Coverage Report

Created: 2023-06-08 06:40

/src/openssl111/include/crypto/md32_common.h
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 1999-2018 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the OpenSSL license (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/*-
11
 * This is a generic 32 bit "collector" for message digest algorithms.
12
 * Whenever needed it collects input character stream into chunks of
13
 * 32 bit values and invokes a block function that performs actual hash
14
 * calculations.
15
 *
16
 * Porting guide.
17
 *
18
 * Obligatory macros:
19
 *
20
 * DATA_ORDER_IS_BIG_ENDIAN or DATA_ORDER_IS_LITTLE_ENDIAN
21
 *      this macro defines byte order of input stream.
22
 * HASH_CBLOCK
23
 *      size of a unit chunk HASH_BLOCK operates on.
24
 * HASH_LONG
25
 *      has to be at least 32 bit wide.
26
 * HASH_CTX
27
 *      context structure that at least contains following
28
 *      members:
29
 *              typedef struct {
30
 *                      ...
31
 *                      HASH_LONG       Nl,Nh;
32
 *                      either {
33
 *                      HASH_LONG       data[HASH_LBLOCK];
34
 *                      unsigned char   data[HASH_CBLOCK];
35
 *                      };
36
 *                      unsigned int    num;
37
 *                      ...
38
 *                      } HASH_CTX;
39
 *      data[] vector is expected to be zeroed upon first call to
40
 *      HASH_UPDATE.
41
 * HASH_UPDATE
42
 *      name of "Update" function, implemented here.
43
 * HASH_TRANSFORM
44
 *      name of "Transform" function, implemented here.
45
 * HASH_FINAL
46
 *      name of "Final" function, implemented here.
47
 * HASH_BLOCK_DATA_ORDER
48
 *      name of "block" function capable of treating *unaligned* input
49
 *      message in original (data) byte order, implemented externally.
50
 * HASH_MAKE_STRING
51
 *      macro converting context variables to an ASCII hash string.
52
 *
53
 * MD5 example:
54
 *
55
 *      #define DATA_ORDER_IS_LITTLE_ENDIAN
56
 *
57
 *      #define HASH_LONG               MD5_LONG
58
 *      #define HASH_CTX                MD5_CTX
59
 *      #define HASH_CBLOCK             MD5_CBLOCK
60
 *      #define HASH_UPDATE             MD5_Update
61
 *      #define HASH_TRANSFORM          MD5_Transform
62
 *      #define HASH_FINAL              MD5_Final
63
 *      #define HASH_BLOCK_DATA_ORDER   md5_block_data_order
64
 */
65
66
#include <openssl/crypto.h>
67
68
#if !defined(DATA_ORDER_IS_BIG_ENDIAN) && !defined(DATA_ORDER_IS_LITTLE_ENDIAN)
69
# error "DATA_ORDER must be defined!"
70
#endif
71
72
#ifndef HASH_CBLOCK
73
# error "HASH_CBLOCK must be defined!"
74
#endif
75
#ifndef HASH_LONG
76
# error "HASH_LONG must be defined!"
77
#endif
78
#ifndef HASH_CTX
79
# error "HASH_CTX must be defined!"
80
#endif
81
82
#ifndef HASH_UPDATE
83
# error "HASH_UPDATE must be defined!"
84
#endif
85
#ifndef HASH_TRANSFORM
86
# error "HASH_TRANSFORM must be defined!"
87
#endif
88
#ifndef HASH_FINAL
89
# error "HASH_FINAL must be defined!"
90
#endif
91
92
#ifndef HASH_BLOCK_DATA_ORDER
93
# error "HASH_BLOCK_DATA_ORDER must be defined!"
94
#endif
95
96
0
#define ROTATE(a,n)     (((a)<<(n))|(((a)&0xffffffff)>>(32-(n))))
97
98
#if defined(DATA_ORDER_IS_BIG_ENDIAN)
99
100
0
# define HOST_c2l(c,l)  (l =(((unsigned long)(*((c)++)))<<24),          \
101
0
                         l|=(((unsigned long)(*((c)++)))<<16),          \
102
0
                         l|=(((unsigned long)(*((c)++)))<< 8),          \
103
0
                         l|=(((unsigned long)(*((c)++)))    )           )
104
601k
# define HOST_l2c(l,c)  (*((c)++)=(unsigned char)(((l)>>24)&0xff),      \
105
601k
                         *((c)++)=(unsigned char)(((l)>>16)&0xff),      \
106
601k
                         *((c)++)=(unsigned char)(((l)>> 8)&0xff),      \
107
601k
                         *((c)++)=(unsigned char)(((l)    )&0xff),      \
108
601k
                         l)
109
110
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
111
112
0
# define HOST_c2l(c,l)  (l =(((unsigned long)(*((c)++)))    ),          \
113
0
                         l|=(((unsigned long)(*((c)++)))<< 8),          \
114
0
                         l|=(((unsigned long)(*((c)++)))<<16),          \
115
0
                         l|=(((unsigned long)(*((c)++)))<<24)           )
116
234k
# define HOST_l2c(l,c)  (*((c)++)=(unsigned char)(((l)    )&0xff),      \
117
234k
                         *((c)++)=(unsigned char)(((l)>> 8)&0xff),      \
118
234k
                         *((c)++)=(unsigned char)(((l)>>16)&0xff),      \
119
234k
                         *((c)++)=(unsigned char)(((l)>>24)&0xff),      \
120
234k
                         l)
121
122
#endif
123
124
/*
125
 * Time for some action :-)
126
 */
127
128
int HASH_UPDATE(HASH_CTX *c, const void *data_, size_t len)
129
160k
{
130
160k
    const unsigned char *data = data_;
131
160k
    unsigned char *p;
132
160k
    HASH_LONG l;
133
160k
    size_t n;
134
135
160k
    if (len == 0)
136
1
        return 1;
137
138
160k
    l = (c->Nl + (((HASH_LONG) len) << 3)) & 0xffffffffUL;
139
160k
    if (l < c->Nl)              /* overflow */
140
0
        c->Nh++;
141
160k
    c->Nh += (HASH_LONG) (len >> 29); /* might cause compiler warning on
142
                                       * 16-bit */
143
160k
    c->Nl = l;
144
145
160k
    n = c->num;
146
160k
    if (n != 0) {
147
43.2k
        p = (unsigned char *)c->data;
148
149
43.2k
        if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) {
150
30.2k
            memcpy(p + n, data, HASH_CBLOCK - n);
151
30.2k
            HASH_BLOCK_DATA_ORDER(c, p, 1);
152
30.2k
            n = HASH_CBLOCK - n;
153
30.2k
            data += n;
154
30.2k
            len -= n;
155
30.2k
            c->num = 0;
156
            /*
157
             * We use memset rather than OPENSSL_cleanse() here deliberately.
158
             * Using OPENSSL_cleanse() here could be a performance issue. It
159
             * will get properly cleansed on finalisation so this isn't a
160
             * security problem.
161
             */
162
30.2k
            memset(p, 0, HASH_CBLOCK); /* keep it zeroed */
163
30.2k
        } else {
164
12.9k
            memcpy(p + n, data, len);
165
12.9k
            c->num += (unsigned int)len;
166
12.9k
            return 1;
167
12.9k
        }
168
43.2k
    }
169
170
147k
    n = len / HASH_CBLOCK;
171
147k
    if (n > 0) {
172
33.3k
        HASH_BLOCK_DATA_ORDER(c, data, n);
173
33.3k
        n *= HASH_CBLOCK;
174
33.3k
        data += n;
175
33.3k
        len -= n;
176
33.3k
    }
177
178
147k
    if (len != 0) {
179
126k
        p = (unsigned char *)c->data;
180
126k
        c->num = (unsigned int)len;
181
126k
        memcpy(p, data, len);
182
126k
    }
183
147k
    return 1;
184
160k
}
MD5_Update
Line
Count
Source
129
51.3k
{
130
51.3k
    const unsigned char *data = data_;
131
51.3k
    unsigned char *p;
132
51.3k
    HASH_LONG l;
133
51.3k
    size_t n;
134
135
51.3k
    if (len == 0)
136
1
        return 1;
137
138
51.3k
    l = (c->Nl + (((HASH_LONG) len) << 3)) & 0xffffffffUL;
139
51.3k
    if (l < c->Nl)              /* overflow */
140
0
        c->Nh++;
141
51.3k
    c->Nh += (HASH_LONG) (len >> 29); /* might cause compiler warning on
142
                                       * 16-bit */
143
51.3k
    c->Nl = l;
144
145
51.3k
    n = c->num;
146
51.3k
    if (n != 0) {
147
13.6k
        p = (unsigned char *)c->data;
148
149
13.6k
        if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) {
150
11.9k
            memcpy(p + n, data, HASH_CBLOCK - n);
151
11.9k
            HASH_BLOCK_DATA_ORDER(c, p, 1);
152
11.9k
            n = HASH_CBLOCK - n;
153
11.9k
            data += n;
154
11.9k
            len -= n;
155
11.9k
            c->num = 0;
156
            /*
157
             * We use memset rather than OPENSSL_cleanse() here deliberately.
158
             * Using OPENSSL_cleanse() here could be a performance issue. It
159
             * will get properly cleansed on finalisation so this isn't a
160
             * security problem.
161
             */
162
11.9k
            memset(p, 0, HASH_CBLOCK); /* keep it zeroed */
163
11.9k
        } else {
164
1.75k
            memcpy(p + n, data, len);
165
1.75k
            c->num += (unsigned int)len;
166
1.75k
            return 1;
167
1.75k
        }
168
13.6k
    }
169
170
49.6k
    n = len / HASH_CBLOCK;
171
49.6k
    if (n > 0) {
172
7.77k
        HASH_BLOCK_DATA_ORDER(c, data, n);
173
7.77k
        n *= HASH_CBLOCK;
174
7.77k
        data += n;
175
7.77k
        len -= n;
176
7.77k
    }
177
178
49.6k
    if (len != 0) {
179
44.3k
        p = (unsigned char *)c->data;
180
44.3k
        c->num = (unsigned int)len;
181
44.3k
        memcpy(p, data, len);
182
44.3k
    }
183
49.6k
    return 1;
184
51.3k
}
SHA1_Update
Line
Count
Source
129
67.6k
{
130
67.6k
    const unsigned char *data = data_;
131
67.6k
    unsigned char *p;
132
67.6k
    HASH_LONG l;
133
67.6k
    size_t n;
134
135
67.6k
    if (len == 0)
136
0
        return 1;
137
138
67.6k
    l = (c->Nl + (((HASH_LONG) len) << 3)) & 0xffffffffUL;
139
67.6k
    if (l < c->Nl)              /* overflow */
140
0
        c->Nh++;
141
67.6k
    c->Nh += (HASH_LONG) (len >> 29); /* might cause compiler warning on
142
                                       * 16-bit */
143
67.6k
    c->Nl = l;
144
145
67.6k
    n = c->num;
146
67.6k
    if (n != 0) {
147
21.4k
        p = (unsigned char *)c->data;
148
149
21.4k
        if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) {
150
11.7k
            memcpy(p + n, data, HASH_CBLOCK - n);
151
11.7k
            HASH_BLOCK_DATA_ORDER(c, p, 1);
152
11.7k
            n = HASH_CBLOCK - n;
153
11.7k
            data += n;
154
11.7k
            len -= n;
155
11.7k
            c->num = 0;
156
            /*
157
             * We use memset rather than OPENSSL_cleanse() here deliberately.
158
             * Using OPENSSL_cleanse() here could be a performance issue. It
159
             * will get properly cleansed on finalisation so this isn't a
160
             * security problem.
161
             */
162
11.7k
            memset(p, 0, HASH_CBLOCK); /* keep it zeroed */
163
11.7k
        } else {
164
9.69k
            memcpy(p + n, data, len);
165
9.69k
            c->num += (unsigned int)len;
166
9.69k
            return 1;
167
9.69k
        }
168
21.4k
    }
169
170
57.9k
    n = len / HASH_CBLOCK;
171
57.9k
    if (n > 0) {
172
14.5k
        HASH_BLOCK_DATA_ORDER(c, data, n);
173
14.5k
        n *= HASH_CBLOCK;
174
14.5k
        data += n;
175
14.5k
        len -= n;
176
14.5k
    }
177
178
57.9k
    if (len != 0) {
179
49.2k
        p = (unsigned char *)c->data;
180
49.2k
        c->num = (unsigned int)len;
181
49.2k
        memcpy(p, data, len);
182
49.2k
    }
183
57.9k
    return 1;
184
67.6k
}
SHA256_Update
Line
Count
Source
129
41.4k
{
130
41.4k
    const unsigned char *data = data_;
131
41.4k
    unsigned char *p;
132
41.4k
    HASH_LONG l;
133
41.4k
    size_t n;
134
135
41.4k
    if (len == 0)
136
0
        return 1;
137
138
41.4k
    l = (c->Nl + (((HASH_LONG) len) << 3)) & 0xffffffffUL;
139
41.4k
    if (l < c->Nl)              /* overflow */
140
0
        c->Nh++;
141
41.4k
    c->Nh += (HASH_LONG) (len >> 29); /* might cause compiler warning on
142
                                       * 16-bit */
143
41.4k
    c->Nl = l;
144
145
41.4k
    n = c->num;
146
41.4k
    if (n != 0) {
147
8.17k
        p = (unsigned char *)c->data;
148
149
8.17k
        if (len >= HASH_CBLOCK || len + n >= HASH_CBLOCK) {
150
6.62k
            memcpy(p + n, data, HASH_CBLOCK - n);
151
6.62k
            HASH_BLOCK_DATA_ORDER(c, p, 1);
152
6.62k
            n = HASH_CBLOCK - n;
153
6.62k
            data += n;
154
6.62k
            len -= n;
155
6.62k
            c->num = 0;
156
            /*
157
             * We use memset rather than OPENSSL_cleanse() here deliberately.
158
             * Using OPENSSL_cleanse() here could be a performance issue. It
159
             * will get properly cleansed on finalisation so this isn't a
160
             * security problem.
161
             */
162
6.62k
            memset(p, 0, HASH_CBLOCK); /* keep it zeroed */
163
6.62k
        } else {
164
1.55k
            memcpy(p + n, data, len);
165
1.55k
            c->num += (unsigned int)len;
166
1.55k
            return 1;
167
1.55k
        }
168
8.17k
    }
169
170
39.8k
    n = len / HASH_CBLOCK;
171
39.8k
    if (n > 0) {
172
11.0k
        HASH_BLOCK_DATA_ORDER(c, data, n);
173
11.0k
        n *= HASH_CBLOCK;
174
11.0k
        data += n;
175
11.0k
        len -= n;
176
11.0k
    }
177
178
39.8k
    if (len != 0) {
179
32.7k
        p = (unsigned char *)c->data;
180
32.7k
        c->num = (unsigned int)len;
181
32.7k
        memcpy(p, data, len);
182
32.7k
    }
183
39.8k
    return 1;
184
41.4k
}
Unexecuted instantiation: sm3_update
Unexecuted instantiation: MD4_Update
Unexecuted instantiation: RIPEMD160_Update
185
186
void HASH_TRANSFORM(HASH_CTX *c, const unsigned char *data)
187
8.37k
{
188
8.37k
    HASH_BLOCK_DATA_ORDER(c, data, 1);
189
8.37k
}
Unexecuted instantiation: MD5_Transform
SHA1_Transform
Line
Count
Source
187
7.39k
{
188
7.39k
    HASH_BLOCK_DATA_ORDER(c, data, 1);
189
7.39k
}
SHA256_Transform
Line
Count
Source
187
983
{
188
983
    HASH_BLOCK_DATA_ORDER(c, data, 1);
189
983
}
Unexecuted instantiation: sm3_transform
Unexecuted instantiation: MD4_Transform
Unexecuted instantiation: RIPEMD160_Transform
190
191
int HASH_FINAL(unsigned char *md, HASH_CTX *c)
192
112k
{
193
112k
    unsigned char *p = (unsigned char *)c->data;
194
112k
    size_t n = c->num;
195
196
112k
    p[n] = 0x80;                /* there is always room for one */
197
112k
    n++;
198
199
112k
    if (n > (HASH_CBLOCK - 8)) {
200
1.88k
        memset(p + n, 0, HASH_CBLOCK - n);
201
1.88k
        n = 0;
202
1.88k
        HASH_BLOCK_DATA_ORDER(c, p, 1);
203
1.88k
    }
204
112k
    memset(p + n, 0, HASH_CBLOCK - 8 - n);
205
206
112k
    p += HASH_CBLOCK - 8;
207
#if   defined(DATA_ORDER_IS_BIG_ENDIAN)
208
73.0k
    (void)HOST_l2c(c->Nh, p);
209
73.0k
    (void)HOST_l2c(c->Nl, p);
210
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
211
39.0k
    (void)HOST_l2c(c->Nl, p);
212
39.0k
    (void)HOST_l2c(c->Nh, p);
213
#endif
214
112k
    p -= HASH_CBLOCK;
215
112k
    HASH_BLOCK_DATA_ORDER(c, p, 1);
216
112k
    c->num = 0;
217
112k
    OPENSSL_cleanse(p, HASH_CBLOCK);
218
219
#ifndef HASH_MAKE_STRING
220
# error "HASH_MAKE_STRING must be defined!"
221
#else
222
112k
    HASH_MAKE_STRING(c, md);
223
29.9k
#endif
224
225
29.9k
    return 1;
226
112k
}
MD5_Final
Line
Count
Source
192
39.0k
{
193
39.0k
    unsigned char *p = (unsigned char *)c->data;
194
39.0k
    size_t n = c->num;
195
196
39.0k
    p[n] = 0x80;                /* there is always room for one */
197
39.0k
    n++;
198
199
39.0k
    if (n > (HASH_CBLOCK - 8)) {
200
578
        memset(p + n, 0, HASH_CBLOCK - n);
201
578
        n = 0;
202
578
        HASH_BLOCK_DATA_ORDER(c, p, 1);
203
578
    }
204
39.0k
    memset(p + n, 0, HASH_CBLOCK - 8 - n);
205
206
39.0k
    p += HASH_CBLOCK - 8;
207
#if   defined(DATA_ORDER_IS_BIG_ENDIAN)
208
    (void)HOST_l2c(c->Nh, p);
209
    (void)HOST_l2c(c->Nl, p);
210
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
211
39.0k
    (void)HOST_l2c(c->Nl, p);
212
39.0k
    (void)HOST_l2c(c->Nh, p);
213
39.0k
#endif
214
39.0k
    p -= HASH_CBLOCK;
215
39.0k
    HASH_BLOCK_DATA_ORDER(c, p, 1);
216
39.0k
    c->num = 0;
217
39.0k
    OPENSSL_cleanse(p, HASH_CBLOCK);
218
219
#ifndef HASH_MAKE_STRING
220
# error "HASH_MAKE_STRING must be defined!"
221
#else
222
39.0k
    HASH_MAKE_STRING(c, md);
223
39.0k
#endif
224
225
39.0k
    return 1;
226
39.0k
}
SHA1_Final
Line
Count
Source
192
43.0k
{
193
43.0k
    unsigned char *p = (unsigned char *)c->data;
194
43.0k
    size_t n = c->num;
195
196
43.0k
    p[n] = 0x80;                /* there is always room for one */
197
43.0k
    n++;
198
199
43.0k
    if (n > (HASH_CBLOCK - 8)) {
200
1.03k
        memset(p + n, 0, HASH_CBLOCK - n);
201
1.03k
        n = 0;
202
1.03k
        HASH_BLOCK_DATA_ORDER(c, p, 1);
203
1.03k
    }
204
43.0k
    memset(p + n, 0, HASH_CBLOCK - 8 - n);
205
206
43.0k
    p += HASH_CBLOCK - 8;
207
43.0k
#if   defined(DATA_ORDER_IS_BIG_ENDIAN)
208
43.0k
    (void)HOST_l2c(c->Nh, p);
209
43.0k
    (void)HOST_l2c(c->Nl, p);
210
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
211
    (void)HOST_l2c(c->Nl, p);
212
    (void)HOST_l2c(c->Nh, p);
213
#endif
214
43.0k
    p -= HASH_CBLOCK;
215
43.0k
    HASH_BLOCK_DATA_ORDER(c, p, 1);
216
43.0k
    c->num = 0;
217
43.0k
    OPENSSL_cleanse(p, HASH_CBLOCK);
218
219
#ifndef HASH_MAKE_STRING
220
# error "HASH_MAKE_STRING must be defined!"
221
#else
222
43.0k
    HASH_MAKE_STRING(c, md);
223
43.0k
#endif
224
225
43.0k
    return 1;
226
43.0k
}
SHA256_Final
Line
Count
Source
192
29.9k
{
193
29.9k
    unsigned char *p = (unsigned char *)c->data;
194
29.9k
    size_t n = c->num;
195
196
29.9k
    p[n] = 0x80;                /* there is always room for one */
197
29.9k
    n++;
198
199
29.9k
    if (n > (HASH_CBLOCK - 8)) {
200
272
        memset(p + n, 0, HASH_CBLOCK - n);
201
272
        n = 0;
202
272
        HASH_BLOCK_DATA_ORDER(c, p, 1);
203
272
    }
204
29.9k
    memset(p + n, 0, HASH_CBLOCK - 8 - n);
205
206
29.9k
    p += HASH_CBLOCK - 8;
207
29.9k
#if   defined(DATA_ORDER_IS_BIG_ENDIAN)
208
29.9k
    (void)HOST_l2c(c->Nh, p);
209
29.9k
    (void)HOST_l2c(c->Nl, p);
210
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
211
    (void)HOST_l2c(c->Nl, p);
212
    (void)HOST_l2c(c->Nh, p);
213
#endif
214
29.9k
    p -= HASH_CBLOCK;
215
29.9k
    HASH_BLOCK_DATA_ORDER(c, p, 1);
216
29.9k
    c->num = 0;
217
29.9k
    OPENSSL_cleanse(p, HASH_CBLOCK);
218
219
#ifndef HASH_MAKE_STRING
220
# error "HASH_MAKE_STRING must be defined!"
221
#else
222
29.9k
    HASH_MAKE_STRING(c, md);
223
29.9k
#endif
224
225
29.9k
    return 1;
226
29.9k
}
Unexecuted instantiation: sm3_final
Unexecuted instantiation: MD4_Final
Unexecuted instantiation: RIPEMD160_Final
227
228
#ifndef MD32_REG_T
229
# if defined(__alpha) || defined(__sparcv9) || defined(__mips)
230
#  define MD32_REG_T long
231
/*
232
 * This comment was originally written for MD5, which is why it
233
 * discusses A-D. But it basically applies to all 32-bit digests,
234
 * which is why it was moved to common header file.
235
 *
236
 * In case you wonder why A-D are declared as long and not
237
 * as MD5_LONG. Doing so results in slight performance
238
 * boost on LP64 architectures. The catch is we don't
239
 * really care if 32 MSBs of a 64-bit register get polluted
240
 * with eventual overflows as we *save* only 32 LSBs in
241
 * *either* case. Now declaring 'em long excuses the compiler
242
 * from keeping 32 MSBs zeroed resulting in 13% performance
243
 * improvement under SPARC Solaris7/64 and 5% under AlphaLinux.
244
 * Well, to be honest it should say that this *prevents*
245
 * performance degradation.
246
 */
247
# else
248
/*
249
 * Above is not absolute and there are LP64 compilers that
250
 * generate better code if MD32_REG_T is defined int. The above
251
 * pre-processor condition reflects the circumstances under which
252
 * the conclusion was made and is subject to further extension.
253
 */
254
#  define MD32_REG_T int
255
# endif
256
#endif