Coverage Report

Created: 2023-06-08 06:41

/src/openssl111/crypto/ec/ec_mult.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2001-2020 The OpenSSL Project Authors. All Rights Reserved.
3
 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4
 *
5
 * Licensed under the OpenSSL license (the "License").  You may not use
6
 * this file except in compliance with the License.  You can obtain a copy
7
 * in the file LICENSE in the source distribution or at
8
 * https://www.openssl.org/source/license.html
9
 */
10
11
#include <string.h>
12
#include <openssl/err.h>
13
14
#include "internal/cryptlib.h"
15
#include "crypto/bn.h"
16
#include "ec_local.h"
17
#include "internal/refcount.h"
18
19
/*
20
 * This file implements the wNAF-based interleaving multi-exponentiation method
21
 * Formerly at:
22
 *   http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp
23
 * You might now find it here:
24
 *   http://link.springer.com/chapter/10.1007%2F3-540-45537-X_13
25
 *   http://www.bmoeller.de/pdf/TI-01-08.multiexp.pdf
26
 * For multiplication with precomputation, we use wNAF splitting, formerly at:
27
 *   http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp
28
 */
29
30
/* structure for precomputed multiples of the generator */
31
struct ec_pre_comp_st {
32
    const EC_GROUP *group;      /* parent EC_GROUP object */
33
    size_t blocksize;           /* block size for wNAF splitting */
34
    size_t numblocks;           /* max. number of blocks for which we have
35
                                 * precomputation */
36
    size_t w;                   /* window size */
37
    EC_POINT **points;          /* array with pre-calculated multiples of
38
                                 * generator: 'num' pointers to EC_POINT
39
                                 * objects followed by a NULL */
40
    size_t num;                 /* numblocks * 2^(w-1) */
41
    CRYPTO_REF_COUNT references;
42
    CRYPTO_RWLOCK *lock;
43
};
44
45
static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group)
46
0
{
47
0
    EC_PRE_COMP *ret = NULL;
48
49
0
    if (!group)
50
0
        return NULL;
51
52
0
    ret = OPENSSL_zalloc(sizeof(*ret));
53
0
    if (ret == NULL) {
54
0
        ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
55
0
        return ret;
56
0
    }
57
58
0
    ret->group = group;
59
0
    ret->blocksize = 8;         /* default */
60
0
    ret->w = 4;                 /* default */
61
0
    ret->references = 1;
62
63
0
    ret->lock = CRYPTO_THREAD_lock_new();
64
0
    if (ret->lock == NULL) {
65
0
        ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
66
0
        OPENSSL_free(ret);
67
0
        return NULL;
68
0
    }
69
0
    return ret;
70
0
}
71
72
EC_PRE_COMP *EC_ec_pre_comp_dup(EC_PRE_COMP *pre)
73
0
{
74
0
    int i;
75
0
    if (pre != NULL)
76
0
        CRYPTO_UP_REF(&pre->references, &i, pre->lock);
77
0
    return pre;
78
0
}
79
80
void EC_ec_pre_comp_free(EC_PRE_COMP *pre)
81
0
{
82
0
    int i;
83
84
0
    if (pre == NULL)
85
0
        return;
86
87
0
    CRYPTO_DOWN_REF(&pre->references, &i, pre->lock);
88
0
    REF_PRINT_COUNT("EC_ec", pre);
89
0
    if (i > 0)
90
0
        return;
91
0
    REF_ASSERT_ISNT(i < 0);
92
93
0
    if (pre->points != NULL) {
94
0
        EC_POINT **pts;
95
96
0
        for (pts = pre->points; *pts != NULL; pts++)
97
0
            EC_POINT_free(*pts);
98
0
        OPENSSL_free(pre->points);
99
0
    }
100
0
    CRYPTO_THREAD_lock_free(pre->lock);
101
0
    OPENSSL_free(pre);
102
0
}
103
104
0
#define EC_POINT_BN_set_flags(P, flags) do { \
105
0
    BN_set_flags((P)->X, (flags)); \
106
0
    BN_set_flags((P)->Y, (flags)); \
107
0
    BN_set_flags((P)->Z, (flags)); \
108
0
} while(0)
109
110
/*-
111
 * This functions computes a single point multiplication over the EC group,
112
 * using, at a high level, a Montgomery ladder with conditional swaps, with
113
 * various timing attack defenses.
114
 *
115
 * It performs either a fixed point multiplication
116
 *          (scalar * generator)
117
 * when point is NULL, or a variable point multiplication
118
 *          (scalar * point)
119
 * when point is not NULL.
120
 *
121
 * `scalar` cannot be NULL and should be in the range [0,n) otherwise all
122
 * constant time bets are off (where n is the cardinality of the EC group).
123
 *
124
 * This function expects `group->order` and `group->cardinality` to be well
125
 * defined and non-zero: it fails with an error code otherwise.
126
 *
127
 * NB: This says nothing about the constant-timeness of the ladder step
128
 * implementation (i.e., the default implementation is based on EC_POINT_add and
129
 * EC_POINT_dbl, which of course are not constant time themselves) or the
130
 * underlying multiprecision arithmetic.
131
 *
132
 * The product is stored in `r`.
133
 *
134
 * This is an internal function: callers are in charge of ensuring that the
135
 * input parameters `group`, `r`, `scalar` and `ctx` are not NULL.
136
 *
137
 * Returns 1 on success, 0 otherwise.
138
 */
139
int ec_scalar_mul_ladder(const EC_GROUP *group, EC_POINT *r,
140
                         const BIGNUM *scalar, const EC_POINT *point,
141
                         BN_CTX *ctx)
142
0
{
143
0
    int i, cardinality_bits, group_top, kbit, pbit, Z_is_one;
144
0
    EC_POINT *p = NULL;
145
0
    EC_POINT *s = NULL;
146
0
    BIGNUM *k = NULL;
147
0
    BIGNUM *lambda = NULL;
148
0
    BIGNUM *cardinality = NULL;
149
0
    int ret = 0;
150
151
    /* early exit if the input point is the point at infinity */
152
0
    if (point != NULL && EC_POINT_is_at_infinity(group, point))
153
0
        return EC_POINT_set_to_infinity(group, r);
154
155
0
    if (BN_is_zero(group->order)) {
156
0
        ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_UNKNOWN_ORDER);
157
0
        return 0;
158
0
    }
159
0
    if (BN_is_zero(group->cofactor)) {
160
0
        ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_UNKNOWN_COFACTOR);
161
0
        return 0;
162
0
    }
163
164
0
    BN_CTX_start(ctx);
165
166
0
    if (((p = EC_POINT_new(group)) == NULL)
167
0
        || ((s = EC_POINT_new(group)) == NULL)) {
168
0
        ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_MALLOC_FAILURE);
169
0
        goto err;
170
0
    }
171
172
0
    if (point == NULL) {
173
0
        if (!EC_POINT_copy(p, group->generator)) {
174
0
            ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_EC_LIB);
175
0
            goto err;
176
0
        }
177
0
    } else {
178
0
        if (!EC_POINT_copy(p, point)) {
179
0
            ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_EC_LIB);
180
0
            goto err;
181
0
        }
182
0
    }
183
184
0
    EC_POINT_BN_set_flags(p, BN_FLG_CONSTTIME);
185
0
    EC_POINT_BN_set_flags(r, BN_FLG_CONSTTIME);
186
0
    EC_POINT_BN_set_flags(s, BN_FLG_CONSTTIME);
187
188
0
    cardinality = BN_CTX_get(ctx);
189
0
    lambda = BN_CTX_get(ctx);
190
0
    k = BN_CTX_get(ctx);
191
0
    if (k == NULL) {
192
0
        ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_MALLOC_FAILURE);
193
0
        goto err;
194
0
    }
195
196
0
    if (!BN_mul(cardinality, group->order, group->cofactor, ctx)) {
197
0
        ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
198
0
        goto err;
199
0
    }
200
201
    /*
202
     * Group cardinalities are often on a word boundary.
203
     * So when we pad the scalar, some timing diff might
204
     * pop if it needs to be expanded due to carries.
205
     * So expand ahead of time.
206
     */
207
0
    cardinality_bits = BN_num_bits(cardinality);
208
0
    group_top = bn_get_top(cardinality);
209
0
    if ((bn_wexpand(k, group_top + 2) == NULL)
210
0
        || (bn_wexpand(lambda, group_top + 2) == NULL)) {
211
0
        ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
212
0
        goto err;
213
0
    }
214
215
0
    if (!BN_copy(k, scalar)) {
216
0
        ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
217
0
        goto err;
218
0
    }
219
220
0
    BN_set_flags(k, BN_FLG_CONSTTIME);
221
222
0
    if ((BN_num_bits(k) > cardinality_bits) || (BN_is_negative(k))) {
223
        /*-
224
         * this is an unusual input, and we don't guarantee
225
         * constant-timeness
226
         */
227
0
        if (!BN_nnmod(k, k, cardinality, ctx)) {
228
0
            ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
229
0
            goto err;
230
0
        }
231
0
    }
232
233
0
    if (!BN_add(lambda, k, cardinality)) {
234
0
        ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
235
0
        goto err;
236
0
    }
237
0
    BN_set_flags(lambda, BN_FLG_CONSTTIME);
238
0
    if (!BN_add(k, lambda, cardinality)) {
239
0
        ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
240
0
        goto err;
241
0
    }
242
    /*
243
     * lambda := scalar + cardinality
244
     * k := scalar + 2*cardinality
245
     */
246
0
    kbit = BN_is_bit_set(lambda, cardinality_bits);
247
0
    BN_consttime_swap(kbit, k, lambda, group_top + 2);
248
249
0
    group_top = bn_get_top(group->field);
250
0
    if ((bn_wexpand(s->X, group_top) == NULL)
251
0
        || (bn_wexpand(s->Y, group_top) == NULL)
252
0
        || (bn_wexpand(s->Z, group_top) == NULL)
253
0
        || (bn_wexpand(r->X, group_top) == NULL)
254
0
        || (bn_wexpand(r->Y, group_top) == NULL)
255
0
        || (bn_wexpand(r->Z, group_top) == NULL)
256
0
        || (bn_wexpand(p->X, group_top) == NULL)
257
0
        || (bn_wexpand(p->Y, group_top) == NULL)
258
0
        || (bn_wexpand(p->Z, group_top) == NULL)) {
259
0
        ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
260
0
        goto err;
261
0
    }
262
263
    /* ensure input point is in affine coords for ladder step efficiency */
264
0
    if (!p->Z_is_one && !EC_POINT_make_affine(group, p, ctx)) {
265
0
            ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_EC_LIB);
266
0
            goto err;
267
0
    }
268
269
    /* Initialize the Montgomery ladder */
270
0
    if (!ec_point_ladder_pre(group, r, s, p, ctx)) {
271
0
        ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_LADDER_PRE_FAILURE);
272
0
        goto err;
273
0
    }
274
275
    /* top bit is a 1, in a fixed pos */
276
0
    pbit = 1;
277
278
0
#define EC_POINT_CSWAP(c, a, b, w, t) do {         \
279
0
        BN_consttime_swap(c, (a)->X, (b)->X, w);   \
280
0
        BN_consttime_swap(c, (a)->Y, (b)->Y, w);   \
281
0
        BN_consttime_swap(c, (a)->Z, (b)->Z, w);   \
282
0
        t = ((a)->Z_is_one ^ (b)->Z_is_one) & (c); \
283
0
        (a)->Z_is_one ^= (t);                      \
284
0
        (b)->Z_is_one ^= (t);                      \
285
0
} while(0)
286
287
    /*-
288
     * The ladder step, with branches, is
289
     *
290
     * k[i] == 0: S = add(R, S), R = dbl(R)
291
     * k[i] == 1: R = add(S, R), S = dbl(S)
292
     *
293
     * Swapping R, S conditionally on k[i] leaves you with state
294
     *
295
     * k[i] == 0: T, U = R, S
296
     * k[i] == 1: T, U = S, R
297
     *
298
     * Then perform the ECC ops.
299
     *
300
     * U = add(T, U)
301
     * T = dbl(T)
302
     *
303
     * Which leaves you with state
304
     *
305
     * k[i] == 0: U = add(R, S), T = dbl(R)
306
     * k[i] == 1: U = add(S, R), T = dbl(S)
307
     *
308
     * Swapping T, U conditionally on k[i] leaves you with state
309
     *
310
     * k[i] == 0: R, S = T, U
311
     * k[i] == 1: R, S = U, T
312
     *
313
     * Which leaves you with state
314
     *
315
     * k[i] == 0: S = add(R, S), R = dbl(R)
316
     * k[i] == 1: R = add(S, R), S = dbl(S)
317
     *
318
     * So we get the same logic, but instead of a branch it's a
319
     * conditional swap, followed by ECC ops, then another conditional swap.
320
     *
321
     * Optimization: The end of iteration i and start of i-1 looks like
322
     *
323
     * ...
324
     * CSWAP(k[i], R, S)
325
     * ECC
326
     * CSWAP(k[i], R, S)
327
     * (next iteration)
328
     * CSWAP(k[i-1], R, S)
329
     * ECC
330
     * CSWAP(k[i-1], R, S)
331
     * ...
332
     *
333
     * So instead of two contiguous swaps, you can merge the condition
334
     * bits and do a single swap.
335
     *
336
     * k[i]   k[i-1]    Outcome
337
     * 0      0         No Swap
338
     * 0      1         Swap
339
     * 1      0         Swap
340
     * 1      1         No Swap
341
     *
342
     * This is XOR. pbit tracks the previous bit of k.
343
     */
344
345
0
    for (i = cardinality_bits - 1; i >= 0; i--) {
346
0
        kbit = BN_is_bit_set(k, i) ^ pbit;
347
0
        EC_POINT_CSWAP(kbit, r, s, group_top, Z_is_one);
348
349
        /* Perform a single step of the Montgomery ladder */
350
0
        if (!ec_point_ladder_step(group, r, s, p, ctx)) {
351
0
            ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_LADDER_STEP_FAILURE);
352
0
            goto err;
353
0
        }
354
        /*
355
         * pbit logic merges this cswap with that of the
356
         * next iteration
357
         */
358
0
        pbit ^= kbit;
359
0
    }
360
    /* one final cswap to move the right value into r */
361
0
    EC_POINT_CSWAP(pbit, r, s, group_top, Z_is_one);
362
0
#undef EC_POINT_CSWAP
363
364
    /* Finalize ladder (and recover full point coordinates) */
365
0
    if (!ec_point_ladder_post(group, r, s, p, ctx)) {
366
0
        ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_LADDER_POST_FAILURE);
367
0
        goto err;
368
0
    }
369
370
0
    ret = 1;
371
372
0
 err:
373
0
    EC_POINT_free(p);
374
0
    EC_POINT_clear_free(s);
375
0
    BN_CTX_end(ctx);
376
377
0
    return ret;
378
0
}
379
380
#undef EC_POINT_BN_set_flags
381
382
/*
383
 * TODO: table should be optimised for the wNAF-based implementation,
384
 * sometimes smaller windows will give better performance (thus the
385
 * boundaries should be increased)
386
 */
387
#define EC_window_bits_for_scalar_size(b) \
388
0
                ((size_t) \
389
0
                 ((b) >= 2000 ? 6 : \
390
0
                  (b) >=  800 ? 5 : \
391
0
                  (b) >=  300 ? 4 : \
392
0
                  (b) >=   70 ? 3 : \
393
0
                  (b) >=   20 ? 2 : \
394
0
                  1))
395
396
/*-
397
 * Compute
398
 *      \sum scalars[i]*points[i],
399
 * also including
400
 *      scalar*generator
401
 * in the addition if scalar != NULL
402
 */
403
int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
404
                size_t num, const EC_POINT *points[], const BIGNUM *scalars[],
405
                BN_CTX *ctx)
406
0
{
407
0
    const EC_POINT *generator = NULL;
408
0
    EC_POINT *tmp = NULL;
409
0
    size_t totalnum;
410
0
    size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */
411
0
    size_t pre_points_per_block = 0;
412
0
    size_t i, j;
413
0
    int k;
414
0
    int r_is_inverted = 0;
415
0
    int r_is_at_infinity = 1;
416
0
    size_t *wsize = NULL;       /* individual window sizes */
417
0
    signed char **wNAF = NULL;  /* individual wNAFs */
418
0
    size_t *wNAF_len = NULL;
419
0
    size_t max_len = 0;
420
0
    size_t num_val;
421
0
    EC_POINT **val = NULL;      /* precomputation */
422
0
    EC_POINT **v;
423
0
    EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or
424
                                 * 'pre_comp->points' */
425
0
    const EC_PRE_COMP *pre_comp = NULL;
426
0
    int num_scalar = 0;         /* flag: will be set to 1 if 'scalar' must be
427
                                 * treated like other scalars, i.e.
428
                                 * precomputation is not available */
429
0
    int ret = 0;
430
431
0
    if (!BN_is_zero(group->order) && !BN_is_zero(group->cofactor)) {
432
        /*-
433
         * Handle the common cases where the scalar is secret, enforcing a
434
         * scalar multiplication implementation based on a Montgomery ladder,
435
         * with various timing attack defenses.
436
         */
437
0
        if ((scalar != group->order) && (scalar != NULL) && (num == 0)) {
438
            /*-
439
             * In this case we want to compute scalar * GeneratorPoint: this
440
             * codepath is reached most prominently by (ephemeral) key
441
             * generation of EC cryptosystems (i.e. ECDSA keygen and sign setup,
442
             * ECDH keygen/first half), where the scalar is always secret. This
443
             * is why we ignore if BN_FLG_CONSTTIME is actually set and we
444
             * always call the ladder version.
445
             */
446
0
            return ec_scalar_mul_ladder(group, r, scalar, NULL, ctx);
447
0
        }
448
0
        if ((scalar == NULL) && (num == 1) && (scalars[0] != group->order)) {
449
            /*-
450
             * In this case we want to compute scalar * VariablePoint: this
451
             * codepath is reached most prominently by the second half of ECDH,
452
             * where the secret scalar is multiplied by the peer's public point.
453
             * To protect the secret scalar, we ignore if BN_FLG_CONSTTIME is
454
             * actually set and we always call the ladder version.
455
             */
456
0
            return ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx);
457
0
        }
458
0
    }
459
460
0
    if (scalar != NULL) {
461
0
        generator = EC_GROUP_get0_generator(group);
462
0
        if (generator == NULL) {
463
0
            ECerr(EC_F_EC_WNAF_MUL, EC_R_UNDEFINED_GENERATOR);
464
0
            goto err;
465
0
        }
466
467
        /* look if we can use precomputed multiples of generator */
468
469
0
        pre_comp = group->pre_comp.ec;
470
0
        if (pre_comp && pre_comp->numblocks
471
0
            && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) ==
472
0
                0)) {
473
0
            blocksize = pre_comp->blocksize;
474
475
            /*
476
             * determine maximum number of blocks that wNAF splitting may
477
             * yield (NB: maximum wNAF length is bit length plus one)
478
             */
479
0
            numblocks = (BN_num_bits(scalar) / blocksize) + 1;
480
481
            /*
482
             * we cannot use more blocks than we have precomputation for
483
             */
484
0
            if (numblocks > pre_comp->numblocks)
485
0
                numblocks = pre_comp->numblocks;
486
487
0
            pre_points_per_block = (size_t)1 << (pre_comp->w - 1);
488
489
            /* check that pre_comp looks sane */
490
0
            if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block)) {
491
0
                ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
492
0
                goto err;
493
0
            }
494
0
        } else {
495
            /* can't use precomputation */
496
0
            pre_comp = NULL;
497
0
            numblocks = 1;
498
0
            num_scalar = 1;     /* treat 'scalar' like 'num'-th element of
499
                                 * 'scalars' */
500
0
        }
501
0
    }
502
503
0
    totalnum = num + numblocks;
504
505
0
    wsize = OPENSSL_malloc(totalnum * sizeof(wsize[0]));
506
0
    wNAF_len = OPENSSL_malloc(totalnum * sizeof(wNAF_len[0]));
507
    /* include space for pivot */
508
0
    wNAF = OPENSSL_malloc((totalnum + 1) * sizeof(wNAF[0]));
509
0
    val_sub = OPENSSL_malloc(totalnum * sizeof(val_sub[0]));
510
511
    /* Ensure wNAF is initialised in case we end up going to err */
512
0
    if (wNAF != NULL)
513
0
        wNAF[0] = NULL;         /* preliminary pivot */
514
515
0
    if (wsize == NULL || wNAF_len == NULL || wNAF == NULL || val_sub == NULL) {
516
0
        ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
517
0
        goto err;
518
0
    }
519
520
    /*
521
     * num_val will be the total number of temporarily precomputed points
522
     */
523
0
    num_val = 0;
524
525
0
    for (i = 0; i < num + num_scalar; i++) {
526
0
        size_t bits;
527
528
0
        bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
529
0
        wsize[i] = EC_window_bits_for_scalar_size(bits);
530
0
        num_val += (size_t)1 << (wsize[i] - 1);
531
0
        wNAF[i + 1] = NULL;     /* make sure we always have a pivot */
532
0
        wNAF[i] =
533
0
            bn_compute_wNAF((i < num ? scalars[i] : scalar), wsize[i],
534
0
                            &wNAF_len[i]);
535
0
        if (wNAF[i] == NULL)
536
0
            goto err;
537
0
        if (wNAF_len[i] > max_len)
538
0
            max_len = wNAF_len[i];
539
0
    }
540
541
0
    if (numblocks) {
542
        /* we go here iff scalar != NULL */
543
544
0
        if (pre_comp == NULL) {
545
0
            if (num_scalar != 1) {
546
0
                ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
547
0
                goto err;
548
0
            }
549
            /* we have already generated a wNAF for 'scalar' */
550
0
        } else {
551
0
            signed char *tmp_wNAF = NULL;
552
0
            size_t tmp_len = 0;
553
554
0
            if (num_scalar != 0) {
555
0
                ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
556
0
                goto err;
557
0
            }
558
559
            /*
560
             * use the window size for which we have precomputation
561
             */
562
0
            wsize[num] = pre_comp->w;
563
0
            tmp_wNAF = bn_compute_wNAF(scalar, wsize[num], &tmp_len);
564
0
            if (!tmp_wNAF)
565
0
                goto err;
566
567
0
            if (tmp_len <= max_len) {
568
                /*
569
                 * One of the other wNAFs is at least as long as the wNAF
570
                 * belonging to the generator, so wNAF splitting will not buy
571
                 * us anything.
572
                 */
573
574
0
                numblocks = 1;
575
0
                totalnum = num + 1; /* don't use wNAF splitting */
576
0
                wNAF[num] = tmp_wNAF;
577
0
                wNAF[num + 1] = NULL;
578
0
                wNAF_len[num] = tmp_len;
579
                /*
580
                 * pre_comp->points starts with the points that we need here:
581
                 */
582
0
                val_sub[num] = pre_comp->points;
583
0
            } else {
584
                /*
585
                 * don't include tmp_wNAF directly into wNAF array - use wNAF
586
                 * splitting and include the blocks
587
                 */
588
589
0
                signed char *pp;
590
0
                EC_POINT **tmp_points;
591
592
0
                if (tmp_len < numblocks * blocksize) {
593
                    /*
594
                     * possibly we can do with fewer blocks than estimated
595
                     */
596
0
                    numblocks = (tmp_len + blocksize - 1) / blocksize;
597
0
                    if (numblocks > pre_comp->numblocks) {
598
0
                        ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
599
0
                        OPENSSL_free(tmp_wNAF);
600
0
                        goto err;
601
0
                    }
602
0
                    totalnum = num + numblocks;
603
0
                }
604
605
                /* split wNAF in 'numblocks' parts */
606
0
                pp = tmp_wNAF;
607
0
                tmp_points = pre_comp->points;
608
609
0
                for (i = num; i < totalnum; i++) {
610
0
                    if (i < totalnum - 1) {
611
0
                        wNAF_len[i] = blocksize;
612
0
                        if (tmp_len < blocksize) {
613
0
                            ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
614
0
                            OPENSSL_free(tmp_wNAF);
615
0
                            goto err;
616
0
                        }
617
0
                        tmp_len -= blocksize;
618
0
                    } else
619
                        /*
620
                         * last block gets whatever is left (this could be
621
                         * more or less than 'blocksize'!)
622
                         */
623
0
                        wNAF_len[i] = tmp_len;
624
625
0
                    wNAF[i + 1] = NULL;
626
0
                    wNAF[i] = OPENSSL_malloc(wNAF_len[i]);
627
0
                    if (wNAF[i] == NULL) {
628
0
                        ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
629
0
                        OPENSSL_free(tmp_wNAF);
630
0
                        goto err;
631
0
                    }
632
0
                    memcpy(wNAF[i], pp, wNAF_len[i]);
633
0
                    if (wNAF_len[i] > max_len)
634
0
                        max_len = wNAF_len[i];
635
636
0
                    if (*tmp_points == NULL) {
637
0
                        ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
638
0
                        OPENSSL_free(tmp_wNAF);
639
0
                        goto err;
640
0
                    }
641
0
                    val_sub[i] = tmp_points;
642
0
                    tmp_points += pre_points_per_block;
643
0
                    pp += blocksize;
644
0
                }
645
0
                OPENSSL_free(tmp_wNAF);
646
0
            }
647
0
        }
648
0
    }
649
650
    /*
651
     * All points we precompute now go into a single array 'val'.
652
     * 'val_sub[i]' is a pointer to the subarray for the i-th point, or to a
653
     * subarray of 'pre_comp->points' if we already have precomputation.
654
     */
655
0
    val = OPENSSL_malloc((num_val + 1) * sizeof(val[0]));
656
0
    if (val == NULL) {
657
0
        ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
658
0
        goto err;
659
0
    }
660
0
    val[num_val] = NULL;        /* pivot element */
661
662
    /* allocate points for precomputation */
663
0
    v = val;
664
0
    for (i = 0; i < num + num_scalar; i++) {
665
0
        val_sub[i] = v;
666
0
        for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) {
667
0
            *v = EC_POINT_new(group);
668
0
            if (*v == NULL)
669
0
                goto err;
670
0
            v++;
671
0
        }
672
0
    }
673
0
    if (!(v == val + num_val)) {
674
0
        ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
675
0
        goto err;
676
0
    }
677
678
0
    if ((tmp = EC_POINT_new(group)) == NULL)
679
0
        goto err;
680
681
    /*-
682
     * prepare precomputed values:
683
     *    val_sub[i][0] :=     points[i]
684
     *    val_sub[i][1] := 3 * points[i]
685
     *    val_sub[i][2] := 5 * points[i]
686
     *    ...
687
     */
688
0
    for (i = 0; i < num + num_scalar; i++) {
689
0
        if (i < num) {
690
0
            if (!EC_POINT_copy(val_sub[i][0], points[i]))
691
0
                goto err;
692
0
        } else {
693
0
            if (!EC_POINT_copy(val_sub[i][0], generator))
694
0
                goto err;
695
0
        }
696
697
0
        if (wsize[i] > 1) {
698
0
            if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx))
699
0
                goto err;
700
0
            for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) {
701
0
                if (!EC_POINT_add
702
0
                    (group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx))
703
0
                    goto err;
704
0
            }
705
0
        }
706
0
    }
707
708
0
    if (!EC_POINTs_make_affine(group, num_val, val, ctx))
709
0
        goto err;
710
711
0
    r_is_at_infinity = 1;
712
713
0
    for (k = max_len - 1; k >= 0; k--) {
714
0
        if (!r_is_at_infinity) {
715
0
            if (!EC_POINT_dbl(group, r, r, ctx))
716
0
                goto err;
717
0
        }
718
719
0
        for (i = 0; i < totalnum; i++) {
720
0
            if (wNAF_len[i] > (size_t)k) {
721
0
                int digit = wNAF[i][k];
722
0
                int is_neg;
723
724
0
                if (digit) {
725
0
                    is_neg = digit < 0;
726
727
0
                    if (is_neg)
728
0
                        digit = -digit;
729
730
0
                    if (is_neg != r_is_inverted) {
731
0
                        if (!r_is_at_infinity) {
732
0
                            if (!EC_POINT_invert(group, r, ctx))
733
0
                                goto err;
734
0
                        }
735
0
                        r_is_inverted = !r_is_inverted;
736
0
                    }
737
738
                    /* digit > 0 */
739
740
0
                    if (r_is_at_infinity) {
741
0
                        if (!EC_POINT_copy(r, val_sub[i][digit >> 1]))
742
0
                            goto err;
743
744
                        /*-
745
                         * Apply coordinate blinding for EC_POINT.
746
                         *
747
                         * The underlying EC_METHOD can optionally implement this function:
748
                         * ec_point_blind_coordinates() returns 0 in case of errors or 1 on
749
                         * success or if coordinate blinding is not implemented for this
750
                         * group.
751
                         */
752
0
                        if (!ec_point_blind_coordinates(group, r, ctx)) {
753
0
                            ECerr(EC_F_EC_WNAF_MUL, EC_R_POINT_COORDINATES_BLIND_FAILURE);
754
0
                            goto err;
755
0
                        }
756
757
0
                        r_is_at_infinity = 0;
758
0
                    } else {
759
0
                        if (!EC_POINT_add
760
0
                            (group, r, r, val_sub[i][digit >> 1], ctx))
761
0
                            goto err;
762
0
                    }
763
0
                }
764
0
            }
765
0
        }
766
0
    }
767
768
0
    if (r_is_at_infinity) {
769
0
        if (!EC_POINT_set_to_infinity(group, r))
770
0
            goto err;
771
0
    } else {
772
0
        if (r_is_inverted)
773
0
            if (!EC_POINT_invert(group, r, ctx))
774
0
                goto err;
775
0
    }
776
777
0
    ret = 1;
778
779
0
 err:
780
0
    EC_POINT_free(tmp);
781
0
    OPENSSL_free(wsize);
782
0
    OPENSSL_free(wNAF_len);
783
0
    if (wNAF != NULL) {
784
0
        signed char **w;
785
786
0
        for (w = wNAF; *w != NULL; w++)
787
0
            OPENSSL_free(*w);
788
789
0
        OPENSSL_free(wNAF);
790
0
    }
791
0
    if (val != NULL) {
792
0
        for (v = val; *v != NULL; v++)
793
0
            EC_POINT_clear_free(*v);
794
795
0
        OPENSSL_free(val);
796
0
    }
797
0
    OPENSSL_free(val_sub);
798
0
    return ret;
799
0
}
800
801
/*-
802
 * ec_wNAF_precompute_mult()
803
 * creates an EC_PRE_COMP object with preprecomputed multiples of the generator
804
 * for use with wNAF splitting as implemented in ec_wNAF_mul().
805
 *
806
 * 'pre_comp->points' is an array of multiples of the generator
807
 * of the following form:
808
 * points[0] =     generator;
809
 * points[1] = 3 * generator;
810
 * ...
811
 * points[2^(w-1)-1] =     (2^(w-1)-1) * generator;
812
 * points[2^(w-1)]   =     2^blocksize * generator;
813
 * points[2^(w-1)+1] = 3 * 2^blocksize * generator;
814
 * ...
815
 * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) *  2^(blocksize*(numblocks-2)) * generator
816
 * points[2^(w-1)*(numblocks-1)]   =              2^(blocksize*(numblocks-1)) * generator
817
 * ...
818
 * points[2^(w-1)*numblocks-1]     = (2^(w-1)) *  2^(blocksize*(numblocks-1)) * generator
819
 * points[2^(w-1)*numblocks]       = NULL
820
 */
821
int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
822
0
{
823
0
    const EC_POINT *generator;
824
0
    EC_POINT *tmp_point = NULL, *base = NULL, **var;
825
0
    BN_CTX *new_ctx = NULL;
826
0
    const BIGNUM *order;
827
0
    size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num;
828
0
    EC_POINT **points = NULL;
829
0
    EC_PRE_COMP *pre_comp;
830
0
    int ret = 0;
831
832
    /* if there is an old EC_PRE_COMP object, throw it away */
833
0
    EC_pre_comp_free(group);
834
0
    if ((pre_comp = ec_pre_comp_new(group)) == NULL)
835
0
        return 0;
836
837
0
    generator = EC_GROUP_get0_generator(group);
838
0
    if (generator == NULL) {
839
0
        ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR);
840
0
        goto err;
841
0
    }
842
843
0
    if (ctx == NULL) {
844
0
        ctx = new_ctx = BN_CTX_new();
845
0
        if (ctx == NULL)
846
0
            goto err;
847
0
    }
848
849
0
    BN_CTX_start(ctx);
850
851
0
    order = EC_GROUP_get0_order(group);
852
0
    if (order == NULL)
853
0
        goto err;
854
0
    if (BN_is_zero(order)) {
855
0
        ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER);
856
0
        goto err;
857
0
    }
858
859
0
    bits = BN_num_bits(order);
860
    /*
861
     * The following parameters mean we precompute (approximately) one point
862
     * per bit. TBD: The combination 8, 4 is perfect for 160 bits; for other
863
     * bit lengths, other parameter combinations might provide better
864
     * efficiency.
865
     */
866
0
    blocksize = 8;
867
0
    w = 4;
868
0
    if (EC_window_bits_for_scalar_size(bits) > w) {
869
        /* let's not make the window too small ... */
870
0
        w = EC_window_bits_for_scalar_size(bits);
871
0
    }
872
873
0
    numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks
874
                                                     * to use for wNAF
875
                                                     * splitting */
876
877
0
    pre_points_per_block = (size_t)1 << (w - 1);
878
0
    num = pre_points_per_block * numblocks; /* number of points to compute
879
                                             * and store */
880
881
0
    points = OPENSSL_malloc(sizeof(*points) * (num + 1));
882
0
    if (points == NULL) {
883
0
        ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
884
0
        goto err;
885
0
    }
886
887
0
    var = points;
888
0
    var[num] = NULL;            /* pivot */
889
0
    for (i = 0; i < num; i++) {
890
0
        if ((var[i] = EC_POINT_new(group)) == NULL) {
891
0
            ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
892
0
            goto err;
893
0
        }
894
0
    }
895
896
0
    if ((tmp_point = EC_POINT_new(group)) == NULL
897
0
        || (base = EC_POINT_new(group)) == NULL) {
898
0
        ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
899
0
        goto err;
900
0
    }
901
902
0
    if (!EC_POINT_copy(base, generator))
903
0
        goto err;
904
905
    /* do the precomputation */
906
0
    for (i = 0; i < numblocks; i++) {
907
0
        size_t j;
908
909
0
        if (!EC_POINT_dbl(group, tmp_point, base, ctx))
910
0
            goto err;
911
912
0
        if (!EC_POINT_copy(*var++, base))
913
0
            goto err;
914
915
0
        for (j = 1; j < pre_points_per_block; j++, var++) {
916
            /*
917
             * calculate odd multiples of the current base point
918
             */
919
0
            if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx))
920
0
                goto err;
921
0
        }
922
923
0
        if (i < numblocks - 1) {
924
            /*
925
             * get the next base (multiply current one by 2^blocksize)
926
             */
927
0
            size_t k;
928
929
0
            if (blocksize <= 2) {
930
0
                ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_INTERNAL_ERROR);
931
0
                goto err;
932
0
            }
933
934
0
            if (!EC_POINT_dbl(group, base, tmp_point, ctx))
935
0
                goto err;
936
0
            for (k = 2; k < blocksize; k++) {
937
0
                if (!EC_POINT_dbl(group, base, base, ctx))
938
0
                    goto err;
939
0
            }
940
0
        }
941
0
    }
942
943
0
    if (!EC_POINTs_make_affine(group, num, points, ctx))
944
0
        goto err;
945
946
0
    pre_comp->group = group;
947
0
    pre_comp->blocksize = blocksize;
948
0
    pre_comp->numblocks = numblocks;
949
0
    pre_comp->w = w;
950
0
    pre_comp->points = points;
951
0
    points = NULL;
952
0
    pre_comp->num = num;
953
0
    SETPRECOMP(group, ec, pre_comp);
954
0
    pre_comp = NULL;
955
0
    ret = 1;
956
957
0
 err:
958
0
    BN_CTX_end(ctx);
959
0
    BN_CTX_free(new_ctx);
960
0
    EC_ec_pre_comp_free(pre_comp);
961
0
    if (points) {
962
0
        EC_POINT **p;
963
964
0
        for (p = points; *p != NULL; p++)
965
0
            EC_POINT_free(*p);
966
0
        OPENSSL_free(points);
967
0
    }
968
0
    EC_POINT_free(tmp_point);
969
0
    EC_POINT_free(base);
970
0
    return ret;
971
0
}
972
973
int ec_wNAF_have_precompute_mult(const EC_GROUP *group)
974
0
{
975
0
    return HAVEPRECOMP(group, ec);
976
0
}