/src/openssl111/crypto/bn/bn_gcd.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the OpenSSL license (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | #include "internal/cryptlib.h" |
11 | | #include "bn_local.h" |
12 | | |
13 | | /* |
14 | | * bn_mod_inverse_no_branch is a special version of BN_mod_inverse. It does |
15 | | * not contain branches that may leak sensitive information. |
16 | | * |
17 | | * This is a static function, we ensure all callers in this file pass valid |
18 | | * arguments: all passed pointers here are non-NULL. |
19 | | */ |
20 | | static ossl_inline |
21 | | BIGNUM *bn_mod_inverse_no_branch(BIGNUM *in, |
22 | | const BIGNUM *a, const BIGNUM *n, |
23 | | BN_CTX *ctx, int *pnoinv) |
24 | 0 | { |
25 | 0 | BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL; |
26 | 0 | BIGNUM *ret = NULL; |
27 | 0 | int sign; |
28 | |
|
29 | 0 | bn_check_top(a); |
30 | 0 | bn_check_top(n); |
31 | |
|
32 | 0 | BN_CTX_start(ctx); |
33 | 0 | A = BN_CTX_get(ctx); |
34 | 0 | B = BN_CTX_get(ctx); |
35 | 0 | X = BN_CTX_get(ctx); |
36 | 0 | D = BN_CTX_get(ctx); |
37 | 0 | M = BN_CTX_get(ctx); |
38 | 0 | Y = BN_CTX_get(ctx); |
39 | 0 | T = BN_CTX_get(ctx); |
40 | 0 | if (T == NULL) |
41 | 0 | goto err; |
42 | | |
43 | 0 | if (in == NULL) |
44 | 0 | R = BN_new(); |
45 | 0 | else |
46 | 0 | R = in; |
47 | 0 | if (R == NULL) |
48 | 0 | goto err; |
49 | | |
50 | 0 | if (!BN_one(X)) |
51 | 0 | goto err; |
52 | 0 | BN_zero(Y); |
53 | 0 | if (BN_copy(B, a) == NULL) |
54 | 0 | goto err; |
55 | 0 | if (BN_copy(A, n) == NULL) |
56 | 0 | goto err; |
57 | 0 | A->neg = 0; |
58 | |
|
59 | 0 | if (B->neg || (BN_ucmp(B, A) >= 0)) { |
60 | | /* |
61 | | * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, |
62 | | * BN_div_no_branch will be called eventually. |
63 | | */ |
64 | 0 | { |
65 | 0 | BIGNUM local_B; |
66 | 0 | bn_init(&local_B); |
67 | 0 | BN_with_flags(&local_B, B, BN_FLG_CONSTTIME); |
68 | 0 | if (!BN_nnmod(B, &local_B, A, ctx)) |
69 | 0 | goto err; |
70 | | /* Ensure local_B goes out of scope before any further use of B */ |
71 | 0 | } |
72 | 0 | } |
73 | 0 | sign = -1; |
74 | | /*- |
75 | | * From B = a mod |n|, A = |n| it follows that |
76 | | * |
77 | | * 0 <= B < A, |
78 | | * -sign*X*a == B (mod |n|), |
79 | | * sign*Y*a == A (mod |n|). |
80 | | */ |
81 | |
|
82 | 0 | while (!BN_is_zero(B)) { |
83 | 0 | BIGNUM *tmp; |
84 | | |
85 | | /*- |
86 | | * 0 < B < A, |
87 | | * (*) -sign*X*a == B (mod |n|), |
88 | | * sign*Y*a == A (mod |n|) |
89 | | */ |
90 | | |
91 | | /* |
92 | | * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, |
93 | | * BN_div_no_branch will be called eventually. |
94 | | */ |
95 | 0 | { |
96 | 0 | BIGNUM local_A; |
97 | 0 | bn_init(&local_A); |
98 | 0 | BN_with_flags(&local_A, A, BN_FLG_CONSTTIME); |
99 | | |
100 | | /* (D, M) := (A/B, A%B) ... */ |
101 | 0 | if (!BN_div(D, M, &local_A, B, ctx)) |
102 | 0 | goto err; |
103 | | /* Ensure local_A goes out of scope before any further use of A */ |
104 | 0 | } |
105 | | |
106 | | /*- |
107 | | * Now |
108 | | * A = D*B + M; |
109 | | * thus we have |
110 | | * (**) sign*Y*a == D*B + M (mod |n|). |
111 | | */ |
112 | | |
113 | 0 | tmp = A; /* keep the BIGNUM object, the value does not |
114 | | * matter */ |
115 | | |
116 | | /* (A, B) := (B, A mod B) ... */ |
117 | 0 | A = B; |
118 | 0 | B = M; |
119 | | /* ... so we have 0 <= B < A again */ |
120 | | |
121 | | /*- |
122 | | * Since the former M is now B and the former B is now A, |
123 | | * (**) translates into |
124 | | * sign*Y*a == D*A + B (mod |n|), |
125 | | * i.e. |
126 | | * sign*Y*a - D*A == B (mod |n|). |
127 | | * Similarly, (*) translates into |
128 | | * -sign*X*a == A (mod |n|). |
129 | | * |
130 | | * Thus, |
131 | | * sign*Y*a + D*sign*X*a == B (mod |n|), |
132 | | * i.e. |
133 | | * sign*(Y + D*X)*a == B (mod |n|). |
134 | | * |
135 | | * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at |
136 | | * -sign*X*a == B (mod |n|), |
137 | | * sign*Y*a == A (mod |n|). |
138 | | * Note that X and Y stay non-negative all the time. |
139 | | */ |
140 | |
|
141 | 0 | if (!BN_mul(tmp, D, X, ctx)) |
142 | 0 | goto err; |
143 | 0 | if (!BN_add(tmp, tmp, Y)) |
144 | 0 | goto err; |
145 | | |
146 | 0 | M = Y; /* keep the BIGNUM object, the value does not |
147 | | * matter */ |
148 | 0 | Y = X; |
149 | 0 | X = tmp; |
150 | 0 | sign = -sign; |
151 | 0 | } |
152 | | |
153 | | /*- |
154 | | * The while loop (Euclid's algorithm) ends when |
155 | | * A == gcd(a,n); |
156 | | * we have |
157 | | * sign*Y*a == A (mod |n|), |
158 | | * where Y is non-negative. |
159 | | */ |
160 | | |
161 | 0 | if (sign < 0) { |
162 | 0 | if (!BN_sub(Y, n, Y)) |
163 | 0 | goto err; |
164 | 0 | } |
165 | | /* Now Y*a == A (mod |n|). */ |
166 | | |
167 | 0 | if (BN_is_one(A)) { |
168 | | /* Y*a == 1 (mod |n|) */ |
169 | 0 | if (!Y->neg && BN_ucmp(Y, n) < 0) { |
170 | 0 | if (!BN_copy(R, Y)) |
171 | 0 | goto err; |
172 | 0 | } else { |
173 | 0 | if (!BN_nnmod(R, Y, n, ctx)) |
174 | 0 | goto err; |
175 | 0 | } |
176 | 0 | } else { |
177 | 0 | *pnoinv = 1; |
178 | | /* caller sets the BN_R_NO_INVERSE error */ |
179 | 0 | goto err; |
180 | 0 | } |
181 | | |
182 | 0 | ret = R; |
183 | 0 | *pnoinv = 0; |
184 | |
|
185 | 0 | err: |
186 | 0 | if ((ret == NULL) && (in == NULL)) |
187 | 0 | BN_free(R); |
188 | 0 | BN_CTX_end(ctx); |
189 | 0 | bn_check_top(ret); |
190 | 0 | return ret; |
191 | 0 | } |
192 | | |
193 | | /* |
194 | | * This is an internal function, we assume all callers pass valid arguments: |
195 | | * all pointers passed here are assumed non-NULL. |
196 | | */ |
197 | | BIGNUM *int_bn_mod_inverse(BIGNUM *in, |
198 | | const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx, |
199 | | int *pnoinv) |
200 | 42.7k | { |
201 | 42.7k | BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL; |
202 | 42.7k | BIGNUM *ret = NULL; |
203 | 42.7k | int sign; |
204 | | |
205 | | /* This is invalid input so we don't worry about constant time here */ |
206 | 42.7k | if (BN_abs_is_word(n, 1) || BN_is_zero(n)) { |
207 | 0 | *pnoinv = 1; |
208 | 0 | return NULL; |
209 | 0 | } |
210 | | |
211 | 42.7k | *pnoinv = 0; |
212 | | |
213 | 42.7k | if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0) |
214 | 42.7k | || (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)) { |
215 | 0 | return bn_mod_inverse_no_branch(in, a, n, ctx, pnoinv); |
216 | 0 | } |
217 | | |
218 | 42.7k | bn_check_top(a); |
219 | 42.7k | bn_check_top(n); |
220 | | |
221 | 42.7k | BN_CTX_start(ctx); |
222 | 42.7k | A = BN_CTX_get(ctx); |
223 | 42.7k | B = BN_CTX_get(ctx); |
224 | 42.7k | X = BN_CTX_get(ctx); |
225 | 42.7k | D = BN_CTX_get(ctx); |
226 | 42.7k | M = BN_CTX_get(ctx); |
227 | 42.7k | Y = BN_CTX_get(ctx); |
228 | 42.7k | T = BN_CTX_get(ctx); |
229 | 42.7k | if (T == NULL) |
230 | 0 | goto err; |
231 | | |
232 | 42.7k | if (in == NULL) |
233 | 0 | R = BN_new(); |
234 | 42.7k | else |
235 | 42.7k | R = in; |
236 | 42.7k | if (R == NULL) |
237 | 0 | goto err; |
238 | | |
239 | 42.7k | if (!BN_one(X)) |
240 | 0 | goto err; |
241 | 42.7k | BN_zero(Y); |
242 | 42.7k | if (BN_copy(B, a) == NULL) |
243 | 0 | goto err; |
244 | 42.7k | if (BN_copy(A, n) == NULL) |
245 | 0 | goto err; |
246 | 42.7k | A->neg = 0; |
247 | 42.7k | if (B->neg || (BN_ucmp(B, A) >= 0)) { |
248 | 42.7k | if (!BN_nnmod(B, B, A, ctx)) |
249 | 0 | goto err; |
250 | 42.7k | } |
251 | 42.7k | sign = -1; |
252 | | /*- |
253 | | * From B = a mod |n|, A = |n| it follows that |
254 | | * |
255 | | * 0 <= B < A, |
256 | | * -sign*X*a == B (mod |n|), |
257 | | * sign*Y*a == A (mod |n|). |
258 | | */ |
259 | | |
260 | 42.7k | if (BN_is_odd(n) && (BN_num_bits(n) <= 2048)) { |
261 | | /* |
262 | | * Binary inversion algorithm; requires odd modulus. This is faster |
263 | | * than the general algorithm if the modulus is sufficiently small |
264 | | * (about 400 .. 500 bits on 32-bit systems, but much more on 64-bit |
265 | | * systems) |
266 | | */ |
267 | 42.7k | int shift; |
268 | | |
269 | 2.70M | while (!BN_is_zero(B)) { |
270 | | /*- |
271 | | * 0 < B < |n|, |
272 | | * 0 < A <= |n|, |
273 | | * (1) -sign*X*a == B (mod |n|), |
274 | | * (2) sign*Y*a == A (mod |n|) |
275 | | */ |
276 | | |
277 | | /* |
278 | | * Now divide B by the maximum possible power of two in the |
279 | | * integers, and divide X by the same value mod |n|. When we're |
280 | | * done, (1) still holds. |
281 | | */ |
282 | 2.66M | shift = 0; |
283 | 3.62M | while (!BN_is_bit_set(B, shift)) { /* note that 0 < B */ |
284 | 960k | shift++; |
285 | | |
286 | 960k | if (BN_is_odd(X)) { |
287 | 510k | if (!BN_uadd(X, X, n)) |
288 | 0 | goto err; |
289 | 510k | } |
290 | | /* |
291 | | * now X is even, so we can easily divide it by two |
292 | | */ |
293 | 960k | if (!BN_rshift1(X, X)) |
294 | 0 | goto err; |
295 | 960k | } |
296 | 2.66M | if (shift > 0) { |
297 | 924k | if (!BN_rshift(B, B, shift)) |
298 | 0 | goto err; |
299 | 924k | } |
300 | | |
301 | | /* |
302 | | * Same for A and Y. Afterwards, (2) still holds. |
303 | | */ |
304 | 2.66M | shift = 0; |
305 | 4.39M | while (!BN_is_bit_set(A, shift)) { /* note that 0 < A */ |
306 | 1.72M | shift++; |
307 | | |
308 | 1.72M | if (BN_is_odd(Y)) { |
309 | 934k | if (!BN_uadd(Y, Y, n)) |
310 | 0 | goto err; |
311 | 934k | } |
312 | | /* now Y is even */ |
313 | 1.72M | if (!BN_rshift1(Y, Y)) |
314 | 0 | goto err; |
315 | 1.72M | } |
316 | 2.66M | if (shift > 0) { |
317 | 1.70M | if (!BN_rshift(A, A, shift)) |
318 | 0 | goto err; |
319 | 1.70M | } |
320 | | |
321 | | /*- |
322 | | * We still have (1) and (2). |
323 | | * Both A and B are odd. |
324 | | * The following computations ensure that |
325 | | * |
326 | | * 0 <= B < |n|, |
327 | | * 0 < A < |n|, |
328 | | * (1) -sign*X*a == B (mod |n|), |
329 | | * (2) sign*Y*a == A (mod |n|), |
330 | | * |
331 | | * and that either A or B is even in the next iteration. |
332 | | */ |
333 | 2.66M | if (BN_ucmp(B, A) >= 0) { |
334 | | /* -sign*(X + Y)*a == B - A (mod |n|) */ |
335 | 953k | if (!BN_uadd(X, X, Y)) |
336 | 0 | goto err; |
337 | | /* |
338 | | * NB: we could use BN_mod_add_quick(X, X, Y, n), but that |
339 | | * actually makes the algorithm slower |
340 | | */ |
341 | 953k | if (!BN_usub(B, B, A)) |
342 | 0 | goto err; |
343 | 1.70M | } else { |
344 | | /* sign*(X + Y)*a == A - B (mod |n|) */ |
345 | 1.70M | if (!BN_uadd(Y, Y, X)) |
346 | 0 | goto err; |
347 | | /* |
348 | | * as above, BN_mod_add_quick(Y, Y, X, n) would slow things down |
349 | | */ |
350 | 1.70M | if (!BN_usub(A, A, B)) |
351 | 0 | goto err; |
352 | 1.70M | } |
353 | 2.66M | } |
354 | 42.7k | } else { |
355 | | /* general inversion algorithm */ |
356 | |
|
357 | 0 | while (!BN_is_zero(B)) { |
358 | 0 | BIGNUM *tmp; |
359 | | |
360 | | /*- |
361 | | * 0 < B < A, |
362 | | * (*) -sign*X*a == B (mod |n|), |
363 | | * sign*Y*a == A (mod |n|) |
364 | | */ |
365 | | |
366 | | /* (D, M) := (A/B, A%B) ... */ |
367 | 0 | if (BN_num_bits(A) == BN_num_bits(B)) { |
368 | 0 | if (!BN_one(D)) |
369 | 0 | goto err; |
370 | 0 | if (!BN_sub(M, A, B)) |
371 | 0 | goto err; |
372 | 0 | } else if (BN_num_bits(A) == BN_num_bits(B) + 1) { |
373 | | /* A/B is 1, 2, or 3 */ |
374 | 0 | if (!BN_lshift1(T, B)) |
375 | 0 | goto err; |
376 | 0 | if (BN_ucmp(A, T) < 0) { |
377 | | /* A < 2*B, so D=1 */ |
378 | 0 | if (!BN_one(D)) |
379 | 0 | goto err; |
380 | 0 | if (!BN_sub(M, A, B)) |
381 | 0 | goto err; |
382 | 0 | } else { |
383 | | /* A >= 2*B, so D=2 or D=3 */ |
384 | 0 | if (!BN_sub(M, A, T)) |
385 | 0 | goto err; |
386 | 0 | if (!BN_add(D, T, B)) |
387 | 0 | goto err; /* use D (:= 3*B) as temp */ |
388 | 0 | if (BN_ucmp(A, D) < 0) { |
389 | | /* A < 3*B, so D=2 */ |
390 | 0 | if (!BN_set_word(D, 2)) |
391 | 0 | goto err; |
392 | | /* |
393 | | * M (= A - 2*B) already has the correct value |
394 | | */ |
395 | 0 | } else { |
396 | | /* only D=3 remains */ |
397 | 0 | if (!BN_set_word(D, 3)) |
398 | 0 | goto err; |
399 | | /* |
400 | | * currently M = A - 2*B, but we need M = A - 3*B |
401 | | */ |
402 | 0 | if (!BN_sub(M, M, B)) |
403 | 0 | goto err; |
404 | 0 | } |
405 | 0 | } |
406 | 0 | } else { |
407 | 0 | if (!BN_div(D, M, A, B, ctx)) |
408 | 0 | goto err; |
409 | 0 | } |
410 | | |
411 | | /*- |
412 | | * Now |
413 | | * A = D*B + M; |
414 | | * thus we have |
415 | | * (**) sign*Y*a == D*B + M (mod |n|). |
416 | | */ |
417 | | |
418 | 0 | tmp = A; /* keep the BIGNUM object, the value does not matter */ |
419 | | |
420 | | /* (A, B) := (B, A mod B) ... */ |
421 | 0 | A = B; |
422 | 0 | B = M; |
423 | | /* ... so we have 0 <= B < A again */ |
424 | | |
425 | | /*- |
426 | | * Since the former M is now B and the former B is now A, |
427 | | * (**) translates into |
428 | | * sign*Y*a == D*A + B (mod |n|), |
429 | | * i.e. |
430 | | * sign*Y*a - D*A == B (mod |n|). |
431 | | * Similarly, (*) translates into |
432 | | * -sign*X*a == A (mod |n|). |
433 | | * |
434 | | * Thus, |
435 | | * sign*Y*a + D*sign*X*a == B (mod |n|), |
436 | | * i.e. |
437 | | * sign*(Y + D*X)*a == B (mod |n|). |
438 | | * |
439 | | * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at |
440 | | * -sign*X*a == B (mod |n|), |
441 | | * sign*Y*a == A (mod |n|). |
442 | | * Note that X and Y stay non-negative all the time. |
443 | | */ |
444 | | |
445 | | /* |
446 | | * most of the time D is very small, so we can optimize tmp := D*X+Y |
447 | | */ |
448 | 0 | if (BN_is_one(D)) { |
449 | 0 | if (!BN_add(tmp, X, Y)) |
450 | 0 | goto err; |
451 | 0 | } else { |
452 | 0 | if (BN_is_word(D, 2)) { |
453 | 0 | if (!BN_lshift1(tmp, X)) |
454 | 0 | goto err; |
455 | 0 | } else if (BN_is_word(D, 4)) { |
456 | 0 | if (!BN_lshift(tmp, X, 2)) |
457 | 0 | goto err; |
458 | 0 | } else if (D->top == 1) { |
459 | 0 | if (!BN_copy(tmp, X)) |
460 | 0 | goto err; |
461 | 0 | if (!BN_mul_word(tmp, D->d[0])) |
462 | 0 | goto err; |
463 | 0 | } else { |
464 | 0 | if (!BN_mul(tmp, D, X, ctx)) |
465 | 0 | goto err; |
466 | 0 | } |
467 | 0 | if (!BN_add(tmp, tmp, Y)) |
468 | 0 | goto err; |
469 | 0 | } |
470 | | |
471 | 0 | M = Y; /* keep the BIGNUM object, the value does not matter */ |
472 | 0 | Y = X; |
473 | 0 | X = tmp; |
474 | 0 | sign = -sign; |
475 | 0 | } |
476 | 0 | } |
477 | | |
478 | | /*- |
479 | | * The while loop (Euclid's algorithm) ends when |
480 | | * A == gcd(a,n); |
481 | | * we have |
482 | | * sign*Y*a == A (mod |n|), |
483 | | * where Y is non-negative. |
484 | | */ |
485 | | |
486 | 42.7k | if (sign < 0) { |
487 | 42.7k | if (!BN_sub(Y, n, Y)) |
488 | 0 | goto err; |
489 | 42.7k | } |
490 | | /* Now Y*a == A (mod |n|). */ |
491 | | |
492 | 42.7k | if (BN_is_one(A)) { |
493 | | /* Y*a == 1 (mod |n|) */ |
494 | 42.7k | if (!Y->neg && BN_ucmp(Y, n) < 0) { |
495 | 1.78k | if (!BN_copy(R, Y)) |
496 | 0 | goto err; |
497 | 40.9k | } else { |
498 | 40.9k | if (!BN_nnmod(R, Y, n, ctx)) |
499 | 0 | goto err; |
500 | 40.9k | } |
501 | 42.7k | } else { |
502 | 0 | *pnoinv = 1; |
503 | 0 | goto err; |
504 | 0 | } |
505 | 42.7k | ret = R; |
506 | 42.7k | err: |
507 | 42.7k | if ((ret == NULL) && (in == NULL)) |
508 | 0 | BN_free(R); |
509 | 42.7k | BN_CTX_end(ctx); |
510 | 42.7k | bn_check_top(ret); |
511 | 42.7k | return ret; |
512 | 42.7k | } |
513 | | |
514 | | /* solves ax == 1 (mod n) */ |
515 | | BIGNUM *BN_mod_inverse(BIGNUM *in, |
516 | | const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) |
517 | 42.7k | { |
518 | 42.7k | BN_CTX *new_ctx = NULL; |
519 | 42.7k | BIGNUM *rv; |
520 | 42.7k | int noinv = 0; |
521 | | |
522 | 42.7k | if (ctx == NULL) { |
523 | 0 | ctx = new_ctx = BN_CTX_new(); |
524 | 0 | if (ctx == NULL) { |
525 | 0 | BNerr(BN_F_BN_MOD_INVERSE, ERR_R_MALLOC_FAILURE); |
526 | 0 | return NULL; |
527 | 0 | } |
528 | 0 | } |
529 | | |
530 | 42.7k | rv = int_bn_mod_inverse(in, a, n, ctx, &noinv); |
531 | 42.7k | if (noinv) |
532 | 42.7k | BNerr(BN_F_BN_MOD_INVERSE, BN_R_NO_INVERSE); |
533 | 42.7k | BN_CTX_free(new_ctx); |
534 | 42.7k | return rv; |
535 | 42.7k | } |
536 | | |
537 | | /*- |
538 | | * This function is based on the constant-time GCD work by Bernstein and Yang: |
539 | | * https://eprint.iacr.org/2019/266 |
540 | | * Generalized fast GCD function to allow even inputs. |
541 | | * The algorithm first finds the shared powers of 2 between |
542 | | * the inputs, and removes them, reducing at least one of the |
543 | | * inputs to an odd value. Then it proceeds to calculate the GCD. |
544 | | * Before returning the resulting GCD, we take care of adding |
545 | | * back the powers of two removed at the beginning. |
546 | | * Note 1: we assume the bit length of both inputs is public information, |
547 | | * since access to top potentially leaks this information. |
548 | | */ |
549 | | int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx) |
550 | 0 | { |
551 | 0 | BIGNUM *g, *temp = NULL; |
552 | 0 | BN_ULONG mask = 0; |
553 | 0 | int i, j, top, rlen, glen, m, bit = 1, delta = 1, cond = 0, shifts = 0, ret = 0; |
554 | | |
555 | | /* Note 2: zero input corner cases are not constant-time since they are |
556 | | * handled immediately. An attacker can run an attack under this |
557 | | * assumption without the need of side-channel information. */ |
558 | 0 | if (BN_is_zero(in_b)) { |
559 | 0 | ret = BN_copy(r, in_a) != NULL; |
560 | 0 | r->neg = 0; |
561 | 0 | return ret; |
562 | 0 | } |
563 | 0 | if (BN_is_zero(in_a)) { |
564 | 0 | ret = BN_copy(r, in_b) != NULL; |
565 | 0 | r->neg = 0; |
566 | 0 | return ret; |
567 | 0 | } |
568 | | |
569 | 0 | bn_check_top(in_a); |
570 | 0 | bn_check_top(in_b); |
571 | |
|
572 | 0 | BN_CTX_start(ctx); |
573 | 0 | temp = BN_CTX_get(ctx); |
574 | 0 | g = BN_CTX_get(ctx); |
575 | | |
576 | | /* make r != 0, g != 0 even, so BN_rshift is not a potential nop */ |
577 | 0 | if (g == NULL |
578 | 0 | || !BN_lshift1(g, in_b) |
579 | 0 | || !BN_lshift1(r, in_a)) |
580 | 0 | goto err; |
581 | | |
582 | | /* find shared powers of two, i.e. "shifts" >= 1 */ |
583 | 0 | for (i = 0; i < r->dmax && i < g->dmax; i++) { |
584 | 0 | mask = ~(r->d[i] | g->d[i]); |
585 | 0 | for (j = 0; j < BN_BITS2; j++) { |
586 | 0 | bit &= mask; |
587 | 0 | shifts += bit; |
588 | 0 | mask >>= 1; |
589 | 0 | } |
590 | 0 | } |
591 | | |
592 | | /* subtract shared powers of two; shifts >= 1 */ |
593 | 0 | if (!BN_rshift(r, r, shifts) |
594 | 0 | || !BN_rshift(g, g, shifts)) |
595 | 0 | goto err; |
596 | | |
597 | | /* expand to biggest nword, with room for a possible extra word */ |
598 | 0 | top = 1 + ((r->top >= g->top) ? r->top : g->top); |
599 | 0 | if (bn_wexpand(r, top) == NULL |
600 | 0 | || bn_wexpand(g, top) == NULL |
601 | 0 | || bn_wexpand(temp, top) == NULL) |
602 | 0 | goto err; |
603 | | |
604 | | /* re arrange inputs s.t. r is odd */ |
605 | 0 | BN_consttime_swap((~r->d[0]) & 1, r, g, top); |
606 | | |
607 | | /* compute the number of iterations */ |
608 | 0 | rlen = BN_num_bits(r); |
609 | 0 | glen = BN_num_bits(g); |
610 | 0 | m = 4 + 3 * ((rlen >= glen) ? rlen : glen); |
611 | |
|
612 | 0 | for (i = 0; i < m; i++) { |
613 | | /* conditionally flip signs if delta is positive and g is odd */ |
614 | 0 | cond = (-delta >> (8 * sizeof(delta) - 1)) & g->d[0] & 1 |
615 | | /* make sure g->top > 0 (i.e. if top == 0 then g == 0 always) */ |
616 | 0 | & (~((g->top - 1) >> (sizeof(g->top) * 8 - 1))); |
617 | 0 | delta = (-cond & -delta) | ((cond - 1) & delta); |
618 | 0 | r->neg ^= cond; |
619 | | /* swap */ |
620 | 0 | BN_consttime_swap(cond, r, g, top); |
621 | | |
622 | | /* elimination step */ |
623 | 0 | delta++; |
624 | 0 | if (!BN_add(temp, g, r)) |
625 | 0 | goto err; |
626 | 0 | BN_consttime_swap(g->d[0] & 1 /* g is odd */ |
627 | | /* make sure g->top > 0 (i.e. if top == 0 then g == 0 always) */ |
628 | 0 | & (~((g->top - 1) >> (sizeof(g->top) * 8 - 1))), |
629 | 0 | g, temp, top); |
630 | 0 | if (!BN_rshift1(g, g)) |
631 | 0 | goto err; |
632 | 0 | } |
633 | | |
634 | | /* remove possible negative sign */ |
635 | 0 | r->neg = 0; |
636 | | /* add powers of 2 removed, then correct the artificial shift */ |
637 | 0 | if (!BN_lshift(r, r, shifts) |
638 | 0 | || !BN_rshift1(r, r)) |
639 | 0 | goto err; |
640 | | |
641 | 0 | ret = 1; |
642 | |
|
643 | 0 | err: |
644 | 0 | BN_CTX_end(ctx); |
645 | 0 | bn_check_top(r); |
646 | 0 | return ret; |
647 | 0 | } |