/src/openssl30/providers/implementations/kdfs/scrypt.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2017-2021 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #include <stdlib.h> |
11 | | #include <stdarg.h> |
12 | | #include <string.h> |
13 | | #include <openssl/evp.h> |
14 | | #include <openssl/kdf.h> |
15 | | #include <openssl/err.h> |
16 | | #include <openssl/core_names.h> |
17 | | #include <openssl/proverr.h> |
18 | | #include "crypto/evp.h" |
19 | | #include "internal/numbers.h" |
20 | | #include "prov/implementations.h" |
21 | | #include "prov/provider_ctx.h" |
22 | | #include "prov/providercommon.h" |
23 | | #include "prov/implementations.h" |
24 | | |
25 | | #ifndef OPENSSL_NO_SCRYPT |
26 | | |
27 | | static OSSL_FUNC_kdf_newctx_fn kdf_scrypt_new; |
28 | | static OSSL_FUNC_kdf_freectx_fn kdf_scrypt_free; |
29 | | static OSSL_FUNC_kdf_reset_fn kdf_scrypt_reset; |
30 | | static OSSL_FUNC_kdf_derive_fn kdf_scrypt_derive; |
31 | | static OSSL_FUNC_kdf_settable_ctx_params_fn kdf_scrypt_settable_ctx_params; |
32 | | static OSSL_FUNC_kdf_set_ctx_params_fn kdf_scrypt_set_ctx_params; |
33 | | static OSSL_FUNC_kdf_gettable_ctx_params_fn kdf_scrypt_gettable_ctx_params; |
34 | | static OSSL_FUNC_kdf_get_ctx_params_fn kdf_scrypt_get_ctx_params; |
35 | | |
36 | | static int scrypt_alg(const char *pass, size_t passlen, |
37 | | const unsigned char *salt, size_t saltlen, |
38 | | uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem, |
39 | | unsigned char *key, size_t keylen, EVP_MD *sha256, |
40 | | OSSL_LIB_CTX *libctx, const char *propq); |
41 | | |
42 | | typedef struct { |
43 | | OSSL_LIB_CTX *libctx; |
44 | | char *propq; |
45 | | unsigned char *pass; |
46 | | size_t pass_len; |
47 | | unsigned char *salt; |
48 | | size_t salt_len; |
49 | | uint64_t N; |
50 | | uint64_t r, p; |
51 | | uint64_t maxmem_bytes; |
52 | | EVP_MD *sha256; |
53 | | } KDF_SCRYPT; |
54 | | |
55 | | static void kdf_scrypt_init(KDF_SCRYPT *ctx); |
56 | | |
57 | | static void *kdf_scrypt_new(void *provctx) |
58 | 0 | { |
59 | 0 | KDF_SCRYPT *ctx; |
60 | |
|
61 | 0 | if (!ossl_prov_is_running()) |
62 | 0 | return NULL; |
63 | | |
64 | 0 | ctx = OPENSSL_zalloc(sizeof(*ctx)); |
65 | 0 | if (ctx == NULL) { |
66 | 0 | ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE); |
67 | 0 | return NULL; |
68 | 0 | } |
69 | 0 | ctx->libctx = PROV_LIBCTX_OF(provctx); |
70 | 0 | kdf_scrypt_init(ctx); |
71 | 0 | return ctx; |
72 | 0 | } |
73 | | |
74 | | static void kdf_scrypt_free(void *vctx) |
75 | 0 | { |
76 | 0 | KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx; |
77 | |
|
78 | 0 | if (ctx != NULL) { |
79 | 0 | OPENSSL_free(ctx->propq); |
80 | 0 | EVP_MD_free(ctx->sha256); |
81 | 0 | kdf_scrypt_reset(ctx); |
82 | 0 | OPENSSL_free(ctx); |
83 | 0 | } |
84 | 0 | } |
85 | | |
86 | | static void kdf_scrypt_reset(void *vctx) |
87 | 0 | { |
88 | 0 | KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx; |
89 | |
|
90 | 0 | OPENSSL_free(ctx->salt); |
91 | 0 | OPENSSL_clear_free(ctx->pass, ctx->pass_len); |
92 | 0 | kdf_scrypt_init(ctx); |
93 | 0 | } |
94 | | |
95 | | static void kdf_scrypt_init(KDF_SCRYPT *ctx) |
96 | 0 | { |
97 | | /* Default values are the most conservative recommendation given in the |
98 | | * original paper of C. Percival. Derivation uses roughly 1 GiB of memory |
99 | | * for this parameter choice (approx. 128 * r * N * p bytes). |
100 | | */ |
101 | 0 | ctx->N = 1 << 20; |
102 | 0 | ctx->r = 8; |
103 | 0 | ctx->p = 1; |
104 | 0 | ctx->maxmem_bytes = 1025 * 1024 * 1024; |
105 | 0 | } |
106 | | |
107 | | static int scrypt_set_membuf(unsigned char **buffer, size_t *buflen, |
108 | | const OSSL_PARAM *p) |
109 | 0 | { |
110 | 0 | OPENSSL_clear_free(*buffer, *buflen); |
111 | 0 | *buffer = NULL; |
112 | 0 | *buflen = 0; |
113 | |
|
114 | 0 | if (p->data_size == 0) { |
115 | 0 | if ((*buffer = OPENSSL_malloc(1)) == NULL) { |
116 | 0 | ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE); |
117 | 0 | return 0; |
118 | 0 | } |
119 | 0 | } else if (p->data != NULL) { |
120 | 0 | if (!OSSL_PARAM_get_octet_string(p, (void **)buffer, 0, buflen)) |
121 | 0 | return 0; |
122 | 0 | } |
123 | 0 | return 1; |
124 | 0 | } |
125 | | |
126 | | static int set_digest(KDF_SCRYPT *ctx) |
127 | 0 | { |
128 | 0 | EVP_MD_free(ctx->sha256); |
129 | 0 | ctx->sha256 = EVP_MD_fetch(ctx->libctx, "sha256", ctx->propq); |
130 | 0 | if (ctx->sha256 == NULL) { |
131 | 0 | OPENSSL_free(ctx); |
132 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_UNABLE_TO_LOAD_SHA256); |
133 | 0 | return 0; |
134 | 0 | } |
135 | 0 | return 1; |
136 | 0 | } |
137 | | |
138 | | static int set_property_query(KDF_SCRYPT *ctx, const char *propq) |
139 | 0 | { |
140 | 0 | OPENSSL_free(ctx->propq); |
141 | 0 | ctx->propq = NULL; |
142 | 0 | if (propq != NULL) { |
143 | 0 | ctx->propq = OPENSSL_strdup(propq); |
144 | 0 | if (ctx->propq == NULL) { |
145 | 0 | ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE); |
146 | 0 | return 0; |
147 | 0 | } |
148 | 0 | } |
149 | 0 | return 1; |
150 | 0 | } |
151 | | |
152 | | static int kdf_scrypt_derive(void *vctx, unsigned char *key, size_t keylen, |
153 | | const OSSL_PARAM params[]) |
154 | 0 | { |
155 | 0 | KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx; |
156 | |
|
157 | 0 | if (!ossl_prov_is_running() || !kdf_scrypt_set_ctx_params(ctx, params)) |
158 | 0 | return 0; |
159 | | |
160 | 0 | if (ctx->pass == NULL) { |
161 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_PASS); |
162 | 0 | return 0; |
163 | 0 | } |
164 | | |
165 | 0 | if (ctx->salt == NULL) { |
166 | 0 | ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SALT); |
167 | 0 | return 0; |
168 | 0 | } |
169 | | |
170 | 0 | if (ctx->sha256 == NULL && !set_digest(ctx)) |
171 | 0 | return 0; |
172 | | |
173 | 0 | return scrypt_alg((char *)ctx->pass, ctx->pass_len, ctx->salt, |
174 | 0 | ctx->salt_len, ctx->N, ctx->r, ctx->p, |
175 | 0 | ctx->maxmem_bytes, key, keylen, ctx->sha256, |
176 | 0 | ctx->libctx, ctx->propq); |
177 | 0 | } |
178 | | |
179 | | static int is_power_of_two(uint64_t value) |
180 | 0 | { |
181 | 0 | return (value != 0) && ((value & (value - 1)) == 0); |
182 | 0 | } |
183 | | |
184 | | static int kdf_scrypt_set_ctx_params(void *vctx, const OSSL_PARAM params[]) |
185 | 0 | { |
186 | 0 | const OSSL_PARAM *p; |
187 | 0 | KDF_SCRYPT *ctx = vctx; |
188 | 0 | uint64_t u64_value; |
189 | |
|
190 | 0 | if (params == NULL) |
191 | 0 | return 1; |
192 | | |
193 | 0 | if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_PASSWORD)) != NULL) |
194 | 0 | if (!scrypt_set_membuf(&ctx->pass, &ctx->pass_len, p)) |
195 | 0 | return 0; |
196 | | |
197 | 0 | if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SALT)) != NULL) |
198 | 0 | if (!scrypt_set_membuf(&ctx->salt, &ctx->salt_len, p)) |
199 | 0 | return 0; |
200 | | |
201 | 0 | if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_N)) |
202 | 0 | != NULL) { |
203 | 0 | if (!OSSL_PARAM_get_uint64(p, &u64_value) |
204 | 0 | || u64_value <= 1 |
205 | 0 | || !is_power_of_two(u64_value)) |
206 | 0 | return 0; |
207 | 0 | ctx->N = u64_value; |
208 | 0 | } |
209 | | |
210 | 0 | if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_R)) |
211 | 0 | != NULL) { |
212 | 0 | if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1) |
213 | 0 | return 0; |
214 | 0 | ctx->r = u64_value; |
215 | 0 | } |
216 | | |
217 | 0 | if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_P)) |
218 | 0 | != NULL) { |
219 | 0 | if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1) |
220 | 0 | return 0; |
221 | 0 | ctx->p = u64_value; |
222 | 0 | } |
223 | | |
224 | 0 | if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_MAXMEM)) |
225 | 0 | != NULL) { |
226 | 0 | if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1) |
227 | 0 | return 0; |
228 | 0 | ctx->maxmem_bytes = u64_value; |
229 | 0 | } |
230 | | |
231 | 0 | p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_PROPERTIES); |
232 | 0 | if (p != NULL) { |
233 | 0 | if (p->data_type != OSSL_PARAM_UTF8_STRING |
234 | 0 | || !set_property_query(ctx, p->data) |
235 | 0 | || !set_digest(ctx)) |
236 | 0 | return 0; |
237 | 0 | } |
238 | 0 | return 1; |
239 | 0 | } |
240 | | |
241 | | static const OSSL_PARAM *kdf_scrypt_settable_ctx_params(ossl_unused void *ctx, |
242 | | ossl_unused void *p_ctx) |
243 | 0 | { |
244 | 0 | static const OSSL_PARAM known_settable_ctx_params[] = { |
245 | 0 | OSSL_PARAM_octet_string(OSSL_KDF_PARAM_PASSWORD, NULL, 0), |
246 | 0 | OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SALT, NULL, 0), |
247 | 0 | OSSL_PARAM_uint64(OSSL_KDF_PARAM_SCRYPT_N, NULL), |
248 | 0 | OSSL_PARAM_uint32(OSSL_KDF_PARAM_SCRYPT_R, NULL), |
249 | 0 | OSSL_PARAM_uint32(OSSL_KDF_PARAM_SCRYPT_P, NULL), |
250 | 0 | OSSL_PARAM_uint64(OSSL_KDF_PARAM_SCRYPT_MAXMEM, NULL), |
251 | 0 | OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_PROPERTIES, NULL, 0), |
252 | 0 | OSSL_PARAM_END |
253 | 0 | }; |
254 | 0 | return known_settable_ctx_params; |
255 | 0 | } |
256 | | |
257 | | static int kdf_scrypt_get_ctx_params(void *vctx, OSSL_PARAM params[]) |
258 | 0 | { |
259 | 0 | OSSL_PARAM *p; |
260 | |
|
261 | 0 | if ((p = OSSL_PARAM_locate(params, OSSL_KDF_PARAM_SIZE)) != NULL) |
262 | 0 | return OSSL_PARAM_set_size_t(p, SIZE_MAX); |
263 | 0 | return -2; |
264 | 0 | } |
265 | | |
266 | | static const OSSL_PARAM *kdf_scrypt_gettable_ctx_params(ossl_unused void *ctx, |
267 | | ossl_unused void *p_ctx) |
268 | 0 | { |
269 | 0 | static const OSSL_PARAM known_gettable_ctx_params[] = { |
270 | 0 | OSSL_PARAM_size_t(OSSL_KDF_PARAM_SIZE, NULL), |
271 | 0 | OSSL_PARAM_END |
272 | 0 | }; |
273 | 0 | return known_gettable_ctx_params; |
274 | 0 | } |
275 | | |
276 | | const OSSL_DISPATCH ossl_kdf_scrypt_functions[] = { |
277 | | { OSSL_FUNC_KDF_NEWCTX, (void(*)(void))kdf_scrypt_new }, |
278 | | { OSSL_FUNC_KDF_FREECTX, (void(*)(void))kdf_scrypt_free }, |
279 | | { OSSL_FUNC_KDF_RESET, (void(*)(void))kdf_scrypt_reset }, |
280 | | { OSSL_FUNC_KDF_DERIVE, (void(*)(void))kdf_scrypt_derive }, |
281 | | { OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS, |
282 | | (void(*)(void))kdf_scrypt_settable_ctx_params }, |
283 | | { OSSL_FUNC_KDF_SET_CTX_PARAMS, (void(*)(void))kdf_scrypt_set_ctx_params }, |
284 | | { OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS, |
285 | | (void(*)(void))kdf_scrypt_gettable_ctx_params }, |
286 | | { OSSL_FUNC_KDF_GET_CTX_PARAMS, (void(*)(void))kdf_scrypt_get_ctx_params }, |
287 | | { 0, NULL } |
288 | | }; |
289 | | |
290 | 0 | #define R(a,b) (((a) << (b)) | ((a) >> (32 - (b)))) |
291 | | static void salsa208_word_specification(uint32_t inout[16]) |
292 | 0 | { |
293 | 0 | int i; |
294 | 0 | uint32_t x[16]; |
295 | |
|
296 | 0 | memcpy(x, inout, sizeof(x)); |
297 | 0 | for (i = 8; i > 0; i -= 2) { |
298 | 0 | x[4] ^= R(x[0] + x[12], 7); |
299 | 0 | x[8] ^= R(x[4] + x[0], 9); |
300 | 0 | x[12] ^= R(x[8] + x[4], 13); |
301 | 0 | x[0] ^= R(x[12] + x[8], 18); |
302 | 0 | x[9] ^= R(x[5] + x[1], 7); |
303 | 0 | x[13] ^= R(x[9] + x[5], 9); |
304 | 0 | x[1] ^= R(x[13] + x[9], 13); |
305 | 0 | x[5] ^= R(x[1] + x[13], 18); |
306 | 0 | x[14] ^= R(x[10] + x[6], 7); |
307 | 0 | x[2] ^= R(x[14] + x[10], 9); |
308 | 0 | x[6] ^= R(x[2] + x[14], 13); |
309 | 0 | x[10] ^= R(x[6] + x[2], 18); |
310 | 0 | x[3] ^= R(x[15] + x[11], 7); |
311 | 0 | x[7] ^= R(x[3] + x[15], 9); |
312 | 0 | x[11] ^= R(x[7] + x[3], 13); |
313 | 0 | x[15] ^= R(x[11] + x[7], 18); |
314 | 0 | x[1] ^= R(x[0] + x[3], 7); |
315 | 0 | x[2] ^= R(x[1] + x[0], 9); |
316 | 0 | x[3] ^= R(x[2] + x[1], 13); |
317 | 0 | x[0] ^= R(x[3] + x[2], 18); |
318 | 0 | x[6] ^= R(x[5] + x[4], 7); |
319 | 0 | x[7] ^= R(x[6] + x[5], 9); |
320 | 0 | x[4] ^= R(x[7] + x[6], 13); |
321 | 0 | x[5] ^= R(x[4] + x[7], 18); |
322 | 0 | x[11] ^= R(x[10] + x[9], 7); |
323 | 0 | x[8] ^= R(x[11] + x[10], 9); |
324 | 0 | x[9] ^= R(x[8] + x[11], 13); |
325 | 0 | x[10] ^= R(x[9] + x[8], 18); |
326 | 0 | x[12] ^= R(x[15] + x[14], 7); |
327 | 0 | x[13] ^= R(x[12] + x[15], 9); |
328 | 0 | x[14] ^= R(x[13] + x[12], 13); |
329 | 0 | x[15] ^= R(x[14] + x[13], 18); |
330 | 0 | } |
331 | 0 | for (i = 0; i < 16; ++i) |
332 | 0 | inout[i] += x[i]; |
333 | 0 | OPENSSL_cleanse(x, sizeof(x)); |
334 | 0 | } |
335 | | |
336 | | static void scryptBlockMix(uint32_t *B_, uint32_t *B, uint64_t r) |
337 | 0 | { |
338 | 0 | uint64_t i, j; |
339 | 0 | uint32_t X[16], *pB; |
340 | |
|
341 | 0 | memcpy(X, B + (r * 2 - 1) * 16, sizeof(X)); |
342 | 0 | pB = B; |
343 | 0 | for (i = 0; i < r * 2; i++) { |
344 | 0 | for (j = 0; j < 16; j++) |
345 | 0 | X[j] ^= *pB++; |
346 | 0 | salsa208_word_specification(X); |
347 | 0 | memcpy(B_ + (i / 2 + (i & 1) * r) * 16, X, sizeof(X)); |
348 | 0 | } |
349 | 0 | OPENSSL_cleanse(X, sizeof(X)); |
350 | 0 | } |
351 | | |
352 | | static void scryptROMix(unsigned char *B, uint64_t r, uint64_t N, |
353 | | uint32_t *X, uint32_t *T, uint32_t *V) |
354 | 0 | { |
355 | 0 | unsigned char *pB; |
356 | 0 | uint32_t *pV; |
357 | 0 | uint64_t i, k; |
358 | | |
359 | | /* Convert from little endian input */ |
360 | 0 | for (pV = V, i = 0, pB = B; i < 32 * r; i++, pV++) { |
361 | 0 | *pV = *pB++; |
362 | 0 | *pV |= *pB++ << 8; |
363 | 0 | *pV |= *pB++ << 16; |
364 | 0 | *pV |= (uint32_t)*pB++ << 24; |
365 | 0 | } |
366 | |
|
367 | 0 | for (i = 1; i < N; i++, pV += 32 * r) |
368 | 0 | scryptBlockMix(pV, pV - 32 * r, r); |
369 | |
|
370 | 0 | scryptBlockMix(X, V + (N - 1) * 32 * r, r); |
371 | |
|
372 | 0 | for (i = 0; i < N; i++) { |
373 | 0 | uint32_t j; |
374 | 0 | j = X[16 * (2 * r - 1)] % N; |
375 | 0 | pV = V + 32 * r * j; |
376 | 0 | for (k = 0; k < 32 * r; k++) |
377 | 0 | T[k] = X[k] ^ *pV++; |
378 | 0 | scryptBlockMix(X, T, r); |
379 | 0 | } |
380 | | /* Convert output to little endian */ |
381 | 0 | for (i = 0, pB = B; i < 32 * r; i++) { |
382 | 0 | uint32_t xtmp = X[i]; |
383 | 0 | *pB++ = xtmp & 0xff; |
384 | 0 | *pB++ = (xtmp >> 8) & 0xff; |
385 | 0 | *pB++ = (xtmp >> 16) & 0xff; |
386 | 0 | *pB++ = (xtmp >> 24) & 0xff; |
387 | 0 | } |
388 | 0 | } |
389 | | |
390 | | #ifndef SIZE_MAX |
391 | | # define SIZE_MAX ((size_t)-1) |
392 | | #endif |
393 | | |
394 | | /* |
395 | | * Maximum power of two that will fit in uint64_t: this should work on |
396 | | * most (all?) platforms. |
397 | | */ |
398 | | |
399 | 0 | #define LOG2_UINT64_MAX (sizeof(uint64_t) * 8 - 1) |
400 | | |
401 | | /* |
402 | | * Maximum value of p * r: |
403 | | * p <= ((2^32-1) * hLen) / MFLen => |
404 | | * p <= ((2^32-1) * 32) / (128 * r) => |
405 | | * p * r <= (2^30-1) |
406 | | */ |
407 | | |
408 | 0 | #define SCRYPT_PR_MAX ((1 << 30) - 1) |
409 | | |
410 | | static int scrypt_alg(const char *pass, size_t passlen, |
411 | | const unsigned char *salt, size_t saltlen, |
412 | | uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem, |
413 | | unsigned char *key, size_t keylen, EVP_MD *sha256, |
414 | | OSSL_LIB_CTX *libctx, const char *propq) |
415 | 0 | { |
416 | 0 | int rv = 0; |
417 | 0 | unsigned char *B; |
418 | 0 | uint32_t *X, *V, *T; |
419 | 0 | uint64_t i, Blen, Vlen; |
420 | | |
421 | | /* Sanity check parameters */ |
422 | | /* initial check, r,p must be non zero, N >= 2 and a power of 2 */ |
423 | 0 | if (r == 0 || p == 0 || N < 2 || (N & (N - 1))) |
424 | 0 | return 0; |
425 | | /* Check p * r < SCRYPT_PR_MAX avoiding overflow */ |
426 | 0 | if (p > SCRYPT_PR_MAX / r) { |
427 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED); |
428 | 0 | return 0; |
429 | 0 | } |
430 | | |
431 | | /* |
432 | | * Need to check N: if 2^(128 * r / 8) overflows limit this is |
433 | | * automatically satisfied since N <= UINT64_MAX. |
434 | | */ |
435 | | |
436 | 0 | if (16 * r <= LOG2_UINT64_MAX) { |
437 | 0 | if (N >= (((uint64_t)1) << (16 * r))) { |
438 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED); |
439 | 0 | return 0; |
440 | 0 | } |
441 | 0 | } |
442 | | |
443 | | /* Memory checks: check total allocated buffer size fits in uint64_t */ |
444 | | |
445 | | /* |
446 | | * B size in section 5 step 1.S |
447 | | * Note: we know p * 128 * r < UINT64_MAX because we already checked |
448 | | * p * r < SCRYPT_PR_MAX |
449 | | */ |
450 | 0 | Blen = p * 128 * r; |
451 | | /* |
452 | | * Yet we pass it as integer to PKCS5_PBKDF2_HMAC... [This would |
453 | | * have to be revised when/if PKCS5_PBKDF2_HMAC accepts size_t.] |
454 | | */ |
455 | 0 | if (Blen > INT_MAX) { |
456 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED); |
457 | 0 | return 0; |
458 | 0 | } |
459 | | |
460 | | /* |
461 | | * Check 32 * r * (N + 2) * sizeof(uint32_t) fits in uint64_t |
462 | | * This is combined size V, X and T (section 4) |
463 | | */ |
464 | 0 | i = UINT64_MAX / (32 * sizeof(uint32_t)); |
465 | 0 | if (N + 2 > i / r) { |
466 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED); |
467 | 0 | return 0; |
468 | 0 | } |
469 | 0 | Vlen = 32 * r * (N + 2) * sizeof(uint32_t); |
470 | | |
471 | | /* check total allocated size fits in uint64_t */ |
472 | 0 | if (Blen > UINT64_MAX - Vlen) { |
473 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED); |
474 | 0 | return 0; |
475 | 0 | } |
476 | | |
477 | | /* Check that the maximum memory doesn't exceed a size_t limits */ |
478 | 0 | if (maxmem > SIZE_MAX) |
479 | 0 | maxmem = SIZE_MAX; |
480 | |
|
481 | 0 | if (Blen + Vlen > maxmem) { |
482 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED); |
483 | 0 | return 0; |
484 | 0 | } |
485 | | |
486 | | /* If no key return to indicate parameters are OK */ |
487 | 0 | if (key == NULL) |
488 | 0 | return 1; |
489 | | |
490 | 0 | B = OPENSSL_malloc((size_t)(Blen + Vlen)); |
491 | 0 | if (B == NULL) { |
492 | 0 | ERR_raise(ERR_LIB_EVP, ERR_R_MALLOC_FAILURE); |
493 | 0 | return 0; |
494 | 0 | } |
495 | 0 | X = (uint32_t *)(B + Blen); |
496 | 0 | T = X + 32 * r; |
497 | 0 | V = T + 32 * r; |
498 | 0 | if (ossl_pkcs5_pbkdf2_hmac_ex(pass, passlen, salt, saltlen, 1, sha256, |
499 | 0 | (int)Blen, B, libctx, propq) == 0) |
500 | 0 | goto err; |
501 | | |
502 | 0 | for (i = 0; i < p; i++) |
503 | 0 | scryptROMix(B + 128 * r * i, r, N, X, T, V); |
504 | |
|
505 | 0 | if (ossl_pkcs5_pbkdf2_hmac_ex(pass, passlen, B, (int)Blen, 1, sha256, |
506 | 0 | keylen, key, libctx, propq) == 0) |
507 | 0 | goto err; |
508 | 0 | rv = 1; |
509 | 0 | err: |
510 | 0 | if (rv == 0) |
511 | 0 | ERR_raise(ERR_LIB_EVP, EVP_R_PBKDF2_ERROR); |
512 | |
|
513 | 0 | OPENSSL_clear_free(B, (size_t)(Blen + Vlen)); |
514 | 0 | return rv; |
515 | 0 | } |
516 | | |
517 | | #endif |