Coverage Report

Created: 2023-06-08 06:41

/src/openssl30/ssl/t1_lib.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include <stdio.h>
11
#include <stdlib.h>
12
#include <openssl/objects.h>
13
#include <openssl/evp.h>
14
#include <openssl/hmac.h>
15
#include <openssl/core_names.h>
16
#include <openssl/ocsp.h>
17
#include <openssl/conf.h>
18
#include <openssl/x509v3.h>
19
#include <openssl/dh.h>
20
#include <openssl/bn.h>
21
#include <openssl/provider.h>
22
#include <openssl/param_build.h>
23
#include "internal/nelem.h"
24
#include "internal/sizes.h"
25
#include "internal/tlsgroups.h"
26
#include "ssl_local.h"
27
#include <openssl/ct.h>
28
29
static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey);
30
static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu);
31
32
SSL3_ENC_METHOD const TLSv1_enc_data = {
33
    tls1_enc,
34
    tls1_mac,
35
    tls1_setup_key_block,
36
    tls1_generate_master_secret,
37
    tls1_change_cipher_state,
38
    tls1_final_finish_mac,
39
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
40
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
41
    tls1_alert_code,
42
    tls1_export_keying_material,
43
    0,
44
    ssl3_set_handshake_header,
45
    tls_close_construct_packet,
46
    ssl3_handshake_write
47
};
48
49
SSL3_ENC_METHOD const TLSv1_1_enc_data = {
50
    tls1_enc,
51
    tls1_mac,
52
    tls1_setup_key_block,
53
    tls1_generate_master_secret,
54
    tls1_change_cipher_state,
55
    tls1_final_finish_mac,
56
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
57
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
58
    tls1_alert_code,
59
    tls1_export_keying_material,
60
    SSL_ENC_FLAG_EXPLICIT_IV,
61
    ssl3_set_handshake_header,
62
    tls_close_construct_packet,
63
    ssl3_handshake_write
64
};
65
66
SSL3_ENC_METHOD const TLSv1_2_enc_data = {
67
    tls1_enc,
68
    tls1_mac,
69
    tls1_setup_key_block,
70
    tls1_generate_master_secret,
71
    tls1_change_cipher_state,
72
    tls1_final_finish_mac,
73
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
74
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
75
    tls1_alert_code,
76
    tls1_export_keying_material,
77
    SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
78
        | SSL_ENC_FLAG_TLS1_2_CIPHERS,
79
    ssl3_set_handshake_header,
80
    tls_close_construct_packet,
81
    ssl3_handshake_write
82
};
83
84
SSL3_ENC_METHOD const TLSv1_3_enc_data = {
85
    tls13_enc,
86
    tls1_mac,
87
    tls13_setup_key_block,
88
    tls13_generate_master_secret,
89
    tls13_change_cipher_state,
90
    tls13_final_finish_mac,
91
    TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
92
    TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
93
    tls13_alert_code,
94
    tls13_export_keying_material,
95
    SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
96
    ssl3_set_handshake_header,
97
    tls_close_construct_packet,
98
    ssl3_handshake_write
99
};
100
101
long tls1_default_timeout(void)
102
7.18k
{
103
    /*
104
     * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
105
     * http, the cache would over fill
106
     */
107
7.18k
    return (60 * 60 * 2);
108
7.18k
}
109
110
int tls1_new(SSL *s)
111
7.18k
{
112
7.18k
    if (!ssl3_new(s))
113
0
        return 0;
114
7.18k
    if (!s->method->ssl_clear(s))
115
0
        return 0;
116
117
7.18k
    return 1;
118
7.18k
}
119
120
void tls1_free(SSL *s)
121
5.86k
{
122
5.86k
    OPENSSL_free(s->ext.session_ticket);
123
5.86k
    ssl3_free(s);
124
5.86k
}
125
126
int tls1_clear(SSL *s)
127
28.7k
{
128
28.7k
    if (!ssl3_clear(s))
129
0
        return 0;
130
131
28.7k
    if (s->method->version == TLS_ANY_VERSION)
132
28.7k
        s->version = TLS_MAX_VERSION_INTERNAL;
133
0
    else
134
0
        s->version = s->method->version;
135
136
28.7k
    return 1;
137
28.7k
}
138
139
/* Legacy NID to group_id mapping. Only works for groups we know about */
140
static struct {
141
    int nid;
142
    uint16_t group_id;
143
} nid_to_group[] = {
144
    {NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1},
145
    {NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1},
146
    {NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2},
147
    {NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1},
148
    {NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2},
149
    {NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1},
150
    {NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1},
151
    {NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1},
152
    {NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1},
153
    {NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1},
154
    {NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1},
155
    {NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1},
156
    {NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1},
157
    {NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1},
158
    {NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1},
159
    {NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1},
160
    {NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2},
161
    {NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1},
162
    {NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1},
163
    {NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1},
164
    {NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1},
165
    {NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1},
166
    {NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1},
167
    {NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1},
168
    {NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1},
169
    {NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1},
170
    {NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1},
171
    {NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1},
172
    {EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519},
173
    {EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448},
174
    {NID_id_tc26_gost_3410_2012_256_paramSetA, 0x0022},
175
    {NID_id_tc26_gost_3410_2012_256_paramSetB, 0x0023},
176
    {NID_id_tc26_gost_3410_2012_256_paramSetC, 0x0024},
177
    {NID_id_tc26_gost_3410_2012_256_paramSetD, 0x0025},
178
    {NID_id_tc26_gost_3410_2012_512_paramSetA, 0x0026},
179
    {NID_id_tc26_gost_3410_2012_512_paramSetB, 0x0027},
180
    {NID_id_tc26_gost_3410_2012_512_paramSetC, 0x0028},
181
    {NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048},
182
    {NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072},
183
    {NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096},
184
    {NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144},
185
    {NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192}
186
};
187
188
static const unsigned char ecformats_default[] = {
189
    TLSEXT_ECPOINTFORMAT_uncompressed,
190
    TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
191
    TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
192
};
193
194
/* The default curves */
195
static const uint16_t supported_groups_default[] = {
196
    29,                      /* X25519 (29) */
197
    23,                      /* secp256r1 (23) */
198
    30,                      /* X448 (30) */
199
    25,                      /* secp521r1 (25) */
200
    24,                      /* secp384r1 (24) */
201
    34,                      /* GC256A (34) */
202
    35,                      /* GC256B (35) */
203
    36,                      /* GC256C (36) */
204
    37,                      /* GC256D (37) */
205
    38,                      /* GC512A (38) */
206
    39,                      /* GC512B (39) */
207
    40,                      /* GC512C (40) */
208
    0x100,                   /* ffdhe2048 (0x100) */
209
    0x101,                   /* ffdhe3072 (0x101) */
210
    0x102,                   /* ffdhe4096 (0x102) */
211
    0x103,                   /* ffdhe6144 (0x103) */
212
    0x104,                   /* ffdhe8192 (0x104) */
213
};
214
215
static const uint16_t suiteb_curves[] = {
216
    TLSEXT_curve_P_256,
217
    TLSEXT_curve_P_384
218
};
219
220
struct provider_group_data_st {
221
    SSL_CTX *ctx;
222
    OSSL_PROVIDER *provider;
223
};
224
225
71.8k
#define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE        10
226
static OSSL_CALLBACK add_provider_groups;
227
static int add_provider_groups(const OSSL_PARAM params[], void *data)
228
359k
{
229
359k
    struct provider_group_data_st *pgd = data;
230
359k
    SSL_CTX *ctx = pgd->ctx;
231
359k
    OSSL_PROVIDER *provider = pgd->provider;
232
359k
    const OSSL_PARAM *p;
233
359k
    TLS_GROUP_INFO *ginf = NULL;
234
359k
    EVP_KEYMGMT *keymgmt;
235
359k
    unsigned int gid;
236
359k
    unsigned int is_kem = 0;
237
359k
    int ret = 0;
238
239
359k
    if (ctx->group_list_max_len == ctx->group_list_len) {
240
35.9k
        TLS_GROUP_INFO *tmp = NULL;
241
242
35.9k
        if (ctx->group_list_max_len == 0)
243
7.18k
            tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO)
244
35.9k
                                 * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
245
28.7k
        else
246
28.7k
            tmp = OPENSSL_realloc(ctx->group_list,
247
35.9k
                                  (ctx->group_list_max_len
248
35.9k
                                   + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE)
249
35.9k
                                  * sizeof(TLS_GROUP_INFO));
250
35.9k
        if (tmp == NULL) {
251
0
            ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
252
0
            return 0;
253
0
        }
254
35.9k
        ctx->group_list = tmp;
255
35.9k
        memset(tmp + ctx->group_list_max_len,
256
35.9k
               0,
257
35.9k
               sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
258
35.9k
        ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
259
35.9k
    }
260
261
359k
    ginf = &ctx->group_list[ctx->group_list_len];
262
263
359k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
264
359k
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
265
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
266
0
        goto err;
267
0
    }
268
359k
    ginf->tlsname = OPENSSL_strdup(p->data);
269
359k
    if (ginf->tlsname == NULL) {
270
0
        ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
271
0
        goto err;
272
0
    }
273
274
359k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
275
359k
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
276
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
277
0
        goto err;
278
0
    }
279
359k
    ginf->realname = OPENSSL_strdup(p->data);
280
359k
    if (ginf->realname == NULL) {
281
0
        ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
282
0
        goto err;
283
0
    }
284
285
359k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
286
359k
    if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
287
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
288
0
        goto err;
289
0
    }
290
359k
    ginf->group_id = (uint16_t)gid;
291
292
359k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
293
359k
    if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
294
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
295
0
        goto err;
296
0
    }
297
359k
    ginf->algorithm = OPENSSL_strdup(p->data);
298
359k
    if (ginf->algorithm == NULL) {
299
0
        ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
300
0
        goto err;
301
0
    }
302
303
359k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
304
359k
    if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
305
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
306
0
        goto err;
307
0
    }
308
309
359k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);
310
359k
    if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) {
311
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
312
0
        goto err;
313
0
    }
314
359k
    ginf->is_kem = 1 & is_kem;
315
316
359k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
317
359k
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
318
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
319
0
        goto err;
320
0
    }
321
322
359k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
323
359k
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
324
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
325
0
        goto err;
326
0
    }
327
328
359k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
329
359k
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
330
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
331
0
        goto err;
332
0
    }
333
334
359k
    p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
335
359k
    if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
336
0
        ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
337
0
        goto err;
338
0
    }
339
    /*
340
     * Now check that the algorithm is actually usable for our property query
341
     * string. Regardless of the result we still return success because we have
342
     * successfully processed this group, even though we may decide not to use
343
     * it.
344
     */
345
359k
    ret = 1;
346
359k
    ERR_set_mark();
347
359k
    keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
348
359k
    if (keymgmt != NULL) {
349
        /*
350
         * We have successfully fetched the algorithm - however if the provider
351
         * doesn't match this one then we ignore it.
352
         *
353
         * Note: We're cheating a little here. Technically if the same algorithm
354
         * is available from more than one provider then it is undefined which
355
         * implementation you will get back. Theoretically this could be
356
         * different every time...we assume here that you'll always get the
357
         * same one back if you repeat the exact same fetch. Is this a reasonable
358
         * assumption to make (in which case perhaps we should document this
359
         * behaviour)?
360
         */
361
359k
        if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
362
            /* We have a match - so we will use this group */
363
359k
            ctx->group_list_len++;
364
359k
            ginf = NULL;
365
359k
        }
366
359k
        EVP_KEYMGMT_free(keymgmt);
367
359k
    }
368
359k
    ERR_pop_to_mark();
369
359k
 err:
370
359k
    if (ginf != NULL) {
371
0
        OPENSSL_free(ginf->tlsname);
372
0
        OPENSSL_free(ginf->realname);
373
0
        OPENSSL_free(ginf->algorithm);
374
0
        ginf->algorithm = ginf->tlsname = ginf->realname = NULL;
375
0
    }
376
359k
    return ret;
377
359k
}
378
379
static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
380
14.3k
{
381
14.3k
    struct provider_group_data_st pgd;
382
383
14.3k
    pgd.ctx = vctx;
384
14.3k
    pgd.provider = provider;
385
14.3k
    return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
386
14.3k
                                          add_provider_groups, &pgd);
387
14.3k
}
388
389
int ssl_load_groups(SSL_CTX *ctx)
390
7.18k
{
391
7.18k
    size_t i, j, num_deflt_grps = 0;
392
7.18k
    uint16_t tmp_supp_groups[OSSL_NELEM(supported_groups_default)];
393
394
7.18k
    if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))
395
0
        return 0;
396
397
129k
    for (i = 0; i < OSSL_NELEM(supported_groups_default); i++) {
398
5.72M
        for (j = 0; j < ctx->group_list_len; j++) {
399
5.67M
            if (ctx->group_list[j].group_id == supported_groups_default[i]) {
400
71.8k
                tmp_supp_groups[num_deflt_grps++] = ctx->group_list[j].group_id;
401
71.8k
                break;
402
71.8k
            }
403
5.67M
        }
404
122k
    }
405
406
7.18k
    if (num_deflt_grps == 0)
407
0
        return 1;
408
409
7.18k
    ctx->ext.supported_groups_default
410
7.18k
        = OPENSSL_malloc(sizeof(uint16_t) * num_deflt_grps);
411
412
7.18k
    if (ctx->ext.supported_groups_default == NULL) {
413
0
        ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
414
0
        return 0;
415
0
    }
416
417
7.18k
    memcpy(ctx->ext.supported_groups_default,
418
7.18k
           tmp_supp_groups,
419
7.18k
           num_deflt_grps * sizeof(tmp_supp_groups[0]));
420
7.18k
    ctx->ext.supported_groups_default_len = num_deflt_grps;
421
422
7.18k
    return 1;
423
7.18k
}
424
425
static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
426
0
{
427
0
    size_t i;
428
429
0
    for (i = 0; i < ctx->group_list_len; i++) {
430
0
        if (strcmp(ctx->group_list[i].tlsname, name) == 0
431
0
                || strcmp(ctx->group_list[i].realname, name) == 0)
432
0
            return ctx->group_list[i].group_id;
433
0
    }
434
435
0
    return 0;
436
0
}
437
438
const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
439
199k
{
440
199k
    size_t i;
441
442
8.77M
    for (i = 0; i < ctx->group_list_len; i++) {
443
8.77M
        if (ctx->group_list[i].group_id == group_id)
444
199k
            return &ctx->group_list[i];
445
8.77M
    }
446
447
0
    return NULL;
448
199k
}
449
450
int tls1_group_id2nid(uint16_t group_id, int include_unknown)
451
96.2k
{
452
96.2k
    size_t i;
453
454
96.2k
    if (group_id == 0)
455
0
        return NID_undef;
456
457
    /*
458
     * Return well known Group NIDs - for backwards compatibility. This won't
459
     * work for groups we don't know about.
460
     */
461
3.08M
    for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
462
3.08M
    {
463
3.08M
        if (nid_to_group[i].group_id == group_id)
464
96.2k
            return nid_to_group[i].nid;
465
3.08M
    }
466
0
    if (!include_unknown)
467
0
        return NID_undef;
468
0
    return TLSEXT_nid_unknown | (int)group_id;
469
0
}
470
471
uint16_t tls1_nid2group_id(int nid)
472
160
{
473
160
    size_t i;
474
475
    /*
476
     * Return well known Group ids - for backwards compatibility. This won't
477
     * work for groups we don't know about.
478
     */
479
3.85k
    for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
480
3.85k
    {
481
3.85k
        if (nid_to_group[i].nid == nid)
482
159
            return nid_to_group[i].group_id;
483
3.85k
    }
484
485
1
    return 0;
486
160
}
487
488
/*
489
 * Set *pgroups to the supported groups list and *pgroupslen to
490
 * the number of groups supported.
491
 */
492
void tls1_get_supported_groups(SSL *s, const uint16_t **pgroups,
493
                               size_t *pgroupslen)
494
31.0k
{
495
    /* For Suite B mode only include P-256, P-384 */
496
31.0k
    switch (tls1_suiteb(s)) {
497
0
    case SSL_CERT_FLAG_SUITEB_128_LOS:
498
0
        *pgroups = suiteb_curves;
499
0
        *pgroupslen = OSSL_NELEM(suiteb_curves);
500
0
        break;
501
502
0
    case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
503
0
        *pgroups = suiteb_curves;
504
0
        *pgroupslen = 1;
505
0
        break;
506
507
0
    case SSL_CERT_FLAG_SUITEB_192_LOS:
508
0
        *pgroups = suiteb_curves + 1;
509
0
        *pgroupslen = 1;
510
0
        break;
511
512
31.0k
    default:
513
31.0k
        if (s->ext.supportedgroups == NULL) {
514
31.0k
            *pgroups = s->ctx->ext.supported_groups_default;
515
31.0k
            *pgroupslen = s->ctx->ext.supported_groups_default_len;
516
31.0k
        } else {
517
0
            *pgroups = s->ext.supportedgroups;
518
0
            *pgroupslen = s->ext.supportedgroups_len;
519
0
        }
520
31.0k
        break;
521
31.0k
    }
522
31.0k
}
523
524
int tls_valid_group(SSL *s, uint16_t group_id, int minversion, int maxversion,
525
                    int isec, int *okfortls13)
526
94.2k
{
527
94.2k
    const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(s->ctx, group_id);
528
94.2k
    int ret;
529
530
94.2k
    if (okfortls13 != NULL)
531
72.5k
        *okfortls13 = 0;
532
533
94.2k
    if (ginfo == NULL)
534
0
        return 0;
535
536
94.2k
    if (SSL_IS_DTLS(s)) {
537
0
        if (ginfo->mindtls < 0 || ginfo->maxdtls < 0)
538
0
            return 0;
539
0
        if (ginfo->maxdtls == 0)
540
0
            ret = 1;
541
0
        else
542
0
            ret = DTLS_VERSION_LE(minversion, ginfo->maxdtls);
543
0
        if (ginfo->mindtls > 0)
544
0
            ret &= DTLS_VERSION_GE(maxversion, ginfo->mindtls);
545
94.2k
    } else {
546
94.2k
        if (ginfo->mintls < 0 || ginfo->maxtls < 0)
547
0
            return 0;
548
94.2k
        if (ginfo->maxtls == 0)
549
94.2k
            ret = 1;
550
0
        else
551
0
            ret = (minversion <= ginfo->maxtls);
552
94.2k
        if (ginfo->mintls > 0)
553
94.2k
            ret &= (maxversion >= ginfo->mintls);
554
94.2k
        if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)
555
72.5k
            *okfortls13 = (ginfo->maxtls == 0)
556
72.5k
                          || (ginfo->maxtls >= TLS1_3_VERSION);
557
94.2k
    }
558
94.2k
    ret &= !isec
559
94.2k
           || strcmp(ginfo->algorithm, "EC") == 0
560
94.2k
           || strcmp(ginfo->algorithm, "X25519") == 0
561
94.2k
           || strcmp(ginfo->algorithm, "X448") == 0;
562
563
94.2k
    return ret;
564
94.2k
}
565
566
/* See if group is allowed by security callback */
567
int tls_group_allowed(SSL *s, uint16_t group, int op)
568
96.2k
{
569
96.2k
    const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(s->ctx, group);
570
96.2k
    unsigned char gtmp[2];
571
572
96.2k
    if (ginfo == NULL)
573
0
        return 0;
574
575
96.2k
    gtmp[0] = group >> 8;
576
96.2k
    gtmp[1] = group & 0xff;
577
96.2k
    return ssl_security(s, op, ginfo->secbits,
578
96.2k
                        tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
579
96.2k
}
580
581
/* Return 1 if "id" is in "list" */
582
static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
583
1.91k
{
584
1.91k
    size_t i;
585
5.02k
    for (i = 0; i < listlen; i++)
586
5.01k
        if (list[i] == id)
587
1.90k
            return 1;
588
13
    return 0;
589
1.91k
}
590
591
/*-
592
 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
593
 * if there is no match.
594
 * For nmatch == -1, return number of matches
595
 * For nmatch == -2, return the id of the group to use for
596
 * a tmp key, or 0 if there is no match.
597
 */
598
uint16_t tls1_shared_group(SSL *s, int nmatch)
599
0
{
600
0
    const uint16_t *pref, *supp;
601
0
    size_t num_pref, num_supp, i;
602
0
    int k;
603
604
    /* Can't do anything on client side */
605
0
    if (s->server == 0)
606
0
        return 0;
607
0
    if (nmatch == -2) {
608
0
        if (tls1_suiteb(s)) {
609
            /*
610
             * For Suite B ciphersuite determines curve: we already know
611
             * these are acceptable due to previous checks.
612
             */
613
0
            unsigned long cid = s->s3.tmp.new_cipher->id;
614
615
0
            if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
616
0
                return TLSEXT_curve_P_256;
617
0
            if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
618
0
                return TLSEXT_curve_P_384;
619
            /* Should never happen */
620
0
            return 0;
621
0
        }
622
        /* If not Suite B just return first preference shared curve */
623
0
        nmatch = 0;
624
0
    }
625
    /*
626
     * If server preference set, our groups are the preference order
627
     * otherwise peer decides.
628
     */
629
0
    if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
630
0
        tls1_get_supported_groups(s, &pref, &num_pref);
631
0
        tls1_get_peer_groups(s, &supp, &num_supp);
632
0
    } else {
633
0
        tls1_get_peer_groups(s, &pref, &num_pref);
634
0
        tls1_get_supported_groups(s, &supp, &num_supp);
635
0
    }
636
637
0
    for (k = 0, i = 0; i < num_pref; i++) {
638
0
        uint16_t id = pref[i];
639
640
0
        if (!tls1_in_list(id, supp, num_supp)
641
0
            || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
642
0
                    continue;
643
0
        if (nmatch == k)
644
0
            return id;
645
0
         k++;
646
0
    }
647
0
    if (nmatch == -1)
648
0
        return k;
649
    /* Out of range (nmatch > k). */
650
0
    return 0;
651
0
}
652
653
int tls1_set_groups(uint16_t **pext, size_t *pextlen,
654
                    int *groups, size_t ngroups)
655
0
{
656
0
    uint16_t *glist;
657
0
    size_t i;
658
    /*
659
     * Bitmap of groups included to detect duplicates: two variables are added
660
     * to detect duplicates as some values are more than 32.
661
     */
662
0
    unsigned long *dup_list = NULL;
663
0
    unsigned long dup_list_egrp = 0;
664
0
    unsigned long dup_list_dhgrp = 0;
665
666
0
    if (ngroups == 0) {
667
0
        ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
668
0
        return 0;
669
0
    }
670
0
    if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL) {
671
0
        ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
672
0
        return 0;
673
0
    }
674
0
    for (i = 0; i < ngroups; i++) {
675
0
        unsigned long idmask;
676
0
        uint16_t id;
677
0
        id = tls1_nid2group_id(groups[i]);
678
0
        if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
679
0
            goto err;
680
0
        idmask = 1L << (id & 0x00FF);
681
0
        dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
682
0
        if (!id || ((*dup_list) & idmask))
683
0
            goto err;
684
0
        *dup_list |= idmask;
685
0
        glist[i] = id;
686
0
    }
687
0
    OPENSSL_free(*pext);
688
0
    *pext = glist;
689
0
    *pextlen = ngroups;
690
0
    return 1;
691
0
err:
692
0
    OPENSSL_free(glist);
693
0
    return 0;
694
0
}
695
696
0
# define GROUPLIST_INCREMENT   40
697
# define GROUP_NAME_BUFFER_LENGTH 64
698
typedef struct {
699
    SSL_CTX *ctx;
700
    size_t gidcnt;
701
    size_t gidmax;
702
    uint16_t *gid_arr;
703
} gid_cb_st;
704
705
static int gid_cb(const char *elem, int len, void *arg)
706
0
{
707
0
    gid_cb_st *garg = arg;
708
0
    size_t i;
709
0
    uint16_t gid = 0;
710
0
    char etmp[GROUP_NAME_BUFFER_LENGTH];
711
712
0
    if (elem == NULL)
713
0
        return 0;
714
0
    if (garg->gidcnt == garg->gidmax) {
715
0
        uint16_t *tmp =
716
0
            OPENSSL_realloc(garg->gid_arr, garg->gidmax + GROUPLIST_INCREMENT);
717
0
        if (tmp == NULL)
718
0
            return 0;
719
0
        garg->gidmax += GROUPLIST_INCREMENT;
720
0
        garg->gid_arr = tmp;
721
0
    }
722
0
    if (len > (int)(sizeof(etmp) - 1))
723
0
        return 0;
724
0
    memcpy(etmp, elem, len);
725
0
    etmp[len] = 0;
726
727
0
    gid = tls1_group_name2id(garg->ctx, etmp);
728
0
    if (gid == 0) {
729
0
        ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
730
0
                       "group '%s' cannot be set", etmp);
731
0
        return 0;
732
0
    }
733
0
    for (i = 0; i < garg->gidcnt; i++)
734
0
        if (garg->gid_arr[i] == gid)
735
0
            return 0;
736
0
    garg->gid_arr[garg->gidcnt++] = gid;
737
0
    return 1;
738
0
}
739
740
/* Set groups based on a colon separated list */
741
int tls1_set_groups_list(SSL_CTX *ctx, uint16_t **pext, size_t *pextlen,
742
                         const char *str)
743
0
{
744
0
    gid_cb_st gcb;
745
0
    uint16_t *tmparr;
746
0
    int ret = 0;
747
748
0
    gcb.gidcnt = 0;
749
0
    gcb.gidmax = GROUPLIST_INCREMENT;
750
0
    gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr));
751
0
    if (gcb.gid_arr == NULL)
752
0
        return 0;
753
0
    gcb.ctx = ctx;
754
0
    if (!CONF_parse_list(str, ':', 1, gid_cb, &gcb))
755
0
        goto end;
756
0
    if (pext == NULL) {
757
0
        ret = 1;
758
0
        goto end;
759
0
    }
760
761
    /*
762
     * gid_cb ensurse there are no duplicates so we can just go ahead and set
763
     * the result
764
     */
765
0
    tmparr = OPENSSL_memdup(gcb.gid_arr, gcb.gidcnt * sizeof(*tmparr));
766
0
    if (tmparr == NULL)
767
0
        goto end;
768
0
    OPENSSL_free(*pext);
769
0
    *pext = tmparr;
770
0
    *pextlen = gcb.gidcnt;
771
0
    ret = 1;
772
0
 end:
773
0
    OPENSSL_free(gcb.gid_arr);
774
0
    return ret;
775
0
}
776
777
/* Check a group id matches preferences */
778
int tls1_check_group_id(SSL *s, uint16_t group_id, int check_own_groups)
779
1.91k
    {
780
1.91k
    const uint16_t *groups;
781
1.91k
    size_t groups_len;
782
783
1.91k
    if (group_id == 0)
784
2
        return 0;
785
786
    /* Check for Suite B compliance */
787
1.91k
    if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
788
0
        unsigned long cid = s->s3.tmp.new_cipher->id;
789
790
0
        if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
791
0
            if (group_id != TLSEXT_curve_P_256)
792
0
                return 0;
793
0
        } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
794
0
            if (group_id != TLSEXT_curve_P_384)
795
0
                return 0;
796
0
        } else {
797
            /* Should never happen */
798
0
            return 0;
799
0
        }
800
0
    }
801
802
1.91k
    if (check_own_groups) {
803
        /* Check group is one of our preferences */
804
1.91k
        tls1_get_supported_groups(s, &groups, &groups_len);
805
1.91k
        if (!tls1_in_list(group_id, groups, groups_len))
806
13
            return 0;
807
1.91k
    }
808
809
1.90k
    if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
810
0
        return 0;
811
812
    /* For clients, nothing more to check */
813
1.90k
    if (!s->server)
814
1.90k
        return 1;
815
816
    /* Check group is one of peers preferences */
817
0
    tls1_get_peer_groups(s, &groups, &groups_len);
818
819
    /*
820
     * RFC 4492 does not require the supported elliptic curves extension
821
     * so if it is not sent we can just choose any curve.
822
     * It is invalid to send an empty list in the supported groups
823
     * extension, so groups_len == 0 always means no extension.
824
     */
825
0
    if (groups_len == 0)
826
0
            return 1;
827
0
    return tls1_in_list(group_id, groups, groups_len);
828
0
}
829
830
void tls1_get_formatlist(SSL *s, const unsigned char **pformats,
831
                         size_t *num_formats)
832
7.25k
{
833
    /*
834
     * If we have a custom point format list use it otherwise use default
835
     */
836
7.25k
    if (s->ext.ecpointformats) {
837
0
        *pformats = s->ext.ecpointformats;
838
0
        *num_formats = s->ext.ecpointformats_len;
839
7.25k
    } else {
840
7.25k
        *pformats = ecformats_default;
841
        /* For Suite B we don't support char2 fields */
842
7.25k
        if (tls1_suiteb(s))
843
0
            *num_formats = sizeof(ecformats_default) - 1;
844
7.25k
        else
845
7.25k
            *num_formats = sizeof(ecformats_default);
846
7.25k
    }
847
7.25k
}
848
849
/* Check a key is compatible with compression extension */
850
static int tls1_check_pkey_comp(SSL *s, EVP_PKEY *pkey)
851
166
{
852
166
    unsigned char comp_id;
853
166
    size_t i;
854
166
    int point_conv;
855
856
    /* If not an EC key nothing to check */
857
166
    if (!EVP_PKEY_is_a(pkey, "EC"))
858
0
        return 1;
859
860
861
    /* Get required compression id */
862
166
    point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);
863
166
    if (point_conv == 0)
864
0
        return 0;
865
166
    if (point_conv == POINT_CONVERSION_UNCOMPRESSED) {
866
156
            comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
867
156
    } else if (SSL_IS_TLS13(s)) {
868
        /*
869
         * ec_point_formats extension is not used in TLSv1.3 so we ignore
870
         * this check.
871
         */
872
0
        return 1;
873
10
    } else {
874
10
        int field_type = EVP_PKEY_get_field_type(pkey);
875
876
10
        if (field_type == NID_X9_62_prime_field)
877
9
            comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
878
1
        else if (field_type == NID_X9_62_characteristic_two_field)
879
0
            comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
880
1
        else
881
1
            return 0;
882
10
    }
883
    /*
884
     * If point formats extension present check it, otherwise everything is
885
     * supported (see RFC4492).
886
     */
887
165
    if (s->ext.peer_ecpointformats == NULL)
888
109
        return 1;
889
890
72
    for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
891
67
        if (s->ext.peer_ecpointformats[i] == comp_id)
892
51
            return 1;
893
67
    }
894
5
    return 0;
895
56
}
896
897
/* Return group id of a key */
898
static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
899
160
{
900
160
    int curve_nid = ssl_get_EC_curve_nid(pkey);
901
902
160
    if (curve_nid == NID_undef)
903
0
        return 0;
904
160
    return tls1_nid2group_id(curve_nid);
905
160
}
906
907
/*
908
 * Check cert parameters compatible with extensions: currently just checks EC
909
 * certificates have compatible curves and compression.
910
 */
911
static int tls1_check_cert_param(SSL *s, X509 *x, int check_ee_md)
912
0
{
913
0
    uint16_t group_id;
914
0
    EVP_PKEY *pkey;
915
0
    pkey = X509_get0_pubkey(x);
916
0
    if (pkey == NULL)
917
0
        return 0;
918
    /* If not EC nothing to do */
919
0
    if (!EVP_PKEY_is_a(pkey, "EC"))
920
0
        return 1;
921
    /* Check compression */
922
0
    if (!tls1_check_pkey_comp(s, pkey))
923
0
        return 0;
924
0
    group_id = tls1_get_group_id(pkey);
925
    /*
926
     * For a server we allow the certificate to not be in our list of supported
927
     * groups.
928
     */
929
0
    if (!tls1_check_group_id(s, group_id, !s->server))
930
0
        return 0;
931
    /*
932
     * Special case for suite B. We *MUST* sign using SHA256+P-256 or
933
     * SHA384+P-384.
934
     */
935
0
    if (check_ee_md && tls1_suiteb(s)) {
936
0
        int check_md;
937
0
        size_t i;
938
939
        /* Check to see we have necessary signing algorithm */
940
0
        if (group_id == TLSEXT_curve_P_256)
941
0
            check_md = NID_ecdsa_with_SHA256;
942
0
        else if (group_id == TLSEXT_curve_P_384)
943
0
            check_md = NID_ecdsa_with_SHA384;
944
0
        else
945
0
            return 0;           /* Should never happen */
946
0
        for (i = 0; i < s->shared_sigalgslen; i++) {
947
0
            if (check_md == s->shared_sigalgs[i]->sigandhash)
948
0
                return 1;;
949
0
        }
950
0
        return 0;
951
0
    }
952
0
    return 1;
953
0
}
954
955
/*
956
 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
957
 * @s: SSL connection
958
 * @cid: Cipher ID we're considering using
959
 *
960
 * Checks that the kECDHE cipher suite we're considering using
961
 * is compatible with the client extensions.
962
 *
963
 * Returns 0 when the cipher can't be used or 1 when it can.
964
 */
965
int tls1_check_ec_tmp_key(SSL *s, unsigned long cid)
966
0
{
967
    /* If not Suite B just need a shared group */
968
0
    if (!tls1_suiteb(s))
969
0
        return tls1_shared_group(s, 0) != 0;
970
    /*
971
     * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
972
     * curves permitted.
973
     */
974
0
    if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
975
0
        return tls1_check_group_id(s, TLSEXT_curve_P_256, 1);
976
0
    if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
977
0
        return tls1_check_group_id(s, TLSEXT_curve_P_384, 1);
978
979
0
    return 0;
980
0
}
981
982
/* Default sigalg schemes */
983
static const uint16_t tls12_sigalgs[] = {
984
    TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
985
    TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
986
    TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
987
    TLSEXT_SIGALG_ed25519,
988
    TLSEXT_SIGALG_ed448,
989
990
    TLSEXT_SIGALG_rsa_pss_pss_sha256,
991
    TLSEXT_SIGALG_rsa_pss_pss_sha384,
992
    TLSEXT_SIGALG_rsa_pss_pss_sha512,
993
    TLSEXT_SIGALG_rsa_pss_rsae_sha256,
994
    TLSEXT_SIGALG_rsa_pss_rsae_sha384,
995
    TLSEXT_SIGALG_rsa_pss_rsae_sha512,
996
997
    TLSEXT_SIGALG_rsa_pkcs1_sha256,
998
    TLSEXT_SIGALG_rsa_pkcs1_sha384,
999
    TLSEXT_SIGALG_rsa_pkcs1_sha512,
1000
1001
    TLSEXT_SIGALG_ecdsa_sha224,
1002
    TLSEXT_SIGALG_ecdsa_sha1,
1003
1004
    TLSEXT_SIGALG_rsa_pkcs1_sha224,
1005
    TLSEXT_SIGALG_rsa_pkcs1_sha1,
1006
1007
    TLSEXT_SIGALG_dsa_sha224,
1008
    TLSEXT_SIGALG_dsa_sha1,
1009
1010
    TLSEXT_SIGALG_dsa_sha256,
1011
    TLSEXT_SIGALG_dsa_sha384,
1012
    TLSEXT_SIGALG_dsa_sha512,
1013
1014
#ifndef OPENSSL_NO_GOST
1015
    TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1016
    TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1017
    TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1018
    TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1019
    TLSEXT_SIGALG_gostr34102001_gostr3411,
1020
#endif
1021
};
1022
1023
1024
static const uint16_t suiteb_sigalgs[] = {
1025
    TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1026
    TLSEXT_SIGALG_ecdsa_secp384r1_sha384
1027
};
1028
1029
static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
1030
    {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1031
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1032
     NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1},
1033
    {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1034
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1035
     NID_ecdsa_with_SHA384, NID_secp384r1, 1},
1036
    {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1037
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1038
     NID_ecdsa_with_SHA512, NID_secp521r1, 1},
1039
    {"ed25519", TLSEXT_SIGALG_ed25519,
1040
     NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
1041
     NID_undef, NID_undef, 1},
1042
    {"ed448", TLSEXT_SIGALG_ed448,
1043
     NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
1044
     NID_undef, NID_undef, 1},
1045
    {NULL, TLSEXT_SIGALG_ecdsa_sha224,
1046
     NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1047
     NID_ecdsa_with_SHA224, NID_undef, 1},
1048
    {NULL, TLSEXT_SIGALG_ecdsa_sha1,
1049
     NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1050
     NID_ecdsa_with_SHA1, NID_undef, 1},
1051
    {"rsa_pss_rsae_sha256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1052
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1053
     NID_undef, NID_undef, 1},
1054
    {"rsa_pss_rsae_sha384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1055
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1056
     NID_undef, NID_undef, 1},
1057
    {"rsa_pss_rsae_sha512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1058
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1059
     NID_undef, NID_undef, 1},
1060
    {"rsa_pss_pss_sha256", TLSEXT_SIGALG_rsa_pss_pss_sha256,
1061
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1062
     NID_undef, NID_undef, 1},
1063
    {"rsa_pss_pss_sha384", TLSEXT_SIGALG_rsa_pss_pss_sha384,
1064
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1065
     NID_undef, NID_undef, 1},
1066
    {"rsa_pss_pss_sha512", TLSEXT_SIGALG_rsa_pss_pss_sha512,
1067
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1068
     NID_undef, NID_undef, 1},
1069
    {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
1070
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1071
     NID_sha256WithRSAEncryption, NID_undef, 1},
1072
    {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
1073
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1074
     NID_sha384WithRSAEncryption, NID_undef, 1},
1075
    {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
1076
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1077
     NID_sha512WithRSAEncryption, NID_undef, 1},
1078
    {"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
1079
     NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1080
     NID_sha224WithRSAEncryption, NID_undef, 1},
1081
    {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
1082
     NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1083
     NID_sha1WithRSAEncryption, NID_undef, 1},
1084
    {NULL, TLSEXT_SIGALG_dsa_sha256,
1085
     NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1086
     NID_dsa_with_SHA256, NID_undef, 1},
1087
    {NULL, TLSEXT_SIGALG_dsa_sha384,
1088
     NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1089
     NID_undef, NID_undef, 1},
1090
    {NULL, TLSEXT_SIGALG_dsa_sha512,
1091
     NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1092
     NID_undef, NID_undef, 1},
1093
    {NULL, TLSEXT_SIGALG_dsa_sha224,
1094
     NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1095
     NID_undef, NID_undef, 1},
1096
    {NULL, TLSEXT_SIGALG_dsa_sha1,
1097
     NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1098
     NID_dsaWithSHA1, NID_undef, 1},
1099
#ifndef OPENSSL_NO_GOST
1100
    {NULL, TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1101
     NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1102
     NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1103
     NID_undef, NID_undef, 1},
1104
    {NULL, TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1105
     NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1106
     NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1107
     NID_undef, NID_undef, 1},
1108
    {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1109
     NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1110
     NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1111
     NID_undef, NID_undef, 1},
1112
    {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1113
     NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1114
     NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1115
     NID_undef, NID_undef, 1},
1116
    {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
1117
     NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
1118
     NID_id_GostR3410_2001, SSL_PKEY_GOST01,
1119
     NID_undef, NID_undef, 1}
1120
#endif
1121
};
1122
/* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
1123
static const SIGALG_LOOKUP legacy_rsa_sigalg = {
1124
    "rsa_pkcs1_md5_sha1", 0,
1125
     NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
1126
     EVP_PKEY_RSA, SSL_PKEY_RSA,
1127
     NID_undef, NID_undef, 1
1128
};
1129
1130
/*
1131
 * Default signature algorithm values used if signature algorithms not present.
1132
 * From RFC5246. Note: order must match certificate index order.
1133
 */
1134
static const uint16_t tls_default_sigalg[] = {
1135
    TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
1136
    0, /* SSL_PKEY_RSA_PSS_SIGN */
1137
    TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
1138
    TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
1139
    TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
1140
    TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
1141
    TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
1142
    0, /* SSL_PKEY_ED25519 */
1143
    0, /* SSL_PKEY_ED448 */
1144
};
1145
1146
int ssl_setup_sig_algs(SSL_CTX *ctx)
1147
7.18k
{
1148
7.18k
    size_t i;
1149
7.18k
    const SIGALG_LOOKUP *lu;
1150
7.18k
    SIGALG_LOOKUP *cache
1151
7.18k
        = OPENSSL_malloc(sizeof(*lu) * OSSL_NELEM(sigalg_lookup_tbl));
1152
7.18k
    EVP_PKEY *tmpkey = EVP_PKEY_new();
1153
7.18k
    int ret = 0;
1154
1155
7.18k
    if (cache == NULL || tmpkey == NULL)
1156
0
        goto err;
1157
1158
7.18k
    ERR_set_mark();
1159
7.18k
    for (i = 0, lu = sigalg_lookup_tbl;
1160
208k
         i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
1161
201k
        EVP_PKEY_CTX *pctx;
1162
1163
201k
        cache[i] = *lu;
1164
1165
        /*
1166
         * Check hash is available.
1167
         * This test is not perfect. A provider could have support
1168
         * for a signature scheme, but not a particular hash. However the hash
1169
         * could be available from some other loaded provider. In that case it
1170
         * could be that the signature is available, and the hash is available
1171
         * independently - but not as a combination. We ignore this for now.
1172
         */
1173
201k
        if (lu->hash != NID_undef
1174
201k
                && ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
1175
35.9k
            cache[i].enabled = 0;
1176
35.9k
            continue;
1177
35.9k
        }
1178
1179
165k
        if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
1180
0
            cache[i].enabled = 0;
1181
0
            continue;
1182
0
        }
1183
165k
        pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
1184
        /* If unable to create pctx we assume the sig algorithm is unavailable */
1185
165k
        if (pctx == NULL)
1186
0
            cache[i].enabled = 0;
1187
165k
        EVP_PKEY_CTX_free(pctx);
1188
165k
    }
1189
7.18k
    ERR_pop_to_mark();
1190
7.18k
    ctx->sigalg_lookup_cache = cache;
1191
7.18k
    cache = NULL;
1192
1193
7.18k
    ret = 1;
1194
7.18k
 err:
1195
7.18k
    OPENSSL_free(cache);
1196
7.18k
    EVP_PKEY_free(tmpkey);
1197
7.18k
    return ret;
1198
7.18k
}
1199
1200
/* Lookup TLS signature algorithm */
1201
static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL *s, uint16_t sigalg)
1202
838k
{
1203
838k
    size_t i;
1204
838k
    const SIGALG_LOOKUP *lu;
1205
1206
838k
    for (i = 0, lu = s->ctx->sigalg_lookup_cache;
1207
         /* cache should have the same number of elements as sigalg_lookup_tbl */
1208
12.4M
         i < OSSL_NELEM(sigalg_lookup_tbl);
1209
12.3M
         lu++, i++) {
1210
12.3M
        if (lu->sigalg == sigalg) {
1211
821k
            if (!lu->enabled)
1212
146k
                return NULL;
1213
675k
            return lu;
1214
821k
        }
1215
12.3M
    }
1216
16.4k
    return NULL;
1217
838k
}
1218
/* Lookup hash: return 0 if invalid or not enabled */
1219
int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
1220
242k
{
1221
242k
    const EVP_MD *md;
1222
242k
    if (lu == NULL)
1223
0
        return 0;
1224
    /* lu->hash == NID_undef means no associated digest */
1225
242k
    if (lu->hash == NID_undef) {
1226
15.0k
        md = NULL;
1227
227k
    } else {
1228
227k
        md = ssl_md(ctx, lu->hash_idx);
1229
227k
        if (md == NULL)
1230
0
            return 0;
1231
227k
    }
1232
242k
    if (pmd)
1233
241k
        *pmd = md;
1234
242k
    return 1;
1235
242k
}
1236
1237
/*
1238
 * Check if key is large enough to generate RSA-PSS signature.
1239
 *
1240
 * The key must greater than or equal to 2 * hash length + 2.
1241
 * SHA512 has a hash length of 64 bytes, which is incompatible
1242
 * with a 128 byte (1024 bit) key.
1243
 */
1244
0
#define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2)
1245
static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
1246
                                      const SIGALG_LOOKUP *lu)
1247
0
{
1248
0
    const EVP_MD *md;
1249
1250
0
    if (pkey == NULL)
1251
0
        return 0;
1252
0
    if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
1253
0
        return 0;
1254
0
    if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
1255
0
        return 0;
1256
0
    return 1;
1257
0
}
1258
1259
/*
1260
 * Returns a signature algorithm when the peer did not send a list of supported
1261
 * signature algorithms. The signature algorithm is fixed for the certificate
1262
 * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
1263
 * certificate type from |s| will be used.
1264
 * Returns the signature algorithm to use, or NULL on error.
1265
 */
1266
static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL *s, int idx)
1267
336
{
1268
336
    if (idx == -1) {
1269
0
        if (s->server) {
1270
0
            size_t i;
1271
1272
            /* Work out index corresponding to ciphersuite */
1273
0
            for (i = 0; i < SSL_PKEY_NUM; i++) {
1274
0
                const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(i);
1275
1276
0
                if (clu == NULL)
1277
0
                    continue;
1278
0
                if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
1279
0
                    idx = i;
1280
0
                    break;
1281
0
                }
1282
0
            }
1283
1284
            /*
1285
             * Some GOST ciphersuites allow more than one signature algorithms
1286
             * */
1287
0
            if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
1288
0
                int real_idx;
1289
1290
0
                for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
1291
0
                     real_idx--) {
1292
0
                    if (s->cert->pkeys[real_idx].privatekey != NULL) {
1293
0
                        idx = real_idx;
1294
0
                        break;
1295
0
                    }
1296
0
                }
1297
0
            }
1298
            /*
1299
             * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
1300
             * with new (aGOST12-only) ciphersuites, we should find out which one is available really.
1301
             */
1302
0
            else if (idx == SSL_PKEY_GOST12_256) {
1303
0
                int real_idx;
1304
1305
0
                for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
1306
0
                     real_idx--) {
1307
0
                     if (s->cert->pkeys[real_idx].privatekey != NULL) {
1308
0
                         idx = real_idx;
1309
0
                         break;
1310
0
                     }
1311
0
                }
1312
0
            }
1313
0
        } else {
1314
0
            idx = s->cert->key - s->cert->pkeys;
1315
0
        }
1316
0
    }
1317
336
    if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
1318
0
        return NULL;
1319
336
    if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
1320
288
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, tls_default_sigalg[idx]);
1321
1322
288
        if (lu == NULL)
1323
2
            return NULL;
1324
286
        if (!tls1_lookup_md(s->ctx, lu, NULL))
1325
0
            return NULL;
1326
286
        if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
1327
0
            return NULL;
1328
286
        return lu;
1329
286
    }
1330
48
    if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
1331
0
        return NULL;
1332
48
    return &legacy_rsa_sigalg;
1333
48
}
1334
/* Set peer sigalg based key type */
1335
int tls1_set_peer_legacy_sigalg(SSL *s, const EVP_PKEY *pkey)
1336
336
{
1337
336
    size_t idx;
1338
336
    const SIGALG_LOOKUP *lu;
1339
1340
336
    if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
1341
0
        return 0;
1342
336
    lu = tls1_get_legacy_sigalg(s, idx);
1343
336
    if (lu == NULL)
1344
2
        return 0;
1345
334
    s->s3.tmp.peer_sigalg = lu;
1346
334
    return 1;
1347
336
}
1348
1349
size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs)
1350
29.6k
{
1351
    /*
1352
     * If Suite B mode use Suite B sigalgs only, ignore any other
1353
     * preferences.
1354
     */
1355
29.6k
    switch (tls1_suiteb(s)) {
1356
0
    case SSL_CERT_FLAG_SUITEB_128_LOS:
1357
0
        *psigs = suiteb_sigalgs;
1358
0
        return OSSL_NELEM(suiteb_sigalgs);
1359
1360
0
    case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1361
0
        *psigs = suiteb_sigalgs;
1362
0
        return 1;
1363
1364
0
    case SSL_CERT_FLAG_SUITEB_192_LOS:
1365
0
        *psigs = suiteb_sigalgs + 1;
1366
0
        return 1;
1367
29.6k
    }
1368
    /*
1369
     *  We use client_sigalgs (if not NULL) if we're a server
1370
     *  and sending a certificate request or if we're a client and
1371
     *  determining which shared algorithm to use.
1372
     */
1373
29.6k
    if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
1374
0
        *psigs = s->cert->client_sigalgs;
1375
0
        return s->cert->client_sigalgslen;
1376
29.6k
    } else if (s->cert->conf_sigalgs) {
1377
0
        *psigs = s->cert->conf_sigalgs;
1378
0
        return s->cert->conf_sigalgslen;
1379
29.6k
    } else {
1380
29.6k
        *psigs = tls12_sigalgs;
1381
29.6k
        return OSSL_NELEM(tls12_sigalgs);
1382
29.6k
    }
1383
29.6k
}
1384
1385
/*
1386
 * Called by servers only. Checks that we have a sig alg that supports the
1387
 * specified EC curve.
1388
 */
1389
int tls_check_sigalg_curve(const SSL *s, int curve)
1390
0
{
1391
0
   const uint16_t *sigs;
1392
0
   size_t siglen, i;
1393
1394
0
    if (s->cert->conf_sigalgs) {
1395
0
        sigs = s->cert->conf_sigalgs;
1396
0
        siglen = s->cert->conf_sigalgslen;
1397
0
    } else {
1398
0
        sigs = tls12_sigalgs;
1399
0
        siglen = OSSL_NELEM(tls12_sigalgs);
1400
0
    }
1401
1402
0
    for (i = 0; i < siglen; i++) {
1403
0
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, sigs[i]);
1404
1405
0
        if (lu == NULL)
1406
0
            continue;
1407
0
        if (lu->sig == EVP_PKEY_EC
1408
0
                && lu->curve != NID_undef
1409
0
                && curve == lu->curve)
1410
0
            return 1;
1411
0
    }
1412
1413
0
    return 0;
1414
0
}
1415
1416
/*
1417
 * Return the number of security bits for the signature algorithm, or 0 on
1418
 * error.
1419
 */
1420
static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
1421
240k
{
1422
240k
    const EVP_MD *md = NULL;
1423
240k
    int secbits = 0;
1424
1425
240k
    if (!tls1_lookup_md(ctx, lu, &md))
1426
0
        return 0;
1427
240k
    if (md != NULL)
1428
225k
    {
1429
225k
        int md_type = EVP_MD_get_type(md);
1430
1431
        /* Security bits: half digest bits */
1432
225k
        secbits = EVP_MD_get_size(md) * 4;
1433
        /*
1434
         * SHA1 and MD5 are known to be broken. Reduce security bits so that
1435
         * they're no longer accepted at security level 1. The real values don't
1436
         * really matter as long as they're lower than 80, which is our
1437
         * security level 1.
1438
         * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
1439
         * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
1440
         * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
1441
         * puts a chosen-prefix attack for MD5 at 2^39.
1442
         */
1443
225k
        if (md_type == NID_sha1)
1444
25.0k
            secbits = 64;
1445
200k
        else if (md_type == NID_md5_sha1)
1446
48
            secbits = 67;
1447
200k
        else if (md_type == NID_md5)
1448
0
            secbits = 39;
1449
225k
    } else {
1450
        /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
1451
15.0k
        if (lu->sigalg == TLSEXT_SIGALG_ed25519)
1452
7.34k
            secbits = 128;
1453
7.69k
        else if (lu->sigalg == TLSEXT_SIGALG_ed448)
1454
7.69k
            secbits = 224;
1455
15.0k
    }
1456
240k
    return secbits;
1457
240k
}
1458
1459
/*
1460
 * Check signature algorithm is consistent with sent supported signature
1461
 * algorithms and if so set relevant digest and signature scheme in
1462
 * s.
1463
 */
1464
int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey)
1465
551
{
1466
551
    const uint16_t *sent_sigs;
1467
551
    const EVP_MD *md = NULL;
1468
551
    char sigalgstr[2];
1469
551
    size_t sent_sigslen, i, cidx;
1470
551
    int pkeyid = -1;
1471
551
    const SIGALG_LOOKUP *lu;
1472
551
    int secbits = 0;
1473
1474
551
    pkeyid = EVP_PKEY_get_id(pkey);
1475
    /* Should never happen */
1476
551
    if (pkeyid == -1)
1477
0
        return -1;
1478
551
    if (SSL_IS_TLS13(s)) {
1479
        /* Disallow DSA for TLS 1.3 */
1480
0
        if (pkeyid == EVP_PKEY_DSA) {
1481
0
            SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1482
0
            return 0;
1483
0
        }
1484
        /* Only allow PSS for TLS 1.3 */
1485
0
        if (pkeyid == EVP_PKEY_RSA)
1486
0
            pkeyid = EVP_PKEY_RSA_PSS;
1487
0
    }
1488
551
    lu = tls1_lookup_sigalg(s, sig);
1489
    /*
1490
     * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
1491
     * is consistent with signature: RSA keys can be used for RSA-PSS
1492
     */
1493
551
    if (lu == NULL
1494
551
        || (SSL_IS_TLS13(s) && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
1495
551
        || (pkeyid != lu->sig
1496
538
        && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
1497
17
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1498
17
        return 0;
1499
17
    }
1500
    /* Check the sigalg is consistent with the key OID */
1501
534
    if (!ssl_cert_lookup_by_nid(EVP_PKEY_get_id(pkey), &cidx)
1502
534
            || lu->sig_idx != (int)cidx) {
1503
1
        SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1504
1
        return 0;
1505
1
    }
1506
1507
533
    if (pkeyid == EVP_PKEY_EC) {
1508
1509
        /* Check point compression is permitted */
1510
166
        if (!tls1_check_pkey_comp(s, pkey)) {
1511
6
            SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1512
6
                     SSL_R_ILLEGAL_POINT_COMPRESSION);
1513
6
            return 0;
1514
6
        }
1515
1516
        /* For TLS 1.3 or Suite B check curve matches signature algorithm */
1517
160
        if (SSL_IS_TLS13(s) || tls1_suiteb(s)) {
1518
0
            int curve = ssl_get_EC_curve_nid(pkey);
1519
1520
0
            if (lu->curve != NID_undef && curve != lu->curve) {
1521
0
                SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
1522
0
                return 0;
1523
0
            }
1524
0
        }
1525
160
        if (!SSL_IS_TLS13(s)) {
1526
            /* Check curve matches extensions */
1527
160
            if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
1528
1
                SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
1529
1
                return 0;
1530
1
            }
1531
159
            if (tls1_suiteb(s)) {
1532
                /* Check sigalg matches a permissible Suite B value */
1533
0
                if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
1534
0
                    && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
1535
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
1536
0
                             SSL_R_WRONG_SIGNATURE_TYPE);
1537
0
                    return 0;
1538
0
                }
1539
0
            }
1540
159
        }
1541
367
    } else if (tls1_suiteb(s)) {
1542
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1543
0
        return 0;
1544
0
    }
1545
1546
    /* Check signature matches a type we sent */
1547
526
    sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1548
7.26k
    for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
1549
7.26k
        if (sig == *sent_sigs)
1550
526
            break;
1551
7.26k
    }
1552
    /* Allow fallback to SHA1 if not strict mode */
1553
526
    if (i == sent_sigslen && (lu->hash != NID_sha1
1554
0
        || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
1555
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1556
0
        return 0;
1557
0
    }
1558
526
    if (!tls1_lookup_md(s->ctx, lu, &md)) {
1559
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);
1560
0
        return 0;
1561
0
    }
1562
    /*
1563
     * Make sure security callback allows algorithm. For historical
1564
     * reasons we have to pass the sigalg as a two byte char array.
1565
     */
1566
526
    sigalgstr[0] = (sig >> 8) & 0xff;
1567
526
    sigalgstr[1] = sig & 0xff;
1568
526
    secbits = sigalg_security_bits(s->ctx, lu);
1569
526
    if (secbits == 0 ||
1570
526
        !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,
1571
526
                      md != NULL ? EVP_MD_get_type(md) : NID_undef,
1572
526
                      (void *)sigalgstr)) {
1573
0
        SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1574
0
        return 0;
1575
0
    }
1576
    /* Store the sigalg the peer uses */
1577
526
    s->s3.tmp.peer_sigalg = lu;
1578
526
    return 1;
1579
526
}
1580
1581
int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
1582
0
{
1583
0
    if (s->s3.tmp.peer_sigalg == NULL)
1584
0
        return 0;
1585
0
    *pnid = s->s3.tmp.peer_sigalg->sig;
1586
0
    return 1;
1587
0
}
1588
1589
int SSL_get_signature_type_nid(const SSL *s, int *pnid)
1590
0
{
1591
0
    if (s->s3.tmp.sigalg == NULL)
1592
0
        return 0;
1593
0
    *pnid = s->s3.tmp.sigalg->sig;
1594
0
    return 1;
1595
0
}
1596
1597
/*
1598
 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
1599
 * supported, doesn't appear in supported signature algorithms, isn't supported
1600
 * by the enabled protocol versions or by the security level.
1601
 *
1602
 * This function should only be used for checking which ciphers are supported
1603
 * by the client.
1604
 *
1605
 * Call ssl_cipher_disabled() to check that it's enabled or not.
1606
 */
1607
int ssl_set_client_disabled(SSL *s)
1608
21.7k
{
1609
21.7k
    s->s3.tmp.mask_a = 0;
1610
21.7k
    s->s3.tmp.mask_k = 0;
1611
21.7k
    ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
1612
21.7k
    if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
1613
21.7k
                                &s->s3.tmp.max_ver, NULL) != 0)
1614
0
        return 0;
1615
21.7k
#ifndef OPENSSL_NO_PSK
1616
    /* with PSK there must be client callback set */
1617
21.7k
    if (!s->psk_client_callback) {
1618
21.7k
        s->s3.tmp.mask_a |= SSL_aPSK;
1619
21.7k
        s->s3.tmp.mask_k |= SSL_PSK;
1620
21.7k
    }
1621
21.7k
#endif                          /* OPENSSL_NO_PSK */
1622
21.7k
#ifndef OPENSSL_NO_SRP
1623
21.7k
    if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
1624
21.7k
        s->s3.tmp.mask_a |= SSL_aSRP;
1625
21.7k
        s->s3.tmp.mask_k |= SSL_kSRP;
1626
21.7k
    }
1627
21.7k
#endif
1628
21.7k
    return 1;
1629
21.7k
}
1630
1631
/*
1632
 * ssl_cipher_disabled - check that a cipher is disabled or not
1633
 * @s: SSL connection that you want to use the cipher on
1634
 * @c: cipher to check
1635
 * @op: Security check that you want to do
1636
 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
1637
 *
1638
 * Returns 1 when it's disabled, 0 when enabled.
1639
 */
1640
int ssl_cipher_disabled(const SSL *s, const SSL_CIPHER *c, int op, int ecdhe)
1641
3.74M
{
1642
3.74M
    if (c->algorithm_mkey & s->s3.tmp.mask_k
1643
3.74M
        || c->algorithm_auth & s->s3.tmp.mask_a)
1644
1.58M
        return 1;
1645
2.16M
    if (s->s3.tmp.max_ver == 0)
1646
0
        return 1;
1647
2.16M
    if (!SSL_IS_DTLS(s)) {
1648
2.16M
        int min_tls = c->min_tls;
1649
1650
        /*
1651
         * For historical reasons we will allow ECHDE to be selected by a server
1652
         * in SSLv3 if we are a client
1653
         */
1654
2.16M
        if (min_tls == TLS1_VERSION && ecdhe
1655
2.16M
                && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
1656
1.81k
            min_tls = SSL3_VERSION;
1657
1658
2.16M
        if ((min_tls > s->s3.tmp.max_ver) || (c->max_tls < s->s3.tmp.min_ver))
1659
10
            return 1;
1660
2.16M
    }
1661
2.16M
    if (SSL_IS_DTLS(s) && (DTLS_VERSION_GT(c->min_dtls, s->s3.tmp.max_ver)
1662
0
                           || DTLS_VERSION_LT(c->max_dtls, s->s3.tmp.min_ver)))
1663
0
        return 1;
1664
1665
2.16M
    return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
1666
2.16M
}
1667
1668
int tls_use_ticket(SSL *s)
1669
8.83k
{
1670
8.83k
    if ((s->options & SSL_OP_NO_TICKET))
1671
0
        return 0;
1672
8.83k
    return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
1673
8.83k
}
1674
1675
int tls1_set_server_sigalgs(SSL *s)
1676
0
{
1677
0
    size_t i;
1678
1679
    /* Clear any shared signature algorithms */
1680
0
    OPENSSL_free(s->shared_sigalgs);
1681
0
    s->shared_sigalgs = NULL;
1682
0
    s->shared_sigalgslen = 0;
1683
    /* Clear certificate validity flags */
1684
0
    for (i = 0; i < SSL_PKEY_NUM; i++)
1685
0
        s->s3.tmp.valid_flags[i] = 0;
1686
    /*
1687
     * If peer sent no signature algorithms check to see if we support
1688
     * the default algorithm for each certificate type
1689
     */
1690
0
    if (s->s3.tmp.peer_cert_sigalgs == NULL
1691
0
            && s->s3.tmp.peer_sigalgs == NULL) {
1692
0
        const uint16_t *sent_sigs;
1693
0
        size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1694
1695
0
        for (i = 0; i < SSL_PKEY_NUM; i++) {
1696
0
            const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
1697
0
            size_t j;
1698
1699
0
            if (lu == NULL)
1700
0
                continue;
1701
            /* Check default matches a type we sent */
1702
0
            for (j = 0; j < sent_sigslen; j++) {
1703
0
                if (lu->sigalg == sent_sigs[j]) {
1704
0
                        s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
1705
0
                        break;
1706
0
                }
1707
0
            }
1708
0
        }
1709
0
        return 1;
1710
0
    }
1711
1712
0
    if (!tls1_process_sigalgs(s)) {
1713
0
        SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
1714
0
        return 0;
1715
0
    }
1716
0
    if (s->shared_sigalgs != NULL)
1717
0
        return 1;
1718
1719
    /* Fatal error if no shared signature algorithms */
1720
0
    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
1721
0
             SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
1722
0
    return 0;
1723
0
}
1724
1725
/*-
1726
 * Gets the ticket information supplied by the client if any.
1727
 *
1728
 *   hello: The parsed ClientHello data
1729
 *   ret: (output) on return, if a ticket was decrypted, then this is set to
1730
 *       point to the resulting session.
1731
 */
1732
SSL_TICKET_STATUS tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello,
1733
                                             SSL_SESSION **ret)
1734
0
{
1735
0
    size_t size;
1736
0
    RAW_EXTENSION *ticketext;
1737
1738
0
    *ret = NULL;
1739
0
    s->ext.ticket_expected = 0;
1740
1741
    /*
1742
     * If tickets disabled or not supported by the protocol version
1743
     * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
1744
     * resumption.
1745
     */
1746
0
    if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
1747
0
        return SSL_TICKET_NONE;
1748
1749
0
    ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
1750
0
    if (!ticketext->present)
1751
0
        return SSL_TICKET_NONE;
1752
1753
0
    size = PACKET_remaining(&ticketext->data);
1754
1755
0
    return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
1756
0
                              hello->session_id, hello->session_id_len, ret);
1757
0
}
1758
1759
/*-
1760
 * tls_decrypt_ticket attempts to decrypt a session ticket.
1761
 *
1762
 * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
1763
 * expecting a pre-shared key ciphersuite, in which case we have no use for
1764
 * session tickets and one will never be decrypted, nor will
1765
 * s->ext.ticket_expected be set to 1.
1766
 *
1767
 * Side effects:
1768
 *   Sets s->ext.ticket_expected to 1 if the server will have to issue
1769
 *   a new session ticket to the client because the client indicated support
1770
 *   (and s->tls_session_secret_cb is NULL) but the client either doesn't have
1771
 *   a session ticket or we couldn't use the one it gave us, or if
1772
 *   s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
1773
 *   Otherwise, s->ext.ticket_expected is set to 0.
1774
 *
1775
 *   etick: points to the body of the session ticket extension.
1776
 *   eticklen: the length of the session tickets extension.
1777
 *   sess_id: points at the session ID.
1778
 *   sesslen: the length of the session ID.
1779
 *   psess: (output) on return, if a ticket was decrypted, then this is set to
1780
 *       point to the resulting session.
1781
 */
1782
SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick,
1783
                                     size_t eticklen, const unsigned char *sess_id,
1784
                                     size_t sesslen, SSL_SESSION **psess)
1785
0
{
1786
0
    SSL_SESSION *sess = NULL;
1787
0
    unsigned char *sdec;
1788
0
    const unsigned char *p;
1789
0
    int slen, ivlen, renew_ticket = 0, declen;
1790
0
    SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
1791
0
    size_t mlen;
1792
0
    unsigned char tick_hmac[EVP_MAX_MD_SIZE];
1793
0
    SSL_HMAC *hctx = NULL;
1794
0
    EVP_CIPHER_CTX *ctx = NULL;
1795
0
    SSL_CTX *tctx = s->session_ctx;
1796
1797
0
    if (eticklen == 0) {
1798
        /*
1799
         * The client will accept a ticket but doesn't currently have
1800
         * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
1801
         */
1802
0
        ret = SSL_TICKET_EMPTY;
1803
0
        goto end;
1804
0
    }
1805
0
    if (!SSL_IS_TLS13(s) && s->ext.session_secret_cb) {
1806
        /*
1807
         * Indicate that the ticket couldn't be decrypted rather than
1808
         * generating the session from ticket now, trigger
1809
         * abbreviated handshake based on external mechanism to
1810
         * calculate the master secret later.
1811
         */
1812
0
        ret = SSL_TICKET_NO_DECRYPT;
1813
0
        goto end;
1814
0
    }
1815
1816
    /* Need at least keyname + iv */
1817
0
    if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
1818
0
        ret = SSL_TICKET_NO_DECRYPT;
1819
0
        goto end;
1820
0
    }
1821
1822
    /* Initialize session ticket encryption and HMAC contexts */
1823
0
    hctx = ssl_hmac_new(tctx);
1824
0
    if (hctx == NULL) {
1825
0
        ret = SSL_TICKET_FATAL_ERR_MALLOC;
1826
0
        goto end;
1827
0
    }
1828
0
    ctx = EVP_CIPHER_CTX_new();
1829
0
    if (ctx == NULL) {
1830
0
        ret = SSL_TICKET_FATAL_ERR_MALLOC;
1831
0
        goto end;
1832
0
    }
1833
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
1834
0
    if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
1835
#else
1836
    if (tctx->ext.ticket_key_evp_cb != NULL)
1837
#endif
1838
0
    {
1839
0
        unsigned char *nctick = (unsigned char *)etick;
1840
0
        int rv = 0;
1841
1842
0
        if (tctx->ext.ticket_key_evp_cb != NULL)
1843
0
            rv = tctx->ext.ticket_key_evp_cb(s, nctick,
1844
0
                                             nctick + TLSEXT_KEYNAME_LENGTH,
1845
0
                                             ctx,
1846
0
                                             ssl_hmac_get0_EVP_MAC_CTX(hctx),
1847
0
                                             0);
1848
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
1849
0
        else if (tctx->ext.ticket_key_cb != NULL)
1850
            /* if 0 is returned, write an empty ticket */
1851
0
            rv = tctx->ext.ticket_key_cb(s, nctick,
1852
0
                                         nctick + TLSEXT_KEYNAME_LENGTH,
1853
0
                                         ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
1854
0
#endif
1855
0
        if (rv < 0) {
1856
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
1857
0
            goto end;
1858
0
        }
1859
0
        if (rv == 0) {
1860
0
            ret = SSL_TICKET_NO_DECRYPT;
1861
0
            goto end;
1862
0
        }
1863
0
        if (rv == 2)
1864
0
            renew_ticket = 1;
1865
0
    } else {
1866
0
        EVP_CIPHER *aes256cbc = NULL;
1867
1868
        /* Check key name matches */
1869
0
        if (memcmp(etick, tctx->ext.tick_key_name,
1870
0
                   TLSEXT_KEYNAME_LENGTH) != 0) {
1871
0
            ret = SSL_TICKET_NO_DECRYPT;
1872
0
            goto end;
1873
0
        }
1874
1875
0
        aes256cbc = EVP_CIPHER_fetch(s->ctx->libctx, "AES-256-CBC",
1876
0
                                     s->ctx->propq);
1877
0
        if (aes256cbc == NULL
1878
0
            || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
1879
0
                             sizeof(tctx->ext.secure->tick_hmac_key),
1880
0
                             "SHA256") <= 0
1881
0
            || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
1882
0
                                  tctx->ext.secure->tick_aes_key,
1883
0
                                  etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
1884
0
            EVP_CIPHER_free(aes256cbc);
1885
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
1886
0
            goto end;
1887
0
        }
1888
0
        EVP_CIPHER_free(aes256cbc);
1889
0
        if (SSL_IS_TLS13(s))
1890
0
            renew_ticket = 1;
1891
0
    }
1892
    /*
1893
     * Attempt to process session ticket, first conduct sanity and integrity
1894
     * checks on ticket.
1895
     */
1896
0
    mlen = ssl_hmac_size(hctx);
1897
0
    if (mlen == 0) {
1898
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
1899
0
        goto end;
1900
0
    }
1901
1902
0
    ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
1903
0
    if (ivlen < 0) {
1904
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
1905
0
        goto end;
1906
0
    }
1907
1908
    /* Sanity check ticket length: must exceed keyname + IV + HMAC */
1909
0
    if (eticklen <= TLSEXT_KEYNAME_LENGTH + ivlen + mlen) {
1910
0
        ret = SSL_TICKET_NO_DECRYPT;
1911
0
        goto end;
1912
0
    }
1913
0
    eticklen -= mlen;
1914
    /* Check HMAC of encrypted ticket */
1915
0
    if (ssl_hmac_update(hctx, etick, eticklen) <= 0
1916
0
        || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
1917
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
1918
0
        goto end;
1919
0
    }
1920
1921
0
    if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
1922
0
        ret = SSL_TICKET_NO_DECRYPT;
1923
0
        goto end;
1924
0
    }
1925
    /* Attempt to decrypt session data */
1926
    /* Move p after IV to start of encrypted ticket, update length */
1927
0
    p = etick + TLSEXT_KEYNAME_LENGTH + ivlen;
1928
0
    eticklen -= TLSEXT_KEYNAME_LENGTH + ivlen;
1929
0
    sdec = OPENSSL_malloc(eticklen);
1930
0
    if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
1931
0
                                          (int)eticklen) <= 0) {
1932
0
        OPENSSL_free(sdec);
1933
0
        ret = SSL_TICKET_FATAL_ERR_OTHER;
1934
0
        goto end;
1935
0
    }
1936
0
    if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
1937
0
        OPENSSL_free(sdec);
1938
0
        ret = SSL_TICKET_NO_DECRYPT;
1939
0
        goto end;
1940
0
    }
1941
0
    slen += declen;
1942
0
    p = sdec;
1943
1944
0
    sess = d2i_SSL_SESSION(NULL, &p, slen);
1945
0
    slen -= p - sdec;
1946
0
    OPENSSL_free(sdec);
1947
0
    if (sess) {
1948
        /* Some additional consistency checks */
1949
0
        if (slen != 0) {
1950
0
            SSL_SESSION_free(sess);
1951
0
            sess = NULL;
1952
0
            ret = SSL_TICKET_NO_DECRYPT;
1953
0
            goto end;
1954
0
        }
1955
        /*
1956
         * The session ID, if non-empty, is used by some clients to detect
1957
         * that the ticket has been accepted. So we copy it to the session
1958
         * structure. If it is empty set length to zero as required by
1959
         * standard.
1960
         */
1961
0
        if (sesslen) {
1962
0
            memcpy(sess->session_id, sess_id, sesslen);
1963
0
            sess->session_id_length = sesslen;
1964
0
        }
1965
0
        if (renew_ticket)
1966
0
            ret = SSL_TICKET_SUCCESS_RENEW;
1967
0
        else
1968
0
            ret = SSL_TICKET_SUCCESS;
1969
0
        goto end;
1970
0
    }
1971
0
    ERR_clear_error();
1972
    /*
1973
     * For session parse failure, indicate that we need to send a new ticket.
1974
     */
1975
0
    ret = SSL_TICKET_NO_DECRYPT;
1976
1977
0
 end:
1978
0
    EVP_CIPHER_CTX_free(ctx);
1979
0
    ssl_hmac_free(hctx);
1980
1981
    /*
1982
     * If set, the decrypt_ticket_cb() is called unless a fatal error was
1983
     * detected above. The callback is responsible for checking |ret| before it
1984
     * performs any action
1985
     */
1986
0
    if (s->session_ctx->decrypt_ticket_cb != NULL
1987
0
            && (ret == SSL_TICKET_EMPTY
1988
0
                || ret == SSL_TICKET_NO_DECRYPT
1989
0
                || ret == SSL_TICKET_SUCCESS
1990
0
                || ret == SSL_TICKET_SUCCESS_RENEW)) {
1991
0
        size_t keyname_len = eticklen;
1992
0
        int retcb;
1993
1994
0
        if (keyname_len > TLSEXT_KEYNAME_LENGTH)
1995
0
            keyname_len = TLSEXT_KEYNAME_LENGTH;
1996
0
        retcb = s->session_ctx->decrypt_ticket_cb(s, sess, etick, keyname_len,
1997
0
                                                  ret,
1998
0
                                                  s->session_ctx->ticket_cb_data);
1999
0
        switch (retcb) {
2000
0
        case SSL_TICKET_RETURN_ABORT:
2001
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
2002
0
            break;
2003
2004
0
        case SSL_TICKET_RETURN_IGNORE:
2005
0
            ret = SSL_TICKET_NONE;
2006
0
            SSL_SESSION_free(sess);
2007
0
            sess = NULL;
2008
0
            break;
2009
2010
0
        case SSL_TICKET_RETURN_IGNORE_RENEW:
2011
0
            if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
2012
0
                ret = SSL_TICKET_NO_DECRYPT;
2013
            /* else the value of |ret| will already do the right thing */
2014
0
            SSL_SESSION_free(sess);
2015
0
            sess = NULL;
2016
0
            break;
2017
2018
0
        case SSL_TICKET_RETURN_USE:
2019
0
        case SSL_TICKET_RETURN_USE_RENEW:
2020
0
            if (ret != SSL_TICKET_SUCCESS
2021
0
                    && ret != SSL_TICKET_SUCCESS_RENEW)
2022
0
                ret = SSL_TICKET_FATAL_ERR_OTHER;
2023
0
            else if (retcb == SSL_TICKET_RETURN_USE)
2024
0
                ret = SSL_TICKET_SUCCESS;
2025
0
            else
2026
0
                ret = SSL_TICKET_SUCCESS_RENEW;
2027
0
            break;
2028
2029
0
        default:
2030
0
            ret = SSL_TICKET_FATAL_ERR_OTHER;
2031
0
        }
2032
0
    }
2033
2034
0
    if (s->ext.session_secret_cb == NULL || SSL_IS_TLS13(s)) {
2035
0
        switch (ret) {
2036
0
        case SSL_TICKET_NO_DECRYPT:
2037
0
        case SSL_TICKET_SUCCESS_RENEW:
2038
0
        case SSL_TICKET_EMPTY:
2039
0
            s->ext.ticket_expected = 1;
2040
0
        }
2041
0
    }
2042
2043
0
    *psess = sess;
2044
2045
0
    return ret;
2046
0
}
2047
2048
/* Check to see if a signature algorithm is allowed */
2049
static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu)
2050
239k
{
2051
239k
    unsigned char sigalgstr[2];
2052
239k
    int secbits;
2053
2054
239k
    if (lu == NULL || !lu->enabled)
2055
0
        return 0;
2056
    /* DSA is not allowed in TLS 1.3 */
2057
239k
    if (SSL_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
2058
0
        return 0;
2059
    /*
2060
     * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3
2061
     * spec
2062
     */
2063
239k
    if (!s->server && !SSL_IS_DTLS(s) && s->s3.tmp.min_ver >= TLS1_3_VERSION
2064
239k
        && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
2065
0
            || lu->hash_idx == SSL_MD_MD5_IDX
2066
0
            || lu->hash_idx == SSL_MD_SHA224_IDX))
2067
0
        return 0;
2068
2069
    /* See if public key algorithm allowed */
2070
239k
    if (ssl_cert_is_disabled(s->ctx, lu->sig_idx))
2071
0
        return 0;
2072
2073
239k
    if (lu->sig == NID_id_GostR3410_2012_256
2074
239k
            || lu->sig == NID_id_GostR3410_2012_512
2075
239k
            || lu->sig == NID_id_GostR3410_2001) {
2076
        /* We never allow GOST sig algs on the server with TLSv1.3 */
2077
0
        if (s->server && SSL_IS_TLS13(s))
2078
0
            return 0;
2079
0
        if (!s->server
2080
0
                && s->method->version == TLS_ANY_VERSION
2081
0
                && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
2082
0
            int i, num;
2083
0
            STACK_OF(SSL_CIPHER) *sk;
2084
2085
            /*
2086
             * We're a client that could negotiate TLSv1.3. We only allow GOST
2087
             * sig algs if we could negotiate TLSv1.2 or below and we have GOST
2088
             * ciphersuites enabled.
2089
             */
2090
2091
0
            if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
2092
0
                return 0;
2093
2094
0
            sk = SSL_get_ciphers(s);
2095
0
            num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
2096
0
            for (i = 0; i < num; i++) {
2097
0
                const SSL_CIPHER *c;
2098
2099
0
                c = sk_SSL_CIPHER_value(sk, i);
2100
                /* Skip disabled ciphers */
2101
0
                if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
2102
0
                    continue;
2103
2104
0
                if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
2105
0
                    break;
2106
0
            }
2107
0
            if (i == num)
2108
0
                return 0;
2109
0
        }
2110
0
    }
2111
2112
    /* Finally see if security callback allows it */
2113
239k
    secbits = sigalg_security_bits(s->ctx, lu);
2114
239k
    sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
2115
239k
    sigalgstr[1] = lu->sigalg & 0xff;
2116
239k
    return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
2117
239k
}
2118
2119
/*
2120
 * Get a mask of disabled public key algorithms based on supported signature
2121
 * algorithms. For example if no signature algorithm supports RSA then RSA is
2122
 * disabled.
2123
 */
2124
2125
void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op)
2126
21.7k
{
2127
21.7k
    const uint16_t *sigalgs;
2128
21.7k
    size_t i, sigalgslen;
2129
21.7k
    uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
2130
    /*
2131
     * Go through all signature algorithms seeing if we support any
2132
     * in disabled_mask.
2133
     */
2134
21.7k
    sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
2135
631k
    for (i = 0; i < sigalgslen; i++, sigalgs++) {
2136
609k
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *sigalgs);
2137
609k
        const SSL_CERT_LOOKUP *clu;
2138
2139
609k
        if (lu == NULL)
2140
108k
            continue;
2141
2142
500k
        clu = ssl_cert_lookup_by_idx(lu->sig_idx);
2143
500k
        if (clu == NULL)
2144
0
                continue;
2145
2146
        /* If algorithm is disabled see if we can enable it */
2147
500k
        if ((clu->amask & disabled_mask) != 0
2148
500k
                && tls12_sigalg_allowed(s, op, lu))
2149
65.2k
            disabled_mask &= ~clu->amask;
2150
500k
    }
2151
21.7k
    *pmask_a |= disabled_mask;
2152
21.7k
}
2153
2154
int tls12_copy_sigalgs(SSL *s, WPACKET *pkt,
2155
                       const uint16_t *psig, size_t psiglen)
2156
7.25k
{
2157
7.25k
    size_t i;
2158
7.25k
    int rv = 0;
2159
2160
210k
    for (i = 0; i < psiglen; i++, psig++) {
2161
203k
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *psig);
2162
2163
203k
        if (lu == NULL
2164
203k
                || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
2165
36.2k
            continue;
2166
166k
        if (!WPACKET_put_bytes_u16(pkt, *psig))
2167
0
            return 0;
2168
        /*
2169
         * If TLS 1.3 must have at least one valid TLS 1.3 message
2170
         * signing algorithm: i.e. neither RSA nor SHA1/SHA224
2171
         */
2172
166k
        if (rv == 0 && (!SSL_IS_TLS13(s)
2173
7.25k
            || (lu->sig != EVP_PKEY_RSA
2174
0
                && lu->hash != NID_sha1
2175
0
                && lu->hash != NID_sha224)))
2176
7.25k
            rv = 1;
2177
166k
    }
2178
7.25k
    if (rv == 0)
2179
7.25k
        ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2180
7.25k
    return rv;
2181
7.25k
}
2182
2183
/* Given preference and allowed sigalgs set shared sigalgs */
2184
static size_t tls12_shared_sigalgs(SSL *s, const SIGALG_LOOKUP **shsig,
2185
                                   const uint16_t *pref, size_t preflen,
2186
                                   const uint16_t *allow, size_t allowlen)
2187
164
{
2188
164
    const uint16_t *ptmp, *atmp;
2189
164
    size_t i, j, nmatch = 0;
2190
25.1k
    for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
2191
25.0k
        const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *ptmp);
2192
2193
        /* Skip disabled hashes or signature algorithms */
2194
25.0k
        if (lu == NULL
2195
25.0k
                || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
2196
17.5k
            continue;
2197
101k
        for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
2198
101k
            if (*ptmp == *atmp) {
2199
7.51k
                nmatch++;
2200
7.51k
                if (shsig)
2201
3.75k
                    *shsig++ = lu;
2202
7.51k
                break;
2203
7.51k
            }
2204
101k
        }
2205
7.51k
    }
2206
164
    return nmatch;
2207
164
}
2208
2209
/* Set shared signature algorithms for SSL structures */
2210
static int tls1_set_shared_sigalgs(SSL *s)
2211
89
{
2212
89
    const uint16_t *pref, *allow, *conf;
2213
89
    size_t preflen, allowlen, conflen;
2214
89
    size_t nmatch;
2215
89
    const SIGALG_LOOKUP **salgs = NULL;
2216
89
    CERT *c = s->cert;
2217
89
    unsigned int is_suiteb = tls1_suiteb(s);
2218
2219
89
    OPENSSL_free(s->shared_sigalgs);
2220
89
    s->shared_sigalgs = NULL;
2221
89
    s->shared_sigalgslen = 0;
2222
    /* If client use client signature algorithms if not NULL */
2223
89
    if (!s->server && c->client_sigalgs && !is_suiteb) {
2224
0
        conf = c->client_sigalgs;
2225
0
        conflen = c->client_sigalgslen;
2226
89
    } else if (c->conf_sigalgs && !is_suiteb) {
2227
0
        conf = c->conf_sigalgs;
2228
0
        conflen = c->conf_sigalgslen;
2229
0
    } else
2230
89
        conflen = tls12_get_psigalgs(s, 0, &conf);
2231
89
    if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
2232
0
        pref = conf;
2233
0
        preflen = conflen;
2234
0
        allow = s->s3.tmp.peer_sigalgs;
2235
0
        allowlen = s->s3.tmp.peer_sigalgslen;
2236
89
    } else {
2237
89
        allow = conf;
2238
89
        allowlen = conflen;
2239
89
        pref = s->s3.tmp.peer_sigalgs;
2240
89
        preflen = s->s3.tmp.peer_sigalgslen;
2241
89
    }
2242
89
    nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
2243
89
    if (nmatch) {
2244
75
        if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL) {
2245
0
            ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2246
0
            return 0;
2247
0
        }
2248
75
        nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
2249
75
    } else {
2250
14
        salgs = NULL;
2251
14
    }
2252
89
    s->shared_sigalgs = salgs;
2253
89
    s->shared_sigalgslen = nmatch;
2254
89
    return 1;
2255
89
}
2256
2257
int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
2258
93
{
2259
93
    unsigned int stmp;
2260
93
    size_t size, i;
2261
93
    uint16_t *buf;
2262
2263
93
    size = PACKET_remaining(pkt);
2264
2265
    /* Invalid data length */
2266
93
    if (size == 0 || (size & 1) != 0)
2267
4
        return 0;
2268
2269
89
    size >>= 1;
2270
2271
89
    if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL)  {
2272
0
        ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2273
0
        return 0;
2274
0
    }
2275
13.1k
    for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
2276
13.0k
        buf[i] = stmp;
2277
2278
89
    if (i != size) {
2279
0
        OPENSSL_free(buf);
2280
0
        return 0;
2281
0
    }
2282
2283
89
    OPENSSL_free(*pdest);
2284
89
    *pdest = buf;
2285
89
    *pdestlen = size;
2286
2287
89
    return 1;
2288
89
}
2289
2290
int tls1_save_sigalgs(SSL *s, PACKET *pkt, int cert)
2291
93
{
2292
    /* Extension ignored for inappropriate versions */
2293
93
    if (!SSL_USE_SIGALGS(s))
2294
0
        return 1;
2295
    /* Should never happen */
2296
93
    if (s->cert == NULL)
2297
0
        return 0;
2298
2299
93
    if (cert)
2300
0
        return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
2301
0
                             &s->s3.tmp.peer_cert_sigalgslen);
2302
93
    else
2303
93
        return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
2304
93
                             &s->s3.tmp.peer_sigalgslen);
2305
2306
93
}
2307
2308
/* Set preferred digest for each key type */
2309
2310
int tls1_process_sigalgs(SSL *s)
2311
89
{
2312
89
    size_t i;
2313
89
    uint32_t *pvalid = s->s3.tmp.valid_flags;
2314
2315
89
    if (!tls1_set_shared_sigalgs(s))
2316
0
        return 0;
2317
2318
890
    for (i = 0; i < SSL_PKEY_NUM; i++)
2319
801
        pvalid[i] = 0;
2320
2321
3.84k
    for (i = 0; i < s->shared_sigalgslen; i++) {
2322
3.75k
        const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
2323
3.75k
        int idx = sigptr->sig_idx;
2324
2325
        /* Ignore PKCS1 based sig algs in TLSv1.3 */
2326
3.75k
        if (SSL_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
2327
0
            continue;
2328
        /* If not disabled indicate we can explicitly sign */
2329
3.75k
        if (pvalid[idx] == 0 && !ssl_cert_is_disabled(s->ctx, idx))
2330
163
            pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2331
3.75k
    }
2332
89
    return 1;
2333
89
}
2334
2335
int SSL_get_sigalgs(SSL *s, int idx,
2336
                    int *psign, int *phash, int *psignhash,
2337
                    unsigned char *rsig, unsigned char *rhash)
2338
0
{
2339
0
    uint16_t *psig = s->s3.tmp.peer_sigalgs;
2340
0
    size_t numsigalgs = s->s3.tmp.peer_sigalgslen;
2341
0
    if (psig == NULL || numsigalgs > INT_MAX)
2342
0
        return 0;
2343
0
    if (idx >= 0) {
2344
0
        const SIGALG_LOOKUP *lu;
2345
2346
0
        if (idx >= (int)numsigalgs)
2347
0
            return 0;
2348
0
        psig += idx;
2349
0
        if (rhash != NULL)
2350
0
            *rhash = (unsigned char)((*psig >> 8) & 0xff);
2351
0
        if (rsig != NULL)
2352
0
            *rsig = (unsigned char)(*psig & 0xff);
2353
0
        lu = tls1_lookup_sigalg(s, *psig);
2354
0
        if (psign != NULL)
2355
0
            *psign = lu != NULL ? lu->sig : NID_undef;
2356
0
        if (phash != NULL)
2357
0
            *phash = lu != NULL ? lu->hash : NID_undef;
2358
0
        if (psignhash != NULL)
2359
0
            *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
2360
0
    }
2361
0
    return (int)numsigalgs;
2362
0
}
2363
2364
int SSL_get_shared_sigalgs(SSL *s, int idx,
2365
                           int *psign, int *phash, int *psignhash,
2366
                           unsigned char *rsig, unsigned char *rhash)
2367
0
{
2368
0
    const SIGALG_LOOKUP *shsigalgs;
2369
0
    if (s->shared_sigalgs == NULL
2370
0
        || idx < 0
2371
0
        || idx >= (int)s->shared_sigalgslen
2372
0
        || s->shared_sigalgslen > INT_MAX)
2373
0
        return 0;
2374
0
    shsigalgs = s->shared_sigalgs[idx];
2375
0
    if (phash != NULL)
2376
0
        *phash = shsigalgs->hash;
2377
0
    if (psign != NULL)
2378
0
        *psign = shsigalgs->sig;
2379
0
    if (psignhash != NULL)
2380
0
        *psignhash = shsigalgs->sigandhash;
2381
0
    if (rsig != NULL)
2382
0
        *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
2383
0
    if (rhash != NULL)
2384
0
        *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
2385
0
    return (int)s->shared_sigalgslen;
2386
0
}
2387
2388
/* Maximum possible number of unique entries in sigalgs array */
2389
0
#define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
2390
2391
typedef struct {
2392
    size_t sigalgcnt;
2393
    /* TLSEXT_SIGALG_XXX values */
2394
    uint16_t sigalgs[TLS_MAX_SIGALGCNT];
2395
} sig_cb_st;
2396
2397
static void get_sigorhash(int *psig, int *phash, const char *str)
2398
0
{
2399
0
    if (strcmp(str, "RSA") == 0) {
2400
0
        *psig = EVP_PKEY_RSA;
2401
0
    } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
2402
0
        *psig = EVP_PKEY_RSA_PSS;
2403
0
    } else if (strcmp(str, "DSA") == 0) {
2404
0
        *psig = EVP_PKEY_DSA;
2405
0
    } else if (strcmp(str, "ECDSA") == 0) {
2406
0
        *psig = EVP_PKEY_EC;
2407
0
    } else {
2408
0
        *phash = OBJ_sn2nid(str);
2409
0
        if (*phash == NID_undef)
2410
0
            *phash = OBJ_ln2nid(str);
2411
0
    }
2412
0
}
2413
/* Maximum length of a signature algorithm string component */
2414
#define TLS_MAX_SIGSTRING_LEN   40
2415
2416
static int sig_cb(const char *elem, int len, void *arg)
2417
0
{
2418
0
    sig_cb_st *sarg = arg;
2419
0
    size_t i;
2420
0
    const SIGALG_LOOKUP *s;
2421
0
    char etmp[TLS_MAX_SIGSTRING_LEN], *p;
2422
0
    int sig_alg = NID_undef, hash_alg = NID_undef;
2423
0
    if (elem == NULL)
2424
0
        return 0;
2425
0
    if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
2426
0
        return 0;
2427
0
    if (len > (int)(sizeof(etmp) - 1))
2428
0
        return 0;
2429
0
    memcpy(etmp, elem, len);
2430
0
    etmp[len] = 0;
2431
0
    p = strchr(etmp, '+');
2432
    /*
2433
     * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
2434
     * if there's no '+' in the provided name, look for the new-style combined
2435
     * name.  If not, match both sig+hash to find the needed SIGALG_LOOKUP.
2436
     * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
2437
     * rsa_pss_rsae_* that differ only by public key OID; in such cases
2438
     * we will pick the _rsae_ variant, by virtue of them appearing earlier
2439
     * in the table.
2440
     */
2441
0
    if (p == NULL) {
2442
0
        for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2443
0
             i++, s++) {
2444
0
            if (s->name != NULL && strcmp(etmp, s->name) == 0) {
2445
0
                sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2446
0
                break;
2447
0
            }
2448
0
        }
2449
0
        if (i == OSSL_NELEM(sigalg_lookup_tbl))
2450
0
            return 0;
2451
0
    } else {
2452
0
        *p = 0;
2453
0
        p++;
2454
0
        if (*p == 0)
2455
0
            return 0;
2456
0
        get_sigorhash(&sig_alg, &hash_alg, etmp);
2457
0
        get_sigorhash(&sig_alg, &hash_alg, p);
2458
0
        if (sig_alg == NID_undef || hash_alg == NID_undef)
2459
0
            return 0;
2460
0
        for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2461
0
             i++, s++) {
2462
0
            if (s->hash == hash_alg && s->sig == sig_alg) {
2463
0
                sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2464
0
                break;
2465
0
            }
2466
0
        }
2467
0
        if (i == OSSL_NELEM(sigalg_lookup_tbl))
2468
0
            return 0;
2469
0
    }
2470
2471
    /* Reject duplicates */
2472
0
    for (i = 0; i < sarg->sigalgcnt - 1; i++) {
2473
0
        if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
2474
0
            sarg->sigalgcnt--;
2475
0
            return 0;
2476
0
        }
2477
0
    }
2478
0
    return 1;
2479
0
}
2480
2481
/*
2482
 * Set supported signature algorithms based on a colon separated list of the
2483
 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
2484
 */
2485
int tls1_set_sigalgs_list(CERT *c, const char *str, int client)
2486
0
{
2487
0
    sig_cb_st sig;
2488
0
    sig.sigalgcnt = 0;
2489
0
    if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
2490
0
        return 0;
2491
0
    if (c == NULL)
2492
0
        return 1;
2493
0
    return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
2494
0
}
2495
2496
int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
2497
                     int client)
2498
0
{
2499
0
    uint16_t *sigalgs;
2500
2501
0
    if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL) {
2502
0
        ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2503
0
        return 0;
2504
0
    }
2505
0
    memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
2506
2507
0
    if (client) {
2508
0
        OPENSSL_free(c->client_sigalgs);
2509
0
        c->client_sigalgs = sigalgs;
2510
0
        c->client_sigalgslen = salglen;
2511
0
    } else {
2512
0
        OPENSSL_free(c->conf_sigalgs);
2513
0
        c->conf_sigalgs = sigalgs;
2514
0
        c->conf_sigalgslen = salglen;
2515
0
    }
2516
2517
0
    return 1;
2518
0
}
2519
2520
int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
2521
0
{
2522
0
    uint16_t *sigalgs, *sptr;
2523
0
    size_t i;
2524
2525
0
    if (salglen & 1)
2526
0
        return 0;
2527
0
    if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL) {
2528
0
        ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2529
0
        return 0;
2530
0
    }
2531
0
    for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
2532
0
        size_t j;
2533
0
        const SIGALG_LOOKUP *curr;
2534
0
        int md_id = *psig_nids++;
2535
0
        int sig_id = *psig_nids++;
2536
2537
0
        for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
2538
0
             j++, curr++) {
2539
0
            if (curr->hash == md_id && curr->sig == sig_id) {
2540
0
                *sptr++ = curr->sigalg;
2541
0
                break;
2542
0
            }
2543
0
        }
2544
2545
0
        if (j == OSSL_NELEM(sigalg_lookup_tbl))
2546
0
            goto err;
2547
0
    }
2548
2549
0
    if (client) {
2550
0
        OPENSSL_free(c->client_sigalgs);
2551
0
        c->client_sigalgs = sigalgs;
2552
0
        c->client_sigalgslen = salglen / 2;
2553
0
    } else {
2554
0
        OPENSSL_free(c->conf_sigalgs);
2555
0
        c->conf_sigalgs = sigalgs;
2556
0
        c->conf_sigalgslen = salglen / 2;
2557
0
    }
2558
2559
0
    return 1;
2560
2561
0
 err:
2562
0
    OPENSSL_free(sigalgs);
2563
0
    return 0;
2564
0
}
2565
2566
static int tls1_check_sig_alg(SSL *s, X509 *x, int default_nid)
2567
0
{
2568
0
    int sig_nid, use_pc_sigalgs = 0;
2569
0
    size_t i;
2570
0
    const SIGALG_LOOKUP *sigalg;
2571
0
    size_t sigalgslen;
2572
0
    if (default_nid == -1)
2573
0
        return 1;
2574
0
    sig_nid = X509_get_signature_nid(x);
2575
0
    if (default_nid)
2576
0
        return sig_nid == default_nid ? 1 : 0;
2577
2578
0
    if (SSL_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
2579
        /*
2580
         * If we're in TLSv1.3 then we only get here if we're checking the
2581
         * chain. If the peer has specified peer_cert_sigalgs then we use them
2582
         * otherwise we default to normal sigalgs.
2583
         */
2584
0
        sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
2585
0
        use_pc_sigalgs = 1;
2586
0
    } else {
2587
0
        sigalgslen = s->shared_sigalgslen;
2588
0
    }
2589
0
    for (i = 0; i < sigalgslen; i++) {
2590
0
        sigalg = use_pc_sigalgs
2591
0
                 ? tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i])
2592
0
                 : s->shared_sigalgs[i];
2593
0
        if (sigalg != NULL && sig_nid == sigalg->sigandhash)
2594
0
            return 1;
2595
0
    }
2596
0
    return 0;
2597
0
}
2598
2599
/* Check to see if a certificate issuer name matches list of CA names */
2600
static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
2601
0
{
2602
0
    const X509_NAME *nm;
2603
0
    int i;
2604
0
    nm = X509_get_issuer_name(x);
2605
0
    for (i = 0; i < sk_X509_NAME_num(names); i++) {
2606
0
        if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
2607
0
            return 1;
2608
0
    }
2609
0
    return 0;
2610
0
}
2611
2612
/*
2613
 * Check certificate chain is consistent with TLS extensions and is usable by
2614
 * server. This servers two purposes: it allows users to check chains before
2615
 * passing them to the server and it allows the server to check chains before
2616
 * attempting to use them.
2617
 */
2618
2619
/* Flags which need to be set for a certificate when strict mode not set */
2620
2621
#define CERT_PKEY_VALID_FLAGS \
2622
0
        (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
2623
/* Strict mode flags */
2624
#define CERT_PKEY_STRICT_FLAGS \
2625
0
         (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
2626
0
         | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
2627
2628
int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain,
2629
                     int idx)
2630
0
{
2631
0
    int i;
2632
0
    int rv = 0;
2633
0
    int check_flags = 0, strict_mode;
2634
0
    CERT_PKEY *cpk = NULL;
2635
0
    CERT *c = s->cert;
2636
0
    uint32_t *pvalid;
2637
0
    unsigned int suiteb_flags = tls1_suiteb(s);
2638
    /* idx == -1 means checking server chains */
2639
0
    if (idx != -1) {
2640
        /* idx == -2 means checking client certificate chains */
2641
0
        if (idx == -2) {
2642
0
            cpk = c->key;
2643
0
            idx = (int)(cpk - c->pkeys);
2644
0
        } else
2645
0
            cpk = c->pkeys + idx;
2646
0
        pvalid = s->s3.tmp.valid_flags + idx;
2647
0
        x = cpk->x509;
2648
0
        pk = cpk->privatekey;
2649
0
        chain = cpk->chain;
2650
0
        strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
2651
        /* If no cert or key, forget it */
2652
0
        if (!x || !pk)
2653
0
            goto end;
2654
0
    } else {
2655
0
        size_t certidx;
2656
2657
0
        if (!x || !pk)
2658
0
            return 0;
2659
2660
0
        if (ssl_cert_lookup_by_pkey(pk, &certidx) == NULL)
2661
0
            return 0;
2662
0
        idx = certidx;
2663
0
        pvalid = s->s3.tmp.valid_flags + idx;
2664
2665
0
        if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
2666
0
            check_flags = CERT_PKEY_STRICT_FLAGS;
2667
0
        else
2668
0
            check_flags = CERT_PKEY_VALID_FLAGS;
2669
0
        strict_mode = 1;
2670
0
    }
2671
2672
0
    if (suiteb_flags) {
2673
0
        int ok;
2674
0
        if (check_flags)
2675
0
            check_flags |= CERT_PKEY_SUITEB;
2676
0
        ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
2677
0
        if (ok == X509_V_OK)
2678
0
            rv |= CERT_PKEY_SUITEB;
2679
0
        else if (!check_flags)
2680
0
            goto end;
2681
0
    }
2682
2683
    /*
2684
     * Check all signature algorithms are consistent with signature
2685
     * algorithms extension if TLS 1.2 or later and strict mode.
2686
     */
2687
0
    if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) {
2688
0
        int default_nid;
2689
0
        int rsign = 0;
2690
0
        if (s->s3.tmp.peer_cert_sigalgs != NULL
2691
0
                || s->s3.tmp.peer_sigalgs != NULL) {
2692
0
            default_nid = 0;
2693
        /* If no sigalgs extension use defaults from RFC5246 */
2694
0
        } else {
2695
0
            switch (idx) {
2696
0
            case SSL_PKEY_RSA:
2697
0
                rsign = EVP_PKEY_RSA;
2698
0
                default_nid = NID_sha1WithRSAEncryption;
2699
0
                break;
2700
2701
0
            case SSL_PKEY_DSA_SIGN:
2702
0
                rsign = EVP_PKEY_DSA;
2703
0
                default_nid = NID_dsaWithSHA1;
2704
0
                break;
2705
2706
0
            case SSL_PKEY_ECC:
2707
0
                rsign = EVP_PKEY_EC;
2708
0
                default_nid = NID_ecdsa_with_SHA1;
2709
0
                break;
2710
2711
0
            case SSL_PKEY_GOST01:
2712
0
                rsign = NID_id_GostR3410_2001;
2713
0
                default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
2714
0
                break;
2715
2716
0
            case SSL_PKEY_GOST12_256:
2717
0
                rsign = NID_id_GostR3410_2012_256;
2718
0
                default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
2719
0
                break;
2720
2721
0
            case SSL_PKEY_GOST12_512:
2722
0
                rsign = NID_id_GostR3410_2012_512;
2723
0
                default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
2724
0
                break;
2725
2726
0
            default:
2727
0
                default_nid = -1;
2728
0
                break;
2729
0
            }
2730
0
        }
2731
        /*
2732
         * If peer sent no signature algorithms extension and we have set
2733
         * preferred signature algorithms check we support sha1.
2734
         */
2735
0
        if (default_nid > 0 && c->conf_sigalgs) {
2736
0
            size_t j;
2737
0
            const uint16_t *p = c->conf_sigalgs;
2738
0
            for (j = 0; j < c->conf_sigalgslen; j++, p++) {
2739
0
                const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *p);
2740
2741
0
                if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
2742
0
                    break;
2743
0
            }
2744
0
            if (j == c->conf_sigalgslen) {
2745
0
                if (check_flags)
2746
0
                    goto skip_sigs;
2747
0
                else
2748
0
                    goto end;
2749
0
            }
2750
0
        }
2751
        /* Check signature algorithm of each cert in chain */
2752
0
        if (SSL_IS_TLS13(s)) {
2753
            /*
2754
             * We only get here if the application has called SSL_check_chain(),
2755
             * so check_flags is always set.
2756
             */
2757
0
            if (find_sig_alg(s, x, pk) != NULL)
2758
0
                rv |= CERT_PKEY_EE_SIGNATURE;
2759
0
        } else if (!tls1_check_sig_alg(s, x, default_nid)) {
2760
0
            if (!check_flags)
2761
0
                goto end;
2762
0
        } else
2763
0
            rv |= CERT_PKEY_EE_SIGNATURE;
2764
0
        rv |= CERT_PKEY_CA_SIGNATURE;
2765
0
        for (i = 0; i < sk_X509_num(chain); i++) {
2766
0
            if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
2767
0
                if (check_flags) {
2768
0
                    rv &= ~CERT_PKEY_CA_SIGNATURE;
2769
0
                    break;
2770
0
                } else
2771
0
                    goto end;
2772
0
            }
2773
0
        }
2774
0
    }
2775
    /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
2776
0
    else if (check_flags)
2777
0
        rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
2778
0
 skip_sigs:
2779
    /* Check cert parameters are consistent */
2780
0
    if (tls1_check_cert_param(s, x, 1))
2781
0
        rv |= CERT_PKEY_EE_PARAM;
2782
0
    else if (!check_flags)
2783
0
        goto end;
2784
0
    if (!s->server)
2785
0
        rv |= CERT_PKEY_CA_PARAM;
2786
    /* In strict mode check rest of chain too */
2787
0
    else if (strict_mode) {
2788
0
        rv |= CERT_PKEY_CA_PARAM;
2789
0
        for (i = 0; i < sk_X509_num(chain); i++) {
2790
0
            X509 *ca = sk_X509_value(chain, i);
2791
0
            if (!tls1_check_cert_param(s, ca, 0)) {
2792
0
                if (check_flags) {
2793
0
                    rv &= ~CERT_PKEY_CA_PARAM;
2794
0
                    break;
2795
0
                } else
2796
0
                    goto end;
2797
0
            }
2798
0
        }
2799
0
    }
2800
0
    if (!s->server && strict_mode) {
2801
0
        STACK_OF(X509_NAME) *ca_dn;
2802
0
        int check_type = 0;
2803
2804
0
        if (EVP_PKEY_is_a(pk, "RSA"))
2805
0
            check_type = TLS_CT_RSA_SIGN;
2806
0
        else if (EVP_PKEY_is_a(pk, "DSA"))
2807
0
            check_type = TLS_CT_DSS_SIGN;
2808
0
        else if (EVP_PKEY_is_a(pk, "EC"))
2809
0
            check_type = TLS_CT_ECDSA_SIGN;
2810
2811
0
        if (check_type) {
2812
0
            const uint8_t *ctypes = s->s3.tmp.ctype;
2813
0
            size_t j;
2814
2815
0
            for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
2816
0
                if (*ctypes == check_type) {
2817
0
                    rv |= CERT_PKEY_CERT_TYPE;
2818
0
                    break;
2819
0
                }
2820
0
            }
2821
0
            if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
2822
0
                goto end;
2823
0
        } else {
2824
0
            rv |= CERT_PKEY_CERT_TYPE;
2825
0
        }
2826
2827
0
        ca_dn = s->s3.tmp.peer_ca_names;
2828
2829
0
        if (ca_dn == NULL
2830
0
            || sk_X509_NAME_num(ca_dn) == 0
2831
0
            || ssl_check_ca_name(ca_dn, x))
2832
0
            rv |= CERT_PKEY_ISSUER_NAME;
2833
0
        else
2834
0
            for (i = 0; i < sk_X509_num(chain); i++) {
2835
0
                X509 *xtmp = sk_X509_value(chain, i);
2836
2837
0
                if (ssl_check_ca_name(ca_dn, xtmp)) {
2838
0
                    rv |= CERT_PKEY_ISSUER_NAME;
2839
0
                    break;
2840
0
                }
2841
0
            }
2842
2843
0
        if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
2844
0
            goto end;
2845
0
    } else
2846
0
        rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
2847
2848
0
    if (!check_flags || (rv & check_flags) == check_flags)
2849
0
        rv |= CERT_PKEY_VALID;
2850
2851
0
 end:
2852
2853
0
    if (TLS1_get_version(s) >= TLS1_2_VERSION)
2854
0
        rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
2855
0
    else
2856
0
        rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
2857
2858
    /*
2859
     * When checking a CERT_PKEY structure all flags are irrelevant if the
2860
     * chain is invalid.
2861
     */
2862
0
    if (!check_flags) {
2863
0
        if (rv & CERT_PKEY_VALID) {
2864
0
            *pvalid = rv;
2865
0
        } else {
2866
            /* Preserve sign and explicit sign flag, clear rest */
2867
0
            *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2868
0
            return 0;
2869
0
        }
2870
0
    }
2871
0
    return rv;
2872
0
}
2873
2874
/* Set validity of certificates in an SSL structure */
2875
void tls1_set_cert_validity(SSL *s)
2876
0
{
2877
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
2878
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
2879
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
2880
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
2881
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
2882
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
2883
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
2884
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
2885
0
    tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
2886
0
}
2887
2888
/* User level utility function to check a chain is suitable */
2889
int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
2890
0
{
2891
0
    return tls1_check_chain(s, x, pk, chain, -1);
2892
0
}
2893
2894
EVP_PKEY *ssl_get_auto_dh(SSL *s)
2895
0
{
2896
0
    EVP_PKEY *dhp = NULL;
2897
0
    BIGNUM *p;
2898
0
    int dh_secbits = 80, sec_level_bits;
2899
0
    EVP_PKEY_CTX *pctx = NULL;
2900
0
    OSSL_PARAM_BLD *tmpl = NULL;
2901
0
    OSSL_PARAM *params = NULL;
2902
2903
0
    if (s->cert->dh_tmp_auto != 2) {
2904
0
        if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
2905
0
            if (s->s3.tmp.new_cipher->strength_bits == 256)
2906
0
                dh_secbits = 128;
2907
0
            else
2908
0
                dh_secbits = 80;
2909
0
        } else {
2910
0
            if (s->s3.tmp.cert == NULL)
2911
0
                return NULL;
2912
0
            dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey);
2913
0
        }
2914
0
    }
2915
2916
    /* Do not pick a prime that is too weak for the current security level */
2917
0
    sec_level_bits = ssl_get_security_level_bits(s, NULL, NULL);
2918
0
    if (dh_secbits < sec_level_bits)
2919
0
        dh_secbits = sec_level_bits;
2920
2921
0
    if (dh_secbits >= 192)
2922
0
        p = BN_get_rfc3526_prime_8192(NULL);
2923
0
    else if (dh_secbits >= 152)
2924
0
        p = BN_get_rfc3526_prime_4096(NULL);
2925
0
    else if (dh_secbits >= 128)
2926
0
        p = BN_get_rfc3526_prime_3072(NULL);
2927
0
    else if (dh_secbits >= 112)
2928
0
        p = BN_get_rfc3526_prime_2048(NULL);
2929
0
    else
2930
0
        p = BN_get_rfc2409_prime_1024(NULL);
2931
0
    if (p == NULL)
2932
0
        goto err;
2933
2934
0
    pctx = EVP_PKEY_CTX_new_from_name(s->ctx->libctx, "DH", s->ctx->propq);
2935
0
    if (pctx == NULL
2936
0
            || EVP_PKEY_fromdata_init(pctx) != 1)
2937
0
        goto err;
2938
2939
0
    tmpl = OSSL_PARAM_BLD_new();
2940
0
    if (tmpl == NULL
2941
0
            || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)
2942
0
            || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))
2943
0
        goto err;
2944
2945
0
    params = OSSL_PARAM_BLD_to_param(tmpl);
2946
0
    if (params == NULL
2947
0
            || EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1)
2948
0
        goto err;
2949
2950
0
err:
2951
0
    OSSL_PARAM_free(params);
2952
0
    OSSL_PARAM_BLD_free(tmpl);
2953
0
    EVP_PKEY_CTX_free(pctx);
2954
0
    BN_free(p);
2955
0
    return dhp;
2956
0
}
2957
2958
static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2959
0
{
2960
0
    int secbits = -1;
2961
0
    EVP_PKEY *pkey = X509_get0_pubkey(x);
2962
0
    if (pkey) {
2963
        /*
2964
         * If no parameters this will return -1 and fail using the default
2965
         * security callback for any non-zero security level. This will
2966
         * reject keys which omit parameters but this only affects DSA and
2967
         * omission of parameters is never (?) done in practice.
2968
         */
2969
0
        secbits = EVP_PKEY_get_security_bits(pkey);
2970
0
    }
2971
0
    if (s)
2972
0
        return ssl_security(s, op, secbits, 0, x);
2973
0
    else
2974
0
        return ssl_ctx_security(ctx, op, secbits, 0, x);
2975
0
}
2976
2977
static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2978
0
{
2979
    /* Lookup signature algorithm digest */
2980
0
    int secbits, nid, pknid;
2981
    /* Don't check signature if self signed */
2982
0
    if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
2983
0
        return 1;
2984
0
    if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
2985
0
        secbits = -1;
2986
    /* If digest NID not defined use signature NID */
2987
0
    if (nid == NID_undef)
2988
0
        nid = pknid;
2989
0
    if (s)
2990
0
        return ssl_security(s, op, secbits, nid, x);
2991
0
    else
2992
0
        return ssl_ctx_security(ctx, op, secbits, nid, x);
2993
0
}
2994
2995
int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee)
2996
0
{
2997
0
    if (vfy)
2998
0
        vfy = SSL_SECOP_PEER;
2999
0
    if (is_ee) {
3000
0
        if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
3001
0
            return SSL_R_EE_KEY_TOO_SMALL;
3002
0
    } else {
3003
0
        if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
3004
0
            return SSL_R_CA_KEY_TOO_SMALL;
3005
0
    }
3006
0
    if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
3007
0
        return SSL_R_CA_MD_TOO_WEAK;
3008
0
    return 1;
3009
0
}
3010
3011
/*
3012
 * Check security of a chain, if |sk| includes the end entity certificate then
3013
 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
3014
 * one to the peer. Return values: 1 if ok otherwise error code to use
3015
 */
3016
3017
int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy)
3018
0
{
3019
0
    int rv, start_idx, i;
3020
0
    if (x == NULL) {
3021
0
        x = sk_X509_value(sk, 0);
3022
0
        if (x == NULL)
3023
0
            return ERR_R_INTERNAL_ERROR;
3024
0
        start_idx = 1;
3025
0
    } else
3026
0
        start_idx = 0;
3027
3028
0
    rv = ssl_security_cert(s, NULL, x, vfy, 1);
3029
0
    if (rv != 1)
3030
0
        return rv;
3031
3032
0
    for (i = start_idx; i < sk_X509_num(sk); i++) {
3033
0
        x = sk_X509_value(sk, i);
3034
0
        rv = ssl_security_cert(s, NULL, x, vfy, 0);
3035
0
        if (rv != 1)
3036
0
            return rv;
3037
0
    }
3038
0
    return 1;
3039
0
}
3040
3041
/*
3042
 * For TLS 1.2 servers check if we have a certificate which can be used
3043
 * with the signature algorithm "lu" and return index of certificate.
3044
 */
3045
3046
static int tls12_get_cert_sigalg_idx(const SSL *s, const SIGALG_LOOKUP *lu)
3047
0
{
3048
0
    int sig_idx = lu->sig_idx;
3049
0
    const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx);
3050
3051
    /* If not recognised or not supported by cipher mask it is not suitable */
3052
0
    if (clu == NULL
3053
0
            || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
3054
0
            || (clu->nid == EVP_PKEY_RSA_PSS
3055
0
                && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
3056
0
        return -1;
3057
3058
0
    return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
3059
0
}
3060
3061
/*
3062
 * Checks the given cert against signature_algorithm_cert restrictions sent by
3063
 * the peer (if any) as well as whether the hash from the sigalg is usable with
3064
 * the key.
3065
 * Returns true if the cert is usable and false otherwise.
3066
 */
3067
static int check_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
3068
                             EVP_PKEY *pkey)
3069
0
{
3070
0
    const SIGALG_LOOKUP *lu;
3071
0
    int mdnid, pknid, supported;
3072
0
    size_t i;
3073
0
    const char *mdname = NULL;
3074
3075
    /*
3076
     * If the given EVP_PKEY cannot support signing with this digest,
3077
     * the answer is simply 'no'.
3078
     */
3079
0
    if (sig->hash != NID_undef)
3080
0
        mdname = OBJ_nid2sn(sig->hash);
3081
0
    supported = EVP_PKEY_digestsign_supports_digest(pkey, s->ctx->libctx,
3082
0
                                                    mdname,
3083
0
                                                    s->ctx->propq);
3084
0
    if (supported <= 0)
3085
0
        return 0;
3086
3087
    /*
3088
     * The TLS 1.3 signature_algorithms_cert extension places restrictions
3089
     * on the sigalg with which the certificate was signed (by its issuer).
3090
     */
3091
0
    if (s->s3.tmp.peer_cert_sigalgs != NULL) {
3092
0
        if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
3093
0
            return 0;
3094
0
        for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
3095
0
            lu = tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i]);
3096
0
            if (lu == NULL)
3097
0
                continue;
3098
3099
            /*
3100
             * This does not differentiate between the
3101
             * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
3102
             * have a chain here that lets us look at the key OID in the
3103
             * signing certificate.
3104
             */
3105
0
            if (mdnid == lu->hash && pknid == lu->sig)
3106
0
                return 1;
3107
0
        }
3108
0
        return 0;
3109
0
    }
3110
3111
    /*
3112
     * Without signat_algorithms_cert, any certificate for which we have
3113
     * a viable public key is permitted.
3114
     */
3115
0
    return 1;
3116
0
}
3117
3118
/*
3119
 * Returns true if |s| has a usable certificate configured for use
3120
 * with signature scheme |sig|.
3121
 * "Usable" includes a check for presence as well as applying
3122
 * the signature_algorithm_cert restrictions sent by the peer (if any).
3123
 * Returns false if no usable certificate is found.
3124
 */
3125
static int has_usable_cert(SSL *s, const SIGALG_LOOKUP *sig, int idx)
3126
0
{
3127
    /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
3128
0
    if (idx == -1)
3129
0
        idx = sig->sig_idx;
3130
0
    if (!ssl_has_cert(s, idx))
3131
0
        return 0;
3132
3133
0
    return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
3134
0
                             s->cert->pkeys[idx].privatekey);
3135
0
}
3136
3137
/*
3138
 * Returns true if the supplied cert |x| and key |pkey| is usable with the
3139
 * specified signature scheme |sig|, or false otherwise.
3140
 */
3141
static int is_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
3142
                          EVP_PKEY *pkey)
3143
0
{
3144
0
    size_t idx;
3145
3146
0
    if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
3147
0
        return 0;
3148
3149
    /* Check the key is consistent with the sig alg */
3150
0
    if ((int)idx != sig->sig_idx)
3151
0
        return 0;
3152
3153
0
    return check_cert_usable(s, sig, x, pkey);
3154
0
}
3155
3156
/*
3157
 * Find a signature scheme that works with the supplied certificate |x| and key
3158
 * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
3159
 * available certs/keys to find one that works.
3160
 */
3161
static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey)
3162
0
{
3163
0
    const SIGALG_LOOKUP *lu = NULL;
3164
0
    size_t i;
3165
0
    int curve = -1;
3166
0
    EVP_PKEY *tmppkey;
3167
3168
    /* Look for a shared sigalgs matching possible certificates */
3169
0
    for (i = 0; i < s->shared_sigalgslen; i++) {
3170
0
        lu = s->shared_sigalgs[i];
3171
3172
        /* Skip SHA1, SHA224, DSA and RSA if not PSS */
3173
0
        if (lu->hash == NID_sha1
3174
0
            || lu->hash == NID_sha224
3175
0
            || lu->sig == EVP_PKEY_DSA
3176
0
            || lu->sig == EVP_PKEY_RSA)
3177
0
            continue;
3178
        /* Check that we have a cert, and signature_algorithms_cert */
3179
0
        if (!tls1_lookup_md(s->ctx, lu, NULL))
3180
0
            continue;
3181
0
        if ((pkey == NULL && !has_usable_cert(s, lu, -1))
3182
0
                || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
3183
0
            continue;
3184
3185
0
        tmppkey = (pkey != NULL) ? pkey
3186
0
                                 : s->cert->pkeys[lu->sig_idx].privatekey;
3187
3188
0
        if (lu->sig == EVP_PKEY_EC) {
3189
0
            if (curve == -1)
3190
0
                curve = ssl_get_EC_curve_nid(tmppkey);
3191
0
            if (lu->curve != NID_undef && curve != lu->curve)
3192
0
                continue;
3193
0
        } else if (lu->sig == EVP_PKEY_RSA_PSS) {
3194
            /* validate that key is large enough for the signature algorithm */
3195
0
            if (!rsa_pss_check_min_key_size(s->ctx, tmppkey, lu))
3196
0
                continue;
3197
0
        }
3198
0
        break;
3199
0
    }
3200
3201
0
    if (i == s->shared_sigalgslen)
3202
0
        return NULL;
3203
3204
0
    return lu;
3205
0
}
3206
3207
/*
3208
 * Choose an appropriate signature algorithm based on available certificates
3209
 * Sets chosen certificate and signature algorithm.
3210
 *
3211
 * For servers if we fail to find a required certificate it is a fatal error,
3212
 * an appropriate error code is set and a TLS alert is sent.
3213
 *
3214
 * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
3215
 * a fatal error: we will either try another certificate or not present one
3216
 * to the server. In this case no error is set.
3217
 */
3218
int tls_choose_sigalg(SSL *s, int fatalerrs)
3219
12
{
3220
12
    const SIGALG_LOOKUP *lu = NULL;
3221
12
    int sig_idx = -1;
3222
3223
12
    s->s3.tmp.cert = NULL;
3224
12
    s->s3.tmp.sigalg = NULL;
3225
3226
12
    if (SSL_IS_TLS13(s)) {
3227
0
        lu = find_sig_alg(s, NULL, NULL);
3228
0
        if (lu == NULL) {
3229
0
            if (!fatalerrs)
3230
0
                return 1;
3231
0
            SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3232
0
                     SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3233
0
            return 0;
3234
0
        }
3235
12
    } else {
3236
        /* If ciphersuite doesn't require a cert nothing to do */
3237
12
        if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
3238
4
            return 1;
3239
8
        if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
3240
8
                return 1;
3241
3242
0
        if (SSL_USE_SIGALGS(s)) {
3243
0
            size_t i;
3244
0
            if (s->s3.tmp.peer_sigalgs != NULL) {
3245
0
                int curve = -1;
3246
3247
                /* For Suite B need to match signature algorithm to curve */
3248
0
                if (tls1_suiteb(s))
3249
0
                    curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
3250
0
                                                 .privatekey);
3251
3252
                /*
3253
                 * Find highest preference signature algorithm matching
3254
                 * cert type
3255
                 */
3256
0
                for (i = 0; i < s->shared_sigalgslen; i++) {
3257
0
                    lu = s->shared_sigalgs[i];
3258
3259
0
                    if (s->server) {
3260
0
                        if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
3261
0
                            continue;
3262
0
                    } else {
3263
0
                        int cc_idx = s->cert->key - s->cert->pkeys;
3264
3265
0
                        sig_idx = lu->sig_idx;
3266
0
                        if (cc_idx != sig_idx)
3267
0
                            continue;
3268
0
                    }
3269
                    /* Check that we have a cert, and sig_algs_cert */
3270
0
                    if (!has_usable_cert(s, lu, sig_idx))
3271
0
                        continue;
3272
0
                    if (lu->sig == EVP_PKEY_RSA_PSS) {
3273
                        /* validate that key is large enough for the signature algorithm */
3274
0
                        EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
3275
3276
0
                        if (!rsa_pss_check_min_key_size(s->ctx, pkey, lu))
3277
0
                            continue;
3278
0
                    }
3279
0
                    if (curve == -1 || lu->curve == curve)
3280
0
                        break;
3281
0
                }
3282
0
#ifndef OPENSSL_NO_GOST
3283
                /*
3284
                 * Some Windows-based implementations do not send GOST algorithms indication
3285
                 * in supported_algorithms extension, so when we have GOST-based ciphersuite,
3286
                 * we have to assume GOST support.
3287
                 */
3288
0
                if (i == s->shared_sigalgslen && s->s3.tmp.new_cipher->algorithm_auth & (SSL_aGOST01 | SSL_aGOST12)) {
3289
0
                  if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3290
0
                    if (!fatalerrs)
3291
0
                      return 1;
3292
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3293
0
                             SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3294
0
                    return 0;
3295
0
                  } else {
3296
0
                    i = 0;
3297
0
                    sig_idx = lu->sig_idx;
3298
0
                  }
3299
0
                }
3300
0
#endif
3301
0
                if (i == s->shared_sigalgslen) {
3302
0
                    if (!fatalerrs)
3303
0
                        return 1;
3304
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3305
0
                             SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3306
0
                    return 0;
3307
0
                }
3308
0
            } else {
3309
                /*
3310
                 * If we have no sigalg use defaults
3311
                 */
3312
0
                const uint16_t *sent_sigs;
3313
0
                size_t sent_sigslen;
3314
3315
0
                if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3316
0
                    if (!fatalerrs)
3317
0
                        return 1;
3318
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3319
0
                             SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3320
0
                    return 0;
3321
0
                }
3322
3323
                /* Check signature matches a type we sent */
3324
0
                sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
3325
0
                for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
3326
0
                    if (lu->sigalg == *sent_sigs
3327
0
                            && has_usable_cert(s, lu, lu->sig_idx))
3328
0
                        break;
3329
0
                }
3330
0
                if (i == sent_sigslen) {
3331
0
                    if (!fatalerrs)
3332
0
                        return 1;
3333
0
                    SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3334
0
                             SSL_R_WRONG_SIGNATURE_TYPE);
3335
0
                    return 0;
3336
0
                }
3337
0
            }
3338
0
        } else {
3339
0
            if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3340
0
                if (!fatalerrs)
3341
0
                    return 1;
3342
0
                SSLfatal(s, SSL_AD_INTERNAL_ERROR,
3343
0
                         SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3344
0
                return 0;
3345
0
            }
3346
0
        }
3347
0
    }
3348
0
    if (sig_idx == -1)
3349
0
        sig_idx = lu->sig_idx;
3350
0
    s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
3351
0
    s->cert->key = s->s3.tmp.cert;
3352
0
    s->s3.tmp.sigalg = lu;
3353
0
    return 1;
3354
12
}
3355
3356
int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
3357
0
{
3358
0
    if (mode != TLSEXT_max_fragment_length_DISABLED
3359
0
            && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3360
0
        ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3361
0
        return 0;
3362
0
    }
3363
3364
0
    ctx->ext.max_fragment_len_mode = mode;
3365
0
    return 1;
3366
0
}
3367
3368
int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
3369
0
{
3370
0
    if (mode != TLSEXT_max_fragment_length_DISABLED
3371
0
            && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3372
0
        ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3373
0
        return 0;
3374
0
    }
3375
3376
0
    ssl->ext.max_fragment_len_mode = mode;
3377
0
    return 1;
3378
0
}
3379
3380
uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
3381
0
{
3382
0
    return session->ext.max_fragment_len_mode;
3383
0
}
3384
3385
/*
3386
 * Helper functions for HMAC access with legacy support included.
3387
 */
3388
SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
3389
0
{
3390
0
    SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
3391
0
    EVP_MAC *mac = NULL;
3392
3393
0
    if (ret == NULL)
3394
0
        return NULL;
3395
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3396
0
    if (ctx->ext.ticket_key_evp_cb == NULL
3397
0
            && ctx->ext.ticket_key_cb != NULL) {
3398
0
        if (!ssl_hmac_old_new(ret))
3399
0
            goto err;
3400
0
        return ret;
3401
0
    }
3402
0
#endif
3403
0
    mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);
3404
0
    if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
3405
0
        goto err;
3406
0
    EVP_MAC_free(mac);
3407
0
    return ret;
3408
0
 err:
3409
0
    EVP_MAC_CTX_free(ret->ctx);
3410
0
    EVP_MAC_free(mac);
3411
0
    OPENSSL_free(ret);
3412
0
    return NULL;
3413
0
}
3414
3415
void ssl_hmac_free(SSL_HMAC *ctx)
3416
0
{
3417
0
    if (ctx != NULL) {
3418
0
        EVP_MAC_CTX_free(ctx->ctx);
3419
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3420
0
        ssl_hmac_old_free(ctx);
3421
0
#endif
3422
0
        OPENSSL_free(ctx);
3423
0
    }
3424
0
}
3425
3426
EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
3427
0
{
3428
0
    return ctx->ctx;
3429
0
}
3430
3431
int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
3432
0
{
3433
0
    OSSL_PARAM params[2], *p = params;
3434
3435
0
    if (ctx->ctx != NULL) {
3436
0
        *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
3437
0
        *p = OSSL_PARAM_construct_end();
3438
0
        if (EVP_MAC_init(ctx->ctx, key, len, params))
3439
0
            return 1;
3440
0
    }
3441
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3442
0
    if (ctx->old_ctx != NULL)
3443
0
        return ssl_hmac_old_init(ctx, key, len, md);
3444
0
#endif
3445
0
    return 0;
3446
0
}
3447
3448
int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
3449
0
{
3450
0
    if (ctx->ctx != NULL)
3451
0
        return EVP_MAC_update(ctx->ctx, data, len);
3452
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3453
0
    if (ctx->old_ctx != NULL)
3454
0
        return ssl_hmac_old_update(ctx, data, len);
3455
0
#endif
3456
0
    return 0;
3457
0
}
3458
3459
int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
3460
                   size_t max_size)
3461
0
{
3462
0
    if (ctx->ctx != NULL)
3463
0
        return EVP_MAC_final(ctx->ctx, md, len, max_size);
3464
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3465
0
    if (ctx->old_ctx != NULL)
3466
0
        return ssl_hmac_old_final(ctx, md, len);
3467
0
#endif
3468
0
    return 0;
3469
0
}
3470
3471
size_t ssl_hmac_size(const SSL_HMAC *ctx)
3472
0
{
3473
0
    if (ctx->ctx != NULL)
3474
0
        return EVP_MAC_CTX_get_mac_size(ctx->ctx);
3475
0
#ifndef OPENSSL_NO_DEPRECATED_3_0
3476
0
    if (ctx->old_ctx != NULL)
3477
0
        return ssl_hmac_old_size(ctx);
3478
0
#endif
3479
0
    return 0;
3480
0
}
3481
3482
int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)
3483
160
{
3484
160
    char gname[OSSL_MAX_NAME_SIZE];
3485
3486
160
    if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)
3487
160
        return OBJ_txt2nid(gname);
3488
3489
0
    return NID_undef;
3490
160
}
3491
3492
__owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey,
3493
                                     const unsigned char *enckey,
3494
                                     size_t enckeylen)
3495
94
{
3496
94
    if (EVP_PKEY_is_a(pkey, "DH")) {
3497
0
        int bits = EVP_PKEY_get_bits(pkey);
3498
3499
0
        if (bits <= 0 || enckeylen != (size_t)bits / 8)
3500
            /* the encoded key must be padded to the length of the p */
3501
0
            return 0;
3502
94
    } else if (EVP_PKEY_is_a(pkey, "EC")) {
3503
8
        if (enckeylen < 3 /* point format and at least 1 byte for x and y */
3504
8
            || enckey[0] != 0x04)
3505
2
            return 0;
3506
8
    }
3507
3508
92
    return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen);
3509
94
}