Coverage Report

Created: 2023-06-08 06:41

/src/openssl111/crypto/x509v3/v3_addr.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2006-2022 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the OpenSSL license (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/*
11
 * Implementation of RFC 3779 section 2.2.
12
 */
13
14
#include <stdio.h>
15
#include <stdlib.h>
16
#include <assert.h>
17
#include <string.h>
18
19
#include "internal/cryptlib.h"
20
#include <openssl/conf.h>
21
#include <openssl/asn1.h>
22
#include <openssl/asn1t.h>
23
#include <openssl/buffer.h>
24
#include <openssl/x509v3.h>
25
#include "crypto/x509.h"
26
#include "ext_dat.h"
27
28
#ifndef OPENSSL_NO_RFC3779
29
30
/*
31
 * OpenSSL ASN.1 template translation of RFC 3779 2.2.3.
32
 */
33
34
ASN1_SEQUENCE(IPAddressRange) = {
35
  ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING),
36
  ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING)
37
} ASN1_SEQUENCE_END(IPAddressRange)
38
39
ASN1_CHOICE(IPAddressOrRange) = {
40
  ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING),
41
  ASN1_SIMPLE(IPAddressOrRange, u.addressRange,  IPAddressRange)
42
} ASN1_CHOICE_END(IPAddressOrRange)
43
44
ASN1_CHOICE(IPAddressChoice) = {
45
  ASN1_SIMPLE(IPAddressChoice,      u.inherit,           ASN1_NULL),
46
  ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange)
47
} ASN1_CHOICE_END(IPAddressChoice)
48
49
ASN1_SEQUENCE(IPAddressFamily) = {
50
  ASN1_SIMPLE(IPAddressFamily, addressFamily,   ASN1_OCTET_STRING),
51
  ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice)
52
} ASN1_SEQUENCE_END(IPAddressFamily)
53
54
ASN1_ITEM_TEMPLATE(IPAddrBlocks) =
55
  ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
56
                        IPAddrBlocks, IPAddressFamily)
57
static_ASN1_ITEM_TEMPLATE_END(IPAddrBlocks)
58
59
IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange)
60
IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange)
61
IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice)
62
IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily)
63
64
/*
65
 * How much buffer space do we need for a raw address?
66
 */
67
#define ADDR_RAW_BUF_LEN        16
68
69
/*
70
 * What's the address length associated with this AFI?
71
 */
72
static int length_from_afi(const unsigned afi)
73
0
{
74
0
    switch (afi) {
75
0
    case IANA_AFI_IPV4:
76
0
        return 4;
77
0
    case IANA_AFI_IPV6:
78
0
        return 16;
79
0
    default:
80
0
        return 0;
81
0
    }
82
0
}
83
84
/*
85
 * Extract the AFI from an IPAddressFamily.
86
 */
87
unsigned int X509v3_addr_get_afi(const IPAddressFamily *f)
88
0
{
89
0
    if (f == NULL
90
0
            || f->addressFamily == NULL
91
0
            || f->addressFamily->data == NULL
92
0
            || f->addressFamily->length < 2)
93
0
        return 0;
94
0
    return (f->addressFamily->data[0] << 8) | f->addressFamily->data[1];
95
0
}
96
97
/*
98
 * Expand the bitstring form of an address into a raw byte array.
99
 * At the moment this is coded for simplicity, not speed.
100
 */
101
static int addr_expand(unsigned char *addr,
102
                       const ASN1_BIT_STRING *bs,
103
                       const int length, const unsigned char fill)
104
0
{
105
0
    if (bs->length < 0 || bs->length > length)
106
0
        return 0;
107
0
    if (bs->length > 0) {
108
0
        memcpy(addr, bs->data, bs->length);
109
0
        if ((bs->flags & 7) != 0) {
110
0
            unsigned char mask = 0xFF >> (8 - (bs->flags & 7));
111
0
            if (fill == 0)
112
0
                addr[bs->length - 1] &= ~mask;
113
0
            else
114
0
                addr[bs->length - 1] |= mask;
115
0
        }
116
0
    }
117
0
    memset(addr + bs->length, fill, length - bs->length);
118
0
    return 1;
119
0
}
120
121
/*
122
 * Extract the prefix length from a bitstring.
123
 */
124
0
#define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7)))
125
126
/*
127
 * i2r handler for one address bitstring.
128
 */
129
static int i2r_address(BIO *out,
130
                       const unsigned afi,
131
                       const unsigned char fill, const ASN1_BIT_STRING *bs)
132
0
{
133
0
    unsigned char addr[ADDR_RAW_BUF_LEN];
134
0
    int i, n;
135
136
0
    if (bs->length < 0)
137
0
        return 0;
138
0
    switch (afi) {
139
0
    case IANA_AFI_IPV4:
140
0
        if (!addr_expand(addr, bs, 4, fill))
141
0
            return 0;
142
0
        BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]);
143
0
        break;
144
0
    case IANA_AFI_IPV6:
145
0
        if (!addr_expand(addr, bs, 16, fill))
146
0
            return 0;
147
0
        for (n = 16; n > 1 && addr[n - 1] == 0x00 && addr[n - 2] == 0x00;
148
0
             n -= 2) ;
149
0
        for (i = 0; i < n; i += 2)
150
0
            BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i + 1],
151
0
                       (i < 14 ? ":" : ""));
152
0
        if (i < 16)
153
0
            BIO_puts(out, ":");
154
0
        if (i == 0)
155
0
            BIO_puts(out, ":");
156
0
        break;
157
0
    default:
158
0
        for (i = 0; i < bs->length; i++)
159
0
            BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]);
160
0
        BIO_printf(out, "[%d]", (int)(bs->flags & 7));
161
0
        break;
162
0
    }
163
0
    return 1;
164
0
}
165
166
/*
167
 * i2r handler for a sequence of addresses and ranges.
168
 */
169
static int i2r_IPAddressOrRanges(BIO *out,
170
                                 const int indent,
171
                                 const IPAddressOrRanges *aors,
172
                                 const unsigned afi)
173
0
{
174
0
    int i;
175
0
    for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) {
176
0
        const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i);
177
0
        BIO_printf(out, "%*s", indent, "");
178
0
        switch (aor->type) {
179
0
        case IPAddressOrRange_addressPrefix:
180
0
            if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix))
181
0
                return 0;
182
0
            BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix));
183
0
            continue;
184
0
        case IPAddressOrRange_addressRange:
185
0
            if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min))
186
0
                return 0;
187
0
            BIO_puts(out, "-");
188
0
            if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max))
189
0
                return 0;
190
0
            BIO_puts(out, "\n");
191
0
            continue;
192
0
        }
193
0
    }
194
0
    return 1;
195
0
}
196
197
/*
198
 * i2r handler for an IPAddrBlocks extension.
199
 */
200
static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method,
201
                            void *ext, BIO *out, int indent)
202
0
{
203
0
    const IPAddrBlocks *addr = ext;
204
0
    int i;
205
0
    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
206
0
        IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
207
0
        const unsigned int afi = X509v3_addr_get_afi(f);
208
0
        switch (afi) {
209
0
        case IANA_AFI_IPV4:
210
0
            BIO_printf(out, "%*sIPv4", indent, "");
211
0
            break;
212
0
        case IANA_AFI_IPV6:
213
0
            BIO_printf(out, "%*sIPv6", indent, "");
214
0
            break;
215
0
        default:
216
0
            BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi);
217
0
            break;
218
0
        }
219
0
        if (f->addressFamily->length > 2) {
220
0
            switch (f->addressFamily->data[2]) {
221
0
            case 1:
222
0
                BIO_puts(out, " (Unicast)");
223
0
                break;
224
0
            case 2:
225
0
                BIO_puts(out, " (Multicast)");
226
0
                break;
227
0
            case 3:
228
0
                BIO_puts(out, " (Unicast/Multicast)");
229
0
                break;
230
0
            case 4:
231
0
                BIO_puts(out, " (MPLS)");
232
0
                break;
233
0
            case 64:
234
0
                BIO_puts(out, " (Tunnel)");
235
0
                break;
236
0
            case 65:
237
0
                BIO_puts(out, " (VPLS)");
238
0
                break;
239
0
            case 66:
240
0
                BIO_puts(out, " (BGP MDT)");
241
0
                break;
242
0
            case 128:
243
0
                BIO_puts(out, " (MPLS-labeled VPN)");
244
0
                break;
245
0
            default:
246
0
                BIO_printf(out, " (Unknown SAFI %u)",
247
0
                           (unsigned)f->addressFamily->data[2]);
248
0
                break;
249
0
            }
250
0
        }
251
0
        switch (f->ipAddressChoice->type) {
252
0
        case IPAddressChoice_inherit:
253
0
            BIO_puts(out, ": inherit\n");
254
0
            break;
255
0
        case IPAddressChoice_addressesOrRanges:
256
0
            BIO_puts(out, ":\n");
257
0
            if (!i2r_IPAddressOrRanges(out,
258
0
                                       indent + 2,
259
0
                                       f->ipAddressChoice->
260
0
                                       u.addressesOrRanges, afi))
261
0
                return 0;
262
0
            break;
263
0
        }
264
0
    }
265
0
    return 1;
266
0
}
267
268
/*
269
 * Sort comparison function for a sequence of IPAddressOrRange
270
 * elements.
271
 *
272
 * There's no sane answer we can give if addr_expand() fails, and an
273
 * assertion failure on externally supplied data is seriously uncool,
274
 * so we just arbitrarily declare that if given invalid inputs this
275
 * function returns -1.  If this messes up your preferred sort order
276
 * for garbage input, tough noogies.
277
 */
278
static int IPAddressOrRange_cmp(const IPAddressOrRange *a,
279
                                const IPAddressOrRange *b, const int length)
280
0
{
281
0
    unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN];
282
0
    int prefixlen_a = 0, prefixlen_b = 0;
283
0
    int r;
284
285
0
    switch (a->type) {
286
0
    case IPAddressOrRange_addressPrefix:
287
0
        if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00))
288
0
            return -1;
289
0
        prefixlen_a = addr_prefixlen(a->u.addressPrefix);
290
0
        break;
291
0
    case IPAddressOrRange_addressRange:
292
0
        if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00))
293
0
            return -1;
294
0
        prefixlen_a = length * 8;
295
0
        break;
296
0
    }
297
298
0
    switch (b->type) {
299
0
    case IPAddressOrRange_addressPrefix:
300
0
        if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00))
301
0
            return -1;
302
0
        prefixlen_b = addr_prefixlen(b->u.addressPrefix);
303
0
        break;
304
0
    case IPAddressOrRange_addressRange:
305
0
        if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00))
306
0
            return -1;
307
0
        prefixlen_b = length * 8;
308
0
        break;
309
0
    }
310
311
0
    if ((r = memcmp(addr_a, addr_b, length)) != 0)
312
0
        return r;
313
0
    else
314
0
        return prefixlen_a - prefixlen_b;
315
0
}
316
317
/*
318
 * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort()
319
 * comparison routines are only allowed two arguments.
320
 */
321
static int v4IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
322
                                  const IPAddressOrRange *const *b)
323
0
{
324
0
    return IPAddressOrRange_cmp(*a, *b, 4);
325
0
}
326
327
/*
328
 * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort()
329
 * comparison routines are only allowed two arguments.
330
 */
331
static int v6IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
332
                                  const IPAddressOrRange *const *b)
333
0
{
334
0
    return IPAddressOrRange_cmp(*a, *b, 16);
335
0
}
336
337
/*
338
 * Calculate whether a range collapses to a prefix.
339
 * See last paragraph of RFC 3779 2.2.3.7.
340
 */
341
static int range_should_be_prefix(const unsigned char *min,
342
                                  const unsigned char *max, const int length)
343
0
{
344
0
    unsigned char mask;
345
0
    int i, j;
346
347
    /*
348
     * It is the responsibility of the caller to confirm min <= max. We don't
349
     * use ossl_assert() here since we have no way of signalling an error from
350
     * this function - so we just use a plain assert instead.
351
     */
352
0
    assert(memcmp(min, max, length) <= 0);
353
354
0
    for (i = 0; i < length && min[i] == max[i]; i++) ;
355
0
    for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--) ;
356
0
    if (i < j)
357
0
        return -1;
358
0
    if (i > j)
359
0
        return i * 8;
360
0
    mask = min[i] ^ max[i];
361
0
    switch (mask) {
362
0
    case 0x01:
363
0
        j = 7;
364
0
        break;
365
0
    case 0x03:
366
0
        j = 6;
367
0
        break;
368
0
    case 0x07:
369
0
        j = 5;
370
0
        break;
371
0
    case 0x0F:
372
0
        j = 4;
373
0
        break;
374
0
    case 0x1F:
375
0
        j = 3;
376
0
        break;
377
0
    case 0x3F:
378
0
        j = 2;
379
0
        break;
380
0
    case 0x7F:
381
0
        j = 1;
382
0
        break;
383
0
    default:
384
0
        return -1;
385
0
    }
386
0
    if ((min[i] & mask) != 0 || (max[i] & mask) != mask)
387
0
        return -1;
388
0
    else
389
0
        return i * 8 + j;
390
0
}
391
392
/*
393
 * Construct a prefix.
394
 */
395
static int make_addressPrefix(IPAddressOrRange **result, unsigned char *addr,
396
                              const int prefixlen, const int afilen)
397
0
{
398
0
    int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8;
399
0
    IPAddressOrRange *aor = IPAddressOrRange_new();
400
401
0
    if (prefixlen < 0 || prefixlen > (afilen * 8))
402
0
        return 0;
403
0
    if (aor == NULL)
404
0
        return 0;
405
0
    aor->type = IPAddressOrRange_addressPrefix;
406
0
    if (aor->u.addressPrefix == NULL &&
407
0
        (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL)
408
0
        goto err;
409
0
    if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen))
410
0
        goto err;
411
0
    aor->u.addressPrefix->flags &= ~7;
412
0
    aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT;
413
0
    if (bitlen > 0) {
414
0
        aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen);
415
0
        aor->u.addressPrefix->flags |= 8 - bitlen;
416
0
    }
417
418
0
    *result = aor;
419
0
    return 1;
420
421
0
 err:
422
0
    IPAddressOrRange_free(aor);
423
0
    return 0;
424
0
}
425
426
/*
427
 * Construct a range.  If it can be expressed as a prefix,
428
 * return a prefix instead.  Doing this here simplifies
429
 * the rest of the code considerably.
430
 */
431
static int make_addressRange(IPAddressOrRange **result,
432
                             unsigned char *min,
433
                             unsigned char *max, const int length)
434
0
{
435
0
    IPAddressOrRange *aor;
436
0
    int i, prefixlen;
437
438
0
    if (memcmp(min, max, length) > 0)
439
0
        return 0;
440
441
0
    if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0)
442
0
        return make_addressPrefix(result, min, prefixlen, length);
443
444
0
    if ((aor = IPAddressOrRange_new()) == NULL)
445
0
        return 0;
446
0
    aor->type = IPAddressOrRange_addressRange;
447
0
    if ((aor->u.addressRange = IPAddressRange_new()) == NULL)
448
0
        goto err;
449
0
    if (aor->u.addressRange->min == NULL &&
450
0
        (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL)
451
0
        goto err;
452
0
    if (aor->u.addressRange->max == NULL &&
453
0
        (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL)
454
0
        goto err;
455
456
0
    for (i = length; i > 0 && min[i - 1] == 0x00; --i) ;
457
0
    if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i))
458
0
        goto err;
459
0
    aor->u.addressRange->min->flags &= ~7;
460
0
    aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT;
461
0
    if (i > 0) {
462
0
        unsigned char b = min[i - 1];
463
0
        int j = 1;
464
0
        while ((b & (0xFFU >> j)) != 0)
465
0
            ++j;
466
0
        aor->u.addressRange->min->flags |= 8 - j;
467
0
    }
468
469
0
    for (i = length; i > 0 && max[i - 1] == 0xFF; --i) ;
470
0
    if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i))
471
0
        goto err;
472
0
    aor->u.addressRange->max->flags &= ~7;
473
0
    aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT;
474
0
    if (i > 0) {
475
0
        unsigned char b = max[i - 1];
476
0
        int j = 1;
477
0
        while ((b & (0xFFU >> j)) != (0xFFU >> j))
478
0
            ++j;
479
0
        aor->u.addressRange->max->flags |= 8 - j;
480
0
    }
481
482
0
    *result = aor;
483
0
    return 1;
484
485
0
 err:
486
0
    IPAddressOrRange_free(aor);
487
0
    return 0;
488
0
}
489
490
/*
491
 * Construct a new address family or find an existing one.
492
 */
493
static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr,
494
                                             const unsigned afi,
495
                                             const unsigned *safi)
496
0
{
497
0
    IPAddressFamily *f;
498
0
    unsigned char key[3];
499
0
    int keylen;
500
0
    int i;
501
502
0
    key[0] = (afi >> 8) & 0xFF;
503
0
    key[1] = afi & 0xFF;
504
0
    if (safi != NULL) {
505
0
        key[2] = *safi & 0xFF;
506
0
        keylen = 3;
507
0
    } else {
508
0
        keylen = 2;
509
0
    }
510
511
0
    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
512
0
        f = sk_IPAddressFamily_value(addr, i);
513
0
        if (f->addressFamily->length == keylen &&
514
0
            !memcmp(f->addressFamily->data, key, keylen))
515
0
            return f;
516
0
    }
517
518
0
    if ((f = IPAddressFamily_new()) == NULL)
519
0
        goto err;
520
0
    if (f->ipAddressChoice == NULL &&
521
0
        (f->ipAddressChoice = IPAddressChoice_new()) == NULL)
522
0
        goto err;
523
0
    if (f->addressFamily == NULL &&
524
0
        (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
525
0
        goto err;
526
0
    if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen))
527
0
        goto err;
528
0
    if (!sk_IPAddressFamily_push(addr, f))
529
0
        goto err;
530
531
0
    return f;
532
533
0
 err:
534
0
    IPAddressFamily_free(f);
535
0
    return NULL;
536
0
}
537
538
/*
539
 * Add an inheritance element.
540
 */
541
int X509v3_addr_add_inherit(IPAddrBlocks *addr,
542
                            const unsigned afi, const unsigned *safi)
543
0
{
544
0
    IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
545
0
    if (f == NULL ||
546
0
        f->ipAddressChoice == NULL ||
547
0
        (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
548
0
         f->ipAddressChoice->u.addressesOrRanges != NULL))
549
0
        return 0;
550
0
    if (f->ipAddressChoice->type == IPAddressChoice_inherit &&
551
0
        f->ipAddressChoice->u.inherit != NULL)
552
0
        return 1;
553
0
    if (f->ipAddressChoice->u.inherit == NULL &&
554
0
        (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL)
555
0
        return 0;
556
0
    f->ipAddressChoice->type = IPAddressChoice_inherit;
557
0
    return 1;
558
0
}
559
560
/*
561
 * Construct an IPAddressOrRange sequence, or return an existing one.
562
 */
563
static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr,
564
                                               const unsigned afi,
565
                                               const unsigned *safi)
566
0
{
567
0
    IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
568
0
    IPAddressOrRanges *aors = NULL;
569
570
0
    if (f == NULL ||
571
0
        f->ipAddressChoice == NULL ||
572
0
        (f->ipAddressChoice->type == IPAddressChoice_inherit &&
573
0
         f->ipAddressChoice->u.inherit != NULL))
574
0
        return NULL;
575
0
    if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges)
576
0
        aors = f->ipAddressChoice->u.addressesOrRanges;
577
0
    if (aors != NULL)
578
0
        return aors;
579
0
    if ((aors = sk_IPAddressOrRange_new_null()) == NULL)
580
0
        return NULL;
581
0
    switch (afi) {
582
0
    case IANA_AFI_IPV4:
583
0
        (void)sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp);
584
0
        break;
585
0
    case IANA_AFI_IPV6:
586
0
        (void)sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp);
587
0
        break;
588
0
    }
589
0
    f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges;
590
0
    f->ipAddressChoice->u.addressesOrRanges = aors;
591
0
    return aors;
592
0
}
593
594
/*
595
 * Add a prefix.
596
 */
597
int X509v3_addr_add_prefix(IPAddrBlocks *addr,
598
                           const unsigned afi,
599
                           const unsigned *safi,
600
                           unsigned char *a, const int prefixlen)
601
0
{
602
0
    IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
603
0
    IPAddressOrRange *aor;
604
605
0
    if (aors == NULL
606
0
            || !make_addressPrefix(&aor, a, prefixlen, length_from_afi(afi)))
607
0
        return 0;
608
0
    if (sk_IPAddressOrRange_push(aors, aor))
609
0
        return 1;
610
0
    IPAddressOrRange_free(aor);
611
0
    return 0;
612
0
}
613
614
/*
615
 * Add a range.
616
 */
617
int X509v3_addr_add_range(IPAddrBlocks *addr,
618
                          const unsigned afi,
619
                          const unsigned *safi,
620
                          unsigned char *min, unsigned char *max)
621
0
{
622
0
    IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
623
0
    IPAddressOrRange *aor;
624
0
    int length = length_from_afi(afi);
625
0
    if (aors == NULL)
626
0
        return 0;
627
0
    if (!make_addressRange(&aor, min, max, length))
628
0
        return 0;
629
0
    if (sk_IPAddressOrRange_push(aors, aor))
630
0
        return 1;
631
0
    IPAddressOrRange_free(aor);
632
0
    return 0;
633
0
}
634
635
/*
636
 * Extract min and max values from an IPAddressOrRange.
637
 */
638
static int extract_min_max(IPAddressOrRange *aor,
639
                           unsigned char *min, unsigned char *max, int length)
640
0
{
641
0
    if (aor == NULL || min == NULL || max == NULL)
642
0
        return 0;
643
0
    switch (aor->type) {
644
0
    case IPAddressOrRange_addressPrefix:
645
0
        return (addr_expand(min, aor->u.addressPrefix, length, 0x00) &&
646
0
                addr_expand(max, aor->u.addressPrefix, length, 0xFF));
647
0
    case IPAddressOrRange_addressRange:
648
0
        return (addr_expand(min, aor->u.addressRange->min, length, 0x00) &&
649
0
                addr_expand(max, aor->u.addressRange->max, length, 0xFF));
650
0
    }
651
0
    return 0;
652
0
}
653
654
/*
655
 * Public wrapper for extract_min_max().
656
 */
657
int X509v3_addr_get_range(IPAddressOrRange *aor,
658
                          const unsigned afi,
659
                          unsigned char *min,
660
                          unsigned char *max, const int length)
661
0
{
662
0
    int afi_length = length_from_afi(afi);
663
0
    if (aor == NULL || min == NULL || max == NULL ||
664
0
        afi_length == 0 || length < afi_length ||
665
0
        (aor->type != IPAddressOrRange_addressPrefix &&
666
0
         aor->type != IPAddressOrRange_addressRange) ||
667
0
        !extract_min_max(aor, min, max, afi_length))
668
0
        return 0;
669
670
0
    return afi_length;
671
0
}
672
673
/*
674
 * Sort comparison function for a sequence of IPAddressFamily.
675
 *
676
 * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about
677
 * the ordering: I can read it as meaning that IPv6 without a SAFI
678
 * comes before IPv4 with a SAFI, which seems pretty weird.  The
679
 * examples in appendix B suggest that the author intended the
680
 * null-SAFI rule to apply only within a single AFI, which is what I
681
 * would have expected and is what the following code implements.
682
 */
683
static int IPAddressFamily_cmp(const IPAddressFamily *const *a_,
684
                               const IPAddressFamily *const *b_)
685
0
{
686
0
    const ASN1_OCTET_STRING *a = (*a_)->addressFamily;
687
0
    const ASN1_OCTET_STRING *b = (*b_)->addressFamily;
688
0
    int len = ((a->length <= b->length) ? a->length : b->length);
689
0
    int cmp = memcmp(a->data, b->data, len);
690
0
    return cmp ? cmp : a->length - b->length;
691
0
}
692
693
/*
694
 * Check whether an IPAddrBLocks is in canonical form.
695
 */
696
int X509v3_addr_is_canonical(IPAddrBlocks *addr)
697
0
{
698
0
    unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
699
0
    unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
700
0
    IPAddressOrRanges *aors;
701
0
    int i, j, k;
702
703
    /*
704
     * Empty extension is canonical.
705
     */
706
0
    if (addr == NULL)
707
0
        return 1;
708
709
    /*
710
     * Check whether the top-level list is in order.
711
     */
712
0
    for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) {
713
0
        const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i);
714
0
        const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1);
715
0
        if (IPAddressFamily_cmp(&a, &b) >= 0)
716
0
            return 0;
717
0
    }
718
719
    /*
720
     * Top level's ok, now check each address family.
721
     */
722
0
    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
723
0
        IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
724
0
        int length = length_from_afi(X509v3_addr_get_afi(f));
725
726
        /*
727
         * Inheritance is canonical.  Anything other than inheritance or
728
         * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something.
729
         */
730
0
        if (f == NULL || f->ipAddressChoice == NULL)
731
0
            return 0;
732
0
        switch (f->ipAddressChoice->type) {
733
0
        case IPAddressChoice_inherit:
734
0
            continue;
735
0
        case IPAddressChoice_addressesOrRanges:
736
0
            break;
737
0
        default:
738
0
            return 0;
739
0
        }
740
741
        /*
742
         * It's an IPAddressOrRanges sequence, check it.
743
         */
744
0
        aors = f->ipAddressChoice->u.addressesOrRanges;
745
0
        if (sk_IPAddressOrRange_num(aors) == 0)
746
0
            return 0;
747
0
        for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) {
748
0
            IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
749
0
            IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1);
750
751
0
            if (!extract_min_max(a, a_min, a_max, length) ||
752
0
                !extract_min_max(b, b_min, b_max, length))
753
0
                return 0;
754
755
            /*
756
             * Punt misordered list, overlapping start, or inverted range.
757
             */
758
0
            if (memcmp(a_min, b_min, length) >= 0 ||
759
0
                memcmp(a_min, a_max, length) > 0 ||
760
0
                memcmp(b_min, b_max, length) > 0)
761
0
                return 0;
762
763
            /*
764
             * Punt if adjacent or overlapping.  Check for adjacency by
765
             * subtracting one from b_min first.
766
             */
767
0
            for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--) ;
768
0
            if (memcmp(a_max, b_min, length) >= 0)
769
0
                return 0;
770
771
            /*
772
             * Check for range that should be expressed as a prefix.
773
             */
774
0
            if (a->type == IPAddressOrRange_addressRange &&
775
0
                range_should_be_prefix(a_min, a_max, length) >= 0)
776
0
                return 0;
777
0
        }
778
779
        /*
780
         * Check range to see if it's inverted or should be a
781
         * prefix.
782
         */
783
0
        j = sk_IPAddressOrRange_num(aors) - 1;
784
0
        {
785
0
            IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
786
0
            if (a != NULL && a->type == IPAddressOrRange_addressRange) {
787
0
                if (!extract_min_max(a, a_min, a_max, length))
788
0
                    return 0;
789
0
                if (memcmp(a_min, a_max, length) > 0 ||
790
0
                    range_should_be_prefix(a_min, a_max, length) >= 0)
791
0
                    return 0;
792
0
            }
793
0
        }
794
0
    }
795
796
    /*
797
     * If we made it through all that, we're happy.
798
     */
799
0
    return 1;
800
0
}
801
802
/*
803
 * Whack an IPAddressOrRanges into canonical form.
804
 */
805
static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors,
806
                                      const unsigned afi)
807
0
{
808
0
    int i, j, length = length_from_afi(afi);
809
810
    /*
811
     * Sort the IPAddressOrRanges sequence.
812
     */
813
0
    sk_IPAddressOrRange_sort(aors);
814
815
    /*
816
     * Clean up representation issues, punt on duplicates or overlaps.
817
     */
818
0
    for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) {
819
0
        IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i);
820
0
        IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1);
821
0
        unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
822
0
        unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
823
824
0
        if (!extract_min_max(a, a_min, a_max, length) ||
825
0
            !extract_min_max(b, b_min, b_max, length))
826
0
            return 0;
827
828
        /*
829
         * Punt inverted ranges.
830
         */
831
0
        if (memcmp(a_min, a_max, length) > 0 ||
832
0
            memcmp(b_min, b_max, length) > 0)
833
0
            return 0;
834
835
        /*
836
         * Punt overlaps.
837
         */
838
0
        if (memcmp(a_max, b_min, length) >= 0)
839
0
            return 0;
840
841
        /*
842
         * Merge if a and b are adjacent.  We check for
843
         * adjacency by subtracting one from b_min first.
844
         */
845
0
        for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--) ;
846
0
        if (memcmp(a_max, b_min, length) == 0) {
847
0
            IPAddressOrRange *merged;
848
0
            if (!make_addressRange(&merged, a_min, b_max, length))
849
0
                return 0;
850
0
            (void)sk_IPAddressOrRange_set(aors, i, merged);
851
0
            (void)sk_IPAddressOrRange_delete(aors, i + 1);
852
0
            IPAddressOrRange_free(a);
853
0
            IPAddressOrRange_free(b);
854
0
            --i;
855
0
            continue;
856
0
        }
857
0
    }
858
859
    /*
860
     * Check for inverted final range.
861
     */
862
0
    j = sk_IPAddressOrRange_num(aors) - 1;
863
0
    {
864
0
        IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
865
0
        if (a != NULL && a->type == IPAddressOrRange_addressRange) {
866
0
            unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
867
0
            if (!extract_min_max(a, a_min, a_max, length))
868
0
                return 0;
869
0
            if (memcmp(a_min, a_max, length) > 0)
870
0
                return 0;
871
0
        }
872
0
    }
873
874
0
    return 1;
875
0
}
876
877
/*
878
 * Whack an IPAddrBlocks extension into canonical form.
879
 */
880
int X509v3_addr_canonize(IPAddrBlocks *addr)
881
0
{
882
0
    int i;
883
0
    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
884
0
        IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
885
0
        if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
886
0
            !IPAddressOrRanges_canonize(f->ipAddressChoice->
887
0
                                        u.addressesOrRanges,
888
0
                                        X509v3_addr_get_afi(f)))
889
0
            return 0;
890
0
    }
891
0
    (void)sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp);
892
0
    sk_IPAddressFamily_sort(addr);
893
0
    if (!ossl_assert(X509v3_addr_is_canonical(addr)))
894
0
        return 0;
895
0
    return 1;
896
0
}
897
898
/*
899
 * v2i handler for the IPAddrBlocks extension.
900
 */
901
static void *v2i_IPAddrBlocks(const struct v3_ext_method *method,
902
                              struct v3_ext_ctx *ctx,
903
                              STACK_OF(CONF_VALUE) *values)
904
0
{
905
0
    static const char v4addr_chars[] = "0123456789.";
906
0
    static const char v6addr_chars[] = "0123456789.:abcdefABCDEF";
907
0
    IPAddrBlocks *addr = NULL;
908
0
    char *s = NULL, *t;
909
0
    int i;
910
911
0
    if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) {
912
0
        X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
913
0
        return NULL;
914
0
    }
915
916
0
    for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
917
0
        CONF_VALUE *val = sk_CONF_VALUE_value(values, i);
918
0
        unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN];
919
0
        unsigned afi, *safi = NULL, safi_;
920
0
        const char *addr_chars = NULL;
921
0
        int prefixlen, i1, i2, delim, length;
922
923
0
        if (!name_cmp(val->name, "IPv4")) {
924
0
            afi = IANA_AFI_IPV4;
925
0
        } else if (!name_cmp(val->name, "IPv6")) {
926
0
            afi = IANA_AFI_IPV6;
927
0
        } else if (!name_cmp(val->name, "IPv4-SAFI")) {
928
0
            afi = IANA_AFI_IPV4;
929
0
            safi = &safi_;
930
0
        } else if (!name_cmp(val->name, "IPv6-SAFI")) {
931
0
            afi = IANA_AFI_IPV6;
932
0
            safi = &safi_;
933
0
        } else {
934
0
            X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
935
0
                      X509V3_R_EXTENSION_NAME_ERROR);
936
0
            X509V3_conf_err(val);
937
0
            goto err;
938
0
        }
939
940
0
        switch (afi) {
941
0
        case IANA_AFI_IPV4:
942
0
            addr_chars = v4addr_chars;
943
0
            break;
944
0
        case IANA_AFI_IPV6:
945
0
            addr_chars = v6addr_chars;
946
0
            break;
947
0
        }
948
949
0
        length = length_from_afi(afi);
950
951
        /*
952
         * Handle SAFI, if any, and OPENSSL_strdup() so we can null-terminate
953
         * the other input values.
954
         */
955
0
        if (safi != NULL) {
956
0
            *safi = strtoul(val->value, &t, 0);
957
0
            t += strspn(t, " \t");
958
0
            if (*safi > 0xFF || *t++ != ':') {
959
0
                X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_SAFI);
960
0
                X509V3_conf_err(val);
961
0
                goto err;
962
0
            }
963
0
            t += strspn(t, " \t");
964
0
            s = OPENSSL_strdup(t);
965
0
        } else {
966
0
            s = OPENSSL_strdup(val->value);
967
0
        }
968
0
        if (s == NULL) {
969
0
            X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
970
0
            goto err;
971
0
        }
972
973
        /*
974
         * Check for inheritance.  Not worth additional complexity to
975
         * optimize this (seldom-used) case.
976
         */
977
0
        if (strcmp(s, "inherit") == 0) {
978
0
            if (!X509v3_addr_add_inherit(addr, afi, safi)) {
979
0
                X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
980
0
                          X509V3_R_INVALID_INHERITANCE);
981
0
                X509V3_conf_err(val);
982
0
                goto err;
983
0
            }
984
0
            OPENSSL_free(s);
985
0
            s = NULL;
986
0
            continue;
987
0
        }
988
989
0
        i1 = strspn(s, addr_chars);
990
0
        i2 = i1 + strspn(s + i1, " \t");
991
0
        delim = s[i2++];
992
0
        s[i1] = '\0';
993
994
0
        if (a2i_ipadd(min, s) != length) {
995
0
            X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS);
996
0
            X509V3_conf_err(val);
997
0
            goto err;
998
0
        }
999
1000
0
        switch (delim) {
1001
0
        case '/':
1002
0
            prefixlen = (int)strtoul(s + i2, &t, 10);
1003
0
            if (t == s + i2
1004
0
                    || *t != '\0'
1005
0
                    || prefixlen > (length * 8)
1006
0
                    || prefixlen < 0) {
1007
0
                X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1008
0
                          X509V3_R_EXTENSION_VALUE_ERROR);
1009
0
                X509V3_conf_err(val);
1010
0
                goto err;
1011
0
            }
1012
0
            if (!X509v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) {
1013
0
                X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1014
0
                goto err;
1015
0
            }
1016
0
            break;
1017
0
        case '-':
1018
0
            i1 = i2 + strspn(s + i2, " \t");
1019
0
            i2 = i1 + strspn(s + i1, addr_chars);
1020
0
            if (i1 == i2 || s[i2] != '\0') {
1021
0
                X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1022
0
                          X509V3_R_EXTENSION_VALUE_ERROR);
1023
0
                X509V3_conf_err(val);
1024
0
                goto err;
1025
0
            }
1026
0
            if (a2i_ipadd(max, s + i1) != length) {
1027
0
                X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1028
0
                          X509V3_R_INVALID_IPADDRESS);
1029
0
                X509V3_conf_err(val);
1030
0
                goto err;
1031
0
            }
1032
0
            if (memcmp(min, max, length_from_afi(afi)) > 0) {
1033
0
                X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1034
0
                          X509V3_R_EXTENSION_VALUE_ERROR);
1035
0
                X509V3_conf_err(val);
1036
0
                goto err;
1037
0
            }
1038
0
            if (!X509v3_addr_add_range(addr, afi, safi, min, max)) {
1039
0
                X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1040
0
                goto err;
1041
0
            }
1042
0
            break;
1043
0
        case '\0':
1044
0
            if (!X509v3_addr_add_prefix(addr, afi, safi, min, length * 8)) {
1045
0
                X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1046
0
                goto err;
1047
0
            }
1048
0
            break;
1049
0
        default:
1050
0
            X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
1051
0
                      X509V3_R_EXTENSION_VALUE_ERROR);
1052
0
            X509V3_conf_err(val);
1053
0
            goto err;
1054
0
        }
1055
1056
0
        OPENSSL_free(s);
1057
0
        s = NULL;
1058
0
    }
1059
1060
    /*
1061
     * Canonize the result, then we're done.
1062
     */
1063
0
    if (!X509v3_addr_canonize(addr))
1064
0
        goto err;
1065
0
    return addr;
1066
1067
0
 err:
1068
0
    OPENSSL_free(s);
1069
0
    sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
1070
0
    return NULL;
1071
0
}
1072
1073
/*
1074
 * OpenSSL dispatch
1075
 */
1076
const X509V3_EXT_METHOD v3_addr = {
1077
    NID_sbgp_ipAddrBlock,       /* nid */
1078
    0,                          /* flags */
1079
    ASN1_ITEM_ref(IPAddrBlocks), /* template */
1080
    0, 0, 0, 0,                 /* old functions, ignored */
1081
    0,                          /* i2s */
1082
    0,                          /* s2i */
1083
    0,                          /* i2v */
1084
    v2i_IPAddrBlocks,           /* v2i */
1085
    i2r_IPAddrBlocks,           /* i2r */
1086
    0,                          /* r2i */
1087
    NULL                        /* extension-specific data */
1088
};
1089
1090
/*
1091
 * Figure out whether extension sues inheritance.
1092
 */
1093
int X509v3_addr_inherits(IPAddrBlocks *addr)
1094
0
{
1095
0
    int i;
1096
0
    if (addr == NULL)
1097
0
        return 0;
1098
0
    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
1099
0
        IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
1100
0
        if (f->ipAddressChoice->type == IPAddressChoice_inherit)
1101
0
            return 1;
1102
0
    }
1103
0
    return 0;
1104
0
}
1105
1106
/*
1107
 * Figure out whether parent contains child.
1108
 */
1109
static int addr_contains(IPAddressOrRanges *parent,
1110
                         IPAddressOrRanges *child, int length)
1111
0
{
1112
0
    unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN];
1113
0
    unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN];
1114
0
    int p, c;
1115
1116
0
    if (child == NULL || parent == child)
1117
0
        return 1;
1118
0
    if (parent == NULL)
1119
0
        return 0;
1120
1121
0
    p = 0;
1122
0
    for (c = 0; c < sk_IPAddressOrRange_num(child); c++) {
1123
0
        if (!extract_min_max(sk_IPAddressOrRange_value(child, c),
1124
0
                             c_min, c_max, length))
1125
0
            return -1;
1126
0
        for (;; p++) {
1127
0
            if (p >= sk_IPAddressOrRange_num(parent))
1128
0
                return 0;
1129
0
            if (!extract_min_max(sk_IPAddressOrRange_value(parent, p),
1130
0
                                 p_min, p_max, length))
1131
0
                return 0;
1132
0
            if (memcmp(p_max, c_max, length) < 0)
1133
0
                continue;
1134
0
            if (memcmp(p_min, c_min, length) > 0)
1135
0
                return 0;
1136
0
            break;
1137
0
        }
1138
0
    }
1139
1140
0
    return 1;
1141
0
}
1142
1143
/*
1144
 * Test whether a is a subset of b.
1145
 */
1146
int X509v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b)
1147
0
{
1148
0
    int i;
1149
0
    if (a == NULL || a == b)
1150
0
        return 1;
1151
0
    if (b == NULL || X509v3_addr_inherits(a) || X509v3_addr_inherits(b))
1152
0
        return 0;
1153
0
    (void)sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp);
1154
0
    for (i = 0; i < sk_IPAddressFamily_num(a); i++) {
1155
0
        IPAddressFamily *fa = sk_IPAddressFamily_value(a, i);
1156
0
        int j = sk_IPAddressFamily_find(b, fa);
1157
0
        IPAddressFamily *fb;
1158
0
        fb = sk_IPAddressFamily_value(b, j);
1159
0
        if (fb == NULL)
1160
0
            return 0;
1161
0
        if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges,
1162
0
                           fa->ipAddressChoice->u.addressesOrRanges,
1163
0
                           length_from_afi(X509v3_addr_get_afi(fb))))
1164
0
            return 0;
1165
0
    }
1166
0
    return 1;
1167
0
}
1168
1169
/*
1170
 * Validation error handling via callback.
1171
 */
1172
#define validation_err(_err_)           \
1173
0
  do {                                  \
1174
0
    if (ctx != NULL) {                  \
1175
0
      ctx->error = _err_;               \
1176
0
      ctx->error_depth = i;             \
1177
0
      ctx->current_cert = x;            \
1178
0
      ret = ctx->verify_cb(0, ctx);     \
1179
0
    } else {                            \
1180
0
      ret = 0;                          \
1181
0
    }                                   \
1182
0
    if (!ret)                           \
1183
0
      goto done;                        \
1184
0
  } while (0)
1185
1186
/*
1187
 * Core code for RFC 3779 2.3 path validation.
1188
 *
1189
 * Returns 1 for success, 0 on error.
1190
 *
1191
 * When returning 0, ctx->error MUST be set to an appropriate value other than
1192
 * X509_V_OK.
1193
 */
1194
static int addr_validate_path_internal(X509_STORE_CTX *ctx,
1195
                                       STACK_OF(X509) *chain,
1196
                                       IPAddrBlocks *ext)
1197
0
{
1198
0
    IPAddrBlocks *child = NULL;
1199
0
    int i, j, ret = 1;
1200
0
    X509 *x;
1201
1202
0
    if (!ossl_assert(chain != NULL && sk_X509_num(chain) > 0)
1203
0
            || !ossl_assert(ctx != NULL || ext != NULL)
1204
0
            || !ossl_assert(ctx == NULL || ctx->verify_cb != NULL)) {
1205
0
        if (ctx != NULL)
1206
0
            ctx->error = X509_V_ERR_UNSPECIFIED;
1207
0
        return 0;
1208
0
    }
1209
1210
    /*
1211
     * Figure out where to start.  If we don't have an extension to
1212
     * check, we're done.  Otherwise, check canonical form and
1213
     * set up for walking up the chain.
1214
     */
1215
0
    if (ext != NULL) {
1216
0
        i = -1;
1217
0
        x = NULL;
1218
0
    } else {
1219
0
        i = 0;
1220
0
        x = sk_X509_value(chain, i);
1221
0
        if ((ext = x->rfc3779_addr) == NULL)
1222
0
            goto done;
1223
0
    }
1224
0
    if (!X509v3_addr_is_canonical(ext))
1225
0
        validation_err(X509_V_ERR_INVALID_EXTENSION);
1226
0
    (void)sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp);
1227
0
    if ((child = sk_IPAddressFamily_dup(ext)) == NULL) {
1228
0
        X509V3err(X509V3_F_ADDR_VALIDATE_PATH_INTERNAL,
1229
0
                  ERR_R_MALLOC_FAILURE);
1230
0
        if (ctx != NULL)
1231
0
            ctx->error = X509_V_ERR_OUT_OF_MEM;
1232
0
        ret = 0;
1233
0
        goto done;
1234
0
    }
1235
1236
    /*
1237
     * Now walk up the chain.  No cert may list resources that its
1238
     * parent doesn't list.
1239
     */
1240
0
    for (i++; i < sk_X509_num(chain); i++) {
1241
0
        x = sk_X509_value(chain, i);
1242
0
        if (!X509v3_addr_is_canonical(x->rfc3779_addr))
1243
0
            validation_err(X509_V_ERR_INVALID_EXTENSION);
1244
0
        if (x->rfc3779_addr == NULL) {
1245
0
            for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1246
0
                IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1247
0
                if (fc->ipAddressChoice->type != IPAddressChoice_inherit) {
1248
0
                    validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1249
0
                    break;
1250
0
                }
1251
0
            }
1252
0
            continue;
1253
0
        }
1254
0
        (void)sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr,
1255
0
                                              IPAddressFamily_cmp);
1256
0
        for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1257
0
            IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1258
0
            int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc);
1259
0
            IPAddressFamily *fp =
1260
0
                sk_IPAddressFamily_value(x->rfc3779_addr, k);
1261
0
            if (fp == NULL) {
1262
0
                if (fc->ipAddressChoice->type ==
1263
0
                    IPAddressChoice_addressesOrRanges) {
1264
0
                    validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1265
0
                    break;
1266
0
                }
1267
0
                continue;
1268
0
            }
1269
0
            if (fp->ipAddressChoice->type ==
1270
0
                IPAddressChoice_addressesOrRanges) {
1271
0
                if (fc->ipAddressChoice->type == IPAddressChoice_inherit
1272
0
                    || addr_contains(fp->ipAddressChoice->u.addressesOrRanges,
1273
0
                                     fc->ipAddressChoice->u.addressesOrRanges,
1274
0
                                     length_from_afi(X509v3_addr_get_afi(fc))))
1275
0
                    sk_IPAddressFamily_set(child, j, fp);
1276
0
                else
1277
0
                    validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1278
0
            }
1279
0
        }
1280
0
    }
1281
1282
    /*
1283
     * Trust anchor can't inherit.
1284
     */
1285
0
    if (x->rfc3779_addr != NULL) {
1286
0
        for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) {
1287
0
            IPAddressFamily *fp =
1288
0
                sk_IPAddressFamily_value(x->rfc3779_addr, j);
1289
0
            if (fp->ipAddressChoice->type == IPAddressChoice_inherit
1290
0
                && sk_IPAddressFamily_find(child, fp) >= 0)
1291
0
                validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1292
0
        }
1293
0
    }
1294
1295
0
 done:
1296
0
    sk_IPAddressFamily_free(child);
1297
0
    return ret;
1298
0
}
1299
1300
#undef validation_err
1301
1302
/*
1303
 * RFC 3779 2.3 path validation -- called from X509_verify_cert().
1304
 */
1305
int X509v3_addr_validate_path(X509_STORE_CTX *ctx)
1306
0
{
1307
0
    if (ctx->chain == NULL
1308
0
            || sk_X509_num(ctx->chain) == 0
1309
0
            || ctx->verify_cb == NULL) {
1310
0
        ctx->error = X509_V_ERR_UNSPECIFIED;
1311
0
        return 0;
1312
0
    }
1313
0
    return addr_validate_path_internal(ctx, ctx->chain, NULL);
1314
0
}
1315
1316
/*
1317
 * RFC 3779 2.3 path validation of an extension.
1318
 * Test whether chain covers extension.
1319
 */
1320
int X509v3_addr_validate_resource_set(STACK_OF(X509) *chain,
1321
                                  IPAddrBlocks *ext, int allow_inheritance)
1322
0
{
1323
0
    if (ext == NULL)
1324
0
        return 1;
1325
0
    if (chain == NULL || sk_X509_num(chain) == 0)
1326
0
        return 0;
1327
0
    if (!allow_inheritance && X509v3_addr_inherits(ext))
1328
0
        return 0;
1329
0
    return addr_validate_path_internal(NULL, chain, ext);
1330
0
}
1331
1332
#endif                          /* OPENSSL_NO_RFC3779 */