Coverage Report

Created: 2023-06-08 06:41

/src/openssl30/crypto/ec/ecp_nistp521.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2011-2021 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/* Copyright 2011 Google Inc.
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the "License");
13
 *
14
 * you may not use this file except in compliance with the License.
15
 * You may obtain a copy of the License at
16
 *
17
 *     http://www.apache.org/licenses/LICENSE-2.0
18
 *
19
 *  Unless required by applicable law or agreed to in writing, software
20
 *  distributed under the License is distributed on an "AS IS" BASIS,
21
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
 *  See the License for the specific language governing permissions and
23
 *  limitations under the License.
24
 */
25
26
/*
27
 * ECDSA low level APIs are deprecated for public use, but still ok for
28
 * internal use.
29
 */
30
#include "internal/deprecated.h"
31
32
/*
33
 * A 64-bit implementation of the NIST P-521 elliptic curve point multiplication
34
 *
35
 * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
36
 * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
37
 * work which got its smarts from Daniel J. Bernstein's work on the same.
38
 */
39
40
#include <openssl/e_os2.h>
41
42
#include <string.h>
43
#include <openssl/err.h>
44
#include "ec_local.h"
45
46
#include "internal/numbers.h"
47
48
#ifndef INT128_MAX
49
# error "Your compiler doesn't appear to support 128-bit integer types"
50
#endif
51
52
typedef uint8_t u8;
53
typedef uint64_t u64;
54
55
/*
56
 * The underlying field. P521 operates over GF(2^521-1). We can serialize an
57
 * element of this field into 66 bytes where the most significant byte
58
 * contains only a single bit. We call this an felem_bytearray.
59
 */
60
61
typedef u8 felem_bytearray[66];
62
63
/*
64
 * These are the parameters of P521, taken from FIPS 186-3, section D.1.2.5.
65
 * These values are big-endian.
66
 */
67
static const felem_bytearray nistp521_curve_params[5] = {
68
    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* p */
69
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
70
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
71
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
72
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
73
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
74
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
75
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
76
     0xff, 0xff},
77
    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* a = -3 */
78
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
79
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
80
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
81
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
82
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
83
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
84
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
85
     0xff, 0xfc},
86
    {0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, /* b */
87
     0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85,
88
     0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3,
89
     0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1,
90
     0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e,
91
     0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1,
92
     0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c,
93
     0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50,
94
     0x3f, 0x00},
95
    {0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, /* x */
96
     0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95,
97
     0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f,
98
     0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d,
99
     0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7,
100
     0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff,
101
     0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a,
102
     0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5,
103
     0xbd, 0x66},
104
    {0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, /* y */
105
     0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d,
106
     0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b,
107
     0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e,
108
     0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4,
109
     0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad,
110
     0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72,
111
     0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1,
112
     0x66, 0x50}
113
};
114
115
/*-
116
 * The representation of field elements.
117
 * ------------------------------------
118
 *
119
 * We represent field elements with nine values. These values are either 64 or
120
 * 128 bits and the field element represented is:
121
 *   v[0]*2^0 + v[1]*2^58 + v[2]*2^116 + ... + v[8]*2^464  (mod p)
122
 * Each of the nine values is called a 'limb'. Since the limbs are spaced only
123
 * 58 bits apart, but are greater than 58 bits in length, the most significant
124
 * bits of each limb overlap with the least significant bits of the next.
125
 *
126
 * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a
127
 * 'largefelem' */
128
129
1.37M
#define NLIMBS 9
130
131
typedef uint64_t limb;
132
typedef limb limb_aX __attribute((__aligned__(1)));
133
typedef limb felem[NLIMBS];
134
typedef uint128_t largefelem[NLIMBS];
135
136
static const limb bottom57bits = 0x1ffffffffffffff;
137
static const limb bottom58bits = 0x3ffffffffffffff;
138
139
/*
140
 * bin66_to_felem takes a little-endian byte array and converts it into felem
141
 * form. This assumes that the CPU is little-endian.
142
 */
143
static void bin66_to_felem(felem out, const u8 in[66])
144
66
{
145
66
    out[0] = (*((limb *) & in[0])) & bottom58bits;
146
66
    out[1] = (*((limb_aX *) & in[7]) >> 2) & bottom58bits;
147
66
    out[2] = (*((limb_aX *) & in[14]) >> 4) & bottom58bits;
148
66
    out[3] = (*((limb_aX *) & in[21]) >> 6) & bottom58bits;
149
66
    out[4] = (*((limb_aX *) & in[29])) & bottom58bits;
150
66
    out[5] = (*((limb_aX *) & in[36]) >> 2) & bottom58bits;
151
66
    out[6] = (*((limb_aX *) & in[43]) >> 4) & bottom58bits;
152
66
    out[7] = (*((limb_aX *) & in[50]) >> 6) & bottom58bits;
153
66
    out[8] = (*((limb_aX *) & in[58])) & bottom57bits;
154
66
}
155
156
/*
157
 * felem_to_bin66 takes an felem and serializes into a little endian, 66 byte
158
 * array. This assumes that the CPU is little-endian.
159
 */
160
static void felem_to_bin66(u8 out[66], const felem in)
161
86
{
162
86
    memset(out, 0, 66);
163
86
    (*((limb *) & out[0])) = in[0];
164
86
    (*((limb_aX *) & out[7])) |= in[1] << 2;
165
86
    (*((limb_aX *) & out[14])) |= in[2] << 4;
166
86
    (*((limb_aX *) & out[21])) |= in[3] << 6;
167
86
    (*((limb_aX *) & out[29])) = in[4];
168
86
    (*((limb_aX *) & out[36])) |= in[5] << 2;
169
86
    (*((limb_aX *) & out[43])) |= in[6] << 4;
170
86
    (*((limb_aX *) & out[50])) |= in[7] << 6;
171
86
    (*((limb_aX *) & out[58])) = in[8];
172
86
}
173
174
/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
175
static int BN_to_felem(felem out, const BIGNUM *bn)
176
66
{
177
66
    felem_bytearray b_out;
178
66
    int num_bytes;
179
180
66
    if (BN_is_negative(bn)) {
181
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
182
0
        return 0;
183
0
    }
184
66
    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
185
66
    if (num_bytes < 0) {
186
0
        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
187
0
        return 0;
188
0
    }
189
66
    bin66_to_felem(out, b_out);
190
66
    return 1;
191
66
}
192
193
/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
194
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
195
86
{
196
86
    felem_bytearray b_out;
197
86
    felem_to_bin66(b_out, in);
198
86
    return BN_lebin2bn(b_out, sizeof(b_out), out);
199
86
}
200
201
/*-
202
 * Field operations
203
 * ----------------
204
 */
205
206
static void felem_one(felem out)
207
0
{
208
0
    out[0] = 1;
209
0
    out[1] = 0;
210
0
    out[2] = 0;
211
0
    out[3] = 0;
212
0
    out[4] = 0;
213
0
    out[5] = 0;
214
0
    out[6] = 0;
215
0
    out[7] = 0;
216
0
    out[8] = 0;
217
0
}
218
219
static void felem_assign(felem out, const felem in)
220
50.7k
{
221
50.7k
    out[0] = in[0];
222
50.7k
    out[1] = in[1];
223
50.7k
    out[2] = in[2];
224
50.7k
    out[3] = in[3];
225
50.7k
    out[4] = in[4];
226
50.7k
    out[5] = in[5];
227
50.7k
    out[6] = in[6];
228
50.7k
    out[7] = in[7];
229
50.7k
    out[8] = in[8];
230
50.7k
}
231
232
/* felem_sum64 sets out = out + in. */
233
static void felem_sum64(felem out, const felem in)
234
17.7k
{
235
17.7k
    out[0] += in[0];
236
17.7k
    out[1] += in[1];
237
17.7k
    out[2] += in[2];
238
17.7k
    out[3] += in[3];
239
17.7k
    out[4] += in[4];
240
17.7k
    out[5] += in[5];
241
17.7k
    out[6] += in[6];
242
17.7k
    out[7] += in[7];
243
17.7k
    out[8] += in[8];
244
17.7k
}
245
246
/* felem_scalar sets out = in * scalar */
247
static void felem_scalar(felem out, const felem in, limb scalar)
248
131k
{
249
131k
    out[0] = in[0] * scalar;
250
131k
    out[1] = in[1] * scalar;
251
131k
    out[2] = in[2] * scalar;
252
131k
    out[3] = in[3] * scalar;
253
131k
    out[4] = in[4] * scalar;
254
131k
    out[5] = in[5] * scalar;
255
131k
    out[6] = in[6] * scalar;
256
131k
    out[7] = in[7] * scalar;
257
131k
    out[8] = in[8] * scalar;
258
131k
}
259
260
/* felem_scalar64 sets out = out * scalar */
261
static void felem_scalar64(felem out, limb scalar)
262
24.6k
{
263
24.6k
    out[0] *= scalar;
264
24.6k
    out[1] *= scalar;
265
24.6k
    out[2] *= scalar;
266
24.6k
    out[3] *= scalar;
267
24.6k
    out[4] *= scalar;
268
24.6k
    out[5] *= scalar;
269
24.6k
    out[6] *= scalar;
270
24.6k
    out[7] *= scalar;
271
24.6k
    out[8] *= scalar;
272
24.6k
}
273
274
/* felem_scalar128 sets out = out * scalar */
275
static void felem_scalar128(largefelem out, limb scalar)
276
8.22k
{
277
8.22k
    out[0] *= scalar;
278
8.22k
    out[1] *= scalar;
279
8.22k
    out[2] *= scalar;
280
8.22k
    out[3] *= scalar;
281
8.22k
    out[4] *= scalar;
282
8.22k
    out[5] *= scalar;
283
8.22k
    out[6] *= scalar;
284
8.22k
    out[7] *= scalar;
285
8.22k
    out[8] *= scalar;
286
8.22k
}
287
288
/*-
289
 * felem_neg sets |out| to |-in|
290
 * On entry:
291
 *   in[i] < 2^59 + 2^14
292
 * On exit:
293
 *   out[i] < 2^62
294
 */
295
static void felem_neg(felem out, const felem in)
296
1.05k
{
297
    /* In order to prevent underflow, we subtract from 0 mod p. */
298
1.05k
    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
299
1.05k
    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
300
301
1.05k
    out[0] = two62m3 - in[0];
302
1.05k
    out[1] = two62m2 - in[1];
303
1.05k
    out[2] = two62m2 - in[2];
304
1.05k
    out[3] = two62m2 - in[3];
305
1.05k
    out[4] = two62m2 - in[4];
306
1.05k
    out[5] = two62m2 - in[5];
307
1.05k
    out[6] = two62m2 - in[6];
308
1.05k
    out[7] = two62m2 - in[7];
309
1.05k
    out[8] = two62m2 - in[8];
310
1.05k
}
311
312
/*-
313
 * felem_diff64 subtracts |in| from |out|
314
 * On entry:
315
 *   in[i] < 2^59 + 2^14
316
 * On exit:
317
 *   out[i] < out[i] + 2^62
318
 */
319
static void felem_diff64(felem out, const felem in)
320
13.7k
{
321
    /*
322
     * In order to prevent underflow, we add 0 mod p before subtracting.
323
     */
324
13.7k
    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
325
13.7k
    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
326
327
13.7k
    out[0] += two62m3 - in[0];
328
13.7k
    out[1] += two62m2 - in[1];
329
13.7k
    out[2] += two62m2 - in[2];
330
13.7k
    out[3] += two62m2 - in[3];
331
13.7k
    out[4] += two62m2 - in[4];
332
13.7k
    out[5] += two62m2 - in[5];
333
13.7k
    out[6] += two62m2 - in[6];
334
13.7k
    out[7] += two62m2 - in[7];
335
13.7k
    out[8] += two62m2 - in[8];
336
13.7k
}
337
338
/*-
339
 * felem_diff_128_64 subtracts |in| from |out|
340
 * On entry:
341
 *   in[i] < 2^62 + 2^17
342
 * On exit:
343
 *   out[i] < out[i] + 2^63
344
 */
345
static void felem_diff_128_64(largefelem out, const felem in)
346
24.0k
{
347
    /*
348
     * In order to prevent underflow, we add 64p mod p (which is equivalent
349
     * to 0 mod p) before subtracting. p is 2^521 - 1, i.e. in binary a 521
350
     * digit number with all bits set to 1. See "The representation of field
351
     * elements" comment above for a description of how limbs are used to
352
     * represent a number. 64p is represented with 8 limbs containing a number
353
     * with 58 bits set and one limb with a number with 57 bits set.
354
     */
355
24.0k
    static const limb two63m6 = (((limb) 1) << 63) - (((limb) 1) << 6);
356
24.0k
    static const limb two63m5 = (((limb) 1) << 63) - (((limb) 1) << 5);
357
358
24.0k
    out[0] += two63m6 - in[0];
359
24.0k
    out[1] += two63m5 - in[1];
360
24.0k
    out[2] += two63m5 - in[2];
361
24.0k
    out[3] += two63m5 - in[3];
362
24.0k
    out[4] += two63m5 - in[4];
363
24.0k
    out[5] += two63m5 - in[5];
364
24.0k
    out[6] += two63m5 - in[6];
365
24.0k
    out[7] += two63m5 - in[7];
366
24.0k
    out[8] += two63m5 - in[8];
367
24.0k
}
368
369
/*-
370
 * felem_diff_128_64 subtracts |in| from |out|
371
 * On entry:
372
 *   in[i] < 2^126
373
 * On exit:
374
 *   out[i] < out[i] + 2^127 - 2^69
375
 */
376
static void felem_diff128(largefelem out, const largefelem in)
377
8.22k
{
378
    /*
379
     * In order to prevent underflow, we add 0 mod p before subtracting.
380
     */
381
8.22k
    static const uint128_t two127m70 =
382
8.22k
        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 70);
383
8.22k
    static const uint128_t two127m69 =
384
8.22k
        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 69);
385
386
8.22k
    out[0] += (two127m70 - in[0]);
387
8.22k
    out[1] += (two127m69 - in[1]);
388
8.22k
    out[2] += (two127m69 - in[2]);
389
8.22k
    out[3] += (two127m69 - in[3]);
390
8.22k
    out[4] += (two127m69 - in[4]);
391
8.22k
    out[5] += (two127m69 - in[5]);
392
8.22k
    out[6] += (two127m69 - in[6]);
393
8.22k
    out[7] += (two127m69 - in[7]);
394
8.22k
    out[8] += (two127m69 - in[8]);
395
8.22k
}
396
397
/*-
398
 * felem_square sets |out| = |in|^2
399
 * On entry:
400
 *   in[i] < 2^62
401
 * On exit:
402
 *   out[i] < 17 * max(in[i]) * max(in[i])
403
 */
404
static void felem_square_ref(largefelem out, const felem in)
405
44.2k
{
406
44.2k
    felem inx2, inx4;
407
44.2k
    felem_scalar(inx2, in, 2);
408
44.2k
    felem_scalar(inx4, in, 4);
409
410
    /*-
411
     * We have many cases were we want to do
412
     *   in[x] * in[y] +
413
     *   in[y] * in[x]
414
     * This is obviously just
415
     *   2 * in[x] * in[y]
416
     * However, rather than do the doubling on the 128 bit result, we
417
     * double one of the inputs to the multiplication by reading from
418
     * |inx2|
419
     */
420
421
44.2k
    out[0] = ((uint128_t) in[0]) * in[0];
422
44.2k
    out[1] = ((uint128_t) in[0]) * inx2[1];
423
44.2k
    out[2] = ((uint128_t) in[0]) * inx2[2] + ((uint128_t) in[1]) * in[1];
424
44.2k
    out[3] = ((uint128_t) in[0]) * inx2[3] + ((uint128_t) in[1]) * inx2[2];
425
44.2k
    out[4] = ((uint128_t) in[0]) * inx2[4] +
426
44.2k
             ((uint128_t) in[1]) * inx2[3] + ((uint128_t) in[2]) * in[2];
427
44.2k
    out[5] = ((uint128_t) in[0]) * inx2[5] +
428
44.2k
             ((uint128_t) in[1]) * inx2[4] + ((uint128_t) in[2]) * inx2[3];
429
44.2k
    out[6] = ((uint128_t) in[0]) * inx2[6] +
430
44.2k
             ((uint128_t) in[1]) * inx2[5] +
431
44.2k
             ((uint128_t) in[2]) * inx2[4] + ((uint128_t) in[3]) * in[3];
432
44.2k
    out[7] = ((uint128_t) in[0]) * inx2[7] +
433
44.2k
             ((uint128_t) in[1]) * inx2[6] +
434
44.2k
             ((uint128_t) in[2]) * inx2[5] + ((uint128_t) in[3]) * inx2[4];
435
44.2k
    out[8] = ((uint128_t) in[0]) * inx2[8] +
436
44.2k
             ((uint128_t) in[1]) * inx2[7] +
437
44.2k
             ((uint128_t) in[2]) * inx2[6] +
438
44.2k
             ((uint128_t) in[3]) * inx2[5] + ((uint128_t) in[4]) * in[4];
439
440
    /*
441
     * The remaining limbs fall above 2^521, with the first falling at 2^522.
442
     * They correspond to locations one bit up from the limbs produced above
443
     * so we would have to multiply by two to align them. Again, rather than
444
     * operate on the 128-bit result, we double one of the inputs to the
445
     * multiplication. If we want to double for both this reason, and the
446
     * reason above, then we end up multiplying by four.
447
     */
448
449
    /* 9 */
450
44.2k
    out[0] += ((uint128_t) in[1]) * inx4[8] +
451
44.2k
              ((uint128_t) in[2]) * inx4[7] +
452
44.2k
              ((uint128_t) in[3]) * inx4[6] + ((uint128_t) in[4]) * inx4[5];
453
454
    /* 10 */
455
44.2k
    out[1] += ((uint128_t) in[2]) * inx4[8] +
456
44.2k
              ((uint128_t) in[3]) * inx4[7] +
457
44.2k
              ((uint128_t) in[4]) * inx4[6] + ((uint128_t) in[5]) * inx2[5];
458
459
    /* 11 */
460
44.2k
    out[2] += ((uint128_t) in[3]) * inx4[8] +
461
44.2k
              ((uint128_t) in[4]) * inx4[7] + ((uint128_t) in[5]) * inx4[6];
462
463
    /* 12 */
464
44.2k
    out[3] += ((uint128_t) in[4]) * inx4[8] +
465
44.2k
              ((uint128_t) in[5]) * inx4[7] + ((uint128_t) in[6]) * inx2[6];
466
467
    /* 13 */
468
44.2k
    out[4] += ((uint128_t) in[5]) * inx4[8] + ((uint128_t) in[6]) * inx4[7];
469
470
    /* 14 */
471
44.2k
    out[5] += ((uint128_t) in[6]) * inx4[8] + ((uint128_t) in[7]) * inx2[7];
472
473
    /* 15 */
474
44.2k
    out[6] += ((uint128_t) in[7]) * inx4[8];
475
476
    /* 16 */
477
44.2k
    out[7] += ((uint128_t) in[8]) * inx2[8];
478
44.2k
}
479
480
/*-
481
 * felem_mul sets |out| = |in1| * |in2|
482
 * On entry:
483
 *   in1[i] < 2^64
484
 *   in2[i] < 2^63
485
 * On exit:
486
 *   out[i] < 17 * max(in1[i]) * max(in2[i])
487
 */
488
static void felem_mul_ref(largefelem out, const felem in1, const felem in2)
489
41.5k
{
490
41.5k
    felem in2x2;
491
41.5k
    felem_scalar(in2x2, in2, 2);
492
493
41.5k
    out[0] = ((uint128_t) in1[0]) * in2[0];
494
495
41.5k
    out[1] = ((uint128_t) in1[0]) * in2[1] +
496
41.5k
             ((uint128_t) in1[1]) * in2[0];
497
498
41.5k
    out[2] = ((uint128_t) in1[0]) * in2[2] +
499
41.5k
             ((uint128_t) in1[1]) * in2[1] +
500
41.5k
             ((uint128_t) in1[2]) * in2[0];
501
502
41.5k
    out[3] = ((uint128_t) in1[0]) * in2[3] +
503
41.5k
             ((uint128_t) in1[1]) * in2[2] +
504
41.5k
             ((uint128_t) in1[2]) * in2[1] +
505
41.5k
             ((uint128_t) in1[3]) * in2[0];
506
507
41.5k
    out[4] = ((uint128_t) in1[0]) * in2[4] +
508
41.5k
             ((uint128_t) in1[1]) * in2[3] +
509
41.5k
             ((uint128_t) in1[2]) * in2[2] +
510
41.5k
             ((uint128_t) in1[3]) * in2[1] +
511
41.5k
             ((uint128_t) in1[4]) * in2[0];
512
513
41.5k
    out[5] = ((uint128_t) in1[0]) * in2[5] +
514
41.5k
             ((uint128_t) in1[1]) * in2[4] +
515
41.5k
             ((uint128_t) in1[2]) * in2[3] +
516
41.5k
             ((uint128_t) in1[3]) * in2[2] +
517
41.5k
             ((uint128_t) in1[4]) * in2[1] +
518
41.5k
             ((uint128_t) in1[5]) * in2[0];
519
520
41.5k
    out[6] = ((uint128_t) in1[0]) * in2[6] +
521
41.5k
             ((uint128_t) in1[1]) * in2[5] +
522
41.5k
             ((uint128_t) in1[2]) * in2[4] +
523
41.5k
             ((uint128_t) in1[3]) * in2[3] +
524
41.5k
             ((uint128_t) in1[4]) * in2[2] +
525
41.5k
             ((uint128_t) in1[5]) * in2[1] +
526
41.5k
             ((uint128_t) in1[6]) * in2[0];
527
528
41.5k
    out[7] = ((uint128_t) in1[0]) * in2[7] +
529
41.5k
             ((uint128_t) in1[1]) * in2[6] +
530
41.5k
             ((uint128_t) in1[2]) * in2[5] +
531
41.5k
             ((uint128_t) in1[3]) * in2[4] +
532
41.5k
             ((uint128_t) in1[4]) * in2[3] +
533
41.5k
             ((uint128_t) in1[5]) * in2[2] +
534
41.5k
             ((uint128_t) in1[6]) * in2[1] +
535
41.5k
             ((uint128_t) in1[7]) * in2[0];
536
537
41.5k
    out[8] = ((uint128_t) in1[0]) * in2[8] +
538
41.5k
             ((uint128_t) in1[1]) * in2[7] +
539
41.5k
             ((uint128_t) in1[2]) * in2[6] +
540
41.5k
             ((uint128_t) in1[3]) * in2[5] +
541
41.5k
             ((uint128_t) in1[4]) * in2[4] +
542
41.5k
             ((uint128_t) in1[5]) * in2[3] +
543
41.5k
             ((uint128_t) in1[6]) * in2[2] +
544
41.5k
             ((uint128_t) in1[7]) * in2[1] +
545
41.5k
             ((uint128_t) in1[8]) * in2[0];
546
547
    /* See comment in felem_square about the use of in2x2 here */
548
549
41.5k
    out[0] += ((uint128_t) in1[1]) * in2x2[8] +
550
41.5k
              ((uint128_t) in1[2]) * in2x2[7] +
551
41.5k
              ((uint128_t) in1[3]) * in2x2[6] +
552
41.5k
              ((uint128_t) in1[4]) * in2x2[5] +
553
41.5k
              ((uint128_t) in1[5]) * in2x2[4] +
554
41.5k
              ((uint128_t) in1[6]) * in2x2[3] +
555
41.5k
              ((uint128_t) in1[7]) * in2x2[2] +
556
41.5k
              ((uint128_t) in1[8]) * in2x2[1];
557
558
41.5k
    out[1] += ((uint128_t) in1[2]) * in2x2[8] +
559
41.5k
              ((uint128_t) in1[3]) * in2x2[7] +
560
41.5k
              ((uint128_t) in1[4]) * in2x2[6] +
561
41.5k
              ((uint128_t) in1[5]) * in2x2[5] +
562
41.5k
              ((uint128_t) in1[6]) * in2x2[4] +
563
41.5k
              ((uint128_t) in1[7]) * in2x2[3] +
564
41.5k
              ((uint128_t) in1[8]) * in2x2[2];
565
566
41.5k
    out[2] += ((uint128_t) in1[3]) * in2x2[8] +
567
41.5k
              ((uint128_t) in1[4]) * in2x2[7] +
568
41.5k
              ((uint128_t) in1[5]) * in2x2[6] +
569
41.5k
              ((uint128_t) in1[6]) * in2x2[5] +
570
41.5k
              ((uint128_t) in1[7]) * in2x2[4] +
571
41.5k
              ((uint128_t) in1[8]) * in2x2[3];
572
573
41.5k
    out[3] += ((uint128_t) in1[4]) * in2x2[8] +
574
41.5k
              ((uint128_t) in1[5]) * in2x2[7] +
575
41.5k
              ((uint128_t) in1[6]) * in2x2[6] +
576
41.5k
              ((uint128_t) in1[7]) * in2x2[5] +
577
41.5k
              ((uint128_t) in1[8]) * in2x2[4];
578
579
41.5k
    out[4] += ((uint128_t) in1[5]) * in2x2[8] +
580
41.5k
              ((uint128_t) in1[6]) * in2x2[7] +
581
41.5k
              ((uint128_t) in1[7]) * in2x2[6] +
582
41.5k
              ((uint128_t) in1[8]) * in2x2[5];
583
584
41.5k
    out[5] += ((uint128_t) in1[6]) * in2x2[8] +
585
41.5k
              ((uint128_t) in1[7]) * in2x2[7] +
586
41.5k
              ((uint128_t) in1[8]) * in2x2[6];
587
588
41.5k
    out[6] += ((uint128_t) in1[7]) * in2x2[8] +
589
41.5k
              ((uint128_t) in1[8]) * in2x2[7];
590
591
41.5k
    out[7] += ((uint128_t) in1[8]) * in2x2[8];
592
41.5k
}
593
594
static const limb bottom52bits = 0xfffffffffffff;
595
596
/*-
597
 * felem_reduce converts a largefelem to an felem.
598
 * On entry:
599
 *   in[i] < 2^128
600
 * On exit:
601
 *   out[i] < 2^59 + 2^14
602
 */
603
static void felem_reduce(felem out, const largefelem in)
604
77.6k
{
605
77.6k
    u64 overflow1, overflow2;
606
607
77.6k
    out[0] = ((limb) in[0]) & bottom58bits;
608
77.6k
    out[1] = ((limb) in[1]) & bottom58bits;
609
77.6k
    out[2] = ((limb) in[2]) & bottom58bits;
610
77.6k
    out[3] = ((limb) in[3]) & bottom58bits;
611
77.6k
    out[4] = ((limb) in[4]) & bottom58bits;
612
77.6k
    out[5] = ((limb) in[5]) & bottom58bits;
613
77.6k
    out[6] = ((limb) in[6]) & bottom58bits;
614
77.6k
    out[7] = ((limb) in[7]) & bottom58bits;
615
77.6k
    out[8] = ((limb) in[8]) & bottom58bits;
616
617
    /* out[i] < 2^58 */
618
619
77.6k
    out[1] += ((limb) in[0]) >> 58;
620
77.6k
    out[1] += (((limb) (in[0] >> 64)) & bottom52bits) << 6;
621
    /*-
622
     * out[1] < 2^58 + 2^6 + 2^58
623
     *        = 2^59 + 2^6
624
     */
625
77.6k
    out[2] += ((limb) (in[0] >> 64)) >> 52;
626
627
77.6k
    out[2] += ((limb) in[1]) >> 58;
628
77.6k
    out[2] += (((limb) (in[1] >> 64)) & bottom52bits) << 6;
629
77.6k
    out[3] += ((limb) (in[1] >> 64)) >> 52;
630
631
77.6k
    out[3] += ((limb) in[2]) >> 58;
632
77.6k
    out[3] += (((limb) (in[2] >> 64)) & bottom52bits) << 6;
633
77.6k
    out[4] += ((limb) (in[2] >> 64)) >> 52;
634
635
77.6k
    out[4] += ((limb) in[3]) >> 58;
636
77.6k
    out[4] += (((limb) (in[3] >> 64)) & bottom52bits) << 6;
637
77.6k
    out[5] += ((limb) (in[3] >> 64)) >> 52;
638
639
77.6k
    out[5] += ((limb) in[4]) >> 58;
640
77.6k
    out[5] += (((limb) (in[4] >> 64)) & bottom52bits) << 6;
641
77.6k
    out[6] += ((limb) (in[4] >> 64)) >> 52;
642
643
77.6k
    out[6] += ((limb) in[5]) >> 58;
644
77.6k
    out[6] += (((limb) (in[5] >> 64)) & bottom52bits) << 6;
645
77.6k
    out[7] += ((limb) (in[5] >> 64)) >> 52;
646
647
77.6k
    out[7] += ((limb) in[6]) >> 58;
648
77.6k
    out[7] += (((limb) (in[6] >> 64)) & bottom52bits) << 6;
649
77.6k
    out[8] += ((limb) (in[6] >> 64)) >> 52;
650
651
77.6k
    out[8] += ((limb) in[7]) >> 58;
652
77.6k
    out[8] += (((limb) (in[7] >> 64)) & bottom52bits) << 6;
653
    /*-
654
     * out[x > 1] < 2^58 + 2^6 + 2^58 + 2^12
655
     *            < 2^59 + 2^13
656
     */
657
77.6k
    overflow1 = ((limb) (in[7] >> 64)) >> 52;
658
659
77.6k
    overflow1 += ((limb) in[8]) >> 58;
660
77.6k
    overflow1 += (((limb) (in[8] >> 64)) & bottom52bits) << 6;
661
77.6k
    overflow2 = ((limb) (in[8] >> 64)) >> 52;
662
663
77.6k
    overflow1 <<= 1;            /* overflow1 < 2^13 + 2^7 + 2^59 */
664
77.6k
    overflow2 <<= 1;            /* overflow2 < 2^13 */
665
666
77.6k
    out[0] += overflow1;        /* out[0] < 2^60 */
667
77.6k
    out[1] += overflow2;        /* out[1] < 2^59 + 2^6 + 2^13 */
668
669
77.6k
    out[1] += out[0] >> 58;
670
77.6k
    out[0] &= bottom58bits;
671
    /*-
672
     * out[0] < 2^58
673
     * out[1] < 2^59 + 2^6 + 2^13 + 2^2
674
     *        < 2^59 + 2^14
675
     */
676
77.6k
}
677
678
#if defined(ECP_NISTP521_ASM)
679
void felem_square_wrapper(largefelem out, const felem in);
680
void felem_mul_wrapper(largefelem out, const felem in1, const felem in2);
681
682
static void (*felem_square_p)(largefelem out, const felem in) =
683
    felem_square_wrapper;
684
static void (*felem_mul_p)(largefelem out, const felem in1, const felem in2) =
685
    felem_mul_wrapper;
686
687
void p521_felem_square(largefelem out, const felem in);
688
void p521_felem_mul(largefelem out, const felem in1, const felem in2);
689
690
# if defined(_ARCH_PPC64)
691
#  include "crypto/ppc_arch.h"
692
# endif
693
694
void felem_select(void)
695
{
696
# if defined(_ARCH_PPC64)
697
    if ((OPENSSL_ppccap_P & PPC_MADD300) && (OPENSSL_ppccap_P & PPC_ALTIVEC)) {
698
        felem_square_p = p521_felem_square;
699
        felem_mul_p = p521_felem_mul;
700
701
        return;
702
    }
703
# endif
704
705
    /* Default */
706
    felem_square_p = felem_square_ref;
707
    felem_mul_p = felem_mul_ref;
708
}
709
710
void felem_square_wrapper(largefelem out, const felem in)
711
{
712
    felem_select();
713
    felem_square_p(out, in);
714
}
715
716
void felem_mul_wrapper(largefelem out, const felem in1, const felem in2)
717
{
718
    felem_select();
719
    felem_mul_p(out, in1, in2);
720
}
721
722
# define felem_square felem_square_p
723
# define felem_mul felem_mul_p
724
#else
725
44.2k
# define felem_square felem_square_ref
726
41.5k
# define felem_mul felem_mul_ref
727
#endif
728
729
static void felem_square_reduce(felem out, const felem in)
730
0
{
731
0
    largefelem tmp;
732
0
    felem_square(tmp, in);
733
0
    felem_reduce(out, tmp);
734
0
}
735
736
static void felem_mul_reduce(felem out, const felem in1, const felem in2)
737
0
{
738
0
    largefelem tmp;
739
0
    felem_mul(tmp, in1, in2);
740
0
    felem_reduce(out, tmp);
741
0
}
742
743
/*-
744
 * felem_inv calculates |out| = |in|^{-1}
745
 *
746
 * Based on Fermat's Little Theorem:
747
 *   a^p = a (mod p)
748
 *   a^{p-1} = 1 (mod p)
749
 *   a^{p-2} = a^{-1} (mod p)
750
 */
751
static void felem_inv(felem out, const felem in)
752
12
{
753
12
    felem ftmp, ftmp2, ftmp3, ftmp4;
754
12
    largefelem tmp;
755
12
    unsigned i;
756
757
12
    felem_square(tmp, in);
758
12
    felem_reduce(ftmp, tmp);    /* 2^1 */
759
12
    felem_mul(tmp, in, ftmp);
760
12
    felem_reduce(ftmp, tmp);    /* 2^2 - 2^0 */
761
12
    felem_assign(ftmp2, ftmp);
762
12
    felem_square(tmp, ftmp);
763
12
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^1 */
764
12
    felem_mul(tmp, in, ftmp);
765
12
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^0 */
766
12
    felem_square(tmp, ftmp);
767
12
    felem_reduce(ftmp, tmp);    /* 2^4 - 2^1 */
768
769
12
    felem_square(tmp, ftmp2);
770
12
    felem_reduce(ftmp3, tmp);   /* 2^3 - 2^1 */
771
12
    felem_square(tmp, ftmp3);
772
12
    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^2 */
773
12
    felem_mul(tmp, ftmp3, ftmp2);
774
12
    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^0 */
775
776
12
    felem_assign(ftmp2, ftmp3);
777
12
    felem_square(tmp, ftmp3);
778
12
    felem_reduce(ftmp3, tmp);   /* 2^5 - 2^1 */
779
12
    felem_square(tmp, ftmp3);
780
12
    felem_reduce(ftmp3, tmp);   /* 2^6 - 2^2 */
781
12
    felem_square(tmp, ftmp3);
782
12
    felem_reduce(ftmp3, tmp);   /* 2^7 - 2^3 */
783
12
    felem_square(tmp, ftmp3);
784
12
    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^4 */
785
12
    felem_assign(ftmp4, ftmp3);
786
12
    felem_mul(tmp, ftmp3, ftmp);
787
12
    felem_reduce(ftmp4, tmp);   /* 2^8 - 2^1 */
788
12
    felem_square(tmp, ftmp4);
789
12
    felem_reduce(ftmp4, tmp);   /* 2^9 - 2^2 */
790
12
    felem_mul(tmp, ftmp3, ftmp2);
791
12
    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^0 */
792
12
    felem_assign(ftmp2, ftmp3);
793
794
108
    for (i = 0; i < 8; i++) {
795
96
        felem_square(tmp, ftmp3);
796
96
        felem_reduce(ftmp3, tmp); /* 2^16 - 2^8 */
797
96
    }
798
12
    felem_mul(tmp, ftmp3, ftmp2);
799
12
    felem_reduce(ftmp3, tmp);   /* 2^16 - 2^0 */
800
12
    felem_assign(ftmp2, ftmp3);
801
802
204
    for (i = 0; i < 16; i++) {
803
192
        felem_square(tmp, ftmp3);
804
192
        felem_reduce(ftmp3, tmp); /* 2^32 - 2^16 */
805
192
    }
806
12
    felem_mul(tmp, ftmp3, ftmp2);
807
12
    felem_reduce(ftmp3, tmp);   /* 2^32 - 2^0 */
808
12
    felem_assign(ftmp2, ftmp3);
809
810
396
    for (i = 0; i < 32; i++) {
811
384
        felem_square(tmp, ftmp3);
812
384
        felem_reduce(ftmp3, tmp); /* 2^64 - 2^32 */
813
384
    }
814
12
    felem_mul(tmp, ftmp3, ftmp2);
815
12
    felem_reduce(ftmp3, tmp);   /* 2^64 - 2^0 */
816
12
    felem_assign(ftmp2, ftmp3);
817
818
780
    for (i = 0; i < 64; i++) {
819
768
        felem_square(tmp, ftmp3);
820
768
        felem_reduce(ftmp3, tmp); /* 2^128 - 2^64 */
821
768
    }
822
12
    felem_mul(tmp, ftmp3, ftmp2);
823
12
    felem_reduce(ftmp3, tmp);   /* 2^128 - 2^0 */
824
12
    felem_assign(ftmp2, ftmp3);
825
826
1.54k
    for (i = 0; i < 128; i++) {
827
1.53k
        felem_square(tmp, ftmp3);
828
1.53k
        felem_reduce(ftmp3, tmp); /* 2^256 - 2^128 */
829
1.53k
    }
830
12
    felem_mul(tmp, ftmp3, ftmp2);
831
12
    felem_reduce(ftmp3, tmp);   /* 2^256 - 2^0 */
832
12
    felem_assign(ftmp2, ftmp3);
833
834
3.08k
    for (i = 0; i < 256; i++) {
835
3.07k
        felem_square(tmp, ftmp3);
836
3.07k
        felem_reduce(ftmp3, tmp); /* 2^512 - 2^256 */
837
3.07k
    }
838
12
    felem_mul(tmp, ftmp3, ftmp2);
839
12
    felem_reduce(ftmp3, tmp);   /* 2^512 - 2^0 */
840
841
120
    for (i = 0; i < 9; i++) {
842
108
        felem_square(tmp, ftmp3);
843
108
        felem_reduce(ftmp3, tmp); /* 2^521 - 2^9 */
844
108
    }
845
12
    felem_mul(tmp, ftmp3, ftmp4);
846
12
    felem_reduce(ftmp3, tmp);   /* 2^512 - 2^2 */
847
12
    felem_mul(tmp, ftmp3, in);
848
12
    felem_reduce(out, tmp);     /* 2^512 - 3 */
849
12
}
850
851
/* This is 2^521-1, expressed as an felem */
852
static const felem kPrime = {
853
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
854
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
855
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x01ffffffffffffff
856
};
857
858
/*-
859
 * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
860
 * otherwise.
861
 * On entry:
862
 *   in[i] < 2^59 + 2^14
863
 */
864
static limb felem_is_zero(const felem in)
865
10.7k
{
866
10.7k
    felem ftmp;
867
10.7k
    limb is_zero, is_p;
868
10.7k
    felem_assign(ftmp, in);
869
870
10.7k
    ftmp[0] += ftmp[8] >> 57;
871
10.7k
    ftmp[8] &= bottom57bits;
872
    /* ftmp[8] < 2^57 */
873
10.7k
    ftmp[1] += ftmp[0] >> 58;
874
10.7k
    ftmp[0] &= bottom58bits;
875
10.7k
    ftmp[2] += ftmp[1] >> 58;
876
10.7k
    ftmp[1] &= bottom58bits;
877
10.7k
    ftmp[3] += ftmp[2] >> 58;
878
10.7k
    ftmp[2] &= bottom58bits;
879
10.7k
    ftmp[4] += ftmp[3] >> 58;
880
10.7k
    ftmp[3] &= bottom58bits;
881
10.7k
    ftmp[5] += ftmp[4] >> 58;
882
10.7k
    ftmp[4] &= bottom58bits;
883
10.7k
    ftmp[6] += ftmp[5] >> 58;
884
10.7k
    ftmp[5] &= bottom58bits;
885
10.7k
    ftmp[7] += ftmp[6] >> 58;
886
10.7k
    ftmp[6] &= bottom58bits;
887
10.7k
    ftmp[8] += ftmp[7] >> 58;
888
10.7k
    ftmp[7] &= bottom58bits;
889
    /* ftmp[8] < 2^57 + 4 */
890
891
    /*
892
     * The ninth limb of 2*(2^521-1) is 0x03ffffffffffffff, which is greater
893
     * than our bound for ftmp[8]. Therefore we only have to check if the
894
     * zero is zero or 2^521-1.
895
     */
896
897
10.7k
    is_zero = 0;
898
10.7k
    is_zero |= ftmp[0];
899
10.7k
    is_zero |= ftmp[1];
900
10.7k
    is_zero |= ftmp[2];
901
10.7k
    is_zero |= ftmp[3];
902
10.7k
    is_zero |= ftmp[4];
903
10.7k
    is_zero |= ftmp[5];
904
10.7k
    is_zero |= ftmp[6];
905
10.7k
    is_zero |= ftmp[7];
906
10.7k
    is_zero |= ftmp[8];
907
908
10.7k
    is_zero--;
909
    /*
910
     * We know that ftmp[i] < 2^63, therefore the only way that the top bit
911
     * can be set is if is_zero was 0 before the decrement.
912
     */
913
10.7k
    is_zero = 0 - (is_zero >> 63);
914
915
10.7k
    is_p = ftmp[0] ^ kPrime[0];
916
10.7k
    is_p |= ftmp[1] ^ kPrime[1];
917
10.7k
    is_p |= ftmp[2] ^ kPrime[2];
918
10.7k
    is_p |= ftmp[3] ^ kPrime[3];
919
10.7k
    is_p |= ftmp[4] ^ kPrime[4];
920
10.7k
    is_p |= ftmp[5] ^ kPrime[5];
921
10.7k
    is_p |= ftmp[6] ^ kPrime[6];
922
10.7k
    is_p |= ftmp[7] ^ kPrime[7];
923
10.7k
    is_p |= ftmp[8] ^ kPrime[8];
924
925
10.7k
    is_p--;
926
10.7k
    is_p = 0 - (is_p >> 63);
927
928
10.7k
    is_zero |= is_p;
929
10.7k
    return is_zero;
930
10.7k
}
931
932
static int felem_is_zero_int(const void *in)
933
0
{
934
0
    return (int)(felem_is_zero(in) & ((limb) 1));
935
0
}
936
937
/*-
938
 * felem_contract converts |in| to its unique, minimal representation.
939
 * On entry:
940
 *   in[i] < 2^59 + 2^14
941
 */
942
static void felem_contract(felem out, const felem in)
943
60
{
944
60
    limb is_p, is_greater, sign;
945
60
    static const limb two58 = ((limb) 1) << 58;
946
947
60
    felem_assign(out, in);
948
949
60
    out[0] += out[8] >> 57;
950
60
    out[8] &= bottom57bits;
951
    /* out[8] < 2^57 */
952
60
    out[1] += out[0] >> 58;
953
60
    out[0] &= bottom58bits;
954
60
    out[2] += out[1] >> 58;
955
60
    out[1] &= bottom58bits;
956
60
    out[3] += out[2] >> 58;
957
60
    out[2] &= bottom58bits;
958
60
    out[4] += out[3] >> 58;
959
60
    out[3] &= bottom58bits;
960
60
    out[5] += out[4] >> 58;
961
60
    out[4] &= bottom58bits;
962
60
    out[6] += out[5] >> 58;
963
60
    out[5] &= bottom58bits;
964
60
    out[7] += out[6] >> 58;
965
60
    out[6] &= bottom58bits;
966
60
    out[8] += out[7] >> 58;
967
60
    out[7] &= bottom58bits;
968
    /* out[8] < 2^57 + 4 */
969
970
    /*
971
     * If the value is greater than 2^521-1 then we have to subtract 2^521-1
972
     * out. See the comments in felem_is_zero regarding why we don't test for
973
     * other multiples of the prime.
974
     */
975
976
    /*
977
     * First, if |out| is equal to 2^521-1, we subtract it out to get zero.
978
     */
979
980
60
    is_p = out[0] ^ kPrime[0];
981
60
    is_p |= out[1] ^ kPrime[1];
982
60
    is_p |= out[2] ^ kPrime[2];
983
60
    is_p |= out[3] ^ kPrime[3];
984
60
    is_p |= out[4] ^ kPrime[4];
985
60
    is_p |= out[5] ^ kPrime[5];
986
60
    is_p |= out[6] ^ kPrime[6];
987
60
    is_p |= out[7] ^ kPrime[7];
988
60
    is_p |= out[8] ^ kPrime[8];
989
990
60
    is_p--;
991
60
    is_p &= is_p << 32;
992
60
    is_p &= is_p << 16;
993
60
    is_p &= is_p << 8;
994
60
    is_p &= is_p << 4;
995
60
    is_p &= is_p << 2;
996
60
    is_p &= is_p << 1;
997
60
    is_p = 0 - (is_p >> 63);
998
60
    is_p = ~is_p;
999
1000
    /* is_p is 0 iff |out| == 2^521-1 and all ones otherwise */
1001
1002
60
    out[0] &= is_p;
1003
60
    out[1] &= is_p;
1004
60
    out[2] &= is_p;
1005
60
    out[3] &= is_p;
1006
60
    out[4] &= is_p;
1007
60
    out[5] &= is_p;
1008
60
    out[6] &= is_p;
1009
60
    out[7] &= is_p;
1010
60
    out[8] &= is_p;
1011
1012
    /*
1013
     * In order to test that |out| >= 2^521-1 we need only test if out[8] >>
1014
     * 57 is greater than zero as (2^521-1) + x >= 2^522
1015
     */
1016
60
    is_greater = out[8] >> 57;
1017
60
    is_greater |= is_greater << 32;
1018
60
    is_greater |= is_greater << 16;
1019
60
    is_greater |= is_greater << 8;
1020
60
    is_greater |= is_greater << 4;
1021
60
    is_greater |= is_greater << 2;
1022
60
    is_greater |= is_greater << 1;
1023
60
    is_greater = 0 - (is_greater >> 63);
1024
1025
60
    out[0] -= kPrime[0] & is_greater;
1026
60
    out[1] -= kPrime[1] & is_greater;
1027
60
    out[2] -= kPrime[2] & is_greater;
1028
60
    out[3] -= kPrime[3] & is_greater;
1029
60
    out[4] -= kPrime[4] & is_greater;
1030
60
    out[5] -= kPrime[5] & is_greater;
1031
60
    out[6] -= kPrime[6] & is_greater;
1032
60
    out[7] -= kPrime[7] & is_greater;
1033
60
    out[8] -= kPrime[8] & is_greater;
1034
1035
    /* Eliminate negative coefficients */
1036
60
    sign = -(out[0] >> 63);
1037
60
    out[0] += (two58 & sign);
1038
60
    out[1] -= (1 & sign);
1039
60
    sign = -(out[1] >> 63);
1040
60
    out[1] += (two58 & sign);
1041
60
    out[2] -= (1 & sign);
1042
60
    sign = -(out[2] >> 63);
1043
60
    out[2] += (two58 & sign);
1044
60
    out[3] -= (1 & sign);
1045
60
    sign = -(out[3] >> 63);
1046
60
    out[3] += (two58 & sign);
1047
60
    out[4] -= (1 & sign);
1048
60
    sign = -(out[4] >> 63);
1049
60
    out[4] += (two58 & sign);
1050
60
    out[5] -= (1 & sign);
1051
60
    sign = -(out[0] >> 63);
1052
60
    out[5] += (two58 & sign);
1053
60
    out[6] -= (1 & sign);
1054
60
    sign = -(out[6] >> 63);
1055
60
    out[6] += (two58 & sign);
1056
60
    out[7] -= (1 & sign);
1057
60
    sign = -(out[7] >> 63);
1058
60
    out[7] += (two58 & sign);
1059
60
    out[8] -= (1 & sign);
1060
60
    sign = -(out[5] >> 63);
1061
60
    out[5] += (two58 & sign);
1062
60
    out[6] -= (1 & sign);
1063
60
    sign = -(out[6] >> 63);
1064
60
    out[6] += (two58 & sign);
1065
60
    out[7] -= (1 & sign);
1066
60
    sign = -(out[7] >> 63);
1067
60
    out[7] += (two58 & sign);
1068
60
    out[8] -= (1 & sign);
1069
60
}
1070
1071
/*-
1072
 * Group operations
1073
 * ----------------
1074
 *
1075
 * Building on top of the field operations we have the operations on the
1076
 * elliptic curve group itself. Points on the curve are represented in Jacobian
1077
 * coordinates */
1078
1079
/*-
1080
 * point_double calculates 2*(x_in, y_in, z_in)
1081
 *
1082
 * The method is taken from:
1083
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1084
 *
1085
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1086
 * while x_out == y_in is not (maybe this works, but it's not tested). */
1087
static void
1088
point_double(felem x_out, felem y_out, felem z_out,
1089
             const felem x_in, const felem y_in, const felem z_in)
1090
5.54k
{
1091
5.54k
    largefelem tmp, tmp2;
1092
5.54k
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
1093
1094
5.54k
    felem_assign(ftmp, x_in);
1095
5.54k
    felem_assign(ftmp2, x_in);
1096
1097
    /* delta = z^2 */
1098
5.54k
    felem_square(tmp, z_in);
1099
5.54k
    felem_reduce(delta, tmp);   /* delta[i] < 2^59 + 2^14 */
1100
1101
    /* gamma = y^2 */
1102
5.54k
    felem_square(tmp, y_in);
1103
5.54k
    felem_reduce(gamma, tmp);   /* gamma[i] < 2^59 + 2^14 */
1104
1105
    /* beta = x*gamma */
1106
5.54k
    felem_mul(tmp, x_in, gamma);
1107
5.54k
    felem_reduce(beta, tmp);    /* beta[i] < 2^59 + 2^14 */
1108
1109
    /* alpha = 3*(x-delta)*(x+delta) */
1110
5.54k
    felem_diff64(ftmp, delta);
1111
    /* ftmp[i] < 2^61 */
1112
5.54k
    felem_sum64(ftmp2, delta);
1113
    /* ftmp2[i] < 2^60 + 2^15 */
1114
5.54k
    felem_scalar64(ftmp2, 3);
1115
    /* ftmp2[i] < 3*2^60 + 3*2^15 */
1116
5.54k
    felem_mul(tmp, ftmp, ftmp2);
1117
    /*-
1118
     * tmp[i] < 17(3*2^121 + 3*2^76)
1119
     *        = 61*2^121 + 61*2^76
1120
     *        < 64*2^121 + 64*2^76
1121
     *        = 2^127 + 2^82
1122
     *        < 2^128
1123
     */
1124
5.54k
    felem_reduce(alpha, tmp);
1125
1126
    /* x' = alpha^2 - 8*beta */
1127
5.54k
    felem_square(tmp, alpha);
1128
    /*
1129
     * tmp[i] < 17*2^120 < 2^125
1130
     */
1131
5.54k
    felem_assign(ftmp, beta);
1132
5.54k
    felem_scalar64(ftmp, 8);
1133
    /* ftmp[i] < 2^62 + 2^17 */
1134
5.54k
    felem_diff_128_64(tmp, ftmp);
1135
    /* tmp[i] < 2^125 + 2^63 + 2^62 + 2^17 */
1136
5.54k
    felem_reduce(x_out, tmp);
1137
1138
    /* z' = (y + z)^2 - gamma - delta */
1139
5.54k
    felem_sum64(delta, gamma);
1140
    /* delta[i] < 2^60 + 2^15 */
1141
5.54k
    felem_assign(ftmp, y_in);
1142
5.54k
    felem_sum64(ftmp, z_in);
1143
    /* ftmp[i] < 2^60 + 2^15 */
1144
5.54k
    felem_square(tmp, ftmp);
1145
    /*
1146
     * tmp[i] < 17(2^122) < 2^127
1147
     */
1148
5.54k
    felem_diff_128_64(tmp, delta);
1149
    /* tmp[i] < 2^127 + 2^63 */
1150
5.54k
    felem_reduce(z_out, tmp);
1151
1152
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
1153
5.54k
    felem_scalar64(beta, 4);
1154
    /* beta[i] < 2^61 + 2^16 */
1155
5.54k
    felem_diff64(beta, x_out);
1156
    /* beta[i] < 2^61 + 2^60 + 2^16 */
1157
5.54k
    felem_mul(tmp, alpha, beta);
1158
    /*-
1159
     * tmp[i] < 17*((2^59 + 2^14)(2^61 + 2^60 + 2^16))
1160
     *        = 17*(2^120 + 2^75 + 2^119 + 2^74 + 2^75 + 2^30)
1161
     *        = 17*(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1162
     *        < 2^128
1163
     */
1164
5.54k
    felem_square(tmp2, gamma);
1165
    /*-
1166
     * tmp2[i] < 17*(2^59 + 2^14)^2
1167
     *         = 17*(2^118 + 2^74 + 2^28)
1168
     */
1169
5.54k
    felem_scalar128(tmp2, 8);
1170
    /*-
1171
     * tmp2[i] < 8*17*(2^118 + 2^74 + 2^28)
1172
     *         = 2^125 + 2^121 + 2^81 + 2^77 + 2^35 + 2^31
1173
     *         < 2^126
1174
     */
1175
5.54k
    felem_diff128(tmp, tmp2);
1176
    /*-
1177
     * tmp[i] < 2^127 - 2^69 + 17(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1178
     *        = 2^127 + 2^124 + 2^122 + 2^120 + 2^118 + 2^80 + 2^78 + 2^76 +
1179
     *          2^74 + 2^69 + 2^34 + 2^30
1180
     *        < 2^128
1181
     */
1182
5.54k
    felem_reduce(y_out, tmp);
1183
5.54k
}
1184
1185
/* copy_conditional copies in to out iff mask is all ones. */
1186
static void copy_conditional(felem out, const felem in, limb mask)
1187
17.1k
{
1188
17.1k
    unsigned i;
1189
171k
    for (i = 0; i < NLIMBS; ++i) {
1190
154k
        const limb tmp = mask & (in[i] ^ out[i]);
1191
154k
        out[i] ^= tmp;
1192
154k
    }
1193
17.1k
}
1194
1195
/*-
1196
 * point_add calculates (x1, y1, z1) + (x2, y2, z2)
1197
 *
1198
 * The method is taken from
1199
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1200
 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1201
 *
1202
 * This function includes a branch for checking whether the two input points
1203
 * are equal (while not equal to the point at infinity). See comment below
1204
 * on constant-time.
1205
 */
1206
static void point_add(felem x3, felem y3, felem z3,
1207
                      const felem x1, const felem y1, const felem z1,
1208
                      const int mixed, const felem x2, const felem y2,
1209
                      const felem z2)
1210
2.68k
{
1211
2.68k
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1212
2.68k
    largefelem tmp, tmp2;
1213
2.68k
    limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1214
2.68k
    limb points_equal;
1215
1216
2.68k
    z1_is_zero = felem_is_zero(z1);
1217
2.68k
    z2_is_zero = felem_is_zero(z2);
1218
1219
    /* ftmp = z1z1 = z1**2 */
1220
2.68k
    felem_square(tmp, z1);
1221
2.68k
    felem_reduce(ftmp, tmp);
1222
1223
2.68k
    if (!mixed) {
1224
        /* ftmp2 = z2z2 = z2**2 */
1225
1.11k
        felem_square(tmp, z2);
1226
1.11k
        felem_reduce(ftmp2, tmp);
1227
1228
        /* u1 = ftmp3 = x1*z2z2 */
1229
1.11k
        felem_mul(tmp, x1, ftmp2);
1230
1.11k
        felem_reduce(ftmp3, tmp);
1231
1232
        /* ftmp5 = z1 + z2 */
1233
1.11k
        felem_assign(ftmp5, z1);
1234
1.11k
        felem_sum64(ftmp5, z2);
1235
        /* ftmp5[i] < 2^61 */
1236
1237
        /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */
1238
1.11k
        felem_square(tmp, ftmp5);
1239
        /* tmp[i] < 17*2^122 */
1240
1.11k
        felem_diff_128_64(tmp, ftmp);
1241
        /* tmp[i] < 17*2^122 + 2^63 */
1242
1.11k
        felem_diff_128_64(tmp, ftmp2);
1243
        /* tmp[i] < 17*2^122 + 2^64 */
1244
1.11k
        felem_reduce(ftmp5, tmp);
1245
1246
        /* ftmp2 = z2 * z2z2 */
1247
1.11k
        felem_mul(tmp, ftmp2, z2);
1248
1.11k
        felem_reduce(ftmp2, tmp);
1249
1250
        /* s1 = ftmp6 = y1 * z2**3 */
1251
1.11k
        felem_mul(tmp, y1, ftmp2);
1252
1.11k
        felem_reduce(ftmp6, tmp);
1253
1.57k
    } else {
1254
        /*
1255
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
1256
         */
1257
1258
        /* u1 = ftmp3 = x1*z2z2 */
1259
1.57k
        felem_assign(ftmp3, x1);
1260
1261
        /* ftmp5 = 2*z1z2 */
1262
1.57k
        felem_scalar(ftmp5, z1, 2);
1263
1264
        /* s1 = ftmp6 = y1 * z2**3 */
1265
1.57k
        felem_assign(ftmp6, y1);
1266
1.57k
    }
1267
1268
    /* u2 = x2*z1z1 */
1269
2.68k
    felem_mul(tmp, x2, ftmp);
1270
    /* tmp[i] < 17*2^120 */
1271
1272
    /* h = ftmp4 = u2 - u1 */
1273
2.68k
    felem_diff_128_64(tmp, ftmp3);
1274
    /* tmp[i] < 17*2^120 + 2^63 */
1275
2.68k
    felem_reduce(ftmp4, tmp);
1276
1277
2.68k
    x_equal = felem_is_zero(ftmp4);
1278
1279
    /* z_out = ftmp5 * h */
1280
2.68k
    felem_mul(tmp, ftmp5, ftmp4);
1281
2.68k
    felem_reduce(z_out, tmp);
1282
1283
    /* ftmp = z1 * z1z1 */
1284
2.68k
    felem_mul(tmp, ftmp, z1);
1285
2.68k
    felem_reduce(ftmp, tmp);
1286
1287
    /* s2 = tmp = y2 * z1**3 */
1288
2.68k
    felem_mul(tmp, y2, ftmp);
1289
    /* tmp[i] < 17*2^120 */
1290
1291
    /* r = ftmp5 = (s2 - s1)*2 */
1292
2.68k
    felem_diff_128_64(tmp, ftmp6);
1293
    /* tmp[i] < 17*2^120 + 2^63 */
1294
2.68k
    felem_reduce(ftmp5, tmp);
1295
2.68k
    y_equal = felem_is_zero(ftmp5);
1296
2.68k
    felem_scalar64(ftmp5, 2);
1297
    /* ftmp5[i] < 2^61 */
1298
1299
    /*
1300
     * The formulae are incorrect if the points are equal, in affine coordinates
1301
     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
1302
     * happens.
1303
     *
1304
     * We use bitwise operations to avoid potential side-channels introduced by
1305
     * the short-circuiting behaviour of boolean operators.
1306
     *
1307
     * The special case of either point being the point at infinity (z1 and/or
1308
     * z2 are zero), is handled separately later on in this function, so we
1309
     * avoid jumping to point_double here in those special cases.
1310
     *
1311
     * Notice the comment below on the implications of this branching for timing
1312
     * leaks and why it is considered practically irrelevant.
1313
     */
1314
2.68k
    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero));
1315
1316
2.68k
    if (points_equal) {
1317
        /*
1318
         * This is obviously not constant-time but it will almost-never happen
1319
         * for ECDH / ECDSA. The case where it can happen is during scalar-mult
1320
         * where the intermediate value gets very close to the group order.
1321
         * Since |ossl_ec_GFp_nistp_recode_scalar_bits| produces signed digits
1322
         * for the scalar, it's possible for the intermediate value to be a small
1323
         * negative multiple of the base point, and for the final signed digit
1324
         * to be the same value. We believe that this only occurs for the scalar
1325
         * 1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
1326
         * ffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb
1327
         * 71e913863f7, in that case the penultimate intermediate is -9G and
1328
         * the final digit is also -9G. Since this only happens for a single
1329
         * scalar, the timing leak is irrelevant. (Any attacker who wanted to
1330
         * check whether a secret scalar was that exact value, can already do
1331
         * so.)
1332
         */
1333
0
        point_double(x3, y3, z3, x1, y1, z1);
1334
0
        return;
1335
0
    }
1336
1337
    /* I = ftmp = (2h)**2 */
1338
2.68k
    felem_assign(ftmp, ftmp4);
1339
2.68k
    felem_scalar64(ftmp, 2);
1340
    /* ftmp[i] < 2^61 */
1341
2.68k
    felem_square(tmp, ftmp);
1342
    /* tmp[i] < 17*2^122 */
1343
2.68k
    felem_reduce(ftmp, tmp);
1344
1345
    /* J = ftmp2 = h * I */
1346
2.68k
    felem_mul(tmp, ftmp4, ftmp);
1347
2.68k
    felem_reduce(ftmp2, tmp);
1348
1349
    /* V = ftmp4 = U1 * I */
1350
2.68k
    felem_mul(tmp, ftmp3, ftmp);
1351
2.68k
    felem_reduce(ftmp4, tmp);
1352
1353
    /* x_out = r**2 - J - 2V */
1354
2.68k
    felem_square(tmp, ftmp5);
1355
    /* tmp[i] < 17*2^122 */
1356
2.68k
    felem_diff_128_64(tmp, ftmp2);
1357
    /* tmp[i] < 17*2^122 + 2^63 */
1358
2.68k
    felem_assign(ftmp3, ftmp4);
1359
2.68k
    felem_scalar64(ftmp4, 2);
1360
    /* ftmp4[i] < 2^61 */
1361
2.68k
    felem_diff_128_64(tmp, ftmp4);
1362
    /* tmp[i] < 17*2^122 + 2^64 */
1363
2.68k
    felem_reduce(x_out, tmp);
1364
1365
    /* y_out = r(V-x_out) - 2 * s1 * J */
1366
2.68k
    felem_diff64(ftmp3, x_out);
1367
    /*
1368
     * ftmp3[i] < 2^60 + 2^60 = 2^61
1369
     */
1370
2.68k
    felem_mul(tmp, ftmp5, ftmp3);
1371
    /* tmp[i] < 17*2^122 */
1372
2.68k
    felem_mul(tmp2, ftmp6, ftmp2);
1373
    /* tmp2[i] < 17*2^120 */
1374
2.68k
    felem_scalar128(tmp2, 2);
1375
    /* tmp2[i] < 17*2^121 */
1376
2.68k
    felem_diff128(tmp, tmp2);
1377
        /*-
1378
         * tmp[i] < 2^127 - 2^69 + 17*2^122
1379
         *        = 2^126 - 2^122 - 2^6 - 2^2 - 1
1380
         *        < 2^127
1381
         */
1382
2.68k
    felem_reduce(y_out, tmp);
1383
1384
2.68k
    copy_conditional(x_out, x2, z1_is_zero);
1385
2.68k
    copy_conditional(x_out, x1, z2_is_zero);
1386
2.68k
    copy_conditional(y_out, y2, z1_is_zero);
1387
2.68k
    copy_conditional(y_out, y1, z2_is_zero);
1388
2.68k
    copy_conditional(z_out, z2, z1_is_zero);
1389
2.68k
    copy_conditional(z_out, z1, z2_is_zero);
1390
2.68k
    felem_assign(x3, x_out);
1391
2.68k
    felem_assign(y3, y_out);
1392
2.68k
    felem_assign(z3, z_out);
1393
2.68k
}
1394
1395
/*-
1396
 * Base point pre computation
1397
 * --------------------------
1398
 *
1399
 * Two different sorts of precomputed tables are used in the following code.
1400
 * Each contain various points on the curve, where each point is three field
1401
 * elements (x, y, z).
1402
 *
1403
 * For the base point table, z is usually 1 (0 for the point at infinity).
1404
 * This table has 16 elements:
1405
 * index | bits    | point
1406
 * ------+---------+------------------------------
1407
 *     0 | 0 0 0 0 | 0G
1408
 *     1 | 0 0 0 1 | 1G
1409
 *     2 | 0 0 1 0 | 2^130G
1410
 *     3 | 0 0 1 1 | (2^130 + 1)G
1411
 *     4 | 0 1 0 0 | 2^260G
1412
 *     5 | 0 1 0 1 | (2^260 + 1)G
1413
 *     6 | 0 1 1 0 | (2^260 + 2^130)G
1414
 *     7 | 0 1 1 1 | (2^260 + 2^130 + 1)G
1415
 *     8 | 1 0 0 0 | 2^390G
1416
 *     9 | 1 0 0 1 | (2^390 + 1)G
1417
 *    10 | 1 0 1 0 | (2^390 + 2^130)G
1418
 *    11 | 1 0 1 1 | (2^390 + 2^130 + 1)G
1419
 *    12 | 1 1 0 0 | (2^390 + 2^260)G
1420
 *    13 | 1 1 0 1 | (2^390 + 2^260 + 1)G
1421
 *    14 | 1 1 1 0 | (2^390 + 2^260 + 2^130)G
1422
 *    15 | 1 1 1 1 | (2^390 + 2^260 + 2^130 + 1)G
1423
 *
1424
 * The reason for this is so that we can clock bits into four different
1425
 * locations when doing simple scalar multiplies against the base point.
1426
 *
1427
 * Tables for other points have table[i] = iG for i in 0 .. 16. */
1428
1429
/* gmul is the table of precomputed base points */
1430
static const felem gmul[16][3] = {
1431
{{0, 0, 0, 0, 0, 0, 0, 0, 0},
1432
 {0, 0, 0, 0, 0, 0, 0, 0, 0},
1433
 {0, 0, 0, 0, 0, 0, 0, 0, 0}},
1434
{{0x017e7e31c2e5bd66, 0x022cf0615a90a6fe, 0x00127a2ffa8de334,
1435
  0x01dfbf9d64a3f877, 0x006b4d3dbaa14b5e, 0x014fed487e0a2bd8,
1436
  0x015b4429c6481390, 0x03a73678fb2d988e, 0x00c6858e06b70404},
1437
 {0x00be94769fd16650, 0x031c21a89cb09022, 0x039013fad0761353,
1438
  0x02657bd099031542, 0x03273e662c97ee72, 0x01e6d11a05ebef45,
1439
  0x03d1bd998f544495, 0x03001172297ed0b1, 0x011839296a789a3b},
1440
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1441
{{0x0373faacbc875bae, 0x00f325023721c671, 0x00f666fd3dbde5ad,
1442
  0x01a6932363f88ea7, 0x01fc6d9e13f9c47b, 0x03bcbffc2bbf734e,
1443
  0x013ee3c3647f3a92, 0x029409fefe75d07d, 0x00ef9199963d85e5},
1444
 {0x011173743ad5b178, 0x02499c7c21bf7d46, 0x035beaeabb8b1a58,
1445
  0x00f989c4752ea0a3, 0x0101e1de48a9c1a3, 0x01a20076be28ba6c,
1446
  0x02f8052e5eb2de95, 0x01bfe8f82dea117c, 0x0160074d3c36ddb7},
1447
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1448
{{0x012f3fc373393b3b, 0x03d3d6172f1419fa, 0x02adc943c0b86873,
1449
  0x00d475584177952b, 0x012a4d1673750ee2, 0x00512517a0f13b0c,
1450
  0x02b184671a7b1734, 0x0315b84236f1a50a, 0x00a4afc472edbdb9},
1451
 {0x00152a7077f385c4, 0x03044007d8d1c2ee, 0x0065829d61d52b52,
1452
  0x00494ff6b6631d0d, 0x00a11d94d5f06bcf, 0x02d2f89474d9282e,
1453
  0x0241c5727c06eeb9, 0x0386928710fbdb9d, 0x01f883f727b0dfbe},
1454
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1455
{{0x019b0c3c9185544d, 0x006243a37c9d97db, 0x02ee3cbe030a2ad2,
1456
  0x00cfdd946bb51e0d, 0x0271c00932606b91, 0x03f817d1ec68c561,
1457
  0x03f37009806a369c, 0x03c1f30baf184fd5, 0x01091022d6d2f065},
1458
 {0x0292c583514c45ed, 0x0316fca51f9a286c, 0x00300af507c1489a,
1459
  0x0295f69008298cf1, 0x02c0ed8274943d7b, 0x016509b9b47a431e,
1460
  0x02bc9de9634868ce, 0x005b34929bffcb09, 0x000c1a0121681524},
1461
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1462
{{0x0286abc0292fb9f2, 0x02665eee9805b3f7, 0x01ed7455f17f26d6,
1463
  0x0346355b83175d13, 0x006284944cd0a097, 0x0191895bcdec5e51,
1464
  0x02e288370afda7d9, 0x03b22312bfefa67a, 0x01d104d3fc0613fe},
1465
 {0x0092421a12f7e47f, 0x0077a83fa373c501, 0x03bd25c5f696bd0d,
1466
  0x035c41e4d5459761, 0x01ca0d1742b24f53, 0x00aaab27863a509c,
1467
  0x018b6de47df73917, 0x025c0b771705cd01, 0x01fd51d566d760a7},
1468
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1469
{{0x01dd92ff6b0d1dbd, 0x039c5e2e8f8afa69, 0x0261ed13242c3b27,
1470
  0x0382c6e67026e6a0, 0x01d60b10be2089f9, 0x03c15f3dce86723f,
1471
  0x03c764a32d2a062d, 0x017307eac0fad056, 0x018207c0b96c5256},
1472
 {0x0196a16d60e13154, 0x03e6ce74c0267030, 0x00ddbf2b4e52a5aa,
1473
  0x012738241bbf31c8, 0x00ebe8dc04685a28, 0x024c2ad6d380d4a2,
1474
  0x035ee062a6e62d0e, 0x0029ed74af7d3a0f, 0x00eef32aec142ebd},
1475
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1476
{{0x00c31ec398993b39, 0x03a9f45bcda68253, 0x00ac733c24c70890,
1477
  0x00872b111401ff01, 0x01d178c23195eafb, 0x03bca2c816b87f74,
1478
  0x0261a9af46fbad7a, 0x0324b2a8dd3d28f9, 0x00918121d8f24e23},
1479
 {0x032bc8c1ca983cd7, 0x00d869dfb08fc8c6, 0x01693cb61fce1516,
1480
  0x012a5ea68f4e88a8, 0x010869cab88d7ae3, 0x009081ad277ceee1,
1481
  0x033a77166d064cdc, 0x03955235a1fb3a95, 0x01251a4a9b25b65e},
1482
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1483
{{0x00148a3a1b27f40b, 0x0123186df1b31fdc, 0x00026e7beaad34ce,
1484
  0x01db446ac1d3dbba, 0x0299c1a33437eaec, 0x024540610183cbb7,
1485
  0x0173bb0e9ce92e46, 0x02b937e43921214b, 0x01ab0436a9bf01b5},
1486
 {0x0383381640d46948, 0x008dacbf0e7f330f, 0x03602122bcc3f318,
1487
  0x01ee596b200620d6, 0x03bd0585fda430b3, 0x014aed77fd123a83,
1488
  0x005ace749e52f742, 0x0390fe041da2b842, 0x0189a8ceb3299242},
1489
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1490
{{0x012a19d6b3282473, 0x00c0915918b423ce, 0x023a954eb94405ae,
1491
  0x00529f692be26158, 0x0289fa1b6fa4b2aa, 0x0198ae4ceea346ef,
1492
  0x0047d8cdfbdedd49, 0x00cc8c8953f0f6b8, 0x001424abbff49203},
1493
 {0x0256732a1115a03a, 0x0351bc38665c6733, 0x03f7b950fb4a6447,
1494
  0x000afffa94c22155, 0x025763d0a4dab540, 0x000511e92d4fc283,
1495
  0x030a7e9eda0ee96c, 0x004c3cd93a28bf0a, 0x017edb3a8719217f},
1496
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1497
{{0x011de5675a88e673, 0x031d7d0f5e567fbe, 0x0016b2062c970ae5,
1498
  0x03f4a2be49d90aa7, 0x03cef0bd13822866, 0x03f0923dcf774a6c,
1499
  0x0284bebc4f322f72, 0x016ab2645302bb2c, 0x01793f95dace0e2a},
1500
 {0x010646e13527a28f, 0x01ca1babd59dc5e7, 0x01afedfd9a5595df,
1501
  0x01f15785212ea6b1, 0x0324e5d64f6ae3f4, 0x02d680f526d00645,
1502
  0x0127920fadf627a7, 0x03b383f75df4f684, 0x0089e0057e783b0a},
1503
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1504
{{0x00f334b9eb3c26c6, 0x0298fdaa98568dce, 0x01c2d24843a82292,
1505
  0x020bcb24fa1b0711, 0x02cbdb3d2b1875e6, 0x0014907598f89422,
1506
  0x03abe3aa43b26664, 0x02cbf47f720bc168, 0x0133b5e73014b79b},
1507
 {0x034aab5dab05779d, 0x00cdc5d71fee9abb, 0x0399f16bd4bd9d30,
1508
  0x03582fa592d82647, 0x02be1cdfb775b0e9, 0x0034f7cea32e94cb,
1509
  0x0335a7f08f56f286, 0x03b707e9565d1c8b, 0x0015c946ea5b614f},
1510
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1511
{{0x024676f6cff72255, 0x00d14625cac96378, 0x00532b6008bc3767,
1512
  0x01fc16721b985322, 0x023355ea1b091668, 0x029de7afdc0317c3,
1513
  0x02fc8a7ca2da037c, 0x02de1217d74a6f30, 0x013f7173175b73bf},
1514
 {0x0344913f441490b5, 0x0200f9e272b61eca, 0x0258a246b1dd55d2,
1515
  0x03753db9ea496f36, 0x025e02937a09c5ef, 0x030cbd3d14012692,
1516
  0x01793a67e70dc72a, 0x03ec1d37048a662e, 0x006550f700c32a8d},
1517
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1518
{{0x00d3f48a347eba27, 0x008e636649b61bd8, 0x00d3b93716778fb3,
1519
  0x004d1915757bd209, 0x019d5311a3da44e0, 0x016d1afcbbe6aade,
1520
  0x0241bf5f73265616, 0x0384672e5d50d39b, 0x005009fee522b684},
1521
 {0x029b4fab064435fe, 0x018868ee095bbb07, 0x01ea3d6936cc92b8,
1522
  0x000608b00f78a2f3, 0x02db911073d1c20f, 0x018205938470100a,
1523
  0x01f1e4964cbe6ff2, 0x021a19a29eed4663, 0x01414485f42afa81},
1524
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1525
{{0x01612b3a17f63e34, 0x03813992885428e6, 0x022b3c215b5a9608,
1526
  0x029b4057e19f2fcb, 0x0384059a587af7e6, 0x02d6400ace6fe610,
1527
  0x029354d896e8e331, 0x00c047ee6dfba65e, 0x0037720542e9d49d},
1528
 {0x02ce9eed7c5e9278, 0x0374ed703e79643b, 0x01316c54c4072006,
1529
  0x005aaa09054b2ee8, 0x002824000c840d57, 0x03d4eba24771ed86,
1530
  0x0189c50aabc3bdae, 0x0338c01541e15510, 0x00466d56e38eed42},
1531
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1532
{{0x007efd8330ad8bd6, 0x02465ed48047710b, 0x0034c6606b215e0c,
1533
  0x016ae30c53cbf839, 0x01fa17bd37161216, 0x018ead4e61ce8ab9,
1534
  0x005482ed5f5dee46, 0x037543755bba1d7f, 0x005e5ac7e70a9d0f},
1535
 {0x0117e1bb2fdcb2a2, 0x03deea36249f40c4, 0x028d09b4a6246cb7,
1536
  0x03524b8855bcf756, 0x023d7d109d5ceb58, 0x0178e43e3223ef9c,
1537
  0x0154536a0c6e966a, 0x037964d1286ee9fe, 0x0199bcd90e125055},
1538
 {1, 0, 0, 0, 0, 0, 0, 0, 0}}
1539
};
1540
1541
/*
1542
 * select_point selects the |idx|th point from a precomputation table and
1543
 * copies it to out.
1544
 */
1545
 /* pre_comp below is of the size provided in |size| */
1546
static void select_point(const limb idx, unsigned int size,
1547
                         const felem pre_comp[][3], felem out[3])
1548
2.62k
{
1549
2.62k
    unsigned i, j;
1550
2.62k
    limb *outlimbs = &out[0][0];
1551
1552
2.62k
    memset(out, 0, sizeof(*out) * 3);
1553
1554
45.6k
    for (i = 0; i < size; i++) {
1555
43.0k
        const limb *inlimbs = &pre_comp[i][0][0];
1556
43.0k
        limb mask = i ^ idx;
1557
43.0k
        mask |= mask >> 4;
1558
43.0k
        mask |= mask >> 2;
1559
43.0k
        mask |= mask >> 1;
1560
43.0k
        mask &= 1;
1561
43.0k
        mask--;
1562
1.20M
        for (j = 0; j < NLIMBS * 3; j++)
1563
1.16M
            outlimbs[j] |= inlimbs[j] & mask;
1564
43.0k
    }
1565
2.62k
}
1566
1567
/* get_bit returns the |i|th bit in |in| */
1568
static char get_bit(const felem_bytearray in, int i)
1569
12.5k
{
1570
12.5k
    if (i < 0)
1571
10
        return 0;
1572
12.5k
    return (in[i >> 3] >> (i & 7)) & 1;
1573
12.5k
}
1574
1575
/*
1576
 * Interleaved point multiplication using precomputed point multiples: The
1577
 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1578
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1579
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1580
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1581
 */
1582
static void batch_mul(felem x_out, felem y_out, felem z_out,
1583
                      const felem_bytearray scalars[],
1584
                      const unsigned num_points, const u8 *g_scalar,
1585
                      const int mixed, const felem pre_comp[][17][3],
1586
                      const felem g_pre_comp[16][3])
1587
12
{
1588
12
    int i, skip;
1589
12
    unsigned num, gen_mul = (g_scalar != NULL);
1590
12
    felem nq[3], tmp[4];
1591
12
    limb bits;
1592
12
    u8 sign, digit;
1593
1594
    /* set nq to the point at infinity */
1595
12
    memset(nq, 0, sizeof(nq));
1596
1597
    /*
1598
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1599
     * of the generator (last quarter of rounds) and additions of other
1600
     * points multiples (every 5th round).
1601
     */
1602
12
    skip = 1;                   /* save two point operations in the first
1603
                                 * round */
1604
5.48k
    for (i = (num_points ? 520 : 130); i >= 0; --i) {
1605
        /* double */
1606
5.47k
        if (!skip)
1607
5.46k
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1608
1609
        /* add multiples of the generator */
1610
5.47k
        if (gen_mul && (i <= 130)) {
1611
1.57k
            bits = get_bit(g_scalar, i + 390) << 3;
1612
1.57k
            if (i < 130) {
1613
1.56k
                bits |= get_bit(g_scalar, i + 260) << 2;
1614
1.56k
                bits |= get_bit(g_scalar, i + 130) << 1;
1615
1.56k
                bits |= get_bit(g_scalar, i);
1616
1.56k
            }
1617
            /* select the point to add, in constant time */
1618
1.57k
            select_point(bits, 16, g_pre_comp, tmp);
1619
1.57k
            if (!skip) {
1620
                /* The 1 argument below is for "mixed" */
1621
1.57k
                point_add(nq[0], nq[1], nq[2],
1622
1.57k
                          nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1623
1.57k
            } else {
1624
2
                memcpy(nq, tmp, 3 * sizeof(felem));
1625
2
                skip = 0;
1626
2
            }
1627
1.57k
        }
1628
1629
        /* do other additions every 5 doublings */
1630
5.47k
        if (num_points && (i % 5 == 0)) {
1631
            /* loop over all scalars */
1632
2.10k
            for (num = 0; num < num_points; ++num) {
1633
1.05k
                bits = get_bit(scalars[num], i + 4) << 5;
1634
1.05k
                bits |= get_bit(scalars[num], i + 3) << 4;
1635
1.05k
                bits |= get_bit(scalars[num], i + 2) << 3;
1636
1.05k
                bits |= get_bit(scalars[num], i + 1) << 2;
1637
1.05k
                bits |= get_bit(scalars[num], i) << 1;
1638
1.05k
                bits |= get_bit(scalars[num], i - 1);
1639
1.05k
                ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1640
1641
                /*
1642
                 * select the point to add or subtract, in constant time
1643
                 */
1644
1.05k
                select_point(digit, 17, pre_comp[num], tmp);
1645
1.05k
                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1646
                                            * point */
1647
1.05k
                copy_conditional(tmp[1], tmp[3], (-(limb) sign));
1648
1649
1.05k
                if (!skip) {
1650
1.04k
                    point_add(nq[0], nq[1], nq[2],
1651
1.04k
                              nq[0], nq[1], nq[2],
1652
1.04k
                              mixed, tmp[0], tmp[1], tmp[2]);
1653
1.04k
                } else {
1654
10
                    memcpy(nq, tmp, 3 * sizeof(felem));
1655
10
                    skip = 0;
1656
10
                }
1657
1.05k
            }
1658
1.05k
        }
1659
5.47k
    }
1660
12
    felem_assign(x_out, nq[0]);
1661
12
    felem_assign(y_out, nq[1]);
1662
12
    felem_assign(z_out, nq[2]);
1663
12
}
1664
1665
/* Precomputation for the group generator. */
1666
struct nistp521_pre_comp_st {
1667
    felem g_pre_comp[16][3];
1668
    CRYPTO_REF_COUNT references;
1669
    CRYPTO_RWLOCK *lock;
1670
};
1671
1672
const EC_METHOD *EC_GFp_nistp521_method(void)
1673
55
{
1674
55
    static const EC_METHOD ret = {
1675
55
        EC_FLAGS_DEFAULT_OCT,
1676
55
        NID_X9_62_prime_field,
1677
55
        ossl_ec_GFp_nistp521_group_init,
1678
55
        ossl_ec_GFp_simple_group_finish,
1679
55
        ossl_ec_GFp_simple_group_clear_finish,
1680
55
        ossl_ec_GFp_nist_group_copy,
1681
55
        ossl_ec_GFp_nistp521_group_set_curve,
1682
55
        ossl_ec_GFp_simple_group_get_curve,
1683
55
        ossl_ec_GFp_simple_group_get_degree,
1684
55
        ossl_ec_group_simple_order_bits,
1685
55
        ossl_ec_GFp_simple_group_check_discriminant,
1686
55
        ossl_ec_GFp_simple_point_init,
1687
55
        ossl_ec_GFp_simple_point_finish,
1688
55
        ossl_ec_GFp_simple_point_clear_finish,
1689
55
        ossl_ec_GFp_simple_point_copy,
1690
55
        ossl_ec_GFp_simple_point_set_to_infinity,
1691
55
        ossl_ec_GFp_simple_point_set_affine_coordinates,
1692
55
        ossl_ec_GFp_nistp521_point_get_affine_coordinates,
1693
55
        0 /* point_set_compressed_coordinates */ ,
1694
55
        0 /* point2oct */ ,
1695
55
        0 /* oct2point */ ,
1696
55
        ossl_ec_GFp_simple_add,
1697
55
        ossl_ec_GFp_simple_dbl,
1698
55
        ossl_ec_GFp_simple_invert,
1699
55
        ossl_ec_GFp_simple_is_at_infinity,
1700
55
        ossl_ec_GFp_simple_is_on_curve,
1701
55
        ossl_ec_GFp_simple_cmp,
1702
55
        ossl_ec_GFp_simple_make_affine,
1703
55
        ossl_ec_GFp_simple_points_make_affine,
1704
55
        ossl_ec_GFp_nistp521_points_mul,
1705
55
        ossl_ec_GFp_nistp521_precompute_mult,
1706
55
        ossl_ec_GFp_nistp521_have_precompute_mult,
1707
55
        ossl_ec_GFp_nist_field_mul,
1708
55
        ossl_ec_GFp_nist_field_sqr,
1709
55
        0 /* field_div */ ,
1710
55
        ossl_ec_GFp_simple_field_inv,
1711
55
        0 /* field_encode */ ,
1712
55
        0 /* field_decode */ ,
1713
55
        0,                      /* field_set_to_one */
1714
55
        ossl_ec_key_simple_priv2oct,
1715
55
        ossl_ec_key_simple_oct2priv,
1716
55
        0, /* set private */
1717
55
        ossl_ec_key_simple_generate_key,
1718
55
        ossl_ec_key_simple_check_key,
1719
55
        ossl_ec_key_simple_generate_public_key,
1720
55
        0, /* keycopy */
1721
55
        0, /* keyfinish */
1722
55
        ossl_ecdh_simple_compute_key,
1723
55
        ossl_ecdsa_simple_sign_setup,
1724
55
        ossl_ecdsa_simple_sign_sig,
1725
55
        ossl_ecdsa_simple_verify_sig,
1726
55
        0, /* field_inverse_mod_ord */
1727
55
        0, /* blind_coordinates */
1728
55
        0, /* ladder_pre */
1729
55
        0, /* ladder_step */
1730
55
        0  /* ladder_post */
1731
55
    };
1732
1733
55
    return &ret;
1734
55
}
1735
1736
/******************************************************************************/
1737
/*
1738
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1739
 */
1740
1741
static NISTP521_PRE_COMP *nistp521_pre_comp_new(void)
1742
0
{
1743
0
    NISTP521_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1744
1745
0
    if (ret == NULL) {
1746
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1747
0
        return ret;
1748
0
    }
1749
1750
0
    ret->references = 1;
1751
1752
0
    ret->lock = CRYPTO_THREAD_lock_new();
1753
0
    if (ret->lock == NULL) {
1754
0
        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1755
0
        OPENSSL_free(ret);
1756
0
        return NULL;
1757
0
    }
1758
0
    return ret;
1759
0
}
1760
1761
NISTP521_PRE_COMP *EC_nistp521_pre_comp_dup(NISTP521_PRE_COMP *p)
1762
0
{
1763
0
    int i;
1764
0
    if (p != NULL)
1765
0
        CRYPTO_UP_REF(&p->references, &i, p->lock);
1766
0
    return p;
1767
0
}
1768
1769
void EC_nistp521_pre_comp_free(NISTP521_PRE_COMP *p)
1770
0
{
1771
0
    int i;
1772
1773
0
    if (p == NULL)
1774
0
        return;
1775
1776
0
    CRYPTO_DOWN_REF(&p->references, &i, p->lock);
1777
0
    REF_PRINT_COUNT("EC_nistp521", p);
1778
0
    if (i > 0)
1779
0
        return;
1780
0
    REF_ASSERT_ISNT(i < 0);
1781
1782
0
    CRYPTO_THREAD_lock_free(p->lock);
1783
0
    OPENSSL_free(p);
1784
0
}
1785
1786
/******************************************************************************/
1787
/*
1788
 * OPENSSL EC_METHOD FUNCTIONS
1789
 */
1790
1791
int ossl_ec_GFp_nistp521_group_init(EC_GROUP *group)
1792
110
{
1793
110
    int ret;
1794
110
    ret = ossl_ec_GFp_simple_group_init(group);
1795
110
    group->a_is_minus3 = 1;
1796
110
    return ret;
1797
110
}
1798
1799
int ossl_ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1800
                                         const BIGNUM *a, const BIGNUM *b,
1801
                                         BN_CTX *ctx)
1802
55
{
1803
55
    int ret = 0;
1804
55
    BIGNUM *curve_p, *curve_a, *curve_b;
1805
55
#ifndef FIPS_MODULE
1806
55
    BN_CTX *new_ctx = NULL;
1807
1808
55
    if (ctx == NULL)
1809
0
        ctx = new_ctx = BN_CTX_new();
1810
55
#endif
1811
55
    if (ctx == NULL)
1812
0
        return 0;
1813
1814
55
    BN_CTX_start(ctx);
1815
55
    curve_p = BN_CTX_get(ctx);
1816
55
    curve_a = BN_CTX_get(ctx);
1817
55
    curve_b = BN_CTX_get(ctx);
1818
55
    if (curve_b == NULL)
1819
0
        goto err;
1820
55
    BN_bin2bn(nistp521_curve_params[0], sizeof(felem_bytearray), curve_p);
1821
55
    BN_bin2bn(nistp521_curve_params[1], sizeof(felem_bytearray), curve_a);
1822
55
    BN_bin2bn(nistp521_curve_params[2], sizeof(felem_bytearray), curve_b);
1823
55
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1824
0
        ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS);
1825
0
        goto err;
1826
0
    }
1827
55
    group->field_mod_func = BN_nist_mod_521;
1828
55
    ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1829
55
 err:
1830
55
    BN_CTX_end(ctx);
1831
55
#ifndef FIPS_MODULE
1832
55
    BN_CTX_free(new_ctx);
1833
55
#endif
1834
55
    return ret;
1835
55
}
1836
1837
/*
1838
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1839
 * (X/Z^2, Y/Z^3)
1840
 */
1841
int ossl_ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group,
1842
                                                      const EC_POINT *point,
1843
                                                      BIGNUM *x, BIGNUM *y,
1844
                                                      BN_CTX *ctx)
1845
12
{
1846
12
    felem z1, z2, x_in, y_in, x_out, y_out;
1847
12
    largefelem tmp;
1848
1849
12
    if (EC_POINT_is_at_infinity(group, point)) {
1850
0
        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
1851
0
        return 0;
1852
0
    }
1853
12
    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1854
12
        (!BN_to_felem(z1, point->Z)))
1855
0
        return 0;
1856
12
    felem_inv(z2, z1);
1857
12
    felem_square(tmp, z2);
1858
12
    felem_reduce(z1, tmp);
1859
12
    felem_mul(tmp, x_in, z1);
1860
12
    felem_reduce(x_in, tmp);
1861
12
    felem_contract(x_out, x_in);
1862
12
    if (x != NULL) {
1863
12
        if (!felem_to_BN(x, x_out)) {
1864
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1865
0
            return 0;
1866
0
        }
1867
12
    }
1868
12
    felem_mul(tmp, z1, z2);
1869
12
    felem_reduce(z1, tmp);
1870
12
    felem_mul(tmp, y_in, z1);
1871
12
    felem_reduce(y_in, tmp);
1872
12
    felem_contract(y_out, y_in);
1873
12
    if (y != NULL) {
1874
2
        if (!felem_to_BN(y, y_out)) {
1875
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1876
0
            return 0;
1877
0
        }
1878
2
    }
1879
12
    return 1;
1880
12
}
1881
1882
/* points below is of size |num|, and tmp_felems is of size |num+1/ */
1883
static void make_points_affine(size_t num, felem points[][3],
1884
                               felem tmp_felems[])
1885
0
{
1886
    /*
1887
     * Runs in constant time, unless an input is the point at infinity (which
1888
     * normally shouldn't happen).
1889
     */
1890
0
    ossl_ec_GFp_nistp_points_make_affine_internal(num,
1891
0
                                                  points,
1892
0
                                                  sizeof(felem),
1893
0
                                                  tmp_felems,
1894
0
                                                  (void (*)(void *))felem_one,
1895
0
                                                  felem_is_zero_int,
1896
0
                                                  (void (*)(void *, const void *))
1897
0
                                                  felem_assign,
1898
0
                                                  (void (*)(void *, const void *))
1899
0
                                                  felem_square_reduce, (void (*)
1900
0
                                                                        (void *,
1901
0
                                                                         const void
1902
0
                                                                         *,
1903
0
                                                                         const void
1904
0
                                                                         *))
1905
0
                                                  felem_mul_reduce,
1906
0
                                                  (void (*)(void *, const void *))
1907
0
                                                  felem_inv,
1908
0
                                                  (void (*)(void *, const void *))
1909
0
                                                  felem_contract);
1910
0
}
1911
1912
/*
1913
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1914
 * values Result is stored in r (r can equal one of the inputs).
1915
 */
1916
int ossl_ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r,
1917
                                    const BIGNUM *scalar, size_t num,
1918
                                    const EC_POINT *points[],
1919
                                    const BIGNUM *scalars[], BN_CTX *ctx)
1920
12
{
1921
12
    int ret = 0;
1922
12
    int j;
1923
12
    int mixed = 0;
1924
12
    BIGNUM *x, *y, *z, *tmp_scalar;
1925
12
    felem_bytearray g_secret;
1926
12
    felem_bytearray *secrets = NULL;
1927
12
    felem (*pre_comp)[17][3] = NULL;
1928
12
    felem *tmp_felems = NULL;
1929
12
    unsigned i;
1930
12
    int num_bytes;
1931
12
    int have_pre_comp = 0;
1932
12
    size_t num_points = num;
1933
12
    felem x_in, y_in, z_in, x_out, y_out, z_out;
1934
12
    NISTP521_PRE_COMP *pre = NULL;
1935
12
    felem(*g_pre_comp)[3] = NULL;
1936
12
    EC_POINT *generator = NULL;
1937
12
    const EC_POINT *p = NULL;
1938
12
    const BIGNUM *p_scalar = NULL;
1939
1940
12
    BN_CTX_start(ctx);
1941
12
    x = BN_CTX_get(ctx);
1942
12
    y = BN_CTX_get(ctx);
1943
12
    z = BN_CTX_get(ctx);
1944
12
    tmp_scalar = BN_CTX_get(ctx);
1945
12
    if (tmp_scalar == NULL)
1946
0
        goto err;
1947
1948
12
    if (scalar != NULL) {
1949
12
        pre = group->pre_comp.nistp521;
1950
12
        if (pre)
1951
            /* we have precomputation, try to use it */
1952
0
            g_pre_comp = &pre->g_pre_comp[0];
1953
12
        else
1954
            /* try to use the standard precomputation */
1955
12
            g_pre_comp = (felem(*)[3]) gmul;
1956
12
        generator = EC_POINT_new(group);
1957
12
        if (generator == NULL)
1958
0
            goto err;
1959
        /* get the generator from precomputation */
1960
12
        if (!felem_to_BN(x, g_pre_comp[1][0]) ||
1961
12
            !felem_to_BN(y, g_pre_comp[1][1]) ||
1962
12
            !felem_to_BN(z, g_pre_comp[1][2])) {
1963
0
            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1964
0
            goto err;
1965
0
        }
1966
12
        if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group,
1967
12
                                                                generator,
1968
12
                                                                x, y, z, ctx))
1969
0
            goto err;
1970
12
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1971
            /* precomputation matches generator */
1972
12
            have_pre_comp = 1;
1973
0
        else
1974
            /*
1975
             * we don't have valid precomputation: treat the generator as a
1976
             * random point
1977
             */
1978
0
            num_points++;
1979
12
    }
1980
1981
12
    if (num_points > 0) {
1982
10
        if (num_points >= 2) {
1983
            /*
1984
             * unless we precompute multiples for just one point, converting
1985
             * those into affine form is time well spent
1986
             */
1987
0
            mixed = 1;
1988
0
        }
1989
10
        secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1990
10
        pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1991
10
        if (mixed)
1992
0
            tmp_felems =
1993
0
                OPENSSL_malloc(sizeof(*tmp_felems) * (num_points * 17 + 1));
1994
10
        if ((secrets == NULL) || (pre_comp == NULL)
1995
10
            || (mixed && (tmp_felems == NULL))) {
1996
0
            ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1997
0
            goto err;
1998
0
        }
1999
2000
        /*
2001
         * we treat NULL scalars as 0, and NULL points as points at infinity,
2002
         * i.e., they contribute nothing to the linear combination
2003
         */
2004
20
        for (i = 0; i < num_points; ++i) {
2005
10
            if (i == num) {
2006
                /*
2007
                 * we didn't have a valid precomputation, so we pick the
2008
                 * generator
2009
                 */
2010
0
                p = EC_GROUP_get0_generator(group);
2011
0
                p_scalar = scalar;
2012
10
            } else {
2013
                /* the i^th point */
2014
10
                p = points[i];
2015
10
                p_scalar = scalars[i];
2016
10
            }
2017
10
            if ((p_scalar != NULL) && (p != NULL)) {
2018
                /* reduce scalar to 0 <= scalar < 2^521 */
2019
10
                if ((BN_num_bits(p_scalar) > 521)
2020
10
                    || (BN_is_negative(p_scalar))) {
2021
                    /*
2022
                     * this is an unusual input, and we don't guarantee
2023
                     * constant-timeness
2024
                     */
2025
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
2026
0
                        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2027
0
                        goto err;
2028
0
                    }
2029
0
                    num_bytes = BN_bn2lebinpad(tmp_scalar,
2030
0
                                               secrets[i], sizeof(secrets[i]));
2031
10
                } else {
2032
10
                    num_bytes = BN_bn2lebinpad(p_scalar,
2033
10
                                               secrets[i], sizeof(secrets[i]));
2034
10
                }
2035
10
                if (num_bytes < 0) {
2036
0
                    ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2037
0
                    goto err;
2038
0
                }
2039
                /* precompute multiples */
2040
10
                if ((!BN_to_felem(x_out, p->X)) ||
2041
10
                    (!BN_to_felem(y_out, p->Y)) ||
2042
10
                    (!BN_to_felem(z_out, p->Z)))
2043
0
                    goto err;
2044
10
                memcpy(pre_comp[i][1][0], x_out, sizeof(felem));
2045
10
                memcpy(pre_comp[i][1][1], y_out, sizeof(felem));
2046
10
                memcpy(pre_comp[i][1][2], z_out, sizeof(felem));
2047
160
                for (j = 2; j <= 16; ++j) {
2048
150
                    if (j & 1) {
2049
70
                        point_add(pre_comp[i][j][0], pre_comp[i][j][1],
2050
70
                                  pre_comp[i][j][2], pre_comp[i][1][0],
2051
70
                                  pre_comp[i][1][1], pre_comp[i][1][2], 0,
2052
70
                                  pre_comp[i][j - 1][0],
2053
70
                                  pre_comp[i][j - 1][1],
2054
70
                                  pre_comp[i][j - 1][2]);
2055
80
                    } else {
2056
80
                        point_double(pre_comp[i][j][0], pre_comp[i][j][1],
2057
80
                                     pre_comp[i][j][2], pre_comp[i][j / 2][0],
2058
80
                                     pre_comp[i][j / 2][1],
2059
80
                                     pre_comp[i][j / 2][2]);
2060
80
                    }
2061
150
                }
2062
10
            }
2063
10
        }
2064
10
        if (mixed)
2065
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
2066
10
    }
2067
2068
    /* the scalar for the generator */
2069
12
    if ((scalar != NULL) && (have_pre_comp)) {
2070
12
        memset(g_secret, 0, sizeof(g_secret));
2071
        /* reduce scalar to 0 <= scalar < 2^521 */
2072
12
        if ((BN_num_bits(scalar) > 521) || (BN_is_negative(scalar))) {
2073
            /*
2074
             * this is an unusual input, and we don't guarantee
2075
             * constant-timeness
2076
             */
2077
0
            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
2078
0
                ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2079
0
                goto err;
2080
0
            }
2081
0
            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
2082
12
        } else {
2083
12
            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
2084
12
        }
2085
        /* do the multiplication with generator precomputation */
2086
12
        batch_mul(x_out, y_out, z_out,
2087
12
                  (const felem_bytearray(*))secrets, num_points,
2088
12
                  g_secret,
2089
12
                  mixed, (const felem(*)[17][3])pre_comp,
2090
12
                  (const felem(*)[3])g_pre_comp);
2091
12
    } else {
2092
        /* do the multiplication without generator precomputation */
2093
0
        batch_mul(x_out, y_out, z_out,
2094
0
                  (const felem_bytearray(*))secrets, num_points,
2095
0
                  NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
2096
0
    }
2097
    /* reduce the output to its unique minimal representation */
2098
12
    felem_contract(x_in, x_out);
2099
12
    felem_contract(y_in, y_out);
2100
12
    felem_contract(z_in, z_out);
2101
12
    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
2102
12
        (!felem_to_BN(z, z_in))) {
2103
0
        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
2104
0
        goto err;
2105
0
    }
2106
12
    ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z,
2107
12
                                                             ctx);
2108
2109
12
 err:
2110
12
    BN_CTX_end(ctx);
2111
12
    EC_POINT_free(generator);
2112
12
    OPENSSL_free(secrets);
2113
12
    OPENSSL_free(pre_comp);
2114
12
    OPENSSL_free(tmp_felems);
2115
12
    return ret;
2116
12
}
2117
2118
int ossl_ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
2119
0
{
2120
0
    int ret = 0;
2121
0
    NISTP521_PRE_COMP *pre = NULL;
2122
0
    int i, j;
2123
0
    BIGNUM *x, *y;
2124
0
    EC_POINT *generator = NULL;
2125
0
    felem tmp_felems[16];
2126
0
#ifndef FIPS_MODULE
2127
0
    BN_CTX *new_ctx = NULL;
2128
0
#endif
2129
2130
    /* throw away old precomputation */
2131
0
    EC_pre_comp_free(group);
2132
2133
0
#ifndef FIPS_MODULE
2134
0
    if (ctx == NULL)
2135
0
        ctx = new_ctx = BN_CTX_new();
2136
0
#endif
2137
0
    if (ctx == NULL)
2138
0
        return 0;
2139
2140
0
    BN_CTX_start(ctx);
2141
0
    x = BN_CTX_get(ctx);
2142
0
    y = BN_CTX_get(ctx);
2143
0
    if (y == NULL)
2144
0
        goto err;
2145
    /* get the generator */
2146
0
    if (group->generator == NULL)
2147
0
        goto err;
2148
0
    generator = EC_POINT_new(group);
2149
0
    if (generator == NULL)
2150
0
        goto err;
2151
0
    BN_bin2bn(nistp521_curve_params[3], sizeof(felem_bytearray), x);
2152
0
    BN_bin2bn(nistp521_curve_params[4], sizeof(felem_bytearray), y);
2153
0
    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
2154
0
        goto err;
2155
0
    if ((pre = nistp521_pre_comp_new()) == NULL)
2156
0
        goto err;
2157
    /*
2158
     * if the generator is the standard one, use built-in precomputation
2159
     */
2160
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
2161
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
2162
0
        goto done;
2163
0
    }
2164
0
    if ((!BN_to_felem(pre->g_pre_comp[1][0], group->generator->X)) ||
2165
0
        (!BN_to_felem(pre->g_pre_comp[1][1], group->generator->Y)) ||
2166
0
        (!BN_to_felem(pre->g_pre_comp[1][2], group->generator->Z)))
2167
0
        goto err;
2168
    /* compute 2^130*G, 2^260*G, 2^390*G */
2169
0
    for (i = 1; i <= 4; i <<= 1) {
2170
0
        point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1],
2171
0
                     pre->g_pre_comp[2 * i][2], pre->g_pre_comp[i][0],
2172
0
                     pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]);
2173
0
        for (j = 0; j < 129; ++j) {
2174
0
            point_double(pre->g_pre_comp[2 * i][0],
2175
0
                         pre->g_pre_comp[2 * i][1],
2176
0
                         pre->g_pre_comp[2 * i][2],
2177
0
                         pre->g_pre_comp[2 * i][0],
2178
0
                         pre->g_pre_comp[2 * i][1],
2179
0
                         pre->g_pre_comp[2 * i][2]);
2180
0
        }
2181
0
    }
2182
    /* g_pre_comp[0] is the point at infinity */
2183
0
    memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0]));
2184
    /* the remaining multiples */
2185
    /* 2^130*G + 2^260*G */
2186
0
    point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1],
2187
0
              pre->g_pre_comp[6][2], pre->g_pre_comp[4][0],
2188
0
              pre->g_pre_comp[4][1], pre->g_pre_comp[4][2],
2189
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2190
0
              pre->g_pre_comp[2][2]);
2191
    /* 2^130*G + 2^390*G */
2192
0
    point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1],
2193
0
              pre->g_pre_comp[10][2], pre->g_pre_comp[8][0],
2194
0
              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2195
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2196
0
              pre->g_pre_comp[2][2]);
2197
    /* 2^260*G + 2^390*G */
2198
0
    point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1],
2199
0
              pre->g_pre_comp[12][2], pre->g_pre_comp[8][0],
2200
0
              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2201
0
              0, pre->g_pre_comp[4][0], pre->g_pre_comp[4][1],
2202
0
              pre->g_pre_comp[4][2]);
2203
    /* 2^130*G + 2^260*G + 2^390*G */
2204
0
    point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1],
2205
0
              pre->g_pre_comp[14][2], pre->g_pre_comp[12][0],
2206
0
              pre->g_pre_comp[12][1], pre->g_pre_comp[12][2],
2207
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2208
0
              pre->g_pre_comp[2][2]);
2209
0
    for (i = 1; i < 8; ++i) {
2210
        /* odd multiples: add G */
2211
0
        point_add(pre->g_pre_comp[2 * i + 1][0],
2212
0
                  pre->g_pre_comp[2 * i + 1][1],
2213
0
                  pre->g_pre_comp[2 * i + 1][2], pre->g_pre_comp[2 * i][0],
2214
0
                  pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], 0,
2215
0
                  pre->g_pre_comp[1][0], pre->g_pre_comp[1][1],
2216
0
                  pre->g_pre_comp[1][2]);
2217
0
    }
2218
0
    make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems);
2219
2220
0
 done:
2221
0
    SETPRECOMP(group, nistp521, pre);
2222
0
    ret = 1;
2223
0
    pre = NULL;
2224
0
 err:
2225
0
    BN_CTX_end(ctx);
2226
0
    EC_POINT_free(generator);
2227
0
#ifndef FIPS_MODULE
2228
0
    BN_CTX_free(new_ctx);
2229
0
#endif
2230
0
    EC_nistp521_pre_comp_free(pre);
2231
0
    return ret;
2232
0
}
2233
2234
int ossl_ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group)
2235
0
{
2236
0
    return HAVEPRECOMP(group, nistp521);
2237
0
}