588 | | if (BN_is_zero(u)) |
589 | | goto err; |
590 | | if (!BN_rshift1(u, u)) |
591 | | goto err; |
592 | | if (BN_is_odd(b)) { |
593 | | if (!BN_GF2m_add(b, b, p)) |
594 | | goto err; |
595 | | } |
596 | | if (!BN_rshift1(b, b)) |
597 | | goto err; |
598 | | } |
599 | | |
600 | | if (BN_abs_is_word(u, 1)) |
601 | | break; |
602 | | |
603 | | if (BN_num_bits(u) < BN_num_bits(v)) { |
604 | | tmp = u; |
605 | | u = v; |
606 | | v = tmp; |
607 | | tmp = b; |
608 | | b = c; |
609 | | c = tmp; |
610 | | } |
611 | | |
612 | | if (!BN_GF2m_add(u, u, v)) |
613 | | goto err; |
614 | | if (!BN_GF2m_add(b, b, c)) |
615 | | goto err; |
616 | | } |
617 | | # else |
618 | 192 | { |
619 | 192 | int i; |
620 | 192 | int ubits = BN_num_bits(u); |
621 | 192 | int vbits = BN_num_bits(v); /* v is copy of p */ |
622 | 192 | int top = p->top; |
623 | 192 | BN_ULONG *udp, *bdp, *vdp, *cdp; |
624 | | |
625 | 192 | if (!bn_wexpand(u, top)) |
626 | 0 | goto err; |
627 | 192 | udp = u->d; |
628 | 200 | for (i = u->top; i < top; i++) |
629 | 8 | udp[i] = 0; |
630 | 192 | u->top = top; |
631 | 192 | if (!bn_wexpand(b, top)) |
632 | 0 | goto err; |
633 | 192 | bdp = b->d; |
634 | 192 | bdp[0] = 1; |
635 | 1.02k | for (i = 1; i < top; i++) |
636 | 836 | bdp[i] = 0; |
637 | 192 | b->top = top; |
638 | 192 | if (!bn_wexpand(c, top)) |
639 | 0 | goto err; |
640 | 192 | cdp = c->d; |
641 | 1.22k | for (i = 0; i < top; i++) |
642 | 1.02k | cdp[i] = 0; |
643 | 192 | c->top = top; |
644 | 192 | vdp = v->d; /* It pays off to "cache" *->d pointers, |
645 | | * because it allows optimizer to be more |
646 | | * aggressive. But we don't have to "cache" |
647 | | * p->d, because *p is declared 'const'... */ |
648 | 50.1k | while (1) { |
649 | 150k | while (ubits && !(udp[0] & 1)) { |
650 | 100k | BN_ULONG u0, u1, b0, b1, mask; |
651 | | |
652 | 100k | u0 = udp[0]; |
653 | 100k | b0 = bdp[0]; |
654 | 100k | mask = (BN_ULONG)0 - (b0 & 1); |
655 | 100k | b0 ^= p->d[0] & mask; |
656 | 584k | for (i = 0; i < top - 1; i++) { |
657 | 484k | u1 = udp[i + 1]; |
658 | 484k | udp[i] = ((u0 >> 1) | (u1 << (BN_BITS2 - 1))) & BN_MASK2; |
659 | 484k | u0 = u1; |
660 | 484k | b1 = bdp[i + 1] ^ (p->d[i + 1] & mask); |
661 | 484k | bdp[i] = ((b0 >> 1) | (b1 << (BN_BITS2 - 1))) & BN_MASK2; |
662 | 484k | b0 = b1; |
663 | 484k | } |
664 | 100k | udp[i] = u0 >> 1; |
665 | 100k | bdp[i] = b0 >> 1; |
666 | 100k | ubits--; |
667 | 100k | } |
668 | | |
669 | 50.1k | if (ubits <= BN_BITS2) { |
670 | 9.99k | if (udp[0] == 0) /* poly was reducible */ |
671 | 0 | goto err; |
672 | 9.99k | if (udp[0] == 1) |
673 | 192 | break; |
674 | 9.99k | } |
675 | | |
676 | 49.9k | if (ubits < vbits) { |
677 | 19.7k | i = ubits; |
678 | 19.7k | ubits = vbits; |
679 | 19.7k | vbits = i; |
680 | 19.7k | tmp = u; |
681 | 19.7k | u = v; |
682 | 19.7k | v = tmp; |
683 | 19.7k | tmp = b; |
684 | 19.7k | b = c; |
685 | 19.7k | c = tmp; |
686 | 19.7k | udp = vdp; |
687 | 19.7k | vdp = v->d; |
688 | 19.7k | bdp = cdp; |
689 | 19.7k | cdp = c->d; |
690 | 19.7k | } |
691 | 342k | for (i = 0; i < top; i++) { |
692 | 292k | udp[i] ^= vdp[i]; |
693 | 292k | bdp[i] ^= cdp[i]; |
694 | 292k | } |
695 | 49.9k | if (ubits == vbits) { |
696 | 9.94k | BN_ULONG ul; |
697 | 9.94k | int utop = (ubits - 1) / BN_BITS2; |
698 | | |
699 | 10.2k | while ((ul = udp[utop]) == 0 && utop) |
700 | 278 | utop--; |
701 | 9.94k | ubits = utop * BN_BITS2 + BN_num_bits_word(ul); |
702 | 9.94k | } |
703 | 49.9k | } |
704 | 192 | bn_correct_top(b); |
705 | 192 | } |
706 | 0 | # endif |
707 | | |
708 | 192 | if (!BN_copy(r, b)) |
709 | 0 | goto err; |
710 | 192 | bn_check_top(r); |
711 | 192 | ret = 1; |
712 | | |
713 | 192 | err: |
714 | | # ifdef BN_DEBUG |
715 | | /* BN_CTX_end would complain about the expanded form */ |
716 | | bn_correct_top(c); |
717 | | bn_correct_top(u); |
718 | | bn_correct_top(v); |
719 | | # endif |
720 | 192 | BN_CTX_end(ctx); |
721 | 192 | return ret; |
722 | 192 | } |
723 | | |
724 | | /*- |
725 | | * Wrapper for BN_GF2m_mod_inv_vartime that blinds the input before calling. |
726 | | * This is not constant time. |
727 | | * But it does eliminate first order deduction on the input. |
728 | | */ |
729 | | int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) |
730 | 192 | { |
731 | 192 | BIGNUM *b = NULL; |
732 | 192 | int ret = 0; |
733 | | |
734 | 192 | BN_CTX_start(ctx); |
735 | 192 | if ((b = BN_CTX_get(ctx)) == NULL) |
736 | 0 | goto err; |
737 | | |
738 | | /* generate blinding value */ |
739 | 192 | do { |
740 | 192 | if (!BN_priv_rand_ex(b, BN_num_bits(p) - 1, |
741 | 192 | BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY, 0, ctx)) |
742 | 0 | goto err; |
743 | 192 | } while (BN_is_zero(b)); |
744 | | |
745 | | /* r := a * b */ |
746 | 192 | if (!BN_GF2m_mod_mul(r, a, b, p, ctx)) |
747 | 0 | goto err; |
748 | | |
749 | | /* r := 1/(a * b) */ |
750 | 192 | if (!BN_GF2m_mod_inv_vartime(r, r, p, ctx)) |
751 | 0 | goto err; |
752 | | |
753 | | /* r := b/(a * b) = 1/a */ |
754 | 192 | if (!BN_GF2m_mod_mul(r, r, b, p, ctx)) |
755 | 0 | goto err; |
756 | | |
757 | 192 | ret = 1; |
758 | | |
759 | 192 | err: |
760 | 192 | BN_CTX_end(ctx); |
761 | 192 | return ret; |
762 | 192 | } |
763 | | |
764 | | /* |
765 | | * Invert xx, reduce modulo p, and store the result in r. r could be xx. |
766 | | * This function calls down to the BN_GF2m_mod_inv implementation; this |
767 | | * wrapper function is only provided for convenience; for best performance, |
768 | | * use the BN_GF2m_mod_inv function. |
769 | | */ |
770 | | int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[], |
771 | | BN_CTX *ctx) |
772 | 0 | { |
773 | 0 | BIGNUM *field; |
774 | 0 | int ret = 0; |
775 | |
|
776 | 0 | bn_check_top(xx); |
777 | 0 | BN_CTX_start(ctx); |
778 | 0 | if ((field = BN_CTX_get(ctx)) == NULL) |
779 | 0 | goto err; |
780 | 0 | if (!BN_GF2m_arr2poly(p, field)) |
781 | 0 | goto err; |
782 | | |
783 | 0 | ret = BN_GF2m_mod_inv(r, xx, field, ctx); |
784 | 0 | bn_check_top(r); |
785 | |
|
786 | 0 | err: |
787 | 0 | BN_CTX_end(ctx); |
788 | 0 | return ret; |
789 | 0 | } |
790 | | |
791 | | /* |
792 | | * Divide y by x, reduce modulo p, and store the result in r. r could be x |
793 | | * or y, x could equal y. |
794 | | */ |
795 | | int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, |
796 | | const BIGNUM *p, BN_CTX *ctx) |
797 | 192 | { |
798 | 192 | BIGNUM *xinv = NULL; |
799 | 192 | int ret = 0; |
800 | | |
801 | 192 | bn_check_top(y); |
802 | 192 | bn_check_top(x); |
803 | 192 | bn_check_top(p); |
804 | | |
805 | 192 | BN_CTX_start(ctx); |
806 | 192 | xinv = BN_CTX_get(ctx); |
807 | 192 | if (xinv == NULL) |
808 | 0 | goto err; |
809 | | |
810 | 192 | if (!BN_GF2m_mod_inv(xinv, x, p, ctx)) |
811 | 0 | goto err; |
812 | 192 | if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx)) |
813 | 0 | goto err; |
814 | 192 | bn_check_top(r); |
815 | 192 | ret = 1; |
816 | | |
817 | 192 | err: |
818 | 192 | BN_CTX_end(ctx); |
819 | 192 | return ret; |
820 | 192 | } |
821 | | |
822 | | /* |
823 | | * Divide yy by xx, reduce modulo p, and store the result in r. r could be xx |
824 | | * * or yy, xx could equal yy. This function calls down to the |
825 | | * BN_GF2m_mod_div implementation; this wrapper function is only provided for |
826 | | * convenience; for best performance, use the BN_GF2m_mod_div function. |
827 | | */ |
828 | | int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, |
829 | | const int p[], BN_CTX *ctx) |
830 | 0 | { |
831 | 0 | BIGNUM *field; |
832 | 0 | int ret = 0; |
833 | |
|
834 | 0 | bn_check_top(yy); |
835 | 0 | bn_check_top(xx); |
836 | |
|
837 | 0 | BN_CTX_start(ctx); |
838 | 0 | if ((field = BN_CTX_get(ctx)) == NULL) |
839 | 0 | goto err; |
840 | 0 | if (!BN_GF2m_arr2poly(p, field)) |
841 | 0 | goto err; |
842 | | |
843 | 0 | ret = BN_GF2m_mod_div(r, yy, xx, field, ctx); |
844 | 0 | bn_check_top(r); |
845 | |
|
846 | 0 | err: |
847 | 0 | BN_CTX_end(ctx); |
848 | 0 | return ret; |
849 | 0 | } |
850 | | |
851 | | /* |
852 | | * Compute the bth power of a, reduce modulo p, and store the result in r. r |
853 | | * could be a. Uses simple square-and-multiply algorithm A.5.1 from IEEE |
854 | | * P1363. |
855 | | */ |
856 | | int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
857 | | const int p[], BN_CTX *ctx) |
858 | 9 | { |
859 | 9 | int ret = 0, i, n; |
860 | 9 | BIGNUM *u; |
861 | | |
862 | 9 | bn_check_top(a); |
863 | 9 | bn_check_top(b); |
864 | | |
865 | 9 | if (BN_is_zero(b)) |
866 | 0 | return BN_one(r); |
867 | | |
868 | 9 | if (BN_abs_is_word(b, 1)) |
869 | 0 | return (BN_copy(r, a) != NULL); |
870 | | |
871 | 9 | BN_CTX_start(ctx); |
872 | 9 | if ((u = BN_CTX_get(ctx)) == NULL) |
873 | 0 | goto err; |
874 | | |
875 | 9 | if (!BN_GF2m_mod_arr(u, a, p)) |
876 | 0 | goto err; |
877 | | |
878 | 9 | n = BN_num_bits(b) - 1; |
879 | 2.24k | for (i = n - 1; i >= 0; i--) { |
880 | 2.23k | if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx)) |
881 | 0 | goto err; |
882 | 2.23k | if (BN_is_bit_set(b, i)) { |
883 | 0 | if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx)) |
884 | 0 | goto err; |
885 | 0 | } |
886 | 2.23k | } |
887 | 9 | if (!BN_copy(r, u)) |
888 | 0 | goto err; |
889 | 9 | bn_check_top(r); |
890 | 9 | ret = 1; |
891 | 9 | err: |
892 | 9 | BN_CTX_end(ctx); |
893 | 9 | return ret; |
894 | 9 | } |
895 | | |
896 | | /* |
897 | | * Compute the bth power of a, reduce modulo p, and store the result in r. r |
898 | | * could be a. This function calls down to the BN_GF2m_mod_exp_arr |
899 | | * implementation; this wrapper function is only provided for convenience; |
900 | | * for best performance, use the BN_GF2m_mod_exp_arr function. |
901 | | */ |
902 | | int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
903 | | const BIGNUM *p, BN_CTX *ctx) |
904 | 0 | { |
905 | 0 | int ret = 0; |
906 | 0 | const int max = BN_num_bits(p) + 1; |
907 | 0 | int *arr; |
908 | |
|
909 | 0 | bn_check_top(a); |
910 | 0 | bn_check_top(b); |
911 | 0 | bn_check_top(p); |
912 | |
|
913 | 0 | arr = OPENSSL_malloc(sizeof(*arr) * max); |
914 | 0 | if (arr == NULL) |
915 | 0 | return 0; |
916 | 0 | ret = BN_GF2m_poly2arr(p, arr, max); |
917 | 0 | if (!ret || ret > max) { |
918 | 0 | ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH); |
919 | 0 | goto err; |
920 | 0 | } |
921 | 0 | ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx); |
922 | 0 | bn_check_top(r); |
923 | 0 | err: |
924 | 0 | OPENSSL_free(arr); |
925 | 0 | return ret; |
926 | 0 | } |
927 | | |
928 | | /* |
929 | | * Compute the square root of a, reduce modulo p, and store the result in r. |
930 | | * r could be a. Uses exponentiation as in algorithm A.4.1 from IEEE P1363. |
931 | | */ |
932 | | int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[], |
933 | | BN_CTX *ctx) |
934 | 9 | { |
935 | 9 | int ret = 0; |
936 | 9 | BIGNUM *u; |
937 | | |
938 | 9 | bn_check_top(a); |
939 | | |
940 | 9 | if (p[0] == 0) { |
941 | | /* reduction mod 1 => return 0 */ |
942 | 0 | BN_zero(r); |
943 | 0 | return 1; |
944 | 0 | } |
945 | | |
946 | 9 | BN_CTX_start(ctx); |
947 | 9 | if ((u = BN_CTX_get(ctx)) == NULL) |
948 | 0 | goto err; |
949 | | |
950 | 9 | if (!BN_set_bit(u, p[0] - 1)) |
951 | 0 | goto err; |
952 | 9 | ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx); |
953 | 9 | bn_check_top(r); |
954 | | |
955 | 9 | err: |
956 | 9 | BN_CTX_end(ctx); |
957 | 9 | return ret; |
958 | 9 | } |
959 | | |
960 | | /* |
961 | | * Compute the square root of a, reduce modulo p, and store the result in r. |
962 | | * r could be a. This function calls down to the BN_GF2m_mod_sqrt_arr |
963 | | * implementation; this wrapper function is only provided for convenience; |
964 | | * for best performance, use the BN_GF2m_mod_sqrt_arr function. |
965 | | */ |
966 | | int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) |
967 | 0 | { |
968 | 0 | int ret = 0; |
969 | 0 | const int max = BN_num_bits(p) + 1; |
970 | 0 | int *arr; |
971 | |
|
972 | 0 | bn_check_top(a); |
973 | 0 | bn_check_top(p); |
974 | |
|
975 | 0 | arr = OPENSSL_malloc(sizeof(*arr) * max); |
976 | 0 | if (arr == NULL) |
977 | 0 | return 0; |
978 | 0 | ret = BN_GF2m_poly2arr(p, arr, max); |
979 | 0 | if (!ret || ret > max) { |
980 | 0 | ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH); |
981 | 0 | goto err; |
982 | 0 | } |
983 | 0 | ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx); |
984 | 0 | bn_check_top(r); |
985 | 0 | err: |
986 | 0 | OPENSSL_free(arr); |
987 | 0 | return ret; |
988 | 0 | } |
989 | | |
990 | | /* |
991 | | * Find r such that r^2 + r = a mod p. r could be a. If no r exists returns |
992 | | * 0. Uses algorithms A.4.7 and A.4.6 from IEEE P1363. |
993 | | */ |
994 | | int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[], |
995 | | BN_CTX *ctx) |
996 | 172 | { |
997 | 172 | int ret = 0, count = 0, j; |
998 | 172 | BIGNUM *a, *z, *rho, *w, *w2, *tmp; |
999 | | |
1000 | 172 | bn_check_top(a_); |
1001 | | |
1002 | 172 | if (p[0] == 0) { |
1003 | | /* reduction mod 1 => return 0 */ |
1004 | 0 | BN_zero(r); |
1005 | 0 | return 1; |
1006 | 0 | } |
1007 | | |
1008 | 172 | BN_CTX_start(ctx); |
1009 | 172 | a = BN_CTX_get(ctx); |
1010 | 172 | z = BN_CTX_get(ctx); |
1011 | 172 | w = BN_CTX_get(ctx); |
1012 | 172 | if (w == NULL) |
1013 | 0 | goto err; |
1014 | | |
1015 | 172 | if (!BN_GF2m_mod_arr(a, a_, p)) |
1016 | 0 | goto err; |
1017 | | |
1018 | 172 | if (BN_is_zero(a)) { |
1019 | 4 | BN_zero(r); |
1020 | 4 | ret = 1; |
1021 | 4 | goto err; |
1022 | 4 | } |
1023 | | |
1024 | 168 | if (p[0] & 0x1) { /* m is odd */ |
1025 | | /* compute half-trace of a */ |
1026 | 139 | if (!BN_copy(z, a)) |
1027 | 0 | goto err; |
1028 | 22.6k | for (j = 1; j <= (p[0] - 1) / 2; j++) { |
1029 | 22.5k | if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) |
1030 | 0 | goto err; |
1031 | 22.5k | if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) |
1032 | 0 | goto err; |
1033 | 22.5k | if (!BN_GF2m_add(z, z, a)) |
1034 | 0 | goto err; |
1035 | 22.5k | } |
1036 | | |
1037 | 139 | } else { /* m is even */ |
1038 | | |
1039 | 29 | rho = BN_CTX_get(ctx); |
1040 | 29 | w2 = BN_CTX_get(ctx); |
1041 | 29 | tmp = BN_CTX_get(ctx); |
1042 | 29 | if (tmp == NULL) |
1043 | 0 | goto err; |
1044 | 568 | do { |
1045 | 568 | if (!BN_priv_rand_ex(rho, p[0], BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY, |
1046 | 568 | 0, ctx)) |
1047 | 0 | goto err; |
1048 | 568 | if (!BN_GF2m_mod_arr(rho, rho, p)) |
1049 | 0 | goto err; |
1050 | 568 | BN_zero(z); |
1051 | 568 | if (!BN_copy(w, rho)) |
1052 | 0 | goto err; |
1053 | 207k | for (j = 1; j <= p[0] - 1; j++) { |
1054 | 206k | if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) |
1055 | 0 | goto err; |
1056 | 206k | if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx)) |
1057 | 0 | goto err; |
1058 | 206k | if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx)) |
1059 | 0 | goto err; |
1060 | 206k | if (!BN_GF2m_add(z, z, tmp)) |
1061 | 0 | goto err; |
1062 | 206k | if (!BN_GF2m_add(w, w2, rho)) |
1063 | 0 | goto err; |
1064 | 206k | } |
1065 | 568 | count++; |
1066 | 568 | } while (BN_is_zero(w) && (count < MAX_ITERATIONS)); |
1067 | 29 | if (BN_is_zero(w)) { |
1068 | 11 | ERR_raise(ERR_LIB_BN, BN_R_TOO_MANY_ITERATIONS); |
1069 | 11 | goto err; |
1070 | 11 | } |
1071 | 29 | } |
1072 | | |
1073 | 157 | if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) |
1074 | 0 | goto err; |
1075 | 157 | if (!BN_GF2m_add(w, z, w)) |
1076 | 0 | goto err; |
1077 | 157 | if (BN_GF2m_cmp(w, a)) { |
1078 | 72 | ERR_raise(ERR_LIB_BN, BN_R_NO_SOLUTION); |
1079 | 72 | goto err; |
1080 | 72 | } |
1081 | | |
1082 | 85 | if (!BN_copy(r, z)) |
1083 | 0 | goto err; |
1084 | 85 | bn_check_top(r); |
1085 | | |
1086 | 85 | ret = 1; |
1087 | | |
1088 | 172 | err: |
1089 | 172 | BN_CTX_end(ctx); |
1090 | 172 | return ret; |
1091 | 85 | } |
1092 | | |
1093 | | /* |
1094 | | * Find r such that r^2 + r = a mod p. r could be a. If no r exists returns |
1095 | | * 0. This function calls down to the BN_GF2m_mod_solve_quad_arr |
1096 | | * implementation; this wrapper function is only provided for convenience; |
1097 | | * for best performance, use the BN_GF2m_mod_solve_quad_arr function. |
1098 | | */ |
1099 | | int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
1100 | | BN_CTX *ctx) |
1101 | 0 | { |
1102 | 0 | int ret = 0; |
1103 | 0 | const int max = BN_num_bits(p) + 1; |
1104 | 0 | int *arr; |
1105 | |
|
1106 | 0 | bn_check_top(a); |
1107 | 0 | bn_check_top(p); |
1108 | |
|
1109 | 0 | arr = OPENSSL_malloc(sizeof(*arr) * max); |
1110 | 0 | if (arr == NULL) |
1111 | 0 | goto err; |
1112 | 0 | ret = BN_GF2m_poly2arr(p, arr, max); |
1113 | 0 | if (!ret || ret > max) { |
1114 | 0 | ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH); |
1115 | 0 | goto err; |
1116 | 0 | } |
1117 | 0 | ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx); |
1118 | 0 | bn_check_top(r); |
1119 | 0 | err: |
1120 | 0 | OPENSSL_free(arr); |
1121 | 0 | return ret; |
1122 | 0 | } |
1123 | | |
1124 | | /* |
1125 | | * Convert the bit-string representation of a polynomial ( \sum_{i=0}^n a_i * |
1126 | | * x^i) into an array of integers corresponding to the bits with non-zero |
1127 | | * coefficient. Array is terminated with -1. Up to max elements of the array |
1128 | | * will be filled. Return value is total number of array elements that would |
1129 | | * be filled if array was large enough. |
1130 | | */ |
1131 | | int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max) |
1132 | 1.17k | { |
1133 | 1.17k | int i, j, k = 0; |
1134 | 1.17k | BN_ULONG mask; |
1135 | | |
1136 | 1.17k | if (BN_is_zero(a)) |
1137 | 0 | return 0; |
1138 | | |
1139 | 7.24k | for (i = a->top - 1; i >= 0; i--) { |
1140 | 6.06k | if (!a->d[i]) |
1141 | | /* skip word if a->d[i] == 0 */ |
1142 | 3.02k | continue; |
1143 | 3.04k | mask = BN_TBIT; |
1144 | 197k | for (j = BN_BITS2 - 1; j >= 0; j--) { |
1145 | 194k | if (a->d[i] & mask) { |
1146 | 4.36k | if (k < max) |
1147 | 4.36k | p[k] = BN_BITS2 * i + j; |
1148 | 4.36k | k++; |
1149 | 4.36k | } |
1150 | 194k | mask >>= 1; |
1151 | 194k | } |
1152 | 3.04k | } |
1153 | | |
1154 | 1.17k | if (k < max) { |
1155 | 1.17k | p[k] = -1; |
1156 | 1.17k | k++; |
1157 | 1.17k | } |
1158 | | |
1159 | 1.17k | return k; |
1160 | 1.17k | } |
1161 | | |
1162 | | /* |
1163 | | * Convert the coefficient array representation of a polynomial to a |
1164 | | * bit-string. The array must be terminated by -1. |
1165 | | */ |
1166 | | int BN_GF2m_arr2poly(const int p[], BIGNUM *a) |
1167 | 0 | { |
1168 | 0 | int i; |
1169 | |
|
1170 | 0 | bn_check_top(a); |
1171 | 0 | BN_zero(a); |
1172 | 0 | for (i = 0; p[i] != -1; i++) { |
1173 | 0 | if (BN_set_bit(a, p[i]) == 0) |
1174 | 0 | return 0; |
1175 | 0 | } |
1176 | 0 | bn_check_top(a); |
1177 | |
|
1178 | 0 | return 1; |
1179 | 0 | } |
1180 | | |
1181 | | #endif |