Coverage Report

Created: 2023-06-08 06:41

/src/openssl30/providers/implementations/kdfs/scrypt.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2017-2021 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include <stdlib.h>
11
#include <stdarg.h>
12
#include <string.h>
13
#include <openssl/evp.h>
14
#include <openssl/kdf.h>
15
#include <openssl/err.h>
16
#include <openssl/core_names.h>
17
#include <openssl/proverr.h>
18
#include "crypto/evp.h"
19
#include "internal/numbers.h"
20
#include "prov/implementations.h"
21
#include "prov/provider_ctx.h"
22
#include "prov/providercommon.h"
23
#include "prov/implementations.h"
24
25
#ifndef OPENSSL_NO_SCRYPT
26
27
static OSSL_FUNC_kdf_newctx_fn kdf_scrypt_new;
28
static OSSL_FUNC_kdf_freectx_fn kdf_scrypt_free;
29
static OSSL_FUNC_kdf_reset_fn kdf_scrypt_reset;
30
static OSSL_FUNC_kdf_derive_fn kdf_scrypt_derive;
31
static OSSL_FUNC_kdf_settable_ctx_params_fn kdf_scrypt_settable_ctx_params;
32
static OSSL_FUNC_kdf_set_ctx_params_fn kdf_scrypt_set_ctx_params;
33
static OSSL_FUNC_kdf_gettable_ctx_params_fn kdf_scrypt_gettable_ctx_params;
34
static OSSL_FUNC_kdf_get_ctx_params_fn kdf_scrypt_get_ctx_params;
35
36
static int scrypt_alg(const char *pass, size_t passlen,
37
                      const unsigned char *salt, size_t saltlen,
38
                      uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem,
39
                      unsigned char *key, size_t keylen, EVP_MD *sha256,
40
                      OSSL_LIB_CTX *libctx, const char *propq);
41
42
typedef struct {
43
    OSSL_LIB_CTX *libctx;
44
    char *propq;
45
    unsigned char *pass;
46
    size_t pass_len;
47
    unsigned char *salt;
48
    size_t salt_len;
49
    uint64_t N;
50
    uint64_t r, p;
51
    uint64_t maxmem_bytes;
52
    EVP_MD *sha256;
53
} KDF_SCRYPT;
54
55
static void kdf_scrypt_init(KDF_SCRYPT *ctx);
56
57
static void *kdf_scrypt_new(void *provctx)
58
0
{
59
0
    KDF_SCRYPT *ctx;
60
61
0
    if (!ossl_prov_is_running())
62
0
        return NULL;
63
64
0
    ctx = OPENSSL_zalloc(sizeof(*ctx));
65
0
    if (ctx == NULL) {
66
0
        ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
67
0
        return NULL;
68
0
    }
69
0
    ctx->libctx = PROV_LIBCTX_OF(provctx);
70
0
    kdf_scrypt_init(ctx);
71
0
    return ctx;
72
0
}
73
74
static void kdf_scrypt_free(void *vctx)
75
0
{
76
0
    KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx;
77
78
0
    if (ctx != NULL) {
79
0
        OPENSSL_free(ctx->propq);
80
0
        EVP_MD_free(ctx->sha256);
81
0
        kdf_scrypt_reset(ctx);
82
0
        OPENSSL_free(ctx);
83
0
    }
84
0
}
85
86
static void kdf_scrypt_reset(void *vctx)
87
0
{
88
0
    KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx;
89
90
0
    OPENSSL_free(ctx->salt);
91
0
    OPENSSL_clear_free(ctx->pass, ctx->pass_len);
92
0
    kdf_scrypt_init(ctx);
93
0
}
94
95
static void kdf_scrypt_init(KDF_SCRYPT *ctx)
96
0
{
97
    /* Default values are the most conservative recommendation given in the
98
     * original paper of C. Percival. Derivation uses roughly 1 GiB of memory
99
     * for this parameter choice (approx. 128 * r * N * p bytes).
100
     */
101
0
    ctx->N = 1 << 20;
102
0
    ctx->r = 8;
103
0
    ctx->p = 1;
104
0
    ctx->maxmem_bytes = 1025 * 1024 * 1024;
105
0
}
106
107
static int scrypt_set_membuf(unsigned char **buffer, size_t *buflen,
108
                             const OSSL_PARAM *p)
109
0
{
110
0
    OPENSSL_clear_free(*buffer, *buflen);
111
0
    *buffer = NULL;
112
0
    *buflen = 0;
113
114
0
    if (p->data_size == 0) {
115
0
        if ((*buffer = OPENSSL_malloc(1)) == NULL) {
116
0
            ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
117
0
            return 0;
118
0
        }
119
0
    } else if (p->data != NULL) {
120
0
        if (!OSSL_PARAM_get_octet_string(p, (void **)buffer, 0, buflen))
121
0
            return 0;
122
0
    }
123
0
    return 1;
124
0
}
125
126
static int set_digest(KDF_SCRYPT *ctx)
127
0
{
128
0
    EVP_MD_free(ctx->sha256);
129
0
    ctx->sha256 = EVP_MD_fetch(ctx->libctx, "sha256", ctx->propq);
130
0
    if (ctx->sha256 == NULL) {
131
0
        OPENSSL_free(ctx);
132
0
        ERR_raise(ERR_LIB_PROV, PROV_R_UNABLE_TO_LOAD_SHA256);
133
0
        return 0;
134
0
    }
135
0
    return 1;
136
0
}
137
138
static int set_property_query(KDF_SCRYPT *ctx, const char *propq)
139
0
{
140
0
    OPENSSL_free(ctx->propq);
141
0
    ctx->propq = NULL;
142
0
    if (propq != NULL) {
143
0
        ctx->propq = OPENSSL_strdup(propq);
144
0
        if (ctx->propq == NULL) {
145
0
            ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
146
0
            return 0;
147
0
        }
148
0
    }
149
0
    return 1;
150
0
}
151
152
static int kdf_scrypt_derive(void *vctx, unsigned char *key, size_t keylen,
153
                             const OSSL_PARAM params[])
154
0
{
155
0
    KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx;
156
157
0
    if (!ossl_prov_is_running() || !kdf_scrypt_set_ctx_params(ctx, params))
158
0
        return 0;
159
160
0
    if (ctx->pass == NULL) {
161
0
        ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_PASS);
162
0
        return 0;
163
0
    }
164
165
0
    if (ctx->salt == NULL) {
166
0
        ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SALT);
167
0
        return 0;
168
0
    }
169
170
0
    if (ctx->sha256 == NULL && !set_digest(ctx))
171
0
        return 0;
172
173
0
    return scrypt_alg((char *)ctx->pass, ctx->pass_len, ctx->salt,
174
0
                      ctx->salt_len, ctx->N, ctx->r, ctx->p,
175
0
                      ctx->maxmem_bytes, key, keylen, ctx->sha256,
176
0
                      ctx->libctx, ctx->propq);
177
0
}
178
179
static int is_power_of_two(uint64_t value)
180
0
{
181
0
    return (value != 0) && ((value & (value - 1)) == 0);
182
0
}
183
184
static int kdf_scrypt_set_ctx_params(void *vctx, const OSSL_PARAM params[])
185
0
{
186
0
    const OSSL_PARAM *p;
187
0
    KDF_SCRYPT *ctx = vctx;
188
0
    uint64_t u64_value;
189
190
0
    if (params == NULL)
191
0
        return 1;
192
193
0
    if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_PASSWORD)) != NULL)
194
0
        if (!scrypt_set_membuf(&ctx->pass, &ctx->pass_len, p))
195
0
            return 0;
196
197
0
    if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SALT)) != NULL)
198
0
        if (!scrypt_set_membuf(&ctx->salt, &ctx->salt_len, p))
199
0
            return 0;
200
201
0
    if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_N))
202
0
        != NULL) {
203
0
        if (!OSSL_PARAM_get_uint64(p, &u64_value)
204
0
            || u64_value <= 1
205
0
            || !is_power_of_two(u64_value))
206
0
            return 0;
207
0
        ctx->N = u64_value;
208
0
    }
209
210
0
    if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_R))
211
0
        != NULL) {
212
0
        if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1)
213
0
            return 0;
214
0
        ctx->r = u64_value;
215
0
    }
216
217
0
    if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_P))
218
0
        != NULL) {
219
0
        if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1)
220
0
            return 0;
221
0
        ctx->p = u64_value;
222
0
    }
223
224
0
    if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_MAXMEM))
225
0
        != NULL) {
226
0
        if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1)
227
0
            return 0;
228
0
        ctx->maxmem_bytes = u64_value;
229
0
    }
230
231
0
    p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_PROPERTIES);
232
0
    if (p != NULL) {
233
0
        if (p->data_type != OSSL_PARAM_UTF8_STRING
234
0
            || !set_property_query(ctx, p->data)
235
0
            || !set_digest(ctx))
236
0
            return 0;
237
0
    }
238
0
    return 1;
239
0
}
240
241
static const OSSL_PARAM *kdf_scrypt_settable_ctx_params(ossl_unused void *ctx,
242
                                                        ossl_unused void *p_ctx)
243
0
{
244
0
    static const OSSL_PARAM known_settable_ctx_params[] = {
245
0
        OSSL_PARAM_octet_string(OSSL_KDF_PARAM_PASSWORD, NULL, 0),
246
0
        OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SALT, NULL, 0),
247
0
        OSSL_PARAM_uint64(OSSL_KDF_PARAM_SCRYPT_N, NULL),
248
0
        OSSL_PARAM_uint32(OSSL_KDF_PARAM_SCRYPT_R, NULL),
249
0
        OSSL_PARAM_uint32(OSSL_KDF_PARAM_SCRYPT_P, NULL),
250
0
        OSSL_PARAM_uint64(OSSL_KDF_PARAM_SCRYPT_MAXMEM, NULL),
251
0
        OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_PROPERTIES, NULL, 0),
252
0
        OSSL_PARAM_END
253
0
    };
254
0
    return known_settable_ctx_params;
255
0
}
256
257
static int kdf_scrypt_get_ctx_params(void *vctx, OSSL_PARAM params[])
258
0
{
259
0
    OSSL_PARAM *p;
260
261
0
    if ((p = OSSL_PARAM_locate(params, OSSL_KDF_PARAM_SIZE)) != NULL)
262
0
        return OSSL_PARAM_set_size_t(p, SIZE_MAX);
263
0
    return -2;
264
0
}
265
266
static const OSSL_PARAM *kdf_scrypt_gettable_ctx_params(ossl_unused void *ctx,
267
                                                        ossl_unused void *p_ctx)
268
0
{
269
0
    static const OSSL_PARAM known_gettable_ctx_params[] = {
270
0
        OSSL_PARAM_size_t(OSSL_KDF_PARAM_SIZE, NULL),
271
0
        OSSL_PARAM_END
272
0
    };
273
0
    return known_gettable_ctx_params;
274
0
}
275
276
const OSSL_DISPATCH ossl_kdf_scrypt_functions[] = {
277
    { OSSL_FUNC_KDF_NEWCTX, (void(*)(void))kdf_scrypt_new },
278
    { OSSL_FUNC_KDF_FREECTX, (void(*)(void))kdf_scrypt_free },
279
    { OSSL_FUNC_KDF_RESET, (void(*)(void))kdf_scrypt_reset },
280
    { OSSL_FUNC_KDF_DERIVE, (void(*)(void))kdf_scrypt_derive },
281
    { OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS,
282
      (void(*)(void))kdf_scrypt_settable_ctx_params },
283
    { OSSL_FUNC_KDF_SET_CTX_PARAMS, (void(*)(void))kdf_scrypt_set_ctx_params },
284
    { OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS,
285
      (void(*)(void))kdf_scrypt_gettable_ctx_params },
286
    { OSSL_FUNC_KDF_GET_CTX_PARAMS, (void(*)(void))kdf_scrypt_get_ctx_params },
287
    { 0, NULL }
288
};
289
290
0
#define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
291
static void salsa208_word_specification(uint32_t inout[16])
292
0
{
293
0
    int i;
294
0
    uint32_t x[16];
295
296
0
    memcpy(x, inout, sizeof(x));
297
0
    for (i = 8; i > 0; i -= 2) {
298
0
        x[4] ^= R(x[0] + x[12], 7);
299
0
        x[8] ^= R(x[4] + x[0], 9);
300
0
        x[12] ^= R(x[8] + x[4], 13);
301
0
        x[0] ^= R(x[12] + x[8], 18);
302
0
        x[9] ^= R(x[5] + x[1], 7);
303
0
        x[13] ^= R(x[9] + x[5], 9);
304
0
        x[1] ^= R(x[13] + x[9], 13);
305
0
        x[5] ^= R(x[1] + x[13], 18);
306
0
        x[14] ^= R(x[10] + x[6], 7);
307
0
        x[2] ^= R(x[14] + x[10], 9);
308
0
        x[6] ^= R(x[2] + x[14], 13);
309
0
        x[10] ^= R(x[6] + x[2], 18);
310
0
        x[3] ^= R(x[15] + x[11], 7);
311
0
        x[7] ^= R(x[3] + x[15], 9);
312
0
        x[11] ^= R(x[7] + x[3], 13);
313
0
        x[15] ^= R(x[11] + x[7], 18);
314
0
        x[1] ^= R(x[0] + x[3], 7);
315
0
        x[2] ^= R(x[1] + x[0], 9);
316
0
        x[3] ^= R(x[2] + x[1], 13);
317
0
        x[0] ^= R(x[3] + x[2], 18);
318
0
        x[6] ^= R(x[5] + x[4], 7);
319
0
        x[7] ^= R(x[6] + x[5], 9);
320
0
        x[4] ^= R(x[7] + x[6], 13);
321
0
        x[5] ^= R(x[4] + x[7], 18);
322
0
        x[11] ^= R(x[10] + x[9], 7);
323
0
        x[8] ^= R(x[11] + x[10], 9);
324
0
        x[9] ^= R(x[8] + x[11], 13);
325
0
        x[10] ^= R(x[9] + x[8], 18);
326
0
        x[12] ^= R(x[15] + x[14], 7);
327
0
        x[13] ^= R(x[12] + x[15], 9);
328
0
        x[14] ^= R(x[13] + x[12], 13);
329
0
        x[15] ^= R(x[14] + x[13], 18);
330
0
    }
331
0
    for (i = 0; i < 16; ++i)
332
0
        inout[i] += x[i];
333
0
    OPENSSL_cleanse(x, sizeof(x));
334
0
}
335
336
static void scryptBlockMix(uint32_t *B_, uint32_t *B, uint64_t r)
337
0
{
338
0
    uint64_t i, j;
339
0
    uint32_t X[16], *pB;
340
341
0
    memcpy(X, B + (r * 2 - 1) * 16, sizeof(X));
342
0
    pB = B;
343
0
    for (i = 0; i < r * 2; i++) {
344
0
        for (j = 0; j < 16; j++)
345
0
            X[j] ^= *pB++;
346
0
        salsa208_word_specification(X);
347
0
        memcpy(B_ + (i / 2 + (i & 1) * r) * 16, X, sizeof(X));
348
0
    }
349
0
    OPENSSL_cleanse(X, sizeof(X));
350
0
}
351
352
static void scryptROMix(unsigned char *B, uint64_t r, uint64_t N,
353
                        uint32_t *X, uint32_t *T, uint32_t *V)
354
0
{
355
0
    unsigned char *pB;
356
0
    uint32_t *pV;
357
0
    uint64_t i, k;
358
359
    /* Convert from little endian input */
360
0
    for (pV = V, i = 0, pB = B; i < 32 * r; i++, pV++) {
361
0
        *pV = *pB++;
362
0
        *pV |= *pB++ << 8;
363
0
        *pV |= *pB++ << 16;
364
0
        *pV |= (uint32_t)*pB++ << 24;
365
0
    }
366
367
0
    for (i = 1; i < N; i++, pV += 32 * r)
368
0
        scryptBlockMix(pV, pV - 32 * r, r);
369
370
0
    scryptBlockMix(X, V + (N - 1) * 32 * r, r);
371
372
0
    for (i = 0; i < N; i++) {
373
0
        uint32_t j;
374
0
        j = X[16 * (2 * r - 1)] % N;
375
0
        pV = V + 32 * r * j;
376
0
        for (k = 0; k < 32 * r; k++)
377
0
            T[k] = X[k] ^ *pV++;
378
0
        scryptBlockMix(X, T, r);
379
0
    }
380
    /* Convert output to little endian */
381
0
    for (i = 0, pB = B; i < 32 * r; i++) {
382
0
        uint32_t xtmp = X[i];
383
0
        *pB++ = xtmp & 0xff;
384
0
        *pB++ = (xtmp >> 8) & 0xff;
385
0
        *pB++ = (xtmp >> 16) & 0xff;
386
0
        *pB++ = (xtmp >> 24) & 0xff;
387
0
    }
388
0
}
389
390
#ifndef SIZE_MAX
391
# define SIZE_MAX    ((size_t)-1)
392
#endif
393
394
/*
395
 * Maximum power of two that will fit in uint64_t: this should work on
396
 * most (all?) platforms.
397
 */
398
399
0
#define LOG2_UINT64_MAX         (sizeof(uint64_t) * 8 - 1)
400
401
/*
402
 * Maximum value of p * r:
403
 * p <= ((2^32-1) * hLen) / MFLen =>
404
 * p <= ((2^32-1) * 32) / (128 * r) =>
405
 * p * r <= (2^30-1)
406
 */
407
408
0
#define SCRYPT_PR_MAX   ((1 << 30) - 1)
409
410
static int scrypt_alg(const char *pass, size_t passlen,
411
                      const unsigned char *salt, size_t saltlen,
412
                      uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem,
413
                      unsigned char *key, size_t keylen, EVP_MD *sha256,
414
                      OSSL_LIB_CTX *libctx, const char *propq)
415
0
{
416
0
    int rv = 0;
417
0
    unsigned char *B;
418
0
    uint32_t *X, *V, *T;
419
0
    uint64_t i, Blen, Vlen;
420
421
    /* Sanity check parameters */
422
    /* initial check, r,p must be non zero, N >= 2 and a power of 2 */
423
0
    if (r == 0 || p == 0 || N < 2 || (N & (N - 1)))
424
0
        return 0;
425
    /* Check p * r < SCRYPT_PR_MAX avoiding overflow */
426
0
    if (p > SCRYPT_PR_MAX / r) {
427
0
        ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
428
0
        return 0;
429
0
    }
430
431
    /*
432
     * Need to check N: if 2^(128 * r / 8) overflows limit this is
433
     * automatically satisfied since N <= UINT64_MAX.
434
     */
435
436
0
    if (16 * r <= LOG2_UINT64_MAX) {
437
0
        if (N >= (((uint64_t)1) << (16 * r))) {
438
0
            ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
439
0
            return 0;
440
0
        }
441
0
    }
442
443
    /* Memory checks: check total allocated buffer size fits in uint64_t */
444
445
    /*
446
     * B size in section 5 step 1.S
447
     * Note: we know p * 128 * r < UINT64_MAX because we already checked
448
     * p * r < SCRYPT_PR_MAX
449
     */
450
0
    Blen = p * 128 * r;
451
    /*
452
     * Yet we pass it as integer to PKCS5_PBKDF2_HMAC... [This would
453
     * have to be revised when/if PKCS5_PBKDF2_HMAC accepts size_t.]
454
     */
455
0
    if (Blen > INT_MAX) {
456
0
        ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
457
0
        return 0;
458
0
    }
459
460
    /*
461
     * Check 32 * r * (N + 2) * sizeof(uint32_t) fits in uint64_t
462
     * This is combined size V, X and T (section 4)
463
     */
464
0
    i = UINT64_MAX / (32 * sizeof(uint32_t));
465
0
    if (N + 2 > i / r) {
466
0
        ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
467
0
        return 0;
468
0
    }
469
0
    Vlen = 32 * r * (N + 2) * sizeof(uint32_t);
470
471
    /* check total allocated size fits in uint64_t */
472
0
    if (Blen > UINT64_MAX - Vlen) {
473
0
        ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
474
0
        return 0;
475
0
    }
476
477
    /* Check that the maximum memory doesn't exceed a size_t limits */
478
0
    if (maxmem > SIZE_MAX)
479
0
        maxmem = SIZE_MAX;
480
481
0
    if (Blen + Vlen > maxmem) {
482
0
        ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
483
0
        return 0;
484
0
    }
485
486
    /* If no key return to indicate parameters are OK */
487
0
    if (key == NULL)
488
0
        return 1;
489
490
0
    B = OPENSSL_malloc((size_t)(Blen + Vlen));
491
0
    if (B == NULL) {
492
0
        ERR_raise(ERR_LIB_EVP, ERR_R_MALLOC_FAILURE);
493
0
        return 0;
494
0
    }
495
0
    X = (uint32_t *)(B + Blen);
496
0
    T = X + 32 * r;
497
0
    V = T + 32 * r;
498
0
    if (ossl_pkcs5_pbkdf2_hmac_ex(pass, passlen, salt, saltlen, 1, sha256,
499
0
                                  (int)Blen, B, libctx, propq) == 0)
500
0
        goto err;
501
502
0
    for (i = 0; i < p; i++)
503
0
        scryptROMix(B + 128 * r * i, r, N, X, T, V);
504
505
0
    if (ossl_pkcs5_pbkdf2_hmac_ex(pass, passlen, B, (int)Blen, 1, sha256,
506
0
                                  keylen, key, libctx, propq) == 0)
507
0
        goto err;
508
0
    rv = 1;
509
0
 err:
510
0
    if (rv == 0)
511
0
        ERR_raise(ERR_LIB_EVP, EVP_R_PBKDF2_ERROR);
512
513
0
    OPENSSL_clear_free(B, (size_t)(Blen + Vlen));
514
0
    return rv;
515
0
}
516
517
#endif